
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Network Parameterisation and Activation Functions in Deep Learning

Trimmel, Martin

2023

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Trimmel, M. (2023). Network Parameterisation and Activation Functions in Deep Learning. [Doctoral Thesis
(compilation), Mathematics (Faculty of Engineering)]. Lunds Universitet, Centre for Mathematical Sciences.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/31f59552-5e27-488c-b8e3-70c3680dd81b


Network Parameterisation and  
Activation Functions in Deep Learning
MARTIN TRIMMEL

Lund University
Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

 –  CE N T R U M  S C I E N T I A R U M  M AT H E M AT I C A R U M  –





Network Parameterisation and Activation Functions in Deep
Learning





Network Parameterisation and
Activation Functions in Deep

Learning

by Martin Trimmel

Thesis for the degree of Doctor of Philosophy

Thesis advisors
Prof Cristian Sminchisescu, Prof Anders Heyden, Dr Henning Petzka

Faculty opponent
Prof Guido Montúfar, University of California, Los Angeles (UCLA)

To be presented, with the permission of the Faculty of Engineering of Lund University, for public criticism

in the lecture hall MH:Hörmander at the Centre for Mathematical Sciences on Tuesday,

the 16th of May 2023 at 15:15.



D
O

K
U

M
E

N
TD

AT
A

B
LA

D
en

lS
IS

61
41

21

Organization

LUND UNIVERSITY
Centre for Mathematical Sciences

Box 118

SE–221 00 LUND

Sweden

Author(s)

Martin Trimmel

Document name

DOCTORAL THESIS
Date of disputation

2023-05-16

Sponsoring organization

Title and subtitle

Network Parameterisation and Activation Functions in Deep Learning

Abstract

Deep learning, the study of multi-layered artificial neural networks, has received tremendous attention over

the course of the last few years. Neural networks are now able to outperform humans in a growing variety of

tasks and increasingly have an impact on our day-to-day lives. There is a wide range of potential directions to

advance deep learning, two of which we investigate in this thesis:

(1) One of the key components of a network are its activation functions. The activations have a big impact

on the overall mathematical form of the network. The first paper studies generalisation of neural networks

with rectified linear activations units (“ReLUs”). Such networks partition the input space into so-called

linear regions, which are the maximally connected subsets on which the network is affine. In contrast to

previous work, which focused on obtaining estimates of the number of linear regions, we proposed a tropical

algebra-based algorithm called TropEx to extract coefficients of the linear regions. Applied to fully-connected

and convolutional neural networks, TropEx shows significant differences between the linear regions of these

network types. The second paper proposes a parametric rational activation function called ERA, which is

learnable during network training. Although ERA only adds about ten parameters per layer, the activation

significantly increases network expressivity and makes small architectures have a performance close to large

ones. ERA outperforms previous activations when used in small architectures. This is relevant because neural

networks keep growing larger and larger and the computational resources they require result in greater costs

and electricity usage (which in turn increases the CO2 footprint).

(2) For a given network architecture, each parameter configuration gives rise to a mathematical function.

This functional realisation is far from unique and many different parameterisations can give rise to the same

function. Changes to the parameterisation that do not change the function are called symmetries. The third
paper theoretically studies and classifies all the symmetries of 2-layer networks using the ReLU activation.

Finally, the fourth paper studies the effect of network parameterisation on network training. We provide a

theoretical analysis of the effect that scaling layers have on the gradient updates. This provides a motivation for

us to propose a Cooling method, which automatically scales the network parameters during training. Cooling

reduces the reliance of the network on specific tricks, in particular the use of a learning rate schedule.

Key words

deep learning, linear region, network parameterisation, activation function, network calibration, conformal

prediction, tropical algebra, rational function, temperature scaling, network symmetries

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title

1404-0034

ISBN

978-91-8039-572-4 (print)

978-91-8039-573-1 (pdf)

Recipient’s notes Number of pages

220

Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby

grant to all reference sources the permission to publish and disseminate the abstract of the above-mentioned

dissertation.

Signature Date 2023-04-03



Network Parameterisation and
Activation Functions in Deep

Learning

by Martin Trimmel

Thesis for the degree of Doctor of Philosophy

Thesis advisors
Prof Cristian Sminchisescu, Prof Anders Heyden, Dr Henning Petzka

Faculty opponent
Prof Guido Montúfar, University of California, Los Angeles (UCLA)

To be presented, with the permission of the Faculty of Engineering of Lund University, for public criticism

in the lecture hall MH:Hörmander at the Centre for Mathematical Sciences on Tuesday,

the 16th of May 2023 at 15:15.



Cover illustration front: The author generated this image with Microsoft Bing Image Creator,

which is based on the DALL·E 2 generative model.

Funding information: This thesis work was supported in part by the European Research

Council Consolidator grant SEED, CNCSUEFISCDI PN-III-PCCF-2016-0180, Swedish Foun-

dation for Strategic Research (SSF) Smart Systems Program, as well as the Wallenberg AI,

Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg

Foundation.

© Martin Trimmel 2023

Faculty of Engineering, Centre for Mathematical Sciences

Doctoral Thesis in Mathematical Sciences 2023:3

ISBN: 978-91-8039-572-4 (print)

ISBN: 978-91-8039-573-1 (pdf)

ISSN: 1404-0034

LUTFMA: 1082-2023

Printed in Sweden by Media-Tryck, Lund University, Lund 2023



Dedicated in gratefulness
to my parents

Günter and Agnes Trimmel





In a new system of education there should be time for teachers to sit down with the
students to listen to each other. Because both students and teachers have suffering in
them. And if teachers and students understand each other’s suffering, they will stop
making each other suffer more. There will be good communication and the work of
teaching and learning will become much easier.
Thich Nhat Hanh





Contents

I Background v
Preface vii

1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

3 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

4 Popular Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

5 Populärwissenschaftliche Zusammenfassung . . . . . . . . . . . . . . . xiii

6 Populärvetenskaplig sammanfattning . . . . . . . . . . . . . . . . . . . xv

1 Overview 1
1 Notation in This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Formalism of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Machine Learning Terminology . . . . . . . . . . . . . . . . . 8

4.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Deep Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Learning Rate Schedule . . . . . . . . . . . . . . . . . . . . . 13

5.2 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 Rational Activation Functions . . . . . . . . . . . . . . . . . . 17

7 Network Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Piecewise-Linear Neural Networks . . . . . . . . . . . . . . . . . . . . 20

8.1 Tropical Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.2 Linear Regions . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Network Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.1 Measuring (Mis-)Calibration . . . . . . . . . . . . . . . . . . . 24

9.2 Calibration Methods . . . . . . . . . . . . . . . . . . . . . . . 25

10 Contributions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 26



II Scientific Publications 41
Paper I: TropEx: An Algorithm for Extracting Linear Terms in Deep Neural

Networks 43
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 Background and Overview . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Matrix Representation of Tropical Rational Maps . . . . . . . . 49

3.2 Extracting Linear Terms of a Classification Network . . . . . . 49

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Equivalence Between Tropical Matrices and Tropical Polynomials . . . 64

B.1 Basics of Tropical Algebra . . . . . . . . . . . . . . . . . . . . 64

B.2 Tropical Matrix Operations . . . . . . . . . . . . . . . . . . . . 65

B.3 Tropical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 66

B.4 The Semiring of Tropical Matrices . . . . . . . . . . . . . . . . 67

C Derivation of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 69

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C.2 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . 70

C.3 Converting Activations Into Their Tropical Form . . . . . . . . 71

C.4 Merging of Tropical Layers . . . . . . . . . . . . . . . . . . . 72

C.5 Selection of Terms . . . . . . . . . . . . . . . . . . . . . . . . 76

C.6 Converting the Last Layer Into a Tropical Rational Function . . 79

C.7 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . 80

C.8 Using Different Values of K . . . . . . . . . . . . . . . . . . . 80

C.9 An Observation on Cross Terms . . . . . . . . . . . . . . . . . 81

D Setup of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

E Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 84

E.1 Accuracy of Extracted Functions - Individual result for each

architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

E.2 Visual Exploration of Generalization . . . . . . . . . . . . . . . 85

E.3 Leaky ReLU . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

E.4 Evolution of test accuracy during extraction . . . . . . . . . . . 85

E.5 Similarity of activation patterns . . . . . . . . . . . . . . . . . 86

E.6 Comparing Network Coefficients after Network Retraining . . . 87

E.7 Visualization of Coefficients . . . . . . . . . . . . . . . . . . . 88

E.8 Exploring the neighborhood and estimating volume and number

of linear regions in practice . . . . . . . . . . . . . . . . . . . . 88

F Example: Applying TropEx to a Toy Network . . . . . . . . . . . . . . 90

G Potential for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 98

ii



Paper II: ERA: Enhanced Rational Activations 99
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3 Enhanced Rational Function . . . . . . . . . . . . . . . . . . . . . . . 105

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1 Image Classification . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 3D Human Pose and Shape Reconstruction . . . . . . . . . . . 110

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.1 Additional Results on CIFAR10 . . . . . . . . . . . . . . . . . 123

A.2 Results on MNIST . . . . . . . . . . . . . . . . . . . . . . . . 125

A.3 Results on ImageNet . . . . . . . . . . . . . . . . . . . . . . . 126

B 3D Human Pose and Shape Reconstruction . . . . . . . . . . . . . . . 135

B.1 Additional ablations . . . . . . . . . . . . . . . . . . . . . . . 135

Paper III: Notes on the Symmetries of 2-Layer ReLU-Networks 139
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

2 Odd activation functions . . . . . . . . . . . . . . . . . . . . . . . . . 143

3 Two-layer ReLU regression networks . . . . . . . . . . . . . . . . . . 144

4 Deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

B Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

D Example of a pair of degenerate (R1,R2,R3)-irreducible networks that

implement the same network function . . . . . . . . . . . . . . . . . . 156

Paper IV: How to Keep Cool While Training 159
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

2 Background and Notation . . . . . . . . . . . . . . . . . . . . . . . . . 164

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

2.2 Notions of Network Equivalence . . . . . . . . . . . . . . . . . 164

2.3 Network Calibration . . . . . . . . . . . . . . . . . . . . . . . 165

3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

3.1 Analysis of Gradient Values . . . . . . . . . . . . . . . . . . . 166

3.2 Cooling While Training . . . . . . . . . . . . . . . . . . . . . 168

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.1 Motivation and General Setup . . . . . . . . . . . . . . . . . . 172

4.2 Impact on Gradients . . . . . . . . . . . . . . . . . . . . . . . 172

4.3 Impact on Performance . . . . . . . . . . . . . . . . . . . . . . 173

4.4 Impact on Calibration . . . . . . . . . . . . . . . . . . . . . . 174

4.5 Which version of Cooling is the best? . . . . . . . . . . . . . . 175

iii



5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A Additional Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

C Additional Results on CIFAR10 . . . . . . . . . . . . . . . . . . . . . 185

C.1 ResNet50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.2 Batch Normalization and Dropout . . . . . . . . . . . . . . . . 185

C.3 Vector Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 185

C.4 Gradient Norms . . . . . . . . . . . . . . . . . . . . . . . . . . 185

iv



Part I

Background

v





1 Abstract

Deep learning, the study of multi-layered artificial neural networks, has received tremen-

dous attention over the course of the last few years. Neural networks are now able to

outperform humans in a growing variety of tasks and increasingly have an impact on our

day-to-day lives. There is a wide range of potential directions to advance deep learning,

two of which we investigate in this thesis:

(1) One of the key components of a network are its activation functions. The activations

have a big impact on the overall mathematical form of the network. The first paper stud-

ies generalisation of neural networks with rectified linear activations units (“ReLUs”).

Such networks partition the input space into so-called linear regions, which are the max-

imally connected subsets on which the network is affine. In contrast to previous work,

which focused on obtaining estimates of the number of linear regions, we proposed

a tropical algebra-based algorithm called TropEx to extract coefficients of the linear

regions. Applied to fully-connected and convolutional neural networks, TropEx shows

significant differences between the linear regions of these network types. The second
paper proposes a parametric rational activation function called ERA, which is learnable

during network training. Although ERA only adds about ten parameters per layer, the

activation significantly increases network expressivity and makes small architectures

have a performance close to large ones. ERA outperforms previous activations when

used in small architectures. This is relevant because neural networks keep growing

larger and larger and the computational resources they require result in greater costs and

electricity usage (which in turn increases the CO2 footprint).

(2) For a given network architecture, each parameter configuration gives rise to a

mathematical function. This functional realisation is far from unique and many different

parameterisations can give rise to the same function. Changes to the parameterisation

that do not change the function are called symmetries. The third paper theoretically

studies and classifies all the symmetries of 2-layer networks using the ReLU activation.

