
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Components of a system for automatic detection of a zone of interest in images
obtained from a UAV

Voytenko, Volodymyr; Olofsson, Björn; Solodchuk, Maksym; Denisov, Yuriy

Published in:
Technical Sciences and Technologies

DOI:
10.25140/2411-5363-2023-2(32)-300-312

2023

Document Version:
Early version, also known as pre-print

Link to publication

Citation for published version (APA):
Voytenko, V., Olofsson, B., Solodchuk, M., & Denisov, Y. (2023). Components of a system for automatic
detection of a zone of interest in images obtained from a UAV. Technical Sciences and Technologies, 32(2),
300-312. https://doi.org/10.25140/2411-5363-2023-2(32)-300-312

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.25140/2411-5363-2023-2(32)-300-312
https://portal.research.lu.se/en/publications/82289f44-77e7-4093-b3ae-7c5f9f1fd6f7
https://doi.org/10.25140/2411-5363-2023-2(32)-300-312


DOI: 

UDC 681.5 : 004.51 

Volodymyr Voytenko1, Björn Olofsson2, Maksym Solodchuk3, Yuriy Denisov4 

1PhD in Technical Sciences, Docent, associate professor of the Electronics, Automation,  

Robotics and Mechatronics Department; researcher of the Department of Automatic Control 

Chernihiv Polytechnic National University (Chernihiv, Ukraine); Lund University, (Lund, Sweden) 

E-mail: v.voytenko@stu.cn.ua ORCID: http://orcid.org/0000-0003-1490-0600  

ResearcherID: F-8698-2014 Scopus Author ID: 36167678700 
2PhD in Automatic Control, Docent, Senior Lecturer of the Department of Automatic Control 

Lund University, (Lund, Sweden) 

E-mail: bjorn.olofsson@control.lth.se ORCID: http://orcid.org/0000-0002-6793-7207 Scopus Author ID: 54793307900 
3head of the Scientific-Research Department 

State Scientific Research Institute of Armament and Military Equipment Testing and Certification (Cherkasy, Ukraine) 

E-mail: rocket15733@gmail.com ORCID: https://orcid.org/0000-0002-1162-6784 
4Doctor of Technical Sciences, Professor, head of the Electronics, Automation, Robotics and Mechatronics Department 

Chernihiv Polytechnic National University (Chernihiv, Ukraine) 

E-mail: den71ltd@gmail.com ORCID: https://orcid.org/0000-0003-2293-7964 ResearcherID: G-1144-2016 

 

COMPONENTS OF A SYSTEM FOR AUTOMATIC DETECTION OF A ZONE OF 

INTEREST IN IMAGES OBTAINED FROM A UAV 

To reduce the load on the UAV operator during long-term search and rescue missions, an on-board automatic system is 

considered that generates control signals for positioning an additional video camera with a narrow field of view. The 

requirements for the system of automatic detection of the area of interest are defined. Various methods for detecting objects in 

images are considered, analyzed and compared. Software and hardware tools are discussed, which are advisable to use in the 

preparation and conduct of experimental studies. 

Keywords: unmanned aerial vehicle (UAV); image analysis; man-machine system; electric drive; on-board object 

detector; spot camera control. 

Fig.: 5. Tabl.: 1. Ref.: 22. 

 

Relevance of the research. When performing search and rescue missions, UAVs are a 

source of important information, most of which is generated by video cameras installed on 

board. The number of cameras and their spectral ranges of sensitivity are selected depending 

on the specific task to be solved. The processing of video information itself is a cyclic procedure 

[1], which consists in searching for objects of interest, their detection, recognition, 

determination of their characteristics, and preparation of a report. 

The processing speed of video information received from a UAV is critically important, 

since its volume is large in the case of using high-resolution cameras and long flights. 

Acceleration of the process of analyzing this information is possible either by parallel operation 

of several operators or by using appropriate automation tools. 

Problem statement. Despite significant advances in computerized pattern recognition 

systems, in some applications, the final decision about the category of the object to be detected, 

as well as the subsequent actions in the search and rescue mission will remain with an operator. 

To improve the reliability of the classification of objects, the operator must receive all necessary 

and sufficient information in a timely manner. To do this, a video camera with a varifocal lens 

can be placed on the UAV, which allows zooming in on the image part in the area of interest. 

