Lund University

A new family of survival functions and a method for measuring risk inequalities

Hannerz, Harald

Document Version:
Publisher's PDF, also known as Version of record
Link to publication

Citation for published version (APA):
Hannerz, H. (2023). A new family of survival functions and a method for measuring risk inequalities. [Doctoral Thesis (compilation), Lund University School of Economics and Management, LUSEM]. Media-Tryck, Lund University, Sweden.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A new family of survival functions and a method for measuring risk inequalities

HARALD HANNERZ
LUND UNIVERSITY SCHOOL OF ECONOMICS AND MANAGEMENT

A new family of survival functions and a method for measuring risk inequalities

Harald Hannerz

DOCTORAL DISSERTATION
by due permission of the Department of Statistics, School of Economics and Management, Lund University, Sweden. To be defended at room EC3:207, Holger Crafoord Centre, Lund on 31 May 2023, at 13:15.

Faculty opponent

Professor Anastasia Kostaki, Athens University of Economics and Business

Organization LUND UNIVERSITY	Document name Doctoral Dissertation
	Date of issue 2023-05-21
	Sponsoring organization

Title and subtitle: A new family of survival functions and a method for measuring risk inequalities.

Abstract

The present compilation thesis is divided into two sections, one for each of two separate methodological issues: reduction of random errors in mortality estimates and offsetting random variation related bias in data generated estimators of risk inequalities.
Summary of section A
In regard to the first issue a new family of survival functions is proposed. Its purpose is to provide valid and reliable age-specific estimates of death probabilities and life expectancies for all ages in the entire human life span. In Paper I, I introduced a five-parameter survival function intended to model mortality in modern female populations. It is shown that (i) the complement of the proposed survival function is a bona fide cumulative distribution function, and (ii) that the expected value of a random variable with such a distribution exists and is finite.
In Paper II, I showed that the age pattern of mortality among Swedish males differed significantly from the age pattern among Swedish females and that some extra parameters were needed to accommodate an added risk of fatal injuries among males in the early adulthood. To address this shortcoming, I introduced an eight-parameter survival function intended to model mortality among males as a solution to the problem associated with the gender difference in mortality patterns.
In Paper III, I addressed the use of collateral data as a means of improving the statistical precision of mortality estimates. A brief description of three main approaches that actuaries and demographers use to accomplish such improvements, namely, mortality laws, model life tables, and relational methods was given. I thereafter introduced a novel regression model that incorporates several beneficial principles from each of these approaches.
The survival functions introduced in [Hannerz, 1999] resulted in an, on average, five-fold decrease in the standard error of estimated sex and age-specific one-year death probabilities, compared with frequency substitution estimates, when applied to mortality in the total population of Sweden 1982.
In papers IV - VI, I applied the methods delineated in Papers I - III to estimate age, sex and diagnosisspecific life expectancies among individuals with a history of psychiatric and cerebrovascular disorders, respectively.
Summary of section B
The second methodological issue studied resulted in a Monte Carlo simulation procedure, which can be used to estimate excess fractions in the absence of a natural reference group. The procedure is based on the assumptions that the number of events in each group is Poisson distributed and that the true risk rates in the groups increases geometrically with their rank order. The methodological aspects of the procedure are described and discussed in Paper VII.
In paper VIII the procedure is applied to industrial inequalities in rates of disability retirement and in paper IX to hospital contact due to mood disorders, in both studies among economically active people in Denmark.
The Monte Carlo simulation procedure is designed to estimate excess fractions in situations where no natural reference group exists. Simpler methods are available when a reference group does exist. An overview of such measures is included in the thesis, and examples of excess fractions in relation to prespecified reference groups are given in Papers X and XI .

Key words: Mortality law; survival analysis; risk inequalities; excess fraction		
Classification system and/or index terms (if any)		
Supplementary bibliographical information		Language
ISSN and key title		ISBN 978-91-8039-719-3
Recipient's notes	Number of pages 234	Price
	Security classification	

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

A new family of survival functions and a method for measuring risk inequalities

Harald Hannerz

Cover pictures by Anton Hannerz (front) and Andreas Hannerz (back).

Copyright pp 1-79 (Harald Hannerz)
Paper 1 © 2001 Taylor \& Francis. ISSN 0346-1238
Paper 2 © 2001 Max-Planck-Gesellschaft
Paper 3 © 2001 Max-Planck-Gesellschaft
Paper 4 © 2001 The Society of Public Health. Published by Elsevier Ltd.
Paper 5 © 2001 Wolters Kluwer Health
Paper 6 © 2000 Steinkopff-Verlag
Paper 7 © 2006 Elsevier B.V
Paper 8 © 2004 Nofer Institute of Occupational Medicine, Łódź, Poland
Paper 9 © 2009 Scand J Work Environ Health
Paper 10 © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK
Paper 11 © 2020 The authors (CC BY NC 4.0)

School of Economics and Management
Department of Statistics
ISBN 978-91-8039-719-3 (print)
978-91-8039-720-9 (pdf)
Printed in Sweden by Media-Tryck, Lund University
Lund 2023

Media-Tryck is an environmentally certified and ISO 14001:2015 certified provider of printed material. Read more about our environmental
work at www.mediatryck.lu.se

For my grandchildren

Table of Contents

Preface 8
List of acronyms and abbreviations 9
The structure of the dissertation 10

1. Summary 12
Summary of section A 12
Summary of section B 13
2. A new family of mortality laws 14
2.1 On mortality laws 16
2.2. On relational methods 19
2.2.1 Models based on $\boldsymbol{\operatorname { l o g }} \boldsymbol{\mu} \boldsymbol{x}$ 19
2.2.2. Models based on logitFx 20
2.3. A final note 23
3. On the measurement of risk inequalities 24
3.1. A brief rundown of some commonly used summary measures of inequality for ordinal group variables 26
3.1.1. Simple measures 26
3.1.2. Regression based measures 27
3.1.3. The relative concentration index 28
3.2. A brief rundown of some commonly used summary measures of inequality for nominal group variables without a natural reference group 29
3.2.1. Simple measures 29
3.2.2. The index of dissimilarity 29
3.2.3. The Gini index 30
3.2.4. Demonstration of bias from random variation in traditional summary measures of inequality for nominal group variables without a natural reference group 31
3.3. Presentation of a Monte Carlo simulation procedure to estimate excess fractions 32
3.3.1. Background 32
3.3.2. The Monte Carlo simulation procedure 34
4. Concluding remarks 39
References 41
Appendix 1 47
SAS-program to demonstrate bias from random variation in some traditional summary measures of inequality 47
Appendix 2 51
SAS-program to estimate an excess fraction 51
Appendix 3 57
SAS-program to estimate a confidence interval of Pearson's chi-squaresum57
Appendix 4 59
Industrial group classification 59

Preface

The present dissertation contains eleven research papers that were published in between 2000 and 2020, at which time I was employed as a statistician at the National Research Centre for the Working Environment (NRCWE) in Denmark. Six of the papers were derived from a monograph, which I defended as a Licentiate thesis at Lund University in January 2000.

Permissions to reproduce the papers have been granted by each of the concerned copyright owners.

I thank each of the following researchers for having contributed as a co-author to one or more of the attached research papers: Per Borgå, Marianne Borritz, Martin Lindhardt Nielsen, Karen Albertsen, Ida Elisabeth Huitfeldt Madsen, Andreas Holtermann, Helene Feveile, Kim Lyngby Mikkelsen, Ole Olsen, Finn Tüchsen, Søren Spangenberg, Betina Nørgaard, Johnny Dyreborg, Reiner Rugulies, Bryan Cleal, Kjeld Børge Poulsen, and Lars Louis Andersen.

I thank the following institutions for having contributed data to one or more of the research projects covered: The Swedish National Board of Health and Welfare, The Swedish Insurance Federation, Statistics Sweden, The Danish Health Data Authority, The Danish National Institute for Health Data and Disease Control, NRCWE, and Statistics Denmark.

I thank all participants who responded to the questionnaire of the Danish Work Environment Cohort Study 2010, and thereby contributed to the last research paper of the dissertation.
I thank all the editorial staff and peer-reviewers that were involved in the publication of the attached research papers.

I thank the librarians Elizabeth Bengtsen and Rikke Sverker Nilsson (NRCWE), who have provided me with indispensable literature, throughout the above mentioned time period.

Last but not least, I extend my gratitude to Krzysztof Podgórski, Krzysztof Nowicki, Jakob Bergman and Björn Holmquist at the Department of Statistics, Lund University, for providing me with the supervision and instruction necessary to complete my doctoral programme.

Harald Hannerz
Copenhagen, April 2023

List of acronyms and abbreviations

ARIMA: Autoregressive integrated moving average
Cf: Confer
$\mathrm{CI}: \quad$ Confidence interval
EF: Excess fraction
E.g.: Exempli gratia

Et al.: Et alia
Eq.: Equation
GI: Gini index
ID: Index of dissimilarity
I.e.: Id est

IHD: Ischaemic heart disease
KMI: Kunst-Mackenbach index
No.: Number
PAR: Population attributable fraction
$\mathrm{RCI}: \quad$ Relative concentration index
RII: Relative index of inequality
SES: Socioeconomic status
SII: \quad Slope index of inequality
SMR: \quad Standardised morbidity ratio
SRR: Standardised rate ratio
US: United States
Vs: Versus
WHO: World Health Organisation

The structure of the dissertation

The present dissertation consists of a set of introductory chapters that summarises a collection of 11 published papers. The following papers are included:

Methodology Paper I

Hannerz H. Presentation and derivation of a fiveparameter survival function intended to model mortality in modern female populations. Scandinavian Actuarial Journal 2001;101:176-187.

Paper II
Hannerz H. Manhood trials and the law of mortality. Demographic Research 2001;4:185-202.

Paper III
Hannerz H. An extension of relational methods in mortality estimation. Demographic Research 2001;4:337367.

Applications Paper IV

Hannerz H, Borgå P, Borritz M. Life expectancies for individuals with psychiatric diagnoses. Public Health 2001;115:328-337.

Paper V
Hannerz H, Nielsen ML. Life expectancies among survivors of acute cerebrovascular disease. Stroke 2001;32:1739-1744.

Paper VI
Hannerz H, Borgå P. Mortality among persons with a history as psychiatric inpatients with functional psychosis. Soc Psychiatry and Psychiatr Epidemiol 2000;35:380-387.

Methodology Paper VII
Feveile H, Mikkelsen KL, Hannerz H, Olsen O.
Quantifying inequality in health in the absence of a natural reference group. Sci Total Environ. 2006;367:112-22.

Applications Paper VIII

Hannerz H, Tüchsen F, Spangenberg S, Albertsen K. Industrial differences in disability retirement rates in Denmark 1996-2000. IJOMEH, 2004;17:465-471.

Paper IX
Hannerz H, Tüchsen F, Pedersen BH, Dyreborg J, Rugulies R, Albertsen K. Work-relatedness of mood disorders in Denmark. Scand J Work Environ Health. 2009;35(4):294-300.

Paper X

Cleal B, Hannerz H, Poulsen K, Andersen LL. Socioeconomic status and incident diabetes mellitus among employees in Denmark: a prospective analysis with 10year follow-up. Diabet Med. 2014 Dec;31(12):1559-62.

Paper XI

Hannerz H, Holtermann A, Madsen IEH.
Musculoskeletal pain as a predictor for depression in the general working population of Denmark. Scand J Public Health. 2020 Jan 23:1403494819875337. doi: 10.1177/1403494819875337. [Epub ahead of print]

1. Summary

The present compilation thesis is divided into two sections, one for each of two separate methodological issues: A) reduction of random errors in mortality estimates and B) offsetting of random variation related bias in data generated estimators of risk inequalities. The papers of section A are addressed in chapter 2. The papers of section B are addressed in chapter 3. The concluding remarks of the thesis are given in chapter 4.

Summary of section A

In regard to the first issue a new family of survival functions is proposed. Its purpose is to provide valid and reliable age-specific estimates of death probabilities and life expectancies for the entire human life span. In Paper I, I introduced a five-parameter survival function intended to model mortality in modern female populations. It is shown that (i) the complement of the proposed survival function is a bona fide cumulative distribution function, and (ii) that the expected value of a random variable with such a distribution exists and is finite.

In Paper II, I showed that the age pattern of mortality among Swedish males differed significantly from the age pattern among Swedish females and that some extra parameters were needed to accommodate an added risk of fatal injuries among males in the early adulthood. To address this shortcoming, I introduced an eight-parameter survival function intended to model mortality among males as a solution to the problem associated with the gender difference in mortality patterns.

In Paper III, I addressed the use of collateral data as a means of improving the statistical precision of mortality estimates. Brief descriptions were given of three main approaches that actuaries and demographers use to accomplish such improvements, namely, mortality laws, model life tables, and relational
methods. I thereafter introduced a novel regression model that incorporates several beneficial principles from each of these approaches.

The survival functions introduced in [Hannerz, 1999] resulted in an, on average, five-fold decrease in the standard error of estimated sex and agespecific one-year death probabilities, compared with frequency substitution estimates, when applied to mortality in the total population of Sweden 1982.

In papers IV - VI, I applied the methods delineated in Papers I - III to estimate age, sex and diagnosis-specific life expectancies among individuals with a history of psychiatric and cerebrovascular disorders, respectively.

Summary of section B

The second methodological issue studied resulted in a Monte Carlo simulation procedure, which can be used to estimate excess fractions in the absence of a natural reference group. The procedure is based on the assumptions that the number of events in each group is Poisson distributed and that the true risk rates in the groups increases geometrically with their rank order. The methodological aspects of the procedure are described and discussed in Paper VII.

In paper VIII the procedure is applied to industrial inequalities in rates of disability retirement and in paper IX to hospital contact due to mood disorders, in both studies among economically active people in Denmark.

The Monte Carlo simulation procedure is designed to estimate excess fractions in situations where no natural reference group exists. Simpler methods are available when a reference group does exist. An overview of such measures is included in the thesis, and examples of excess fractions in relation to prespecified reference groups are given in Papers X and XI.

2. A new family of mortality laws

Figure 2.1. Photo by Veronika Valdova from Pexels [https://www.pexels.com/photo/d-day-cemetery-930711/]

Sometimes statisticians are confronted with problem in estimating age-specific life expectancies because data do not exist for all ages or the numbers of observations in single age groups are too small to allow meaningful agestratified estimates by use of directly observed mortality rates. To obtain reasonable estimates in such situations, the information base of the estimators needs to be supplemented with collateral data.
Potential collateral data might be, for example, mortality among people in other age groups than those in the population of interest. To make use of this
information we need a mortality law i.e. a mathematical expression that describes mortality as a function of age.

Collateral data may also be obtained from mortality observations in populations other than the one of interest. To make use of such information we would need a relational method i.e. a mathematical expression which relates mortality in one population to that in others.

Actuaries and demographers have a long tradition of using collateral data to improve mortality estimates, and a great many mortality laws have been proposed [Gompertz, 1825; Makeham, 1867; Thiele, 1872; Wittstein, 1883; Pearson, 1895; Perks, 1932; Brillinger, 1961; Heligman and Pollard, 1980; Petrioli, 1981; Mode and Busby, 1982; Siler, 1983; Anson, 1988; Kostaki, 1992; Hannerz, 1999; Boulougari et al., 2019]. Relational methods [Derrick, 1927; Brass, 1969, 1974; Zaba, 1979; Ewbank et al., 1983; Lee and Carter, 1992; Renshaw and Haberman, 2006; Neves et al, 2017] have also been developed.

Section A of the present thesis is devoted to some of my own contributions to these two research areas. Paper I introduces a five-parameter survival function intended to model mortality in modern female populations, Paper II introduces an eight-parameter survival function intended to model mortality among males, and Paper III introduces a reducible five-parameter relational method which is to be used in conjunction with the proposed survival functions. The methods described in the first three papers are then used in Paper IV - VI to estimate life expectancies among individuals with psychiatric and cerebrovascular diagnoses, respectively.