Finally, the fourth paper studies the effect of network parameterisation on network

training. We provide a theoretical analysis of the effect that scaling layers have on

the gradient updates. This provides a motivation for us to propose a Cooling method,

which automatically scales the network parameters during training. Cooling reduces

the reliance of the network on specific tricks, in particular the use of a learning rate

schedule.

vii



2 List of publications

This thesis is based on the following publications, referred to by their Roman numerals:

I TropEx: An Algorithm for Extracting Linear Terms in Deep Neural
Networks

Martin Trimmel∗, Henning Petzka∗, Cristian Sminchisescu

International Conference on Learning Representations (ICLR), Virtual Confer-

ence, 2021

II ERA: Enhanced Rational Activations

Martin Trimmel∗, Mihai Zanfir∗, Richard Hartley, Cristian Sminchisescu

European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 2022

III Notes on the Symmetries of 2-Layer ReLU-Networks

Henning Petzka, Martin Trimmel, Cristian Sminchisescu

Northern Lights Deep Learning Conference (NLDL), Tromsø, Norway, 2020

IV How to Keep Cool While Training

Martin Trimmel, Mihai Zanfir, Richard Hartley, Cristian Sminchisescu

Preprint, April 2023

All papers are reproduced with permission of their respective publishers.

viii



3 Acknowledgements

Even though only my name can be found on the cover of this book, this thesis is actually

the result of the joint endeavour of many people. Without their efforts, the papers

presented here would not have been possible, so I would like to express my sincere

thanks to them.

First of all, I would like to thank my supervisor Cristian Sminchisescu for all the support

he has given me during the last couple of years. Cristian always encouraged me to

pursue new paths in research and he skillfully enabled many of the collaborations that

helped produce this thesis. Thanks to him, I was able to visit many different places to

discuss deep learning with people from around the world. I would also like to thank my

co-supervisor Anders Heyden for having been happy to provide guidance whenever I

asked for it. I am also very grateful to Richard Hartley for providing deep insights into

various aspects of deep learning and Mihai Zanfir for his great suggestions and light-

hearted conversations about research. An extra big thank-you goes to my co-supervisor

Henning Petzka, whose guidance has really exceeded the ordinary and from whom I

could learn a lot in my first projects. Henning was a great partner on travels between the

alps and the arctic circle and I even enjoyed his googling of jokes about Austrians on a

dizzying bus ride on the curvy roads along the Norwegian fjords. Despite moving away

from Lund, Henning gratefully continued to offer his help and even spent his free time

to support me in my defence and thesis process.

I am very lucky to have had great PhD siblings in our research group family, in which I

was the last one to start. First, I would like to express my gratitude to my older PhD

brother Aleksis Pirinen for being an awesome friend who greatly cares about all the

people around him and the planet he lives on. I’ve really appreciated Aleksis’ intelligent

advice, his desire and ability to help others, many walks in nature together and a funny

train and boat journey to Zurich. I thank my older PhD brother David Nilsson for his

calm presence and interesting conversations. My thanks go to my older PhD sister Maria

Priisalu for her infectious cheerfulness and laughter, a great collaboration on the time

series project, precious travel advice and enjoyable conversations on culture and history.

Finally, I’d also like to thank my slightly older twin brother Erik Gärtner for having been

a great first officemate and computer expert who initially helped me a lot with getting

used to my computer and to CUDA. My thanks also go to the friendly postdoc uncle Ted

Kronvall for interesting discussions on generative models and a thriving “Skvättiväg”

plant.

Outside of my closest research group, I would like to especially thank my second

officemate Axel Berg for many interesting conversations about Transformers and point

clouds and for teaching me a lot of exciting things about Swedish culture and history.

ix



I would like to send a big thank-you to Carl Olsson for a lot of support and his readiness

to help during the last few months. A big thanks also goes to Carl-Gustav Werner and

James Hakim for their steady and fast computer support throughout the last few years,

which made life much easier. I would also like to thank the administrative personnel at

the mathematics centre, in particular Lena Lööf, Eva-Lena Borgström, Sara Ingelstrand

and Jessica Kareseit, for making many things run more smoothly.

I would like to thank three fellow PhD students from other universities: First, thanks go

to Frieder Simon from the University of Oxford for many entertaining conversations

about Transformers and the mathematics of deep learning (including thinking about

what a neural network actually is). I would also like to thank Jan-Paul Lerch from

Bielefeld University for interesting mathematical conversations and insights throughout

the last few years and for having invited me to a city which almost surely does not exist.

A particular thanks also goes to Erik Sandström from ETH Zurich for a great time when

learning more about generative models and for an unforgettable weekend on Öland.

“To be a friend means to offer happiness.” I would therefore like to send a big thank you

to some close friends, who are not related to my PhD or mathematics education, but who

offered me a lot of happiness during the last few years. In alphabetical order: Annie &

Pontus Bladkrona, Olle Claesson, Mike Huang, Ana Maria Martinez Moreno & Gustaf

Sörnmo, Arlind Reuter and Alfredo Zombrano. It has been a big joy for me to have each

of them in my life. I would especially like to water the flowers of Olle for his incredible

openness and ability to listen, which helped me to get to know myself better. A lot of

extra water also goes to Arlind for being herself like a happy flower that supports all

the people around her. A special thanks also goes to Csaba Kurunci for having been a

considerate flatmate and a great kifli- and kladdkaka-baker for the last two years.

Finally, I would like to express my gratitude to my family: I thank my parents Agnes and

Günter Trimmel for their tremendous and constant support during all of my educational

path and for always being there for me. Last, but not least, I send a big bow to my sister

Simone Trimmel for a lot of interesting conversations throughout many years and for

being such a great listener and travel partner.

Martin Trimmel

Lund, April 2023

x



4 Popular Summary

The idea of artificial, man-made intelligence has fascinated people since ancient times:

starting with Talos, a giant forged from bronze that guarded the island of Crete in ancient

Greek mythology, this idea was also found in the form of golems in ancient Jewish

mysticism and later in the European Middle Ages with Paracelsus, who spoke of creating

artificial men.

Today, we have the extraordinary chance to live in a time in which it seems possible

for the first time to build machines that are in some respects more intelligent than us

humans. In the last few decades there have been tremendous advances in machine

learning. Computers are now able to recognise faces better, transcribe languages better

and play chess and Go better than we can. They are also already making valuable

contributions to medicine, including the ability to detect certain types of cancer. As

2022 has shown, computer programmes could also soon replace artists and serve as our

conversation partners.

The main reason for these amazing advances is artificial neural networks, whose research

and development is called Deep Learning. Although these networks were originally

inspired by the human brain, in practice there are very big differences in how computers

and humans process information.

Our lack of mathematical understanding of neural networks is a major problem. Often

these networks are seen as a black box of which we know that it works, but not why it

works. The first article in this thesis attempts to contribute to a better understanding

of a widely used class of neural networks. It is well known that such networks are

collections of an astronomically high number of linear functions. In fact, even small

networks already ”contain” more linear functions than atoms in the entire universe.

Using a special kind of mathematics called tropical algebra, we derive an algorithm

to study the interplay of these linear functions and compare different types of neural

networks.

Another disadvantage of neural networks is the gigantic amounts of energy consumed to

train them. Although we are already aware of the dramatic consequences of the looming

environmental and climate catastrophes, the trend towards ever larger networks (and

thus higher power consumption) has continued in recent years. One possible measure

can be to make networks more efficient and ensure that they do not have to perform as

many calculations to reach the desired result. The second article in this thesis attempts

to make certain building blocks of networks, called activation functions, more efficient

and introduces an improved rational activation function that has significant advantages

over other activation functions for small, efficient networks.

xi



Networks can also become overconfident in their predictions and give undue credence to

false predictions. There are techniques that calibrate ready-trained networks and reduce

overconfidence. We apply one of these techniques during training and find that it makes

the training itself much easier. The reason is this: the success of the training usually

depends on a specific configuration (the so-called hyperparameters). One of the most

important hyperparameters is the learning rate, which determines how fast the network

changes during training. We show that calibration techniques make the ”right” learning

rate less important and the training more stable.

xii



5 Populärwissenschaftliche Zusammenfassung

Die Vorstellung künstlicher, menschengemachter Intelligenz fasziniert Menschen schon

seit der Antike: Angefangen mit Talos, einem aus Bronze geschmiedeten Giganten, der

in der altgriechischen Mythologie die Insel Kreta bewachte, fand sich diese Idee in

Form von Golems auch schon in der alten jüdischen Mystik und später im europäischen

Mittelalter bei Paracelsus wieder, der von der Herstellung künstlicher Männer sprach.

Wir haben heute das außerordentliche Glück, in einer Zeit zu leben, in der es möglich

scheint, erstmals Maschinen zu bauen, die in mancherlei Hinsicht intelligenter als wir

Menschen sind. Gerade in den letzten Jahrzehnten hat es gewaltige Fortschritte im

maschinellen Lernen gegeben. Computer sind nunmehr imstande, Gesichter besser

zu erkennen, Sprachen besser zu transkribieren und auch besser Schach und Go zu

spielen als wir. Sie leisten auch schon wertvolle Beiträge in der Medizin und sind

unter anderem imstande, gewisse Arten von Krebs zu erkennen. Wie das Jahr 2022

gezeigt hat, könnten Computerprogramme auch schon bald Künstler ersetzen und uns

als Konversationspartner dienen.

Der Hauptgrund für diese erstaunlichen Fortschritte stellen künstliche neuronale Netz-

werke dar, deren Erforschung und Entwicklung man Deep Learning (Tiefes Lernen)

nennt. Obwohl diese Netzwerke ursprünglich vom menschlichen Gehirn inspiriert

wurden, gibt es in der Praxis sehr große Unterschiede, wie Computer und Menschen

Informationen verarbeiten.

Unser fehlendes mathematisches Verständnis von neuronalen Netzwerken ist ein we-

sentliches Problem. Oftmals werden diese Netzwerke als Black Box betrachtet, von der

man weiß, dass sie funktioniert, aber nicht wieso sie funktioniert. Der erste Artikel in

dieser Abhandlung versucht, zum besseren Verständnis einer weit verbreiteten Klasse

neuronaler Netzwerke beizutragen. Es ist bekannt, dass solche Netzwerke Ansammlun-

gen unheimlich vieler linearer Funktionen sind. (In der Tat “beinhalten” selbst kleine

Netzwerke bereits mehr lineare Funktionen als Atome im gesamten Universum). Mit-

hilfe einer speziellen Art von Mathematik namens tropischer Algebra leiten wir einen

Algorithmus her, um das Zusammenspiel dieser linearen Funktionen zu untersuchen

und neuronale Netzwerke miteinander zu vergleichen.

Ein weiterer Nachteil neuronaler Netzwerke sind die gigantischen Mengen an Energie,

die verbraucht werden, um sie zu trainieren. Obwohl uns die dramatischen Folgen der

dräuenden Umwelt- und Klimakatastrophen bereits heute bewusst sind, hat sich der

Trend zu immer größer werdenden Netzwerken (und damit zu höherem Stromverbrauch)

in den vergangenen Jahren fortgesetzt. Eine mögliche Maßnahme kann es sein, Netz-

werke effizienter zu gestalten und dafür zu sorgen, dass sie weniger viele Berechnungen

durchführen müssen, um zum gewünschten Ergebnis zu kommen. Der zweite Arti-

xiii



kel dieser Abhandlung versucht, bestimmte Bausteine von Netzwerken, sogenannte

Aktivierungsfunktionen, effizienter zu gestalten, und stellt eine verbesserte rationale

Aktivierungsfunktion vor, die bei kleinen, effizienten Netzwerken signifikante Vorteile

gegenüber anderen Aktivierungsfunktionen hat.

Netzwerke können auch zu selbstsicher in ihren Vorhersagen werden und falschen

Vorhersagen übertriebenen Glauben schenken. Es gibt Techniken, die fertig trainierte

Netzwerke kalibrieren und übermäßiges Selbstvertrauen vermindern. Wir wenden eine

dieser Techniken bereits während des Trainings an und finden heraus, dass dadurch das

Training selbst wesentlich erleichtert wird. Der Grund dafür ist folgender: Der Erfolg

des Trainings hängt normalerweise von einer speziellen Konfiguration (den sogenann-

ten Hyperparametern) ab. Einer der wichtigsten Hyperparameter ist die Lernrate, die

bestimmt, wie schnell sich das Netzwerk während des Trainings verändert. Wir zeigen,

dass mithilfe von Kalibrierungstechniken die “richtige” Lernrate weniger wichtig und

das Training stabiler wird.

xiv



6 Populärvetenskaplig sammanfattning

Idén om artificiell, konstgjord intelligens har fascinerat människor sedan antiken: från

Talos, en jätte av brons som vaktade ön Kreta i den grekiska mytologin, fanns idén också

i form av golems i den judiska mystiken och senare under medeltiden i Europa med

Paracelsus, som talade om att skapa konstgjorda människor.

