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Global drylands support approximately 30% of the world’s 
population1 and more than half of all birds and mammals2, in 
addition to livestock and crops for global food production3. 

Understanding ecosystem dynamics in drylands is thus essential for 
the implementation of UN Sustainable Development Goal 15, life 
on land. As drylands are characterized by a limited availability of 
water4, all living organisms have adapted to survive in these condi-
tions. However, global climate change is leading to unprecedented 
alterations and shifts in the global climatology5, causing extended 
droughts and regional warming6,7 or resulting in changing rainfall 
patterns8. If the frequency and severity of climatic extremes con-
tinue to increase, ecosystem functioning, composition, biodiver-
sity and soil properties9–11 of many drylands will undergo adverse 
changes with increasingly limited capacity to be reversed12. In addi-
tion to climatic changes, drylands are facing an increase in anthro-
pogenic pressure through, for example, deforestation or human 
land management (cropland expansion and intensification)13–15. 
Moreover, most dryland areas are located in developing countries, 
where people’s livelihoods are directly dependent on the land and 
the ecosystem services this land provides, for example, food, fod-
der and timber supply (both for own use and export)5. Rapid popu-
lation growth (especially affecting developing countries) and the 
associated increased need for food, agricultural area and infrastruc-
ture place additional pressure on the functioning of dryland eco-
systems16–18. As drylands are projected to expand by up to 23% by  
the end of the twenty-first century19, increasing aridity is expected 
to be more important in more-humid climatic zones12,20, highlight-
ing the importance of gaining a clearer understanding of dryland 
ecosystem functioning.

Ecosystem functioning is a broad term that describes how dif-
ferent ecosystem properties (for example, pools of organic matter 
or carbon) and processes (fluxes of energy and matter) interact to 
sustain the system over space and time21,22, maintaining a state of 
dynamic equilibrium of disturbance and recovery23. As such, veg-
etation is a key aspect within the concept of ecosystem functioning 
as it absorbs carbon dioxide and provides a range of products peo-
ple depend on. In drylands, where vegetation productivity is tightly 
linked to the availability of water, the sensitivity of vegetation to 
rainfall is one major factor of vegetation functioning. Thus, a quan-
tification of the vegetation–rainfall relationship (VRR) has been 
established as a successful proxy for vegetation sensitivity to rainfall 
that can be used as a simplified indicator for vegetation function-
ing1,24,25 and is applied here accordingly. Alterations in the VRR may 
indicate changes in vegetation biophysical processes in relation to 
water availability, potentially impacting ecosystem processes such as 
net primary productivity, carbon uptake and allocation and leading 
to changes in ecosystem functional traits26.

Although a number of studies have used time series of 
remote-sensing-based vegetation and climatic data to analyse the 
vegetation response to climate anomalies in drylands27–29, the pat-
terns of changes over time at the global scale, and any associated 
changes in ecosystem and vegetation functioning, remain unknown. 
Similarly, several studies have already shown that the anthropogenic 
pressure on dryland ecosystems is growing and not negligible30,31. 
Yet, we have limited understanding of the ability of dryland vegeta-
tion to sustain functioning while coping with the combined impact 
of climate change and anthropogenic pressure. As such, we pres-
ent a suite of analyses to better understand both the direction of 
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change with respect to the vegetation–rainfall sensitivity and the 
underlying drivers of change. As the VRR is strongest in tropical 
drylands and those regions account for 70–80% of all global arid 
and semi-arid areas32, we are focusing on tropical drylands (see 
Methods) in this study.

Here, we use sequential linear regression slopes (SeRGS, see 
Methods)25 as a proxy of vegetation sensitivity to rainfall in tropical 
drylands. We describe the VRR with a time series of remotely sensed 
metrics of vegetation productivity and rainfall. Through a succes-
sive spatio-temporal analysis of the VRR (using a moving window), 
the SeRGS approach is able to account for non-static changes in 
water availability and reveal potential changes in the VRR over time. 
Using this approach, we go beyond the traditional one-dimensional 
analyses of vegetation productivity changes and provide a more 
nuanced characterization of vegetation dynamics and functioning. 
We interpret positive/negative trends in SeRGS over time (that is, an 
increasing/decreasing VRR) as an increase/decrease in unit vegeta-
tion productivity (normalized for rainfall variability) per unit rain-
fall, indicative for changes in vegetation functioning. Building on 
previous satellite-based studies on vegetation responses29 in dryland 
regions27, we then relate the observed changes in vegetation–rainfall 
sensitivity to both climatic and anthropogenic stressors. We esti-
mate the relative importance of these potential stressors and further 
assess their interconnectivity.