2.1 On mortality laws

Name	Year	Model	No. of parameters
De Moivre	1725	$l(x)=1-\frac{x}{w}$	1
Gompertz	1825	$\mu(x)=b c^{x}$	2
Makeham	1860	$\mu(x)=a+b c^{x}$	3
Thiele	1871	$\mu(x)=a_{1} \exp \left[-b_{1} x\right]+a_{2} \exp \left[-b_{2} \frac{(x-c)^{2}}{2}\right]+a_{3} \exp \left[b_{3} x\right]$	7
Wittstein	1883	$q_{x}=\frac{1}{m} a^{-(m x)^{n}}+a^{-(M-x)^{n}}$	4
Perks	1932	$\mu(x)=\frac{a+b c^{x}}{k c^{-x}+1+d c^{x}}$	5
Heligman and Pollard	1980	$\frac{q_{x}}{1-q_{x}}=A^{(x+B)^{C}}+D e^{-E\left(\log \left(\frac{x}{F}\right)\right)^{2}}+G H^{x}$	8
Petrioli	1981	$\frac{1-l(x)}{l(x)}=k x^{a}(w-x)^{b} \exp \left[c x+d x^{2}\right]$	6
Siler	1983	$\mu(x)=a_{1} \exp \left[-b_{1} x\right]+a_{2}+a_{3} \exp \left[b_{3} x\right]$	5
Kostaki	1992	$\frac{q_{x}}{1-q_{x}}=\left\{\begin{array}{l} A^{(x+B)^{C}}+D e^{-E_{1}\left(\log \left(\frac{x}{F}\right)\right)^{2}}+G H^{x}, \text { for } x \leq F \\ A^{(x+B)^{C}}+D e^{-E_{2}\left(\log \left(\frac{x}{F}\right)\right)^{2}}+G H^{x}, \text { for } x>F . \end{array}\right.$	9
Boulougari et al.	2019	$\mu(x)=\frac{c_{1}}{x e^{-c_{2} x}}+a_{1}\left(x e^{-a_{2} x}\right)^{a_{3}}$	5

Figure 2.2. Mortality laws

The age pattern of mortality has been studied and documented for centuries. Billions of person years have been observed and several regression models have been developed [cf. reviews by Kostaki, 1992; Booth and Tickle, 2006; Pascariu, 2018]. In Figure 2.2, I give a list of some significant developments (other than my own) in this field. The models, which customarily are referred to as laws of mortality [Hartmann 1987], are listed in chronological order. The first one, by De Moivre in 1725, which was based on the rather naive assumption that death ages are uniformly distributed in a finite age interval, is of course not very useful. But the laws of Gompertz (1825), Makeham (1867) and Perks (1932) can be used to graduate mortality among adults, and the laws of Thiele (1872), Wittstein (1883), Heligman-Pollard (1980), Petrioli (1981), Siler (1983), Kostaki (1992) and Boulougari et al. (2019) are designed to graduate mortality in the entire human life span.

The rationale behind the various formulas in Figure 2.2 and the purpose of their parameters are detailed in the references cited above. The application of a law is, however, often independent of the interpretation of its parameters, which for most practical purposes may be viewed merely as intermediate values that need to be determined in order to obtain interpretable measures such as life expectancies, and probabilities for death as a function of age and risk period.

The mortality laws that are presented and used in section A of the present thesis [Paper I - VI] are given by the following equations:

$$
\begin{align*}
& F(x)=\frac{e^{G(x)}}{1+e^{G(x)}} \\
& \text { where } \tag{2.1}\\
& G(x)=a_{0}-a_{1} x^{-1}+\frac{a_{2}}{2} x^{2}+\frac{a_{3}}{c} e^{c x}
\end{align*}
$$

$$
\begin{align*}
& F(x)=\alpha \frac{e^{G_{1}(x)}}{1+e^{G_{1}(x)}}+(1-\alpha) \frac{e^{G_{2}(x)}}{1+e^{G_{2}(x)}} \\
& G_{1}(x)=a_{0}-a_{1} x^{-1}+\frac{a_{2}}{2} x^{2}+\frac{a_{3}}{c} e^{c x} \tag{2.2}\\
& G_{2}(x)=a_{4}-a_{5} x^{-1}+\frac{a_{2}}{2} x^{2}+\frac{a_{3}}{c} e^{c x},
\end{align*}
$$

where $F(x)$ is the probability and $G(x)$ is the log-odds for death before age x. All of the model parameters are real-valued. The parameters a_{0} and a_{4} may be negative, while the rest of the parameters must be positive and α must be less than or equal to one. Equation 2.1 was developed to model the mortality of females, based on the assumption that the derivative of the log-odds, $\mathrm{d} G / \mathrm{dx}$, is inversely proportional to age squared in the early childhood, proportional to age among the labour force, and exponentially increasing in the age of senescence. The mixture distribution given by Equation 2.2 is an enlargement of Equation 2.1 to be used for males. The purpose of the enlargement is to handle an added mortality risk associated with the passage into manhood (the accident hump), and the factor (1- α) in Equation 2.2 may loosely be interpreted as the expected proportion of new-born boys that will die as a direct consequence of that added risk.
It has been shown that Equation 2.1 and 2.2 fit data well when applied to the female and male populations of Sweden, respectively, with the age divided into one-year intervals. It has however been pointed out that the equations fail to accurately describe the age pattern of mortality within the age interval $(0,1)$ years. Although this problem is seldom of importance to actuaries, demographers and epidemiologists, I added a parameter in 1998 to rectify this shortcoming [Hannerz, 1999]. With the added parameter, the respective laws would be expressed by the following equations:

$$
\begin{align*}
& F(x)=\frac{e^{G(x)}}{1+e^{G(x)}}, \\
& \text { where } \tag{2.3}\\
& G(x)=b_{0}-b_{1} x^{-1}+b_{2} \log (x)+\frac{b_{3}}{2} x^{2}+\frac{b_{4}}{c} e^{c x} \\
& G_{1}(x)=b_{0}-b_{1} x^{-1}+b_{2} \log (x)+\frac{b_{3}}{2} x^{2}+\frac{b_{4}}{c} e^{c x} \tag{2.4}\\
& F(x)=\alpha \frac{e^{G_{1}(x)}}{1+e^{G_{1}(x)}}+(1-\alpha) \frac{e^{G_{2}(x)}}{1+e^{G_{2}(x)}} \\
& G_{2}(x)=b_{5}-b_{6} x^{-1}+\frac{b_{3}}{2} x^{2}+\frac{b_{4}}{c} e^{c x}
\end{align*}
$$

It has been shown [Hannerz, 1999] that Equation 2.3 agrees well with the law of Petrioli (1981) and that Equation 2.4 agrees well with the law of Heligman and Pollard (1980) in describing one-year death probabilities for integer xvalues among Swedish females and males, respectively. However, Equation 2.3 and 2.4 are the only existing laws that also accurately describe the age pattern of mortality during the first year of life.

2.2. On relational methods

There are two dominant lines of proposed parametric relations between mortality schedules in different populations or time periods. One of the lines defines linear relationships between $\log (\mu(x))$ values while the other defines linear relationships between $\operatorname{logit}(F(x))$ values, where $\mu(x)$ is the hazard rate at age x and $\operatorname{logit}(F(x))=\log \left(F(x)(1-F(x))^{-1}\right)$. A quick rundown of some significant developments in the respective lines is given below.

2.2.1 Models based on $\log (\mu(x))$

Kermack et al. (1934) used the following relation to model mortality in England and Wales 1845-1925 and in Sweden 1755-1925 as a function of age and calendar year:

$$
\begin{equation*}
\log \left(\mu_{x, t}\right)=\gamma_{t-x}+\log \left(\mu_{x, s}\right) \tag{2.5}
\end{equation*}
$$

where $\mu_{x, t}$ is the hazard rate at age x in calendar year t, γ_{t-x} is a birth year specific parameter and $\mu_{x, S}$ is the hazard rate at age x in a standard cohort life table.

Lee and Carter (1992) used the following relation to forecast mortality in the United States from 1990 to 2065:

$$
\begin{equation*}
\log \left(\mu_{x, t}\right)=a_{x}+b_{x} k_{t} \tag{2.6}
\end{equation*}
$$

where $\mu_{x, t}$ is the hazard rate at age x in calendar year t, a_{x} is the average of the $\log \left(\mu_{x}\right)$ estimates among the period life tables that are included in the estimation of the parameters, k_{t} is a time varying index of the level of mortality, and $b_{x} k_{t}$ is the expected age-specific difference between $\log \left(\mu_{x, t}\right)$
and a_{x}. In order to obtain unique parameter estimates, the following constraints were imposed:

$$
\sum_{x} b_{x}=1, \sum_{t} k_{t}=0
$$

The parameters were fitted to period life tables from 1900 - 1989. The forecasts were obtained by modelling the time varying index k_{t} as a random walk with a drift.
The Lee-Carter method was extended by Renshaw and Haberman (2006), through the following equation:

$$
\begin{equation*}
\log \left(\mu_{x, t}\right)=a_{x}+b_{x} k_{t}+\gamma_{t-x} \tag{2.7}
\end{equation*}
$$

where a_{x} and k_{t} are defined as above while γ_{t-x} is a birth year specific parameter aimed at controlling potential cohort effects. In order to obtain unique parameter estimates, the following constraints were imposed:

$$
\sum_{x} b_{x}=1, \sum_{t} k_{t}=0, \sum_{t-x} \gamma_{t-x}=0
$$

Another interesting relation was proposed by Plat (2009). It is defined by the following equation:

$$
\begin{equation*}
\log \left(\mu_{x, t}\right)=a_{x}+k_{1_{t}}+k_{2_{t}}(\bar{x}-x)+k_{3_{t}}(\bar{x}-x)^{+}+\gamma_{t-x}, \tag{2.8}
\end{equation*}
$$

where a_{x} and γ_{t-x} are defined as above, $(\bar{x}-x)^{+}=\max (0, \bar{x}-x)$ and $k_{1_{t}}$, k_{2} and $k_{3_{t}}$ are parameters aimed at modelling the level and age pattern of mortality in calendar year t. To obtain unique parameter estimates, the following constraints were imposed:

$$
\sum_{t-x} \gamma_{t-x}=0, \sum_{t-x}(t-x) \gamma_{t-x}=0, \sum_{t} k_{3}=0
$$

2.2.2. Models based on $\log \operatorname{it}(\boldsymbol{F}(\boldsymbol{x})$)

The usefulness of the logit transformation was demonstrated by Brass (1971), who showed that a life table for an arbitrarily chosen population i often can be reasonably well approximated by that in a selected standard population j by use of the relation

$$
\begin{equation*}
\operatorname{logit}\left(F_{i}(x)\right)=\alpha_{i}+\beta_{i} \operatorname{logit}\left(F_{j}(x)\right) \tag{2.9}
\end{equation*}
$$

where the parameter α_{i} modifies the level of mortality while β_{i} modifies the relationship between childhood and old age mortality.

Equation 2.9 has been extensively used to estimate death rates and life expectancies in populations with limited or defective mortality data [cf. Brass et al., 1968; Udjo, 2014]. The relation is, moreover, used to forecast mortality in populations where life tables exist for different periods (or birth cohorts). Such forecasts are usually obtained by estimating a series of time specific parameters α_{t} and β_{t} and then extrapolating these series into the future by use of suitably selected ARIMA processes [cf. Edinger, 2011; Tran, 2019].

In an examination of mortality patterns in countries with a long series of life tables, Brass noted that α_{t} tended to decrease steadily with time, often in a linear fashion, and that β_{t}, which appeared to be independent of α_{t}, had a tendency to fluctuate around a central value that was close to 1.0 [Brass, 1974]. By setting β to 1.0 , we obtain the one-parameter relation:

$$
\begin{equation*}
\operatorname{logit}\left(F_{i}(x)\right)=\alpha_{i}+\operatorname{logit}\left(F_{j}(x)\right) \tag{2.10}
\end{equation*}
$$

Hartmann and Strandell (2006) conducted a study aimed at exploring the possibility to use Equation 2.10 as a survival model in stochastic population projections. The model was tested on data from annual life tables of Sweden in the period 1921 - 2002 and Denmark in the period 1922 - 1951. It was concluded that the one-parameter relation given by Equation 2.10 could serve as a suitable survival model for use with stochastic population projections.

Based on a factor analysis of life tables in various countries and time periods, Bourgois-Pichat (1962) proposed that the variation among the studied life tables could be explained by five factors, which he interpreted as (i) a factor governing the level of mortality; (ii) a factor governing the relationship between mortality in youth and adult life; and (iii) a factor governing mortality patterns at extreme ages (especially old age, 70+); (iv) a factor governing infant mortality; and (v) a factor associated with violence. He noted that the fifth factor mainly affected males, and recommended that any effects that this fifth factor might have on females should be deliberately ignored. To accommodate four-dimensional differences between life tables, extended versions of the $\operatorname{logit}(\mathrm{F})$ relation have been developed, by Zaba (1979), by Hannerz (2001) [Paper III] and by Murray et al. (2003). The contributions by Zaba and Murray
require a model life table system which in addition to $\operatorname{logit}(F(x))$ values uses two extra parameters for each age and sex category, and are therefore, in my opinion, not very practical.

My own contribution, which I address in paper III, is given by the equation

$$
\begin{equation*}
\operatorname{logit}\left(F_{i}(x)\right)=\operatorname{logit}\left(F_{j}(x)\right)+\theta_{0}-\theta_{1} x^{-1}+\frac{\theta_{2}}{2} x^{2}+\frac{\theta_{3}}{c} e^{c x} \tag{2.11}
\end{equation*}
$$

where "the θ_{k} 's are parameters that denote mortality differences and c is a constant held in common by the two mortality schedules, i and j. If the parameter θ_{1} in the above expression is different from zero then the two mortality schedules would differ with regard to infant mortality; if $\theta_{2} \neq 0$ then the schedules would differ in the relationship between mortality in youth and adult life; and if $\theta_{3} \neq 0$ then the schedules would differ in the mortality pattern in old age. The parameter θ_{0} would finally determine the difference in the level of mortality" [Paper III]. The simplest relation is obtained when all parameters except θ_{0} are zero.

The relation given in Equation 2.11 is primarily intended to be used in conjunction with the mortality law given in Equation 2.1 or 2.3. The potential usefulness of Equation 2.11 is especially high in situations where it is relevant and possible to graduate mortality in several populations simultaneously (which I demonstrate in Paper III). Let us say, for example, that we want to construct county-specific life tables in a nation with 20 counties, and that the level of mortality differs between counties while the shape (age pattern) of $\operatorname{logit}(F(x))$ is independent of county. Then, by use of the mortality law given in Equation 2.3 in conjunction with the relational method given by Equation 2.11 with $\theta_{1}=\theta_{2}=\theta_{3}=0$, we would only need to estimate a total of 25 parameters to obtain 20 complete county-specific life tables, which is quite awesome.

A similar relational method, intended to be used in conjunction with Equation 2.2 or 2.4, is presented in Paper III.

2.3. A final note

Finally, it should be noted that a lot of water has passed under the bridge since the development of Equation 2.3 - 2.4. With time, the ever-increasing performance of computers has facilitated the use of computer-intensive data generated models as an alternative or complement to traditional parametric models in the estimation and forecasting of mortality. It has, for example been shown that support vector machine regression may serve as an alternative to parametric mortality laws in the graduation of the age pattern of mortality [Kostaki et al., 2011; 2016]. It has, moreover, been shown that tree-based statistical learning techniques as well as artificial neural networks may serve as tools to improve the parameter estimates and ARIMA processes of the LeeCarter model [cf. Levantesi and Pizzorusso, 2019; Nigri et al., 2019; Richman and Wüthrich, 2018; Hong et al., 2021]. Further research is needed to investigate possible pros and cons of using the mortality laws instead of computer-intensive data generated models.

3. On the measurement of risk inequalities

Figure 3.1. A snapshot from the front cover of "Finnegan G, Moran N, Kelly É, Hudson RL. Healthy measures. Brussels: Science Business Publishing Ltd, 2018."