Idag lever vi i fascinerande en tid då det för första gången verkar möjligt att bygga

maskiner som i vissa avseenden är intelligentare än vi människor. Bara under de senaste

decennierna har det gjorts enorma framsteg inom maskininlärning. Datorer kan nu

känna igen ansikten bättre, transkribera språk bättre och spela schack och Go bättre

än vi. De kommer också redan idag med värdefulla bidrag till medicinen, bland annat

genom att de kan upptäcka vissa typer av cancer. Under 2022 har vi till och med sett att

datorprogrammen snart kan ersätta konstnärer och bli våra samtalspartners.

Huvudorsaken till dessa fantastiska framsteg är artificiella neuronnät, vars forskning och

utveckling kallas Deep Learning (djupinlärning). Även om dessa nätverk ursprungligen

inspirerades av den mänskliga hjärnan finns det i praktiken mycket stora skillnader

mellan hur datorer och människor bearbetar information.

Vår bristande matematiska förståelse av neuronnät är ett stort problem. Ofta ses dessa

nätverk som en svart låda - vi vet att de fungerar, men inte varför de fungerar. I den

första artikeln i denna avhandling försöker vi bidra till en bättre förståelse av en ofta

använd klass av neuronnät. Det är välkänt att sådana nätverk består av ett otroligt stort

antal linjära funktioner. Faktum är att även små nätverk redan innehåller fler linjära

funktioner än antalet atomer som finns i hela universum. Med hjälp av en speciell typ

av matematik som kallas tropisk algebra har vi tagit fram en algoritm för att studera

samspelet mellan dessa linjära funktioner och jämföra neuronnät.

En annan nackdel med neuronnät är de enorma mängder energi som går åt för att

träna dem. Även om vi redan är medvetna om de dramatiska konsekvenserna av de

annalkande miljö- och klimatkatastroferna har trenden mot allt större nätverk (och

därmed högre energiförbrukning) fortsatt under de senaste åren. En möjlig åtgärd

kan vara att göra nätverken effektivare och se till att de inte behöver göra så många

beräkningar för att uppnå ett önskat resultat. I den andra artikeln försöker vi göra vissa

byggstenar i nätverken (så kallade aktiveringsfunktioner) effektivare och introducerar

en förbättrad rationell aktiveringsfunktion som har stora fördelar jämfört med andra

aktiveringsfunktioner för små, effektiva nät.

Nätverken kan också bli alltför självsäkra i sina förutsägelser och tilldela felaktiga

förutsägelser en otillbörlig trovärdighet. Det finns tekniker som kalibrerar färdigtränade

nätverk så att de minskar sin övertro på sina förutsägelser. Vi har tillämpat en av dessa

xv



tekniker under träningsfasen och funnit att det gör själva träningen mycket enklare.

Orsaken är följande: Träningens framgång beror vanligtvis på en specifik konfigu-

ration (de så kallade hyperparametrarna). En av de viktigaste hyperparametrarna är

inlärningshastigheten, som bestämmer hur snabbt nätverket förändras under träningen.

Vi visar att kalibreringsmetoder gör att den rätta inlärningshastigheten blir mindre viktig

och att träningen blir mer stabil.

xvi



Chapter 1

Overview

1



1 Notation in This Chapter

General notation
The uppercase version of any real-valued variable is a random variable for which the

lower case variable denotes a value. (E.g. if x ∈ R, then X is a real-valued random

variable.)

Lowercase bold variables denote vectors and corresponding non-bold variables with

a subscript denote their entries. (E.g. x ∈ R
d is a vector and xj are its entries for

1 ≤ j ≤ d.)

Table of notation

Symbol Meaning

{i, . . . , j} set of integers k such that i ≤ k ≤ j
A(x) activation pattern of a network at a data point x
α hyperparameter

β hyperparameter

Bj jth bin corresponding to the interval ( j−1
M , j

M ]
b bias vector

bi bias vector corresponding to the ith layer of a neural network

C(D,D′) set of continuous functions D → D′

c ground truth label

ĉ predicted label

CE(p) calibration error depending on the probability p
Ch(v) set of children of a node v
D,D′, Di domain of a function

δij Kronecker delta of i and j
d, di dimensions in Z≥0

E set of edges

F space of (neural network) functions

F set of local functions

f function

fθ function parameterised by a collection of parameters θ
G directed graph

η learning rate

K number of classes for classification

Lj set of multi-indices corresponding to learnable axes

� linear layer of a neural network, equal to a function R
d1 → R

d2

L loss function X ×Θ → R≥0

λ hyperparameter

2



Nθ neural network and its function

Nb number of interval bins

N� number of layers of a network

Nn number of neurons of a network

Nv number of vertices of a graph

p probability value or likelihood, dropout hyperparameter

p̂ confidence estimate of a network, maximum of ŷ
P probability measure

Pa(v) set of parents of a node v
R real numbers

R≥0 non-negative real numbers

Sj set of multi-indices corresponding to standardisation axes

s parameterisation symmetry s : Θ → Θ
σ activation function

θ parameter configuration in Θ
Θ set of all possible parameter configurations

V set of vertices

v node/vertex in a graph

W weight matrix

Wi weight matrix corresponding to the ith layer of a neural network

Wpos positive part of a matrix defined by entries w
pos
ij = max{0, wij}

Wneg negative part of a matrix defined by entries w
neg
ij = max{0,−wij}

X data set

Xtest test data set

Xtrain training data set

Xval validation data set

x vector describing data sample or input to layer of a neural network

xi output of the ith layer of a neural network, xi = ρ(Wixi−1 + bi)
xj vector components of x in R

x real number

y vector of ground-truth class probabilities in R
K

ŷ vector of predicted class probabilities in R
K

z vector of predicted logits in R
K

3



2 Introduction

During the last decade, artificial intelligence has successfully emerged out of science

fiction books into our daily lives. Large scale machine learning models are now widely

used in science, by companies and even by pupils and students who prefer generating

essays within a few seconds over spending hours writing them. At the core of these

social changes lies deep learning, the study of large-scale artificial neural networks.

Such networks are used to represent mathematical functions Nθ : R
d → R

d′ that can be

applied to perform tasks like machine translation or image classification. The weights

θ ∈ Θ of the network are optimised on large datasets to make fθ take the desired form.

This thesis studies neural networks from two perspectives:

(1) Activation functions. Informally speaking, activation functions are the non-linear

components of neural networks. Network architectures often alternate between scantly-

parameterised activations and heavily-parameterised linear layers. The overall mathemat-

ical form of the network function depends greatly on the choice of activation function:

(i) Piecewise linear activation functions induce a partition of the input space into an

astromically large number of linear regions on which the network function is affine.

For such activation functions, understanding the interplay of the linear regions can be

conducive to understanding network generalisation. (ii) Since parametric activations are

much more flexible than their non-parametric counterparts, they have the potential of

increasing the expressiveness of a given network architecture. This is highly relevant

because network keep ever increasing in size and have sometimes reached more than

a trillion parameters. Training such networks requires vast amounts of computational

resources, which in turn raises the associated financial and environmental costs.

(2) Network parameterisation. When we optimise a network, we search for a suitable

network function Nθ. This search does not directly take place in the function space, but

we are actually traversing a path in the parameter space Θ and each change in parameters

implicitly also changes the network function. It is therefore natural to take a closer look

at the relationship between functions and parameters. For a given neural architecture,

the function N• : Θ → C(Rd,Rd′) assigning to each parameter configuration its

corresponding network function is not surjective, but for non-polynomial activation

functions, its image is dense in C(Rd,Rd′). The function N• is not injective either,

and changes to the network parameterisation which do not change the underlying

network function, are called symmetries of the architecture. Even though differently

parameterised networks can represent the same function, the choice of parameterisation

as a general rule affects the gradient-based parameter updates and thus has a significant

effect on the training of the network. Hence, apart from finding and classifying all

symmetries for a given architecture, it is at least equally important to understand what

effect the choice of parameterisation has on network training.

4



This overview is structured in the following way: In Section 3 we describe the research

questions we studied in this thesis and how they relate to the presented papers. In

Section 4 we formally introduce the terminology and describe the most fundamental

concepts of the thesis. In Section 5 we give a brief overview of some of the most impor-

tant deep learning techniques used in our papers. In Section 6 we present an overview

over previous work on activation functions and place a special focus on parametric and

rational activation functions because of their relation to Paper II. Sections 7-9 introduce

some of the more advanced deep learning concepts, relating to network parameterisation,

piecewise-linear neural networks and network calibration. Finally, we summarise the

contributions of the papers and provide an outlook on potential future work in Section 10.

5



Figure 1.1: In this thesis, we have proposed methods for improving and better understanding activation functions and
network parameterisation. Top, left: Plot of the first two Enhanced Rational Activations (ERAs) in a network
before and after training. Top, right: We classified the symmetries of 2-layer ReLU neural networks. The plot
shows a network whose parameters are non-zero, but which represents the zero function. Middle: We developed
TropEx, an algorithm using tropical algebra to extract the coefficients of linear regions of piecewise linear (e.g.
ReLU) networks. We used TropEx to study the effect that different network parameterisations (fully-connected vs
convolutional) have on the linear regions. Bottom: We investigated the effect of network parameterisation on
network training and proposed a Cooling method to adaptively reparameterise the network during training.

6



3 Research Questions

The overall research question of this thesis is how to better theoretically understand and

how to improve network parameterisation and activation functions. We have grouped

the questions according to the topic they are related to:

Network Parameterisation

[PQ1] Given a network architecture, what are its symmetries?

[PQ2] How does changing the parameterisation of the network function1 affect the linear

regions?

[PQ3] How does changing the parameterisation of the linear regions affect the network

function1?

[PQ4] How does the parameterisation of a network affect its training?

Activation Functions

[AQ1] When are parametric activation functions preferable over non-parametric ones?

[AQ2] How can rational activation functions be made more stable and performant?

Please note that the last two parameterisation questions [PQ2] and [PQ3] are actually

also questions concerning activation functions, since they are specific to continuous

piecewise linear activation functions.

We investigate all of the questions above in this thesis. The activations function ques-

tions [AQ1] and [AQ2] are studied in Paper II, where we propose an Enhanced Rational

Activation (ERA), which can be initialised randomly and which are particularly bene-

ficial when used in smaller networks. We provide a partial answer to question [PQ1]

in Paper III, where we classify all the symmetries of 2-layer ReLU networks. Paper I

focuses on questions [PQ2] and [PQ3], where the proposed TropEx-algorithm is used

to compare convolutional and fully-connected networks. Finally, we investigate ques-

tion [PQ4] in Paper IV, where we perform an analysis of the gradients of rescaled

networks and propose a Cooling method to make the network being better parameterised

during training.

1Refers to networks with piecewise linear activation functions.

7



4 Formalism of Deep Learning

The aim of this section is to formally define the machine and deep learning terminology

and notation used in this thesis. The concepts introduced here relate to all the research

questions from Section 3 and can be seen as setting the stage for the paper-specific

overview starting in Section 6. We start by briefly defining terms from general machine

learning and then present some essential terminology relating to deep learning, including

a formal definition of an artifical neural network.

4.1 Machine Learning Terminology

Machine learning is the study of algorithms to make computers carry out tasks they

are not explicitly programmed for. Instead, the computers “learn” from data how to

perform the task. It would be very hard to write a program that tells a computer explicitly

how to detect faces on photos. Hence, in machine learning we teach the computer how

to do face detection using a lot of sample data: photos with and without faces.

There is a great variety of tasks that we want to solve with machine learning: Amongst

others, we want to be able to predict values (regression), assign labels to data points

(classification), group data points (clustering), extract key features (dimensionality
reduction) and generate new data points (generative modelling). There is a variety of
models to achieve some of these tasks. E.g. For regression, there are methods like

ridge regression [38, 39], Bayesian regression and Support Vector Machines [8, 73]. For

classification, there is least squares classification, Fisher’s discriminant [25], logistic

regression [15] and again Support Vector Machines.

The way how we try to perform a task is always the same:

1. We think of the task as a mathematical function f∗, called the target function.

2. We try to approximate the function f∗ on a dataset X by our modelling function

fθ. The variable θ denotes the parameters of the function. We denote the set of all

parameter configurations by Θ.

