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Abstract
Gradient-based optimization is a potent tool in many design processes today. It is particularly useful
in industries where weight considerations are crucial, such as aerospace, but can also be exploited in
for example civil engineering applications to reduce the material use and thereby the environmental
impact. With the advent of advanced manufacture methods, it even possesses the potential to design
novel materials with enhanced properties that naturally occurring materials lack. Unfortunately, most
research on the subject often limits itself to linear problems, wherefore the optimization’s utility in
solving intricate non-linear problems is still comparatively rudimentary. The aim of this thesis is
therefore to investigate gradient-based optimization of various non-linear structural problems, while
addressing their inherent numerical and modeling complexities.

This thesis contains an introduction to gradient-based optimization of non-linear structures and
materials, involving both shape and topology optimization. To start, the governing equations of the
macroscopic and microscopic problems are described. A multi-scale framework which details the
transition between the scales is defined. A substantial part of the thesis is dedicated to eigenvalue
problems in topology optimization, and the numerical issues that they accompany. Specifically, the
effects of finite deformations on the topology optimized design taking into account eigenfrequen-
cies, structural stability or elastic wave propagation are scrutinized. A fictitious domain approach
to topology optimization is employed, wherein void regions are modeled via an ersatz material with
low stiffness. Unfortunately, this brings about artificial eigenmodes and convergence problems in the
finite element analyzes. Two methods which deal with both of the aforementioned problems are pro-
posed, and their efficacy is illustrated via several numerical examples. The use of shape optimization
to post-process topology optimized designs is investigated for problems where accurate boundary de-
scriptions are crucial to capture the physics, as is the case in contact problems. To take this concept
further, a simultaneous topology and shape optimization method is proposed, which allows parts of
the structural boundaries to be modeled exactly up to numerical precision. This approach is proven
to be especially useful in the design of pressure-driven soft robots.
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Populärvetenskaplig sammanfattning
Vid tillverkning av strukturella komponenter är mängden och typen av tillgängligt material ofta be-
gränsat i den mån att komponenten inte får vara för tung och dyr. Samtidigt skall komponenten
uppfylla sitt ändamål, som exempelvis att kunna bära en viss last utan att deformeras för mycket,
eller att inte uppnå resonans när den utsätts för vibrationer inom specifika frekvensspann. Tradition-
ellt utgörs en designprocess utav iterativ utvärdering av inkrementellt förbättrade designer som tas
fram baserat på mänsklig intuition och erfarenhet. Förutom att den här typen av designprocess är
tidskrävande och dyr, så garanterar den ej att den slutgiltiga designen är optimal.

Med hjälp av matematiska optimeringsmetoder förenklas sökandet efter optimal design, samti-
digt som designprocessen effektiviseras. En tidig typ av optimering var formoptimering, där struk-
turens ränder förflyttas för att uppnå en förbättring av dess egenskaper. För att möjliggöra större
förändringar av strukturens geometri utvecklades senare topologioptimering, där ändringar gällande
form, tjocklek samt sammankopplingar mellan olika beståndsdelar tillåts. Lösningen till ett matem-
atiskt optimeringsproblem utgör en konceptuell design som är optimerad i förhållande till uttryckta
önskemål.

För att lösa ett visst optimeringsproblem, måste strukturens hållfasthet utvärderas. I vissa fall
kan även andra egenskaper såsom egenfrekvenser och stabilitet behöva utredas. För att beskriva det
fysikaliska systemet införs vissa antaganden, som exempelvis små töjningar och linjärelastisk material-
respons, vilka avsevärt förenklar lösningen av de styrande differentialekvationerna. Tyvärr begränsar
även dessa antaganden användningen av optimeringsmetoderna, då många strukturer och material i
verkligheten beter sig högst olinjärt.

I den här avhandlingen modelleras både struktur och material med hjälp av avancerade olinjära
teorier och metoder. Avhandlingen behandlar optimering av strukturella problem där egenvärdes-
problem uppstår, såsom är fallet då hänsyn tas till egenfrekvenser, stabilitet eller vågutbredning. De
numeriska metoder som krävs för att lösa egenvärdesproblem i topologioptimering utvecklas och
analyseras. Här utröns även hur egenvärden påverkas av yttre last, det vill säga spänningar i strukturen.
Resultaten visar på en tydlig inverkan av pålagda krafter, vilket leder till stora förändringar av den
optimerade designen jämfört med om antaganden om linjäritet antas.

En annan del av avhandlingen behandlar det ytterst olinjära fenomenet kontakt i kombination
med topologioptimering. Så kallade metamaterial, det vill säga material med egenskaper som inte ex-
isterar i naturligt förekommande material, designas vilka utnyttjar kontakt som en olinjär mekanism.
Här genomförs även rigorösa post-processerings analyser, där designen extraheras och dess egenskaper
utvärderas.

Slutligen presenteras en optimeringsmetod som utför form- och topologioptimering samtidigt.
Metoden visar sig vara mycket användbar i fall då randrepresentation är av stor betydelse, som till
exempel vid optimering av tryckdrivna robotar. Den här typen av robotar, som ofta benämns mjuka
robotar, har nyligen fått stor uppmärksamhet på grund av deras låga tillverkningskostnad och stora
mångsidighet. Olinjär antaganden krävs för att korrekt modellera robotarnas rörelse, då ofta stora
töjningar och hyperelastiska material såsom gummi är involverade.
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1 Introduction
The traditional design process of structural components involves heuristic techniques which iteratively
construct and evaluate conceptual designs based on human intuition and experience. Although this
process has proven its usefulness over the last centuries, it is certainly inefficient and does not guaran-
tee convergence towards optimal designs. The modern scientific development has further raised the
demand for increasingly efficient state-of-the-art design processes, as advanced components involving
multiple length-scales and branches of physics are needed. Here, computational design tools based
on mathematical programming excel, displaying great efficiency and ability to yield (at least local)
optima in the design space.

An example of such a tool is gradient-based structural optimization. The method was origin-
ally limited to the design of linear elastic load-bearing structures, typically with the aim to maximize
the stiffness-to-mass ratio. Nowadays, gradient-based optimization has proven applicable in design
problems involving various types of physics, such as photonics (Jensen and Sigmund (2011)), flu-
ids (Borrvall and Petersson (2003)) and electromagnetics (Dyck and Lowther (1996)). Indeed, the
method can even be used to design so-called meta-materials, with physical properties that do not
typically occur in materials found in nature, like negative thermal expansion (Sigmund and Torquato
(1997)) or negative Poisson’s ratio (Larsen et al. (1997)).

A structural optimization problem is typically posed as a shape or topology optimization problem.
The former approach parametrizes the design’s boundaries, and morphs the design into its optimized
configuration. The latter approach instead quantifies the material distribution in the design domain
via a density field, which allows immense transformations of the design’s morphology, but deterior-
ates the precision in the modeling of the design’s boundaries. Therefore, shape optimization is the
obvious candidate for improving structures with predefined topologies, whereas topology optimiza-
tion is superior when permitting greater design freedom.

The early research on structural optimization was restricted to analytical methods. A famous
example is the work byMichell (1904), who presented optimized linear elastic frame structures. With
the advent of numerical methods such as the finite element method, more advanced optimization
methods could be developed. For example, the seminal works by Zienkiewicz and Campbell (1973)
and Bendsøe and Kikuchi (1988) pioneered the nodal-based shape optimization and the density-
based topology optimization, respectively. Modern research on structural optimization address e.g.
the expansion to large scale problems (Alexandersen et al. (2016), Aage et al. (2017)), multi-physics
(Zhao and Zhang (2022), Kang and James (2022)), manufacturing constraints (Mhapsekar et al.
(2018), Zhang and Cheng (2020)) and irreversible processes (Li et al. (2017), Ivarsson et al. (2018),
Carstensen et al. (2022)).

Another field of research which currently is devoted much attention is the design of non-linear
hyperelastic mechanical structures and materials. The inherent reversibility of such systems can be
exploited to create applications with exotic behaviors, such as tunable Poisson’s ratio (Bertoldi et al.
(2010)), tunable phononic bandgaps (Bertoldi and Boyce (2008)) or programmable materials (Florijn
et al. (2014)). Frenzel et al. (2016) utilize buckling instabilities to design reusable shock absorbers.
An interesting application is the characterization and design of soft robots, which typically requires
a model which captures the finite deformation of hyperelastic elastomers such as rubber, cf. Rus and
Tolley (2015) and Paper E.
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Gradient-based optimization can be used as a systematic tool to produce designs which exhibit
the aforementioned behaviors. Early contributions to the structural optimization of non-linear hy-
perelastic mechanical problems include Buhl et al. (2000) and Bruns and Tortorelli (2001), whereby
stiff structures are sought. Wallin et al. (2018) illustrate that the definition of stiffness is non-unique
for non-linear problems, i.e. that structures that minimize the displacement for a given load might
in fact lack “true” stiffness in the sense of being instable in that equilibrium position. Buckling ob-
jectives in topology optimization are considered by e.g. Kemmler et al. (2005), Lindgaard and Dahl
(2013) and Dalklint et al. (2021) (Paper B), wherein eigenvalue problems are solved to identify the
critical instable equilibrium positions. The solutions to eigenvalue problems are also needed in op-
timization formulations involving vibration analyzes (Yoon (2010a), Dalklint et al. (2020) (Paper A)).
Examples of systematic design of hyperelastic meta-materials include the topology optimization of
programmable Poisson’s ratio materials (Wang (2018)), tunable phononic crystal materials (Dalklint
et al. (2022) (Paper C)), energy dissipating lattice structures (Deng et al. (2020)) and materials which
utilize self-contact to obtain a prescribed macroscopic response (Paper D).

1.1 Research aim

This thesis presents a theoretical and computational framework which designs non-linear structures
and materials using gradient-based optimization. The aim of the research is to expand the applicabil-
ity of the state-of-the-art gradient-based optimization to various hyperelastic engineering problems,
including both modeling and numerical aspects.
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2 Governing equations
This section introduces the balance, kinematical and constitutive equations that govern the non-
linear physical systems covered in this thesis. The concepts of macroscopic and microscopic scales
are distinguished. Here, the terminology of the microscopic scale refers to systems of characteristic
lengths much smaller than that of the macroscopic continuum, i.e. is not necessarily microscopic
in the conventional sense. For example, the multiscale model of concrete might utilize a microscale
in the order of centimeters to represent the cement and aggregate composite. Papers A, B and E
considers the modeling of macroscopic structures, whereas Papers C and D involves structures at the
microscopic scale.

2.1 Macroscopic relations

To consider finite deformations, the undeformed, reference configurationΩ ∈ R2, and the deformed,
current configuration Ωc ∈ R2 are distinguished¹, cf. Fig. 2.1. The transformation of a material
pointX ∈ Ω to x ∈ Ωc at time t > 0 is described by a smooth mapping x(X, t) = φ(X, t) =
X+u(X, t), whereu : Ω→ R2 denotes the displacement field. The local deformation is described
by the deformation gradient

F (X, t) = ∇φ(X, t) = 1+∇u(X, t), (2.1)

where∇ is thematerial gradient operator onΩ and 1 is the second order identity tensor. The Jacobian
representing the local volumetric change is J = det(F ). The local deformation is further described
by the right Cauchy-Green deformation tensor C = F T · F and the Green-Lagrange strain tensor
E = 1

2(C − 1). For later purposes, the linearized strain ϵ = 1
2((∇u)

T +∇u) is also introduced.