Continental differences in vegetation–rainfall sensitivity
We used metrics of vegetation productivity (Moderate Resolution 
Imaging Spectroradiometer (MODIS) Normalized Difference 
Vegetation Index (NDVI) and Vegetation Index and Phenology 
(VIP) data) and water availability (Multi-Source Weighted-Ensemble 
Precipitation (MSWEP) rainfall data) from 2000 to 2015 to calcu-

late SeRGS over the tropical dryland area at 0.05° spatial resolution 
(Supplementary Fig. 1), indicative of changes in vegetation sensi-
tivity to rainfall (see Methods). Our analysis revealed that approxi-
mately one-third (30%) of tropical drylands show significant trends 
(Mann–Kendall test, P < 0.05) in vegetation–rainfall sensitivity over 
the past two decades. This translates into 13% positive and 17% 
negative trends. In general, positive trends indicate that vegetation 
becomes more responsive to available rainfall over time. Negative 
trends point towards less-responsive vegetation and less vegetation 
productivity per available unit of rainfall, indicating a shift towards 
vegetation that may be impeded in its functioning. We observe pro-
nounced continental differences in the distribution and direction of 
trends (Fig. 1) with Australia and South America showing the larg-
est shares of positive trends, followed by substantially lower shares 
for Africa and Asia. Similarly, the largest fraction of negative trends 
is found across the tropical drylands of Asia (statistically different 
from all other continents), followed by Africa and parts of North 
America (Fig. 1).

To gain a better understanding of the observed trends and the 
potential drivers of the spatial/continental differences in the vegeta-
tion–rainfall sensitivity, we link the trends in SeRGS to a set of poten-
tially related driver variables. While SeRGS in itself includes rainfall 
as the main driver of vegetation productivity (in tropical drylands) 
and accounts for rainfall interannual variations, other meteorological 
variables (MET) such as temperature and soil-water availability may 
influence vegetation biophysical processes (for example, favourable 
temperature conditions, less-frequent or severe climate extremes). 
Moreover, a range of other factors, such as population density 
(POP), vegetation cover (VC, based on vegetation cover fraction lay-
ers from ref. 33 (see Methods)) and fire occurrence (FIRE) are con-
sidered as potential driver variables. We use an empirical approach 
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climate extremes). In the case of Australia, positive trends in veg-
etation–rainfall sensitivity are likely to indicate a trend towards 
more-favourable and less-extreme climatic conditions (increased 
rainfall due to prevalent La Niña events)34. This is supporting a 
recovery from a series of consecutive dry years that led to the ‘mil-
lennium drought’ in large parts of Eastern Australia in the begin-
ning of the twenty-first century35.

In Southwest Africa, changing climatic conditions, especially a 
rise in temperature (Supplementary Fig. 9b), have been shown to 
impede the survival of larger woody plants and favour the spreading 
of smaller ones (woody encroachment) and more drought-tolerant 
but non-native species (alien species invasion)10,36,37. SeRGS cap-
tures such change in vegetation composition as it reveals higher 
average values for herbaceous vegetation (sparse vegetation, 
grasses and shrubs) as compared with woody vegetation (tree 
cover) (Supplementary Fig. 4). We show that a change in ecosys-
tem composition, especially a replacement of large woody plants 
with shrubs, is expressed as a positive trend in vegetation–rainfall 
sensitivity. However, it remains an open question whether such a 
positive change would also be associated with sustainable environ-
mental improvement, benefiting the ecosystem and people’s live-
lihoods4. In fact, despite observed positive trends, certain aspects 
of ecosystem properties, for example, the loss of biodiversity or 
impact on groundwater38, are not accounted for. Moreover, grass-
lands in dryland areas play an important role in carbon sequestra-
tion as they store high rates of carbon mainly below ground. Here, 
the carbon is able to persist through potential disturbances such as 
fire, whereas carbon stored in small trees and bushes (promoted by 
woody encroachment) is more vulnerable to external influences39. 
Similarly, positive trends in vegetation–rainfall sensitivity can also 
be seen in the eastern part of the North American tropical drylands 
that are associated with climatic drivers (for example, a rise in tem-
perature (Supplementary Fig. 9b)).

