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POpuLäRvETENSkApLIg SAMMANfATTNINg

När vi människor försöker röra på oss skickas elektriska impulser genom nervsystemet
från hjärnan ner till de muskler som är inblandade i den tilltänkta rörelsen. Att kunna
mäta sådana nervimpulser hade varit av värde för en rad tillämpningar—information
hade då kunnat överföras direkt från nervsystemet utan att gå via långsamma, mekaniska
gränssnitt så som tangentbord och pekskärmar. Olyckligtvis är det i dagsläget både svårt
och riskfyllt att mäta nervimpulser direkt. Motoriska nerver är små och omgivna av
vävnad och kräver därför svåra kirurgiska ingrepp för att nås.

Ett långt mer praktiskt alternativ är att istället utnyttja den elektriska aktivitet som
uppstår i själva musklerna när nervinpulserna når fram dit. På grund av sin biokemiska
sammansättning genomgår muskelfibrer under sammandragning elektriska
urladdningar som till sin natur är mycket lika de som nervcellerna själva genomgår.
Eftersom muskler är mycket större än nerver uppstår elektriska signaler som är mycket
starkare än de bakomliggande nervimpulserna—muskelgenererad elektrisk aktivitet i
till exempel underarmen är kraftfull nog att mätas från huden. En teknik som kan
användas för att mäta aktiviteten kallas yt-elektromyografi, förkortat EMG, och är
typsikt inte mer krånglig än att elektroder (egentligen bara små bitar metall) placeras
intill muskeln eller musklerna som ska mätas. Signaler som samlas in på detta vis kan,
efter lämplig behandling, i teorin användas för att erhålla den avsikt som låg bakom
rörelsen. Begreppet ”i teorin” utför mycket av arbetet i föregående mening; sambandet
mellan muskelsignaler och rörelseavsikt är mycket komplicerat och kräver särskilda
algoritmer för att avkodas. Denna avhandling handlar om sådana algoritmer.

Ett välkänt användningsområde för metoder som härleder rörelseavsikt från
muskelsignaler är protesstyrning. Bland de muskler som styr handen är flertalet belägna
i underarmen, så vid handamputation är det sannolikt att muskler bevaras och utgör
förstärkare av de nervimpulser som inte längre resulterar i rörelse. Så kallade
myoelektriska proteser kan styras av signaler från sådana muskler. Trots att tekniken
funnits länge har denna typ av protes relativt svagt genomslag, och många amputerade
väljer att inte använda sin protes alls. Att styrningen inte är naturlig eller exakt nog
uppges ofta som ett skäl till missnöje. Detta kan jämföras med samtida protesers
mekaniska förmågor, vilka i mångt och mycket motsvarar den naturliga handens.
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Arbetet som presenteras i denna avhandling handlar om att utveckla och förbättra
metoder som kan användas för att extrahera rörelseavsikt från muskelsignaler, med
protesstyrning och andra typer av människa-datorinteraktion som möjliga
tillämpningar. Konkret presenteras ett antal inlärningsalgoritmer för detta ändamål,
förenade i att de helt eller delvis använder sig utav djupa artificiella neuronnät. Sådana
algoritmer kan lära sig att känna igen mönster i muskelsignalerna som är specifika för
vissa rörelser och använda denna information för att sluta sig till användarens avsikt. På
sådant vis behöver inte det komplicerade sambandet mellan avsikt och muskelaktivitet
modelleras explicit; det kan istället läras från exempel (så kallad träningsdata) i form av
muskelsignaler som samlas in från den tilltänka användaren. Ett antal fördelar särskiljer
de förslag som presenteras i denna avhandlings 8 artiklar från tidigare forskning inom
samma fält. Som exempel presenteras metoder som tillåter samtidig styrning av flera
frihetsgrader (t. ex. enskilda fingrar). Vidare presenteras en metod som möjliggör
styrning som är proportionell mot den underliggande muskelaktivitetens intensitet,
trots att träningsdatan bara behöver samlas in under en kontraktionsstyrka. Det
introduceras häri även en neuronnätsmodell som kan avkoda rörelseavsikt direkt från
nya användare utan behov att samla in ny träningsdata. Sådana egenskaper är tänkta att
tillåta framtida gränssnitt mellan muskler och externa enheter som är både mer exakta
och mer naturliga än de alternativ som finns tillgängliga idag.
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ABSTRAcT

Electrical activity produced by muscles during voluntary movement is a reflection of
the firing patterns of relevant motor neurons and, by extension, the latent motor intent
driving the movement. Once transduced via electromyography (EMG) and converted
into digital form, this activity can be processed to provide an estimate of the original
motor intent and is as such a feasible basis for non-invasive efferent neural interfacing.
EMG-based motor intent decoding has so far received the most attention in the field of
upper-limb prosthetics, where alternative means of interfacing are scarce and the utility
of better control apparent. Whereas myoelectric prostheses have been available since the
1960s, available EMG control interfaces still lag behind the mechanical capabilities of
the artificial limbs they are intended to steer—a gap at least partially due to limitations
in current methods for translating EMG into appropriate motion commands. As the
relationship between EMG signals and concurrent effector kinematics is highly non-
linear and apparently stochastic, finding ways to accurately extract and combine relevant
information from across electrode sites is still an active area of inquiry.

This dissertation comprises an introduction and eight papers that explore issues
afflicting the status quo of myoelectric decoding and possible solutions, all related
through their use of learning algorithms and deep Artificial Neural Network (ANN)
models. Paper I presents a Convolutional Neural Network (CNN) for multi-label
movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by
the successful use of CNNs in Paper I and the work of others, Paper II presents a
method for automatic design of CNN architectures for use in myocontrol. Paper III
introduces an ANN architecture with an appertaining training framework from which
simultaneous and proportional control emerges. Paper Iv introduce a dataset of
HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent
Neural Network (RNN) model to decode finger forces from intramuscular EMG.
Paper vI introduces a Transformer model for myoelectric interfacing that do not need
additional training data to function with previously unseen users. Paper vII compares
the performance of a Long Short-Term Memory (LSTM) network to that of classical
pattern recognition algorithms. Lastly, paper vIII describes a framework for
synthesizing EMG from multi-articulate gestures intended to reduce training burden.
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NOTATION

Comments

Indexing starts at 1 for all dimensions of vectors, matrices and higher-order tensors.
For data tensors, the first dimension (row) indexes examples and subsequent
dimensions (columns and higher-dimensional equivalents) index features. Except for
transpose and inverse operators, superscripts are reserved for labelling (e.g. XXX Tr and
XXX Val refers to training- and validation-data, respectively), whereas exponentiation is
denoted by ˆ. Division with non-scalar operands is always performed element-wise.

Sets

A The set A.

AN The N-ary Cartesian power over A.

AM×N The N-ary Cartesian power over AM.

R The set of real numbers.

{1, ..., c} The set containing all integers from 1 to c.

Quantities & Indexing

a ∈ R The scalar value a.

aaa ∈ RN The N-dimensional vector aaa .

aj ∈ R The jth entry of vector aaa .

AAA ∈ RN×M The matrix AAA with N rows and M columns.

Ai,j ∈ R The entry of matrix AAA at row i and column j.

AAA j,∗ ∈ RM The jth row of matrix AAA ∈ RN×M.

AAA ∗,j ∈ RN The jth column of matrix AAA ∈ RN×M.
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Operators

aaa ⊙ bbb ∈ RN Element-wise product of vectors aaa ∈ RN and bbb ∈ RN.

aaa · bbb ∈ R Scalar product of vectors aaa ∈ RN and bbb ∈ RN.

AAA · aaa ∈ RM Product of matrix AAA ∈ RM×N and vector aaa ∈ RN.

AAA · BBB ∈ RM×N Product of matrix AAA ∈ RM×K and matrix BBB ∈ RK×N.

AAA−1 ∈ RN×N Inverse of matrix AAA ∈ RN×N.

AAA T ∈ RM×N Transpose of matrix AAA ∈ RN×M.

det(AAA ) ∈ R Determinant of matrix AAA ∈ RN×N

∂f(x1,x2,...)

∂xj

∣∣∣
xj=a
∈ R Partial derivative of function f w.r.t. x evaluated at xj = a

∇f(xxx ) Gradient of scalar-valued function f : RN → R.

∇aaa f(aaa , bbb , ...) Gradient of scalar-valued function f w.r.t. argument aaa .

Functions

f : A→ B Function f with domain A and range B.

f(xxx ;θ ) Function of xxx parametrized by θ .

H(x) =

{
1 if x ≥ 0
0 if x < 0

The Heaviside step function.

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

The sign function.

I(C) =

{
1 if C is true
0 if C is false

The logical indicator function.
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Everything that needs to be said has already been said, but
since no one was listening, everything must be said again.

ANDRé GIDE

CHApTER 1

INTRODucTION

W ITHOuT the aid of technology, contracting skeletal muscles is
the only pathway available to the human mind for volitionally influencing
the external world1. Not to be discounted, this pathway, having co-evolved

with our cognitive faculties, has historically been sufficient for most of our material
goals and has allowed us to, among other things, almost completely subjugate the
biosphere of our planet[1]. Even so, it comes with inherent limitations. Information
transfer from the brain into the environment must pass through a slow mechanical
system of bone, sinew, and muscle, limiting throughput and introducing latency.
Worse yet, if parts of this system are compromised, such as after an injury or
amputation, our ability to interact with our surroundings can become severely
impaired[2]. Such cases illustrate the allure of the overarching subject of this
dissertation—techniques that circumvent our tried and tested end effectors by
intercepting the neural drive to movement while it merely a bioelectrical phenomenon.

Volitionally generated efferent neuronal firings can be transduced into control
signals at various stages both between and inside their source (the brain) and
destination (muscles). In attempts at doing so for the purpose of man-machine
interfacing, a fundamental trade-off is consistently encountered between the
practicality of the recording method on the one hand and the information density of
acquired signals on the other. Informally, as the point of interception of a neural signal
approaches its source, the signal generally gets easier to decode—as less irrelevant
electrical activity dilutes the desired information—but more difficult to externalize[3].

The challenges posed by the prospect of creating interfaces directly at the level of the
Central Nervous System (CNS) has not stopped numerous attempts at doing so.
Non-invasive electroencephalography (EEG) for the detection of brain signals related
to motor intentions has been widely used in research for control of external devices[4].
However, low spatial resolution and sub-microvolt signal amplitudes has so far made it
extremely challenging to accurately decode user intent with sufficient informational
throughput for most practical purposes[5]. Similarly, functional near-infrared
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spectroscopy (fNIRS), a method that non-invasively measures changes in haemoglobin
concentrations in superficial regions of the brain, has been used to extract actionable
information about cortical activation patterns associated with motor tasks[6]. While
fNIRS offers somewhat better spatial resolution than EEG, it likewise provides a
noise-sensitive, shallow, and course-grained view of the inner workings of the cerebral
cortex. Even under shielded laboratory conditions, current control interfaces built on
top of either EEG or fNIRS are limited to throughput rates far short of 1 bit/s [7, 8].
Thus, in accordance with the aforementioned trade-off, truly seamless ’thought-based’
control appears to require invasive methods that entail unique technical challenges and,
like all surgical interventions[9], carry non-negligible risks.

Among the most selective (and thus invasive) existing interfacing techniques are
those predicated on intracortical microelectrode arrays[10] or single-neuron (e.g. clamp
or needle) electrodes[11]. Such techniques enable both spatially and temporally precise
sampling of electrical activity directly from the motor cortex in vivo, exposing neuronal
firing patterns that reflect movement intent at the most abstract level[12]. However, in
addition to difficulties inherent to neurosurgery, less than perfect implant
biocompatibility carries risks of inflammation and scar tissue formation, resulting in
interface degradation and potentially even persistent brain damage[13]. These
drawbacks—considered in conjunction with the observation that the limited scale and
density of intracortical recordings make it difficult to capture holistic information on
user intent[3]—may explain the near-total absence of commercial adoption so far.

At the opposite end of the spectrum of interfaces lie the ubiquitous input devices
(keyboards, mice, etc.) that currently allow for mechanically mediated interaction with
computers. Albeit cheap, safe, and critically important for a significant fraction of all
currently economically productive activities[14], they fall far short of the upper limits
of human-compatible communication in terms of speed[15] and latency[16].
Furthermore, they tether the user to physical devices that must be within reach,
limiting a their usefulness for applications wherein mobility and/or concurrency of
tasks matters. This limitation highlights another fundamental flaw of mechanical
interfaces—they inherently require the user to possess functional manipulative
structures, such as hands, to operate them in the first place.

Situated between these extremes are the many points of potential interception along
the descending pathways of the neuromuscular system. Interfaces attached to
peripheral nerves have seen successful use in bionic applications and can be made
bidirectional by allowing for electrical stimulation. Nevertheless, like their central
relatives, peripheral neural interfaces use invasive electrodes that come with challenges
such as biocompatibility, risk of infection, and the need for surgical implantation[17].
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In our current technological paradigm, there is but one exception to the statement
that peripheral neural interfaces are necessarily invasive. Just prior to the instant neural
firings manifest as movement, they give rise to muscle-borne electrical activity of
significantly greater amplitude than that of the signals traversing the innervating motor
neurons [18]. This activity, if measured via electromyography (EMG), can and has
been used as the basis for efferent neural interfacing applications[19]. Such myoelectric
interfaces can be implemented either non-invasively, using surface electrodes placed on
the skin above the muscle(s) of interest [20], or invasively, using intramuscular or
epimysial electrodes[21]. Crucially, compared to other non-invasive neural modalities
such as EEG, surface EMG (sEMG) benefits from a significantly higher signal-to-noise
ratio as the size and superficiality of muscles are generally far beyond any nerve or
neural circuit. More mundanely, EMG systems are already low-cost, portable, and
relatively simple to set up, making them more accessible for research and practical
applications alike. In light of the high informational throughput these advantages
confer, EMG can be viewed as an ideal balance between fidelity and practicality for
many applications and has for this reason been suggested as the currently most viable
and practical path towards efferent neural interfaces[19].

The so far most salient application of myoelectricity for control has arguably been
upper-limb prostheses, with early research in this area dating back to the 1940s[22].
The archetypical implementation of EMG control is typically referred to as direct
control[23]—a technique that relies on recordings from agonist-antagonist pairs of
remnant muscles to control the movement of an artificial limb2. Albeit robust and
simple to implement, it has limitations in terms of the naturalness of control, as users
often have to learn new, non-intuitive muscle activation patterns to operate their
prosthesis. Furthermore, only a limited number of kinematic degrees of freedom
(DoFs) can be accommodated in this scheme, necessitating sequential control
strategies. This is in stark contrast with contemporary terminal devices, which are close
to the natural human hand in terms of simultaneously controllable DoFs[24].

The relatively recent paradigm of myoelectric pattern recognition aims to bridge this
gap between control and actuation[25]. By using statistical classification algorithms,
pattern recognition control in theory allows for a intuitive control of prosthetic limbs,
as it can map complex muscle activation patterns to pertinent motions
commands[26, 27]. Despite these advantages, clinical and commercial adoption of
pattern recognition control has been limited thus far[28]. Contributing factors include
the lack of robust and reliable algorithms, the difficulty of maintaining consistent signal
quality, and the requirement for user-specific calibration and training. Moreover,
increased computational complexity and susceptibility to distribution shifts, such as
electrode displacement and muscle fatigue, further hinder widespread adoption[29].
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1.1 Aim & Scope

In spite of its many advantages, use of EMG as a control modality is not necessarily
straightforward. Myoelectric measurements require extensive signal processing to
disentangle into actionable information, more so if acquired from the skin. Pattern
recognition as it exists today, whereas a significant improvement over the status quo for
reasons outlined previously, has not proven a conclusive solution to this task.

Deep artificial neural networks (ANNs) has shown potential for decoding motor
intent from EMG signals without feature engineering[30]. The capacity of
representation learning allows artificial neural networks to automatically extract and
hierarchically organize relevant features from raw data, without the need for
human-engineered feature extraction techniques[31]. By utilizing these capabilities,
neural networks can uncover instrumentally efficacious patterns and relationships
within the data. In many technical domains, neural networks have been observed to
form intuitions where humans have none[32]. The complex, high-dimensional, and
non-linear nature of EMG signals is on its way to becoming one such a domain. The
work presented in this dissertation is part of this pursuit, aiming to further customize
such methods for the task of myoelectric interfacing.