Ω Ωc

X x

F

ϕ

∂Ωu

∂Ωt

∂Ωc,u

∂Ωc,t

Reference configuration Current configuration

Fig. 2.1: The deformation of a macroscopic body.

In absence of body forces, the governing equations of motion of a compressible macroscopic body

¹Without loss of generality, the physical space is restricted to two dimensions.
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are
∇ · P = ρ

∂2u

∂t2
in Ω,

P · n = t̂ at ∂Ωt,

u = û at ∂Ωu,

(2.2)

where P is the macroscopic first Piola-Kirchhoff stress tensor, ρ > 0 is the mass density in the
reference configuration and the boundary ∂Ω with unit normal n, is decomposed into the disjoint
sets ∂Ωt and ∂Ωu, over which the traction t = t̂ and the displacement u = û, are prescribed,
respectively. The equilibrium configurations of Ω are also described by those u ∈ {u ∈ H1 :
u(X, t) = û forX ∈ ∂Ωu}, which satisfy the weak formulation of (2.2)

δr(u; δu) :=

∫
Ω

ρ
∂2u

∂t2
· δu dV +

∫
Ω

P : δF dV −
∫
∂Ωt

t̂ · δu dV = 0, (2.3)

for all smooth admissible virtual displacements δu, where δ( · ) is the variational operator and H1 is
a Hilbert space. Note that (2.2) or (2.3) readily are reduced to quasi-static conditions by neglecting
the inertial effects.

2.1.1 Constitutive model

To solve the (2.2) equations of motion, or equivalently the weak form (2.3), a constitutive model
which describes the relationship between the stresses and the deformation is required. The choice of
constitutive model ultimately depends upon what type of material that constitutesΩ, in combination
with the specific conditions, e.g. load magnitude, the body is subjected to.

Herein, isotropic hyperelasticity is assumed when solving macroscopic boundary value problems.
Under conservative quasi-static loading, this assumption presumes the existence of an energy potential

Π(u) = Πint − Πext =

∫
Ω

W dV −
∫
∂Ω

t · u dV, (2.4)

whereW = W (∇u) is the load history independent strain energy density. The stationarity of (2.4)
yields the weak formulation (2.3), where the first Piola-Kirchhoff stress tensor is derived fromW as

P =
∂W

∂F
. (2.5)

For later use, the Cauchy stress tensor is σ = 1
J
P · F T and the second Piola-Kirchhoff stress tensor

is S = F−1 · P . Also, the incremental elasticity tensor is

L =
∂2W

∂F ∂F
. (2.6)

The elastic strain energy density,W , is, unless stated otherwise, stated in the form of a compressible
neo-Hookean model

W =
1
4
K
(
(J2 − 1)− ln

(
J2))+ 1

2
G
(
J−2/3tr(F T · F )− 3

)
, (2.7)

where K and G correspond to the bulk and shear moduli in the limit of infinitesimal strain. Other
hyperelastic models appear in e.g. Holzapfel (2002).
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2.1.2 Total Lagrangian finite element formulation

The boundary value problem (2.2) is solved using a total Lagrangian approach, wherefore the associ-
ated weak form (2.3) is discretize via a finite element (FE) mesh over the reference configuration, Ω.
A Galerkin approach (Bathe (2006)) is utilized, wherefore both physical and variational displacement
fields are approximated using element polynomial shape functions N, e.g. u(X, t) ≈ N(X)ue(t)
and δu(X) ≈ N(X)δue, where ue(t) and δue are element nodal coefficients. The second derivative
of u with respect to t gives the approximative acceleration ∂2u(X)

∂t2
≈ N(X)üe(t).

Using the arbitrariness of the virtual nodal displacement and the finite element interpolations in
(2.3), yields the discretized residual

r = Mü+ Fint − Fext = 000, (2.8)

where the mass matrix M =
∑∑∫

Ωe
ρNTN dV , internal force vector Fint =

∑∑∫
Ωe

(∇N)T P dV ,
and external force vector Fext =

∑∑∫
∂Ωet

NT t̂ dS are introduced. Here,
∑∑

denotes the finite
element assembly operator and P = [P11, P12, P21, P22]

T . Typically, the external load is assumed
to be independent of the displacement, a situation referred to as “dead” loading. In this case, it is
convenient to assume Fext = λI, where λ ∈ R is the load scaling factor and I ∈ Rn describes the
load direction.

To solve (2.8), a Newton-Raphson iterative procedure could be utilized, wherein the truncated
Taylor series expansion

r(u+ du) ≈ r(u) +
∂r(u)
∂u

du = 000, (2.9)

is required. In (2.9), the Hessian of the potential energy appears, i.e. the tangent stiffness matrix

K =
∂r
∂u

=
∑∑∫

Ωe
(∇N)T L (∇N) dV, (2.10)

where L is the incremental elasticity tensor in Voigt notation.

2.2 Microscopic relations

Let us now consider a macroscopic bodyΩ, which consists of a heterogeneous material with a hitherto
unknown constitutive behavior. To predict the mechanical behavior of the material at each macro-
scopic material point X ∈ Ω, homogenization can be employed, wherein the material’s stress and
strain fields are obtained as volume averages over a representative unit cell Ωµ ∈ R2. It is assumed
that the microstructure is at least locally periodic, cf. Fig. 2.2, and that the assumption of separation
of length scales holds, wherefore |Ωµ| ≪ |Ω|, where | · | denotes the area. Without loss of general-
ity, rectangular unit cells with primitive lattice vectors A1 = a1e1 and A2 = a2e2 are considered,
where e1 and e2 are the orthonormal basis vectors and (a1, a2) ∈ (R× R). The unit cell boundary
∂Ωµ with outward unit normal n is decomposed in the disjoint sets ∂Ωµ+ = ∂Ωµ1+ ∪ ∂Ωµ2+ and
∂Ωµ− = ∂Ωµ1− ∪ ∂Ωµ2−, containing material points on opposite boundaries, cf. Fig. 2.2.
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Ω Ωc

Ωµ
Ωµ

c∂
Ω

µ
1
+

∂Ωµ2+

∂
Ω

µ
1
−

∂Ωµ2−

F

F µ

ϕ

ϕµ

X x

Xµ
xµ

M
a
cr

o
sc

a
le

M
ic

ro
sc

a
le

Reference configuration Current configuration

A1

A
2

a1

a
2

Fig. 2.2: The deformation of a macroscopic body and its effect on the periodic microstructure.

It is assumed that the macroscopic deformation F drives the microscopic displacement field
uµ : Ω → R2, such that each microscopic material point Xµ ∈ Ωµ, is displaced to the position
xµ(X, t) = φµ(X, t) = uµ(X, t) +Xµ ∈ Ωµ

c , where

uµ(Xµ, t) = (F (t)− 1) ·Xµ + uF (Xµ, t), (2.11)

F is uniform over Ωµ due to the separation of scales and uF (Xµ, t) is the heterogeneous displace-
ment fluctuation field, cf. Saeb et al. (2016). The microscopic deformation gradient F µ is derived
from (2.11)

F µ(Xµ, t) = ∇µφµ(Xµ, t) = 1+∇µuµ(Xµ, t) = F (t) +∇µuF (Xµ, t), (2.12)

where∇µ is the gradient operator with respect to the microscopic reference coordinatesXµ. Simil-
arly to the macroscopic problem (2.2), it is assumed that the microscopic problem is in quasi-static
force equilibrium, i.e.

∇µ · P µ = 000 in Ωµ, (2.13)
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assuming negligible body forces due to the separation of scales. In the above, the hyperelastic as-
sumption necessitates that P µ = ∂Wµ

∂F µ
, whereW µ is the microscopic energy function.

The above equations of motion require suitable boundary conditions. To this end, the micro-
scopic displacement field is postulated to satisfy the kinematical homogenization, or averaging, rela-
tions

u =
1
|Ωµ|

∫
Ωµ
uµ dV, (2.14)

and
F =

1
|Ωµ|

∫
Ωµ
F µ dV = 1+

1
|Ωµ|

∫
Ωµ

∇µuµ dV, (2.15)

following De Souza Neto et al. (2015). Condition (2.14) can be rewritten as∫
Ωµ
uF dV = 000, (2.16)

using (2.11), and amicroscale coordinate system located at the centroid of the unit cell². This illustrates
that the satisfaction of (2.14) leads to the elimination of rigid body translations from the kinematically
admissible displacement fluctuations. Further, (2.15) is expressed as

1
|Ωµ|

∫
∂Ωµ

uF ⊗ nµ dS = 000, (2.17)

using (2.12) together with the divergence theorem. In the above, nµ is the outward unit normal on
∂Ωµ. Therefore, the satisfaction of (2.15) leads to the elimination of rigid body rotations. The (2.16)
and (2.17) conditions constitute the minimal set for kinematical admissibility of uF in this multiscale
framework (cf. De Souza Neto et al. (2015)).

The micro-to-macro transition is governed by the principle of multiscale virtual power, often
referred to as the variational form of the Hill-Mandel condition (Hill (1972), Mandel (1971)), stated
as

|Ωµ|δF : P =

∫
Ωµ
δF µ : P µ dV. (2.18)

where P µ is the microscopic first Piola-Kirchhoff stress tensor. Equating δuF = 000 and utilizing the
arbitrariness of δF , reduces (2.18) to the stress homogenization relation

P =
1
|Ωµ|

∫
Ωµ
P µ dV, (2.19)

²Such a coordinate system satisfies
∫
Ωµ X dV = 000, but any coordinate system located elsewhere could readily be

translated to the center.

7



which can be rewritten³ using the traction tµ = P µ · nµ on ∂Ωµ and the divergence theorem, i.e.

P =
1
|Ωµ|

∫
Ωµ
P µ · 1 dV =

1
|Ωµ|

∫
Ωµ
P µ ·∇Xµ dV

=
1
|Ωµ|

∫
Ωµ

(∇ · (P µ⊗̄Xµ)−∇ · P µ ⊗Xµ) dV

=
1
|Ωµ|

∫
∂Ωµ

(P µ⊗̄Xµ) · nµ dS =
1
|Ωµ|

∫
∂Ωµ

(P µ · nµ)⊗Xµ dS

=
1
|Ωµ|

∫
∂Ωµ

tµ ⊗Xµ dS,

(2.20)

assuming microscopic equilibrium (2.13).
Previously, the minimal set of kinematical admissible displacement fluctuations was introduced,

i.e. (2.16) and (2.17). As insinuated, the admissible set can be extended to include additional con-
straints. These constraints are readily identified by rewriting (2.18) using Hill’s lemma (cf. Saeb et al.
(2016))∫

Ωµ
δF µ : P µ dV − |Ωµ|δF : P =

∫
∂Ωµ

(δφµ − δF ·Xµ) · (tµ − P · nµ) dS = 0. (2.21)

To prove that the equality (2.21) holds, the right hand side is expanded as∫
∂Ωµ

(δφµ − δF ·Xµ) · (tµ − P · nµ) dS

=

∫
∂Ωµ

(δφµ − δF ·Xµ) · (P µ · nµ − P · nµ) dS

=

∫
∂Ωµ

δφµ · (P µ · nµ) dS −
∫
∂Ωµ

δφµ · (P · nµ) dS

−
∫
∂Ωµ

(δF ·Xµ) · P µ · nµ dS +

∫
∂Ωµ

(δF ·Xµ) · P · nµ dS

=

∫
∂Ωµ

(δφµ · P µ) · nµ dS −
∫
∂Ωµ

P : (δφµ ⊗ nµ) dS

−
∫
∂Ωµ

δF : ((P µ · nµ)⊗Xµ) dS +

∫
∂Ωµ

(δF · P ) : (Xµ ⊗ nµ) dS.