The positive trends generally found in regions controlled by cli-
matic drivers may again be related to an encroachment of smaller 
woody plants. These trends may also reflect more-productive sys-
tems in response to an increase in atmospheric CO2 concentration40 
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based on principal component analysis (PCA) and regression 
(PCR) to model the contribution of the drivers to changes in vegeta-
tion sensitivity to rainfall (see Methods and Supplementary Fig. 5).  
The advantage of this approach is that any impact of collinearity  
between the driver variables has been removed, resulting in an 
independent estimate of the relative importance of each variable. 
At the global scale, we find that most of the significant trends in 
the vegetation–rainfall sensitivity are driven primarily by changes 
in climate (MET) (52.8%), followed by VC change (24.5 %), POP 
(18.7 %) and FIRE (4.03 %). Nowhere was any single driver variable 
found to be the unique determinant of the observed change in the 
vegetation–rainfall sensitivity, and clear continental differences in 
co-limitations were revealed through the analysis of the first and 
second driver variables on a per-pixel basis (Figs. 2 and 3).

Combinations in driver variables involving POP and MET are 
most frequent in Asia and Africa (Fig. 3b), and in both cases, they 
are related to negative changes in the vegetation–rainfall sensitivity 
(Fig. 3a). Climate, in combination with a change in vegetation cover, 
is predominantly driving positive changes (Fig. 3a) in North and 
South America as well as in Australia (Fig. 3b).

Climate as primary driver of vegetation–rainfall sensitivity 
The most extensive regions driven primarily by climate (MET) 
emerge in North America, Australia and Southwest Africa, in 
which positive trends in vegetation–rainfall sensitivity are observed 
(Figs. 1–3 and Supplementary Fig. 6). We associate these positive 
trends with either an increase in vegetation cover or vegetation 
that is increasingly sensitive to rainfall. Similarly, other studies 
have reported a high sensitivity of vegetation to climatic variabil-
ity, especially water availability29 and low resilience (to short-term 
climatic anomalies)28, in these regions on the basis of the analysis of 
monthly time series of vegetation and climate data. Since our model 
of vegetation–rainfall sensitivity (SeRGS) normalizes vegetation 
productivity for interannual variations in rainfall, the observed cli-
matic component is expected to represent meteorological phenom-
ena beyond the monthly variations used in previous studies28,29 and 
instead reflects responses to interannual variations (for example,  



as it has been suggested that the water use efficiency of vegetation 
increases as atmospheric CO2 concentrations rise41, especially in 
drylands and in tropical regions42. This CO2 fertilization effect may, 
as well, have an impact on our estimated trends in the vegetation–
rainfall sensitivity. However, the contribution of CO2 fertilization is 
not expected to produce spatially varying patterns in vegetation–
rainfall sensitivity for tropical dryland ecosystems. The role of CO2 
is also difficult to quantify, as no spatially explicit dataset covering 
the study period exists.

Population pressure reduces vegetation–rainfall sensitivity
In contrast to the overall positive trends for areas controlled 
mainly by climatic variables, we find a clear and strong negative 
influence from population on changes in vegetation sensitivity to 
rainfall (Fig. 3), indicating a change towards either less vegetation 
cover or vegetation being less responsive to rainfall. Overall, in 
areas where population is identified as the main (or co-) driver 
of change, the median trend in vegetation–rainfall sensitivity 
is negative, whereas other driver combinations relate mainly to 
positive trends (Fig. 3a). The most extensive areas where trends 
are population driven are located in large parts of sub-Saharan 
Africa and northern India (Fig. 2), largely overlapping with areas 
experiencing the highest increase in population and population 
density to the present date (Supplementary Fig. 7a), a develop-
ment projected to continue in the future43. Population pressure 
on ecosystems can be both direct (for example, allocation of land 
for settlements or expansion of agricultural frontiers into natural  
ecosystems due to an increased demand for resources) and indirect 
(for example, loss of biological diversity)44,45 and may be related to, 
for example, population growth, migration or armed conflicts46. 
In most of these population-driven areas, meteorological vari-
ables have been identified as dominant co-limiting factor (Figs. 
2 and 3), and generally, climatic conditions have been reported to 
be more favourable in recent decades (that is, increased or stable 
water availability, Supplementary Fig. 9a), leading to an increase 
in vegetation productivity and large-scale greening trends (for 
example, ‘greening Sahel’)47. These greening trends, however, 
may also be related to structural changes in vegetation composi-
tion (Supplementary Fig. 4)48 or increasing atmospheric CO2