Since the 1980s there has been an increasing emphasis on reduction of health inequalities, in international as well as national health policies. In 1985, the European office of the World Health Organisation (WHO) published 38 health targets [WHO, 1985], of which the first one read, "By the year 2000, the actual differences in health status between countries and between groups within countries should be reduced by at least 25 percent, by improving the health of disadvantaged nations and groups.". Towards the end of the 1990s, new targets were set to combat health issues in the $21^{\text {st }}$ century [WHO, 1999]. The
target for reduction of inequalities now read, "By the year 2020, the health gap between socioeconomic groups within countries should be reduced by at least one fourth in all member states, by substantially improving the level of health of disadvantaged groups."

Crombie et al. (2005) reviewed public health policies in 13 developed countries (Australia, Canada, Denmark, England, Finland, Ireland, New Zealand, Northern Ireland, Norway, Scotland, Sweden, the United States and Wales), and found that the reduction of health inequalities was an overarching aim of all public health policies. The wording of the national objectives differed, however, among countries as well as among time periods within countries. For example, in the United States the objective towards the year 2000 was to "reduce disparities in health status among different populations" [US Department of Health and Human Services, 1990] while the objective towards the year 2010 was to "eliminate health disparities between different segments of the population, including those relating to gender, race and ethnicity, education, income, disability, living in rural localities, and sexual orientation" [cf. Davis, 2000]. Another example: The objective towards the year 2000 in Finland was to "reduce health disparities between population groups, i.e. smaller health differences between genders, socioeconomic categories and people living in different regions" while the objective towards the year 2015 was "to reduce mortality differences between the genders, groups with different educational backgrounds, and different vocational groupings by a fifth" [Ministry of Social Affairs and Health, Finland, 2001].

The widespread interest in health inequalities is, moreover, evident from a recent bibliometric analysis [Cash-Gibson et al., 2018], which found that authors from 159 countries had contributed to research papers on health inequalities in the time period 1965 - 2015, according to the Scopus database.

There is, moreover, an abundance of literature on inequalities in the quality of health care [e.g. Wright et al., 2006; de Vos et ai., 2009; Cooper et al., 2011; Lovaglio et al., 2012; Finnegan et al., 2018]

To determine to what extent health inequalities of a certain type have increased or decreased with time, the inequalities must be quantified and preferably summarised into a single inequality index. Such inequality indices are usually called summary measures of health inequality and are defined as follows: "Summary measures of health inequality draw from disaggregated data in two or more subgroups to yield a single number that represents inequality and are useful to make comparisons between health indicators and over time" [Hosseinpoor et al., 2018]

The present chapter deals with summary measures of inequality. Section 3.1 briefly describes some commonly used summary measures for ordinal group variables. In section 3.2 I briefly describe some commonly used summary measures for nominal group variables without a natural reference group. I will, moreover, show that these measures are subject to bias. In section 3.3, I will tell about my own experience of inequality measurements and the problems which prompted the work given in Papers VII - IX. I will, moreover, present a SAS program, which (based on the methods described in Paper VII) can be used to evaluate Poisson distributed risk inequalities in the absence of a natural reference group.

3.1. A brief rundown of some commonly used summary measures of inequality for ordinal group variables

The following summary measures are applied when a population has been partitioned into n groups that are ranked from $1=$ most advantaged (e.g. richest or most educated subgroup) to $\mathrm{n}=$ most disadvantaged (e.g. poorest or least educated subgroup). For each group, as well as for the whole population we can then calculate an average rate of illness or death, $\bar{r}_{1}, \ldots \bar{r}_{\mathrm{n}}$ and $\bar{r}_{\text {pop }}$, respectively.

3.1.1. Simple measures

There are three commonly used measures of inequality; the rate ratio $\frac{\overline{r_{n}}}{\overline{r_{1}}}$, the difference in absolute rates $\bar{r}_{n}-\bar{r}_{1}$ and the difference in relative rates $\frac{\bar{r}_{\mathrm{n}}-\bar{r}_{1}}{\bar{r}_{1}}$ between the most disadvantaged and most advantaged subgroup [cf. WHO, 2018].

Another commonly used summary measure is the excess fraction (EF), defined as

$$
\begin{equation*}
E F=1-\frac{\overline{r_{1}}}{\overline{r_{p o p}}} \tag{3.1}
\end{equation*}
$$

where \bar{r}_{1} is the mean rate of illness in the most advantaged group while $\bar{r}_{p o p}$ is the mean rate of illness in the total population [cf. Paper VII]. The excess fraction is also known as the population attributable fraction (PAF) [cf. Greenland and Robins, 1988; Zapata-Diomedi et al., 2018; WHO, 2018] and can be interpreted as "the proportion of the cases of ill-health that would not have occurred if the rate of illness in the total population had been the same as in the most advantaged sub-group".
A typical example of the usage of EF as a summary measure of risk inequalities is given in Paper X , where inequalities in the risk of developing diabetes among five socio-occupational groups were estimated, with professionals being prespecified as the most advantaged group. Another example is given in Paper XI, where a simple excess fraction was used to estimate pain-related inequalities in the incidence of depression among employees in Denmark. Here, the prespecified most advantaged group consisted of employees without musculoskeletal pain as baseline.

3.1.2. Regression based measures

Let x_{j} be the ridit score [Bross, 1958] also known as the relative rank [cf. Wagstaff et al., 1991; Harper et al. 2008; Harper et al 2010; Hosseinpoor et al., 2016; Skaftun et al., 2018] for the group with rank order j, defined as

$$
\begin{equation*}
x_{j}=\sum_{i=1}^{j} p_{i}-\frac{p_{j}}{2}, \tag{3.2}
\end{equation*}
$$

where p_{i} is the proportion of the population that belongs to group i.
Let $f(x)$ be the rate of illness as a function of the ridit score and assume that this function has been determined through regression analysis. Then the following summary measures of inequality may be calculated:
The slope index of inequality [cf. Mackenbach and Kunst, 1997]

$$
\begin{equation*}
S I I=f(1)-f(0), \tag{3.3}
\end{equation*}
$$

the relative index of inequality [cf. Hosseinpoor et al, 2016; Pamuk, 1985; Kakwani et al., 1997; Wagstaff et al., 1991]

$$
\begin{equation*}
R I I=\frac{f(1)-f(0)}{\bar{r}_{p o p}}, \tag{3.4}
\end{equation*}
$$

the Kunst-Mackenbach index [cf. Hosseinpoor et al, 2016]

$$
\begin{equation*}
K M I=\frac{f(1)}{f(0)}, \tag{3.5}
\end{equation*}
$$

the regression based excess fraction

$$
\begin{equation*}
E F=\frac{\sum_{i=1}^{n} p_{i}\left(f\left(x_{i}\right)-f(0)\right)}{f(0)+\sum_{i=1}^{n} p_{i}\left(f\left(x_{i}\right)-f(0)\right)} . \tag{3.6}
\end{equation*}
$$

It should be noted that the Kunst-Mackenbach index (KMI) has also been referred to as the relative inequality index (RII) [cf. Mackenbach and Kunst, 1997; Sergeant and Firth, 2006; WHO, 2018; Hoebel et al., 2018]. It should also be noted that the above equations hold when the groups are ordered from the most advantaged to the most disadvantaged. If we were to reverse the ordering so that $1=$ the most disadvantaged group and $\mathrm{n}=$ most advantaged group [cf. Sergeant and Firth, 2006; WHO, 2018], then $f(1)$ and $f(0)$ would need to shift places in Eq. 3.3 - 3.6, and \bar{r}_{1} would need to be replaced by \bar{r}_{n} in Eq. 3.1.

3.1.3. The relative concentration index

The relative concentration index (RCI) [cf. Kakwani et al., 1997; Harper et al. 2008; Harper et al. 2010; Hosseinpoor et al., 2016] is another summary measure that relies on ridit scores. It is defined as

$$
\begin{equation*}
R C I=\frac{2}{\overline{r_{p o p}}} \sum_{i=1}^{n} p_{i} x_{i} \overline{r_{i}}-1, \tag{3.7}
\end{equation*}
$$

where $p_{i}, x_{i}, \bar{r}_{i}$ and $\bar{r}_{\text {pop }}$ are defined as above.
The RCI can take on values in the interval -1 to 1 . The expected value under a null-hypothesis of no inequality is zero. The RCI will be positive if the rate of illness increases with the ridit score and negative if the rate decreases with the ridit score.

3.2. A brief rundown of some commonly used summary measures of inequality for nominal group variables without a natural reference group

3.2.1. Simple measures

According to WHO (2018), when a dimension of inequality does not have a natural ordering, the simple measures that are described in section 3.1.1 may be calculated by use of the subgroups with the highest and lowest observed rates, instead of the most disadvantaged and most advantaged subgroup.
If the estimated group averages are free from random errors and systematic bias, i.e. if the observed rates in each of the studied subgroups are exactly the same as the true unobservable expected risk rates, then the difference or ratio between the subgroups with the highest versus lowest observed rates would yield an unbiased measure of the difference or ratio between the true unobservable expected risk rates in the subgroup with the highest versus lowest risk. The excess fraction of (Eq. 3.1), with \bar{r}_{1} replaced by the mean rate of illness in the group lowest observed rate, could be interpreted as "the proportion of the cases of ill-health that would not have occurred if the rate of illness in the total population had been as low as it was in the sub-group with the lowest risk".

If the group averages, on the other hand, are outcomes of a random process, then the expected value of such comparisons will reflect the combined effect of disparities in risk and disparities that are expected to occur by chance. From theorems on order statistics [cf. Larsen and Marx, 1986], it follows that differences between the highest and lowest estimated risk may be large even if the true risk is exactly the same in all of the included subgroups.

3.2.2. The index of dissimilarity

The index of dissimilarity (ID) is another measure that has been recommended for use in situations where no natural ordering and no natural reference group exist [cf. Mackenbach, 1993]. It is defined by the equation:

$$
\begin{equation*}
I D=\frac{1}{2} \sum_{i=1}^{n} p_{i}\left|\frac{\overline{r_{i}}}{\overline{r_{p o p}}}-1\right|, \tag{3.8}
\end{equation*}
$$

where p_{i} is the proportion of the population that belong to group i, \bar{r}_{i} is the mean rate of illness in group i and $\bar{r}_{\text {pop }}$ is the mean rate of illness in the total population.
From Equation 3.8, it follows that ID is independent of the ordering of the groups. If the estimated group averages are free from random errors and systematic bias, then ID can be interpreted as the proportion of the expected cases of the concerned illness that need to be redistributed between the subgroups in order to make the expected rate in each group equal to that in the total population [cf. Mackenbach, 1993].

If the estimated group averages are free from random errors and systematic bias, then ID equals zero under the null-hypothesis of no inequalities in risk. We note, however, that if X is a normal random variable with mean zero and standard deviation σ then the expected absolute value of X equals $\sigma \sqrt{2 / \pi}$ [cf. Leone et al., 1961]. Hence, it follows from the central limit theorem [Larsen and Marx, 1986] that, whenever the observed risk rates are subject to random variation, the expected value of ID will be larger than zero, even if the true risk is exactly the same in all of the included subgroups.

3.2.3. The Gini index

The Gini index (GI), also known as the Gini coefficient, was developed in the beginning of the 20th century by the Italian Statistician Corrado Gini as a measure of income inequality [cf. Giorgi and Gigliarano, 2017]. The index has also been used to measure geographic inequalities in mortality [cf. Skaftun et al., 2018]. GI requires the sub-groups to be ranked in ascending order on the basis of the observed rates but is otherwise defined in the same way as the relative concentration index (Equation 3.7). I.e.

$$
\begin{equation*}
G I=\frac{2}{\bar{r}_{\text {pop }}} \sum_{i=1}^{n} p_{i} x_{i} \bar{r}_{i}-1 \tag{3.9}
\end{equation*}
$$

where $p_{i}, x_{i}, \bar{r}_{i}$ and $\bar{r}_{\text {pop }}$ are defined as above.
If we let $S R R_{i}=\bar{r}_{i} / \bar{r}_{\text {pop }}$ be the standardised rate ratio of group i, then GI may be interpreted as half the average absolute difference between any two standardised rate ratios [cf. Skaftun et al., 2018]. If the estimated group averages are free from random errors, then GI will be a measure of risk inequalities. If the group averages, on the other hand, are outcomes of a random process, then it follows from the arguments that were given in the last
paragraph of section 3.2.2 that the expected value of GI will reflect the combined effect of disparities in risk and disparities that are expected to occur by chance.

3.2.4. Demonstration of bias from random variation in traditional summary measures of inequality for nominal group variables without a natural reference group

To summarise, the inequality measures listed in sections 3.2.1-3.2.3 are biased whenever the observed risk rates are subject to random variation, and the size of the bias will, all else being equal, depend on the standard errors of the estimated group averages. It follows, however, from the law of large numbers [Grimmet and Stirzaker, 1992] that the measures are asymptotically unbiased, since the standard errors of the group averages will approach zero when the number of observations within each group approaches infinity.
To give an idea of the importance of such bias, I have used Monte Carlo simulation to compare expected values of some summary measures of inequalities in observed risk rates with the values that would have been obtained in the absence of random errors. The simulations are based on a hypothetical population that has been partitioned into 50 equally sized subgroups. The rate of illness in the respective groups is governed by a Poisson distribution, and the true risk rates in the groups increase geometrically with their rank order. The expected value of i) the ratio between the highest and lowest observed risk, (ii) the observed excess fraction, (iii) the observed index of dissimilarity and (iv) the observed Gini-index are estimated as a function of the expected number of cases in the total population $(500 ; 1000 ; 5000 ; 50,000$; 500,$000 ; 5,000,000$; infinite) and the ratio between the highest and lowest true risk ($1.0 ; 1.5 ; 3.0$).

The simulations were performed by use of the software SAS (version 9.4). The program that was used is given in Appendix 1. The results of the simulations are given in Table 3.1.

The table indicates that the examined summary measures will provide satisfactory approximations when there are 1000 or more expected cases per group (50,000 or more in the total population), especially if the true risk inequalities are large. However, the table indicates that the summary measures are severely biased when they are applied to data sets with 100 or less expected cases per group, especially if the true risk inequalities are small.

Table 3.1 Illustration of bias from random variation in data generated naive estimates of (i) the risk ratio between the group with the highest vs. lowest risk, (ii) the excess fraction (EF), (iii) the index of dissimilarity (ID) and (iv) the Gini-index (GI), among fifty equally large groups.