In this case, the operator must be distracted from the direct control of the UAV and use the 

control of the video camera, spending precious time on this, as well as on a possible return to 

the original image. 

Analysis of recent research and publications. Another solution [2] relies on an additional 

camera with a fixed narrow viewing angle (spot camera), which allows a quick overview of the 

object of interest at a larger scale. However, if this object turned out to be out of the direction 

of the optical axis of the spot camera, a positioning procedure of that camera will still be 

required. To reduce the time spent by the operator to perform auxiliary actions, as well as to 

reduce fatigue, it has been proposed to install the spot camera on a platform (or on a gimbal 
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[3]) that can provide rotation about two coordinate axes relative to the main (navigation) video 

camera [2]. The image frame from the main camera can be divided into rectangular sections 

(zones), while the size of each of them is determined by the area of observation of the spot 

camera [2, Fig. 3]. 

An automatic detection system, in case of detecting an object of interest based on the results 

of the frame analysis, determines the most probable area of the location of the object, and 

generates control signals for appropriate positioning of the spot camera. This ultimately allows 

the operator to concentrate on the classification of the object of interest, as well as on making 

a decision based on the results from the automated system. 

Isolation of previously unexplored parts of the general problem. One important 

specification for image processing systems using UAVs (and the direction of their 

development) is to have a high degree of autonomy, i.e., a concentration of functions performed 

directly on-board the vehicle [4]. This reduces the information load on the operator, and also 

reduces the required communication load between the UAV and the central control system, 

which expands the flight range, increases noise immunity, and reduces the power consumption 

of on-board radio-transmitting equipment. 

Research objectives. The purpose of this article is to select components for further 

experimental research. The main tasks to be solved are the specification of the requirements, 

development of a structure, clarification of the principles and algorithms of the on-board system 

for automatic detection of an area of interest and positioning of the spot camera based on the 

results of the analysis of the image from the main video camera of the UAV. 

Requirements for the system of automatic detection of the area of interest. To estimate 

the requirements on the computational time of the system for automatic detection of the area of 

interest, we use a simplified geometric construction (Fig. 1). The main difference from [2, Fig. 

1] and the corresponding mathematical relations there is that the angle α between the normal to 

the ground and the direction of the camera is taken into account here. 

 
 

Fig. 1. Geometric parameters of the system 

The UAV flies at an altitude H. In this case, the optical axis of the navigation camera lens is 

tilted at an angle α = 20…80°, which gives a visual three-dimensional representation of the 

object and the terrain [1]. Based on the definitions presented in Fig. 1, it is possible to find the 

size of the investigated surface in a simplified way (without considering projective distortions) 

depending on the camera view angle β and the UAV flight height H as follows: 
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In the third expression, Kf = b/h is the image format. On the other hand, the distance s that is 
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covered by the vehicle which is flying at speed v during the time Tr is 

s = v Tr. 

Under the condition that s = h, 
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2𝐻 tan
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2
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Let us assume that the viewing angle of the camera is β = 30°. Moreover, if the UAV is at a 

height of H = 100 m with α = 58.3°, the height of the image on the surface is h = 50 m (Fig. 1). 

Under the speed of v = 72 km/h, the UAV covers a distance of s = 50 m, i.e., the image is fully 

updated in Tr = 2.5 s. 

A popular image format provided by video cameras installed on UAVs is HD nx х ny = 1920 

х 1080 (Kf=16/9). This implies that the size of one pixel for H =100 m and β = 30° is 

Δ = h/ny = 5000/1080 ≈ 4.63 cm. 

In this relation, nx, ny are the number of pixels along the horizontal and vertical direction, 

respectively. 

Divide the entire image frame into rectangular areas (zones) with an aspect ratio 

corresponding to the frame format of the video camera. Considering the viewing angles of 

common video cameras for UAVs [5, 6], it is advisable to use the image scaling factor 

M = 10…32. 

In normal navigation mode, the UAV operator uses video images with a standard frame rate 

of Ff. The recognition (detection) system has a time interval of Tr as margin, during which the 

UAV will cover a path equal to the height of the frame on the ground (h, Fig. 1). During this 

time, the system for automatic detection of the zone of interest must determine the numbers Nx 

and Ny along both coordinate axes on the captured frame and generate commands for 

positioning the spot camera. Nx and Ny belong to the range from 1 to M. 