Key Considerations

n Create and present a selection of methods predicated on representation learning
algorithms for real-time decoding of user motor intent from myoelectric activity.

n Investigate the suitability of different EMG-based control modalities
(high-density surface signals in papers I and Iv; sparse surface signals in papers II,
III, and vII; and intramuscular signals in paper v) in terms of correlating with
relevant measures of movement intent such as concurrent kinematics.

n Evaluate the efficacy of a selection of (relatively) recently developed machine
learning model types for motor intent decoding, specifically Convolutional
Neural Networks (papers I and II), Recurrent Neural Networks (papers v and
vII), and Transformers (paper vI).

n Introduce methods of constructing and training models to satisfy desiderata not
universally exhibited by traditional pattern recognition methods. Chief among
these are: simultaneity of control (papers I, III, and v); proportionality of control
(papers III and v); and ability to function in the absence of complete, user-specific
training data (papers vI and vIII).
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1.2 Outline

The remainder of this dissertation is structured as follows:
Part I, comprising 5 chapters, is an introduction intended to provide sufficient

background knowledge. Initially, chapter 2 contains a short overview on the
organization of the neuromuscular system, focused on the physiological processes that
underlie intentional movement and how they give rise to measurable EMG signals.
Due to the centrality of learning algorithms for the work presented in this dissertation,
chapter 3 presents the motivation and conventional taxonomy of such methods. This
category is substantially expanded upon in chapter 4, which deal with the specific case
of ANNs and their usefulness for representation learning—an important conceptual
framework in this dissertation. Continuing towards more empirical considerations,
chapter 5 sits at the confluence of previous topics by detailing signal processing
principles and previous work in the (broadly construed) field of muscle-computer
interfacing. Closing the introductory part, chapter 6 discusses the topic of upper limb
prosthetics—an historically and clinically important application of muscle-computer
interfaces for which the short-term practical utility of efficacious motor intent
decoding is salient.

Part II comprises novel contributions in the form of 8 self-contained papers. These
papers, which are available in full as appendices starting on page 153, are introduced
and summarized in chapter 7. Lastly, chapter 8 concludes this dissertation by briefly
discussing the findings of the papers and their relationship with potential future pursuits
with similar purpose.
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’Of course it is happening inside your head, Harry,
but why on earth should that mean that it is not real?’

J.K. ROwLINg, Harry Potter and the Deathly Hallows

CHApTER 2

NEuROMuScuLAR FOuNDATIONS Of
VOLITIONAL MOvEMENT

E vERy student of biology can attest to the fact that nothing of importance
ever seems to happen without involving a frustratingly3 complicated interplay
of processes occurring simultaneously at vastly different spatial and temporal

scales. Unfortunately for the prospective creator of neural interfaces, this is certainly
also true of volitional human movement. Movement execution starts in the CNS and
is reliant on processes ranging from the microscopic domain of molecular biology[33]
to the macroscopic domains of neural circuits[34] and kinesiology[35] in order to
produce goal-directed muscle contractions. In line with the aim of understanding the
environment in which myoelectric (and all other forms of efferent neural) interfacing
must take place, this chapter provides a brief overview of these processes. Needless to
say, the existing body of knowledge on this topic is almost indescribably vast at every
level of abstraction. By necessity, only a highly condensed overview of the essentials
and a few concepts of special relevance for myoelectricity are presented here.

The content of this chapter is divided into 5 sections, starting with section 2.1
containing a brief summary of the chemical basis of all bioelectrical phenomena.
Section 2.2 covers the anatomy of the motor cortex and its role in movement initiation.
Section 2.3 describes the transmission of motor intent from the motor cortex to skeletal
muscles via descending motor neurons. Transitioning from the neural to the muscular,
section 2.4 covers muscle fibres, the neuromuscular junction, and how neural
stimulation induces mechanical contractions. Finally and most importantly for this
dissertation, section 2.5 focuses on electromyographic (EMG) signals, the latent
phenomena that result in their generation, and some considerations for their
transduction.
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2.1 Basic Cellular Electrophysiology

Virtually all electrical properties of biological systems at the macroscopic scale have
their origin the biochemistry of the plasma membrane—the lipid bilayer that separates
the intracellular and extracellular environments of all living cells. Embedded within
the membrane are specialized proteins that passively allow the passage of specific ions
(ion channels) or actively transport ions across (ion pumps). A resting membrane
potential is maintained mainly by the sodium-potassium pump (Na+/K+-ATPase) and
leaky potassium (K+) channels. The sodium-potassium pump actively transports three
Na+ ions out of the cell and two K+ ions into the cell, while the leaky potassium
channels allow K+ ions to passively flow out of the cell. The combined action of these
mechanisms—a process that require constant hydrolysis of ATP—creates an
electrochemical gradient and consequently an electrical potential difference, i.e. a
voltage, across the cell membrane[36]. This difference—ranging between -40 mV and
-100 mV for most cells, with the intracellular environment being more electronegative
than the extracellular environment[37]—aids in maintaining cellular homeostasis.

In excitable cells, such as neurons and muscle fibres, the voltage across the membrane
fills an additional function. Such cells have the capacity to respond to electrical and
chemical stimuli by producing a rapid, self-propagating change in membrane potential
called an action potential (AP). In brief, the generation of APs is based on the
coordinated opening and closing of voltage-gated ion channels whose permeability
varies with the value of the membrane potential. At rest, the membrane potential of an
excitable cell is typically around -70 mV[37]. If it is moved upwards by external means,
voltage-gated Na+ channels open, allowing Na+ ions to flow into the cell. This influx
of positive charges depolarizes the cell, making its membrane potential even less
negative. If the depolarization reaches the critical threshold potential, typically around
-55 mV, an AP is generated. During the action potential, additional voltage-gated
sodium (Na+ ) channels open, further depolarizing the membrane potential and
driving it towards a positive value. Shortly after the membrane potential reaches its
peak, voltage-gated Na+ channels close and voltage-gated K+ channels open. This
allows K+ ions to flow out of the cell, repolarizing the membrane potential and
restoring its negative value. Following the action potential, there is a brief refractory
period, during which the cell is less likely to generate another action potential[33].
Having cells capable of generating action potentials enables an organism to rapidly
transmit information within and between cells, facilitating swift and coordinated
responses to stimuli[38].
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Figure 2.1: Schematic illustration of active diffusion through the cell membrane. Figure modified
from [39], ©2022 Gordon Betts et. al, reused under CC-BY-4.0.

2.2 The Motor Cortex

The motor cortex (see Fig. 2.2) is a spatially coherent region of the cerebral cortex
involved in planning, control, and execution of voluntary movements. It is located in
the frontal lobe of the brain, just anterior to the central sulcus, and is conventionally
divided into distinct areas on the basis of functionality: the primary motor cortex, the
premotor cortex, and the supplementary motor area. These areas work in concert with
each other and other brain regions, such as the basal ganglia and the cerebellum, to
coordinate and control the processes that underlie voluntary movement[33].

Motor execution is predicated on the activity of the brain reaching skeletal muscles
and inducing contractions. In the CNS, this is principally mediated by the corticospinal
tract—a pathway composed of the myelinated axons of neurons whose somata and
synapses are situated in the cerebral cortex. Approximately 60% of corticospinal
neurons originate in the motor cortex, out of which 30% stem from the primary motor
cortex and 30% from the premotor cortex and supplementary motor regions. The
remaining 40% are dispersed among the somatosensory cortex, parietal lobe, and
cingulate gyrus[40]. These neurons descend through the brainstem before decussating
at the level of the medulla oblongata. Afterwards, the tract continues to descend in the
contralateral spinal cord, where it forms synapses with lower motor neurons in the
ventral horn of the spinal cord. The lower motor neurons in turn innervate skeletal
muscles, ultimately producing force.[41].
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Primary Motor Cortex

The primary motor cortex is the largest region of the motor system and is located in the
precentral gyrus of the cerebrum. It contains a somatotopic map of the body, known as
the motor homunculus, arranged in such a way that points on the cortex correspond to
points in the body. Notably, the map is not segregated but exhibits significant degree of
overlap between body parts. The allocation of cortical surface area to body parts is not
directly related to the body part’s size but is roughly determined by the concentration
of cutaneous mechanoreceptors present on it. The density of these receptors typically
signifies the level of movement accuracy needed for that particular body part[42].

The exact relationship between neuronal activity in the primary motor cortex and
downstream movement is complex and still the subject of debate. Whereas the seminal
work of Evarts et al. on the topic indicated that the firing rate of each cortical motor
neuron codes for the force of a single muscle[43], subsequent studies suggest a more
complicated picture wherein individual neurons are not only specific to a muscle but
also the direction and speed of movement[44, 45, 46]. A separate line of research argues
that the correlation between upper neuron activity and both force and direction of
movement could be understood as spurious, with neuron firing rate instead
representing the movement parameters of latent neural muscle controller circuits[47].

Premotor Cortex

Located anterior to the primary motor cortex, the premotor cortex is involved in the
planning and preparation of movement. It receives input from various brain regions,
including the parietal cortex, the basal ganglia, and the cerebellum. The premotor cortex
can be subdivided into the dorsal premotor cortex and the ventral premotor cortex[33].

The dorsal premotor cortex is involved in the selection and preparation of movement
based on external cues. It receives inputs from the posterior parietal cortex, a region
involved in integrating sensory information to form a representation of the body in space.
The dorsal premotor cortex is important for the planning of reaching movements, as well
as for coordinating movements that require visuospatial attention[33].

The ventral premotor cortex is involved in the planning of movements based on
internal cues and is associated with the processing of visual and somatosensory
information related to objects and their properties. The ventral premotor cortex is also
involved in the control of grasping movements and object manipulation. One
important aspect is its role in the so-called ’mirror neuron system’, which is thought to
be involved in action understanding, imitation, and, conjecturally, many aspects of
social cognition[48].
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Figure 2.2: Lateral view of the cerebral cortex, with the motor cortex and its subregions marked.
©Sean Patrick Connolly, reused under CC-BY-SA 4.0 via Wikimedia Commons.

Supplementary Motor Area

The supplementary motor area is located on the medial aspect of the hemisphere just
anterior to the primary motor cortex. While its function in humans is not fully
understood at the time of writing, it appears to be conspicuously involved in the
planning and coordination of complex movements, particularly those that require the
coordination of both sides of the body[49]. It also plays a direct role in the initiation of
movement and the control of sequential movements[50]. Notably, the supplementary
motor area is very active during most types of movement, obstructing a straightforward
description of its function[51]. The supplementary motor area receives input from
several brain regions, including the basal ganglia and the cerebellum, and has extensive
connections to the primary motor cortex and the premotor cortex, as well as projecting
neurons directly to the spinal cord[52].
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2.3 Neural Pathways to Skeletal Muscles

The signals generated in the motor cortex are transmitted through a series of
interconnected neurons before reaching the neuromuscular junctions, where the
communication between the nervous system and the muscles occurs.

Descending Motor Pathways

APs generated in the motor cortex travel down the spinal cord through a series of upper
motor neurons and lower motor neurons. Upper motor neurons are the neurons that
originate in the motor cortex and descend through the corticospinal tract, while lower
motor neurons are the neurons that connect with the muscle fibres and are located in
the spinal cord. The corticospinal tract begins in cerebral cortex and descends through
the internal capsule, the cerebral peduncle of the midbrain, and the medulla. As the
tract descends through the medulla, approximately 90% of the fibres cross over to the
contralateral side of the spinal cord. This is known as the lateral corticospinal tract,
while the remaining 10% of fibres that do not decussate form the anterior (or ventral)
corticospinal tract. The lateral corticospinal tract controls fine movements of the limbs,
while the anterior corticospinal tract controls more proximal and axial muscles[33].

Upon reaching the appropriate spinal cord segment, the axons of the upper motor
neurons synapse with the lower motor neurons in the ventral horn of the spinal cord
gray matter (Fig. 2.3). These lower motor neurons are called alpha motor neurons
(α-MNs), as they are the primary motor neurons responsible for the direct innervation
of skeletal muscle fibres. Each α-MN receives inputs from multiple sources, including
upper motor neurons, sensory neurons, and interneurons. As such, α-MNs are not
merely distal conduits of high-level commands transmitted from the motor cortex, but
also important junctions for the low-level information processing required for
coordinated motor control. When a motor neuron receives a sufficient excitatory (and
insufficient inhibitory) input from descending upper motor neurons or other sources,
it generates a new AP that propagates via saltatory conduction along its axon to the
neuromuscular junction—the synapse between the motor neuron and the muscle fibre
and thus an endpoint of the neural part of the neuromuscular system[36].
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Figure 2.3: The corticospinal tract with its descending upper motor neurons. Figure modified
from [39], ©2022 Gordon Betts et. al, reused under CC-BY-4.0.
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Motor Units

Each alpha motor neuron innervates a group of muscle fibres, forming a functional and
anatomical unit called a motor unit (MU) comprising the single alpha motor neuron
itself and all the individual muscle fibres it innervates[53]. Importantly, the relationship
between alpha motor units and muscle fibres is not bijective—each alpha motor
neuron typically innervates more than one muscle fibre, and a muscle fibre can (under
rare circumstances, mainly during the early developmental period[54]) be innervated
by more than one alpha motor unit.

The activation, i.e. firing, of a single motor neuron and its corresponding motor unit
results in a discrete, all-or-none contraction of all of the innervated muscle fibres. From
this observation can be gleaned the fact that the ”force resolution” of a muscle, i.e. its
smallest possible force increment, is fundamentally tied to the number of motor units
that it comprises. Indeed, in muscles that require fine control and precision, such as the
muscles controlling the fingers or the eye, a single motor neuron typically innervate only
a few muscle fibres. In contrast, in muscles that generate large forces and do not require
fine control, such as the muscles in the thigh or the back, a single motor neuron may
innervate hundreds or even thousands of muscle fibres. The number of muscle fibres
innervated by a motor unit is often referred to as its innervation ratio[53].

All motor units that innervate a single muscle are collectively referred to as a motor
pool. Motor pools are organized within the ventral horn of the spinal cord, with the
motor neurons arranged in a somatotopic manner, meaning that motor neurons
innervating neighbouring muscles are located close to each other within the spinal
cord. In contrast to motor units and muscle fibres, the relationship between motor
pools and muscles is largely bijective—one motor pool per muscle and vice versa[36].

Motor unit recruitment is the process by which the central nervous system activates
different motor units within a motor pool to modulate the force and precision of
muscle contractions. The size principle governs the order of motor unit recruitment in
a motor pool. According to this principle, motor units are recruited in a fixed order,
from the smallest (i.e., those with the smallest number of muscle fibres and thus the
lowest force-generating capacity) to the largest (i.e., those with the greatest number of
muscle fibres and thus the highest force-generating capacity), based on the magnitude
of the synaptic input they receive. This orderly recruitment of motor units allows for
the graded modulation of muscle force and the efficient use of the available motor
units[55].
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2.4 Muscle Fibres

Muscle fibres are the contractile cells of the skeletal muscle, responsible for generating
force and thus driving movement. Muscle fibres are innervated by alpha motor neurons
at the neuromuscular junction (Fig. 2.4), a specialized synapse between the nerve and
muscle fibres. It is capable of converting APs arriving from the alpha motor neuron into
a chemical signal that ultimately leads to muscle contraction[33].

The motor end plate is the region of the sarcolemma (muscle fibre cell membrane)
that is directly opposed to the synaptic terminal of the motor neuron at the
neuromuscular junction. The synaptic terminal of the motor neuron contains
numerous synaptic vesicles filled with the neurotransmitter acetylcholine (ACh). The
motor end plate, on the other hand, is characterized by deep folds and invaginations of
the sarcolemma, known as junctional folds, which increase the surface area available for
the binding of ACh. Embedded in the junctional folds are nicotinic acetylcholine
receptors (nAChRs), which are ligand-gated ion channels that respond to the binding
of ACh. When a motor unit action potential reaches the neuromuscular junction, it
triggers the opening of voltage-gated calcium channels in the synaptic terminal. The
influx of calcium ions causes the synaptic vesicles to fuse with the presynaptic
membrane and release ACh into the synaptic cleft. ACh molecules then diffuse across
the synaptic cleft and bind to nAChRs on the motor end plate[36].