3. We use data to optimise θ on a training dataset Xtrain so that fθ becomes similar

to f∗. To this end, we often minimise a loss function L : Xtrain × Θ → R≥0,

which measures the similarity between fθ and f∗.

We note that Xtrain ⊂ X , i.e. the training dataset is a strict subset of the general data

distribution we are interested in. Often, we also use a validation dataset Xval to compare

8



models trained with different hyperparameter configurations with each other. Finally,

we use a test set Xtest to determine the performance of the model on unseen data.

We assume in this thesis that all data points x are multi-dimensional arrays in R
d1×···×dn

for some dimensions d1, . . . , dn. We will call such data points tensors. In particular,

RGB h × w pixel images are assumed to be elements of Rh×w×3, where each pixel

takes integer values in the range [0, 255]. In practice, data points tend to be normalised

to the range [0, 1] or [−1, 1] before entering the model. The labels k ∈ {1, . . . , C},

representing one of C classes to which a data points can belong to, are commonly

converted into one-hot vectors y ∈ {0, 1}C , where entry yi = 1 if and only if i = k.

The optimal choice of model depends on the task and the data at hand. Generally

speaking, when the complexity of the dataset X is small, a less expressive model with

fewer parameters is required than for a more complex dataset. There are two risks: (1)

the model is not expressive enough for the dataset (underfitting); (2) the model is too

expressive for the dataset (overfitting). Both of these problems are often discernable

via the loss function or other evaluation metrics: If fθ performs poorly on the training

data, the model may underfit the data and we may need to make it more expressive. On

the other hand, if fθ performs well on the training data, but poorly on the test data, the

model is overfitting the data and it may be too expressive for the given task.

4.2 Neural Networks

More basic models mentioned in Section 4.1 provide suitable functions fθ for accom-

plishing a great variety of tasks. However, they often are often not flexible enough to

model a large class of different functions f∗. That’s why we are interested in a more

general model: Artifical Neural Networks. Since these models are graphs, we will need

some graph-theoretic vocabulary before defining them:

Definition 4.1
Let G = (V,E) be a directed graph. If there is an edge (v, v′) ∈ E, we say that v′ is a

child of v and v is a parent of v′. We denote the sets of children and parents of a node v
by Ch(v) and Pa(v), respectively. If a node v has no parents, we call it a root and if it

has no children, we call it a leave.

We note that there exists no generally accepted mathematical definition of what an

artificial neural network constitutes [6, 24, 31]. For this reason, we present our own

definition, which draws inspiriation from the formalism presented in [14]. Our definition

covers all the networks used in this thesis and aims for utmost generality. Broadly speak-

ing, we define a neural network to be a graph, whose edges correspond to parameterised,

differentiable functions.

9



Definition 4.2
Let G = (V,E, F ) be a tuple consisting of a finite connected graph (V,E) and a set F
defined by

• the set V = {Xi | i ∈ {1, . . . , Nv}} is an ordered set of random variables Xi,

such that

– all Xi ∈ Di ⊆ R
di for some di ∈ N;

– the first r nodes X1, . . . ,Xr are the roots and are called input nodes;

– the last l nodes XNv−l+1, . . . ,XNv are the leaves and are called output
nodes;

– the other Nv − r − l nodes Xr+1, . . . ,XNv−l are called hidden nodes;

• the set E contains directed edges;

• the set

F =

⎧⎨⎩fi :

⎛⎝ ∏
j:Xj∈Pa(Xi)

Dj

⎞⎠×Θi → Di

∣∣∣∣∣∣ i ∈ {r + 1, . . . , n}
⎫⎬⎭ (1.1)

(Xj1 , . . . ,Xjn ; θi) �→ Xi (1.2)

consists of parameterised local functions defining the relations between hidden

or output nodes and their parents. The function fi is parametrised by the set Θi

(where it is possible that there exist some i with Θi = ∅, i.e. that some fi are

non-parametric).

Again, we denote by Θ =
∏

iΘi the set of (global) parameter configurations. For a

given configuration θ ∈ Θ, we can evaluate G by entering data at the input nodes and by

consecutively evaluating the local functions. (If there are any cycles, it may be necessary

to initialise some of the nodes by some values.) This allows us to define a function,

which we will denote by Gθ :
∏r

i=1Di →
∏Nv

i=n−l+1Di.

If (Xi,Xj) ∈ E implies that i < j, we say that G is a computational graph. (In

particular, computational graphs are acyclic.) If all local functions fi ∈ F are dif-

ferentiable almost everywhere (with respect to the Lebesgue measure), we call the

tuple a neural network architecture, which we denote by N . For a given parameter

configuration, the function Nθ is then called a network function. In line with most of the

literature, we will use the term neural network ambiguously and sometimes employ it to

denote the architecture N and sometimes an associated network function Nθ. We say

that a neuron of a network is an entry of one of the vectors Xi ∈ V . We denote the total

number of neurons of a network by Nn.

10



If a neural network is acyclic, its is called a feedforward neural network. Otherwise,

if it contains at least one loop, it is called a recurrent neural network (RNN). We only

consider feedforward neural networks in this thesis. Therefore, from now on we always
mean only feedforward networks when using the term “neural network”. We now

introduce some further important terminology concerning the components of neural

networks:

Definition 4.3

Let N be a neural network and for some N�, let 1 ≤ i ≤ N� and let Wi ∈ R
di×di−1 ,bi ∈

R
di , σi : Di → Di be some matrices, vectors and non-linear functions, respectively. We

define a network layer �i to be the function given by

xi = σi(Wixi−1 + bi). (1.3)

Let x0 and xN�
be the input and the output of the network, respectively. If N� = 2, we

say that N is a shallow network. Otherwise, we say that N is a deep network and call it

a multi-layer perceptron (MLP). We call Wi,bi and σi a weight matrix, a bias vector
and an activation function, respectively. We say that a layer is dense if the parameters in

Wi can take any real value. We say that a network is fully-connected if all of its layers

are dense.

Using only a stack of plain fully-connected MLPs would lead to computer memory

problems even for small input images. For this reason, it is necessary to impose

additional structure on the weight matrices. One of the most common ways to achieve

this, is to use convolutions:

Definition 4.4
A layer � is called convolutional, if the affine part of � is computed by applying a

cross-correlation2with a filter F to the data point:

x′ = F ∗ x+ b.

The bias is applied channel-wise here: To all pixels in channel i of F ∗ x, the same

number bi is added. A convolutional neural network (CNN) is a feedforward neural

network that contains at least one convolutional layer.

In practice, convolutional neural networks are preferred over fully-connected MLPs.

According to [27], CNNs enjoy 3 benefits: (1) they have sparse interactions, i.e. most

of their connections in the weight matrix are set to 0; (2) they share their parameters,

2Even though cross-correlations are used, the networks are in practice called convolutional by an abuse

of notation. This can be justified by the fact that applying a cross-correlation with filter F is the exactly the

same as applying the convolution of with F flipped horizontally and vertically.

11



so they do not need to learn a separate set of parameters at each pixel; (3) they are

translation equivariant, i.e. if the input to a convolution layer is translated, then the

outputs gets translated in the same manner. However, we still lack a deep understanding

of why convolutional networks work so well [80]. It is unclear why they achieve higher

accuracies than their fully-connected counterparts. In Paper I in this thesis we investigate

differences between fully-connected MLPs and CNNs from the view of linear regions.

4.3 Optimisation

When training a neural network Nθ, we optimise its parameters θ to make Nθ minimise

a loss L on the training dataset. Since Nθ is differentiable with respect to θ, we can use

the gradients in the optimisation procedure to obtain a parameter update of the form

θ ← θ − η∇θL, (1.4)

where the scalar hyperparameter η is called the learning rate. When we compute

the gradients over all the data points in the dataset, this is called gradient descent.
This standard procedure is, however, mostly infeasible in practice, since it requires

computing the loss based on the entire dataset, which often does not even fit into

computer memory. For this reason, the network function is optimised using stochastic
gradient descent (SGD), where the gradient updates are computed on only a batch of

data points. Apart from vanilla SGD, some other common optimisation methods are

AdaGrad [21], RMSProp [71] and Adam [44]. Some of these more advanced methods

employ decaying averages of the gradients, which often works better than directly

updating the parameters.

The gradients ∇θL are most commonly computed by backpropagation [47], an algorithm

based on the chain rule of differentiation. Informally speaking, backpropagation amounts

to reversing all edges in E and traversing the graph backwards until all the parameters

have been reached. For that purpose, we calculate all the derivatives of the local functions

and compute the desired derivatives with respect to the parameters using the chain rule.

5 Deep Learning Techniques

In this section we give an overview of some commonly used techniques that help (and

in some cases enable) the training of neural networks. All the material presented here

is generally relevant for all the papers of this thesis. However, there are also some

paper-specific differences: For Paper IV, the first two subsections on learning rate

schedules and regularisation are important for because the paper proposes a technique

12



which reduces the reliance on deep learning “tricks” for successful training, in particular

the use of a learning rate schedule. The last subsection on normalisation is relevant for

Paper II because that paper makes use of various normalisation techniques to stabilise

the training of rational activation functions.

5.1 Learning Rate Schedule

Instead of keeping the learning rate η constant during training, most often a learning rate
schedule is being used. Two noticeable basic schedules are (1) a piecewise-linear one,

where the linear rate drops by a certain factor after a given number of epochs and (2) an

exponential one, where the learning rate continuously decays exponentially throughout

training. A more advanced method is cosine scheduling [48], where the learning rate

behaves like a cosine function which, depending on the implementation, may or may

not restart after having reached zero for the first time. Another option is to start with

a small learning rate and to gradually increase it until it has reached a maximal value

[29, 35]. This latter option is called learning rate warmup and it is motivated by the

desire to avoid overfitting to the first training samples, which may happen if the learning

rate is too large.

5.2 Regularisation

There is a wide range of regularisation tricks and techniques to reduce the gap between

training and test performance. When using weight decay, a term λ|θ| is added to the loss

function which penalises weights with large magnitudes. (λ is a hyperparameter here.)

We check how well our model performs on a validation dataset during training. We stop

training when the loss (or another metric) on the validation dataset stops improving,

which is called early stopping. Another option is to use dropout ([68]): During training,

each node is set to 0 with probability p ∈ (0, 1). Nodes not set to zero are multiplied by

1/p. After training, the layer is used normally. (p is a hyperparameter here.)

One can also use techniques, which are more data-based: If we apply label smoothing,

i.e. we replace the one-hot encoded labels by y ∈ {α, 1− α}C for some small constant

α. This reduces overfitting and makes models predict probability values which are

more closely aligned with the probabilities of actually making correct predictions [55].

In order to generate new training points from the given dataset, data augmentation is

commonly used. For images, this includes rescaling the image or changing its colour

intensities, applying rotations, translations or noise.

13



5.3 Normalisation

We asked in [AQ2] how rational activation functions can be made more stable. In

our investigation in Paper II we noticed that one of the biggest problems for rational

activations is the so-called covariate shift, i.e. the change in input distribution to the

activation function. This is a general problem for deep networks, since updating the

parameters of earlier layers affects the input of later layers, and hence the layer not only

needs to learn “new things”, but also to adapt to the changes caused by the parameters

updates of the earlier layers. For this reason, various normalisation techniques have

been developed to standardise the input to the layers and to reduce covariate shift. These

normalisation methods always follow the same pattern, which we will now describe,

following [76]. Let x ∈ R
d1×···×dn be a tensor representing a batch of data, where the

data points are stacked along the first axis and the channels are along the nth axis. Let

j = (j1, . . . , jn) be a multiindex, where each entry is in the range 0 ≤ jl ≤ dl. We

denote by Sj a set of multiindices, depending on the multiindex j. This set depends on

the normalisation method and will be specified further below. We compute the mean μ
and the standard deviation σ of the data by

μj =
1

|Sj|
∑
k∈Sj

xk, σj =

√√√√ 1

|Sj|
∑
k∈Sj

(xk − μj)2 + ε. (1.5)

(The small constant ε is added for numerical stability.) The data is normalised via the

formula x′j = (xj − μj)/σj. Finally, the data gets rescaled to x′′j = γjx
′
j + βj, for some

learnable parameter tensors γ and β and sets Lj of multiindices.