Table 1 shows the quantitative parameters of image zoning of the main UAV video camera 

operating in HD format. The flight altitude is H = 100 m, the angle of view is β = 30°, and the 

tilt angle of the main camera is α = 58.3°. 

Table 1. 

The number and format of split zones of the input image (the angle α is considered) 

M 1 2 3 4 5 6 8 10 12 15 30 

Nz 1 4 9 16 25 36 64 100 144 225 900 

nh 1920 960 640 480 384 320 240 192 160 128 64 

nv 1080 540 360 270 216 180 135 108 90 72 36 

b, m 88.89 44.44 29.63 22.22 17.78 14.81 11.11 8.89 7.41 5.93 2.96 

h, m 50 25 16.67 12.5 10 8.33 6.25 5 4.17 3.33 1.67 

Δ, cm 4.63 2.31 1.54 1.16 0.93 0.77 0.58 0.46 0.39 0.31 0.15 

 

The following designations are used in Table 1: 

M – number of image zones along one of the axes (and simultaneously the scaling factor); 

Nz – total number of image zones; 

nh – number of pixels in one zone of the image horizontally; 

nv –number of pixels in one zone of the image vertically; 

h, b – size of the zone on the ground; 

Δ – size of the pixel on the ground (or ground sample distance, GSD). 

Fig. 2 makes it possible to estimate the time requirements for the system of automatic 

determination of the area of interest depending on the tilt angle of the main camera α. 
 



In Fig. 3, a three-dimensional plot of the dependence of the image update time with respect 

to altitude and angle at a fixed UAV flight speed is plotted. 

 
Fig. 3. The dependence of the allowable image processing time on the angle of inclination 

of the main camera and the flight altitude of the UAV (v = 72 km/h and β = 30°) 
 

From Fig. 2 and Fig. 3, it follows that for realistic ranges of the geometric parameters, the 

allowable response time of the detection system is in the range of a few seconds. If it is possible 

to solve the problem of real-time detection of the zone of interest offline (on-board the UAV), 

this will also help to speed up the analysis of the entire accumulated array of video information 

by studying it after the mission is completed, which often takes many times more time than it 

took to complete it [1]. 

It could be noted that during the flight mission, the UAV commonly maintains the speed, 

the flight altitude, and the tilt angle of the main navigation camera at a constant level. In 

addition, changes in these parameters within a certain range can be considered as a result of the 

information acquired from the on-board sensors. As for the other requirements of the system 

for automatically determining the area of interest (e.g., energy consumption, dimensions, 

 
Fig. 2. Dependence of the allowable image processing time on the tilt angle of the UAV 

main camera (H = 100 m and β = 30°). 
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weight), despite their importance, it makes sense to clarify them in the process of solving the 

problem of timely detection of the area of interest. In addition, the video recording conditions 

(light, parallax, etc.) must also be considered at this stage. 

Selection of algorithm for the system for automatic detection of the zone of interest. In 

fact, at this stage, the task is to determine an architecture and algorithm of the system operation 

that will ensure its deployment and determination of the positioning zone of a narrow-angle 

video camera in real-time during the UAV mission, while still causing as small computational 

load as possible. We are consequently faced with the task of detecting patterns in the image. 

Selected parts of an image can be described using so-called descriptors. For regions, some 

of the simplest are [7]: the area which is defined as the number of pixels it contains; the 

perimeter; the compactness (the ratio of the square of the perimeter to the area); the roundness 

factor, which is defined as the ratio of the area of a region to the area of a circle (the most 

compact figure) with the same perimeter. For a global description of regions on an image plane, 

such topological properties as the number of holes inside the region, the number of connected 

components of the region, and the Euler number can be useful [7]. One important approach to 

describing regions is the quantitative representation of their textural features. This descriptor is 

a measure of local properties such as smoothness, coarseness, and regularity [7]. 

For UAVs, and small robots in general, it is important to reduce the amount of image 

information without losing key features. These features are usually scalars (e.g., area or aspect 

ratio) or low-dimensional vectors (e.g., object coordinates or line parameters). Image feature 

extraction is the stage of the information concentration, where the data transfer rate can be 

reduced from 106−108 bytes/s at the camera output to the order of dozens of features per frame 

[8]. 