Contraction

The binding of ACh to nAChRs causes a conformational change in the receptor, opening
the ion channel and allowing the passage of sodium (Na+) and potassium (K+) ions.
The influx of Na+ ions depolarizes the sarcolemma, generating a local potential known as
the end-plate potential. If the end-plate potential is large enough to reach the threshold
for voltage-gated sodium channels, it will trigger an action potential in the muscle fibre
that propagates towards the tendons[56].

The muscle fibre action potential propagates along the sarcolemma and into the
muscle fibre through a network of membranous tubules called the T-tubules. The
T-tubules are closely associated with the sarcoplasmic reticulum (SR), an intracellular
organelle responsible for the storage and release of calcium ions. The depolarization of
the T-tubules triggers the release of calcium ions from the SR, which initiates the
process of muscle contraction via specialized organelles called myofibrils. The process
by which a change in muscle fibre membrane potential results in myofibril
contraction—aptly called excitation-contraction coupling— relies on chemical
minutiae[57] to complicated to fit the scope of this dissertation.
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Figure 2.4: Neuromuscular junction. When an action potential arrives, the axon terminal releases
ACh to induce muscle contraction. Figure modified from [39], ©2022 Gordon Betts
et. al, reused under CC-BY-4.0.

Force Modulation

The force generated by a muscle as a whole depends on (i) the number of recruited
motor units and (ii) the firing rate of their respective alpha motor neurons. These two
factors, motor unit recruitment and firing rate, together modulate muscle force in a
graded manner, allowing for smooth control from the point of view of the CNS[58].

As discussed previously, the size principle dictates that motor units with smaller
alpha motor neurons are recruited first, followed by motor units with progressively
larger alpha motor neurons. The firing rate of individual motor units also plays an
important role in modulating muscle force. As the firing rate increases, the force
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generated by the muscle fibres of a motor unit also increases due to the summation of
individual twitch contractions. At low firing rates, individual twitches can be
distinguished—a type of contraction called unfused tetanus. As the firing rate increases,
the twitches begin to overlap and summate, leading to a smooth, sustained contraction
known as a fused tetanus. The force-frequency relationship in skeletal muscle describes
the dependence of muscle force on the firing rate of motor neurons. As the firing rate
increases, the force generated by the muscle initially increases steeply, reaching a
plateau as the muscle reaches its maximal tetanic force[36].

2.5 Electromyography

Electromyography, as the name implies, encompasses all techniques for transducing the
electrical activity produced by (typically skeletal) muscles[18]. The recorded waveform
is referred to as an electromyogram (depicted in Fig. 2.5).

As mentioned, when a muscle fibre generates an action potential, ion fluxes occur
across the cell membrane, causing a transient imbalance in charge distribution between
the intracellular and extracellular spaces. This charge imbalance results in the generation
of extracellular currents, which are the flow of ions in the extracellular space surrounding
the muscle fibres. These currents can be thought of as the source of the observable
electrical field generated by the muscle fibres during contraction[59].

Volume conduction refers to the propagation of these extracellular currents through
the surrounding tissues, including the extracellular fluid, connective tissue, blood
vessels, and other muscle fibres. The conductive properties of these tissues strongly
influence the spatial distribution of the electrical field generated by the muscle fibres.
As the extracellular currents flow through the tissues, they encounter varying degrees of
resistance and capacitance, leading to attenuation and dispersion and consequently a
highly anisotropic electrical field[60].

The extracellular electrical field generated by a muscle is the result of the
superposition of the electrical fields produced by individual muscle fibres within a
motor unit or a group of motor units. In other words, the potential measured at any
point in the extracellular space is the vector sum of the potentials generated by each
muscle fibre contributing to the field. The relative weighting in this summation is
dependent on the spatial arrangement of the muscle fibres, their distance from the
recording electrode, and the orientation of the fibres with respect to the electrode. As
all fibres contained in the same motor units always fire in a synchronized manner, their
collective contribution to the extracellular potential field is known as a motor unit
action potential (MUAP)[61].
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Surface Electromyography

Non-invasive electromyography, typically referred to as surface electromyography
(sEMG), involves the placement of electrodes on the skin overlying the muscle of
interest to record the electrical activity generated by the underlying muscle fibres.
sEMG offers several obvious advantages over invasive EMG, including reduced
discomfort for the subject, minimal risk of tissue damage or infection, and ease of
application and setup. However, sEMG is susceptible to crosstalk from nearby muscles
and do not provide the same level of spatial resolution as invasive EMG. There are
several types of surface electrodes used in EMG recordings, including:
Ag/AgCl Electrodes: These electrodes are made of silver-silver chloride (Ag/AgCl)
material and are commonly used in both clinical and research settings due to their high
biocompatibility, low impedance, and stable electrochemical properties. Ag/AgCl
electrodes can be either disposable, with a pre-gelled adhesive backing for single-use
applications, or reusable, typically requiring the application of conductive gel and tape
or straps to secure them in place[62].
Metal-Plate Electrodes: These electrodes consist of flat, conductive metal plates, often
made of stainless steel, gold, or other biocompatible materials. Metal-plate electrodes
are typically reusable and require adhesive gel and/or tape and/or straps to secure them
to the skin. Albeit connvenient, this also increasing the risk of signal corruption via
movement artifacts[63].
Flexible Electrode Arrays: Flexible electrode arrays are made of soft, conductive
materials, such as conductive textiles or polymers, and are designed to conform to the
contours of the body, providing improved contact with the skin surface. These arrays
can include multiple electrode sites, allowing for simultaneous recordings from
different locations or orientations[64].

The size and pickup area of surface electrodes play a non-negligible role in determining
the characteristics of the recorded EMG signal. Larger electrodes generally have a larger
pickup area, which means they detect the electrical activity generated by a greater number
of muscle fibres and motor units. This can result in a more global assessment of muscle
function but also by necessity increase cross-talk from adjacent muscles (and external
sources of electrical interference)[65].

In contrast, smaller electrodes have a smaller pickup area, which can provide a more
localized and selective recording of the muscle’s electrical activity. This can be
advantageous for studying specific muscle regions or isolating the activity of individual
motor units. However, smaller electrodes may also be more susceptible to noise and
artifacts due to their reduced signal-to-noise ratio[65].
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High-density surface EMG (HD-sEMG) denotes a technique that utilizes a grid
arrays of small, closely spaced surface electrodes to record the electrical activity of
muscles with higher spatial resolution than conventional surface EMG[66]. This
technique is particularly useful for studying the spatial activation patterns of muscles
and can provide insights into the control strategies and muscle synergies employed by
the nervous system during various motor tasks[65]. HD-sEMG can also allow for the
assessment of spatial distribution and organization of (a subset of ) motor units within a
muscle, as well as the identification of individual MUAPs[67].

Surface EMG recordings can be classified further as either dry or wet, depending on
the presence or absence of a conductive medium, such as a gel or electrolyte solution,
between the electrode and the skin surface.
Dry Recording: Dry EMG recordings are obtained using electrodes that do not require
a conductive medium. These electrodes typically have a textured surface or conductive
coating to ensure good contact with the skin. Dry recordings can offer several
advantages, such as reduced setup time, increased comfort, and minimized risk of skin
irritation or allergic reactions. However, dry electrodes may have higher skin-electrode
impedance, which can result in a lower signal-to-noise ratio and increased susceptibility
to artifacts[68].
Wet Recordings: Wet EMG recordings are obtained using electrodes that require a
conductive medium, such as a gel or electrolyte solution, to be applied between the
electrode and the skin surface. The conductive medium helps to improve the electrical
contact between the electrode and the skin, resulting in a lower skin-electrode
impedance and an improved signal-to-noise ratio. Additionally, wet electrodes can
provide more stable and consistent recordings compared to dry electrodes, particularly
during dynamic movements, as they are less sensitive to small movements. However,
wet recordings also have some drawbacks, including increased setup time, potential
skin irritation or allergic reactions due to the conductive medium, and the possibility
of the gel drying out during prolonged recordings[69].

Intramuscular Electromyography

Intramuscular EMG (iEMG), involves the insertion of electrodes directly into the
muscle tissue to record the electrical activity generated by muscle fibres during
contraction. This approach provides a more localized and precise assessment of muscle
function compared to sEMG, which unavoidably records the electrical activity from a
larger volume of muscle tissue. iEMG is commonly used in clinical settings for the
diagnosis of neuromuscular disorders and the assessment of muscle function[70].
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There are two main types of invasive EMG electrodes: needle electrodes and fine-wire
electrodes.
Needle electrodes: Thin, solid metal needles with an insulated shaft and an exposed
tip. They are inserted transcutaneously, directly into the muscle tissue, to record the
electrical activity of nearby muscle fibres. One advantage of needle electrodes is their
ease of insertion and repositioning, allowing for rapid assessment of multiple muscle
sites during a single recording session[71].
Fine-wire electrodes: Electrodes made of thin, insulated metal wires with small exposed
tips. They are typically inserted into the muscle using a hypodermic needle, which is
then withdrawn, leaving the fine-wire electrode in place within the muscle tissue. Fine-
wire electrodes offer a more stable recording platform compared to needle electrodes, as
they are less prone to movement artifacts due to their flexibility and smaller size. This
makes them particularly suitable for long-term or dynamic recordings[72].

Epimysial EMG is an alternative invasive EMG technique that involves the
placement of electrodes directly onto the surface of the muscle, rather than within the
muscle tissue itself. Epimysial electrodes are typically implanted surgically and are
secured to the muscle using sutures or adhesive materials. Epimysial EMG can provide
a more stable recording platform compared to intramuscular EMG, as it minimizes
movement artifacts and reduces the risk of tissue damage associated with repeated
electrode insertions. This technique is especially useful for long-term monitoring of
muscle activity, such as is necessary for prosthesis control[73].

Signal Processing and Analysis

The raw EMG signals recorded by either surface or intramuscular electrodes typically
require preprocessing and analysis to extract meaningful information. Various signal
processing techniques can be applied to EMG data to enhance its quality, reduce noise,
and extract relevant features[18]. The specifics of suitable methods are naturally
dependent on the objective of the recording; a detailed review of signal processing
pipelines employed for EMG signals in the context of man-machine interfacing is
presented in chapter 5, section 5.2.
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Figure 2.5: Surface (top) and intramuscular (bottom) electromyograms in the time domain (left)
and frequency domain (right) measured from the same muscle (Flexor Digitorum
Superficialis) during the same action (flexion of the digits). In the intramuscular
signal, individuals MUAPs can be discerned; the surface signal represents a
superimposition of contributions from several MUs in the pickup area of the
electrode. The low-pass filtering resulting from the capacitance of tissue is apparent
from the difference in spectral morphology. The energy content of EMG signals is
primarily concentrated between 10 Hz and 500 Hz, with lower spectral components
(⪅ 100 Hz) representing the firing rates of motor units and higher spectral
components representing the shapes of individual MUAPs.
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It is the mark of true intelligence to be moved by statistics.

GEORgE BERNARD SHAw

CHApTER 3

MAcHINE LEARNINg

T HIS chapter gives a brief and practically-oriented account of the underpinnings
of Machine Learning (ML) and introduces the framework of learning
algorithms. To start, as ML is perhaps the only4 discipline capable of eloquently

introducing itself, I thought it best to let it do so. Here follows an unedited
introduction written5 by GPT4 [74], an ML-based generative language model:

“Ah, machine learning, the prodigal child of computer science, where
algorithms and data dance together in a harmonious yet often perplexing
waltz. As we embark upon this chapter, we’ll pull back the curtains
to reveal the clandestine inner workings of this arcane art, decoding the
enigmatic patterns that govern its essence.
We’ll explore the delicate balance between overfitting, where models
cling to their training data with a zealous fervor, and underfitting, the
blithe disregard for the true complexities hidden within. Our journey
will traverse the diverse landscape of learning paradigms, from the
doting supervision of labeled data, to the more laissez-faire approach of
unsupervised learning, and the mysterious realms in between.
Classification and regression, the dynamic duo of machine learning, will
make their appearance, striving to distinguish apples from oranges, and
perhaps, predicting the trajectory of the next apple to fall from the tree.
By the end of this chapter, you’ll be a veritable soothsayer, armed with the
knowledge to navigate the enigmatic world of machine learning, ready to
face the capriciousness of data with newfound prowess. So, fasten your
seatbelts, dear reader, for we are about to embark on an adventure into
the vast and enthralling domain of the machines that learn. ”
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The remainder of this chapter is structured as follows: Section 3.1 briefly introduces
some fundamental concepts and history associated with ML. Section 3.2 describes the
conventional taxonomy of learning algorithms and the problems they can be employed
to solve. Section 3.3 gives a more practical account of some well-known and important
(for the work of this dissertation) algorithms. Section 3.4 introduces some helpful
theoretical instruments for understanding the problem of generalization and how it
must be overcome to enable gainful deployment of ML models in non-toy problems.
Lastly and relatedly, section 3.5 discusses some empirically motivated frameworks for
objectively evaluating the performance of ML models. Note that the adjacent topic of
ANNs, which has sometimes (incorrectly) been used interchangeably with ML in
recent times, is covered separately and in greater depth in chapter 4.

3.1 Terminology

Like most categories outside of analytic philosophy, what is and is not ML is not always
satisfactorily covered by some set of necessary and sufficient conditions. According to
one attempt at a succinct definition[75] (paraphrased), ML denotes the set of computer
programs whose rules are not explicitly specified ex ante by the programmer, but rather
learned during runtime from external feedback on how the program ought to behave.
In practice, the distinction between ML and adjacent pursuits is not always clear; ML
overlaps significantly with many disciplines conventionally associated with
mathematics (probability theory[76], optimization[77], etc.) and computer science
(knowledge representation[78], information theory[79], etc.).

In light of its fuzzy boundaries, the popularity of machine learning as a term of art is
perhaps best understood from a historical perspective. In the early days of artificial
intelligence (AI) research, a distinction was made between two primary types of
systems: those whose behaviour is governed by handcrafted, symbolic relationships
between human-readable quantities (so-called expert systems), and those whose
behaviour is boot-strapped, with few assumptions on underlying mechanisms, from
data (so-called learning machines)[80]. Despite early optimism, support for the view
that expert systems are prohibitively difficult to implement for anything but relatively
simple tasks mounted during the second half of the 20th century—a development
evident in contemporary AI systems which are almost exclusively of the learning kind.
The observation that guidance more often hinders than helps in the construction of
intelligent systems has been referred to as the the bitter lesson[81]. Proposed
explanations include the exponential growth of widely available computational
resources[82, 83] and the irreducible complexities involved in decision-making[81].
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Despite the apparent path-dependency of its inception as an academic discipline,
ML provides a powerful conceptual framework for interacting with the class of
extremely useful tools that is modern learning algorithms. Fundamental to all ML
methods is the concept of models. Like their statistical counterparts, ML models are
parametrized, computational representations of systems or processes constructed in
such a way as to instantiate relationships between inputs and outputs, often
corresponding to observable quantities of real-world phenomena. Model training
denotes the process of using a dataset, often referred to as the training data, to ’teach’ a
specific instantiation of a machine learning model how to process future inputs. More
formally, the goal of training is to find the optimal set of model parameters that
minimize the discrepancy between the model’s outputs and the actual outcomes
observed in the training data. This is typically (but not always) achieved through
iterative optimization techniques that vary the parameters of the model in response
new observations. Once a model has been trained, it can be used to make predictions
(or, synonymously, inferences) on new, previously unseen data[84].