(2.22)

Via the divergence theorem and the extraction of macroscopic terms outside the integrals, (2.22)
becomes ∫

Ωµ
∇ · (δφµ · P µ) dV − P :

∫
∂Ωµ

δφµ ⊗ nµ dS

−δF :

∫
∂Ωµ

(P µ · nµ)⊗Xµ dS + (δF · P ) :

∫
∂Ωµ

Xµ ⊗ nµ dS.
(2.23)

³The product ⊗̄ between a second order tensor B and a vector b renders the third order tensor A = B⊗̄b with
components Ajkl = Bjlbk.
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The first term of (2.23) is∫
Ωµ

∇ · (δφµ · P µ) dV =

∫
Ωµ

(δF µ : P µ + δφµ · (∇ · P µ)) dV =

∫
Ωµ
δF µ : P µ dV, (2.24)

again assuming microscopic equilibrium (2.13). The second term of (2.23) is rewritten using the
gradient theorem and the (2.15) homogenization relation, i.e.

P :

∫
∂Ωµ

δφµ ⊗ nµ dS = P :

∫
Ωµ
δF µ dV = |Ωµ|δF : P , (2.25)

whereas the third term of (2.23) becomes

δF :

∫
∂Ωµ

(P µ · nµ)⊗Xµ dS = |Ωµ|δF : P , (2.26)

via the (2.20) relation. Lastly, the fourth term of (2.23) is

(δF · P ) :

∫
∂Ωµ

Xµ ⊗ nµ dS = (δF · P ) :

∫
Ωµ

∇Xµ dV

= (δF · P ) :

∫
Ωµ

1 dV = |Ωµ|δF : P .

(2.27)

Combining (2.24) - (2.27) in (2.23) yields∫
Ωµ
δF µ : P µ dV − |Ωµ|δF : P − |Ωµ|δF : P + |Ωµ|δF : P

=

∫
Ωµ
δF µ : P µ dV − |Ωµ|P : δF ,

(2.28)

wherefore it has been shown that the equality in (2.21) holds. It is noted that (2.21) is satisfied for the
following boundary conditions:

1) If F µ = F = B in Ωµ for any constant second order tensor B, then uF = 000 and φµ =
B ·Xµ must hold in Ωµ according to (2.11). Accordingly, δF µ = δF = 000 in Ωµ and the left
hand side of (2.21) vanishes, i.e.∫

Ωµ
(δF µ : P µ − δF : P ) dV = 0. (2.29)

This condition corresponds to constant deformation in Ωµ, and is usually referred to as Taylor’s
(or in the linear elastic regime, Voigt’s) assumption (Taylor (1938)).

2) If φµ = F ·Xµ on ∂Ωµ, then uF = 000 must hold on ∂Ωµ according to (2.11). Also, δφµ =
δF ·Xµ such that the right hand side of (2.21) vanishes, i.e.∫

∂Ωµ
(δφµ − δF ·Xµ) · (tµ − P · nµ) dS = 0. (2.30)

This condition yields linear boundary displacements on ∂Ωµ.
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3) If instead (φµ − δF ·Xµ) is periodic and (tµ − P · nµ) is anti-periodic with respect to the
translationA on ∂Ωµ, the right hand side of (2.21) vanishes, i.e.∫

∂Ωµ
(δφµ(Xµ)− δF ·Xµ) · (tµ(Xµ)− P · nµ(Xµ)) dS

=

∫
∂Ωµ+

(δφµ(Xµ)− δF ·Xµ) · (tµ(Xµ)− P · nµ(Xµ)) dS

+

∫
∂Ωµ−

(δφµ(Xµ)− δF ·Xµ(Xµ)) · (tµ(Xµ)− P · nµ(Xµ)) dS

=

∫
∂Ωµ+

(δφµ(Xµ)− δF ·Xµ) · (tµ(Xµ)− P · nµ(Xµ)) dS

+

∫
∂Ωµ+

(δφµ(Xµ −A)− δF · (Xµ −A)) · (tµ(Xµ −A)− P · nµ(Xµ −A)) dS

=

∫
∂Ωµ+

(δφµ(Xµ)− δF ·Xµ) · (tµ(Xµ)− P · nµ(Xµ)) dS

−
∫
∂Ωµ+

(δφµ(Xµ)− δF ·Xµ) · (tµ(Xµ)− P · nµ(Xµ)) dS = 0.

(2.31)
The periodicity of (φµ − δF ·Xµ) and anti-periodicity of (tµ −P ·nµ) ultimately requires

uF (Xµ) = uF (Xµ −A)

tµ(Xµ) = −tµ(Xµ −A)

}
for Xµ ∈ ∂Ωµ+, (2.32)

where the inherent anti-periodicity of the normal vector nµ on ∂Ωµ was used. The (2.32)
conditions are referred to as periodic boundary conditions on ∂Ωµ.

4) If tµ = P ·nµ = P µ ·nµ = c on ∂Ωµ for any constant vector c, the right hand side of (2.21)
vanishes. This condition results in constant boundary tractions on ∂Ωµ.

5) If P µ = P = B in Ωµ the left hand side of (2.21) vanishes due to the (2.17) condition, i.e.

B :

∫
Ωµ

(δF µ − δF ) dV = B :

∫
Ωµ

∇µδuF dV = B :

∫
∂Ωµ

δuF ⊗ nµ dS = 0. (2.33)

This condition yields constant stress in Ωµ, and is usually referred to as Sachs’ (or in the linear
elastic regime, Reuss’) assumption (Sachs (1928)).

It can be shown that 4) is equivalent to the minimal set of admissible displacement fluctuations,
cf. De Souza Neto et al. (2015) and Zhang et al. (2021). Taylor assumes uniform deformation in Ωµ,
which violates the stress equilibrium of multiphase composites. On the other hand, Sachs assumes
uniform stress in Ωµ, which violates the displacement compatibility. Although Taylor’s and Sachs’
assumptions provide very rough estimates of the actual behavior of a multiphase composites, they
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yield upper (stiff) and lower (compliant) bounds on the elastic strain energy, respectively. For purely
mechanical problems, the effective behavior derived under the 3) periodic boundary conditions is
bounded from above by the 2) linear displacement boundary conditions, and from below by the 4)
constant traction boundary condition, cf. Saeb et al. (2016).

2.2.1 Periodic boundary conditions

Although the results obtained under periodic boundary conditions must not be closest to the exact
solution, they are often employed in practice when assuming a periodic microstructure, as is done
herein. The periodic kinematic constraints⁴ on uF are

uF (Xµ) = uF (Xµ −Aj) at Xµ ∈ ∂Ωµj+, j = 1, 2, (2.34)

or, using (2.11), equivalently cast on uµ

uµ(Xµ)− uµ(Xµ −Aj) = (F − 1) ·Aj at Xµ ∈ ∂Ωµj+, j = 1, 2. (2.35)

To enforce the (2.35) constraints, a weak approach is employed, wherein the Hill-Mandel condition
(2.18) is augmented using the Lagrange multipliers Λµ = Λµ(Xµ)

|Ωµ|δF (X) : P (X)−
∫
Ωµ
δF µ(Xµ) : P µ(Xµ) dV

+
2∑
j=1

∫
∂Ωµj+

Λµ(Xµ) · (δuµ(Xµ)− δuµ(Xµ −Aj)− δF (X) ·Aj) dS

+
2∑
j=1

∫
∂Ωµj+

δΛµ(Xµ) · (uµ(Xµ)− uµ(Xµ −Aj)− (F (X)− 1) ·Aj) dS = 0.

(2.36)

Equation (2.36) holds for any δΛµ, δF and δuµ ∈ U , where U = {uµ ∈ H1 : uµ(Xµ
u ) = 000}

enforces (2.16) through the restriction of motion of a single material pointXµ
u ∈ Ωµ

u.
To glean more insight into (2.36), is it assumed that δF = 000 and δΛµ = 000, such that (2.18)

becomes∫
Ωµ
δF µ(Xµ) : P µ(Xµ) dV −

2∑
j=1

∫
∂Ω+

j

Λµ · (δuµ(Xµ)− δuµ(Xµ −Aj)) dS = 0, (2.37)

or, using the product rule in combination with the divergence theorem∫
Ω

(∇µ · P µ(Xµ)) · δuµ(Xµ) dV

−
2∑
j=1

∫
∂Ωµj+

(P µ(Xµ) · nµ(Xµ) +Λµ(Xµ)) · δuµ(Xµ) dS

−
2∑
j=1

∫
∂Ωµj−

(P µ(Xµ) · nµ(Xµ)−Λµ(Xµ +Aj)) · δuµ(Xµ) dS = 0.

(2.38)

⁴The assumption of rectangular unit cells hold.
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From (2.38), the quasi-static local microscopic equilibrium equations are found, i.e.

∇µ · P µ(Xµ) = 000 in Ωµ,

P µ(Xµ)nµ(Xµ) = −Λµ(Xµ) at Xµ ∈ ∂Ωµj+,

P µ(Xµ)nµ(Xµ) = Λµ(Xµ +Aj) at Xµ ∈ ∂Ωµj−,

(2.39)

using the arbitrariness of δuµ. Here, the physical interpretation of the Lagrange multipliers, Λµ,
becomes apparent, i.e. they act as anti-periodic boundary tractions which enforce the periodicity
constraints (2.35). Hereby, it has been verified that the (2.32) periodic boundary constraints are ful-
filled.

2.2.2 Homogenized stress and tangent tensors

The stress homogenization relation appears in (2.19). However, by equating δF = 000, δΛµ = 000 and
δuF = B ·Xµ in (2.36), it is found that∫

Ωµ
P µ(Xµ)dV =

2∑
j=1

∫
∂Ωµj+

Λµ(Xµ)⊗Aj dS, (2.40)

must hold for arbitrary B. By inserting (2.40) in (2.19), it appears that the homogenized stress also
can be computed from Λµ, i.e.

P (X) =
1
|Ωµ|

2∑
j=1

∫
∂Ωµj+

Λµ(Xµ)⊗Aj dS. (2.41)

Lastly, it is noted that the homogenized fourth order incremental elasticity tensor is obtained as

L(X) =
∂P

∂F
. (2.42)

Herein, the inverse homogenization, i.e. optimization of the material distribution in the unit cell,
is restricted to the evaluation of the homogenized stress, wherefore additional details regarding the
homogenization of the tangent stiffness tensor are omitted. More details appear in e.g. Saeb et al.
(2016) and Zhang et al. (2021).