14,40. 
Regardless of the causes, such continuous increase in vegetation 

productivity may create an offset in the vegetation–rainfall rela-
tionship, ultimately causing negative trends in SeRGS, despite a 
greening (Supplementary Fig. 3b). As such, changes in vegetation 
productivity are likely to further intensify or mitigate the negative 
trends in vegetation–rainfall sensitivity, depending on the nature 
of population-driven impacts on the ecosystem that may affect 
either herbaceous (for example, grazing) or woody (for example, 
deforestation) vegetation. A previous study found low sensitivity 
of vegetation to climatic variability and high ecological resilience 
(on the basis of time series analysis of monthly integrated vegeta-
tion and climatic data) in the regions identified here as popula-
tion driven29. Our study demonstrates, however, that population 
pressure also plays a central role in the observed change in the 
sensitivity of vegetation to changes in rainfall in such regions and 
that human pressure is equally important for characterizing the 
vegetation response in addition to climate variability in many dry-
land areas. Thus, neglecting proxies of human impact as driving 
forces is likely to lead to biased conclusions.

land-use/cover changes and vegetation–rainfall sensitivity
We find the largest contribution of vegetation cover change to 
changes in vegetation–rainfall sensitivity in large parts of South 
America (for example, Caatinga and Gran Chaco), sub-Saharan 
Africa (for example, Miombo woodlands) and parts of Western 
Australia (Figs. 2 and 3). Here, changes in vegetation cover are 
associated with a gain in short vegetation33 and translate into posi-
tive trends in vegetation sensitivity to rainfall. These areas largely 
overlap with areas of agricultural intensification or conversion from 
woodland to agriculture13,33. Year-round farming practices lead to 
an increased but more rainfall-dependent vegetation productivity 
(rainfed crops) as compared with deciduous natural plants, which 
translates into a positive trend in SeRGS over time. Especially the 
South American dry Chaco has experienced a rapid intensifica-
tion of agriculture since the 1970s (among others for global meat 
and soy production), going alongside heavy deforestation, causing 
increased carbon emissions and biodiversity loss4,49,50. Similarly, the 
Miombo woodlands, historically related to smallholder agriculture, 
have been increasingly converted into large-scale commodity crop 
cultivation51,52. Our analysis supports the human impact on these 
natural systems as population is often the associated co-driver in 
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capability to counter possible adverse effects of climate change on 
agriculture, human health and ecosystems54. The observed differ-
ences might also reflect land-use practices and ecosystem manage-
ment, where large-scale transformations from natural to arable land 
(as shown to be responsible for large parts of positive trends in vege-
tation–rainfall sensitivity) require economic resources (human and 
non-human) and certain infrastructure (for example, farm mecha-
nization, the use of fertilizers and high-quality seeds55) more easily 
accessible in high-income countries. Similarly, increased pressure 
from population growth in low-income countries may further fuel 
overexploitation of resources (for example, shortening of the fallow 
period), ultimately leading to land degradation, reflected in nega-
tive trends in vegetation–rainfall sensitivity.