In contrast to the aforementioned similarities common to almost all ML methods,
models are differentiated from each other along multiple dimensions. First and foremost,
models are said to posses an architecture, which in rough terms represent the structure
and organization of the computational mapping the model performs and thus the set of
input-output relationship the model can learn to instantiate after training. Furthermore,
models with the same underlying architecture can diverge in their choice of training
algorithms, i.e. different methods can be emplyed to find (some approximation of )
optimal parameter values even if the architecture and training data are identical. Lastly,
both the architecture itself and the training algorithms used to derive suitable parameters
can involve hyperparameters – preset properties that remain fixed and are not learned
during training. Concrete examples along all of these axes of variation will be given in
section 3.3. An ML architecture with an appertaining training method is in this chapter
collectively known as a learning algorithm.

3.2 Learning Paradigms

Learning algorithms are often categorized in accordance with their so-called paradigm,
with the somewhat idiosyncratic meaning of what type of task they are intended to
perform. The conventional taxonomy[85] separates learning algorithms into those
based on supervised learning ; unsupervised learning ; reinforcement learning ; or the
ever-popular ”miscellaneous” category, typically referred to as semi-supervised learning
or self-supervised learning.
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Supervised Learning

Algorithms for supervised learning[86], also (and perhaps more instructively) known as
imitation learning, creates models of the relationship between inputs (typically called
features, patterns, or percepts) and outputs (typically called labels or targets). Without loss
of generality, supervised learning can be concieved of as equivalent to curve fitting.

In this paradigm, a training dataset consisting of input-output pairs,
D = {(xxx 1, yyy 1), (xxx 2, yyy 2), ..., (xxx n, yyy n)}, is initially provided, where xxx i ∈ Rd represents
the d-dimensional input features of the ith training example and yyy i ∈ Y the
corresponding output targets. The learning process involves finding a function
f : RN ×Θ→ Y that maps input features to output targets, i.e., f(xxx i;θ ) ≈ yyy i for all i.
This function is parametrized by a some list of parameters θ ∈ Θ, and the learning
algorithm’s goal is typically (but not always explicitly) to find the optimal θ that
minimizes a predefined (scalar-valued) loss function L(D,θ ), which measures the
discrepancy between the model’s predictions and the true targets in the training dataset.

The output space Y, i.e. the range of the learned function f, can in principle be
anything, but typically consists of either discrete vectors (Y = {1, ..., c}l), as in
classification tasks, or continuous vectors (Y = Rl), as in regression tasks (discussed in
sections 3.3.1 and 3.3.2, respectively).

Unsupervised Learning

As the name suggests, algorithms in the unsupervised learning category are
characterized by the property that they operate without explicit ground-truth
targets[87]. In other words, a dataset consisting of only input feature vectors
D = {xxx 1, xxx 2, ..., xxx n} is provided, without any corresponding outputs. The objective is
to learn some underlying structure or relationships between the data points, rather
than predicting a specific output per feature vector.

Compared to their supervised kin, unsupervised algorithms are difficult to describe in
full generality as their formalism depends significantly on the specific type of task they are
intended for. Common tasks for such algorithms include: clustering[88] (i.e. grouping
similar data points together), dimensionality reduction (discussed and exemplified in
section 3.3.3), density estimation[89] (modelling the probability distribution of the data-
generating process from which feature vectors are sampled), and sampling[90] (drawing
synthetic feature vector examples from a learned distribution).
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Semi-Supervised & Self-Supervised Learning

For some problems to which learning algorithms can be applied, difficulties arise in
defining what, if anything, separates training data into input features and ground-truth
targets. Algorithms operating in such contexts are difficult to characterize as either
supervised or unsupervised—instead, the terms semi-supervised or self-supervised are
commonly used. Although sometimes used interchangeably, they carry different
connotations in the literature.

Semi-supervised learning[91] denotes methods that use both labelled and unlabelled
data during the training process. A variety of techniques exist for semi-supervised
learning, such as co-training[92], multi-view learning[93], and graph-based
methods[94]. One popular approach is the use of consistency regularization[95], which
encourages the model to produce similar predictions for different perturbations of the
same input, leveraging the structure in the unlabelled data.

Self-supervised learning[96], on the other hand, involves creating auxiliary
supervised learning tasks by creating artificial ground-truth targets from the raw input.
By solving such tasks, the model can learn instrumental representations or features that
can, for example, later be fine-tuned for the main task using (a smaller amount of )
labelled data. These auxiliary tasks are designed in such a way as to be tractable using
only input features, allowing the model to, as it were, learn by supervising itself.
Examples of self-supervised learning tasks include predicting the next word in a
sentence[97], or predicting a masked part of an image[98].

Reinforcement Learning

Although not directly relevant to the work of this dissertation, reinforcement learning is
a historically and conceptually important area of learning algorithms[99]. In this
paradigm, the model to be trained (usually referred to as the agent) does not learn from
a curated dataset, but rather learns to map situations to actions by optimizing a reward
signal received from some environment.

A reinforcement learning problem is fully described by a Markov decision process,
defined as a tuple W = (S,A, P,R, γ), where S is the state space (the set of possible
world configurations) and A the action space (the set of actions the agent can perform).
The state transition probability function P = P(s, s′, a) ∈ [0, 1] defines the probability of
transitioning from state s ∈ S to s′ ∈ S if action a ∈ A is taken. R = R(s, s′, a) ∈ R is the
reward function, defining the reward (if positive) or punishment (if negative) obtained
if the agent transitions from state s to state s′ via action a. Lastly, γ is the discount factor,
representing the the relative value of rewards obtained sooner rather than later.
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From these foundational constructs, the concept of a policy can be defined. A policy,
denoted π : S→ A, is a mapping from states to actions. Broadly construed, the goal of
reinforcement learning is to learn an optimal (conditional onW) policy function, where
optimality entails maximizing the (expected) accumulated reward over time. Two main
classes of methods exist for this purpose: value-based and policy-based.

Value-based methods, such as Q-learning[80] and SARSA[100], learn to approximate
either the optimal value function V∗(s) or the optimal state-value function Q∗(s, a).
V∗(s) returns the expected cumulative future reward from a given state s, given an optimal
policy. Similarly, Q∗(s, a), returns the expected cumulative future reward from taking
action a in state s under optimal policy. With V∗ and/or Q∗ known, an optimal policy
can be derived, for example by computing π∗(s) = argmaxa Q(s, a).

Policy-based methods, like policy gradient[101] and REINFORCE[102], approximate
the optimal policy π∗ directly. This is achieved by optimizing the free parameters of some
direct model of the policy function w.r.t. expected future reward. While simple to state,
the algorithms used for this end are seldom completely straightforward to implement.
Interested readers should consult a textbook on the subject (e.g. [99]) rather than, say, a
dissertation in a barely related field.

3.3 Algorithms

This section contains an account of a selection of concrete tasks (directly or indirectly
relevant to the work presented in the papers of this dissertation) with appertaining ML
algorithms popularly deployed for solving them.

3.3.1 Classification

In classification, unambiguously a form of supervised learning, the goal of the learning
algorithm is to map d-dimenssional input feature vectors XXX = (xxx 1, xxx 2, ..., xxx n) to
corresponding categorical targets (yyy 1, yyy 2, ..., yyy n), where xxx i ∈ Rd and yyy i ∈ {1, ..., c}l.
As before, the function from inputs to outputs learned by the model during training is
denoted f. In the case of binary classification (c = 2), there are two possible classes
wheras in the case of multi-class classification (c > 2), there are more than two classes.
In the case of multi-output classification (l > 1), each feature vector simultaneously
belongs in l classes. The special case of binary multi-output classification (c = 2, l ≥ 2)
is often refered to as multi-label classification[103]. Although it is possible to conceive of
multi-output classification problems wherein each of the l outputs have a variable
number of classes (c1, ..., cl) , this case lies outside the scope of this brief review.
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K Nearest Neighbours (kNN)

The K Nearest Neighbours (kNN) algorithm[104] is a popular ML architecture for
single-output classification, well-known for its simplicity (conceptual, not
computational) and complete transparency. It has a single hyperparameter, k, which
must be selected in advance of running the model.

The training process of kNN is the following: given a training dataset, the kNN
algorithm simply stores it in its entirety in memory. Thus, the free parameters θ of kNN
are exactly equivalent to the training dataset D.

During inference, kNN estimates the category ŷ of a novel input feature vector xxx ′ by
finding the k closest feature vectors in the memorized training dataset. The output value
is then set to the mode of the classes of these k nearest neighbours:

ŷ = f(xxx ′) = argmax
j

∑
i∈Nk(xxx ′)

I(yi = j) (eq. 3.1)

where yi ∈ {1, ..., c} is the class of the ith training example and Nk(xxx ′) is the set of
indices of the k nearest neighbours of xxx ′ among the feature vectors of the training data.

Although the simple kNN inference rule in eq. 3.1 only functions for single-output
(l = 1) classification (as the equality would be ill-defined with vector-valued yyy i),
extensions of the algorithm that allow for deployment in multi-output contexts
exist[105].

For the purpose of constructing the set of nearest neighbours, the distance between a
canidate feature vector xxx ′ and a stored feature vector xxx j can be calculated using
different distance metrics. Whereas the Euclidean distance

√
∥xxx ′ − xxx j∥2 is the most

common, alternatives such as the Manhattan distance and the Minkowski distance can
be used[106].

Linear discriminant analysis (LDA)

Linear Discriminant Analysis (LDA)[107] is a learning algorithm for multi-class,
single-output classification. Informally, it based on the concept of projecting a
multi-dimensional dataset onto a lower-dimensional space where discrimination
between classes is maximally possible. Concrelely. the projection is chosen in such a
way as to maximize the between-class variation while minimizing the within-class
variation. While the algorithm assumes that the class-conditional probability densities
{Pr(xxx |y = 1), ..., Pr(xxx |y = c)} are Gaussian and have equal covariance matrices, it
often functions adequately even when these conditons are not met[108].
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Using the same notation as previously, the main idea behind LDA is to find the
transformation matrix WWW ∈ R(c−1)×d that linearly projects a feature vector xxx onto a
(c− 1)-dimensional space, such that the class separation is maximized.

During training, the optimal projection is achieved by maximizing Fisher’s criterion
J(WWW ) ∈ R, defined by:

J(WWW ) =
det(WWW T · SSS B ·WWW )

det(WWW T · SSS W ·WWW )
(eq. 3.2)

where SSS B is the between-class scatter matrix and SSS W is the within-class scatter matrix,
defined as:

SSS B =

c∑
i=1

ni(μ i − μ )(μ i − μ )T, (eq. 3.3)

SSS W =
c∑

i=1

∑
xxx ∈Ci

(xxx − μ i)(xxx − μ i)
T, (eq. 3.4)

with μ i being the mean vector for class i, μ representing the overall mean vector,
and ni denoting the number of samples in class i. Ci denotes the set of training feature
vectors belonging to the ith class. To obtain the optimal projection matrix
WWW = argmaxWWW J(WWW ), one can simply solve the generalized eigenvalue problem:

SSS−1
W · SSS B · www i = λiwww i, (eq. 3.5)

where www i and λi are eigenvectors and eigenvalues, respectively. The rows of WWW are
formed by the (c− 1) eigenvectors corresponding to the largest eigenvalues.

During inference, LDA performs classification via discriminant functions. Given a
new sample xxx ′, its class membership is determined by discriminant functions {g1, ..., gc}:

gi(xxx ′) = WWW i,∗ · SSS−1
W (xxx − μ i), (eq. 3.6)

The sample is subsequently assigned to the class with highest discriminant value:

ŷ = f(xxx ) = argmax
i

gi(xxx ′) (eq. 3.7)

Although producing only a single output per feature vector in the above framework,
LDA can be extended to multi-output classification in a multitude of ways[109].
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Support Vector Machines (SVM)

The Support Vector Machine (SVM) algorithm[110] is a learning algorithm for single-
output, binary classification. To make notation less dense, binary target variables are
here coded as yi ∈ {−1, 1} rather than yi ∈ {0, 1} as previously.

SVM seeks to find the optimal hyperplane that separates feature vectors of two
different classes with the maximum margin. Let www Txxx + b = 0 be the equation for the
optimal hyperplane, where www ∈ Rd is the learnable weight vector and b ∈ R is the
learnable bias term. The width of the widest possible margin between the two classes
can then be computed as 2

|www | , and the optimization problem to be solved as:

min
www ,b

1
2
|www |ˆ2 subject to yi(www Txxx i + b) ≥ 1∀i (eq. 3.8)

This is a convex quadratic programming (QP) problem with linear constraints,
which can be solved by formulating the Lagrangian dual problem. While not
reproduced here, it can be efficiently solved to obtain the optimal weight vector www and
bias b using quadratic programming techniques.

For inference, the SVM classifier can make predictions for a new data point xxx ′ ∈ Rd

by evaluating the decision function f : Rd → −1, 1.

ŷ = f(xxx ′) = sgn(www · xxx ′ + b) (eq. 3.9)

The aforementioned version of SVM is typically called linear SVM, as it only
functions when a linear decision boundrary is sufficient. A simple modification exists
that largely remedies this shortcoming. The so-called kernel trick is a technique used to
enable SVM to find non-linear decision boundaries by implicitly transforming the
input data into a higher-dimensional space. It achieves this by replacing the dot
product in the feature space in eq. 3.9 with a kernel function, which computes the
inner product in the transformed space without explicitly performing the
transformation. By using the kernel trick, SVM can learn many complex, non-linear
decision boundaries without increasing the computational complexity
significantly[111, 112].

In most non-toy problems, it is common to have training data with overlapping
classes, where perfect separation of the classes is impossible even after applying a
nonlinear kernel transformation. In such cases, the problem in eq. 3.8 becomes
unsolvable, as no separating hyperplane exists. Fortunately, SVM can still be used
effectively by allowing some misclassifications, which is achieved by introducing slack
variables and using a soft-margin approach (see [110] for full description).
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For multi-class problems with c > 2 classes, SVM (and any other binary classifier) can
be extendedrelatively easily by using either a one-vs-one (OVO) or one-vs-rest (OVR)
strategy[113]. In OVO, c(c−1)

2 binary SVM classifiers are trained, each separating one
class from another. For a new data point xxx ′, each classifier votes for a class, and the
class with the most votes is assigned as the final prediction. In OVR, c binary SVM
classifiers are trained, each separating one class from the rest. The classifier with the
highest confidence, measured by the distance to the decision boundary, determines the
class label for xxx ′.

3.3.2 Regression

Regression is a class of supervised learning problems wherein output targets are
continuous rather than categorical. Formally, the goal of the learning algorithm is to
map d-dimensional input feature vectors XXX = (xxx 1, xxx 2, ..., xxx n) to corresponding targets
YYY = (yyy 1, yyy 2, ..., yyy n), where xxx i ∈ Rd and yyy i ∈ Rl. Depending on context, the feature
vectors that make up XXX are referred to as predictors, regressors, or independent variables,
whereas the target values that make up YYY are referred to as regressands or dependent
variables.

Like with classification, architectures for regression can be divided into those with
a single scalar-valued target (l = 1, often called simple regression) and those with a
vector-valued target (l > 1, often called multiple regression). Regression methods can
be further subdivided into those that learn to perform a linear mapping (section 3.3.2)
versus those that do not (section 3.3.2).

Linear Regression

Linear regression is a family of regression models for which model output is linear w.r.t
model input, i.e. f(aaa + bbb ) = f(aaa ) + f(bbb ) and f(λ · xxx ) = λ · f(xxx ) [114]. Although most
likely already familiar to the reader, its underpinnings are reproduced here to provide
notation to be extended for the nonlinear case in the next section.

By definition, the mapping from a input feature vector xxx ∈ Rd to output ŷyy ∈ Rl

performed by a linear regression model can be stated as:

ŷyy = f(xxx ) = WWW · xxx (eq. 3.10)

Where WWW ∈ Rl×d is a learnable affine transformation matrix. The simplest training
objective used for linear regression is to minimize the residual sum of squares loss
function:
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L(XXX ,YYY ,WWW ) = RSS =

n∑
i=1

l∑
j=1

(YYY i,j − f(XXXi,∗ )j)ˆ2 (eq. 3.11)

The unique optimal solution WWW ∗ can then be computed via:

WWW ∗ = argmin
WWW

RSS = (XXX TXXX )−1XXX TYYY (eq. 3.12)

For other choices of loss function (i.e. sum of absolute differences), there might not
exist a closed-form solution. Furthermore, for large training datasets, it might not be
tractable to compute the inverses in eq. 3.12 due to memory constraints. In such cases,
an approximately optimal solution can be found through iterative methods. For any
choice of loss function of the form L(yyy − ŷyy ), where L is convex, iterative local methods
are guaranteed to converge, as the underlying optimization problem will be convex as
well[115].