Machine learning technologies have been developing for a long time and today they 

demonstrate the best results in solving pattern recognition problems [8-12]. The greatest 

advances in this area have been made with deep neural networks (DNN). Nevertheless, the very 

fact of the emergence of more and more new varieties of neural networks (NNs) and learning 

algorithms indicates their potential for further development and the presence of many unsolved 

problems. The most obvious problem is the computational requirements of both the DNN 

training process and the process of generating output from the network when the model it is 

deployed on an embedded device. This resource intensity can be quantified in terms of 

processor performance, memory usage, cost, etc. 

On the other hand, the UAV has significant limitations in terms of dimensions, weight, and 

power consumption of devices and components that can be used on-board. These restrictions 

are not always compatible with the needs of real-time detection/recognition algorithms. 

Significant progress in reducing resource intensity can be achieved if the network learning 

process is implemented on another computational unit than the target processor, where the latter 

is placed and used on-board the UAV, i.e., on a powerful computer with a sufficiently long 

operation time, which is accompanied by a comparably high-power consumption. The option 

of generating output on a cloud device is not always feasible, and therefore the solution to the 

problem (smoothing the contradiction between the required and available resources) is to 

simplify the NN structure as much as possible while maintaining the accuracy of the output. 

Given the integrated approach to solving the problem and the limited resources of the UAV, 

we consider only implementation of the object detection in the image from a wide-angle 

camera, entrusting the most important tasks of verification and recognition to a trained operator. 

It is shown in [9] that at present, issues related to the development of a detection and tracking 

system based on a neural network operating in real-time on embedded devices can be solved. 

The choice of an on-board object detector. Returning to the main problem to be solved, 

namely, reducing the fatigue of the UAV operator, we recall that the image received from the 

main (navigation) video camera is divided into uniform rectangular areas (zones), and the 



software system for preprocessing and image analysis tries to find the zone number in which 

the probability of the presence of the object of interest is the highest. This makes it possible to 

generate electrical signals for positioning an additional (spot) camera with a narrow viewing 

angle to obtain an enlarged image fragment for its classification by a human operator. 

To solve the problem of automatically finding the area of interest in the image from the 

navigation camera, it is necessary to use an object detector, the key requirement for which is 

the ability to work online on-board the UAV. 

Object detectors which are known today can be divided into two categories [9, 10]: directly 

based on purely data-driven machine learning algorithms, as well as based on dedicated features 

computed based on the input data. The first group of object detectors basically uses both 

traditional neural networks and machine learning algorithms, as well as Convolutional Neural 

Networks (CNNs) and deep learning algorithms. 

To get started with object detection using deep learning, one of the well-known approaches 

can be applied [10]: 

1. Creating a new object detector. It allows very high-performing models in the end, but it 

requires significant time, computational resources, and a large amount of data to configure 

layers and determine the weight coefficients of a deep neural network. 

2. Using a pre-trained object detector. This allows quick results, but there is a potential 

problem of the adequacy of the training set of images that was used when training the neural 

network for a specific task. 

In addition, when choosing an on-board object detector, the type of convolutional neural 

network used should also be taken into account. In a two-stage detector, the first stage based on 

a Region Based Convolutional Neural Network (R-CNN) or its variants [11], is designed to 

determine image areas that may contain an object. The second stage classifies objects within 

this area. Such a detector allows for very accurate detection of an object but is usually slower 

than a single-stage detector [10]. 

An example of a single-cascade detector is YOLO [11]. Here, a single convolutional neural 

network analyzes the entire image and predicts the probabilities of objects of given categories 

within bounding boxes. Such a detector could perform faster than a two-stage detector, but at 

the expense of increased number of misclassifications, especially in scenes with small objects. 

There are also algorithms that do not rely on convolutional neural networks, but still are 

considered machine learning algorithms. Some of these machine learning techniques are also 

used to detect objects in images. These are, for example: 

– Aggregate Channel Features (ACF [10]). The ACF method extracts properties directly as 

pixel values in extended image channels without calculating rectangular sums at different 

locations and scales; 

– classification by the method of support vector machine (SVM) using features of histograms 

of oriented gradient (Histograms of Oriented Gradient) [10]; 

– the Viola-Jones algorithm [10] for detecting the human face and upper body. 