Highest / lowest true risk	Total number of cases	Expected value of Highest / lowest observed risk	Expected value of Observed EF	Expected value of Observed ID	Expected value of Observed GI
1.0	500	5.39	0.631	0.125	0.174
	1000	2.95	0.464	0.088	0.123
	5000	1.59	0.225	0.040	0.055
	50,000	1.15	0.071	0.012	0.017
	500,000	1.05	0.022	0.004	0.006
	5,000,000	1.01	0.007	0.001	0.002
	Infinite	1.00	0.000	0.000	0.000
1.5	500	6.15	0.659	0.134	0.186
	1000	3.43	0.510	0.101	0.140
	5000	1.97	0.311	0.063	0.087
	50,000	1.58	0.213	0.053	0.071
	500,000	1.51	0.192	0.052	0.069
	5,000,000	1.50	0.189	0.052	0.069
	Infinite	1.50	0.189	0.052	0.069
3.0	500	11.05	0.773	0.181	0.249
	1000	6.28	0.664	0.160	0.218
	5000	3.68	0.524	0.142	0.190
	50,000	3.09	0.463	0.138	0.184
	500,000	3.00	0.452	0.138	0.183
	5,000,000	3.00	0.452	0.138	0.183
	Infinite	3.00	0.452	0.138	0.183

3.3. Presentation of a Monte Carlo simulation procedure to estimate excess fractions

3.3.1. Background

I carried out several statistical studies on behalf of the Swedish National Board of Health and Welfare to investigate the possibility of using national patient registers to monitor and compare the quality of treatment in public emergency hospitals. Of particular interest in the present dissertation are two studies which focus on age and gender standardised case fatality rates among patients admitted for acute myocardial infarction. The studies were carried out at more
than 90 hospitals, the first for the time period 1987 - 1991 [Hannerz, 1996a] and the second for the time period 1992 - 1994 [Hannerz, 1996b]. The findings revealed that inequalities between hospitals in case fatality rates were significantly larger than what could be expected to occur by chance alone.
The inequalities were tested for statistical significance by use of the classic Pearson statistic

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(x_{i}-m_{i}\right)^{2}}{m_{i}} \tag{3.10}
\end{equation*}
$$

where the $x_{i}{ }^{\prime} s$ are the hospital specific observed numbers of deaths and the $m_{i}{ }^{\prime} s$ are the age and gender standardised expected numbers (under the null hypothesis of no inequalities between hospitals).
An important quantity to study in these type of comparisons is the excess fraction, which in the above example would be defined as the proportion of the deaths that would not have occurred if the risks in all hospitals had been as low as they were in the hospital with the lowest risk. The main difficulty lay in obtaining an unbiased estimate of the excess fraction because no natural reference group exists. Clearly, using the lowest observed rate as a proxy for the lowest true risk rate would have yielded an upwards biased estimate of the excess fraction and could thereby exaggerate the prevention potential [cf. section 3.2].
In a series of papers [Paper VII, Paper VIII, Paper IX] I solved this problem by using Monte Carlo simulation to estimate the expected value of Pearson's chi-square as a function of the true excess fraction in a hypothetical population. I let the hypothetical population be partitioned in the same way, and with the same distribution and numbers of expected cases as the observed population (under the null hypothesis of no inequalities in risk). Then using the results of the simulations, I was able to determine the value of the excess fraction that corresponded to the Pearson chi-square of the observed population. A detailed description of the procedure was published in 2006 [Paper VII].
In Paper VIII the estimated excess fractions were used as summary measures of industrial inequalities in disability retirement rates. The simulation procedure was based on the following assumptions:

- The number of events in each industry follows a Poisson distribution.
- The industries' true risk rates increase geometrically with their rank order.

The same procedure was subsequently used to estimate industrial inequalities in mood disorders [Paper IX] and accidental injuries [Kines et al., 2007; Pedersen et al., 2010].

3.3.2. The Monte Carlo simulation procedure

In the present section, I will demonstrate the use of the simulation procedure described in Paper VII but without going into mathematical and technical details.

The demonstration will revolve around the data given in Table 3.3, which lists industry specific standardised morbidity ratios (SMR) for ischaemic heart disease 1994 - 1999 among people in Denmark who were 20-59 years old and economically active on January 1st, 1994. The data were obtained through calculations based on a record linkage between the Central Person Register (with information on gender and dates of births, deaths and migration) [cf. Pedersen, 2011], the Employment Classification Module (with information on employment status, industry and socioeconomic status (SES)) [cf. Petersson et al., 2011] and the National Patient Register (with information on dates and diagnoses produced during hospital contacts) [cf. Lynge et al., 2011]. The industries are classified into 57 groups in accordance with the classification AT49X [Appendix 4], which is an aggregation of the Danish Industrial Classification of All Economic Activities 1993 [Statistics Denmark, 1996].

Table 3.3 lists the observed numbers of cases, the expected numbers (under the null hypothesis of no inequalities in risk) and the SMRs which equal the observed divided by the expected numbers for each of the 57 industries. The expected numbers are standardised, firstly for gender and age (5 -year classes) and secondly, for gender, age and SES (legislators, senior officials, and managers; professionals; technicians and associate professionals; workers in occupations that require skills at a basic level; workers in elementary occupations; gainfully employed people with an unknown occupation) [cf. Statistics Denmark, 1997].

To estimate the industry-related excess fraction of ischaemic heart disease, I used the SAS program given in Appendix 2

The input data consist of the observed and the age and gender standardised expected number of observations [Table 3.3]. The program thereafter calculates the observed Pearson chi-square sum, performs the simulations, and outputs the data given in Table 3.2, thus indicating that the observed chi-square sum is approximately equal to the expected chi-square sum at an excess fraction of 0.26 .

Table 3.2 Output from the SAS-program given in Appendix 2

Excess fraction	Expected chi-square sum	Observed chi-square sum
0.20	473	803
0.21	520	803
0.22	569	803
0.23	621	803
0.24	676	803
0.25	734	803
0.26	796	803
0.27	862	803
0.28	929	803
0.29	1002	803
0.30	1076	803
0.31	1156	803
0.32	1238	803
0.33	1323	803
0.34	1413	803
0.35	1507	803
0.36	1607	803
0.37	1710	803
0.38	1819	803
0.39	1932	803
0.40	2048	803

Next, I estimated a 95% confidence interval of the simulated chi-square sums at the excess fraction of 0.26 using the SAS-program in Appendix 3. The upper and lower limits of the confidence interval of the chi-square sum are estimated to be 517 and 1182, respectively. Now, looking back at Table 3.2, I note that (i) a chi-square sum of 517 corresponds to an excess fraction of approximately 0.21 and (ii) a chi-square sum of 1182 corresponds to an excess fraction of approximately 0.31 . Hence, the upper and lower limits of a 95% confidence interval of the excess fraction is given by 0.21 and 0.31 , respectively.
After having established an estimate and confidence interval for the age and gender standardised excess fraction, the same steps were carried out, instead using the age, gender and SES standardised expected numbers. Here I estimated the age, gender and SES standardised excess fraction at $0.20(95 \%$ CI: $0.16-0.24$) and thereby conclude that approximately 23% ($100 \mathrm{x}(0.26-$ $0.20) / 0.26$) of the age and gender standardised industrial inequalities in risk of ischaemic heart disease could be attributed to differences in the industries' socioeconomic compositions.
Table 3.3. Standardised morbidity ratio (SMR) with 95% confidence interval (CI) for ischaemic heart disease 1994 - 1999 among people who were economically active in Denmark 1st January 1994

Industrial group	Persons	Observed No. of cases	Standardised for age and gender			Standardised for age, gender and socio-economic status		
			Expected No. of cases	SMR	95\% CI	Expected No. of cases	SMR	95\% CI
010 Metal and steelworks, and foundries	5819	72	81.5	0.88	0.70-1.11	88.0	0.82	0.65-1.03
020 Manufacture of transport equipment	11399	195	154.6	1.26	1.10-1.45	158.6	1.23	1.07-1.41
030 Shipyards	11754	213	187.6	1.14	0.99-1.30	196.4	1.08	0.95-1.24
040 Electricity and heat supply	13443	264	262.7	1.01	0.89-1.13	268.0	0.99	0.87-1.11
050 Iron and metal industries	44260	610	566.4	1.08	0.99-1.17	595.2	1.02	0.95-1.11
060 Engineering industry	64605	845	816.7	1.03	0.97-1.11	831.0	1.02	0.95-1.09
070 Electricity and electronics industry	30833	315	313.7	1.00	0.90-1.12	318.2	0.99	0.89-1.11
080 Car industry	22578	312	298.2	1.05	0.94-1.17	291.8	1.07	0.96-1.19
090 Navvy and road contractors	48777	726	738.4	0.98	0.91-1.06	777.9	0.93	0.87-1.00
100 Bricklayer, joiner, and carpentry work	35147	464	543.2	0.85	0.78-0.94	548.9	0.85	0.77-0.93
110 Finishing	15904	233	230.0	1.01	0.89-1.15	229.7	1.01	0.89-1.15
120 Insulation and installation businesses	35916	415	426.8	0.97	0.88-1.07	426.2	0.97	0.88-1.07
130 Printing works and publishing	32010	396	423.5	0.93	0.85-1.03	415.6	0.95	0.86-1.05
140 Paper, cardboard and bookbinding industries	9392	127	124.3	1.02	0.86-1.22	131.9	0.96	0.81-1.15
150 Wholesale trade	136776	1677	1704.2	0.98	0.94-1.03	1675.3	1.00	0.95-1.05
160 Transport of goods	106294	1803	1505.1	1.20	1.14-1.25	1629.8	1.11	1.06-1.16
170 Transport of passengers	53120	1180	848.2	1.39	1.31-1.47	899.9	1.31	1.24-1.39
180 Fire service, lighthouse and salvage corps	8043	144	122.3	1.18	1.00-1.39	126.5	1.14	0.97-1.34
190 Textile, clothing, and leather industry	24360	243	212.1	1.15	1.01-1.30	238.3	1.02	0.90-1.16
200 Manufacture of wood and wood products	33561	424	399.5	1.06	0.97-1.17	426.2	0.99	0.90-1.09

Industrial group	Persons	Observed No. of cases	Standardised for age and gender			Standardised for age, gender and socio-economic status		
			Expected No. of cases	SMR	95\% CI	Expected No. of cases	SMR	95\% CI
210 Mineral, oil, rubber and plastic products	22141	296	272.5	1.09	0.97-1.22	288.1	1.03	0.92-1.15
220 Stone-works, pottery, and glass industry	13535	228	204.3	1.12	0.98-1.27	221.6	1.03	0.90-1.17
230 Medical equipment/toys/cameras/etc.	14642	144	137.3	1.05	0.89-1.23	143.4	1.00	0.85-1.18
240 Manufacture of industrial chemicals	14339	186	187.4	0.99	0.86-1.15	192.9	0.96	0.84-1.11
250 Heavy raw material and semi-manufacture	7188	148	114.3	1.30	1.10-1.52	122.5	1.21	1.03-1.42
260 Pharmaceutical industry	9515	73	93.0	0.78	0.62-0.99	92.2	0.79	0.63-1.00
271 Office \& adm. (transport \& wholesale)	15016	164	150.4	1.09	0.94-1.27	150.2	1.09	0.94-1.27
272 Office \& adm. (service)	19881	428	376.1	1.14	1.04-1.25	381.6	1.12	1.02-1.23
273 Finance/ Public office \& adm.	190987	1703	1931.8	0.88	0.84-0.92	1779.8	0.96	0.91-1.00
274 Private office \& adm.	142013	1368	1534.1	0.89	0.85-0.94	1423.4	0.96	0.91-1.01
281 Car dealers	17391	171	189.5	0.90	0.78-1.05	188.0	0.91	0.78-1.06
282 Garage	5660	61	47.6	1.28	1.10-1.65	47.4	1.29	1.00-1.65
283 Shops	69402	613	620.0	0.99	0.91-1.07	617.4	0.99	0.92-1.07
290 Supermarkets, department stores etc.	59299	402	406.9	0.99	0.90-1.09	404.8	0.99	0.90-1.10
300 Sewers, water- and gas supply	6666	155	122.7	1.26	1.08-1.48	125.5	1.24	1.06-1.45
310 Personal care and other services	19349	175	179.4	0.98	0.84-1.13	182.9	0.96	0.83-1.11
320 Cleaning, laundries, and dry cleaners	29345	264	237.4	1.11	0.99-1.25	265.2	1.00	0.88-1.12
330 Telecommunication	15081	210	205.6	1.02	0.89-1.17	203.8	1.03	0.90-1.18
340 Surveillance, armed forces, police etc.	61805	731	681.6	1.07	1.00-1.15	667.6	1.10	1.02-1.18
350 Hotels and restaurants	50373	456	354.4	1.29	1.17-1.41	368.2	1.24	1.13-1.36
361 Photographers/film \& videoproduction	4206	22	38.6	0.57	0.38-0.87	38.1	0.58	0.38-0.88
362 Entertainment, culture and sport	25878	280	295.4	0.95	0.84-1.07	291.0	0.96	0.86-1.08

Industrial group	Persons	Observed No. of cases	Standardised for age and gender			Standardised for age, gender and socio-economic status		
			Expected No. of cases	SMR	95\% CI	Expected No. of cases	SMR	95\% CI
363 Libraries and archives	8534	61	91.8	0.66	0.52-0.85	86.1	0.71	0.55-0.91
370 Slaughterhouse industry	20300	308	250.5	1.23	1.10-1.37	276.8	1.11	1.00-1.24
380 Poultry slaughtering and fish products	11601	142	93.0	1.53	1.30-1.80	106.9	1.33	1.13-1.57
390 Beverage industry	14010	222	210.8	1.05	0.92-1.20	225.7	0.98	0.86-1.12
400 Manufacture of bread, chocolate, tobacco etc.	23274	269	218.5	1.23	1.09-1.39	230.7	1.17	1.03-1.31
410 Manufacture of dairy products	11891	148	138.8	1.07	0.91-1.25	151.9	0.97	0.83-1.14
420 Agriculture	71151	869	1267.1	0.69	0.64-0.73	1232.6	0.71	0.66-0.75
430 Horticulture and forestry	18739	234	228.5	1.02	0.90-1.16	246.3	0.95	0.84-1.08
440 Hospitals	98079	724	736.4	0.98	0.91-1.06	680.8	1.06	0.99-1.14
450 Nursing homes, home care, etc.	152660	1420	1102.8	1.29	1.22-1.36	1181.5	1.20	1.14-1.27
460 Child care etc.	109998	530	548.4	0.97	0.89-1.05	557.2	0.95	0.87-1.04
471 General practitioners, dentists etc.	23278	163	244.9	0.67	0.57-0.78	228.2	0.71	0.61-0.83
472 Health care, not elsewhere classified	32144	287	332.2	0.86	0.77-0.97	311.0	0.92	0.82-1.04
480 Education and research	172362	1654	2173.9	0.76	0.73-0.80	1984.4	0.83	0.79-0.87
490 Fishing	6166	117	107.6	1.09	0.91-1.30	115.5	1.01	0.85-1.21

4. Concluding remarks

The series of mortality laws presented in this dissertation resulted in the finding that the standard error of estimated sex and age-specific one-year death probabilities, were, on average five times smaller than for the life-tables system of Statistics Sweden, 1982 [cf. Hannerz, 1999]

Moreover, the mortality laws provided a remarkable goodness-of-fit compared with many other life table systems when tested on mortality in different calendar years of the population of Sweden [Hannerz, 1999]. In Paper II, it was shown that the laws are able to accommodate many different shapes and levels of mortality as a function of age, which suggests that they would also fit well with respect to all-cause mortality in many other populations. The drawback of the mortality laws is their non-linear parametrisation, which makes them difficult to work with. It should also be noted that the laws ordinarily provide more accuracy than needed in most public health research endeavours.
A Monte Carlo simulation procedure was designed to offset bias from random variation in the estimation of excess fractions in the absence of a natural reference group [cf. Paper VII]. The procedure was designed to estimate inequalities under the assumption that the true risk rates increase geometrically with their rank order and the outcome variables are Poisson distributed. It is clear that a similar procedure could be constructed for outcome variables with other distributions and also for other assumptions of the true risk as a function of the true underlying rank order.
It can be objected that the assumptions about the relation between the true risks and the true rank orders cannot be formally tested, since the true rank order is unknown and unobservable. The procedure is also difficult to explain to people not versed in statistics, such as many of the stakeholders of health inequality evaluations.

Finally, it should be noted that the naïve summary measures given in section 3.2 will work quite well when the expected numbers of events in each group are large. Table 3.1 suggests, for example, that, for most practical purposes, the bias in such naïve summary measures of inequality will be negligible if we
are looking at inequalities among 50 groups with at least 1000 expected events in each group.

References

Anson J. (1988). "The parameters of death: a consideration of the quantity of information in a life table using a polynomial representation of the survivorship curve." Statistics in Medicine, 7:895-912.