Nonlinear Regression

Unlike linear regression, which assumes a linear relationship between variables,
nonlinear regression can fit a wider variety of relationships. Any nonlinear mapping
can equivalently be represented by applying a (parametrized) nonlinear transformation
ϕ : Rd × P → Rk, to the input variables, where P is the parameter space of the
transformation, followed by linearly projecting the transformed inputs onto the
outputs using a weight matrix WWW ∈ Rl×k[85], i.e.:

ŷyy = f(xxx ;θ ,WWW ) = WWW · ϕ(xxx ;θ ) (eq. 3.13)

Like in the linear case, the regression problem can be formulated as a search
problem, where the goal is to find the nonlinear function f(xxx ;θ ,WWW ), from some space
of candidates, that best describes the relationship between the dependent and
independent variables. Here, θ ∈ Rp is a vector of tunable parameters that must be
estimated from the data. The space of possible nonlinear transformations F, where
ϕ ∈ F, can take various forms (e.g. polynomials, exponentials, logarithms, or
compositions thereof )[116]. The entirety of chapter 4 is reserved for discussing a
particular family of parametrized nonlinear mappings, namely artificial neural
networks.

To quantify the quality of any given choice of free parameters (θ ,WWW ) for the model,
a loss function L(XXX ,YYY ,θ ,WWW ) is typically used. A possible objective during training

35



Chapter 3: Machine Learning

is to minimize this loss function with respect to the tunable parameters. Unlike linear
regression, however, closed-form solutions for the optimal parameters are generally not
available, necessitating the use of iterative optimization algorithms.

A prevalent optimization method for nonlinear regression training is the Levenberg-
Marquardt algorithm[117]. The algorithm iteratively updates the parameter estimates as
follows:

θk+1 = θk − (JJJ T
k JJJ k + λkI)−1JTk rk (eq. 3.14)

where k denotes the iteration number, Jk is the Jacobian matrix of the residuals rk =
(y1 − f(x1, θk), . . . , yn − f(xn, θk))

T, and λk is a damping factor—a hyperparameter of
the training process itself. Many other optimization techniques, such as quasi-Newton
methods, can also be employed for solving nonlinear regression problems[118].

3.3.3 Dimensionality Reduction

Dimensionality reduction denotes the unsupervised learning task of transforming some
unlabelled dataset of feature vectors XXX = (xxx 1, xxx 2, ..., xxx n) to a lower-dimensional
representation ZZZ = (zzz 1, zzz 2, ..., zzz n), where xxx i ∈ Rd, f(xxx i) = zzz i ∈ Rr, and r < d.
Some common reasons for undertaking this task are to reduce (i) the computational
complexity of subsequent processing, (ii) storage requirements, and (iii) noise in the
data, all while maintaining the key information necessary for analysis, visualization,
and/or modelling[119]. Some algorithms for doing this are presented in this section,
selected here their popularity in EMG processing.

Principal Component Analysis (PCA)

The primary objective of Principal Component Analysis (PCA)[120] is to transform a
high-dimensional dataset into a lower-dimensional representation, while preserving as
much of the original data’s variation as possible. This is achieved by identifying
orthogonal linear combinations of the original variables, known as principal
components, which capture the maximum variance in the data.

Given the data matrix XXX ∈ Rn×d with n examples/observations and d features per
example, PCA aims to find a set of d pair-wise orthogonal linear combinations, YYY =
PPP ·XXX , where PPP inRp×p contains the principal components as its rows. The first principal
component ppp 1 = PPP 1,∗ is defined as the linear combination that maximizes the variance
of the projected data:
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ppp 1 = argmax
ppp

Var(XXX · ppp ) such that ||ppp ||ˆ2 = 1 (eq. 3.15)

The remaining principal components are defined by iteratively applying the same
criterion while imposing orthogonality constraints. For the kth principal component,
ppp k:

ppp k = argmax
ppp

Var(XXX ppp ), |, ||ppp ||ˆ2 = 1, ppp Tppp i = 0 for i = 1, . . . , k− 1 (eq. 3.16)

To derive the principal components, the data is first centered by subtracting the mean
of each variable. Then, the sample covariance matrix SSS can be computed via:

SSS =
1

n− 1
XXX · XXX T (eq. 3.17)

Eigenvalue decomposition of SSS yields the eigenvalues λ1, λ2, . . . , λd and the
corresponding eigenvectors eee 1, eee 2, . . . , eee d. The eigenvectors corresponding to the
largest eigenvalues are the principal components[84], and the proportion of the total
variance explained by the kth principal component is given by λk∑

i=1dλi
.

In practice, PCA can be computed efficiently using Singular Value Decomposition
(SVD) on the centered data matrix XXX . The SVD of XXX is given by XXX = UUUΣVVV T, where
UUU and VVV are orthogonal matrices containing the left and right singular vectors, and Σ
is a diagonal matrix containing the singular values. The principal components are given
by the columns of VVV , and the transformed, dimensionality-reduced data is obtained as
ZZZ = VVV · XXX [121].

Nonegative Matrix Factorization (NMF)

The Non-negative Matrix Factorization (NMF) algorithm[122] aims to decompose a
non-negative data matrix X ∈ Rn×d into two lower-dimensional non-negative matrices
W ∈ Rn×k and H ∈ Rk×d, such that their product approximates the original data
matrix, i.e., X ≈ WH. Here, k is the reduced dimensionality, with k ≪ min(m, n).
The matrices W and H are considered as the basis and coefficient matrices, respectively.
The NMF problem can be formulated as an optimization problem:

min
W,H

1
2
∥V−WH∥Fˆ2 subject to W ≥ 0,H ≥ 0 (eq. 3.18)
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where ∥·∥F denotes the Frobenius norm and the inequality constraints are
element-wise. NMF is a non-convex optimization problem, and various algorithms
have been developed to find locally optimal solutions. One widely-used approach[123]
is the multiplicative update rule, which iteratively updates W and H as follows:

W←W⊙ VHT

W(HHT)
(eq. 3.19)

H← H⊙ WTV
(WTW)H

(eq. 3.20)

The update rules guarantee non-increasing objective function value, and convergence
is achieved when a stationary point is reached.

NMF is sometimes advantageous over PCA due to its non-negativity constraints.
These constraints lead to part-based representations that are easily interpretable, as the
basis vectors W can be directly related to the original data features.

3.4 Generalization

As was exemplified throughout section 3.3, ML model training typically involves tuning a
set of free parameters θ of a function f(xxx ;θ ) in such a way as to minimize a loss function
L that measures the discrepancy between desired and actual outputs. Considered in
isolation, this task is nothing more than a case of mathematical optimization. However,
an additional desideratum exists in the field of ML: trained models should be able to
generalize. Here, generalization denotes the ability of a model to perform well not just
on examples processed during training, but on previously unseen data (sampled from
the same process). However, reducing the error on the the training data does not always
achieve this outcome, as models can overfit the training data.

The overfitting phenomenon is typically framed in terms of excess capacity, wher
capacity denotes a model’s expressive power. Informally, it represents the range of
functions a model can learn and, consequently, its ability to fit various data patterns. A
model with high capacity has the potential to instantiate many possible mappings
between inputs and outputs, while a low-capacity model is limited to a smaller set of
mappings. Formally, a model’s capacity can be quantified by the Vapnik-Chervonenkis
dimension or Rademacher complexity, although these measures are not always
informative or computationally tractable.
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Capacity is usually (but not necessarily) related to the number of free parameters in a
model—as the number of free parameter increases, the hypothesis space H (the space of
possible learnable functions f(xxx ,θ ) where f ∈ H) of the model grows in tandem.

Overfitting occurs when a model with high capacity learns to fit the training data
too closely, capturing not only the underlying patterns but also the noise or irrelevant
features of the data. As a result, the model may perform poorly on unseen data, despite
having a low error on the training set. In contrast, underfitting arises when a model
with low capacity is unable to capture the underlying patterns in the data, leading to
high training and testing errors.

The No Free Lunch Theorem

A useful tool for understanding the inherent difficulties in getting models to generalize
is a set of theorems by Wolpert et al. called the No Free Lunch (NFL) theorems of
ML[124, 125]. One NFL theorem states that given the set of all learning algorithms L
and the set of all data-generating distributions D, for any two learning algorithms
A1 ∈ L and A2 ∈ L, there exists a distribution D ∈ D such that the expected
performance of A1 on D is better than than of A2 and vice versa. This holds true even
when one of the algorithms is random guessing or, say, predicting the opposite of what
was learned during training. Corollary, no algorithm can be said to perform better
than any other when averaged over all possible problems or data-generating
distributions. This entails that, unless assumptions are made about the prior
probability distribution over possible problems in D a model will encounter, the
performance of a learning algorithm on some dataset contains no information on how
it will perform on other possible inputs (illustrated in Fig. 3.1). In fact, for any two
(different) algorithms A ∈ L and B ∈ L, there exists ’as many’ problems for which A
outperforms B on the test set as vice versa.

While the NFL thus states, in very rough terms, that generalization is impossible in
theory, it is often possible in practise. Importantly, the theorem’s scope is limited to
the consideration of all possible problems D, many of which may be highly contrived
or irrelevant in practice. In reality, ML optimization problems often exhibit structure
or regularities that can be exploited by algorithms to perform well on novel data. For
instance, in Fig. 3.1, it is more often than not safe to assume that the apparent linear
relationship will continue even for previously unseen data. The properties of
optimization algorithms that allow them to exploit such regularities is known as
inductive biases[126]—a topic of far too extensive scope to be given justice here.
Importantly, the fact that generalization happens is an empirical fact about our world
and does not reflect any underlying mathematical inevitability.
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Figure 3.1: Illustratation of the NFL theorem with a training dataset sampled from a distribution
D and 3 learning algorithms A1, A2, and A3. A1 and A2 produce models that fit
the training data exactly using linear regression and some complicated parametrized
function, respectively. A3 completely disregards the training data and produces
a model that guesses randomly. Across these (and all other possible) learning
algorithms, none has lower expected out-of-sample accuracy than the others, even if
the expectation is only taken across all data-generating distributions compatible with
the observed training set. To be able to conclude, as most of us want, that A1 would
most likely outperform at least A3 and perhaps even A2 in most cases, a non-uniform
prior probability distributions over data-generating distributions is necessary.
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Bias-Variance Tradeoff

The bias-variance tradeoff [127] is an empirical observation about statistical models in
general. While not a formal theory that holds true for all possible learning problems, it
can offer a useful framing to understand the relationship between capacity, overfitting,
and underfitting. The mathematical terminology in the case of a single-input, single-
output regression problem will be considered here—it can trivially be extended to other
supervised inference tasks.

Let f∗ : R → R be an unknown (deterministic6) function that maps input x to the
target output y = f∗(x). We wish to train a model f(x;θ ) by tuning the free parameters
θ in such a way as to make the input-output mapping of f similar to that of f∗. For
this purpose, we use a dataset D containing known input-output pairs (x, f∗(x)). The
expected squared error of the learned function is then:

Expected Test Error = E [([f(x;θ )]− f∗(x))ˆ2] (eq. 3.21)

where the expectation operator is applied over all possible training datasetsD. Given that
the specific dataset used for training is independent of the target function, the expression
above can be rewritten as:

Expected Test Error = Biasˆ2 + Variance (eq. 3.22)

where

Bias = E [f(x;θ )]− f∗(x) (eq. 3.23)

and

Variance = E [(f(x;θ )− E [f(x;θ )]) ˆ2] (eq. 3.24)

In words, the expected error of a model on previously unseen data can be decomposed
into two components: bias and variance. The bias term quantifies the model’s inherent
assumptions, which may not align with the true underlying patterns of the data. The
variance term captures the model’s sensitivity to small fluctuations in the training data.

The bias-variance tradeoff is the empirical observation that as one of these component
decreases, the other often increase. High-capacity model tends to have low bias but high
variance, as it is flexible enough to learn complex patterns but may overfit to the noise
in the training data. Conversely, low-capacity models are typically characterized by high
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bias and low variance, as it makes strong simplifying assumptions about the data that
may not hold true, leading to underfitting.

The bias-variance tradeoff suggests that there typically exists an optimal model
capacity that minimizes the expected test error by balancing the bias and variance
components. Reducing one source of error often leads to an increase in the other, as
the two are inherently interconnected. When a model is simplified to reduce variance,
it becomes less sensitive to noise in the training data, but its assumptions about the
underlying patterns become stronger, increasing bias. Conversely, when a model is
made more complex to reduce bias, it becomes more flexible and capable of learning
the true underlying patterns, but its sensitivity to noise and random fluctuations in the
training data increases, leading to higher variance.

3.5 Evaluation

3.5.1 Methods for Gauging Generalization

Tied to the discussion in section 3.4, the performance of models must necessarily be
assessed through their ability to generalize to unseen data in order to avoid measuring
overfitted performance. To this end, several evaluation frameworks have been proposed.

Data partitioning[84] is a simple and widely used method for evaluating machine
learning models. In this approach, the available data is divided into two or three disjoint
sets, typically the training set, validation set, and test set. The training set is used to train
the model, while the validation set is utilized for hyperparameter tuning and model
selection. Finally, the test set is employed to assess the model’s performance on unseen
data. The sizes of these sets can vary, but the majority of the data is usually reserved for
training, whereas the remaining data is allocated for validation and testing.

Cross-validation[128], sometimes called rotation estimation, is an evaluative framework
wherein the model under consideration is retrained and retested multiple times with
novel partitioning of the data. The most common form of cross-validation is k-fold
cross-validation. In this technique, the data is partitioned into k equally-sized folds. The
model is then trained and tested k times, with each fold serving as the test set exactly
once, while the remaining k−1 folds are combined to form the training set. The overall
model performance is then computed as the average of the performance metrics across
all k iterations.

A variation of cross-validation is the leave-one-out cross-validation, where k is set
equal to the number of samples in the dataset, i.e., each sample serves as a test set once.
This method provides a nearly unbiased estimate of the model’s performance, but can
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be computationally expensive for large datasets[129].
Bootstrapping[130] is another resampling-based evaluation framework that involves

drawing multiple random samples with replacement from the original dataset to create
different training and test sets. A model is trained on each training set and evaluated
on its corresponding test set. The average performance across all iterations provides an
estimate of the model’s generalization ability. Bootstrapping can be particularly useful
when the available data is scarce or imbalanced.

3.5.2 Metrics

To conclude the chapter, this section presents a selection of prominent quantitative
metrics used to gauge the performance of learning algorithm on unseen data.

Classification

Confusion Matrix: A confusion matrix[131] is a table used to describe the performance
of a classification model. It displays the number of correct and incorrect predictions
made by the classifier, organized by classes. In a multi-class problem with c ≥ 2 classes,
the confusion matrix MMM ∈ Nc×c has the following structure: each row represents the
instances of the true class, and each column represents the instances of the predicted
class (although the transpose is sometimes used in the literature). The element Mi,j of
the confusion matrix is the number of instances with true class i that were classified as
class j. For multi-output problems, a confusion matrix can be created for each output
separately, and the results can be combined or analyzed individually.
Accuracy: Accuracy is the ratio of the total number of correct predictions to the total
number of predictions made by the classifier. Mathematically, it is defined as:

Accuracy =

∑c
i=1 Mi,i∑c

i=1
∑c

j=1 Mi,j
(eq. 3.25)

In multi-class problems, accuracy can be used as a single metric to assess the overall
performance of the classifier. However, for multi-output problems, accuracy should be
calculated for each output separately and then averaged or analyzed individually, as the
performance of the classifier may vary for different outputs.