2.2.3 FE formulation

A total Lagrangian, Galerkin FE formulation equivalent to the approach described in Sec. 2.1.2 is em-
ployed to solve (2.36). However, unlike the quasi-static case of (2.3) where uµ is the single unknown
field, the solution to (2.36) involves the additional fields F and Λµ. The first, F , is hereafter posed
as F = [F11, F21, F12, F22]

T in two-dimensions. In the Papers C and D, structured finite element
meshes are used to discretize the unit cells, which facilitates the application of the periodicity con-
straints, since they are applied nodal-wise. It is assumed that there existm pairs of mating boundary
nodes on ∂Ω.
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This FE-discretization results in that (2.36) becomes

δuµ,T
(
TTΛµ −

∑∑∫
Ωe

∇NTPµ dV
)
+ δFT

(
|Ω|P− HTΛµ

)
+ δΛµ,T (Tuµ − H∇u) = 0,

(2.43)
where H ∈ R2m×4 is introduced such that H∇u = (F − 1) ·Aj , and T ∈ R2m×n is the transform-
ation matrix uµ+ − uµ− = Tuµ, where uµ± ∈ R2m denotes nodal microscopic displacement field
values on ∂Ωµ± (cf. Zhang and Khandelwal (2020)). In this way, H is constructed as

H =
[
H11, H21, H12, H22

]
=



∆Xµ
1 0 ∆Y µ

1 0

0 ∆Xµ
1 0 ∆Y µ

1

∆Xµ
2 0 ∆Y µ

2 0

0 ∆Xµ
2 0 ∆Y µ

2

...
...

...
...

∆Xµ
m 0 ∆Y µ

m 0

0 ∆Xµ
m 0 ∆Y µ

m


, (2.44)

where e.g. ∆Xµ
1 = Xµ+

1 −X
µ−
1 . The macroscopic loading conditions on the unit cell are enforced

via the prescription of the macroscopic deformation gradient, i.e. any component of∇u, wherefore
the corresponding component of δF vanishes, or the macroscopic stress, i.e. any component of P, cf.
(2.43). If it is assumed that the macroscopic response it at least orthotropic,∇u12 = 0 and∇u21 = 0
for any biaxial stress state, cf. Wallin and Tortorelli (2020). For example, to mimic uniaxial loading
conditions, a uniaxial∇u11 ̸= 0 is prescribed together with the transversal stress condition P22 = 0⁵.
Using the arbitrariness of δu, δΛµ and δF in (2.43), the residual equations

r∗(u∗) =

ruµrΛµ

rF

 = 000, (2.45)

are found, where ruµ =
∑∑∫

Ωe
∇NTPµ dV − TTΛµ, rΛµ = −Tuµ + H∇u and rF = −|Ω|P +

HTΛµ. The non-linear system of equations (2.45) can be solved using iterative methods such as the
Newton-Raphson method (cf. Sec. 2.1.2) or path-following methods (cf. Crisfield (1993) and Leon
et al. (2014)).

⁵Note that P22 = 0 is required, i.e. the first Piola-Kirchhoff stress is used rather than the Cauchy stress σ. However,
since F12 = F21 = 0 the P22 = 0 condition is equivalent to σ22 = 0.
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3 Eigenvalue problems in structural analyzes
This section describes three eigenvalue problems that typically arise in structural analyzes. The first
is encountered in the free vibration analysis of a structure, wherein the frequent aim is to survey the
eigenfrequencies such that resonance is avoided at operating conditions. Another eigenvalue problem
appears in structural stability analyzes, since the eigenvalues of the Hessian of the potential energy
dictates its definiteness, i.e. stability properties of the system. Here, instabilities can be wanted
or unwanted, depending on the application. The last eigenvalue problem is similar to that of the
structural free vibration analysis, except that it is posed at the microscopic level, i.e. instead considers
elastic wave propagation in a periodic media. By solving numerous eigenvalues problems for different
propagation directions, a band-diagram is constructed which describes the dispersive properties of the
material. The aforementioned eigenvalue problems are involved in Papers A, B and C, respectively.

3.1 Free vibration

The conventional free vibration analysis of a structure is conducted for vanishing initial strain, i.e.
in the undeformed configuration. However, it is not uncommon for a mechanical structure to be
assembled under non-vanishing strains, and certainly common for an assembled structure to be ex-
posed to finite deformations, which in both cases ordinarily affects its static and dynamic behavior.
In Paper A, the pre-strain’s effect on the dynamical behavior of structures is investigated.

The computations are based on the small on large deformation framework (Ogden (2007)),
wherein an time-dependent incremental deformation, ů(X, t), is superimposed on a pre-strained
configuration in quasi-static equilibrium, defined by the displacement uc(X). For any material
pointX ∈ Ω, the equations of motion at time t is (cf. (2.2))

∇ · P (∇u) = ρ
∂2u

∂t2
, (3.1)

using a slight abuse of notation⁶. The split

u(X, t) = uc(X) + ů(X, t), (3.2)

results in that (3.1) becomes

∇ · P (∇uc +∇ů) = ρ
∂2ů

∂t2
. (3.3)

A Taylor series expansion of the left hand side of (3.3) at uc while ignoring higher order terms yields

∇ · P (∇uc +∇ů) ≈∇ · P (∇uc) +∇ · [L(∇uc) : ∇ů] . (3.4)

Since the body is assumed to be in quast-static equilibrium at uc, it holds that ∇ · P (∇uc) = 000,
why (3.4) inserted in (3.3) becomes

∇ · [L(∇uc) : ∇ů] = ρ
∂2ů

∂t2
. (3.5)

⁶For example, u = u(X, t).
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Of course, (3.5) depicts a linearized relation, i.e. L does not depend on ∇ů. Now, using separation
of variables, the solutions to (3.5) are posed as the harmonic oscillations

ů(X, t) = ϕ(X)e−iωt, (3.6)

where ϕ : Ω → R2 is the mode shape, i =
√
−1 and ω ∈ R is the angular frequency⁷. Inserting

(3.6) in (3.5), and noting that e−iωt is spatially independent and non-vanishing, results in the (local)
eigenvalue problem

1
ρ
∇ · [L : ∇ϕ] = −ω2ϕ in Ω, (3.7)

with eigenpairs (−ω2,ϕ).
The eigenvalue problem (3.7), can be posed over the body Ω, by finding those ϕ ∈ {ϕ ∈ H1 :

ϕ(X) = 000 forX ∈ ∂Ωu} which satisfy the weak form∫
Ω

∇δϕ · [L : ∇ϕ] dV =

∫
Ω

ρω2δϕ · ϕ dV, (3.8)

for all smooth admissible δϕ⁸. Using the arbitrariness of δϕ, the discretization of (3.7) using the
FE-method (FEM) described in Sect. 2.1.2, yields the generalized eigenvalue problem

Kϕj = ω2
jMϕj, j ∈ Nn, (3.9)

where it is emphasized that the stiffness matrix K = K(uc), i.e. the eigenpairs (ω2
j ,ϕj) depend on

the quasi-static equilibrium displacements uc. Due to the hyperelastic assumption, K is symmetric
and real, as is the mass matrix M. The eigenvalues are assumed to be sorted in ascending order, and
their associated eigenmodes are mass-orthogonalized.

3.2 Structural stability

An equilibrium position of a conservative system is stable if the potential energy in that position has a
(local) isolatedminimum. This condition is equivalent to the requirement that the second variation of
the potential energy is positive definite, i.e. all eigenvalues of the tangent stiffness matrix, K in (2.10),
are strictly positive. In contrast, an unstable equilibrium position is characterized by an indefinite K,
i.e. which has at least one eigenvalue which is strictly less than zero. A system that transitions from
being stable to unstable must pass a singular point, in which at least one eigenvalue of K vanishes. To
summarize, it holds that

ϕTKϕ


> 0 for all ϕ ∈ Rn \ {000} (Stable),

= 0 for at least one ϕ ∈ Rn \ {000} (Singular),

< 0 for at least one ϕ ∈ Rn \ {000} (Unstable).

(3.10)

⁷Due to the hyperelastic assumption, L is real and possesses major symmetry, wherefore the angular frequencies
(eigenvalues) are real.

⁸Here, free vibrations are assumed, in combination with the assumption that δϕ vanishes where the Dirichlet con-
straints are imposed on u.
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Typically, the probe of singular points is of uttermost importance, irrelevant of whether the unstable
structural behavior is wanted or not. Therefore, it is emphasized that in a singular, or so-called critical,
point it hold that

Kϕj = 0, j ∈ Nn, (3.11)

has a nontrivial solutionϕj .
Let us examine the neighborhood of an equilibrium critical point (uc, λc), where λ ∈ R denotes

the external load magnitude, i.e. Fext = λI, cf. (2.8). To this end, u and λ are parameterized such
that u = u(s) and λ = λ(s), where s is the parameter which describes the equilibrium path in the
vicinity of the critical point, such that (u(0), λ(0)) = (uc, λc). A truncated Taylor series expansion
of the quasi-static residual (2.8) with respect to s at s = 0 yields

r(u(s), λ(s)) ≈ r(uc, λc) +
∂r(uc, λc)

∂u
∂u
∂s
s+

∂r(uc, λc)
∂λ

∂λ

∂s
s = 0. (3.12)

Using (2.8), (2.10) and s ̸= 0 in (3.12) results in

K(uc, λc)
∂u
∂s
− I

∂λ

∂s
= 0, (3.13)

By premultiplying (3.13) by an eigenvectorϕj to K(uc, λc), it is found that

ϕT
j I
∂λ

∂s
= 0, (3.14)

since ϕT
j K(u

c, λc)∂u
∂s

= 0, cf. (3.11). Equation (3.14) reveals three possibilities, either 1) ϕT
j I ̸= 0

and ∂λ
∂s

= 0, 2) ϕT
j I = 0 and ∂λ

∂s
̸= 0 or 3) ϕT

j I = 0 and ∂λ
∂s

= 0. Case 1) corresponds to a
limit point in which the system cannot sustain a positive increment in the load magnitude, 2) is a
bifurcation point, in which multiple equilibrium paths cross, i.e. no unique solution exists, and 3) is
a combination of both of the aforementioned events.

3.2.1 Identification of critical points

There exist two commonly used methods for identifying the critical point. The first, known as the
extended system approach, directly computes the critical configurations by restricting the set of solu-
tions to those which are singular (Wriggers (2008)). To this end, the (3.11) condition is appended as
constraint to the weak form, which results in the new set of discretized residual equations r

Kϕ
∥ϕ∥2 − 1

 = 0, (3.15)

where the last condition excludes trivial solutions to (3.11). The (3.15) extended system is limited to the
computation of simple critical points, i.e. the eigenvector corresponding to a single zero-eigenvalue
of K. The nonlinear system of equations (3.15) is solved using a traditional Newton-Raphson iterative
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scheme, wherein partitioning is used to reduce the computational effort, cf. Wriggers (2008). The
extended system approach provides an exact measure of the critical loads up to a numerical tolerance.