Booth H, Tickle L. (2008). Mortality Modelling and Forecasting: A Review of Methods. Annals of Actuarial Science, 3(1-2), 3-43.
Boulougari A, Lundengård K, Rančić M, Silvestrov S, Suleiman S, Strass B. (2019). Application of a power-exponential function-based model to mortality rates forecasting, Communications in Statistics: Case Studies, Data Analysis and Applications, 5:1, 3-10, DOI: 10.1080/23737484.2019.1578705.
Bourgois-Pichat J. (1962). Factor analysis of sex-age specific death rates, Population Bulletin of the United Nations, No. 6.
Brass W. (1968). The Demography of Tropical Africa. Princeton: Princeton University Press.
Brass W. (1969). A generation method for projecting death rates. In: Bechhofer F. editor, Population growth and the brain drain. Techniques and Methods of study. Birmingham: Edinburgh University Press: 75-91.
Brass W. (1971). On the scale of mortality. In: Brass W, editor. Biological aspects of mortality. Symposia of the society for the study of human biology. Volume X. London: Taylor \& Francis Ltd.: 69-110.
Brass W. (1974). "Mortality models and their uses in demography." Transactions of the Faculty of Actuaries, 33:122-133.

Brillinger DR. (1961). "A justification of some common laws of mortality." Trans Soc Actuaries, 13:116-119.
Bross IDJ. How to use ridit analysis. Biometrics 1958;14:18-38.
Cash-Gibson L, Rojas-Gualdrón DF, Pericàs JM, Benach J. Inequalities in global health inequalities research: A 50-year bibliometric analysis (1966-2015). PLoS One. 2018 Jan 31;13(1):e0191901.

Cooper Z, Gibbons S, Jones S, McGuire A. Does Hospital Competition Save Lives? Evidence from the English NHS Patient Choice Reforms. Econ J (London). 2011 Aug;121(554):F228-F260.

Crombie IK, Irvine L, Elliott L, Wallace H. Closing the Health Inequalities Gap: An International Perspective (WHO Regional Office for Europe) [Internet]. 2005. Available: http://www.euro.who.int/__data/assets/pdf_file/0005/124529/E87934.pdf. Accessed July 28, 2019

Davis RM. Healthy People 2010: objectives for the United States. Impressive, but unwieldy. BMJ. 2000 Mar 25;320(7238):818-9.]

Derrick VPA (1927): "Observation on (1) Errors of Age in the Population Statistics of England and Wales, and (2) the changes in Mortality indicated by the national records." Journal of the Institute of Actuaries, 58:117-146.
de Vos M, Graafmans W, Kooistra M, Meijboom B, Van Der Voort P, Westert G. Using quality indicators to improve hospital care: a review of the literature. Int J Qual Health Care. 2009 Apr;21(2):119-29.
Edinger BJ. (2011). A Stochastic Population Projection for Canada’s First Nations. Kingston, Ontario: Department of Economics. Queen's University, Kingston, Ontario, Canada.

Ewbank DC, Gomez de Leon JC, Stoto MA. (1983). "A reducible four-parameter system of model life tables. "Population Studies, 37:105-127.
Finnegan G, Moran N, Kelly É, Hudson RL. Healthy measures. Brussels: Science Business Publishing Ltd, 2018.
Giorgi GM, Gigliarano C. The Gini concentration index: a review of the inference literature. Journal of Economic Surveys . 2017; 31:1130-1148.

Gompertz B. (1825). "On the nature of the function expressive of the law of human mortality." Philosophical Transactions, 27:513-519.
Greenland S, Robins JM. Conceptual problems in the definition and interpretation of attributable fractions. Am J Epidemiol 1988;128: 1185-97.

Grimmet GR, Stirzaker DR. (1992). Probability and Random Processes. Oxford: Claredon Press.

Hannerz H. Korttidsdödlighet bland hjärtinfarktpatienter vid svenska akutsjukhus 1987-91. Stockholm: Socialstyrelsen; 1996a.
Hannerz H. Korttidsdödlighet bland hjärtinfarktpatienter vid svenska akutsjukhus 1992-94. Stockholm: Socialstyrelsen; 1996b.
Hannerz H. (1999). Methodology and applications of a new law of mortality. Lund: Department of Statistics. University of Lund, Sweden.

Harper S, Lynch J, Meersman SC, Breen N, Davis WW, Reichman ME. An overview of methods for monitoring social disparities in cancer with an example using trends in lung cancer incidence by area- socioeconomic position and raceethnicity, 1992-2004. Am J Epidemiol. 2008 Apr 15;167(8):889-99.

Harper S, King NB, Meersman SC, Reichman ME, Breen N, Lynch J. Implicit value judgments in the measurement of health inequalities. Milbank Q. 2010 Mar;88(1):4-29.
Hartmann M. (1987). "Past and recent attempts to model mortality at all ages." Journal of official Statistics, 3:19-36.
Hartmann M, Strandell G. (2006). Stochastic Population Projections for Sweden. Research and Development - Methodology reports from Statistics Sweden 2006:2

Heligman M, Pollard JH. (1980). "The age pattern of mortality." Journal of the Institute of Actuaries 107: 49-80.
Hoebel J, Kroll LE, Fiebig J, Lampert T, Katalinic A, Barnes B, Kraywinkel K. Socioeconomic Inequalities in Total and Site-Specific Cancer Incidence in Germany: A Population-Based Registry Study. Front Oncol. 2018 Sep 25;8:402. doi: 10.3389/fonc.2018.00402. eCollection 2018.
Hong WH, Yap JH, Selvachandran G. Thong PH, Son LH. (2021). Forecasting mortality rates using hybrid Lee-Carter model, artificial neural network and random forest. Complex Intell. Syst. 7, 163-189.
Hosseinpoor AR, Bergen N, Schlotheuber A, Grove J. Measuring health inequalities in the context of sustainable development goals. Bull World Health Organ. 2018 Sep 1;96(9):654-659.
Hosseinpoor AR, Nambiar D, Schlotheuber A, Reidpath D, Ross Z. Health Equity Assessment Toolkit (HEAT): software for exploring and comparing health inequalities in countries. BMC Med Res Methodol. 2016 Oct 19;16(1):141.
Kakwani N, Wagstaff A, van Doorslaer E. Socioeconomic inequalities in health: measurement, computation, and statistical inference. Journal of Econometrics. 1997;77: 87-103.
Kermack WO, McKendrick AG, McKinlay PL. Death-rates in Great Britain and Sweden: Expression of Specific Mortality Rates as Products of Two Factors, and some Consequences thereof. J Hyg (Lond). 1934 Dec;34(4):433-57.
Kines P, Hannerz H, Mikkelsen KL, Tüchsen F. Industrial sectors with high risk of women's hospital-treated injuries. Am J Ind Med. 2007 Jan;50(1):13-21.
Kostaki A. (1992). Methodology and applications of the Heligman-Pollard formula. Lund: Department of Statistics. University of Lund, Sweden.
Kostaki A, Moguerza JM, Olivares A, Psarakis S. Support Vector Machines as tools for mortality graduation. Canadian Studies in Population 38, No. 3-4 (Fall/Winter 2011):37-58.
Kostaki A, Moguerza JM, Olivares A, Psarakis S. (2016). Nonparametric graduation techniques as a common framework for the description of demographic patterns. International Journal of Population Studies, vol.2(1): 1-20.

Larsen RJ, Marx ML. (1986). An introduction to mathematical statistics and its applications. New Jersey: Prentice-Hall, Englewood Cliffs.
Lee RD, Carter LR. (1992). Modelling and forecasting U.S. mortality. Journal of the American Statistical Association, 87(419), 659-671.
Leone FC, Nelson LS, Nottingham RB. (1961) The Folded Normal Distribution, Technometrics. 1961;3:543-550.
Levantesi S, Pizzorusso V. (2019). Application of Machine Learning to Mortality Modeling and Forecasting. Risks, MDPI, Open Access Journal, vol. 7(1), pages 1-19.

Lovaglio PG. Benchmarking strategies for measuring the quality of healthcare: problems and prospects. Scientific World Journal. 2012;2012:606154. doi:10.1100/2012/606154.
Lynge E, Sandegaard JL, Rebolj M. The Danish National Patient Register. Scand J Public Health 2011 Jul;39(7 Suppl):30-3.
Mackenbach JP. Inequalities in health in The Netherlands according to age, gender, marital status, level of education, degree of urbanization, and region. Eur J Public Health. 1993;3:112-118.
Mackenbach JP, Kunst AE. Measuring the magnitude of socio-economic inequalities in health: an overview of available measures illustrated with two examples from Europe. Soc Sci Med. 1997 Mar;44(6):757-71.
Makeham WM. (1867). "On the law of mortality." Journal of the Institute of Actuaries, 13:335-340.
Ministry of Social Affairs and Health, Finland. Government Resolution on the Health 2015 public health programme. Helsinki, 2001 (http://1nj5ms2lli5hdggbe3mm7ms5.wpengine.netdnacdn.com/files/2010/03/pnsfin.pdf. Accessed 27 July 2019).]
Mode C, Busby R. (1982)." An eight-parameter model of human mortality - the single decrement case." Bulletin of Mathematical Biology, 44:647-659.
Murray CJL, Ferguson BD, Lopez AD, Guillot M, Salomon JA, Ahmad O. (2003) Modified logit life table system: principles, empirical validation, and application, Population Studies, 57:2, 165-182.
Neves C, Fernandes C, Hoeltgebaum H. (2017). Five different distributions for the Lee-Carter model of mortality forecasting: A comparison using GAS models. Insurance: Mathematics and Economics, 75, 48-57.
Nigri A, Levantesi S, Marino M Scognamiglio S, Perla F. (2019). A Deep Learning Integrated Lee-Carter Model. Risks, MDPI, Open Access Journal, vol. 7(1), pages 1-16.
Pamuk ER. Social class inequality in mortality from 1921 to 1972 in England and Wales. Popul Stud (Camb). 1985 Mar;39(1):17-31.

Pascariu MD. (2018). Modelling and forecasting mortality. Odense: Syddansk Universitet. Det Sundhedsvidenskabelige Fakultet. Research output: Thesis > Ph.D. thesis

Pearson K. (1895). "Contributions to the mathematical theory of evolution. II. Skew variation in homogenous material." Philosophical Transactions of the Royal Society of London, 186:343-414.
Pedersen BH, Hannerz H, Tüchsen F, Mikkelsen KL, Dyreborg J. Industry and injury related hospital contacts: a follow-up study of injuries among working men in Denmark. J Occup Health. 2010;52(3):147-54.
Pedersen CB. The Danish Civil Registration System. Scand J Public Health 2011 Jul;39(7 Suppl):22-25.
Perks W. (1932). "On some experiments in the graduation of mortality statistics." Journal of the Institute of Actuaries, 63:12-57.
Petersson F, Baadsgaard M, Thygesen LC. Danish registers on personal labour market affiliation. Scand J Public Health 2011 Jul;39(7 Suppl):95-98.
Petrioli L. (1981). A new set of models of mortality. Paper presented at IUSSP seminar on methodology and data collection, Dakar, Senegal, reprinted by Universita degli Studi di Siena, Italy.
Plat R. (2009). On stochastic mortality modeling. Insurance: Mathematics and Economics 45: 393-404.
Renshaw AE, Haberman S. (2006). A cohort-based extension of the Lee-Carter model for mortality reduction factors. Insurance: Mathematics and Economics, 38, 556-570.
Richman R, Wüthrich MV. (2018). A Neural Network Extension of the Lee-Carter Model to Multiple Populations. Available at SSRN: http://dx.doi.org/10.2139/ssrn. 3270877.
Sergeant JC, Firth D. Relative index of inequality: definition, estimation, and inference. Biostatistics. 2006 Apr;7(2):213-24.
Siler W. (1983). "Parameters of mortality in human populations with widely varying life spans." Statistics in Medicine, 2:373-380.
Skaftun EK, Verguet S, Norheim OF, Johansson KA. Geographic health inequalities in Norway: a Gini analysis of cross-county differences in mortality from 1980 to 2014. Int J Equity Health. 2018 May 24;17(1):64.
Statistics Denmark. Dansk Branchekode 1993, udgave 2. 1996. URL:
http://www.dst.dk/da/Statistik/Publikationer/VisPub?cid=4829 [accessed 2016-06-10]
Statistics Denmark. SOCIO Danmarks Statistiks Socioøkonomiske Klassifikation. Copenhagen: Statistics Denmark; 1997.
Thiele TN. (1872). "On a mathematical formula to express the rate of mortality throughout life." Journal of the Institute of Actuaries, 16:313-329.

US Department of Health and Human Services. Healthy people 2000: national health promotion and disease prevention objectives. Washington, DC: US Department of Health and Human Services, Public Health Service, 1990; DHHS publication no. (PHS)90-50212.
Wagstaff A, Paci P, van Doorslaer E. On the measurement of inequalities in health. Soc Sci Med. 1991;33(5):545-57.
WHO. Targets for Health for All. Targets in Support of the European Regional Strategy for Health for All. Copenhagen: WHO Regional Office for Europe, 1985.

WHO. Health 21. The health for all policy framework for the WHO European Region. ed. Copenhagen, World Health Organization, 1999.
WHO. Health Equity Assessment Toolkit (HEAT): Software for exploring and comparing health inequalities in countries. Built-in database edition. Version 2.1. Geneva, World Health Organization, 2018. [cited 2019 June 8]. Available from:
http://origin.who.int/gho/health equity/heat technical notes vFeb2018.pdf
Wittstein J. (1883). "The mathematical law of mortality." Journal of the Institute of Actuaries, 24:152-173.
Wright J, Dugdale B, Hammond I, Jarman B, Neary M, Newton D, Patterson C, Russon L, Stanley P, Stephens R, Warren E. Learning from death: a hospital mortality reduction programme. J R Soc Med. 2006 Jun;99(6):303-8.
Zaba B. (1979). "The four-parameter logit life table system." Population Studies, 33:79-100.
Zapata-Diomedi B, Barendregt JJ, Veerman JL. Population attributable fraction: names, types and issues with incorrect interpretation of relative risks. Br J Sports Med. 2018 Feb;52(4):212-213.

Appendix 1

SAS-program to demonstrate bias from random variation in some traditional summary measures of inequality

Abstract

/* This SAS-program uses Monte-Carlo simulation to demonstrate bias from random variation in data generated naive estimates of (i) the risk ratio between the group with the highest vs. lowest risk (Ymax / Ymin), (ii) the excess fraction (EF), (iii) the index of dissimilarity (ID) and (iv) the Gini-index.

The simulations are guided by the following rules: (i) The included groups are ranked in relation to their true risk rates, (ii) the true risk rate of the groups increases geometrically with their rank order, (iii) all groups are equally large and (iv) the observed number of cases follows a Poisson distribution.

