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Abstract—Antenna current optimization has been used to
derive physical bounds on antenna parameters such as Q-factor,
radiation efficiency, gain, directivity, capacity, and radiation
patterns. The success of the methodology is partly due to the
assumption of absolute control of the antenna current in the
antenna region which in practice producing an array antenna
with multiple feeds. Details of the feed such as input impedance
and placement are however essential in antenna synthesis and
there has so far been no successful approach to include these
types of constraints. In this presentation, we illustrate how feed
constraints can be included in current optimization and discuss
their associated challenges.

Index Terms—Antennas, numerical methods, eigenvalues and
eigenfunctions, optimization methods, limitations.

I. INTRODUCTION

The antenna current optimization method to derive physical
bounds is versatile and can be used to compute bounds
on combinations of parameters such as Q-factor, efficiency,
directivity, and radiation patterns [1], [2], [3], [4], [5], [6],
[7]. This success is partly due to the assumption of perfect
control of the antenna current in the antenna region essentially
producing an array antenna with multiple feeds. The details of
the feed is however essential in antenna synthesis and hence
it is desired to include the feed in the optimization approach.

In this presentation, we discuss how feed models can be
added to the optimization problems and some challenges with
their solution. The optimization problems in [1], [2], [3], [4],
[5], [6] are either convex or quadratically constrained quadratic
programs (QCQPs) with one to two constraints such that dual
formulations can be used to solve them efficiently [8]. Un-
fortunately, addition of a feed adds 2N quadratic constraints,
where N denotes the number of unknowns (current elements),
making the optimization problems much harder to solve and
calling to different relaxations.

II. ANTENNA CURRENT OPTIMIZATION

In order to illustrate current optimization, let us consider
maximization of gain [4] G(r̂) = 4πU(r̂)/Pacc, with being
U(r̂) the radiation intensity in the direction r̂ and Pacc being
the accepted power by the antenna. Expressing the radiation
intensity in the current U(r̂) = IHUI/2 and the dissipated
power Pd = IHRI/2 forms the current optimization problem

maximize IHUI

subject to IHRI = 2Pd,
(1)
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Figure 1. Example of a region Ω = ΩA ∪ΩG decomposed into an antenna
design region ΩA and a surrounding fixed region (ground plane) ΩG. The
desired feed point is indicted.

where the superscript H denotes hermitian transpose. This
problem is easily solved as an eigenvalue problem giving G =
4πmax eig(U,R) with I as the corresponding eigenvector.
The power Pd can alternatively be interpreted as the accepted
power Pd = Pacc = Re{I∗inVin}/2 = Re{Zin}|Iin|2 in feed
port with input voltage Vin, current Iin, and impedance Zin.
Real valued input impedance Im{Zin} = Xin = 0 corresponds
to self resonance which is expressed as IHXI = 0 in the
currents [9], [3], [4], [5] and easily included in (1) forming

maximize IHUI

subject to IHRI = 2Pd

IHXI = 0.

(2)

The two problems (1) and (2) contain only information about
the total accepted power of the port and whether the port is
connected to a self resonant antenna or not. They contain no
information about the position and input impedance of the
port. Decomposition of the region into an antenna region ΩA

with the feed and a surrounding region ΩG, see Fig. 1 add
restrictions on the antenna performance but does not allow
detailed information about position and input impedance of
the feed.