The second approach, known as the one point approach, approximates the critical load levels
by extrapolating information provided at a stable equilibrium configuration. Instead of solving (3.11)
explicitly, a decomposition of the tangent stiffness matrix is introduced, which turns (3.11) into a gen-
eralized eigenvalue problem. This approach is inspired by the so-called linearized buckling approach,
in which the initial displacements are assumed to be small, wherefore the u which solves the linear
system

KLu = Fext, (3.16)

is accepted as reference solution, where KL = K(0) is the linear stiffness matrix. Due to the linearity
of (3.16), any change in load Fext → λFext result in an equal change in displacement u → λu,
and equivalently for the linear stresses σL → λσL. It is further assumed that the change in stress
affects the stiffness matrix, such that KL → KL+ λKG, where KG is the so-called geometric stiffness
matrix which depends explicitly on the stresses σL. Therefore, an approximation of the critical load
Fcext = λcFext is given by the λc = min

j∈Nn
λj which fulfill

(KL + λjKG)ϕj = 0, j ∈ Nn. (3.17)

The generalized eigenvalue problem (3.17) is solved for the eigenpairs (λj,ϕj) ∈ (R×Rn), whereϕj

is the buckling modeshape associated with the buckling load factor λj . Bathe (2006) argues that the
accuracy of the (3.17) assumption is limited by the assumption of small pre-buckling displacements.

The one point approach mitigates this limitation by capturing finite deformations occurring be-
fore buckling in the aforementioned linearized buckling analysis (Brendel and Ramm (1980)). To this
end, the equilibrium path is first traversed up until a predefined load level λop ∈ R, using the general
hyperelastic framework described in Sec. 2.1. In this deformed equilibrium position, a linearized
buckling analysis similar to (3.17) is performed, but wherein KL → Ko(u) and KG → Kg(u), i.e.

(Ko + πjKg)ϕj = 0, j ∈ Nn, (3.18)

is solved for the eigenpairs (πj,ϕj) ∈ (R × Rn). The critical load factor is subsequently obtained
as λc = min

j∈Nn
πjλ

op. The K = Ko + πjKg decomposition of the stiffness matrix is motivated by e.g.

Wriggers (2008), and the explicit formats of Ko and Kg appear in Paper B.
Albeit the one point approach suffers from approximation errors which the extended system ap-

proach lacks, its simplicity and sufficient accuracy has made it a popular choice when probing for
critical points. The one point approach also has the advantage of providing approximations of mul-
tiple critical point, which ultimately makes it the superior method for gradient-based optimization,
cf. Paper B.

3.3 Elastic wave propagation

The elastic wave propagation properties of a pre-strained body is governed by (3.7), which is restated
here using an operator form

A(ϕ) = −ω2ϕ in Ω, (3.19)
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whereA(ϕ) = 1
ρ
∇ · [L : ∇ϕ]. The body Ω, is assumed to consist of a heterogeneous material with

a periodic microstructure, cf. Sec. (2.2). The aim is to solve (3.19) in the reduced space of the unit
cell Ωµ, but retain the solutions as if (3.19) was solved over Ω.

3.3.1 The reciprocal lattice

It is assumed that the periodic microstructure is a lattice structure, which is tessellated by rectangular
unit cells with primitive lattice vectors A1 = a1e1 and A2 = a2e2. The periodicity manifests itself
via the lattice’s translational symmetry with respect to the lattice vectorsR ∈ R = {R ∈ R2 : R =
aA1 + bA2, for (a, b) ∈ (N × N)}. Any function f : Ω → R which is spatially periodic in the
lattice, satisfies

f(X) = f(X +R). (3.20)

It can be shown that functions which satisfy (3.20), can be defined in another space called the reciprocal
lattice. To this end, f is expanded in a Fourier series

f(X) =
∑
ξ

fξe
iξ·X , (3.21)

where eiξ·X are plane waves with wave vectors ξ ∈ R2. The condition (3.20) requires

f(X) =
∑
ξ

fξe
iξ·X = f(X +R) =

∑
ξ

fξe
iξ·(X+R), (3.22)

or equivalently ∑
ξ

fξe
iξ·X (1− eiξ·R) = 0. (3.23)

Therefore, it is concluded that fξ = 0 must hold for all ξ except for those ξ where eiR·ξ = 1 for
all R ∈ R. Those vectors ξ which fulfill eiR·ξ = 1, or equivalently R · ξ = 2πN for all N ∈ N,
are denoted the reciprocal lattice vectors G = aB1 + bB2 for (a, b) ∈ (N × N). Hence the only
non-vanishing terms of (3.21) are

f(X) =
∑
G

fGe
iG·X , (3.24)

and the primitive reciprocal lattice vectors in two-dimensions are

B1 = 2π
A2 × e3
∥A1 ×A2∥

, B2 = 2π
e3 ×A1

∥A1 ×A2∥
, (3.25)

such thatAk ·Bl = 2πδkl, with e3 = A1×A2
∥A1×A2∥ . An example of a square lattice in real and reciprocal

space appears in Fig. 3.1.
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Fig. 3.1: A side length a square lattice in real space with primitive lattice vectors A1 = ae1 and A2 = ae2
(a) and in reciprocal space with reciprocal lattice vectorsB1 =

2π
a e1 andB2 =

2π
a e2 (b). An unit cell Ωµ is

shown in dashed lines.

3.3.2 The Bloch form

Now, let us turn back to (3.19). Since the lattice is defined to be translational symmetric with respect
to the lattice vectorsR ∈ R, it holds that

TRA(ϕ(X)) = A(TRϕ(X)), (3.26)

where
TRϕ(X) = ϕ(X +R), (3.27)

is the translation operator in the direction ofR ∈ R. Relation (3.26) shows thatA and TR commute.
The implication of the (3.26) relation becomes evident using (3.19), i.e.

TRA(ϕ(X)) = TR(−ω2ϕ(X)) = −ω2TRϕ(X) = A(TRϕ(X)), (3.28)

which shows that (−ω2, TRϕ(X)) is another eigenpair of A. Since the eigenvectors ϕ(X) and
TRϕ(X) share the same eigenvalue, they must be parallel⁹

TRϕ(X) = α(R)ϕ(X), (3.29)

which is an eigenvalue problem of the operator TR with the eigenpairs (α,ϕ) ∈ (R × R2). This
shows that the eigenvectors ϕ which solve (3.19), also solve (3.29), i.e. A and TR share the same
eigenspace, which is an inherent property of commutative operators.

Now, the aim is to find a general format of α in (3.29). Applying another TR′ in the direction
R′ ∈ R to (3.29) yields

TR′TRϕ(X) = α(R)TR′ϕ(X) = α(R)α(R′)ϕ(X), (3.30)

⁹If −ω2 is degenerate, the eigenvectors ϕ that solve (3.29) are in the span of the eigenvectors of A, and vice versa.
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but
TR′TRϕ(X) = TR′+Rϕ(X) = α(R+R′)ϕ(X), (3.31)

must also hold following the definition of the translation operator. Therefore it is concluded that

α(R+R′) = α(R)α(R′). (3.32)

The format of α(R) that satisfies (3.32) is

α(R) = eik·R, (3.33)

where k ∈ R2 is the so-called wave vector which classifies the solutions¹⁰. This implies that (3.29)
becomes

TRϕ(X) = ϕ(X)eik·R, (3.34)

which is the classical Bloch condition (Kittel (1976), Joannopoulos et al. (2011)). One format of
ϕ(X) which satisfy the (3.34) condition, is the Floquet-Bloch form, i.e.

ϕ(X) = ϕp(X)eik·X , (3.35)

where ϕp is translational symmetric with respect toR, i.e.

ϕp(X +R) = ϕp(X). (3.36)

The Floquet–Bloch form (3.35) implies that the solutions to (3.19) takes the form of a plane wave eik·X
which propagates in the direction described by the wave vector k, and is modulated by a periodic
function ϕp(X).

3.3.3 The Brillouin zone

The remaining question is which k that necessitates interrogation when solving (3.19). This is invest-
igated by utilizing the (3.24) result on ϕp, wherefore (3.35) becomes

ϕ(X) =
∑
G

ϕp,Ge
i(k+G)·X , (3.37)

which shows that the wave vectors are described in reciprocal space, i.e. k = k1B1 + k2B2. Since
the sum in (3.37) is over all possible reciprocal lattice vectors G, it makes no sense that k should
include any integer multiples of G. Therefore, the space in which k is defined can be limited to
the so-called 1st Brillouin zone (BZ), which is the smallest zone in the reciprocal space containing
all non-redundant values of k. The same conclusion can be made by returning to (3.34) and setting
k→ k +G, wherefore

TRϕ(X) = ϕ(X)ei(k+G)·R = ϕ(X)eik·ReiG·R = ϕ(X)eik·R, (3.38)

i.e. k +G describes the same eigenmode of TR as k.

¹⁰The magnitude of the wave vector corresponds to the one-dimensional wave number.
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If the lattice experiences additional rotation, reflection, and/or inversion symmetries, the space
of k can be further reduced to the so-called irreducible Brillouin zone (IBZ). It is however crucial
to remember that the applied deformation affects these symmetries, cf. Fig 2.2. Indeed, the lattice
vectors in the current configuration, aj , are obtained via aj = FM ·Aj , j = 1, 2 (Zhang and Parnell
(2017)). However, if the applied macroscopic deformations are limited to those which retain domain
symmetry with respect to reflections about the e1 and e2 axes, the IBZ of a square lattice becomes
the first quadrant depicted in Fig. 3.2.

Γ
X

B1
B

2

1st BZ
∂IBZ

G M

IBZ

Fig. 3.2: Illustration of the 1st Brilliouin zone (BZ), the irreducible Brillouin zone (IBZ) and the boundary of
the IBZ, (∂IBZ) for a square lattice in reciprocal space.

It is common to only interrogate a finite subset ∂Sk of the k-vectors located on the boundary
∂IBZ of the IBZ, i.e.

∂Sk = {kn ∈ ∂IBZ, 1 ≤ n ≤ Nk}, (3.39)

where kn, 1 ≤ n ≤ Nk are the wave vectors along ∂IBZ and Nk ∈ N is the number of sampling
points. However, Maurin et al. (2018) show via numerous examples that the band extremamay not be
located on the boundary, and therefore the full IBZmust be probed to confirm the omnidirectionality
of a bandgap.

3.3.4 One-dimensional example

To introduce the concept of elastic wave dispersion, the dynamical behavior of the periodic one-
dimensional system presented by Jensen (2003), and depicted in Fig. 3.3, is investigated. The system
compromises an infinite number of lumped massesmn, separated a distance le via springs with stiff-
ness kn, n ∈ N1D = {1, 2, ...,∞}. The system is periodic, i.e. is constituted by an infinite amount
of identical unit cells, each L long and encompassing N − 1 number of masses and springs. The
horizontal displacement in the discrete positions of the masses are quantified by un, n ∈ N1D.
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un−1 un
un+1

mn−1 mn
mn+1

kn−1 kn
kn+1

x

le

Fig. 3.3: The one dimensional mass-spring system.

The equations of motion of the n:th mass is

mnün = kn(un+1 − un)− kn−1(un − un−1), n ∈ N1D, (3.40)

assuming linear springs. Analogously to the (3.6) ansatz, it is assumed that

un(x, t) = ϕn(x)e
−iωt, (3.41)

wherefore (3.12) becomes

mnω
2ϕn = kn−1(ϕn − ϕn−1)− kn(ϕn+1 − ϕn), n ∈ N1D. (3.42)

Obtaining the solutions ϕn for all degrees-of-freedom n ∈ N1D via the assembly of (3.42) is evidently
infeasible. Instead, the solutions can be obtained in a reduced space by taking advantage of system’s
spatial periodicity. To this end, the analysis of the Fig. 3.3 system is reduced to a single unit cell with
periodic Bloch conditions, cf. Fig. 3.4.

u1 u2 uN−1 uN

m1 m2 mN−1

k1 k2 kN−1

Fig. 3.4: An unit cell encompassing N − 1 number of masses and springs.