The presence of such a variety of the above and many other object detection methods is a 

clear indication of their non-universality. That is, each developer tries to use the method that 

will give the best result under the specific requirements on the specific task. Here, some general 

considerations can be made for applying such methods. Methods that use convolutional neural 

networks and deep learning allow building a high-quality object detector when a powerful GPU 

and a sufficient number of labeled training images are used during training. Under such 

conditions and if sufficient training time is available, this approach can generate the desired 

results. Otherwise, it can be preferable to rely on other types of machine learning algorithms. 

In some specific cases, when certain objects are known in advance and qualitatively displayed, 

it may be sufficient to completely abandon the use of resource-intensive machine learning 

algorithms, and instead use [10]: image segmentation and analysis of large binary fragments 



(blob analysis), which rely on such properties of objects as size, shape, or color; feature-based 

object detection, where feature extraction, pattern matching, and RANSAC are used to estimate 

the location of an object. 

Examining the field of application of the object detector, the following can be noted. 

1. The UAV has significant limitations regarding the mass, dimensions, and power 

consumption of any electronic devices placed on-board. 

2. Intensive radio communication during the mission could be challenging. This makes cloud 

computing difficult to apply in this context. 

The contradiction between the existing limitations and the need to perform most of the video 

signal processing operations on-board the UAV (which is the development trend of these 

devices) can be solved by combining the appropriate electronic components (multifunctional 

built-in productive processors) and fast object detection algorithms. From this point of view, 

the use of combined methods can be considered promising, e.g., that described in [12], which 

uses both the properties of possible objects, which are determined by textural characteristics 

inside the image, and a classifier configured using a machine learning algorithm. 

Datasets for airborne detection of objects in UAV images. Given that universal and most 

successful modern object detectors are based on deep neural networks, the issue of having a 

suitable database for use in machine learning algorithms is very relevant. Although there are 

many open image data sets, we must consider the specific requirements because we need a 

database of images obtained from UAVs flying at known ranges of altitudes, speeds, pitch 

angles, and other parameters. Let us try to analyze what is most suitable for the considered case. 

Popular datasets (DOTA [13], AID [14], iSAID [15], xView [16]), some of which are called 

"aerial", are actually created using satellites. The data set UAVVaste [17] is intended for a very 

specific area of use. The data set DroneDeploy [18] includes a number of aerial photographs 

taken from a UAV. Some authors use this data set to test their own methods for image 

processing, object detection, and tracking. Each scene in [19] has a ground sample distance 

(GSD) of 0.1 m. There is a corresponding "height" and "label" for each image. However, the 

database is not available for free in its entirety. 

In [20], an overview of some datasets for object detection and tracking tasks in a convenient 

tabular form to display information is provided for comparison. Some well-known datasets are 

classified by the authors as a special drone-based class, and they note that these data sets have 

limitations in terms of scenarios. The work with the VisDrone-Dataset, which contains more 

than 10,000 images of the urban and rural environment of China, as well as objects from a wide 

range of angles, is also described in [20]. 

Consider the conditions when a UAV performs a search and rescue mission. Let the flight 

altitude H = 100 m; viewing angle β = 30°; tilt angle of the main video camera α = 58.3°. Taking 

into account [2, Fig. 1] it is possible to obtain the main geometric parameters of the image 

zoning of the main UAV video camera operating in HD format: 

1) the scale factor M = 1; 

2) the number of pixels in one zone of the image Nh =1920; Nv = 1080; 

3) the size of the zone on the ground b = 88,89 m; h = 50 m; 

4) the size of the pixel on the ground or ground sample distance (GSD) Δ = 4,63 cm. 

A comparative analysis of [13-20] shows that none of the data sets is created with all the 

input parameters in the range of those above, and none of these data sets has a sufficient number 

of images for the specific task. The solution can be found in two ways: 

1) Using a real UAV to create new data sets. This obvious path is long and expensive, but 

clearly has the potential to provide good results. 

2) Modeling images using computer synthesis and a monitor or projector placed at an 

appropriate distance. 

For evaluation, we will use a regular Logitech C920 HD Pro Webcam and place it in front 



of the simulated image screen. The dependence of the calculated distance from the camera to 

the screen is shown in Fig. 4. The angle α = 0 corresponds to the straight direction to the screen. 

 

Fig. 4. Distance between camera and screen. 