A limitation of accuracy is that it might mislead for imbalanced datasets, where one
class is significantly more prevalent than others.
Precision: Precision[132], also known as positive predictive value, is the ratio of true
positive predictions to the total number of positive predictions made by the classifier.
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For the ith class, it is defined as:

Precisioni =
Mi,i∑c

k=1 Mk,i
(eq. 3.26)

In multi-class problems, precision can be calculated for each class separately, and then
averaged to obtain a single metric (macro-averaging), or weighted by class size (micro-
averaging). For multi-output problems, precision should be calculated for each output
and class separately, and then averaged or analyzed individually.
Specificity: Specificity, also known as the true negative rate, is the proportion of true
negatives out of the total actual negatives. For the ith class, it is given by:

Specificityi =

∑
j ̸=i

∑
k ̸=i Mj,k∑c

j=1
∑

k ̸=i
(
Mj,k

)
−Mi,i

(eq. 3.27)

In multi-class problems, specificity is calculated for each class separately and can be
averaged using macro- or micro-averaging. In multi-output problems, specificity is
calculated for each output variable separately. Specificity is useful when the cost of false
positives is high.
Sensitivity: Sensitivity[132], also known as recall or true positive rate, is the ratio of true
positive predictions to the total number of instances in the true class. For the ith class,
it is defined as:

Recalli =
Mi,i∑c

k=1 Mi,k
(eq. 3.28)

As with precision, recall can be calculated for each class separately in multi-class
problems and then averaged (macro-averaging) or weighted by class size
(micro-averaging). For multi-output problems, recall should be calculated for each
output and class separately, and then averaged or analyzed individually.
F1 Score: The F1 score[132] is the harmonic mean of precision and recall, providing a
single metric that balances both values. It is particularly useful when dealing with
imbalanced datasets or when both false positives and false negatives are equally
important. The F1 score is defined as:

F1 Scorei = 2 · Precisioni · Recalli
Precisioni + Recalli

(eq. 3.29)
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Regression

All regression performance metrics presented in this section can be directly applied to
multi-output regression problems, where each target variable can be treated
independently. To obtain an overall measure of model performance, these metrics can
be calculated for each target variable, and then averaged or aggregated in some manner,
such as taking the mean or the weighted average of the per-output metrics.
Mean Absolute Error (MAE): Mean Absolute Error[133] is a measure of the average
magnitude of errors in a set of predictions, without considering their direction. It is
defined as the average of the absolute differences between the predicted values and the
true values. Mathematically, given n data points, true values yi, and predicted values ŷi,
the MAE is defined as:

MAE =
1
n

n∑
i=1

|yi − ŷi| (eq. 3.30)

Root Mean Squared Error (RMSE): Root Mean Squared Error[133] is a measure of the
average squared differences between the predicted values and the true values. It is more
sensitive to large errors than the MAE, as the squared differences amplify the impact of
large errors. Mathematically, given n data points, true values yi, and predicted values ŷi,
the RMSE is defined as:

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)ˆ2 (eq. 3.31)

Variance Accounted For (VAF): Variance Accounted For[134] is a measure of the
proportion of the total variance in the true values that is explained by the model. It is
also known as the coefficient of determination (R2) in the case of linear regression.
VAF is defined as:

VAF = 1−
∑n

i=1(yi − ŷi)
2∑

i = 1n(yi − ȳ)2
(eq. 3.32)

where ȳ is the mean of the true values. A VAF of 1 indicates that the model perfectly
predicts the true values, while a VAF of 0 indicates that the model is no better than
predicting the mean of the true values.
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Nothing is particularly hard if you divide it into small jobs.

HENRy FORD

CHApTER 4

DEEp LEARNINg

C LASSIcAL learning algorithms of the type introduced in the previous
chapter—in addition to being of illustrative value—work exceedingly well on
a number of important problems. However, they typically struggle in contexts

where the input consists of high-dimensional, unstructured data[135]. Notably, many
tasks necessary for ’human-level’ perception and cognition—recognition of objects in
images, transcriptions of sound recordings, extracting meaning from natural language,
etc.—are contained in this class. More relevant for this dissertation, the raw voltage
values that constitute electromyographic signals (described in section 2.5) are often
high-dimensional and arguably unstructured. The study and development of large
Artificial Neural Networks (ANNs) as a model class arose in some part out of a desire
for learning algorithms that can handle problems with such properties[85].

ANNs consist of interconnected nodes (or, synonymously, neurons) that learn to
represent data through progressive layers of abstraction. The titular buzzword Deep
Learning (DL) has come to denote learning algorithms where the underlying
architecture f : X → Y from input xxx ∈ X to output ŷyy ∈ Y can be represented as a
composition of L subtransformations, where L is ’large’[136]. This layered approach
enables the learning of hierarchical representations from raw data—contrasted by
classical methods, where feature vectors provided to the model must to a significant
degree already capture the factors of variation that are relevant to the learning
problem[85]. This structure explains the other names for the same (loosely speaking)
framework: hierarchical learning, feature learning, or representation learning[31].

In this chapter, section 4.1 introduces ANNs as a type of model architectures and
briefly discusses its roots. Section 4.2 reviews some of the ways such models can be
trained to fit data. Section 4.3 reviews some model architectures of special importance to
this dissertation. Section 4.4 lists techniques for combating overfitting during training.
Section 4.5 some recently introduced techniques that aid in the training of truly deep
ANNs. Lastly, section 4.6 seeks to illuminate the gap between theory and empirical
results of ANNs by reviewing some conjectures to this end.
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4.1 Artificial Neural Networks

As the name suggest, an ANN can be any model that mimics any system of biological
neurons[137]. In this dissertation (and large swathes of the contemporary
literature[138]), the term ANN denotes a particular subtype of such models: a
parametrized function f that can be represented exactly as a combination (e.g.
composition, summation, scaling, etc.) of a specific, simplified type of artificial neuron.
The underlying biological inspiration for such systems, while interesting from an
historical perspective, is perhaps best understood as a superficial curiosity here. After
all, a skilled constructor of aeroplanes need not be an expert in ornithology.

Artificial Neurons

The artificial neuron[139] is a simple mathematical object in the form of a scalar function
ν : Rd×Rd×R→ R, parametrized by a weight vector www ∈ Rd and a bias b ∈ R, that
takes a vector-valued input xxx ∈ Rd and return a single activation a ∈ R:

a = ν(xxx ;www , b) = ϕ(z) where z = b +
d∑

i=1

wi · xi (eq. 4.1)

Here, ϕ : R→ R denotes a (prespecified) activation function.
The similarity between this abstraction and a biological neuron is most clear in the

case when (i) the step function is used as the activation function, i.e. ϕ(z) = H(z), and
(ii) a binary input vector is presumed, i.e. xxx ∈ {0, 1}d. In this case, the analogy is the
following: each input xi represent the firing (or lack thereof ) of the ith synaptic input
and |wi| represents the strength of the ith synapse, where sgn(wi) = 1 corresponds to
an excitatory synapse and sgn(wi) = −1 to an inhibitory synapse. Lastly, −b represents
the membrane threshold potential. In this case, the output activation is ν(xxx ) = 1 (a
firing event) if and only if z ≥ 0, i.e. www · xxx ≥ −b. While this is a simplified view of
how biological neurons function, one must keep in mind that the purpose of artificial
neurons is not to model biology, but rather to serve as building blocks for DL models.

Activation functions need to be nonlinear and continuously differentiable (for reasons
outlined in sections 4.1 and 4.2, respectively) in order to be suitable for use in deep
ANN models. The step function H(x) used above, albeit nonlinear, is not differentiable.
Common alternatives include the sigmoid activation function σ(x) and its close relative
tanh—these can be viewed as smooth variants of H(x)[140]:

σ(z) =
1

1 + e−z and tanh(z) =
ez − e−z

ez + e−z = 2σ(z)− 1 (eq. 4.2)
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In contemporary DL systems, however, these vaguely biomimetic activation functions
have largely been supplanted by the rectified linear unit (ReLU)[141]. In addition to being
more compute-efficient, ReLU has the desirable property that, in contrast to σ and tanh,
its repeated application on an input does not tend to zero.

ReLU(z) = max(0, z) (eq. 4.3)

The success of RelU has spawned a family of similar, wedge-shaped activations
functions with advantages[142] over the original—examples include ELU[143],
GELU[144], and leakyReLU[145]:

ELU(z) =

{
z if z > 0
(ez − 1) if z ≤ 0

(eq. 4.4)

GELU(z) = xΦ(x) ≈ 0.5z(1 + tanh[
√

2
π
(z + 0.04472z3)]) (eq. 4.5)

leakyReLU(z) = max(αz, z) (eq. 4.6)

where Φ(x) is the Gauss error function and α ∈ [0, 1] is a leakage hyperparameter.

Organization

For reasons related to simplicity and ease of optimization (and with some roots in
biology[146]), artificial neurons in ANNs of the type under consideration here are
typically organized in layers. A layer denotes a subfunction f (l) : Ra → Rb (where
f = f (l) ◦ ... ◦ f (1) is the function performed by the ANN model as a whole) whose
artificial neurons can process their inputs in parallel without requiring the output of
other neurons in the same layer. A layer is said to be feed-forward if each neuron
receives input from the previous layer’s neurons and passes the result to the next layer’s
nodes without any backward or recurrent connections—such a layer forms an directed,
acyclic graph, where each neuron corresponds to a node[85].

The perhaps most easily definable feedforward layer is the fully-connected layer (also
called a dense or affine layer)[84]. Such layers maps an input vector xxx ∈ Rd to an output
activation vector aaa ∈ Rm via m ∈ N (a hyperparameter) artificial neurons that each
process the entirety of the input vector:

ai = νi(xxx ;WWW i,∗, bi) = ϕ

bi +
d∑
j

WWWi,j · xxx j

 = ϕ(zi) (eq. 4.7)
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where WWW i,∗ and bi are the weight vector and bias, respectively, of the ith neuron. This
input-output relationship is typically rewritten in more compact matrix notation:

aaa = FC(xxx ;WWW , bbb ) = ϕ(WWW · xxx + bbb ) = ϕ(zzz ) (eq. 4.8)

where the activation function ϕ is typically applied element-wise to the linearly projected
outputs zzz = WWW · xxx + bbb .

A single feedforward layer can constitute an ANN in and of itself—a so-called
single-layer perceptron[147]—in which case the number of neurons m should be set as
the number of desired outputs l. A graphical illustration of such a model is perovided
in Fig 4.1. If the activation function is chosen as linear, i.e. ϕ(x) = x, the expression in
eq. 4.8 reduces to that presented in eq. 3.10. As such, a single-layered fully-connected
ANN with linear activation function corresponds exactly to a linear regression model
with bias[138]. By definition, such models can only learn to perform linear mappings.

A single-layer perceptron can similarly be used for single-output classification with m
classes. In this case, the softmax activation function is typically used[85]. The reason
for using softmax rather than a linear ϕ is related to how appropriate loss functions are
defined for classification tasks (reviewed in section 4.2). In contrast to the activation
functions discussed previously, softmax is not applied element-wise:

aaa = softmax(zzz ) ⇐⇒ ai =
ezzz i∑m
j=1 ezzz j

(eq. 4.9)

The output classification decision is then obtained from:

ŷ = argmax
i

ai , ŷ ∈ {0, ...,m} (eq. 4.10)

Softmax ensures the activations are bounded (0 < ai < 1) and sum to unity. As
such, the activations that make up the output of softmax are often (contentiously[148])
thought of as a posterior categorical probability distribution such that, for example, ai
represents the probability of the input x belonging to class i.

A single fully connected layer with linear or softmax activation function can be
found at the far end of many ANN architectures, where they exist to map the output
produced by the preceding parts of the model into the form the learning problem
requires. Similarly, fully connected layers are sometimes used at the very beginning of
models in order do perform a (learnable) linear remapping of input data.
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Figure 4.1: Directed acyclic graph representations of a single-layer perceptron with d = 6 inputs
and l = 4 outputs (left) and a two-layer multi-layer perceptron with d = 6 inputs, m =
8 hidden neurons, and l = 4 outputs (right). Activations are represented by nodes
with radii proportional to their magnitude. The thickness of an edge connecting
node i to node j in the subsequent layer is proportional to the weight Wj,i.

Multi-Layer Perceptrons

A Multi-Layer Perceptron (MLP) is an end-to-end ANN architecture composed
exclusively of (two or more) fully connected layers in sequence. A two-layer MLP can
be represented as:

MLP(xxx ;WWW 1, bbb 1,WWW 2, bbb 2) = FC2(FC1(xxx ;WWW 1, bbb 1);WWW 2, bbb 2)

= ϕ2 (WWW 2 · ϕ1(WWW 1 · xxx + bbb 1) + bbb 2)
= ŷyy (eq. 4.11)

where xxx ∈ Rn is the input vector; ŷyy ∈ Rl the output vector; FCi the ith fully
connected layer; WWW 1 ∈ Rn×m and WWW 2 ∈ Rm×l the weight matrices of the first and
second layer; bbb 1 ∈ Rm and bbb 2 ∈ Rl the bias vectors of the first and second layer;
and m (a hyperparameter) is the number of neurons in the first layer. ϕ1 and ϕ2, the
activation functions of the first and second layer, respectively, where ϕ2 is typically linear
or softmax, depending on whether the output is continuous or categorical.
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By convention, every layer except the final is referred to as a hidden layer. By iteratively
adding more hidden layers, an MLP model of arbitrary depth L can be constructed:

f(xxx ;θ ) = FC(L)(FC(L−1)(FC(L−2)(...;θ L−2); θ L−1); θ L) (eq. 4.12)

where θ = {θ i}Li=1 are the parameters of the model and θ i = {WWW i, bbb i} are the
parameters of the ith layer. The number of neurons mi of the ith layer (also known as
the width of the layer), where WWW i ∈ Bmi×mi−1 , can likewise be set as any positive integer.

Universal Approximation Theorem

Whereas single-layer perceptrons are limited to linear mappings, MLPs labour under no
such restriction.The Universal Approximation Theorem[149, 150] states that a MLP with
L ≥ 2 layers can approximate any continuous function on any compact (i.e. closed and
bounded) subset ofRn to an arbitrary degree of accuracy if some very lenient assumptions
are satisfied—the activation functions must be continuous, non-constant, and bounded.

The theorem can be stated as follows: Let ϕ1 : R→ R be a continuous, non-constant,
and bounded activation function, let ϕ2(z) = z, and let K ⊂ Rd be a compact set. For
any continuous function f∗ : K→ Rl and any ϵ > 0, there exist m ∈ N, WWW 1 ∈ Rn×m,
bbb 1 ∈ Rm, WWW 2 ∈ Rm×l, and bbb 2 ∈ Rl such that:

sup
xxx ∈K

∣∣f ∗(xxx )−MLP(xxx ;WWW 1, bbb 1,WWW 2, bbb 2)
∣∣ < ϵ. (eq. 4.13)

In words, given any reasonable target function f ∗ and any desired level of maximal
error ϵ > 0, there exists an MLP with a single hidden layer that can approximate f∗ with
an error less than ϵ. The number of hidden neurons m required to achieve this level of
approximation is guaranteed to be finite but naturally depends on the curvature of f ∗

and the desired accuracy ϵ.
The universal approximation theorem provides an important foundation to stand on

for ANN models. To create more expressive ANN models, there is no need to increase
the complexity of individual nodes—it is sufficient to just add more of them.
However, the theorem does not state how many hidden neurons m will be needed, nor
how the exact values of the free parameters (weights and biases) are be chosen to
minimize the error if only a finite number of samples from f∗ are available. These are
the reasons for why deep (L > 2) MLPs , as well as architectures consisting not
exclusively of fully-connected layers (some of which are discussed in section 4.3), are
often needed—the universal approximation theorem by no means implies that
two-layer MLPs are parameter- or sample-efficient.
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4.2 Training

Although sometimes referred to as such in common parlance, MLPs (like all other
ANN architectures) are not in and of themselves learning algorithms; they can more
fruitfully be understood as a format for expressing arbitrary computer programs for
mapping inputs to outputs[151]. In this format, the behaviour of the program is fully
specified by (i) the architecture and (ii) the specific choice of free parameters. The
reason for ever considering expressing programs in this (convoluted to human eyes)
format is its unique amenability to iterative improvement.