In this way, the unit cell solutions to (3.42) are assumed to take Floquet-Bloch form, i.e.

ϕj = ϕ̂je
ik(j−1)le , j = 1, 2, ..., N (3.43)

where ϕ̂j is spatially periodic and k is the wave number. Additionally, the (3.34) Bloch condition
must be fulfilled, which is posed as

ϕN = ϕ1e
ikL, (3.44)

in a master-slave implementation.
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To illustrate the process of applying the Bloch boundary conditions, a unit cell with N = 5
degrees-of-freedoms is considered. The assembled system of equations (3.42) for the unit cell is

k1 −k1 0 0 0
−k1 k1 + k2 −k2 0 0
0 −k2 k2 + k3 −k3 0
0 0 −k3 k3 + k4 −k4
0 0 0 −k4 k4


︸ ︷︷ ︸

K


ϕ1

ϕ2

ϕ3

ϕ4

ϕ5


︸ ︷︷ ︸
ϕj

= ω2
j


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 0


︸ ︷︷ ︸

M


ϕ1

ϕ2

ϕ3

ϕ4

ϕ5


︸ ︷︷ ︸
ϕj

(3.45)

The master-slave implementation of the Bloch boundary conditions proceeds via the condensation
ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
eikL 0 0 0



ϕ1

ϕ2

ϕ3

ϕ4

 ⇔ ϕj = W(k)ϕ•
j , (3.46)

wherefore (3.45) becomes

W(k)TKW(k)ϕ•
j = ω2W(k)TMW(k)ϕ•

j ⇔ K•ϕ•
j = ω2

jM
•ϕ•

j , (3.47)

if premultiplying byW(k)T ¹¹.
Following Jensen (2003), the mass-spring system is assumed to discretize a L = 0.15 m rod con-

sisting of PMMA (Young’s modulus: Ep = 5.28 GPa, density: ρp = 1200 kg/m3) and aluminum
(Young’s modulus: Ea = 70.9 GPa, density: ρa = 2830 kg/m3). However, to facilitate the discus-
sion, the discretization of a homogeneous aluminum rod is considered first. The N = 5 unit cell
provides the dispersion diagram seen in Fig. 3.5(a) for k = [0, 4π/L]. Here, the redundancy of the
k-values outside of the irreducible Brillouin zone BZ = {k ∈ [0, π/L]} is visible. It is also noted
that no gaps exist in the ω(k) relation. This is not very surprising, since a homogeneous medium is
non-dispersive, i.e. the phase velocity vp = dw

dk
=
√

E
ρ
is constant, wherefore w(k) exhibits a linear

behavior. Indeed, the slope of the first band for k = [0, π/L] is approximately vp, and in the limit
N →∞ a linear w(k) will hold for all bands.

¹¹The premultiplication by W(k)T naturally appears if imposing the Bloch boundary conditions on the solutions to
the weak form in the continuum setting.

24



0

5

10

15

20

25

30

35

40

45

ω
[k

H
z]

kL

π 2π 3π 4π
0

5

10

15

20

25

30

35

40

45

ω
[k

H
z]

kL

π/2 π

Bandgap

(a) (b)

Fig. 3.5: The dispersion diagram for a (a) homogeneous aluminum rod and (b) heterogeneous
PMMA/aluminum rod.

Next, a heterogeneous rod is considered. The rod’s constituent is PMMA for L
4 ≤ x ≤ 3L

4 ,
whereas the rest is aluminum, i.e. in total La = L

2 and Lp = L
2 . The dispersion diagram for this rod

appears in Fig. 3.5(b). Herein, multiple bandgaps appear, and the lowest frequency ω1-ω2 bandgap is
indicated by a gray region. Any incoming wave with frequency ω within the range of a bandgap will
not be able to propagate through the rod. The ω1-ω2 bandgap appears at the edge of the Brillouin
zone, i.e. at k = π

L
. The ϕ1 and ϕ2 modes at k = π

L
are depicted as transversal displacements of the

masses in Fig. 3.6.

Aluminum PMMA

φ1

φ2

Fig. 3.6: The ϕ1 and ϕ2 mode for 10 heterogeneous unit cells at k = π
L .

25



To quantify the size of a bandgap, the so-called gap-midgap ratio is used, i.e.

Bb =
min
k
ωb+1(k)−max

k
ωb(k)

min
k
ωb+1(k) +max

k
ωb(k)

, (3.48)

where b is the band index. The gap-midgap ratio increases as the contrast between the material
parameters increases, as readily verified for B1 in Fig. 3.7(a). In Fig. 3.7(b), B1 is plotted against
the length of the PMMA section in the unit cell. The maximum bandgap occurs for Lp = 0.04425
m, which is close to the theoretical maximum (≈ 0.04430), corresponding to a so-called quarter-
wave stack or Bragg reflector (Joannopoulos et al. (2011)). To conclude, it is found that the size of the
bandgaps can be controlled via the distribution and selection of the constituent materials in the unit
cell.
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Fig. 3.7: The gap-midgap ratio versus (a) the material properties ratio and (b) the length of the PMMA section
Lp in the unit cell. The unit cell is discretized by 200 elements, i.e. N = 201. In (a), the ratio is defined such
that E1/E2 = ρ1/ρ2. The red line in (b) indicate the maximum value ofB1, which occurs for Lp = 0.04425
m and La = 0.10575.

26



4 Gradient-based optimization
This section provides a brief introduction to topology and shape gradient-based optimization. Both
of these optimization problems are often ill-posed in their original formulation, which manifests it-
self via the lack of solutions. Therefore, techniques for obtaining well-posed optimization problems
are presented. The traditional fictitious domain approach to topology optimization is scrutinized,
wherein the discussion also involves various ways of improving the resolution of the design bound-
aries.

4.1 Topology optimization

Topology optimization aims to distribute material in a design domain Ωd, such that a predefined
objective is optimized subject to constraints. Although various approaches to topology optimization
exist, such as; level-set (Allaire et al. (2002),Wang et al. (2003)), phase-field (Bourdin and Chambolle
(2003), Wallin et al. (2015)) and topological derivative (Sokolowski and Zochowski (1999)), the typical
topology optimization problem is density-based (Bendsøe (1989)), as in this thesis¹². In the latter
method, the integer field d(X) ∈ {0, 1} is introduced to quantify the material distribution, such
that d(X) = 1 or d(X) = 0 if X ∈ Ωd should contain material or not. Unfortunately, the
direct use of this integer field approach may render an ill-posed optimization problem which lacks
solution, manifested via optimized designs that contain a non-converging series of microstructures
(Bendsøe (1989), Sigmund and Petersson (1998)). This is especially prominent when maximizing the
structural stiffness, since the introduction of additional void cavities generally improves this measure.
The integer field approach is also problematic since standard gradient-based optimization methods
cannot be used.

To obtain a well-posed topology optimization problem, relaxation or restriction of the design space
can be employed. The principle of relaxation implies an enlargement of the design space, such that
d(X) ∈ {0, 1} is replaced by a continuous field z(X) ∈ [0, 1]. That z is continuous allows the
optimization problem to be solved using gradient-based optimization methods. The only physically
sound interpretation of the optimal distribution of a z field that linearly scales the material properties
is a variable thickness sheet distribution problem (Cheng and Olhoff (1981), Bendsøe and Sigmund
(1999)). For problems where the material properties instead depend non-linearly on z, the regions
with intermediate z ∈ (0, 1) may be physically interpreted as microstructures, and their effective
properties can be obtained via homogenization (Bendsøe and Kikuchi (1988), Groen and Sigmund
(2018)). In practice, the optimized designs obtained by relaxation might be difficult to manufacture.

Restriction implies that the solution to the topology optimization problem is sought for in a
design space which is smaller than the original space. This is accomplished by introducing con-
straints that bound the maximum allowed spatial oscillations of d, for example in the form of peri-
meter control (Haber et al. (1996)). However, since d remains an integer field, special solvers for
integer programming problems must be used. Therefore, it is common to resort to penalization
methods such as the Simple Isotropic Material with Penalization (SIMP) method (Bendsøe (1989)),
wherein a continuous design variable field, z(X) ∈ [0, 1], is used while simultaneously penalizing

¹²The following discussion will mainly focus on the density-based approach. Exhaustive reviews of other methods
appear in e.g. Sigmund and Maute (2013) and Deaton and Grandhi (2014).
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intermediate densities in hope of approaching a binary design. To obtain a well-posed optimization
problem, the spatial oscillations of z are regularized via e.g. slope constraints (Petersson and Sigmund
(1998)), sensitivity filtering (Sigmund (1994)) or design field filtering (Bruns and Tortorelli (2001),
Bourdin (2001)). The topology optimization methods presented in this thesis utilize penalization in
combination with filtering to obtain a well-posed optimization problem.

4.1.1 Filtering

Filtering methods aim to regularize the spatial oscillations of z(X) ∈ [0, 1] by imposing a length-
scale. A commonly used filter is the convolution filter, sometimes referred to as the density filter
(Bruns and Tortorelli (2001), Bourdin (2001)). In this method, z is replaced by the filtered field
ν : Ωd → [0, 1], obtained as a weighted average of z(X)

ν(X) =

∫
Ωr(X)

k(X − Y )z(Y ) dY∫
Ωr(X)

k(X − Y ) dY
, (4.1)

where Ωr(X) ⊆ Ωd is a circle of radius r > 0 centered atX and k is a suitable kernel, cf. Bourdin
(2001). In Paper A, k is the cone filter function k(X) = max(0, 1 − ∥X∥2 /l), where l > 0 is the
length-scale which controls the smoothness of ν.

An alternative, implicit, formulation of the convolution filter is obtained as a solution to the PDE

−l2∇2ν + ν = z, (4.2)

together with appropriate boundary conditions, cf. Lazarov and Sigmund (2011). The solutions to
(4.2) are similar to (4.1), except that the filter function k is replaced by Green’s function, cf. Lazarov
and Sigmund (2011). The PDE (4.2) is traditionally solved subject to the homogeneous Neumann
condition ∇ν · nd = 0 on ∂Ωd, where nd is the unit normal to ∂Ωd. This causes the design’s
boundaries to be perpendicular to the domain edges ∂Ωd. Other possible boundary conditions exist,
whichmodels different boundary effects (Clausen and Andreassen (2017), Wallin et al. (2020)). Those
ν ∈ {ν ∈ H1 : ∇ν(X) · nd = 0 forX ∈ ∂Ωd} that satisfy (4.2), must also fulfill the weak form

δrν(ν; δν) :=

∫
Ωd
l2∇ν∇δν dV −

∫
Ωd
(ν − z)δζ dV = 0, (4.3)

for all smooth admissible δν.