Concluding remarks
One-third of tropical dryland ecosystems have shown significant 
changes (P < 0.05) in vegetation sensitivity to rainfall, that is, changes 
in vegetation biophysical processes in relation to water availability 
over recent decades. We link observed changes to potential climatic 
and anthropogenic drivers and bring a new level of comprehen-
sive assessment of their interplay at global scale, further highlight-
ing the importance of integrated assessment of both human and 
climate-change impacts in environmental and sustainability stud-
ies. We find pronounced geographical and economic differences 
regarding both changes in vegetation–rainfall sensitivity and poten-
tial drivers/driver combinations. Large parts of the world’s poor-
est countries experience negative changes in vegetation–rainfall 
sensitivity, linked mainly to growing population pressure, whereas 
the vegetation sensitivity to rainfall of richer countries tends to 
improve, notably as a result of favourable climatic conditions and/
or an intensification and expansion of agricultural lands. In addi-
tion, it has been suggested that changes in vegetation water usage 
and vegetation functioning as depicted by SeRGS may be indicative 
of the changing sensitivity (that is, reduced or increased vegetation 
resistance) of vegetation to environmental stressors56. If (combined) 
human and climatic stress continues to increase, thereby decreasing 
vegetation resistance, ecosystem services may be jeopardized and 
the ecosystem has a higher chance to switch to an alternative state28. 
Thus, identifying such areas is pivotal to highlight highly vulnerable 
regions and to contribute to sustainable land management. As such, 
future research on ecosystem functioning should incorporate both 
metrics of vegetation–rainfall sensitivity and other aspects of veg-
etation functioning, such as biodiversity or vegetation composition.

Methods
All datasets were harmonized to match the period from 2000 to 2015, which is the 
minimum overlap of all datasets used in this study. We resampled all datasets to 
0.05° spatial resolution from their original resolution using cubic convolution57.

A tropical dryland mask was derived in the following steps. We consider 
only environments that are predominantly water limited. This is the case when 
the relative importance of the water constraint (compared with radiation and 
temperature) is greater than 55% (ref. 58), thereby excluding temperate drylands. 
In addition, we exclude areas receiving more than 1,000 mm mean annual 
rainfall, as in these areas a strong vegetation–rainfall relationship is likely to be 
hampered by other climatic variables. Following this, all areas classified as bare 
soil (200–202) or irrigated cropland (20) in the European Space Agency (ESA) 
Climate Change Initiative (CCI) Land Cover map 201559 and areas with an aridity 
index below 0.05 (hyper-arid areas), as derived from ref. 60, were removed. The 
remaining areas are referred to as global drylands (Supplementary Fig. 1). All 
input datasets were harmonized, and all processing has been done within this 
global tropical dryland area.

MODIS reflectance data. We used MODIS (MOD09GQ, collection 6, available 
from ref. 61) eight-day composite reflectance data62 at 250 m original spatial 
resolution to calculate the NDVI as a proxy for vegetation productivity63,64 for the 
period 2000–2015. The NDVI has been shown to be closely related to vegetation 
productivity or net primary production in drylands65–67. We resampled data from 
the original resolution to 0.05° using the median and calculated the annual sum. 
In addition, we used the VIP product, available from ref. 68. At a spatial resolution 
of 0.05°, VIP provides consistent measurement of NDVI (and the enhanced 
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these regions (Fig. 3). Contrasting the overall negative impact of 
population on the land due to direct pressure from a high and grow-
ing population density as seen in other areas (for example, Sahel), 
the human imprint here rather reflects human land management. 
Intense land management (agriculture intensification and conver-
sion) and an associated increase in vegetation (crop) productivity, 
which is fuelled by trends towards the use of mechanization, fertil-
izer, better-quality seeds or quick-growing hybrid cultivars, is often 
referred to as cropland greening13. However, whether such a devel-
opment represents actual environmental improvement can be ques-
tioned and calls for a more nuanced assessment, including a broader 
range of both ecosystem property indicators including biodiversity 
and an assessment of sustainability of land transitions and practices.

economic inequality and vegetation–rainfall sensitivity 
Negative median trends in the vegetation–rainfall sensitivity are found 
in low- to lower-middle-income countries, and similarly, positive  
median trends are observed in upper-middle- and high-income 
countries (as classified by the World Bank, Supplementary Fig. 8a) 
(Fig. 4), particularly for areas of low to medium human footprint lev-
els (Supplementary Fig. 8b). Previous research outlined that, in gen-
eral, low-income countries are more vulnerable to climate change 
(for example, rising temperatures53) and may prioritize short-term 
effects of adaptation over more-sustainable mitigation processes 
due to an unfavourable economic situation and cost–benefit con-
siderations. At the same time, high-income countries have a higher 



vegetation index) on the basis of data from MODIS and the Advanced Very High 
Resolution Radiometer that are used to derive phenological metrics such as the 
start and end of season or the cumulative NDVI over the growing season.