III. FEED CONSTRAINTS

Multiplication of the current I solving (1) or (2) with the
impedance matrix Z = R + jX produces an equivalent exci-
tation V = ZI for the optimal current. Current I, voltage V,
and their elementwise (Hadamard) product P = I∗�V/2 are
in general supported everywhere in the allowed antenna region



Ω, where the superscript ∗ denotes the complex conjugate. The
product P can be interpreted from the power relation∫

Ω

Ein(r) · J(r) dV=

∫
Ω

Ein(r) ·
N∑
n=1

I∗nψn(r) dV

=

N∑
n=1

I∗n

∫
Ω

Ein(r) ·ψn(r) dV=

N∑
n=1

I∗nVn, (3)

where ψn(r) are local basis functions used to expand the
current density and MoM matrices [9]. For an antenna region
Ω1 ⊂ Ω fed with a local port in Ωf , we have J(r) = 0
for r ∈ Ω \ Ω1 and Ein(r) = 0 for r ∈ Ω1 \ Ωf . The
corresponding product J∗(r) · Ein(r) ∼ I∗nVn for some n
vanishes hence for r ∈ Ω \Ωf and can be used to characterize
antenna structures.

In this paper, we discuss optimization formulations to anal-
yse optimal antennas with single- and multi-port feeds. The
initial approach is based on adding constraints for the feed to
the optimization problem (1). The antenna feed is modelled as
a voltage gap at the feed position, see Fig. 1. We can add feed
constraints to the optimization problems including feed voltage
Vin, current Iin, or input impedance Zin = Vin/Iin. The MoM
impedance matrix Z for the region Ω can be used to model
every substructure in Ω by removing rows and columns from
Z [9], [10]. Removing columns in Z corresponds to zeros in
the current I used in the matrix multiplication ZI. Similarly,
removing of rows is achieved by the Hadamard (elementwise)
product with the complex conjugate of the current I∗, i.e.,

I∗ � (ZI) = I∗ �V, (4)

where the power terms I∗nVn in (3) are recognized. Combining
these N constraints with maximization of radiation intensity
in (1) produces a QCQP of the form

maximize IHUI

subject to I∗ � (ZI) = I∗ �V.
(5)

Similar problems are easily formed for efficiency, Q-factor,
and other parameters by changing the object functional. Unfor-
tunately, there is no known way to solve these type of QCQPs
for large number of unknowns N but dual formulations,
relaxations, and numerical techniques can produce valuable
approximations of the solution [11], [8].

IV. RELAXED PROBLEMS FOR TRANSMISSION

The simplest relaxation of (5) is to sum the constraints
producing

N∑
n=1

I∗ �V = IHV = I∗inVin = Zin|Iin|2 = Rin|Iin|2 (6)

for a transmitting antenna with a single gap feed in element
number f . The last equality in (6) is for self-resonant antennas
with radiation resistance Rin. This modifies (4) to

IHRI = Rin|Iin|2 = 2Pacc and IHXI = 0 (7)

where the conditions on dissipated power and self-resonance
in (2) are recognized. The affine constraint formed by the f -th
row of Z

Zf,.I = Vin = ZinIin (8)

can also be added to (1) as the feed current cannot vanish. The
resulting optimization problem can be written in many ways,
e.g.,

maximize IHUI

subject to IHRI = 2Rin|Iin|2

IHXI = 0

Zf,.I = Vin = RinIin

(9)

for a self-resonant antenna with radiation resistance Rin and
given input current Iin. Although the added constraint in (9)
tightens the bound from (2) it is still far from the bound in (5).

V. RELAXED PROBLEMS FOR RECEPTION

Feed constraints can alternatively be analysed in reception
e.g., using that gain is related to the effective area from Aeff =
λ2G/(4π). Maximization of the received power in the port

maximize IHRinI

subject to IHRI = IHV

IHXI = IHV,

(10)

where Rin is the matrix producing IHRinI = Rin|Iin| and V
the matrix in (3) for an incident plane wave.

VI. CONCLUSION

The fundamental bounds with feed constraints form a new
class of optimal currents. Since with additional constraints,
they represent tighter bounds as compared to the optimal
currents found before. In general, the problems with prescribed
feeding are yet not solvable, however, the solvable subset
is slowly increasing. Future research is focused on multi-
port devices with both active and mutual impedances being
prescribed. Final resolution of the optimization with port
quantities may reduce the gap between optimal currents found
with convex optimization and optimal antennas found with
heuristic algorithms.
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