There are different ways how to choose the indices:

Batch normalisation ([40]): We normalise each channel separately and learn a parame-

ter for each channel. This results in:

Sj = {k | kn = jn},Lj = {k | kl = jl; 1 ≤ l ≤ n− 1}
Layer normalisation ([5]): We normalise each data point separately and learn a param-

eter for each entry of a data point. This results in:

Sj = {k | k1 = j1},Lj = {k | k1 = j1}
Instance normalisation ([72]): We normalise each data point and each channel sepa-

rately and learn a parameter for each channel. This results in:

Sj = {k | k1 = j1, kn = jn},Lj = {k | kl = jl; 1 ≤ l ≤ n− 1}
Group normalisation ([76]): We normalise each data point and each of G groups of

channels separately and learn a parameter for each channel group. This results in:

Sj = {k | k1 = j1,
⌊

kn
dn/G

⌋
=

⌊
jn

dn/G

⌋
},

Lj = {k | kl = jl; 1 ≤ l ≤ n− 1;
⌊

kn
dn/G

⌋
=

⌊
jn

dn/G

⌋
}

14



We note that group normalisation becomes layer normalisation for G = 1 and instance

normalisation for G = dn. In Paper II we find that for convolutional and fully-connected

neural networks, instance and layer normalization, respectively, benefit the training of

rational activation functions. Batch normalization shows a diminished effect, which

may be due to the fact that for each data point, the inputs distributions to the activations

functions get distorted by statistics from other data points within the same batch.

6 Activation Functions

Since Paper II and research questions [AQ2] and [AQ1] are about understanding and

developing new parametric activation functions, the material covered in this section is

mainly related to that paper and these research questions. However, parts of the general

introduction at the beginning can also be deemed relevant for Paper I and Paper III, since

these papers study only networks with a specific class of activation functions, namely

continuous piecewise linear ones.

6.1 General Overview

The overall mathematical function of a neural network greatly depends on the activation

functions of the nodes. In theory, every node can have its own activation function and

every function can be used as activation function, but in practice, all nodes of a given

layer tend to have the same activation function. According to Theorem 3.1 in [63]

(universal approximation theorem), every MLP using a non-polynomial continuous

activation function σ at all of its nodes can approximate any continuous function. Hence,

if we would like to be able to approximate any continuous function, then we are in

theory free to use any continuous function as activation function, as long it is not a

polynomial.

Traditionally, the sigmoid function x �→ exp(x)
1+exp(x) and the tangens hyperbolicus (tanh)

function x �→ exp(x)−exp(−x)
exp(x)+exp(−x) were widely used activation functions. However, their

derivatives go to 0 for small and large inputs, which is problematic in deep networks,

where the use of the chain rule to compute the gradients requires the multiplication of

many factors. If these factors are smaller than 1, the resulting derivatives are close to 0

(vanishing gradients).

Consequently, the rectified linear unit (ReLU) [26, 33, 56] x �→ max{x, 0} has become

popular since the early 2010s. Since the derivative of the ReLU is constant at 1 for

inputs x > 0, there is a reduced risk of gradient vanishing. Improved versions of

15



the ReLU often have a non-zero derivative also for inputs x < 0. Notable examples

of such activations are the leaky ReLU ([49], defined by x �→ max{x, αx} for a

hyperparameter α), the exponential linear unit (ELU) ([13], defined by x �→ x for

x > 0 and x �→ α(exp(x) − 1) for x < 0 and for a hyperparameter α) and the

scaled exponential linear unit (SELU) ([45], defined by x �→ βx for x > 0 and

x �→ βα(exp(x)− 1) for x < 0 for α ≈ 1.67326 and β ≈ 1.0507). Despite its simple

mathematical form, the ReLU and its variants have been widely used, in particular in

CNNs.

Since the advent of transformers, there has been a beginning trend towards slightly more

mathematically sophisticated activation functions like GELU ([36]; x · Φ(x), where Φ
is the cumulative distribution function of the standard normal distribution), Swish (also

called SiLU, [23, 36, 66]; x �→ x · sigmoid(x)) and Mish ([51]; x · tanh(softplus(x))).

Almost all of the most widely used activation functions (and all of those mentioned in

this section so far) are non-parametric.3 A notable exception is the parametric ReLU
(PReLU) [34], defined by x �→ max{x, αx} for a learnable parameter α). There are also

a small number of other parametric equation functions: [2] proposed adaptive piecewise
linear (APL) units, which are given by x �→ max{x, 0}+∑S

j=1 aj max{0,−x+ bj}.

[70] proposed simple piecewise linear and adaptive with symmetric hinges (SPLASH)
units, which are defined by x �→ ∑S

j=1

(
a+j max{x− bj , 0}+ a−j max{−x− bj , 0}

)
.

[22] proposed to learn the coefficients of a Fourier sum of sines and cosines and to

use the result as an activation function. More recently, [1] proposed an evolutionary

population-based search method for finding parametric activation functions. They did

not propose a generally suited activation function, but found activations which were

optimal for specific neural architectures.

There have also been attempts to train a neural network to learn an activation function:

[74] propose hyperactivations, which are activation functions represented by so-called

activation networks whose parameters are predicted by a hypernetwork [32]. However,

the activation network and the hypernetwork in turn require a specific choice of activation

function ([74] chose a ReLU).

Using the coefficients of polynomials as learnable parameters could turn polynomials

into parametric activations. However, apart from not enjoying the universal approxima-

tion property mentioned above, polynomial networks have a further disadvantage: the

derivatives of polynomials of degree greater than 1 are unbounded, which can lead to

optimization problems (exploding gradients). In spite of these hindrances, [28] managed

to train polynomial networks by using Batch Normalization before the activation.

3We note that the version of Swish proposed by [66] included a learnable parameter β which is

multiplied with x inside the sigmoid. However, the parametric version does not seem to be commonly used

because both TensorFlow’s and PyTorch’s implementations are non-parametric.

16



Figure 1.2: Graphs of common activation functions (ReLU, sigomid, tanh, Swish, leaky ReLU) overlaid with the graphs of
corresponding rational function approximations (marked with *). Rational functions of a degree 5/4 are able to
almost perfectly approximate all standard activations on the real interval [-3, 3]. (Image taken from [52].)

6.2 Rational Activation Functions

Instead of using polynomials directly, [12, 52] found that a more promising approach is

to use their quotients, i.e. rational functions. We start with a formal definition:

Definition 6.1
We say that f : R → R is a rational function if there are numbers a0, . . . am, b0, . . . , bn ∈
R such that

f(x) =
P (x)

Q(x)
=

a0 + a1x+ · · ·+ amxm

b0 + b1x+ · · ·+ bnxn
(1.6)

and bj �= 0 for at least one j. The numbers ai, bj are called the coefficients of f . If m
and n are the largest indices such that am �= 0, bn �= 0, we say that deg(f) := m/n is

the degree of f .

Rational functions have a decisive advantage over polynomials: If the degree m of the

numerator is one larger than the degree n of the denominator, then they behave like linear

functions at ±∞. Hence, their derivatives are bounded and the problem of exploding

gradients is solved. Moreover, they enjoy the universal approximation property like

all other non-polynomial continuous functions. Another advantage of rational funtions

is that even for low degrees (like 3/2 or 5/4) they are able to approximate all standard

activation functions. Figure 1.2 shows plots of 5 different activation functions overlaid

with their rational approximations on the interval [-3, 3]. It is evident from the plot

that these standard activations are virtually identical to their rational approximations.

In fact, rational functions are normally not initialised randomly but by approximating

a standard activation. The reason for this is that random initialisation can create ill-

behaved functions that can be take very large and small values (and which consequently

lead to very small or large gradients). [52], [9] and [19] initialise the rational functions

17



as Leaky ReLUs, ReLUs and identity functions, respectively.

However, general rational functions carry a substantial risk: They are undefined at

poles, i.e. points x when the denominator Q(x) is zero. Moreover, the magnitude of the

function output (and consequently, also the gradients) blows up close to the poles. In

order to avoid this problem [52] proposed to make rational functions ”safe” by taking

absolute values in the denominator, which resulted in a function where the denominator

is always strictly positive. Strictly speaking, such a function is no longer rational and

only piecewise smooth. In certain cases, it may, however, be possible to directly use

”unsafe” rational functions because [9] did so without observing instabilities. It should

be noted, that the latter paper’s rational functions only had degree 3/2 as opposed

to the degree 5/4 rational functions used in [52]. Rational functions have further

been employed by [19] for reinforcement learning. Apart from their use as activation

functions, rational functions have also been directly used to represent neural networks by

[64]. They constructed a continued fraction, where the denominators inside the fraction

were predicted by linear models. Such as representation has the advantage that it is

interpretable via continuants and an easily computable power series expansion.

7 Network Symmetries

In this section we formally define what we mean by symmetries in a network and

cover existing work in this area. Since the material in this section concerns [PQ1], it

is particularly relevant for Paper III. We also study a special type of symmetries in

Paper IV, so the contents here also relates to that paper.

For a given neural network architecture N , we denote by F the set of all possible network

functions Nθ for θ ∈ Θ. This obviously gives rise to a function N• : Θ → F , assigning

to each parameter configuration θ the corresponding network function Nθ. The function

N• is called a realisation map [41] and Nθ is called a realisation of the architecture N
[60]. The realisation map N• is not injective because for any architecture, permuting

a node and all of its in- and outgoing weights within a layer keeps the underlying

network function unchanged. For any function f ∈ F , we call an element of the

pre-image N−1• ({f}) a parameterisation of f . We say that a function s : Θ → Θ is

a symmetry of N if Ns(θ) = Nθ for all θ ∈ Θ, i.e. if it keeps the network function

unchanged. We note that since researchers have studied network symmetries for a very

long time, symmetries can be found under various names in the literature: They are

called equioutput transformations, function-preserving parameter transformations and

reparameterisation invariances by [11], [62] and [42, 61], respectively.

There are two main reasons why understanding the symmetries of a wide range of

18



architectures is important:

1. Practical reason: [57] noticed that the optimisation of a neural network depends

not only on the network function, but also on its parameterisation. The value of

the loss function itself is completely determined by the network function, but

computing the gradients via the chain rule generally leads to different results for

different parameterisations. Since [57] found this undesirable, they proposed an

adapted version of SGD called Path SGD, which is invariant to reparameterisation.

In general, however, it is still unclear which parameterisation is the best one for

network training. This is the main subject of investigation of Paper IV.

2. Theoretical reason: Properties describing how well a network function generalises

must be invariant to any symmetries of the architecture. For example, there exists

the hypothesis [37, 43] that parameters generalise well if they correspond to a flat

local minimum as opposed to a steep one (where the steepness is measured by the

Hessian). However, [20] showed that various common measures of the flatness of

the minimum depend on the parameterisation and hence, that sharp minima can

also generalise well. For this reason, any measure of generalisation must depend

on the network function, not its parameterisation.

We now discuss previous work on network symmetries. There are two wide classes of

network symmetries that are applicable for many network architectures:

π Permutation of two neurons, including all incoming and outgoing weights, within

a network layer.

ρλ Multiplication of all the ingoing weights of a neuron by λ and all of its outgoing

weights (after applying the activation function) by 1/λ.

Clearly, the permutation π is a symmetry of any network architecture. Moreover, odd4

activation functions like the tanh function have permutations ρ−1 for which the signs of

the weights are flipped. On the other hand, positive homogeneous5 functions of degree

1 have symmetries ρλ for λ > 0. This includes the widely used ReLU activation and

many of its derivations like the leaky ReLU. It is therefore natural to ask if there are

any other symmetries apart from the just mentioned ones. Since the tanh activation

used to be some of the most widely employed ones, there was initially a lot of focus

on them. [69] showed that for 2-layer tanh networks, all analytic6 symmetries are

4A function f : R → R is odd if f(−x) = −f(x).
5A function f : R → R is homogeneous of degree a if f(bx) = baf(x). It is positive homogeneous,

if this only holds for all b > 0.
6A function f : R → R is analytic if for any x ∈ R, f can be written as a power series on an open

neighbourhood of x.

19



concatenations of permutations π and sign flips ρ−1. [11] consequently extended this

result to networks of arbitrary depth. Other notable work in this field includes [3],

who produced the same result for infinitely differentiable activation functions σ with

σ(0) = σ′(0) = σ′′(0) = 0. Finally, [46] proved a corresponding result for 2-layer

networks with sigmoid-activations.

So far, there has only been little previous work involving the ReLU activation. A notable

exception is [62] who showed that for ReLU networks of decreasing width, symmetries

which are concatentations of π and ρλ are indeed the only ones.

8 Piecewise-Linear Neural Networks

In this section, we introduce the necessary background for Paper I, which studies the

effect of network parameterisation on linear regions. Since TropEx, the algorithm that

the paper proposes, relies heavily on tropical algebra, we start with a brief introduction

of some core tropical terminology and refer to [50] for a more in-depth introduction.