 

Hardware support of the on-board system for increasing the speed of processing 

images received from UAVs. As discussed in [2], to solve problems associated with fatigue of 

the UAV operator during long missions, either the main (navigation) video camera with a 

varifocal lens can be used, or a spot camera with a narrow angle of view can be added. The 

image from the navigation video camera should be analyzed in real-time with respect to the 

presence of objects of interest and, if such are detected, the required image part is automatically 

zoomed in on. 

Using a single camera for both navigation purposes and final classification of potential 

candidates for the object of interest has several drawbacks. 

1. The problem of documenting the mission. The availability of information from only one 

image (either nominal or enlarged) does not allow to conclude that no object of interest was 

missed, after the completion of the mission and reading the built-in storage device of the UAV. 

This might lead to the need to perform a repeated mission, which increases operator fatigue. 

2. Purely technical problems associated with the use of a zoom lens. After all, such a lens, 

in addition to a complex mechatronic system of interconnected movement of several lenses, 

must have additional focusing subsystems implemented using separate electric drives. This 

leads to a deterioration in image quality (e.g., accuracy, brightness, and stability of 

characteristics), as well as to an increase in object classification time because of limited 

autofocus dynamics. 

Hence, there is an advantage of using a separate spot camera located on a gimbal, which can 

be positioned independently of the navigation video camera for yaw and pitch angles. The 

structure of the electromechanical part of the overall system for increasing the speed of 

processing images obtained from UAVs (one of the two channels) is shown in Fig. 5. This is an 

extended and more detailed block diagram compared to the one in [2]. 
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The brushless direct-current motor M is the final actuating device, which, together with 

another similar one, can be designed for the interrelated positioning of the spot camera in one 

of two perpendicular directions within the image from the navigation video camera. The motors 

are equipped with Hall sensors (HS) and a position sensor (PS), the signals of which are used 

in a three-loop automatic control system that acts on the control error between reference values 

and actual measured values. 

The index "r" in Fig. 5 is used for reference values. The zone number determined by the on-

board object detector is recalculated into the specified angle of orientation of the spot camera 

Θr in a certain direction. Position (PC), speed (SC), and current (CC) controllers provide the 

required quality of the transition process of the motor rotation angle. The rotation speed is 

calculated by differentiating the signal from the PS. The sign block uses speed to determine the 

direction of rotation of the motor, which, with the help of a logic unit (LU), provides the 

appropriate alternation of HD signals for the pulse width modulator (PWM). Pulses with width 

modulation are supplied to the gate drivers (GD) of the power switches of the inverter (I), which 

ensures the required form of motor winding currents A, B, C. 

As mentioned, a feature of UAVs is the presence of significant design and energy constraints, 

which fundamentally affect the choice and implementation of all components of the structure 

in Fig. 5. Provided that the specifications in terms of minimum dimensions, mass, and power 

consumption are ensured, high-performance computers must be on-board to perform both 

image pre-processing procedures (correction of visibility conditions, angle of view, removal of 

obstacles, noise, etc.) and object detection [12]. In addition to solving these resource-intensive 

tasks related to the implementation of the area of interest detector, the on-board computer must 

also control two interconnected electric drives in real-time (Fig. 5). Therefore, the selection of 

components for an electronic system that will provide hardware and software support for the 

implementation of the specified resource-intensive algorithms is a non-trivial task. 

The development of electronics is accompanied by the spread of machine learning 

algorithms to front-end devices. An effective solution is the use of a multi-functional system on 

a crystal with built-in support for digital image processing procedures and the implementation 

of neural networks. The i.MX 8M Plus processor family [21] is designed to reliably solve tasks 

in machine learning and vision, multimedia, and industrial automation. Key features of this 

processor include: four Arm® Cortex®-A53 cores and neural processor up to 2.3 TFLOPS; 

 
Fig. 5. Spot camera control structure (one channel). 
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dual video signal processor and two camera inputs for the video system; video codec, 3D/2D 

graphics accelerator, numerous audio and voice functions; real-time control using Cortex-M7. 