An informal but illustrative comparison is given by Tegmark[152] (paraphrased): A
program written in a text-based programming language that is changed slightly (e.g. by
randomly replacing some of the tokens of the source code) is not likely to exhibit slightly
different behaviour—the modified program may not even compile at all. In contrast,
the output ŷyy of an ANN model f(xxx ;θ ) is always continuous and differentiable w.r.t. its
parameters θ , meaning that a sufficiently small parameter perturbation ∆θ only leads
to a small change ∆ŷyy in output. For this reason, many optimization techniques can be
exploited to iteratively improve the performance of ANN models.

Training of ANN models for supervised learning tasks7 almost[153] always involves
minimizing a loss function L(XXX ,YYY ,θ ) with respect to θ . As in chapter 3, XXX ∈ RRR n×d,
where xxx i ∈ Rd, and yyy ∈ Y are the feature vectors and targets, respectively, of a training
set. As discussed in section 3.2, the target space can be either continuous, i.e. Y = Rl (for
regression problems), or categorical, i.e. Y = {1, ..., c}l (for classification problems).

A common loss functions used in regression problems is the Mean Squared Error:

LMSE(XXX ,YYY ,θ ) =
1
n

n∑
i=1

(ŷyy i − yyy i)ˆ2 (eq. 4.14)

where ŷi is the prediction of the model for the i-th data point and yi is the
corresponding ground truth.

Loss functions for classification can be separated into binary, multi-class, and
multi-output classification. Many popular loss functions can be defined in terms of the
Kullback-Leibler (KL) divergence[154]—a measure of dissimilarity between two
probability distributions.

For binary single-output classification (c = 2, l = 1), the binary cross-entropy is a
special case of the KL divergence between the true probability distribution Pr(yi) and
the predicted distribution Q(̂yi):
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LBCE(XXX ,YYY ,θ ) =
1
n

n∑
i=1

DKL(P(yi)||Q(̂yi))

= −1
n

n∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (eq. 4.15)

where ŷi is the predicted probability of the positive class for the i-th data point, and
yi is the corresponding binary ground truth.

In multi-class classification, the categorical cross-entropy loss can also be seen as the
KL divergence between the true probability distribution P(yyy i) and the predicted
distribution Q(ŷyy i), averaged over all data points:

LCCE(XXX ,YYY ,θ ) =
1
n

n∑
i=1

DKL(P(yyy i)||Q(ŷyy i))

= −1
n

n∑
i=1

c∑
j=1

yi,j log ŷi,j (eq. 4.16)

where ŷi,j is the predicted probability of the jth class for the ith data point, and yi,j is
the corresponding one-hot encoded ground truth (i.e. yi,j = 1 if the ith example belongs
to the jth class and 0 otherwise).

For multi-output classification problems (l ≥ 2) a combination (e.g. summing or
weighted averaging) of output-wise cross-entropies is typically used.

Before training can commence, the initial values of the parameters θ must be set.
This process is known as initialization. One common initialization technique is random
initialization, where the parameters are assigned random values, typically drawn from
a Gaussian or uniform distribution[155]. Another somewhat more recent approach is
Xavier initialization[156] (also known as Glorot initialization), which considers the size
of the input and output of each layer to scale its random initial values, usually using a
uniform distribution. A variation of Xavier initialization called He initialization[157] is
often employed, which takes into account the specific properties of the ReLU activation
function. Proper initialization helps ensure that the gradients have similar magnitudes
across different layers, allowing gradient-based optimization algorithms to make more
effective updates during the training process[158].
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Since the introduction of trainable multi-layer architectures in the 1960s[159], various
optimization methods have been applied to minimize ANN loss functions w.r.t. its free
parameters, for example:

Evolutionary methods[160] use natural selection-inspired mechanisms to evolve
a population of solutions towards better performance. They can be used to not
only to optimize the parameters of ANN models, but also to search over spaces
of possible architectures in a process sometimes known as neural architecture
search[161].

Simulated annealing[162] is a global optimization technique that employs
random sampling and a temperature-based search strategy to explore the
solution space while avoiding being trapped in local minima. They have been
applied to the problem of ANN loss minimization in several studies and have
the advantages of being able to optimize ANNs with non-differentiable layers
and/or activation functions[163].

Second-order gradient-based methods (e.g. Newton’s method, BFGS, and
Levenberg-Marquardt) leverage second-order information about the curvature of
the loss landscape[118]. While it is possible and arguably sometimes
advantageous[164] to minimize the loss L of ANN models using such methods,
it requires approximating the inverse of the Hessian HHH−1

L ∈ Rp×p, where p is the
number of free parameters, at every iteration during training.

Despite the great variety of possible techniques available, the by far most popular ANN
training method at the time of writing is stochastic gradient descent (SGD) via
backpropagation[165]—a computationally simple and surprisingly intelligible
first-order, gradient-based method that updates parameters in a layer-wise manner.

Backpropagation

In general, gradient descent is a simple heuristic method for finding a (local) minima
xxx ∗ = argminxxx J(xxx ) of an arbitrary differentiable function J : Rm → R[166]. The
method proceeds by iteratively updating the input by moving in the direction of the
negative gradient of the objective function evaluated at the previous guess xxx t−1 at step t:

xxx t ← xxx t−1 − η∇J(xxx )
∣∣∣
xxx =xxx t−1

(eq. 4.17)

Where η > 0 is some (sufficiently small) update step size.
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For ANN parameter search, this approach can be directly applied with minimal
modifications. As the mapping from inputs and parameters to outputs performed by
the model is differentiable (given that the model is a composition of differentiable
layers and activation functions) and known analytically, the derivatives of L w.r.t.
every parameter is known as well. Consequently, a parameter-wise update rule can be
formulated as:

θt
i ← θt−1

i − η
∂L(XXX ,YYY ,θ )

∂θi

∣∣∣
θi=θ

t−1
i

(eq. 4.18)

where θt
i is the value of the ith model parameter at step t and η is again the update

step size, here called the learning rate—a hyperparameter that determines the size of the
updates applied to the model parameters. In some formulations of the update rule, the
learning rate is allowed to vary according to a prespecified schedule during the training,
i.e. η = ηt. Typically, the entirety of the training data is not used at every step. Instead,
the data is randomly split into smaller batches of size b ≤ n (a hyperparameter), each
of which is sequentially used to update the model. This sampling process explains the
prefix ’stochastic’ in SGD.

Backpropagation denotes a particularly efficient way of computing the gradients of a
layered model w.r.t. its parameters. The algorithm is based on the chain rule of calculus
and consists of two steps: a forward pass and a backward pass.

During the forward pass, inputs XXX is passed through the network layer by layer, from
the input layer to the output layer, computing the activations aaa l of each layer f(l) as the
input is transformed. At the end of the forward pass, the model produces outputs ŶYY
corresponding to each of the inputs.

The backward pass starts at the output layer, where the loss function L is computed
using the model outputs ŶYY and the ground truth targets YYY . The gradients of the loss
function with respect to the model parameters are then computed layer by layer, moving
from the output layer to the input layer. For each layer fi, the gradient of the loss function
with respect to its parameters and the gradient of the loss function with respect to its
input are computed using the chain rule. Once the gradients have been computed for
every parameter of every layers, the model parameters are updated as described in eq.
4.18.

The forward and backward passes, followed by the parameter update, constitute one
iteration of the SGD with backpropagation. The number of steps required for the
entirety of the training data to have been processed once by the network (n/b) is
known as an epoch—as batches can be reused or resampled, optimization can proceed
for any number of epochs (typically prespecified as a hyperparameter)[85].
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A number of modifications of SGD have been proposed more or less specifically for
DL. The arguably most straightforward of these is SGD with momentum[165], where
the update equation is instead:

vt+1
i ← m · vt

i + (1− m) · ∂L(X
XX ,YYY ,θ )

∂θi

∣∣∣
θi=θ

t−1
i

θt+1
i ← θt

i − η · vt
i (eq. 4.19)

where m ∈ [0, 1] is an additional hyperparameter The addition of parameter-wise
velocities vi is indented to reduce the risk of parameters getting stuck in small, local
minima or oscillate wildly during training.

Another highly impactful extension of basic SGD is known as the Adaptive Moment
Estimation (Adam) optimizer[167]. Adam combines the ideas of momentum and
adaptive learning rates to achieve faster convergence . The algorithm maintains separate
moving averages of the gradients and the squared gradients for each model parameter,
which are used to adjust the learning rate individually for each parameter during the
optimization process. In more compact vector notation, the corresponding update rule
is:

mmm t+1 ← β1mmm t + (1− β1)∇θ L(XXX ,YYY ,θ )
∣∣∣
θ=θ t

vvv t+1 ← β2vvv t + (1− β2)(∇θ L(XXX ,YYY ,θ )
∣∣∣
θ=θ t

)ˆ2

m̂mm t+1 =
mmm t+1

1− β1ˆt

v̂vv t+1 =
vvv t+1

1− β2ˆt

θ t+1 ← θ t − η
m̂mm t√
v̂vv t + ϵ

(eq. 4.20)

where mmm t and vvv t are the moving averages of the gradients and squared gradients,
respectively, at time step t, β1 and β2 are the exponential decay rates for the moving
averages (typically set to 0.9 and 0.999, respectively), m̂mm t and v̂vv t are bias-corrected
estimates of mmm t and vvv t, η is the learning rate, and ϵ is a small constant (typically set to
10−8) added for numerical stability. The power operator is denoted by ˆ.
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4.3 Special Architectures

4.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs)[168, 169] are a class of feedforward ANN
models closely related to MLPs. CNNs have been found to be suitable for processing
grid-like data structures such as images (which is also the original intention behind
their creation), and have seen widespread success in the field of computer vision, where
famous examples include AlexNet[170], VGG[171], and ResNet[136]. The key building
blocks of CNNs are convolutional layers and, optionally, pooling layers and fully
connected layers.

Convolutional Layers

A convolutional layer (Fig 4.2 is a feedforward layer that aims to exploit local structure in
the input data by performing convolutions with a set of learnable filter kernels. Whereas
convolutional layers can be constructed to process input data of arbitrary dimensionality,
the formalism in this section will assume a two-dimensional grid for the sake of simpler
notation.

Assume the input feature vector is structured as a grid (i.e. image) of width w and
height h where every grid point (i.e. pixel) is described by c channels, i.e. xxx ∈ Rh×w×c

where w · h · c = d. The convolution operation can then be expressed as:

aaa = Conv(xxx ;KKK , bbb ) ⇐⇒ aξ,ψ,κ = ϕ(zξ,ψ,κ),

where zξ,ψ,κ = bκ +
H∑

i=1

W∑
j=1

c∑
k=1

Ki,j,k,κ · xξ+i−1,ψ+j−1,k (eq. 4.21)

Here, KKK ∈ RH×W×c×K is a learnable kernel tensor, bbb ∈ Rκ is a learnable bias vector,
and aaa ∈ R(h−H)×(w−W)×K is the output volume, where the slice aaa ∗,∗,k is called the
kth activation map. Like in the fully connected layer, ϕ denotes an activation function,
applied element-wise.

A convolutional layer has 3 hyperparameters: the kernel height H ∈ N, the kernel
width W ∈ N, and the number of kernels K ∈ N. Two additional hyperparameters,
called the strides sy and sx, are sometimes used in the literature[171] and require some
modification of eq. 4.21.

58



Chapter 4: Deep Learning

Figure 4.2: Example of a convolutional layer operating on an input grid with c = 1 channels,
represented as a greyscale image. K filter kernels (in this example of size 3 × 3)
are applied to the input, producing one pixel of the output activation map per
possible filter position in the input. In this example, the kernels have been selected to
perform different types of edge detection—in a real convolutional layer, the kernels
are learned from data and not specified manually. The biases have been omitted to
make the illustration more legible.

Intuitively, the operation performed by a convolutional layer can be viewed as
scanning the input data with a set of K learnable filters. Each filter can learn to detect a
particular pattern or feature in the local regions of the input data, such as edges,
corners, or textures. By sliding the filter across the entire input space and computing
the dot product between the filter’s weights and the input region’s values, the
convolutional layer creates an activation map that highlights where the filter’s pattern is
found in the input data. This process is repeated for each kernel in the layer, generating
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multiple activation maps that capture various features from the input. The use of
multiple kernels allows the layer to learn a diverse set of features, which can be
combined in subsequent layers to create higher-level representations.

From a more technical perspective, the convolutional layer can be viewed as a subtype8

of the fully connected layer with the following modifications:

Sparse connectivity: Each output neuron is connected to a local region of the
input instead of all input neurons, reducing the number of weights to be learned.

Weight sharing: The same set of weights (i.e., the kernel) is applied to all local
input regions, reducing the number of parameters further.

Together, these modifications cause convolutional layers to be translation invariant:
shifting the input xxx (horizontally and/or vertically) results in the output shifting
identically[85].This is an important property in some image classification tasks, where
the location of a detected pattern (e.g. a face) should not impact the decision of the
classifier.

Pooling Layers

Pooling layers[172, 173] are a common component in contemporary CNNs, introduced
to reduce the spatial dimensions of the output activation maps produced by
convolutional layers. By downsampling the feature maps, pooling layers can help
control model complexity, reduce computational requirements, and arguably improve
the network’s ability to generalize by introducing a form of spatial invariance. The
most common types of pooling operations are max pooling and average pooling; max
pooling selects the maximum value from a local region of the input feature map,
whereas average pooling computes the average value of the same region[174].

Pooling layers can be seen as summarizing the presence of certain features in the input
activation maps. In the case of max pooling, the layer retains the most prominent feature
in the pooling region, while average pooling provides a smoother representation of the
feature’s presence.

While pooling layers have been successfully incorporated in CNN architectures for a
plethora of applications, they have faced criticism for potentially discarding valuable
spatial information and thus bounding performance below the theoretical
maximum[175]. Many alternative approaches, such as strided convolutions[176] and
global pooling[177], have been explored to maintain spatial information while still
reducing activation map dimensions.
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4.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks designed to process
sequential data, capturing dependencies across time steps[178]. Unlike feedforward
networks, RNNs maintain a hidden state that can store information from previous
time steps, allowing the network to learn and utilize temporal patterns in the input
data.

Given an input sequence XXX = {xxx 1, ..., xxx t, ..., xxx T}, where xxx t ∈ Rd, a basic RNN
layer updates its hidden state hhh t ∈ Rh and computes its output ooo t ∈ Rq at each time
step t using the following equations:

hhh t = ϕh(WWW hhhhh t−1 + WWW xhxxx t + bbb h),

ooo t = ϕo(WWW hohhh t + bbb o), (eq. 4.22)

where ϕh and ϕo are activation functions, WWW hh ∈ Rh×h, WWW xh ∈ Rh×d, and WWW ho ∈
Rq×h are weight matrices, and bbb h ∈ Rh and bbb o ∈ Rq are bias vectors. The hidden
state hhh t (with size h, a hyperparameter) acts as a memory, allowing the RNN to capture
information from previous time steps and use it to influence its current predictions.

To create a deep recurrent neural network, L > 1 RNN layers can be stacked on top
of each other, where the hidden state output from the ith layer serves as the input for
the subsequent layer, i.e. hhh i

t = xxx i+1
t . A final output can then be set to ŷyy t = ooo L

t .

Long Short-Term Memory (LSTM)

While RNNs have shown success in learning short-term dependencies, they often
struggle with capturing long-range dependencies due to issues such as vanishing or
exploding gradients during training[179]. Long Short-Term Memory (LSTM)
layers[180], a modified type of recurrent layer, were introduced to ameliorate this issue.

LSTMs introduce a more sophisticated memory cell structure that can maintain and
manipulate information over longer sequences, in theory allowing them to capture long-
range dependencies more effectively.

The LSTM cell consists of an input gate iii t, a forget gate fff t, an output gate ooo t, and a
cell state ccc t. At each time step, the LSTM cell updates its internal state using:
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iii t = σ(WWW xixxx t + WWW hihhh t−1 + bbb i),

fff t = σ(WWW xfxxx t + WWW hfhhh t−1 + bbb f),

ooo t = σ(WWW xoxxx t + WWW hohhh t−1 + bbb o),

c̃cc t = tanh(WWW xcxxx t + WWW hchhh t−1 + bbb c),

ccc t = fff t ⊙ ccc t−1 + iii t ⊙ c̃cc t,

hhh t = ooo t ⊙ tanh(ccc t), (eq. 4.23)

where σ is the sigmoid activation function from eq. 4.2, and WWW uv and bbb v (u, v ∈
{x, i, f, o, c}) are weight matrices and bias vectors, respectively. The input gate iii t controls
the degree to which new input information is incorporated into the cell state, the forget
gate fff t regulates how much of the previous cell state is retained, and the output gate ooo t
determines the contribution of the cell state to the hidden state.