We use the remainder of the section to give an overview of previous work specific to

linear regions.

8.1 Tropical Algebra

8.1.1 Terminology

In the tropical analogue of elementary algebra, ordinary addition and multiplication

are replaced by tropical addition and tropical multiplication, which in turn are just

fancy names for maximum and addition. This yields a precise framework for studying

mathematical functions where such operations appear frequently. We start by defining

the central object of tropical algebra:

Definition 8.1
The tropical semiring tropical semiring is given by the tuple T = (R ∪ {−∞},⊕,�),
where ⊕ is called tropical addition and is defined by x⊕y = max{x, y} and � is called

tropical multiplication and is defined by x� y = x+ y.

Instead of this max-plus algebra it is also possible to make an analogous definition of a

min-plus algebra, where ⊕ is defined by x ⊕ y = min{x, y} and −∞ is replaced by

∞. We will, however, stick to the definition above since it is more convenient when

dealing with neural networks. The tuple T is a semiring (in fact even a semifield)

because there is no inverse to tropical addition, but all other axioms of a ring are fulfilled.

20



The multiplicative inverse of T, denoted by �, is the same as ordinary subtraction.

Similarly to addition and multiplication, it is also possible to define a tropical power,

which is just repeated tropical multiplication, i.e. repeated ordinary addition which is

ordinary multiplication. Hence we define x�a = a · x. We will slightly abuse the no-

tation and we will omit the �-sign when referring to the tropical power in this subsection.

The same way as (ordinary) algebraic geometry studies polynomials, tropical alge-

braic geometry studies corresponding objects called tropical polynomials. These are

defined in a completely analogous manner to their ordinary counterparts:

Definition 8.2
A tropical monomial in d variables is a an expression of the form c � xa11 � xa22 �
· · · � xadd , where c ∈ T and a1, . . . , an ∈ Z≥0. For improved readability, it can often

be advisible to write the tropical monomial as cxa11 xa22 . . . xadd or even as cxα, where

α = (a1, . . . , ad) ∈ Z
d
≥0 and x = (x1, . . . , xd).

A tropical polynomial in d variables is a finite tropical sum p(x) = c1x
α1 ⊕· · ·⊕ crx

αr

of tropical monomials. Without loss of generality, it is possible to assume that each term

appears only once in the sum, i.e. that αj �= αk for j �= k.

A tropical rational function is the tropical quotient ν(x) = p(x)� q(x) = p(x)− q(x)
of two tropical polynomials p and q.

A tropical rational map is a function ν : Rd → R
C , given by x �→ (ν1(x), . . . , νs(x),

where each νj is a tropical rational function.

We note that in ordinary notation, a tropical monomial is just the same as an affine

function, a tropical polynomial the same as the maximum of multiple affine functions

and a tropical rational function the difference of maxima of affine functions. It is also

possible to define generalised versions of the above objects by allowing the tropical

powers to be elements of R≥0 instead of only Z≥0.

8.1.2 Relation to Deep Learning

Given that ReLU-networks only consist of additions, multiplications and taking maxima,

it should not come as a surprise that such networks can be studied using the tools of

tropical algebra. The intimate relation between piecewise-linear networks and tropical

mathematics was first discovered independently by [81] and [10]. We now present

the most important theoretical result, which says that under some mild assumptions,

piecewise-linear neural networks are exactly the same as tropical rational functions:

21



Theorem 8.3 (Theorem 5.4 (i), [81])

Let ν : Rd → R. Then ν is a tropical rational function if and only if ν is a feedforward

neural network satisfying the following assumptions:

1. the weight matrices are integer-valued;

2. the bias vectors are real-valued;

3. for each layer, the activation functions take the form σl(x) = max{x,al} for

some threshold vector al ∈ R
dl .

We note that assumption (1) is indeed mild because real numbers can be arbitrarily

closely approximated by rational numbers and rational weight matrices can be seen as

equivalent to integer ones (cf. [81], p. 5).

8.2 Linear Regions

Note: In order to enhance readability and avoid becoming unnecessarily verbose, we
always mean a network with ReLU activation functions, whenever we use the word
network in this subsection.

We start with a formal definition of linear regions:

Definition 8.4

A linear region of a neural network Nθ : R
d → R

d′ is a maximal connected subset of

R
d on which Nθ is linear.

There is also a related concept called the activation pattern:

Definition 8.5
We say that the neuron x ∈ Nθ coming out of the ReLU activation function is activated
if x > 0 and inactive otherwise (i.e. x = 0). If we impose some ordering on the

network’s neurons, we can consider the activation pattern ANθ
(x) ∈ {0, 1}Nn of a

network at a data point x to be a vector where the ith entry is equal to 1 if neuron i is

activated and 0 otherwise.

We note that the number of linear regions is bounded from above by the number of

activation patterns because different linear regions imply different activation patterns,

but not vice versa. (Consider the 2-layer ReLU network with two hidden neurons

implementing the identity function on R via weight vectors (1,−1) and (1,−1)T , which

has two activation patterns but is linear on all of R.) If the input space is d-dimensional,

22



then the boundaries between linear regions are (d− 1)-dimensional hyperplanes that

create a partition of the input space. The number of linear regions has for a long time

been considered as a measure of the expressivity of the network. For this reason, a

great deal of work has gone into obtaining estimates of the number of linear regions

[4, 53, 54, 59, 65, 67, 78, 81]. However, it is intractable to perform an exact computation

of the number of linear regions. Therefore, all effort has gone into deriving upper and

lower bounds to the number of linear regions. To the best of my knowledge, [67]

obtained the best upper and lower bounds: For a neural network of N� layers with dl
many neurons in layer l and input dimension d0, the number of activation patterns is

bounded from above by ∑
j∈J

N�∏
l=1

(
dl
jl

)
(1.7)

where

J = {j ∈ Z
N� | 0 ≤ jl ≤ min{d0, d1 − j1, . . . , dl−1 − jl−1, dl}, ∀l = 1, . . . , N�}.

Under the assumption that dl ≥ 3d0 for all l ≤ N� − 1, a lower bound for the maximal

(over all possible weight configurations) number of linear regions is given by(
N�−2∏
l=1

(⌊
dl
d0

⌋
+ 1

)d0
)

d0∑
j=0

(
dN�−1

j

)
. (1.8)

[65] showed these bounds are asymptotically tight of order

O(min{dl | l = 1, . . . , L}d0N�).

The upper and lower bounds grow linearly in width and exponentially in depth, which

captures the common understanding that deep and narrow networks are more expressive

than shallow and wide networks. However, there is a problem with these numbers: They

are astronomically high and exceed the number of atoms in the known universe (∼ 1083)

even for very small networks. On the other hand, even relatively large training datasets

like ImageNet are much smaller and contain only some 106 datapoints. For this reason

it is unclear whether the number of linear regions is actually a suitable predictor of the

suitability of a network and, more generally, how information passes from the few linear

regions containing training samples to the vast majority of regions without training

data.

23



9 Network Calibration

The Cooling technique introduced in Paper IV is built on temperature scaling, a technique

from network calibration. For this reason, we provide an overview of relevant material

on calibration in this section. At first, we formally define calibration and how to

measure it. In the second subsection, we describe the temperature scaling method and

its generalisations, matrix and vector scaling.

9.1 Measuring (Mis-)Calibration

We would like classification neural networks to be able to estimate the likelihood of

making correct predictions. That is, we would like the predicted output probabilities ŷ
to correspond to true probabilities. For this to hold, a network making 100 predictions,

each with 90% confidence, should make 90% correct classifications. More precisely, let

us treat both input X0 ∈ X , the corresponding output Ŷ = N (X0) and the predicted

label K̂ as random variables. We let P̂ = maxj Ŷj be the confidence of the network.

Then we say that a network is perfectly calibrated if

P(K̂ = k | P̂ = p) = p (1.9)

for all probabilities p ∈ [0, 1]. We will now introduce metrics from [30, 58] to measure

how well a network is calibrated. We start by ordering the elements x of the dataset Xval

by their corresponding network confidences p̂. Variables with a subscript i correspond

to datapoint i after ordering. We define Bj to be the set of datapoint indices for which

the confidence falls into the interval ( j−1
Nb

, j
Nb

]. If we let

acc(Bj) =
1

|Bj |
∑
i∈Bj

δ
̂kiki

(1.10)

conf(Bj) =
1

|Bj |
∑
i∈Bj

p̂i (1.11)

be the average accuracy and the average confidence, respectively, of bin Bj , then

equations (1.10) and (1.11) provide estimates for the left and the right hand side of

equation (1.9), respectively. (δ denotes the Kronecker delta here.) Hence, if a model

is perfectly calibrated, then acc(Bj) = conf(Bj) for all j. Given that equation (1.9)

specifies perfect calibration, it makes sense to define a quantity called the calibration
error by

CE(P̂ ) =
∣∣∣P(K̂ = k | P̂ )− P̂

∣∣∣ . (1.12)

However, the calibration error is itself a random variable, depending on P̂ . To obtain a

scalar estimate of the calibration error, we can take the average (or, for safety-critical

24



applications, the maximum) over the data distribution. Using the acc− and conf −
estimators from above, we thus define the expected calibration error (ECE) on a dataset

X as

ECE = E
̂P
(CE(P̂ )) ≈

Nb∑
j=1

|Bj |
|X | |acc(Bj)− conf(Bj)| ; (1.13)

and the maximum calibration error (MCE) as

MCE = max
̂P

(CE(P̂ )) ≈ max
j

|Bj |
|X | |acc(Bj)− conf(Bj)| . (1.14)

[30] observed that for ResNets, the network capacity is indirectly proportional to the

ECE, i.e. making the network deeper or wider or adding batch normalization increases

the calibration error, while decreasing the network error. On the other hand, models

regularized with strong weight decay displayed smaller calibration errors. The authors

also noted that the increase of network capacity allowed the network to overfit to the

negative log likelihood loss without overfitting to the test error: Larger models produce

smaller test errors, but larger negative log likelihoods on the test data. In the classical

understanding of learning theory, large models without regularization will overfit for the

data. However, for ResNets, it seems that this overfitting is only happening with respect

to the log likelihood and not with respect to the test error (cf. [80]).

9.2 Calibration Methods

There are a range of calibration methods for binary models, including histogram binning,

isotonic regression, Bayesin binning into quantiles, and Platt scaling. (For more infor-

mation on these methods, please confer [30].) More interestingly, apart from extensions

of binning methods, [30] suggest matrix scaling for multiclass models. Here the output

logits z are replaced by affinely transformed logits given by Wz+b for a matrix W and

a vector b. The matrix and the vector consist of parameters that optimise the negative

log likelhood on the validation dataset Xval. Based on matrix scaling, [30] also propose

two simpler variants: vector scaling, where the matrix W is diagonal and temperature
scaling, where W is replaced by a single scalar τ > 0 and there is no bias vector b.

Interestingly, it turns out that despite being the simplest variant, temperature scaling

gives the best results in terms of ECE and MCE. Matrix and vector scaling have the

disadvantage that they could possibly overfit to small validation datasets because they

require more parameters. For temperature scaling, when τ = 1, there is no scaling

happening. As τ → 0, the modified output probabilities go to 1
C (where C is the number

of labels). On the other hand, for τ → ∞, the maximum probability approaching 1

and the non-maximum probabilities go to 0. It should also be noted that since tempera-

ture scaling multiplies all logits by the same number, the maximum is unchanged and

consequently, the accuracy of the network is not affected.

25



10 Contributions and Outlook

This section summarises the contributions of the authors to each of the papers and the

contributions of the papers to the each of the research questions in Section 3. Moreover,

we present an outlook on potential future work on each of the topics we studied.

The co-authors are abbreviated as follows: Cristian Sminchisescu (CS), Henning Petzka

(HP), Martin Trimmel (MT), Mihai Zanfir (MZ), Richard Hartley (RH).

Paper I: TropEx: An Algorithm for Extracting Linear Terms in Deep
Neural Networks

Martin Trimmel∗, Henning Petzka∗, Cristian Sminchisescu, International Conference
on Learning Representations (ICLR), Virtual Conference, 2021

Author contributions The project was conceived by HP. The method was developed

by MT with continuous feedback from HP. MT implemented the method. Most of the

experiments were run by MT, some also by HP. HP and MT wrote the manuscript with

feedback from CS. Overall, HP and MT contributed equally to the project.