4.1.2 Material interpolation

As indicated by the name of the density-based topology optimization method, the continuous and
filtered ν field could be seen as a dimensionless “density” which scales the material properties in each
X ∈ Ωd. If the final design predominantly contains the extreme values of ν, i.e. ν ∈ {0, 1}, it could
be argued that the limited regions containing intermediate ν ∈ (0, 1) should not affect the global
behavior, at least for maximum stiffness problems. Hence, the interpolation of the material properties
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with respect to ν must not coincide with a physically realizable microstructure. The extensively used
SIMP interpolation (Bendsøe (1989)), applied to the Young’s modulus of the constituent material
phase Eo

E(ν) = (δo + (1− δo) νp)Eo where δo ≪ 0, (4.4)

is part of the group of interpolations which violate theHashin-Shtrikman bounds (Hashin and Shtrik-
man (1963)) for certain choices of penalization parameter p > 0 (Bendsøe and Sigmund (1999)).
Nonetheless, it is one of the most commonly employed interpolation, probably due to its simplicity
and the aforementioned reasoning. The idea behind the p > 1 SIMP interpolation (4.4), is that
the stiffness-to-mass ratio is reduced for ν ∈ (0, 1), wherefore it is “uneconomical” for the optim-
izer to utilize intermediate densities when maximizing the stiffness subject to a maximum volume
constraint¹³. Alternatives to (4.4) do exist. For example, the Rational Approximation of Material
Properties (RAMP) interpolation (Stolpe and Svanberg (2001))

E(ν) =

(
δo +

ν (1− δo)
1+ q (1− ν)

)
Eo, (4.5)

is a popular choice due to its non-vanishing derivative at ν = 0 for all q > 0. The SIMP and RAMP
interpolations appear in Fig. 4.1.
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Fig. 4.1: The (a) SIMP and (b) RAMP interpolations versus ν. Here, δo = 10−3, cf. (4.4) and (4.5).

4.2 Boundary representation

The filtering invariably results in regions wherein ν ∈ (0, 1). This effect is especially prominent along
design boundaries, leading to a non-unique design definition which obstructs its realization. Addi-
tionally, these blurry interfaces might complicate the application of design dependent boundary con-
ditions and render non-physical structural behavior such as premature yielding (Maute et al. (1998),
Makhija and Maute (2014)). One way of addressing this issue is to arbitrarily choose a threshold at

¹³Traditionally, the physical density is scaled linearly with respect to ν.

29



which to extract the design representation, and in a post-processing step perform a shape optimization
in hope of finding the optimal design shape. This approach is investigated in Paper D. However, for
certain optimization problems where accurate boundary representations are crucial to correctly char-
acterize the physics, as is the case in e.g. phononic crystal design (Sigmund and Søndergaard Jensen
(2003)) or fluid-structure interaction problems (Yoon (2010b)), the aforementioned approach might
yield sub-optimal designs.

4.2.1 Projection

In density-based topology optimization it is common to project the filtered design field onto an
smoothed Heaviside step function, Hβ,η : R→ [0, 1], such that the extent of the ν ∈ (0, 1) regions
are limited, cf. Guest et al. (2004). One version of Hβ,η is (Wang et al. (2014))

ν̄ = Hβ,η(ν) =
tanh(βη) + tanh(β(ν − η))
tanh(βη) + tanh(β(1− η))

, (4.6)

where ν̄ is the filtered and projected design variable field, and (β, η) ∈ (R×R) are numerical para-
meters defined such that lim

β→∞
Hβ,η(ν) = us(ν − η), where us is the unit step function. By filtering

and subsequently projecting the design field with a large value of β, the density-based topology op-
timization approach becomes similar to an ersatz material level-set approach, cf. Sigmund andMaute
(2013) and Andreasen et al. (2020). In practice, it is common to utilize a continuation scheme on β
during the optimization iterations, which reduces the likelihood of convergence to local optimas.

Even though the design boundaries might be “crisp” as a result of the projection operation, they
are most likely poorly resolved due to misalignment with the computational mesh. To mitigate this
issue, Wallin et al. (2012) and Salazar de Troya and Tortorelli (2018) introduce adaptive mesh refine-
ment, which improves the resolution of the interfaces. Another possibility is to repeatedly generate
body fitted meshes during the optimization iterations, such that the structural boundaries always
align with the computational mesh, cf. e.g. Maute and Ramm (1995) and Xia et al. (2012). Unfortu-
nately, the re-meshing strategies might affect the convergence rate of a gradient-based optimization
due to inconsistent sensitivity information (Schleupen et al. (2000)), in addition to increasing the
computational cost. Andreasen et al. (2020) instead address the issue using the cut-element method,
which result in an increased accuracy in the interface integration. This method is however unable to
capture discontinuities in the interpolated fields, which leads to spurious couplings between the ma-
terial phases. To accurately characterize the discontinuity of transitioning between material phases,
the eXtended Finite Element Method (XFEM) (Makhija and Maute (2014)) or CutFEM (Villanueva
and Maute (2017), Burman et al. (2019)) with a suitable enrichment strategy could be used.

4.2.2 Shape optimization

This thesis is mainly concerned with the density-based topology optimization. However, in Papers
D and E, a shape optimization approach is also considered, wherefore a presentation of this sub-
ject is relevant. In fact, the optimization of the filtered and projected¹⁴ design field, or the similar

¹⁴Assuming β ≫ 1, cf. (4.6).
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level-set representation, can be argued to be akin to a shape optimization method in the sense that
new holes do not naturally appear since the non-vanishing sensitivities are limited to the interface
regions. As previously discussed, both density and level-set methods are traditionally based on an
Eulerian approach, i.e. the parameterized design is projected on a fixed background mesh. The con-
ventional shape optimization is instead based on a Lagrangian approach, wherein a conforming mesh
is generated over the design configuration, wherefore the optimization is devoted to changing the
position and shape of the domain boundaries. The Lagrangian approach to shape optimization result
in explicit descriptions of the structural boundaries, solely limited by the mesh resolution.

One of the earliest approaches to shape optimization was to use the finite element nodal co-
ordinates on the design domain’s boundaries as design variables (Zienkiewicz and Campbell (1973)).
Analogously to the ill-posedness of the integer field approach to topology optimization, this approach
results in the non-existence of solutions, manifested via designs that contain infinitely fine oscillat-
ing boundaries (Chenais (1975), Le et al. (2011)). Again, a well-posed shape optimization problem
is obtained via restriction of the design space by introducing a length scale on the solution, e.g. by
parameterizing the shape (Braibant and Fleury (1984)) or by filtering (Le et al. (2011)). Comprehens-
ives reviews of shape optimization methods appear in e.g. Haftka and Grandhi (1986) or Sigmund
and Maute (2013).

Inspired by the variable nodal coordinate approach to shape optimization, Belegundu and Rajan
(1988) introduce the so-called natural design variable method. In this method, the design variables
are external forces on the domain boundaries, and a linear elasticity shape change problem is solved to
“deform” the design into the optimal configuration. Since the mesh is morphed to comply with the
shape changes, re-meshing should not be needed. This approach enforces a length-scale on the solu-
tion, leading to a well-posed shape optimization problem. A similar approach is proposed by Scherer
et al. (2010), where prescribed displacements rather than loads are the design variables. To regular-
ize the problem, a hyperelastic shape change problem is solved, which allows the finite elements to
rotate, translate and dilate, but which penalizes shearing and stretching. To control mesh distortion,
an upper bound on the energy of the shape change analysis is enforced. Recently, Swartz et al. (2023)
compared the linear elastic and non-linear hyperelastic “filters”, and found that a trade-off between
superior mesh quality (hyperelastic filters) and computational efficiency (linear elastic filters) existed.

In Papers D and E, a filter similar to the fictitious energy approach developed by Scherer et al.
(2010) is used. This filter is also based on the solution to a hyperelastic shape change problem. In this
filtration, s governs the smoothed design displacement ψ resulting from the application of a Robin
boundary condition involving s to ∂Ωs

o, where ∂Ωs
o are the structural boundaries which are subject

to the shape optimization. In this way, we have Ω = φψ(Ωo) and φψ(Xo) = Xo + ψ(Xo). It is
assumed that ψ is found from the minimization of the fictitious potential

Πψ(ψ) =

∫
Ωo

Wψ dV +
1
2

∫
∂Ωso

||ψ − s||2 dS, (4.7)

where Wψ is a fictitious hyperelastic strain energy¹⁵. The equilibrium configurations of (4.7) are

¹⁵The ( · )ψ notation is used to indicate variables that are associated with ψ.
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defined as those smooth admissible δψ which satisfy

δΠψ(ψ; δψ) =

∫
Ωo

Pψ : ∇δψ dV +

∫
∂Ωso

(ψ − s) · δψ dS = 0, (4.8)

where Pψ =
∂Wψ

∂∇ψ follows from the hyperelastic assumption. From (4.8), the local balance equations
can be extracted by utilizing the product rule and the divergence theorem in combination with the
arbitrariness of δψ,

∇ · Pψ = 000, in Ωo,

Pψ · n = s−ψ, on ∂Ωs
o.

(4.9)

It is emphasize that the boundary condition is of Robin type, through which the design variable field
s drives ψ.

The weak form (4.8) is solved using finite element approximations of s and ψ. Using the arbit-
rariness of δψ, the discretized residual becomes

rψ(ν) =
∑∑∫

Ωo

(∇N)TPψ dV −
∑∑∫

∂Ωso

NT (s−ψ) dS = 0. (4.10)

The balance equations (4.10) constitutes a nonlinear relation between s and ψ, wherefore they are
solved via linearization, i.e.

rψ(ψ+ dψ) = rψ(ψ) +
∂rψ
∂ψ

dψ = 0 ⇔ Kψdψ = −rψ, (4.11)

which is solved iteratively until convergence, i.e. ψ← ψ+ dψ until ∥rψ∥ ≈ 0.
To see that the ψ field is smoother than s, i.e. that fine-scale oscillations of s are limited via

(4.7), the spectral decomposition of Kψ is introduced as¹⁶

KψΦ = ΦΛ ⇔ Kψ = ΦΛΦT , (4.12)

where Φ = [ϕ1,ϕ2, ...,ϕn] are the eigenvectors which are normalized such that ϕT
j ϕl = δjl and

Λ is a diagonal matrix which contains the eigenvalues λj , j ∈ Nn ordered in ascending order. By
assuming that Kψ is positive definite (i.e. λj > 0, j ∈ Nn), and inserting the spectral decomposition
(4.12) in (4.11), it is found that

ΦΛΦTdψ = −rψ ⇔ dψ = −ΦΛ−1ΦT rψ = −
n∑
j=1

1
λj
ϕj

(
ϕT
j rν
)
, (4.13)

where n = max(Nn). Inspecting (4.13), it appears that the smallest magnitude eigenpairs (λj,ϕj)
contribute the most to dψ, which indicates that (4.3) acts similar to a low-pass filter.

¹⁶Since Kψ is real and symmetric, Φ is unitary, i.e. ΦT = Φ−1.
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4.3 Fictitious domain

As previously mentioned, the traditional topology optimization method is based on an Eulerian ap-
proach, wherein the parameteried design is project on a fixed background mesh. This is also referred
to as a fictitious domain approach. The material distribution is quantified by the continuous filtered
field ν ∈ [0, 1], such that if ν(X) = 1 the material point X ∈ Ωd contains material, and if
ν(X) = 0 the material point lacks material, i.e. characterizes void. However, “true” void cannot
exist in an Eulerian approach, since then finite elements with vanishing stiffness occur, resulting in
an unsolvable system of equations. To amend this issue, the ν(X) = 0 material points are assigned a
small, but finite, stiffness δo > 0 (cf. (4.4) and (4.5)), which is assumed to have negligible influence on
the structural response. This approach has successfully allowed many linear elastic topology optim-
ization problems to be solved. However, for certain optimization problems involving e.g. eigenvalue
problems or finite strains, the nearly void regions might cause numerical issues.