The output variables that are prefixed with "True_" contain the values that would have been obtained in the absence of random variation. The variables that are prefixed with "O_" represent the values that are expected to occur due to a combination of true risk inequalities and random variation. */
data test (keep $=$ Cases True_max_by_min O_max_by_min True_ID O_ID True_EF O_EF True_Gini O_Gini);

```
groups = 50; /* Number of groups */
```

Cases $=5000 ; ~ / * ~ T o t a l ~ n u m b e r ~ o f ~ e x p e c t e d ~ c a s e s ~ * / ~$ True_max_by_min = 1.5; /* True Ymax / Ymin */
array $x(50) ; ~ / * ~ O b s e r v e d ~ n u m b e r ~ o f ~ c a s e s, ~ b y ~ g r o u p ~ * / ~$
array True_srr(50); /* True group rate divided by true mean rate in the total population */
array O_srr(50); /* Observed group rate divided by observed mean rate in the total population */

$$
\text { do } k=1 \text { to } 100000 ;
$$

$$
\text { Sum }=0 ;
$$

do i = 1 to groups;

$$
\text { sum }=\text { sum + True_max_by_min ** ((i - 1)/(groups - }
$$ 1));

end;

Sum_x = 0;
do i $=1$ to groups;

True_srr(i) = True_max_by_min ** ((i - 1)/(groups -
1)) * groups / sum;
$x(i)=$ RAND('POISSON',True_srr(i) * cases / groups); sum_x = sum_x + x(i);
end;
do i $=1$ to groups;

$$
\text { O_srr(i) }=x(i) * \text { groups } / \text { sum_x; }
$$

end;

```
    do i = 1 to groups;
    do j = 1 to groups - i;
        if O_srr(j) > O_srr(j + 1) then do;
            Temp = O_srr (\overline{j});
            O_srr(j)= O_srr(j + 1);
            O_srr(j + 1) = Temp;
        end;
    end;
end;
True_ID = 0; O_ID = 0; True_Gini = 0; O_Gini = 0;
do i = 1 to groups;
```

```
    True_ID = True_ID + abs(True_srr(i) - 1);
```

 True_ID = True_ID + abs(True_srr(i) - 1);
 O_ID = O_ID + abs(O_srr(i) - 1);
 O_ID = O_ID + abs(O_srr(i) - 1);
 True_Gini = True_Gini + True_srr(i) * (i - 0.5) /
 groups ** 2;
O_Gini = O_Gini + O_srr(i) * (i - 0.5) / groups **
2;
end;
O_max_by_min $=$ O_srr (50) / O_srr(1);
True_ID = True_ID / groups / 2;
O_ID = O_ID / groups / 2;
True_Gini = 2 * True_Gini - 1;
O_Gini = 2 * O_Gini - 1;
True_EF = 1 - True_srr (1) ;
O_EF = 1 - O_srr(1);

```
output;
end;
run;
proc means data \(=\) test; var Cases True_max_by_min O_max_by_min True_ID O_ID True_EF O_EF True_Gini O_Gini; run;

\section*{Appendix 2}

\section*{SAS-program to estimate an excess fraction}
```

/* The input to the this SAS-program comes from a data set
named "ihd", which contains the information given in table
3.3. In the first series of data steps and procedures, the
observed number of cases (cases) and the age and gender
standardised expected number of cases (expectl), for each
of the 57 industrial groups that are included in table
3.3, are read, transposed and merged into a new data set
named "observed", which contains one observation and 114
variables, m1 - m57 (the expected numbers of cases) and x1

- x57 (the observed numbers of cases).*/

```

\section*{proc sort}
data = ihd;
by smrl; /* smrl = Age and gender standardised morbidity ratio */
run;
data cases (keep = cases);
    set ihd;
run;
proc transpose
    data = cases
    out = cases
    prefix = x
    ;
run;
```

data cases;
set cases;
drop _name_;
run;
data expect1 (keep = expect1);
set ihd;
run;
proc transpose
data = expect1
out = expect1
prefix = m
;
run;
data expect1;
set expect1;
drop _name_;
run;
data observed;
merge cases expect1;
run;

```
/* The Pearson chi-square statistic (obs_chi2) is
calculated and an array with rank orders is added to the
data set, which now contains 172 variables, m1 - m57, x1
- x57, order1 - order57 and obs_chi2. */
data observed;
set observed;
array m(*) m1 - m57;
array \(x(*) ~ x 1 ~-~ x 57 ; ~\)
array order(57);
do \(j=1\) to dim(m);
        order(j) = j;
end;
```

sum_m = 0;
sum_x = 0;
do j = 1 to dim(m);
sum_m = sum_m + m(j);
sum_x = sum_x + x(j);
end;
obs_chi2 = 0;
do j = 1 to dim(m);
m(j) = m(j) * sum_x / sum_m;
obs_chi2 = obs_chi2 + (x(j) - m(j))**2 / m(j);
end;
drop sum_x sum_m j;
run;

```
/* The data are replicated 100,000 times. The result is a
data set containing 100,000 identical observations and 172
variables. */

\section*{data observed;}
set observed;
do j=1 to 100000; output;
end;
run;
/* An empty dataset is prepared for the simulations. */
data simulations;
run;
/* The macro is defined and executed 99 times: For excess fractions from 0.01 to 0.99 by step of size 0.01 (Division by 100 is done later). Output from the macro is suppressed. */
options mprint;

\section*{\%macro simul2;}
```

\%do ef = 1 \%to 99% by 1 ;

```
data templ;
    set observed;
    array m(*) m1 - m57;
    array \(x(*) ~ x 1 ~-~ x 57 ; ~\)
    array order(57);
/* A random ordering of the 57 industrial groups is obtained by a call to the ranperm function. */
```

seed = 0;
call ranperm(seed, of order1 - order57);

```
/* The constant "a" (the ratio between the risk in the group with rank order \(j+1\) and the group with rank order j) that corresponds to the current excess fraction and random rank ordering is found by solving the equation \(f(a)\) \(=0\), by use of the Newton-Raphson method (50 iterations). The function \(f(a)\) is given by the variable "fa" and its derivative is given by the variable "dfa".*/
```

ef = \&ef / 100;
a = 2;
do i = 1 to 50;
fa $=0$;
dfa $=0$;
do $j=1$ to dim(m);
fa $=\mathrm{fa}+\mathrm{m}(j)$ * ((1 - ef) * a ** (order (j) - 1)

```
- 1);
```

 dfa = dfa + m(j) * (1 - ef) * (order(j) - 1) *
    ```
a ** (order (j) - 2) ;
    end;
    \(a=a-f a / d f a ;\)
end;
/* Observed numbers corresponding to the distribution given by the excess fraction, the constant ratio and the random orders are simulated. The expected numbers corresponding to the simulated observed values are calculated
(Notice the simple form). Finally the Pearson chi-square statistic is calculated from the simulated data. */
```

 sum_m = 0;
 sum_x = 0;
 chi2 = 0;
 do j = 1 to dim(m);
 x(j) = rand('poisson',(1 - ef) * m(j) * a **
 (order(j) - 1));
sum_m = sum_m + m(j);
sum_x = sum_x + x(j);
end;
do j = 1 to dim(m);
m(j) = m(j) * sum_x / sum_m;
chi2 = chi2 + (x(j) - m(j)) ** 2 / m(j);
end;
drop sum_x sum_m j;
run;
/*A line containing the excess fraction (ef), the mean of the simulated chi-square sums (chi2), the mean of the constant ratio (a), and the observed chi-square sum (obs_chi2)is appended to the data set 'simulations'.*/

```
```

proc means data = templ noprint;

```
proc means data = templ noprint;
    var
    var
        ef
        ef
        a
        a
        chi2
        chi2
        obs_chi2
        obs_chi2
        ;
        ;
        output out = temp2;
        output out = temp2;
run;
```

run;

```
```

data temp2;
set temp2;
where _stat_ = "MEAN";
drop
type
freq
_stat
;
run;
data simulations;
set simulations temp2;
run;
%end;
%mend simul2;
%simul2
proc print data = simulations;
var
ef
chi2
obs_chi2
;
run;

```

\section*{Appendix 3}

\section*{SAS-program to estimate a confidence interval of Pearson's chi-square sum}
```

/* If the excess fraction has been estimated at e.g. 0.26
then change the following line of the SAS-program given in
Appendix 2
from
"%do ef = 1 %to 99 %by 1;"
to
"%do ef = 26 %to 26 %by 1;"
and then rerun that program.
After that, the following program will provide a 95% confidence interval of Pearson's chi-square sum, which in turn can be used to estimate a 95\% confidence interval of the excess fraction. */