Paper contributions This paper studies the interplay between the parameterisation

of the network and its linear regions and attempts to answer [PQ2] and [PQ3]. The

main theoretical contribution is the derivation of an algorithm called TropEx, which

uses tropical algebra to extract the coefficients of linear regions of neural networks. We

used TropEx to perform a range of experiments: First, we found that as a general rule,

all training and test datapoints lie on different linear regions and hence that network

generalisation cannot be explained by test samples inducing the same activation pattern

as the training samples. We also noticed that the Euclidean norms and angles between the

coefficients of different regions are not close to 0, so generalisation cannot be explained

by similar activation patterns either. TropEx produces a tropical rational function with a

drastically reduced number of linear regions (one for each sample instead of the original

number which exceeded the number of atoms in the universe). We applied this tropical

function on the MNIST and CIFAR10 test sets and noticed a stark difference between

convolutional (CNNs) and fully connected neural networks (FCNs). The accuracy

suffers a lot for CNNs and is much more stable for FCNs. This holds even for two

networks that have the same number of neurons after each parameter layer. We also

attempted to compute an estimate of the number of linear regions for these two networks

and the CNN seems to have more of them, which contradicted our intuition, which

26



was based on measuing network expressivity in terms of the maximal number of linear

regions. Further experiments indicated that the linear terms of the CNNs are also more

diverse than those of the FCNs and that there is a benefit to shift the focus away from

purely counting linear regions to attempt to achieve a deeper understanding of their

interplay.

Outlook There are multiple avenues for future work: First, it would be interesting to

see how robust to adversarial attacks the rational function extracted by TropEx is. In

previous work, [16] proposed a loss function which led to enlarged linear regions and

consequently to adversarial robustness. Since TropEx produces maximally enlarged

linear regions, it is a natural candidate for further investigations in this direction. Another

option would be to use TropEx for network pruning. Since tropical rational maps are

the same as ReLU network functions by [81], using TropEx produced a new neural

function. From the perspective of linear regions, this is a minimal function which is

unchanged on all training data. However, there are two possible problems for actual

pruning applications: First, the tropical extraction caused a considerable drop in test

accuracy and secondly, the extracted function actually needs more space to be stored on

a computer. These issues would have to be overcome for any practical applications.

Paper II: ERA: Enhanced Rational Activations

Martin Trimmel∗, Mihai Zanfir∗, Richard Hartley, Cristian Sminchisescu, European
Conference on Computer Vision (ECCV), Tel Aviv, Israel, 2022

Author contributions The project was conceived by MZ. The method was developed

by MT with feedback from MZ. MT implemented the method. The experiments were

run by MZ and by MT. Most of the manuscript was written by MT and one section was

also written by MZ. RH and CS gave feedback on the manuscript. Overall, MZ and MT

contributed equally to the project.

Paper contributions This paper aims to both improve rational functions in terms of

performance and stability (answering [AQ2]) and to study possible use cases where they

outperform conventional, non-parametric activation functions (answering [AQ1]). We

found that there are multiple ways how rational functions can improved: (1) As opposed

to previous approaches [9, 18, 52] that applied an absolute value in the denominator

or that were unsafe with regards to poles, the proposed ERA function has a factorised

denominator which enables the use of partial fractions. (2) Whereas previous papers

27



mainly relied on ReLU or Leaky ReLU initialisation, we found that intialising ERAs as

Swish functions yields better results. (3) The training of rational functions can be greatly

stabilised by normalising their input with standard normalisation techniques like layer

normalisation or instance normalisation. (4) It is possible to even randomly initialise

rational activation functions if gradient clipping is used to prevent large gradient causing

divergence in pathological cases. Randomly initialised activation can almost get as good

performance as Swish-initialised ones. Previous work [52] applied rational activation

functions mainly in larger networks, where they made hardly any difference when

being compared to other activation functions. In contrast, we found that ERAs are

particularly benefitial in small networks, where they can increase the expressive power

of the network without adding a significant amount of parameters. MLP-Mixers and

Transformers trained for human pose and shape reconstruction achieve a per joint error

almost as low as the state-of-the-art while having only 3.9M parameters instead of the

25M used in the original THUNDR [79] network.

Outlook We believe that future work on rational activations should focus on improving

them further and finding more use cases where they trump non-parametric activation

functions. [7] attempted to improve rational activation functions by using an orthogonal

basis for the polynomial. Even though they perform better than [52], it is unclear if

they are perferable over ERAs. We note that their approach and the ERA approach is

mutually exclusive because to the best of our knowledge, it is not possible to have a

factorised representation for polynomials using the orthogonal bases proposed in [7].

Another issue is that it may take longer to evaluate polynomials with an orthogonal

basis because the values of multiple basis polynomials need to be computed. There

are indications that rational activation functions could be benefitial for adversarial

robustness: [17, 77] noted that smooth activation functions lead to more adversarially

robust networks than non-smooth ones. It was also noted by [70] that a large second

derivative of the activation function can help against adversarial attacks. Moreover, [82]

found that symmetric activation functions tend to be more robust than non-symmetric

ones. By putting restrictions on the parameter space, it can be easy to construct a rational

activation function which is both smooth and symmetric and which has a large second

derivative. Research in this direction could lead to networks that are less sensitive to

adversarial examples.

Paper III: Notes on the Symmetries of 2-Layer ReLU-Networks

Henning Petzka, Martin Trimmel, Cristian Sminchisescu, Northern Lights Deep Learn-
ing Conference (NLDL), Tromsø, Norway, 2020

28



Author contributions The project was conceived by HP. The theory was developed

and most of the manuscript was written by HP, and both with contributions also from

MT. CS gave feedback on the manuscript.

Paper contributions The paper provides a partial answer to question [PQ1] classifies

the symmetries of 2-layer ReLU networks. Both weight-dependent symmetries and

general symmetries, which are applicable to all networks, regardless of their weights,

are considered. The paper shows that the general symmetries of 2-layer ReLU networks

are exactly the permutations π and the scalar multiplications ρλ defined in Section II.

For 2-layer networks, the paper also gives a precise description of the pathological

parameter regions with non-trivial symmetries. The total region with weight-dependent

symmetries turns out to be rather small, having Lebesgue measure 0. In deeper networks,

the situation is more complicated and the paper shows that for such networks, there

are regions of the parameter space of Lebesgue measure greater than 0 that suffer from

weight-dependent symmetries.

Outlook There is a range of obvious ways to continue exploring network symmetries:

The evident next step from our work would be to find and classify all the symmetries for

ReLU networks of arbitrary depth. Another option would be to study the symmetries of

new activation functions like Swish and GELU or to study the symmetries of of more

complicated models like Transformers.

Paper IV: How to Keep Cool While Training

Martin Trimmel, Mihai Zanfir, Richard Hartley, Cristian Sminchisescu, Preprint, April
2023

Author contributions The project was conceived by RH. Most of the method was

developed by RH, with some contributions also from MT. MT implemented the method.

Most of the experiments were run by MT, with some also run by MZ. Most of the

manuscript was written by MT, with contributions also from RH. RH and CS gave

feedback on the manuscript.

Paper contributions This final paper studies [PQ4], i.e. how the parameterisation of a

network affects its training. To start with, the paper presents a theoretical analysis of how

scaling reparameterisation and a final scaling layer affect the backpropagated gradients.

Scaling by a constant τ < 1 at the end of the network produces more evenly distributed

29



(“smoothed”) gradients and scaling the linear layers by scalars β1 > β2 > · · · > βN
has the effect of increasing the magnitudes of the gradients. Motivated by this analysis,

the paper proposes a Cooling method for adaptively reparameterising classification

neural networks during training. Cooling is based on the commonly used temperature

scaling method for network calibration and like the latter, it optimises a temperature

parameter τ on a small validation dataset. This parameter is then used in a final scaling

layer or redistributed to earlier layers to produce a sequence of scalars β1, . . . , βN .

The parameters τ and βi fulfill the assumptions of the gradient analysis above and

hence have the same effect as predict above. When plotting the magnitudes of the

gradients, it is evident that Cooling can have a similar effect to common learning rate

schedules on the gradients and hence, that it can be seen as a ”data-dependent” learning

rate schdule. Experiments on image classification and semantic segmentation datasets

show that Cooling can outperform many of the most commonly used learning rate

schedules, like piecewise constant schedules, exponential decay and cosine schedules.

The effect of Cooling depends on how much of the temperature is being distributed back

to reparameterise the earlier layers of the network. Keeping the temperature as a final

scaling layer produces worse-calibrated, but better performant networks. On the other

hand, reparamterising the earlier layers and not having a final scaling layers performs

better than learning rate schedules and also improves the calibration of the network.

Outlook Cooling raises a number of interesting questions. Since simply reparame-

terising a network can have such a strong effect, what is the ideal parameterisation for

network training? It is well-known that for successful network training, both the direc-

tion and the norms of the gradients are important. The paper begs the question: What

should the gradient norms ideally be? There could also be more work on how should

the βi-parameters mentioned above should look like. The simply chose βi = τ i/L, but a

more sophisticated redistribution of the temperature may bring further benefits. Inter-

estingly, [75] observed in their work that letting the loss depend only on the direction

of the logits, not on their magnitudes, produced better calibrated networks. Hence, it

would be exciting to see whether combing their approach with ours would give even

greater benefits.

30



Index

activated, 22

activation function, 11

Activation functions, 4

activation pattern, 22

adaptive piecewise linear (APL), 16

backpropagation, 12

batch, 12

bias vector, 11

calibration error, 24

child, 9

classification, 8

clustering, 8

coefficients, 17

complexity, 9

computational graph, 10

convolutional, 11

convolutional neural network (CNN),

11

covariate shift, 14

data augmentation, 13

deep, 11

deep learning, 4

degree, 17

dense, 11

dimensionality reduction, 8

dropout, 13

early stopping, 13

expected calibration error (ECE), 25

exploding gradients, 16

exponential linear unit (ELU), 16

feedforward neural network, 11

fully-connected, 11

GELU, 16

generative modelling, 8

gradient descent, 12

hidden nodes, 10

hyperactivations, 16

hypernetwork, 16

inactive, 22

input nodes, 10

label smoothing, 13

layer, 11

leaky ReLU, 16

learning rate, 12

learning rate schedule, 13

learning rate warmup, 13

leave, 9

linear region, 22

linear regions, 4

local functions, 10

loss function, 8

matrix scaling, 25

maximum calibration error (MCE), 25

Mish, 16

31



multi-layer perceptron (MLP), 11

network function, 10

Network parameterisation, 4

neural network, 10

neural network architecture, 10

neuron, 10

normalisation techniques, 14

output nodes, 10

overfitting, 9

parameterisation, 18

parametric ReLU (PReLU), 16

parent, 9

perfectly calibrated, 24

rational function, 17

realisation, 18

realisation map, 18

rectified linear unit (ReLU), 15

recurrent neural network (RNN), 11

regression, 8

regularisation, 13

root, 9

scaled exponential linear unit (SELU),

16

shallow, 11

sigmoid, 15

SiLU, 16

simple piecewise linear and adaptive

with symmetric hinges

(SPLASH), 16

stochastic gradient descent (SGD), 12

Swish, 16

symmetries, 4

symmetry, 18

tangens hyperbolicus, 15

target function, 8

temperature scaling, 25

tensors, 9

test set, 9

training, 12

training dataset, 8

tropical, 20

tropical addition, 20

tropical monomial, 21

tropical multiplication, 20

tropical polynomial, 21

tropical power, 21

tropical rational function, 21

tropical rational map, 21

tropical semiring, 20

underfitting, 9

universal approximation theorem, 15

validation dataset, 8

vanishing gradients, 15

vector scaling, 25

weight decay, 13

weight matrix, 11

32



References

[1] Discovering parametric activation functions. Neural Networks, 148:48–65,

2022. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2022.01.001.

URL https://www.sciencedirect.com/science/article/pii/
S0893608022000016.

[2] F. Agostinelli, M. D. Hoffman, P. Sadowski, and P. Baldi. Learning activation

functions to improve deep neural networks. Workshop Track Proceedings of the
3rd International Conference on Learning Representations, 2015.

[3] F. Albertini and E. D. Sontag. Uniqueness of weights for neural networks. In

Artificial Neural Networks with Applications in Speech and Vision. Chapman &

Hall, 1993.

[4] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural

networks with rectified linear units. In Proceedings of the 4th International
Conference on Learning Representations, 2016.

[5] J. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. ArXiv, abs/1607.06450,

2016.

[6] J. Berner, P. Grohs, G. Kutyniok, and P. Petersen. The modern mathematics of

deep learning. CoRR, abs/2105.04026, 2021. URL https://arxiv.org/
abs/2105.04026.

[7] K. Biswas, S. Banerjee, and A. K. Pandey. Orthogonal-padé activation func-

tions: Trainable activation functions for smooth and faster convergence in deep

networks. CoRR, abs/2106.09693, 2021. URL https://arxiv.org/abs/
2106.09693.