Rainfall data. There are many freely available precipitation datasets, of which 
comparative studies indicate MSWEP to be the most accurate as compared with 
station data69–71. MSWEP v.172 is a globally gridded, merged (from gauge, satellite 
and reanalysis data) precipitation dataset at 0.25° spatial resolution (available from 
http://www.gloh2o.org/), originally available at a temporal resolution of three 
hours from which we calculated annual sums. To account for spatial patterns in 
rainfall seasonality that may impact vegetation productivity (for example, rainfall 
in December may impact NDVI in March), we calculated the optimal rainfall 
sum on a per-pixel level. The optimal rainfall sum is calculated as rainfall totals 
accumulated over the growing season (GS, as defined by the VIP start and end 
of season) and over an additional period (months) before the GS. The number 
of additional months before GS was optimized per pixel and was set to attain 
the highest significant (P < 0.01) correlation between accumulated rainfall and 
vegetation productivity for the shortest accumulation period before GS.

Soil-water content and temperature data. We used data on soil-water content 
and two-metre air temperature from the fifth generation of European Centre for 
Medium-Range Weather Forecasts reanalysis climate data (ERA5) for this study73 
(available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-lan
d?tab=overview). The original data are provided monthly on a regular grid at 0.1° 
spatial resolution from which we estimated averages over the growing season on 
the basis of the metrics from VIP. As these metrics indicate the day of the year of 
start and end of season, the whole month was included to the growing season.

MODIS burned-area product. At 500 m spatial resolution, the MODIS 
burned-area product (MOD64A1) provides estimates of daily changes in surface 
reflectance from fire activity74. We calculated the fire occurrence for each pixel for 
every year within the period 2000–2015.

Land-cover data. Vegetation continuous field data were used in this study to 
represent continuous land-surface cover. Data are distributed through Land 
Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/dataset_
discovery/measures/measures_products_table/vcf5kyr_v001). Song et al.33 provide 
this data as a fractional combination of vegetation functional types, that is, tree 
cover (TC), short vegetation (SV) and bare ground (BG), on the basis of the 
Advanced Very High Resolution Radiometer at 0.05° spatial and yearly temporal 
resolution. The TC layer includes tall vegetation ≥5 m in height, and shorter 
vegetation such as small trees, shrubs and bushes are represented within the SV 
layer. However, within this categorization of land-surface cover, TC barely exists 
in arid savannah landscapes (for example, the Sahel, Southern Africa). As such, 
SV and BG are negatively related, and a change in BG over time is reflecting the 
same change in SV (inverted) (Supplementary Fig. 10b). In more-densely vegetated 
areas, however (for example, Gran Chaco), where the fraction of BG is small or 
non-existent, TC and SV are inversely related (Supplementary Fig. 10a). To avoid 
this duplicate land-cover information in the assessment of the relative importance 
of each driver, we included only two out of three classes in our analysis. As such, 
we are able to represent the vegetation cover of drylands (or trends herein) with 
the TC and BG layers. BG is selected over SV as (1) the SV layer is the one most 
frequently carrying redundant information in relation to the classes of either TC or 
BG, and (2) we want to retain information about the full continuum of vegetation 
cover from trees to bare ground.

Population data. The fourth version of the Gridded Population of the World 
(GPWv.4) represents modelled data on the distribution of human population 
(count and density) at various spatial scales (available at https://sedac.ciesin.
columbia.edu/data/collection/gpw-v4). The dataset is based on census data 
collected around 2010 and has been extrapolated to population estimates for 
the years 2000, 2005, 2010, 2015 and 202075. For this study, we use the available 
datasets 2000–2015 at ~1 km spatial resolution and linearly interpolate the missing 
years to create a continuous annual time series.

Global income data. Global income groups are based on gross domestic product 
in US$2015 as provided by the World Bank76.