```
```

 var chi2;
 output
 out = CI
 pctlpts = 2.5 97.5
 pctlpre = pop_
 ;
    ```
proc univariate data = temp1 noprint;
run;
proc print data \(=C I\); run;

\section*{Appendix 4}

\section*{Industrial group classification}

AT49X is an industrial classification, which contains 57 different industrial groups. The classification is an aggregation of the Danish Industrial Classification of All Economic Activities 1993 (DB93), which is a national version of the European Industrial Classification of All Economic Activities, 1993. The classification is used in Paper VII, VIII and IX as well as in chapter three of the present thesis.

Table A.1. The industrial groups of AT49X in relation to DB93
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{AT49X DB93} \\
\hline \multirow[t]{17}{*}{010. Metal and steelworks, and foundries} & 271000 & Manufacture of basic iron and steel \\
\hline & 272100 & Manufacture of cast iron tubes \\
\hline & 273100 & Cold drawing \\
\hline & 273200 & Cold rolling of narrow strips \\
\hline & 273300 & Cold forming or folding \\
\hline & 273500 & Other first processing of iron and steel n.e.c. \\
\hline & 274100 & Precious metals production \\
\hline & 274200 & Aluminium production \\
\hline & 274300 & Lead, zink and tin production \\
\hline & 274400 & Copper production \\
\hline & 274500 & Other non-ferrous metal production \\
\hline & 275100 & Casting of iron \\
\hline & 275200 & Casting of steel \\
\hline & 275300 & Casting of light metals \\
\hline & 275400 & Casting of other non-ferrous metals \\
\hline & 314000 & Manufacture of accumulators, primary cells and batteries \\
\hline & 371000 & Recycling of metal waste and scrap \\
\hline & & \\
\hline \multirow[t]{3}{*}{020. Manufacture of transport equipment} & 291110 & Manufacture of ship engines \\
\hline & 291120 & Repair of ship engines \\
\hline & 341000 & Manufacture of motor vehicles \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 342000 & Manufacture of coachwork for motor vehicles \\
\hline & 343000 & Manufacture of parts for motor vehicles \\
\hline & 351200 & Building and repairing of pleasure and sporting boats \\
\hline & 352000 & Manufacture of locomotives and rolling stock \\
\hline & 353000 & Manufacture of aircraft \\
\hline & 354200 & Manufacture of bicycles \\
\hline & 354300 & Manufacture of invalid carriages \\
\hline & 355000 & Manufacture of other transport equipment n.e.c. \\
\hline & & \\
\hline 030. Shipyards & 351100 & Building and repairing of ships \\
\hline & & \\
\hline 040. Electricity and heat supply & 401000 & Production and distribution of electricity \\
\hline & 403000 & Steam and hot water supply \\
\hline & & \\
\hline 050. Iron and metal industries & 272200 & Manufacture of steel tubes \\
\hline & 281100 & Manufacture of metal structures \\
\hline & 281200 & Manufacture of metal building material \\
\hline & 282100 & Manufacture of metal tanks and containers \\
\hline & 282200 & Manufacture of central heating radiators and boilers \\
\hline & 283000 & Manufacture of steam generators \\
\hline & 284000 & Forging, pressing, stamping and rollforming of metal \\
\hline & 285100 & Treatment and coating of metals \\
\hline & 286100 & Manufacture of cutlery \\
\hline & 286310 & Manufacture of locks \\
\hline & 286320 & Manufacture of metal fittings \\
\hline & 287100 & Manufacture of steel drums and similar containers \\
\hline & 287200 & Manufacture of light metal packaging \\
\hline & 287300 & Manufacture of wire products \\
\hline & 287400 & Manufacture of fasteners, chains, springs etc. \\
\hline & 287510 & Manufacture of metal sign plates \\
\hline & 287520 & Manufacture of metal household appliances \\
\hline & 287590 & Manufacture of other fabricated metal products n.e.c. \\
\hline & 291300 & Manufacture of taps and valves \\
\hline & 296000 & Manufacture of weapons and ammunition \\
\hline & 362100 & Striking of coins and medals \\
\hline & 362210 & Gold- and silverware factories \\
\hline & 362220 & Goldsmiths \\
\hline & & \\
\hline 060. Engineering industry & 285200 & General mechanical engineering (contractors) \\
\hline & 286200 & Manufacture of tools \\
\hline & 291190 & Manufacture of other motors and turbines \\
\hline & 291210 & Manufacture of air pumps and compressors \\
\hline & 291220 & Manufacture of pumps for liquids \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 291230 & Manufacture of fluid and pneumatic power engines \\
\hline 291400 & Manufacture of bearings, gears etc. \\
\hline 292100 & Manufacture of furnaces and furnace burners \\
\hline 292210 & Manufacture of conveyor belts and elevators \\
\hline 292220 & Manufacture of cranes and other lifting devices \\
\hline 292230 & Manufacture of work trucks \\
\hline 292290 & Manufacture of other handling equipment \\
\hline 292310 & Manufacture of non-domestic cooling equipment \\
\hline 292320 & Manufacture of non-domestic ventilation equipment \\
\hline 292410 & Manufacture of weighing machinery \\
\hline 292420 & Manufacture of packing and wrapping machinery \\
\hline 292430 & Manufacture of fire extinguishers, sandblasters etc. \\
\hline 292490 & Manufacture of other general purpose machinery n.e.c. \\
\hline 293100 & Manufacture of agricultural tractors \\
\hline 293210 & Manufacture of harvesting machinery etc. \\
\hline 293220 & Manufacture of agricultural machinery for soil preparation etc. \\
\hline 293230 & Manufacture of other agricultural and forestry macinery n.e.c. \\
\hline 293240 & Repair of agricultural and forestry machinery \\
\hline 294000 & Manufacture of machine tools \\
\hline 295100 & Manufacture of machinery for metallurgy \\
\hline 295210 & Manufacture of concrete and mortar mixers \\
\hline 295290 & Manufacture of other machinery for mining, quarrying and construction \\
\hline 295310 & Manufacture of machinery for the dairy industry \\
\hline 295320 & Manufacture of machinery for the grain milling industry \\
\hline 295330 & Manufacture of machinery for the bakery industry \\
\hline 295340 & Manufacture of machinery for the fish and meat industry \\
\hline 295390 & Manufacture of other machinery for food beverage and tobacco \\
\hline 295400 & Manufacture of machinery for textile, apparel and leather \\
\hline 295500 & Manufacture of machinery for paper and paperboard production \\
\hline 295610 & Manufacture of moulds \\
\hline 295620 & Manufacture of drying systems \\
\hline 295690 & Manufacture of other special purpose machinery \\
\hline 297110 & Manufacture of domestic refrigerators and freezers \\
\hline 297130 & Manufacture of domestic washing and drying machines \\
\hline 297200 & Manufacture of non-electric domestic appliances \\
\hline 300100 & Manufacture of office machinery \\
\hline 300200 & Manufacture of IT equipment \\
\hline 311040 & Manufacture of windmills \\
\hline
\end{tabular}
070. Electricity and electronics industry
080. Car industry
\begin{tabular}{|c|c|}
\hline 297120 & Manufacture of domestic electric ovens \\
\hline 297190 & Manufacture of other electric domestic appliances \\
\hline 311010 & Manufacture of electric motors and generators \\
\hline 311020 & Manufacture of electric generator sets \\
\hline 311030 & Manufacture of electrical transformers \\
\hline 312010 & Manufacture of electric control or distribution boards \\
\hline 312090 & Manufacture of switches, fuses, etc. \\
\hline 313000 & Manufacture of insulated wire and cable \\
\hline 315000 & Manufacture of lighting equipment \\
\hline 316100 & Manufact. of electrical equipment for engines and vehicles n.e.c. \\
\hline 316210 & Manufacture of electrical traffic regulation equipment \\
\hline 316220 & Electromechanical workshops \\
\hline 316290 & Manufacture of electrical equipment n.e.c. \\
\hline 321010 & Manufacture of printed circuits \\
\hline 321090 & Manufacture of other electronic components \\
\hline 322010 & Manufacture of apparatus for radio-telephony or radiotelegraphy \\
\hline 322020 & Manufacture of other telephony apparatus etc. \\
\hline 323010 & Manufacture of television and radio receivers \\
\hline 323020 & Manufacture of loud speakers etc. \\
\hline 323030 & Manufacture of antennas etc. \\
\hline 332010 & Manufacture of navigation equipment \\
\hline 332020 & Manufact. measuring instruments for gas and liquid pressure \\
\hline 332030 & Manufacture of measuring instruments for electrical quantities \\
\hline 332040 & Manufacture of apparatus for physical and chemical analysis \\
\hline 332090 & Manufacture of measuring and control instruments n.e.c. \\
\hline 333000 & Manufacture of industrial process control equipment \\
\hline 335000 & Manufacture of clocks and watches \\
\hline 501010 & Wholesale, cars \\
\hline 502010 & Maintenance and repair of motor vehicles \\
\hline 502020 & Body work of motor vehicles \\
\hline 502030 & Auto electricians \\
\hline 502040 & Undersealing of cars \\
\hline 502050 & Car lacquers \\
\hline 502060 & Tyre and tube repair \\
\hline 502090 & Other servicing of motor vehicles \\
\hline 527210 & Repair, electrical houshold machines \\
\hline 527220 & Repair, radio and television \\
\hline 527410 & Repair, bicycle \\
\hline 725000 & Maintenance and repair of office machinery \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{9}{*}{090. Road contractors etc.} & 743020 & Testing activities, cars, ships etc. \\
\hline & 451100 & Demolition of buildings; earth moving \\
\hline & 451200 & Test drilling and boring \\
\hline & 452100 & General construction of buldings and civil engineering work \\
\hline & 452520 & Paving \\
\hline & 452530 & Sewer contractors \\
\hline & 452540 & Scaffold suppliers \\
\hline & 452590 & Other construction work involving special trades \\
\hline & 455000 & Renting of construction equipment \\
\hline \multirow{5}{*}{100. Bricklayer, joiner, and carpentry work} & & \\
\hline & 452200 & Erection of roof coverings and frames \\
\hline & 452510 & Brick laying \\
\hline & 454200 & Joinery installation \\
\hline & & \\
\hline \multirow[t]{6}{*}{110. Finishing} & 454100 & Plastering \\
\hline & 454310 & Floor and wall covering \\
\hline & 454320 & Planing of floor boards \\
\hline & 454410 & Painting firms \\
\hline & 454420 & Glazing firms \\
\hline & 454500 & Other building completion \\
\hline \multirow{4}{*}{120. Insulation and installation businesses} & & \\
\hline & 453100 & Installation of electrical wiring and fittings \\
\hline & 453200 & Insulation work activities \\
\hline & 453300 & Plumbing \\
\hline \multirow{15}{*}{130. Printing works and publishing} & & \\
\hline & 221110 & Publishing of books etc. with publishing house \\
\hline & 221120 & Publishing of books etc. without publishing house \\
\hline & 221210 & Publishing of newspapers, with publishing house \\
\hline & 221220 & Publishing of newspapers, without publishing house \\
\hline & 221310 & Publishing of journals, with publishing house \\
\hline & 221320 & Publishing of journals, without publishing house \\
\hline & 221330 & Publishing of advertisment sheets with publishing house \\
\hline & 221340 & Publishing of advertisment sheets, without publishing house \\
\hline & 221400 & Publishing of sound recordings \\
\hline & 221500 & Other publishing \\
\hline & 222100 & Printing of newspapers \\
\hline & 222210 & Book and offset printing \\
\hline & 222230 & Serography \\
\hline & 222290 & Printing n.e.c. \\
\hline
\end{tabular}
140. Paper, cardboard and bookbinding industries
150. Wholesale trade
\begin{tabular}{|c|c|}
\hline 222410 & Reproduction \\
\hline 222420 & Composing \\
\hline 222500 & Other activities related to printing \\
\hline 223100 & Reproduction of sound recording \\
\hline 223200 & Reproduction of video recording \\
\hline 223300 & Reproduction of computer media \\
\hline 212100 & manufacture of corrugated paper and paperboard \\
\hline 212200 & Manufacture of household and toilet requisites of paper \\
\hline 212310 & Manufacture of writing paper \\
\hline 212390 & Manufacture of office articles in paper \\
\hline 212500 & Manufacture of other paper articles n.e.c. \\
\hline 222300 & Bookbinding and finishing \\
\hline 157110 & Manufacture of prepared feeds for farm animals \\
\hline 157120 & Manufacture of prepared feeds for fish \\
\hline 158600 & Processing of tea and coffee \\
\hline 159300 & Manufacture of wine from fresh grapes \\
\hline 159400 & Manufacture of other fruit wines \\
\hline 503010 & Wholesale, motor vehicle parts \\
\hline 511710 & Agents, fishing auctions \\
\hline 511790 & Agents, other food, beverages and tobacco \\
\hline 512100 & Wholesale, grain, seeds, animal feeds \\
\hline 512200 & Wholesale, flowers and plants \\
\hline 512300 & Wholesale, live animals \\
\hline 512400 & Wholesale, hides, skins and leather \\
\hline 513100 & Wholesale, fruit and vegetables \\
\hline 513200 & Wholesale, meat and meat products \\
\hline 513300 & Wholesale, dairy produce, eggs, edible oil\&fats \\
\hline 513410 & Wholesale, beer and soft drinks \\
\hline 513420 & Wholesale, wine and spirits \\
\hline 513490 & Wholesale, other beverages n.e.c. \\
\hline 513500 & Wholesale, tobacco \\
\hline 513600 & Wholesale, sugar, chocolate, confectionary \\
\hline 513700 & Wholesale, coffe, tea, cocoa, spices \\
\hline 513810 & Wholesale, fish and fish products \\
\hline 513820 & Wholesale, bread and biscuits \\
\hline 513830 & Wholesale, health foods \\
\hline 513890 & Other specialized wholesale, food, beverage n.e.c. \\
\hline 513900 & Non-specialized wholesale, beverage, food and tobacco \\
\hline 514100 & Wholesale, textiles \\
\hline 514210 & Wholesale, clothing \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 514220 & Wholesale, footwear \\
\hline & 514310 & Wholesale, white goods \\
\hline & 514320 & Wholesale, radio and television goods \\
\hline & 514330 & Wholesale, gremmophone records, video tapes etc. \\
\hline & 514340 & Wholesale, electrical household appliances \\
\hline & 514410 & Wholesale, china and glassware \\
\hline & 514420 & Wholesale, cleaning materials \\
\hline & 514500 & Wholesale, perfume and cosmetics \\
\hline & 514610 & Wholsale, pharmaceutical goods \\
\hline & 514620 & Wholesale, medical appliances \\
\hline & 514705 & Wholesale, furnitures \\
\hline & 514710 & Wholesale, floor coverings \\
\hline & 514715 & Wholesale, jewellery \\
\hline & 514720 & Wholesale, clocks and optical goods \\
\hline & 514725 & Wholesale, photographic goods \\
\hline & 514730 & Wholesale, bicycles \\
\hline & 514735 & Wholesale, sport articles etc. \\
\hline & 514740 & Wholesale, games and toys \\
\hline & 514745 & Wholesale, books and paper products \\
\hline & 514750 & Wholesale, luggage, leather products etc. \\
\hline & 514790 & Wholesale, houshold articles n.e.c. \\
\hline & 515100 & Wholesale, fuels and related products \\
\hline & 515200 & Wholesale, metal and metal ores \\
\hline & 515310 & Wholesale, construction materials \\
\hline & 515320 & Wholesale, paint, varnish, wallpaper \\
\hline & 515400 & Wholesale, hardware, plumbing and heating equipment \\
\hline & 515500 & Wholesale, chemical products \\
\hline & 515610 & Wholesale,packing and wrapping articles \\
\hline & 515690 & Wholesale, other intermediate products \\
\hline & 515700 & Wholesale, waste and scrap \\
\hline & 516100 & Wholesale, machine tools for working metal and wood \\
\hline & 516200 & Wholesale, construction machinery \\
\hline & 516300 & Wholesale, machinery for the textile industry \\
\hline & 516410 & Wholesale, office machinery \\
\hline & 516420 & Wholesale, office furniture and appliances \\
\hline & 516510 & Wholesale, machinery for electrical installation \\
\hline & 516520 & Wholesale, electronic components \\
\hline & 516590 & Wholesale, other machinery for use in industry etc. \\
\hline & 516600 & Wholesale, agrcultural machinery \\
\hline & 517000 & Other wholesale \\
\hline & 524890 & Retail, fuel for domestic use \\
\hline \multirow[t]{2}{*}{160. Transport of goods} & 602410 & Haulage contractors \\
\hline & 602420 & Furniture removers \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 170. Transport of passengers & 601000 & Transport via railways \\
\hline & 602100 & Other scheduled land transport \\
\hline & 602200 & taxi operation \\
\hline & 602300 & Other non-scheduled road passenger transport \\
\hline & 611020 & Shipping, passengers \\
\hline & 612000 & Inland water transport \\
\hline & 621000 & Scheduled air transport \\
\hline & 622010 & Chartered air transport of passengers \\
\hline & 622030 & Air taxi operation \\
\hline & 632120 & Parking houses and garages \\
\hline & 632220 & Harbours, pleasure boats \\
\hline & 632300 & Airway terminals etc. \\
\hline & & \\
\hline 180. Fire service, lighthouse and salvage & 632230 & Lighthouse activities and pilotage \\
\hline & 632240 & Salvage activities \\
\hline & 752500 & Fire service activities \\
\hline & & \\
\hline 190. Textile, clothing, and leather industry & 171000 & Preparation of spinning of textile fibers \\
\hline & 172000 & Textile weaving \\
\hline & 173000 & Finishing of textiles \\
\hline & 174010 & Manufacture of sails, flags and tents \\
\hline & 174020 & Manufacture of furnishing fabrics \\
\hline & 174090 & Manufacture of other made-up textile articles \\
\hline & 175100 & Manufacture of carpets and rugs \\
\hline & 175210 & Manufacture of ropes \\
\hline & 175220 & Manufacture of fish nets \\
\hline & 175400 & Manufacture of other textiles n.e.c. \\
\hline & 176000 & Manufacture of knitted and crocheted fabrics \\
\hline & 177100 & Manufacture of knitted and crocheted hosiery \\
\hline & 177200 & Manufacture of knitted and crocheted pullovers, cardigans etc. \\
\hline & 181000 & Manufacture of leather clothes \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 182100 & Manufacture of workwear \\
\hline & 182210 & Manufacture of outerwear (men and women) \\
\hline & 182220 & Manufacture of dresses and trousers (women and girls) \\
\hline & 182230 & Manufacture of coates and trousers (men and boys) \\
\hline & 182310 & Manufacture of shirts \\
\hline & 182390 & Manufacture of underwear n.e.c. \\
\hline & 182410 & Manufacture of baby clothes \\
\hline & 182490 & Manufacture of other clothes n.e.c. \\
\hline & 183000 & Dressing and dyeing of fur; manufacture of articles of fur \\
\hline & 191000 & Tanning and dressing of leather \\
\hline & 192000 & Manufacture of luggage, handbags etc. \\
\hline & 193010 & Manufacture of shoes \\
\hline & 193020 & manufacture of wooden shoes \\
\hline & 372000 & Recycling of non-metal waste and scrap \\
\hline & & \\
\hline 200. Manufacture of wood and wood products & 201010 & Sawmills \\
\hline & 201020 & Impregnation of wood \\
\hline & 202000 & Manufacture of veneer sheets etc. \\
\hline & 203010 & Manufacture of frames and furniture mouldings \\
\hline & 203020 & Manufacture of wooden parts for buildings \\
\hline & 203030 & Manufacture of wooden bulding units \\
\hline & 204000 & Manufacture of wooden containers \\
\hline & 205110 & Woodturners \\
\hline & 205120 & Manufacture of coffins \\
\hline & 205190 & Manufacture of other wooden products n.e.c. \\
\hline & 205200 & manufacture of articles of cork, straw and plaiting \\
\hline & 361110 & Manufacture of chairs and seats \\
\hline & 361120 & Upholstery of chair and seats \\
\hline & 361200 & Manufacture of other office and shop furniture \\
\hline & 361300 & Manufacture of kitchen furniture \\
\hline & 361410 & Manifacture of other furniture \\
\hline & 361490 & Furniture lacquers \\
\hline & 361500 & Manifacture of mattresses \\
\hline & & \\