[8] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, page 144–152, New York, NY, USA, 1992. Associa-

tion for Computing Machinery. ISBN 089791497X. doi: 10.1145/130385.130401.

URL https://doi.org/10.1145/130385.130401.

[9] N. Boulle, Y. Nakatsukasa, and A. Townsend. Rational neural net-

works, 2020. URL https://proceedings.neurips.cc/paper/
2020/file/a3f390d88e4c41f2747bfa2f1b5f87db-Paper.pdf.

[10] V. Charisopoulos and P. Maragos. A tropical approach to neural networks with

piecewise linear activations. arXiv preprint arXiv:1805.08749, 2018.

33



[11] A. M. Chen, H.-m. Lu, and R. Hecht-Nielsen. On the geometry of feedforward

neural network error surfaces. In Neural computation. MIT Press, 1993.

[12] Z. Chen, F. Chen, R. Lai, X. Zhang, and C. Lu. Rational neural networks for approx-

imating jump discontinuities of graph convolution operator. CoRR, abs/1808.10073,

2018. URL http://arxiv.org/abs/1808.10073.

[13] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network

learning by exponential linear units (elus). In International Conference on Learn-
ing Representations, 2016. URL https://arxiv.org/pdf/1511.07289.
pdf.

[14] M. Collins. Computational graphs, and backpropagation. URL http://www.
cs.columbia.edu/˜mcollins/ff2.pdf.

[15] D. R. Cox. The regression analysis of binary sequences. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 20(2):215–242, 1958. ISSN 00359246.

URL http://www.jstor.org/stable/2983890.

[16] F. Croce, M. Andriushchenko, and M. Hein. Provable robustness of relu networks

via maximization of linear regions. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, 2018.

[17] S. Dai, S. Mahloujifar, and P. Mittal. Parameterizing activation functions for

adversarial robustness. In 2022 IEEE Security and Privacy Workshops (SPW),
pages 80–87, 2022. doi: 10.1109/SPW54247.2022.9833884.

[18] Q. Delfosse, P. Schramowski, A. Molina, N. Beck, T.-Y. Hsu, Y. Kashef, S. Rüling-

Cachay, and J. Zimmermann. Rational activation functions, 2020.

[19] Q. Delfosse, P. Schramowski, A. Molina, and K. Kersting. Recurrent rational

networks. CoRR, abs/2102.09407, 2021. URL https://arxiv.org/abs/
2102.09407.

[20] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp minima can generalize

for deep nets. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1019–1028. JMLR. org, 2017.

[21] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online

learning and stochastic optimization. In Journal of Machine Learning Research
(JMLR), 2011.

[22] C. Eisenach, Z. Wang, and H. Liu. Nonparametrically learning activation func-

tions in deep neural nets. Workshop Track Proceedings of the 5th International
Conference on Learning Representations, 2017.

34



[23] S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural

network function approximation in reinforcement learning. CoRR, abs/1702.03118,

2017. URL http://arxiv.org/abs/1702.03118.

[24] E. Fiesler. Neural network classification and formalization. Computer Standards
& Interfaces, 16(3):231–239, 1994. ISSN 0920-5489. doi: https://doi.org/10.

1016/0920-5489(94)90014-0. URL https://www.sciencedirect.com/
science/article/pii/0920548994900140.

[25] E. M. Fisher. Linear discriminant analysis. Statistics & Discrete Methods of Data
Sciences, 392:1–5, 1936.

[26] K. Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36:193–202, 1980.

[27] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[28] M. Goyal, R. Goyal, and B. Lall. Improved polynomial neural networks with

normalised activations. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, 2020. doi: 10.1109/IJCNN48605.2020.9207535.

[29] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,

A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch SGD: training imagenet in

1 hour. CoRR, abs/1706.02677, 2017. URL http://arxiv.org/abs/1706.
02677.

[30] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern

neural networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1321–1330. PMLR, 06–11 Aug 2017. URL

https://proceedings.mlr.press/v70/guo17a.html.

[31] E. Guresen and G. Kayakutlu. Definition of artificial neural networks with

comparison to other networks. Procedia Computer Science, 3:426–433,

2011. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2010.12.071.

URL https://www.sciencedirect.com/science/article/pii/
S1877050910004461. World Conference on Information Technology.

[32] D. Ha, A. M. Dai, and Q. V. Le. Hypernetworks. In International Confer-
ence on Learning Representations, 2017. URL https://openreview.net/
forum?id=rkpACe1lx.

35



[33] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S.

Seung. Digital selection and analogue amplification coexist in a cortex-inspired

silicon circuit. Nature volume 405, 2000.

[34] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), December 2015.

[35] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition,

2016.

[36] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[37] S. Hochreiter and J. Schmidhuber. Flat Minima. Neural Computation, 9(1):1–

42, 01 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.1.1. URL https:
//doi.org/10.1162/neco.1997.9.1.1.

[38] A. E. Hoerl and R. W. Kennard. Ridge regression: Applications to nonorthog-

onal problems. Technometrics, 12(1):69–82, 1970. doi: 10.1080/00401706.

1970.10488635. URL https://www.tandfonline.com/doi/abs/10.
1080/00401706.1970.10488635.

[39] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthog-

onal problems. Technometrics, 12(1):55–67, 1970. doi: 10.1080/00401706.

1970.10488634. URL https://www.tandfonline.com/doi/abs/10.
1080/00401706.1970.10488634.

[40] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http:
//arxiv.org/abs/1502.03167.

[41] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Conver-

gence and generalization in neural networks. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates,

Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/
file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

[42] C. Jang, S. Lee, F. C. Park, and Y.-K. Noh. A reparametrization-invariant sharpness

measure based on information geometry. In A. H. Oh, A. Agarwal, D. Belgrave,

and K. Cho, editors, Advances in Neural Information Processing Systems, 2022.

URL https://openreview.net/forum?id=AVh_HTC76u.

36



[43] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On

large-batch training for deep learning: Generalization gap and sharp minima.

In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=H1oyRlYgg.

[44] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In

Proceedings of the 3rd International Conference on Learning Representations,

2015.

[45] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing

neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates,

Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/
file/5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf.

[46] V. Kurková and P. C. Kainen. Functionally equivalent feedforward neural networks.

Neural Computation, 6(3):543–558, 1994.

[47] S. Linnainmaa. Algoritmin kumulatiivinen pyöristysvirhe yksittäisten

pyöristysvirheiden, 1970.

[48] I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts.

In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Skq89Scxx.

[49] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural

network acoustic models, 2013.

[50] D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry. Graduate

Studies in Mathematics, vol. 161, AMS, 2015.

[51] D. Misra. Mish: A self regularized non-monotonic neural activation function.

arXiv preprint arXiv:1908.08681, 2019.

[52] A. Molina, P. Schramowski, and K. Kersting. Padé activation units: End-to-end

learning of flexible activation functions in deep networks, 2019.

[53] G. Montúfar. Notes on the number of linear regions of deep neural networks.

Presented at Mathematics of Deep Learning, Sampling Theory and Applications,

2017.

[54] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear

regions of deep neural networks. In Advances in Neural Information Processing
Systems, 2014.

37



[55] R. Müller, S. Kornblith, and G. E. Hinton. When does label

smoothing help? In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 32. Curran Associates, Inc.,

2019. URL https://proceedings.neurips.cc/paper/2019/
file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf.

[56] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann

machines, 2010.

[57] B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-sgd: Path-

normalized optimization in deep neural networks. In C. Cortes, N. Lawrence,

D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 28. Curran Associates, Inc.,

2015. URL https://proceedings.neurips.cc/paper/2015/
file/eaa32c96f620053cf442ad32258076b9-Paper.pdf.

[58] M. Pakdaman Naeini, G. Cooper, and M. Hauskrecht. Obtaining well calibrated

probabilities using bayesian binning. Proceedings of the AAAI Conference on
Artificial Intelligence, 29(1), Feb. 2015. doi: 10.1609/aaai.v29i1.9602. URL

https://ojs.aaai.org/index.php/AAAI/article/view/9602.

[59] R. Pascanu, G. Montufar, and Y. Bengio. On the number of response regions of

deep feed forward networks with piece-wise linear activations. arXiv preprint
arXiv:1312.6098, 2013.

[60] P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth

functions using deep relu neural networks. Neural Networks, 108:296–330,

2018. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2018.08.019.

URL https://www.sciencedirect.com/science/article/pii/
S0893608018302454.

[61] H. Petzka, L. Adilova, M. Kamp, and C. Sminchisescu. A reparameterization-

invariant flatness measure for deep neural networks. CoRR, abs/1912.00058, 2019.

URL http://arxiv.org/abs/1912.00058.

[62] M. Phuong and C. H. Lampert. Functional vs. parametric equivalence of re{lu}
networks. In International Conference on Learning Representations, 2020. URL

https://openreview.net/forum?id=Bylx-TNKvH.

[63] A. Pinkus. Approximation theory of the mlp model in neural networks. Acta
Numerica, 8:143–195, 1999. doi: 10.1017/S0962492900002919.

38



[64] I. Puri, A. Dhurandhar, T. Pedapati, K. Shanmugam, D. Wei, and K. R. Varshney.

Cofrnets: Interpretable neural architecture inspired by continued fractions, 2021.

URL https://openreview.net/forum?id=kGXlIEQgvC.

[65] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the

expressive power of deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning, 2017.

[66] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions, 2018.

URL https://openreview.net/forum?id=SkBYYyZRZ.

[67] T. Serra, C. Tjandraatmadja, and S. Ramalingam. Bounding and counting linear

regions of deep neural networks. Proceedings of the 35th International Conference
on Machine Learning, 2018.

[68] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.
org/papers/v15/srivastava14a.html.

[69] H. J. Sussmann. Uniqueness of the weights for minimal feedforward nets with a

given input-output map. In Neural network. Elsevier, 1992.

[70] M. Tavakoli, F. Agostinelli, and P. Baldi. Splash: Learnable activation func-

tions for improving accuracy and adversarial robustness. Neural Networks, 140:

1–12, 2021. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2021.02.023.

URL https://www.sciencedirect.com/science/article/pii/
S0893608021000733.

[71] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop, coursera: Neural networks for

machine learning, 2012.

[72] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance normalization: The

missing ingredient for fast stylization. CoRR, abs/1607.08022, 2016. URL http:
//arxiv.org/abs/1607.08022.

[73] V. N. Vapnik and A. Y. Lerner. Recognition of patterns with help of generalized

portraits. Avtomat. i Telemekh., 24:6:774–780, 1963.

[74] C. J. Vercellino and W. Y. Wang. Hyperactivations for activation func-

tion exploration. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, Workshop on Meta-learning. Curran Asso-

ciates, Inc., 2017. URL http://metalearning.ml/2017/papers/
metalearn17_vercellino.pdf.

39



[75] H. Wei, R. Xie, H. Cheng, L. Feng, B. An, and Y. Li. Mitigating neural network

overconfidence with logit normalization. 2022.

[76] Y. Wu and K. He. Group normalization. CoRR, abs/1803.08494, 2018. URL

http://arxiv.org/abs/1803.08494.

[77] C. Xie, M. Tan, B. Gong, A. Yuille, and Q. V. Le. Smooth adversarial training.

arXiv preprint arXiv:2006.14536, 2020.

[78] H. Xiong, L. Huang, M. Yu, L. Liu, F. Zhu, and L. Shao. On the number of linear

regions of convolutional neural networks. In Proceedings of the 37th International
Conference on Machine Learning, 2020.

[79] M. Zanfir, A. Zanfir, E. G. Bazavan, W. T. Freeman, R. Sukthankar, and C. Smin-

chisescu. Thundr: Transformer-based 3d human reconstruction with markers.

In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 12971–12980, October 2021.

[80] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep

learning requires rethinking generalization. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=
Sy8gdB9xx.

[81] L. Zhang, G. Naitzat, and L.-H. Lim. Tropical geometry of deep neural networks.

In Proceedings of the 35th International Conference on Machine Learning, 2018.

[82] Q. Zhao and L. D. Griffin. Suppressing the unusual: towards robust cnns using

symmetric activation functions. CoRR, abs/1603.05145, 2016. URL http:
//arxiv.org/abs/1603.05145.

40



Doctoral Theses in Mathematical Sciences 2023:3
ISBN 978-91-8039-572-4

ISSN 1404-0034

N
O

RD
IC

 S
W

A
N

 E
C

O
LA

BE
L 

30
41

 0
90

3
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

23


	Tom sida