Thus, this very large integrated circuit (VLSIC) at the hardware and the corresponding software 

levels support both the complex tasks related to intelligent image processing and many of the 

blocks in Fig. 5. It is advisable to use ready-made hardware and software solutions for 

conducting experimental studies at the stage of creating a prototype to evaluate the conceptual 

foundations. Consider the PhyBOARD Pollux AI Kit platform [22]. This kit contains a single-

board computer based on the i.MX 8M Plus processor and a MIPI camera. The pre-installed 

software significantly speeds up the development: the OpenCV library; the GStreamer 

framework (video editors, streaming servers, media players and file converters, VoIP solutions). 

The Yocto Linux Board Support Package includes [22] NXP's eIQ machine learning software 

development environment. Support for pytorch, TensorFlow Lite, and the ONNX format allows 

implementation of machine learning algorithms. 

Conclusions. To solve the problem of increasing the speed and reducing the fatigue of the 

UAV operator when performing long-term search and rescue missions, the choice of 

components of the software and hardware is discussed, which automatically on-board ensures 

the orientation of the spot camera in the desired direction. 

The allowable computational time spent by the system for automatically determining the 

area of interest is estimated depending on the tilt angle of the main camera and the flight altitude 

of the UAV. It is shown that to solve the formulated problem, it is required to create an on-

board object detector with a time of detecting the area of interest in the order of a few seconds. 

For this purpose, combined methods can be used that employ both the features of objects 

defined by textural characteristics of the image and a classifier, which is tuned using a machine 

learning algorithm. 

Data sets for airborne object detection on UAV images are characterized and it is shown that 

there are limitations in terms of meeting the required input parameters and the required number 

of relevant images. Possible ways of solving this problem are discussed. 

For experimental studies, software and hardware solutions are discussed that can be used to 

solve the whole range of tasks, including image processing and control of electric motors for 

positioning the spot camera, directly on-board the UAV under the specific operating conditions. 
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КОМПОНЕНТИ СИСТЕМИ АВТОМАТИЧНОГО ВИЯВЛЕННЯ ЗОНИ 

ІНТЕРЕСУ НА ЗОБРАЖЕННЯХ, ОТРИМАНИХ З БПЛА 

Швидкість обробки відеоінформації, отриманої з БПЛА під час пошуково-рятувальних, моніторингових і 

розвідувальних місій, є параметром, який визначає успішність виконання завдання. Щоб зменшити навантаження на 

оператора БПЛА, безпосередньо на борту здійснюється автоматичне виявлення того фрагмента вихідного 

зображення поверхні, на якому може бути розташований об’єкт інтересу. Результатом роботи такої 

автоматичної системи є формування номера зони інтересу, генерація керуючих сигналів і відповідне позиціонування 

додаткової відеокамери з вузьким полем огляду (спот-камери). Остаточне рішення про виявлення об'єкта інтересу 

та його класифікацію здійснює оператор на підставі відеозображення з спот-камери. 

Для вирішення зазначеної проблеми у статті обґрунтовано вибір компонентів програмно-апаратного комплексу, 

який безпосередньо на борту автоматично забезпечує орієнтацію спот-камери у потрібному напрямку. 

Оцінено допустимі витрати часу для системи автоматичного визначення зони інтересу в залежності від кута 

нахилу основної камери та висоти польоту БПЛА. Показано, що для вирішення основної задачі потрібне створення 

бортового детектора об’єктів з часом виявлення зони інтересу порядку одиниць секунд. Задля цього можуть бути 

застосовані комбіновані методи, які використовують як властивості об’єктів, що визначаються текстурними 

характеристиками всередині зображення, так і класифікатор, налаштований за допомогою алгоритму машинного 

навчання. 

Охарактеризовано набори даних для бортового виявлення об’єктів на зображеннях БПЛА, і показано, що жоден 

із доступних вільно сьогодні не відповідає потрібним вхідним параметрам і не містить достатньої кількості 

релевантних зображень. Запропоновані можливі шляхи вирішення даної проблеми. 

Для виконання експериментальних досліджень наведені програмно-апаратні рішення, які потенційно можуть 

бути використані для вирішення всього комплексу завдань, включаючи обробку зображень і керування 

електродвигунами позиціонування спот-камери безпосередньо на борту БПЛА в умовах численних обмежень. 

Ключові слова: безпілотний літальний апарат (БПЛА); аналіз зображень; людино-машинна система; 

електропривід; бортовий детектор об’єктів; керування спот-камерою. 

Рис.: 5. Табл.: 1. Бібл.: 22. 
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