\hline 210. Mineral, oil, rubber and plastic products & 232000 & Manufacture of refined petroleum products \\
\hline & 251100 & Manufacture of rubber tyres and tubes \\
\hline & 251200 & Retreading and rebuilding of rubber tyres \\
\hline & 251300 & Manufacture of other rubber products \\
\hline & 252110 & Manufacture of plastic plates and sheets \\
\hline & 252120 & Manufacture of plastic tubes \\
\hline & 252130 & Manufacture of plastic profiles \\
\hline & 252200 & Manufacture of plastic packing goods \\
\hline
\end{tabular}
220. Stone-works, pottery, and glass industry
230. Medical equipment, toys, cameras etc.
\begin{tabular}{|c|c|}
\hline 252310 & Manufacture of plastic sanitary appliances \\
\hline 252390 & Manufacture of other plastic building material \\
\hline 252410 & Manufacture of plastic office appliances \\
\hline 252420 & Manufacture of plastic kitchen appliances \\
\hline 252490 & Manufacture of other plastic products n.e.c. \\
\hline 268210 & Manufacture of asphalt and roofing felt \\
\hline 261100 & Manufacture of flat glass \\
\hline 261200 & Shaping and processing of flat glass \\
\hline 261300 & Manufacture of hollow glass \\
\hline 261400 & Manufacture of glass fibres \\
\hline 261500 & Manufacture and processing of other glass n.e.c. \\
\hline 262100 & Manufacture of ceramic household articles \\
\hline 262200 & Manufacture of ceramic sanitary fixtures \\
\hline 262300 & Manufacture of ceramic insulators \\
\hline 262400 & Manufacture of other technical ceramic products \\
\hline 262500 & Manufacture of other ceramic products \\
\hline 262600 & Manufacture of refractory ceramic products \\
\hline 263000 & Manufacture of ceramic tiles and flags \\
\hline 264000 & Manufacture of bricks etc. \\
\hline 266110 & Manufacture of concrete products \\
\hline 266120 & Manufacture of building units in concrete \\
\hline 266200 & Manufacture of plaster products for buildings \\
\hline 266500 & manufacture of fibre cement \\
\hline 266600 & Manufacture of other articles of concrete, plaster and cement \\
\hline 267000 & Cutting, shaping and finishing of stone \\
\hline 268220 & Manufacture of rockwool \\
\hline 268290 & Manufacture of other non-metallic mineral products n.e.c. \\
\hline 212400 & Manufacture of wallpaper \\
\hline 246500 & Manufacture of prepared unrecorded media \\
\hline 331010 & Manufacture of syringes and hypodermic needles \\
\hline 331020 & Manufacture of hearing aids \\
\hline 331030 & Manufacture of electro-diagnostic devices \\
\hline 331040 & Manufacture of medical or dental furniture and equipment \\
\hline 331090 & Manufacture of other medical and surgical equipment \\
\hline 334010 & Manufacture of optical instruments \\
\hline 334020 & Manufacture of reproduction cameras \\
\hline 334090 & Manufacture of photographic and cinema equipment \\
\hline 363000 & Manufacture of musical instruments \\
\hline 364000 & Maanufacture of sport goods \\
\hline
\end{tabular}
\begin{tabular}{l|ll|} 
240. Manufacture of \\
industrial chemicals
\end{tabular}\(|\)\begin{tabular}{lll}
365000 & Manufacture of games and toys \\
\hline 366100 & Manufacture of imitation jewellery \\
366200 & Manufacture of brooms and brushes \\
366390 & Other manufacturing n.e.c. \\
\hline 241100 & Manufacture of industrial gases \\
\hline 241200 & Manufacture of dyes and pigments \\
\hline 241300 & Manufacture of other inorganic basic chemicals \\
\hline 241400 & Manufacture of other organic basic chemicals \\
\hline 241500 & Manufacture of fertilizers etc. \\
\hline 241600 & Manufacture of plastics in primary forms \\
\hline 242000 & Manufacture of agro-chemical products \\
\hline 243000 & Manufacture of paints, varnishes etc. \\
\hline 245110 & Manufacture of soap detergents \\
\hline 245120 & Manufacture of cleaning and polishing preparations \\
\hline 245200 & Manufacture of perfumes and toilet preparations \\
\hline 246100 & Manufacture of explosives \\
\hline 246200 & Manufacture of glues and gelatine \\
\hline 246400 & Manufacture of photographic chemical material \\
\hline 246600 & Manufacture of other chemical products n.e.c. \\
\hline 247000 & Manufacture of man-made fibres \\
\hline 366310 & Manufacture of stearin candles \\
\hline & & \\
\hline 103000 & Extraction and agglomeration of peat \\
\hline 111000 & Extraction of crude petroleum and natural gas \\
250. Heavy raw material \\
and semi-manufacture
\end{tabular}
260. Pharmaceutical industry
271. Office \& adm. (transport \& wholesale)
272. Office \& adm. (service)
273. Finance/ Public office \& adm
\begin{tabular}{|c|c|}
\hline 244100 & Manufacture of pharmaceutical products \\
\hline 244200 & Manufacture of pharmaceutical preparations \\
\hline 511100 & Agents, agricultural raw material, animals, textile and semi-finished goods \\
\hline 511200 & Agents, fuels, ores, metals and industrial chemicals \\
\hline 511300 & Agents, timber and building material \\
\hline 511400 & Agents, machinery, industrial equipment, ships and aircrafts \\
\hline 511500 & Agents, furniture, household goods, hardware and iron \\
\hline 511600 & Agents, textiles, clothing, footwear, leather goods \\
\hline 511800 & Agents, particular products n.e.c. \\
\hline 511900 & Agents, a variety of goods \\
\hline 634010 & Shipbrokers \\
\hline 634020 & Shipping agents \\
\hline 634030 & Weighers and measurers \\
\hline 634090 & Activities of other transport agencies \\
\hline 711000 & Rental of cars \\
\hline 702010 & Non-profit housing associations \\
\hline 702020 & Private housing cooperatives \\
\hline 702030 & Other rental of dwellings \\
\hline 702040 & Non-residential buildings \\
\hline 651100 & Central banking \\
\hline 651200 & Other monetary intermediation \\
\hline 652100 & Financial leasing \\
\hline 652210 & Morgage credit institutes \\
\hline 652295 & Other credit granting \\
\hline 652310 & Investment in securities \\
\hline 652395 & Other financial intermediation n.e.c. \\
\hline 660100 & Life insurance \\
\hline 660210 & Pension funding \\
\hline 660290 & Other deferred annuity assurances \\
\hline 660310 & Accident insurance \\
\hline 660320 & Health insurance \\
\hline 660390 & Other insurance activities \\
\hline 671100 & Administration of financial markets \\
\hline 671200 & Security dealing activities \\
\hline 671300 & Activities auxiliary to financial intermediation n.e.c. \\
\hline 672010 & Insurance agencies \\
\hline 672090 & Other activities auxiliary to insurance and pension funding \\
\hline 751100 & General public service activities \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{7}{*}{274. Private office \& adm.} & 751200 & Regulation, health care, education and social services \\
\hline & 751300 & Regulation, business operations \\
\hline & 751400 & Ancillary service for the government \\
\hline & 752100 & Foreign affairs \\
\hline & 752310 & Law courts \\
\hline & 753000 & Compulsory social security activities \\
\hline & 633010 & Tourist agencies \\
\hline & 633020 & Travel agencies, activities of tour operators \\
\hline & 633030 & Travel agencies, sale of tickets \\
\hline & 633040 & Tourist guide activities \\
\hline & 701100 & Development and selling of real estate \\
\hline & 701200 & Buying and selling of own or leased real estate \\
\hline & 703110 & Real estate agency \\
\hline & 703120 & Accomodation agency \\
\hline & 703130 & Rental of holiday homes \\
\hline & 703220 & Societies for people in owner-occupied dwellings \\
\hline & 712110 & Rental of containers \\
\hline & 712190 & Rental of lorries \\
\hline & 712200 & Rental of ships \\
\hline & 712300 & Rental of air crafts \\
\hline & 713100 & rental of agricultural machinery \\
\hline & 713200 & Rental of construction equipment \\
\hline & 713310 & Rental of computers and related equipment \\
\hline & 713320 & Rental of office machinery \\
\hline & 713400 & Rental of other machinery n.e.c. \\
\hline & 721000 & Hardware consultancy \\
\hline & 722000 & Software consultancy and supply \\
\hline & 723000 & Data processing \\
\hline & 724000 & Data base activities \\
\hline & 726000 & Other computer related activities \\
\hline & 741100 & Legal activities \\
\hline & 741200 & Accounting, book-keeping etc. \\
\hline & 741300 & Market research \\
\hline & 741410 & Consultant activities, agriculture \\
\hline & 741490 & Consultant activities, other industries \\
\hline & 741500 & Management holding companies \\
\hline & 742010 & Consultant engineers, construction \\
\hline & 742020 & Consultant engineers, machinery \\
\hline & 742030 & Consultant engineers, industrial plant design \\
\hline & 742040 & Architects \\
\hline & 742050 & Landscape architects \\
\hline & 742060 & Geological and prospecting activities \\
\hline & 742070 & Chartered surveyors etc. \\
\hline & 742080 & Patent agencies \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & 742090 & Other technical consultancy \\
\hline & 743010 & Testing activities, food hygiene \\
\hline & 743030 & Testing activities, outdoor water and air quality etc. \\
\hline & 743090 & Other testing and analysis activities \\
\hline & 744010 & Advertising agencies \\
\hline & 744090 & Other activities related to advertisement \\
\hline & 745010 & Employment agencies \\
\hline & 745020 & Temporary employment agencies \\
\hline & 745030 & Personell procurement \\
\hline & 748200 & Packaging activities \\
\hline & 748310 & Envelope addressing \\
\hline & 748320 & Translation and interpretation \\
\hline & 748390 & Other secretarial services \\
\hline & 748410 & Interior decorators \\
\hline & 748420 & Designers \\
\hline & 748430 & Evaluators of creditworthiness \\
\hline & 748440 & Organisers of exhibitions etc. \\
\hline & 748490 & Other buisiness activities n.e.c. \\
\hline & 853255 & Public health associations \\
\hline & 853260 & Charity funds \\
\hline & 911100 & Business and employers organisations \\
\hline & 911200 & Activities of professional organisations \\
\hline & 912000 & Trade unions \\
\hline & 913200 & Political organisations \\
\hline & 913310 & Tenants' associations \\
\hline & 913320 & Organisations for outdoor life \\
\hline & 913330 & Other ideological organisations \\
\hline & 913340 & Other cultural organisations \\
\hline & 913390 & Social clubs etc. \\
\hline & 924000 & News agency activities \\
\hline & 990000 & Extra-territorial organisations \\
\hline & & \\
\hline 281. Car dealers & 501020 & Retail, cars \\
\hline & 504000 & Sale and repair of motorcycles and accessories \\
\hline & & \\
\hline 282. Garage & 505010 & Retail, automotive fuel without kiosk sale \\
\hline & 505020 & Retail, automotive fuel and kiosk sale \\
\hline & & \\
\hline 283. Shops & 501030 & Wholesale and retail, camping vehicles etc. \\
\hline & 503020 & Retail, motor vehicle parts \\
\hline & 521120 & Kiosks \\
\hline & 522100 & Retail, fruit and vegetables \\
\hline & 522200 & Retail, meat and meat products \\
\hline & 522300 & Retail, fish, crustaceans and molluscs \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 522410 & Retail, bread \\
\hline 522420 & Retail, confectionary \\
\hline 522500 & Retail, alcoholic and other beverages \\
\hline 522600 & Retail, tobacco \\
\hline 522710 & Retail, cheese \\
\hline 522730 & Retail, health foods \\
\hline 522790 & Retail, other specialized food or beverage products \\
\hline 523200 & Retail, medical and orthopaedic goods \\
\hline 523310 & Retail, perfume \\
\hline 523320 & Retail, cosmetics \\
\hline 524100 & Retail, textiles \\
\hline 524210 & Retail, clothing for women \\
\hline 524220 & Retail, clothing for men \\
\hline 524230 & Retail, clothing for men and women \\
\hline 524240 & Retail, clothing for children \\
\hline 524310 & Retail, footwear \\
\hline 524320 & Retail, leather goods \\
\hline 524430 & Retail, domestic textiles \\
\hline 524440 & Retail, kichen articles \\
\hline 524450 & Retail, lighting equipment \\
\hline 524530 & Retail, musical records, CD's etc. \\
\hline 524540 & Retail, musical instruments \\
\hline 524610 & Retail, hardware \\
\hline 524630 & Retail, paint and wallpaper \\
\hline 524700 & Retail, books, newspapers, stationary \\
\hline 524805 & Retail, clocks \\
\hline 524810 & Retail, clocks and jewellery \\
\hline 524815 & Retail, jewellery \\
\hline 524820 & Retail, optical equipment \\
\hline 524825 & Retail, photography \\
\hline 524830 & Retail, souvenirs \\
\hline 524835 & Retail, art \\
\hline 524840 & Retail, stamps and coins \\
\hline 524845 & retail, sport articles \\
\hline 524850 & Retail, games and toys \\
\hline 524855 & Retail, pleasure boats and related equipment \\
\hline 524860 & Retail, bicycles \\
\hline 524865 & Retail, computers and software \\
\hline 524870 & Retail, telecommunication \\
\hline 524875 & Retail, flowers \\
\hline 524880 & Retail, garden centers \\
\hline 524885 & Retail, pets \\
\hline 524895 & Retail, pornography \\
\hline 524899 & Retail, other commodities \\
\hline 525010 & Retail, second-hand books \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{10}{*}{290. Supermarkets, department stores etc.} & 521110 & Grocer's \\
\hline & 521130 & Supermarkets \\
\hline & 521210 & Smaller department stores \\
\hline & 521220 & Larger department stores \\
\hline & 524410 & Retail, furniture \\
\hline & 524420 & Retail, carpets \\
\hline & 524510 & Retail, electric household appliances \\
\hline & 524520 & Retail, radio and television \\
\hline & 524620 & Retail, building material \\
\hline & & \\
\hline \multirow[t]{4}{*}{300. Sewers, water- and gas supply} & 402000 & Manufacture and distribution of gas \\
\hline & 410000 & Collection, purification and distribution of water \\
\hline & 900010 & Sewage disposal \\
\hline & & \\
\hline \multirow[t]{13}{*}{310. Personal care and other services} & 527100 & Repair of boots and shoes \\
\hline & 527420 & Locksmiths \\
\hline & 527490 & Repair n.e.c. \\
\hline & 703210 & Management of real estate on a contract basis \\
\hline & 714090 & Rental of goods for domestic and personal use \\
\hline & 747050 & Desinfection and extermination activities \\
\hline & 930210 & Hairdressing \\
\hline & 930220 & Beuty treatment \\
\hline & 930310 & Funeral undertakers \\
\hline & 930320 & Burial authorities \\
\hline & 930400 & Physical well-being activities \\
\hline & 930500 & Other service activities n.e.c. \\
\hline & 950000 & Private housholds with employees \\
\hline & & \\
\hline \multirow[t]{4}{*}{320. Cleaning, laundries, and dry cleaners} & 747010 & General cleaning activities \\
\hline & 747020 & Specialised cleaning activities \\
\hline & 747030 & Window cleaning \\
\hline & 747040 & Chimney sweeping \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{} & 930110 & Laundries \\
\hline & 930120 & Management of self-service laundries \\
\hline & 930130 & Dry-cleaning \\
\hline 330. Telecommunication & 642000 & Telecommunication \\
\hline \multirow[t]{6}{*}{340. Surveillance, armed forces, police etc.} & 746000 & Investigation and security activities \\
\hline & 752200 & Defence activities \\
\hline & 752320 & Prison administration \\
\hline & 752400 & Police force \\
\hline & 802270 & Police and defence schools \\
\hline & & \\
\hline \multirow[t]{15}{*}{350. Hotels and restaurants} & 551110 & Hotels with restaurant \\
\hline & 551120 & Conference centres \\
\hline & 551200 & Hotels without restaurant \\
\hline & 552100 & Youth hostels \\
\hline & 552200 & Camping sites \\
\hline & 552310 & Holiday chalets and flats \\
\hline & 552390 & Other facilities n.e.c. \\
\hline & 553010 & Restaurants \\
\hline & 553020 & Cafeterias, icecream bars and takeaways \\
\hline & 553090 & Rooms for private parties \\
\hline & 554010 & Public houses and wine bars \\
\hline & 554020 & Discotheques and night clubs \\
\hline & 554090 & Coffe bars etc. \\
\hline & 555100 & Canteens \\
\hline & 555200 & Catering \\
\hline \multirow{6}{*}{361. Photographers, film and videoproduction} & & \\
\hline & 748110 & Photographers \\
\hline & 748120 & Film processing \\
\hline & 921100 & Motion picture and video production \\
\hline & 921200 & Motion picture and video distribution \\
\hline & & \\
\hline \multirow[t]{8}{*}{362. Entertainment, culture and sport} & 921300 & Motion picture projection \\
\hline & 922000 & Radio and television activities \\
\hline & 923110 & Production of theatrical and concert presentations \\
\hline & 923120 & Self-employed artists \\
\hline & 923200 & Operation of art facilities \\
\hline & 923300 & Amusement parks \\
\hline & 923400 & Other entertainment activities n.e.c. \\
\hline & 925200 & Museums activities \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline \multirow[t]{12}{*}{450. Nursing homes, home care, etc.} & 801020 & Schools for handicapped people \\
\hline & 853130 & Institutions, alcohol and drug dependance \\
\hline & 853140 & Residential homes for handicapped adults \\
\hline & 853150 & Nursing homes and sheltered accomodations \\
\hline & 853160 & Reception centres \\
\hline & 853190 & Other care institutions n.e.c. \\
\hline & 853235 & Home help \\
\hline & 853240 & Day care for elderly \\
\hline & 853245 & Revalidation institutons \\
\hline & 853250 & Refugee centres \\
\hline & 853290 & Other social care activities \\
\hline & & \\
\hline \multirow[t]{9}{*}{460. Child care etc.} & 853110 & Residential homes for children and young people \\
\hline & 853120 & family care activities \\
\hline & 853205 & Child-minders \\
\hline & 853210 & Day nursery \\
\hline & 853215 & Kindergarten \\
\hline & 853220 & After-school centres \\
\hline & 853225 & Institutions for all ages \\
\hline & 853230 & Clubs for children \\
\hline & & \\
\hline \multirow[t]{6}{*}{471. General practitioners, dentists etc.} & 851210 & General practitioners \\
\hline & 851220 & Special medical practice activities \\
\hline & 851300 & \\
\hline & 851310 & Practice activities, dentists \\
\hline & 851320 & Practice activities, dental technicians \\
\hline & & \\
\hline \multirow[t]{13}{*}{472. Health care n.e.c.} & 523100 & Dispensing chemists \\
\hline & 851410 & District nurse activities \\
\hline & 851420 & Midwife activities \\
\hline & 851430 & Physiotherapy \\
\hline & 851440 & Psychologic counselling \\
\hline & 851450 & Medical laboratories \\
\hline & 851460 & Employees' health service \\
\hline & 851470 & Chiropractors \\
\hline & 851480 & Chiropodists \\
\hline & 851490 & Sanatoria \\
\hline & 852000 & Veterinary activities \\
\hline & 913100 & Religous organisations \\
\hline & & \\
\hline \multirow[t]{2}{*}{480. Education and research} & 731000 & Research etc., natural sciences and engineering \\
\hline & 732000 & Research etc.,social sciences and humanities \\
\hline
\end{tabular}
\begin{tabular}{|l|ll}
801010 & Primary and lower secondary school \\
801030 & Continuation schools \\
802100 & Upper secondary school \\
802210 & Schools with training in pedagogy \\
802220 & Business and office schools \\
802230 & Craftmanship schools \\
802240 & Agricultural schools \\
802250 & Transport schools \\
802260 & Health care schools \\
803010 & Universities \\
803020 & College, pedagigy \\
803030 & College, art and humanities \\
803040 & College, social sciences \\
803050 & College, technology \\
803060 & College, agriculture \\
803070 & College, health care \\
804100 & Driving schools \\
804210 & Professional training for adults \\
804220 & Folk high school \\
804230 & Other adult education \\
804290 & Education n.e.c. \\
\hline 490. Fishing & \begin{tabular}{ll} 
\\
990. Unstated
\end{tabular} & \begin{tabular}{ll} 
Fishing \\
\hline
\end{tabular} \\
\hline
\end{tabular}```