When solving eigenvalue problems in topology optimization, the nearly void regions might yield
artificial solutions (Pedersen (2000)). For example, if conducting vibration analyzes, the issue appears
since the mass matrix scales linearly with ν, whereas the stiffness matrix scales non-linearly according
to a penalization scheme, cf. (3.9). Accordingly, the stiffness-to-mass ratio becomes very small in
regions wherein ν(X) ≪ 1, which is readily verified by considering the Rayleigh quotient of (3.9),
i.e.

ω2 = R(ϕ) :=
ϕTKϕ
ϕTMϕ

. (4.14)

In Fig. 4.2 the mass-to-stiffness SIMP and RAMP penalization ratios appear as a functions of ν for
p = {1, ..., 8}, q = {1, ..., 8} and δo = 10−3, cf. (4.4) and (4.5). The peaks appearing for the
interpolations moves to the left and increases in amplitude as δo → 0. Clearly, any peak is unwanted,
since it may give rise to artificial eigenmodes when ν takes on values in the vicinity of the peak.
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Fig. 4.2: The mass-to-stiffness penalization ratio versus ν for (a) SIMP and (b) RAMP. Here, δo = 10−3, cf.
(4.4) and (4.5).
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Tomitigate the issue associated with the SIMP scheme, Du and Olhoff (2007) introduce a non-linear
scaling of the mass for low ν values, such that the mass approaches zero faster than the stiffness.

Artificial solutions may also appear in the linearized buckling eigenvalue problem (3.18). In lin-
ear elastic analyzes, these solutions can be avoided by introducing different ν-scalings of Ko and Kg,
similar to the aforementioned approaches involving K and M (cf. e.g. Gao and Ma (2015)). How-
ever, for non-linear hyperelasticity, K = Ko + Kg is the Hessian of the strain energy, and since the
penalization is applied to the strain energy, Ko and Kg are penalized equally. Lindgaard and Dahl
(2013) instead propose to use a larger δo, however at the cost of artificially stiff void regions. Gao and
Ma (2015) distinguished between artificial and physical solutions via a strain energy density criterion,
to the detriment of computational efficiency.

The fictitious domain approach to topology optimization might pose additional problems when
void regions are subjected to finite deformations, as excessively distorted finite elements might res-
ult in loss of convergence in the iterative equilibrium iterations. To address this issue, Bruns and
Tortorelli (2003) introduce a element removal method, such that elements wherein ν → 0 are re-
moved from the analysis. Another approach is proposed by Wang et al. (2014), whereby the physical
strain energy is replaced by a linearized strain energy in void region. In Papers A and B, it is shown that
these methods also might mitigate the aforementioned issue of artificial eigenmodes in void regions.

4.3.1 Element removal

The element removal method introduced by Bruns and Tortorelli (2003) is able to both remove and
reintroduce finite elements depending on the value of ν(X) within the elements, X ∈ Ωe. Tra-
ditionally, the parametrization of the filtered design field ν is piece-wise constant over the finite
elements or interpolated via the finite element shape functions to the quadrature points. In the latter
approach, a measure of the mean design field νmean within a finite element Ωe is computed. A small
threshold εr > 0 then dictates the removal, νmean < εr, or reintroduction, νmean > εr, of the
element. The main disadvantage of this method is its inherent non-differentiability, wherefore the
gradient information provided to the optimizer will be discontinuous. However, the sensitivity in-
formation in void regions is often negligible, at least in the later stages of the optimization, wherefore
a sufficiently small εr should mitigate such issues.

Ideally, the finite elements should be removed or reintroduced during the optimization without
altering the predefined sparse patterns of the involved matrices. To this end, the assembly process is
monitored such that if a finite element is marked for removal, its stiffness, mass and internal force
contributions are set to zero. Subsequently, Dirichlet conditions are assigned to any “hanging” finite
element nodes, i.e. nodes for which all neighbor elements are removed. In this way, the global stiffness
matrix retains its positive definiteness.

Since the element removal method excludes nearly void regions from the equilibrium analysis, it
also removes the associated degrees-of-freedom from the eigenspace, i.e. eliminates artificial eigen-
modes. In Paper A, the success of this approach is proven for the topology optimization of eigenfre-
quency spectra of structures subject to finite deformations.
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4.3.2 Energy transition

In the energy transition proposed by Wang et al. (2014), the physical strain energy density,W PH , is
weighted against the linearized energy,WL, such that the strain energy density becomes

W (γ∇u,∇u) = W PH(γ∇u) +WL(∇u)−WL(γ∇u)

= W PH(γ∇u) + (1− γ2)WL(∇u),
(4.15)

where γ : [0, 1]→ [0, 1] is

γ = Hb,h(ν) =
tanh(bh) + tanh(b(νp − h))
tanh(bh) + tanh(b(1− h))

, (4.16)

and b, h are numerical parameters which dictate the shape of the approximative Heaviside step func-
tion Hb,h : R → [0, 1], cf. Wang et al. (2014). Accordingly, as ν → 0 also γ → 0, wherefore the
physical strain energy density is replaced by the linearized strain energy density. To continue, the
deformation gradient is redefined as F = 111+ γ∇u and

∂W

∂∇u : ∇δu =
∂W PH

∂γ∇u : γ∇δu+ (1− γ2)∂W
L

∂∇u : ∇δu

= P PH : δF + (1− γ2)σL : δϵ,

(4.17)

replaces ∂W
∂F

: δF in the weak form (cf. e.g. (2.3)) and σL is the linearized stress tensor.
In Paper B, the energy transition is used to eliminate artificial buckling modes in void regions. To

understand its principle of action, let us consider the energy transition generated Ko and Kg stiffness
matrices, which are obtained by discretizing and linearizing the weak form (2.3) with (4.17), i.e.

Ko =
∑∑∫

Ωe

(
γ2keo + (1− γ2)kel

)
dV,

Kg =
∑∑∫

Ωe
γ2keg dV,

(4.18)

where keo and k
e
g are the element versions of Ko and Kg, and k

e
l is the linear element stiffness matrix.

The (3.18) eigenvalue problem thereby yields the Rayleigh quotient

π = R(ϕ) = −ϕ
TKoϕ

ϕTKgϕ
= −

ϕT
(∑∑∫

Ωe
(γ2keo + (1− γ2)kel ) dV

)
ϕ

ϕT
(∑∑∫

Ωe
γ2keg dV

)
ϕ

. (4.19)

Indeed, the denominator of (4.19) tends to zero as γ → 0, whereas the numerator tends to a finite
value, wherefore the artificial eigenvalues should become large.
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5 Future perspectives
There always exists a trade-off between structural stiffness and strength. This is evident when con-
sidering the maximum stiffness design, which often consists of tension/compression loaded slender
members, where the compressive loads obviously threatens the structure’s integrity due to buckling.
Here, the approach in Paper B could be utilized to ensure that a safety factor against buckling exists
at operating load conditions. However, even if a structure has high buckling strength, it might still
fail due to yielding. It can therefore be argued that the definition of an stiffness optimal design must
take all of these considerations into account. Recently, progress has been made towards this goal,
however using simplifying linear assumptions (Wang et al. (2023), Andersen et al. (2022)). To take
this further, an optimization framework which accurately models the yield and buckling strengths
using elastoplasticity and instability analyzes should be developed.

It is however also important to remember that the prevention of instabilities must not always be
the ultimate goal. For example, the review paper written by Kochmann and Bertoldi (2017), illustrate
a wide range of examples wherein structures and materials which exhibit instabilities are utilized in
order to obtain exotic structural properties. Often, these examples involve elastomeric materials,
which can be modeled using hyperelastic or viscoelastic models depending on the rate at which they
are loaded. Topology optimization has already been used to design systems utilizing instabilities. For
example, a non-convex potential energy landscape is exploited in the systematic design of an energy
dissipating system by Deng et al. (2020) and of bi-stable programmable structures by Wallin et al.
(2021). There are however still many aspects to these design problems that are yet to be investigated,
such as rate-dependent or dynamic effects and multi-scale instabilities.

Unfortunately, the accuracy in the characterization of many physical phenomena tends to be
highly dependent upon the modeling of the design boundaries. Topology optimization is especially
problematic in this regard, due to the smearing effect obtained in the filtering procedure. The issue is
exemplified in Paper C for phononic bandgaps, and in Paper E for contact problems. To improve the
boundary modeling, simultaneous shape and topology optimization could be utilized, an approach
which is investigated in Paper E for pressure driven soft robots. In the future, this method should be
developed and tested on various boundary sensitive optimization problems, involving effects such as
fluid-solid interactions, acoustics and instabilities.
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6 Summary of the appended papers
Paper A: An eigenfrequency constrained topology optimization framework which incorporates hy-
perelastic materials, nonlinear kinematics, and preloads is established. The method generates designs
with maximized end-compliance at a given volume, which also fulfill a lower bound constraint on
the lowest eigenfrequencies. The adjoint method typically employed in the sensitivity analysis is ex-
tended to simple and degenerate eigenfrequencies in the finite strain setting. Artificial eigenmodes
are removed by utilizing an element removal scheme. Numerical examples illustrate that the mag-
nitude of the eigenfrequencies depend significantly on the load level. Several designs with the desired
fundamental eigenfrequency are presented.

Paper B: A strain energy transition approach is proposed to remove the artificial buckling modes
that invariably occur when including structural stability in topology optimization problems. The
structural and material response are assumed to be non-linear, wherefore a finite deformation hyper-
elastic simulation is conducted. The topology optimization aims to minimize the displacement of
the design, subject to lower bound constraints on the lowest critical buckling loads and maximum
volume. The critical buckling load levels are estimated by an eigenvalue analysis using the one point
approach. The numerical examples show the effectiveness of the energy transition scheme in com-
bination with the topology optimization.

Paper C: A topology optimization based inverse homogenization design framework of mechanically
tunable phononic crystal materials is presented. The formulation is based on length scale separa-
tion, which allows the dispersion relations to be obtained by analyzing a single unit cell subjected
to Floquet-Bloch boundary conditions. The dispersion properties are controlled by applying a fi-
nite macroscopic deformation to the unit cell. Several designs which exemplify the tuneability of the
dispersion-deformation relation are obtained using the proposedmethod. A verifying post-processing
analysis is conducted using a conforming finite element mesh.

Paper D: An inverse homogenization approach via topology optimization is used to design metama-
terials with sought macroscopic stress-strain behaviors. Internal contact is allowed as a non-linear
mechanism by a third medium contact method. Rigorous post-processing analyzes are conducted, in
which conventional contact formulations are used in a commercial software. To further investigate
the impact of the imprecise boundary modeling, a topology optimized design is used as initial design
to a shape optimization.

Paper E: A simultaneous shape and topology optimization approach is established and applied to
the design of pressure driven soft robots. The topology optimization is density based, and is used to
design the general morphology of the robots. A regularized nodal based approach to shape optimiz-
ation is applied to surfaces where the pressure load is applied. The motion of the robots is captured
using a quasi-static hyperelastic framework, and the rubber-like nature of the involved elastomeric
materials is modeled via mixed finite elements. Several designs of pressure driven soft robots are
presented.
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