Dryland vegetation functioning and water availability (SeRGS). In tropical 
drylands, where vegetation productivity is tightly linked to the availability of 
water (mainly through rainfall), alterations in the VRR over time may be used as 
an indicator for altered sensitivity of vegetation to rainfall, one major aspect of 
vegetation functioning. Analysing the sequential linear regression slopes (SeRGS) 
of the VRR over a time series of remote-sensing data has been introduced as an 
effective tool to do so25 . The advantage of this method is that instead of using 
pure vegetation productivity-based indices, it incorporates rainfall as the driving 
force and already ‘normalizes’ for interannual variations in rainfall (under the 
assumption that more/less rainfall generates more/less vegetation), thereby better 
exposing the signal of the underlying causal processes. Such a normalization  

(or smoothing) effect was achieved by generating a spatially and temporally 
dynamic VRR through the application of a spatially and temporally moving 
window of 7 × 7 pixels and four years, respectively (see ref. 25 for details and 
parametrization). For all pixels within a given window, a linear regression between 
NDVI and rainfall was fitted, and the regression slope was assigned to the centre 
pixel of the spatially moving window and centre year of the temporal window, 
respectively. This results in a time series of slopes, hereafter called the SeRGS time 
series. When more than two-thirds of the pixels are of low quality, the regression is 
not fitted and no data are assigned to the centre pixel. Finally, a Theil-Sen 
estimator (indicating trend directions in vegetation–rainfall sensitivity) was 
calculated for the SeRGS time series for all pixels having more than two-thirds 
valid pixels and no more than three consecutive missing values. As the annual 
integration of NDVI and rainfall on the basis of the calendar year may be 
appropriate to represent 
the VRR in some regions, it may not be suitable in other regions. To account for 
regional differences in the VRR, we calculated the correlation between annually 
summed NDVI and rainfall and compared it with the correlation between 
seasonally integrated NDVI and the rainfall optimal sum on a per-pixel level. For 
each pixel, we chose the dataset combination that revealed the highest correlation 
(Supplementary Fig. 2) as input data to calculate SeRGS. SeRGS was then applied 
on tropical drylands using the respective NDVI and rainfall dataset from 2000 to 
2015 at a spatial resolution of 0.05°. Examples of how SeRGS relates to NDVI and 
rainfall temporal dynamics are generically shown in Supplementary Fig. 3.

Relative importance of potential driving variables. To estimate the relative 
importance of various climatic and anthropogenic variables potentially driving 
annual variations and long-term changes in SeRGS, we used a multiple regression 
approach29,77 (Supplementary Fig. 5). While SeRGS in itself normalizes vegetation 
productivity for variations in annual rainfall, other meteorological variables, such as 
temperature and soil-water availability, may influence vegetation biophysical 
processes and thereby the vegetation–rainfall sensitivity. Moreover, fire occurrence, 
vegetation cover (TC and BG) and population density were chosen as potential 
driving factors. To reduce any impact of collinearity between the predictor 
variables, a PCA and PCR were used to ultimately identify the relative importance 
of each of the driver variables in each pixel. On a per-pixel level, through the PCA, 
we transform the input variables, which have been normalized by the standard 
deviation into a set of new variables, the principal components, which are now 
uncorrelated but still explain all the variation in the data. Each of the components 
has scores and loadings, with the latter indicating the correlation between principal 
component and the input variables. We then performed a multiple linear regression 
with SeRGS as the dependent variable and the principal components as 
independent variables, multiplied the regression slope from the PCR with the 
respective loadings from the PCA and summed the absolute values of these scores. 
Thus, we obtained a per-pixel estimate of the relative importance of each potentially 
driving variable on SeRGS. To reduce complexity and ensure readability of the 
maps and figures, we grouped soil-water content and temperature to represent 
meteorological drivers as well as TC and BG to represent changes in vegetation 
cover as a whole and downscaled (using the majority) the map to 0.25° spatial 
resolution.

Vegetation sensitivity to rainfall and economic strength. We estimated median 
trends in vegetation sensitivity to rainfall, as shown by SeRGS, per income group 
(provided by the World Bank) at the country level. As human accessibility varies 
substantially between different regions of tropical dryland areas, we restricted the 
analysis to areas that actually experience human pressure (excluding areas with 
a human footprint score <5, indicating very low/low human pressure), thereby 
excluding, for example, parts of the Australian drylands (Supplementary Fig. 7b). 
The global human footprint78 was used as an indicator for cumulative human 
pressure. Median SeRGS values were calculated on the basis of a randomly chosen 
subsample of 5.000 pixels per income group.

Data availability
The datasets analysed in this study are publicly available as referenced within 
the article. The data that support the findings of this study are available from the 
corresponding author upon reasonable request. Source data are provided  
with this paper.

Code availability
The codes used in the data analysis to calculate SeRGS as well as potentially related 
drivers are available at https://github.com/Frangi10ne/SeRGS. 
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