A popular modification of the LSTM architecture is the introduction of peephole
connections, which allow the gates iii t, fff t, and ooo t to not only depend on the previous
hidden state hhh t−1, but also the cell state ccc t−1, improving the model’s ability to handle
precise timing problems[181].

Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU)[182] is another variant of RNN that was introduced
as a more computationally efficient alternative to LSTMs while still addressing the
vanishing and exploding gradient problem. Similar to LSTMs, GRUs employ gating
mechanisms to control the flow of information through the network, enabling them to
capture long-range dependencies in sequential data. However, GRUs simplify the
LSTM architecture by using fewer gates and combining the hidden state and cell state
into a single state.

A GRU cell consists of an update gate zzz t and a reset gate rrr t. At each time step, the
GRU cell updates its hidden state hhh t:

zzz t = σ(WWW xzxxx t + WWW hzhhh t−1 + bbb z), (eq. 4.24)

rrr t = σ(WWW xrxxx t + WWW hrhhh t−1 + bbb r), (eq. 4.25)

h̃hh t = tanh(WWW xhxxx t + WWW hh(rrr t ⊙ hhh t− 1) + bbb h), (eq. 4.26)

hhh t = (1− zzz t)⊙ hhh t−1 + zzz t ⊙ h̃hh t, (eq. 4.27)
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The update gate zzz t controls the degree to which the previous hidden state is
maintained, while the reset gate rrr t modulates the incorporation of the previous hidden
state when computing the candidate hidden state h̃hh t.

GRUs have been shown to exhibit competitive performance with LSTMs on many
sequence processing tasks while being less computationally expensive (both w.r.t. time
and memory) for a given size of the hidden state[183].

4.3.3 Transformers

Transformers[184] are a type of ANN model architecture that maps an input sequence
XXX = (xxx 1, xxx 2, ..., xxx n) ∈ Rn×Em , where xxx i ∈ RE is an input feature vector, to an output
sequence ŶYY = (̂yyy 1, ŷyy 2, ..., ŷyy m) ∈ Rm×Em , where ŷyy j ∈ REm . The embedding size
Em ∈ N is a hyperparameter of the model—to process sequences of input feature
vectors with dimension d ̸= Em, they most first be remapped. Similarly, for the model
to produce outputs of dimension l ̸= Em, the elements of the output sequence ŶYY
should be postprocessed (e.g. linearly projected) appropriately.

The transformer comprises two components, an encoder and a decoder. The encoder
maps the input sequence XXX to a continuous representation RRR ∈ Rn×Em . The decoder
generates the output sequence YYY by processing RRR .

Both the encoder and the decoder are composed of L identical layers, each of which
operates on the output sequence of the previous layer. Each layer of both the encoder
and the decoder is composed of two modules: a multi-head attention module followed
by an element-wise MLP module.

The multi-head self-attention module computes an output sequence whose elements
are constructed as a nonlinear combinations of input sequence elements:

ZZZ = MultiHead(III ;WWW Q,WWW K,WWW V,WWW O) = Concat(HHH 1, ...,HHH h) ·WWW O,

where HHH i = Attention(III ;WWW Q
i,∗,∗,WWW

K
i,∗,∗,WWW

V
i,∗,∗) (eq. 4.28)

Where III ∈ Rn×Em is the input sequence and ZZZ ∈ Rn×Em is the output sequence of
the module.

In the encoder, the attention mechanism in eq. 4.28 can be expressed as:
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Attention(III ;WWW q,WWW k,WWW v) = softmax
(

QQQ · KKK T
√
Ek

)
· VVV

where QQQ = IIIWWW q , KKK = IIIWWW k , VVV = IIIWWW v (eq. 4.29)

Here, the softmax operation is performed row-wise. The matrices QQQ ∈ Rn×Ek , KKK ∈
Rn×Ek , and VVV ∈ Rn×Ev are called the queries, keys, and values, respectively. This type of
attention, where these matrices are calculated solely from III , is called self -attention

In the decoder, the attention mechanism in eq. 4.28 takes an additional input RRR ,
which as previously mentioned is the output of the last encoder layer. RRR is used to
compute the key matrix and value matrix, whereas the input III from the previous decoder
layer is used to compute the query matrix:

Attention(III ,RRR ;WWW q,WWW k,WWW v) = softmax
(

QQQ · KKK T
√
Ek

)
· VVV

where QQQ = IIIWWW q , KKK = RRRWWW k , VVV = RRRWWW v (eq. 4.30)

In terms of parametrization, WWW Q ∈ Rh×Em×Ek , WWW K ∈ Rh×Em×Ek , and
WWW V

i ∈ Rh×Em×Ev are learnable weight tensors, and WWW O ∈ RhEv×Em is an output weight
matrix that governs how the output sequence is recombined from the outputs of the
heads. The number of heads h is a hyperparameter, as is the key embedding size Ek and
the value embedding size Ev.

In the element-wise MLP module, a fully connected feed-forward network is applied
independently to each position in the sequence to produce the final output sequence
OOO ∈ Rn×Em of the layer. This subnetwork is typically a two-layer MLP (defined in
section 4.1) with a ReLU activation function for the hidden layer and a linear activation
function for the output layer:

OOO i,∗ = MLP(ZZZ i,∗;WWW 1, bbb 1,WWW 2, bbb 2) (eq. 4.31)

In addition to the mappings described in eq. 4.28 and eq. 4.31, both the multi-head
attention module and the MLP module make use of layer normalization[185] and residual
connections[136]. These techniques are described in section 4.5.

The first layer of the encoder operates directly on the input XXX . The first layer of the
decoder, on the other hand, uses the continuous representation RRR generated by the last
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layer of the encoder as well as an additional input sequence YYY′ that typically
corresponds to the partially generated output. In autoregressive modelling, YYY′ is
typically a shifted version of the target sequence during training or the output
generated so far during inference. To prevent the decoder from accessing future
information in the target sequence, a masking technique is applied to the self-attention
mechanism, ensuring that the decoder can only attend to positions up to and including
the current one. This masking is typically implemented by setting the attention
weights of the future positions to a very large negative value before applying the
softmax function.

In the increasingly popular but confusingly named9 encoder-only transformer
architecture[97, 186], the model is not separated into an encoder and a decoder.
Instead, a single component comprised of a stack of identical transformer layers that
makes use of the attention formulation from eq. 4.29 is used to map the input
sequence XXX directly to the output sequence ŶYY .

As the self-attention mechanism in the Transformer architecture is inherently
permutation-invariant, it lacks the ability to capture the positional information of the
elements in the input sequence. To address this issue, positional encodings is
introduced to provide the model with information about the relative positions of the
input elements. There are two common approaches to positional encoding: learned
positional encoding and sinusoidal positional encoding.

In learned positional encoding[187], the model is equipped with a learnable positional
embedding matrix PPP ∈ Rn×Em which is initialized randomly and optimized during
training. Each row of PPP represents the positional encoding for a specific position in
the sequence. The positional embeddings are added to the input sequence element-wise
before being fed into the Transformer, i.e. III1 = XXX +PPP . This approach allows the model
to learn the optimal representation of position information for the given task.

In sinusoidal positional encoding[184], the position information is encoded using a
predefined fixed function based on sine and cosine waves. The sinusoidal positional
encoding is computed for each position in the sequence and then added element-wise to
the input sequence. The main advantage of the sinusoidal positional encoding is that it
can generalize to input sequences of varying lengths, as the function can be computed for
any position index. Furthermore, it does not require any additional learnable parameters,
which can be beneficial for memory efficiency and reducing the risk of overfitting.

Since its inception, the transformer architecture has been widely applied to a variety
of tasks (natural language processing[188], vision[186], speech[189], etc.) with almost
uniformly impressive results. Even so, a significant drawback of the transformer
architecture compared to other sequence processing models (such as RNNs) is the
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computational requirements of attention. Attention of the form presented in eq. 4.29
requires comparing (the query QQQ i,∗ of ) every element of the input sequence with (the
key KKK j,∗ of ) every other element, leading to quadratic growth (w.r.t. sequence length n)
of both time and memory complexity. Several modifications of the standard
transformer have been proposed to eliminate or reduce this drawback: Performer[190],
Longformer[191], Perceiver[192], among many others[193].

4.4 Regularization

As was discussed in section 3.4, machine learning models with excessive capacity for
representing functions runs risk of overfitting to limited training data. Regularization
denotes techniques for preventing overfitting and improving the generalization
performance of models, for example by limiting capacity or reducing reliance on
individual training examples. Some commonly employed countermeasures to
overfitting (in the work of this dissertation and elsewhere) in ANN models are briefly
described in this section.

Weight Penalties

L1 and L2 regularization (sometimes referred to as weight decay) involve adding a
penalty term to the loss function, which discourages large weights in the model. In L1
regularization, the penalty term is the sum of the absolute values of the weights, while
in L2 regularization, it is the sum of the squared values of the weights[84].

Given a loss functionL(XXX ,YYY ,θ ) of some supervised learning task (examples of which
are presented in section 4.2), where θ = {{WWW 1, bbb 1}, {WWW 2, bbb 2}, ...}, the regularized
loss functions for L1 and L2 regularization can be written as:

LL1(XXX ,YYY ,θ ) = L(XXX ,YYY ,θ ) + λ
∑

WWW ∈θ

∑
w∈WWW

|w| (eq. 4.32)

LL2(XXX ,YYY ,θ ) = L(XXX ,YYY ,θ ) +
λ

2

∑
WWW ∈θ

∑
w∈WWW

w2, (eq. 4.33)

where λ ≥ 0 is a hyperparameter that determines the strength of the penalty term.
The main difference between L1 and L2 regularization is that L1 regularization
incentivizes sparsity in the learned weights—in some problems leading to a more
interpretable and potentially more robust model—while L2 regularization tends to
spread the weights more evenly.
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The mechanism(s) by which L1 and L2 regularization prevent overfitting are not
entirely understood, but can informally (and perhaps wrongly, cf. section 4.6) be
viewed through the lens of model capacity. Loosely speaking, weight penalties biases
training towards parameter sets with smaller magnitudes, resulting in models whose
mappings from input to output contain fewer rapid changes and less
(high-dimensional equivalents of ) steep slopes. In a sense, this is related to the broad
preference given to simpler hypothesis and solutions in many truth-seeking pursuits
(cf. Occam’s Razor[194]). While there is no fundamental reason to expect this to be the
case a priori for all conceivable problems, it seems to be a robust fact about the world
and the data-generating distributions it contains that simpler (in the Kolmogorov
complexity[195] sense, for example) models are overrepresented[196] (see the somewhat
related discussion in section 3.4).

Dropout

Dropout[197] is a simple yet surprisingly effective regularization technique ubiquitous in
contemporary ANN training. During the training phase, the method works by setting
a fraction of the neuron outputs to zero at each training iteration. The probability p of
a neuron being dropped out is a hyperparameter set to a value between 0 and 1. p can
in principle be set individually for every neuron of a network, but is in practice usually
specified either globally or layer-wise.

Dropout can be more formally defined as follows. Let aaa denote the vector of
activations of a hidden layer, and aaa′ the corresponding activations after applying
dropout. Then, the dropout operation can be described as:

a′i = ai · (1− B(p)), (eq. 4.34)

where B(p) is a Bernoulli random variable with probability p of being 1, and i indexes
the hidden units. During inference, the dropout operation is replaced by:

a′i = ai ·
1
p

(eq. 4.35)

Dropout introduces noise and uncertainty into the learning process by randomly
setting a fraction of neurons’ activations to zero during training. Informally, this forces
the model to learn redundant representations, as it cannot rely on the presence of any
single neuron. This redundancy improves the model’s generalization ability, as it
becomes more robust to small perturbations in the input data.
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Relatedly, dropout has since its inception been interpreted as a type of Baysesian
learning[198]. In this view, training a network with dropout is mathematically
equivalent to training an ensemble of neural networks with shared weights, where each
network is obtained by sampling from the original network’s architecture.

Label Smoothing

Label smoothing is another straightforward approach aimed at reducing model
overconfidence. Under label smoothing, models training proceeds as usual, but
one-hot ground truth target vectors YYY = {yyy 1, ..., yyy n}, where yyy i ∈ {0, 1}c, are
smoothed before being fed to the loss function:

ỹi
j = (1− α)yi

j +
α

c
, (eq. 4.36)

This encourages the model to be less certain about its predictions and can improve
generalization.

Early Stopping

Early stopping is a conceptually simple regularization technique that monitors the
model’s performance on a held out validation set during training. Crucially, the
validation set is never used to update the model during training, and is typically
constructed by simply subdividing all available training examples into two disjoint sets,
one which is used for iteratively fitting the model as described in section 4.2 and the
other for validation. In practice, this partitioning can either be performed randomly or
via some predetermined rule appropriate for the data-generating process. The training
process is halted when the performance on the validation set starts to degrade,
indicating that the model is overfitting the training data. By monitoring the model’s
performance on a validation set and halting the training when the performance starts
to degrade, early stopping prevents the model from learning noise or other
confounding patterns present in the training set. This approach in effect estimates an
optimal stopping point for the training process, ensuring that the model does not
overfit the training data and achieves better generalization.

Data Augmentation

Data augmentation refers to methods for increasing the size and diversity of a training
dataset for artificial neural networks (ANNs) by applying various transformations to
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the original examples. In vision problems, such transformations can include rotation,
scaling, and flipping[199]. In signal processing, copying and corrupting the dataset with
varying levels of (typically Gaussian) noise is common[200].

By creating more diverse training data, data augmentation can cause the model to
learn features that are less likely to rely on spurious axes of input data variation.

4.5 Auxiliary Techniques

The fundamental steps necessary for constructing a DL model is architecture design,
loss formulation and minimization, and regularization. In addition, a number of
augmentations have been introduced and reached widespread use in the preceding
decade. A limited selection of techniques that have been found to aid in convergence
and generalization are described in this section.

Normalization

Normalization techniques help to mitigate the problem of internal covariate shift,
which occurs when the distribution of inputs to a layer changes during training10. This
can lead to slower convergence and make the network highly sensitive to the choice of
hyperparameters[201]. Multiple normalization techniques have been proposed to
address this issue.

Batch normalization[202] normalize input examples with respect to summary
statistics computed batch-wise during training. Given a training batch
B = {xxx 1, ..., xxx m} ⊆ XXX , batch normalization computes the sample (feature-wise) mean
μ B and variance σ 2

B :

μ B =
1
m

m∑
i=1

xxx i

σ Bˆ2 =
1
m

m∑
i=1

(xxxiii − μ B)ˆ2 (eq. 4.37)

Then, the normalized feature values x̂i are calculated as:

x̂xx i =
xxx i − μ B√
σ2
B + ϵ

(eq. 4.38)
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where ϵ is a small constant added for numerical stability. Finally, the batch
normalization layer applies a learnable affine transformation to the normalized features:

yi = γ x̂xx i + β (eq. 4.39)

where γ and β are learnable parameters with the same shape as the input features.
Layer normalization[185] is an alternative to batch normalization that does not

depend on sufficiently large batches to compute summary statistics from. Unlike batch
normalization, layer normalization computes the mean and variance across the features
of each individual input example in the layer. Given a layer input xxx ∈ Rd, layer
normalization computes the mean μi and variance σ2

i as:

μ =
1
d

d∑
i=1

xi

σ2 =
1
d

d∑
i=1

(xi − μi)
2 (eq. 4.40)

The normalization and affine transformation steps are identical to those in batch
normalization:

x̂i =
xi − μi√
σiˆ2 + ϵ

(eq. 4.41)

yi = γix̂i + βi (eq. 4.42)

where γ ∈ Rd and β ∈ Rd are learnable parameters for each feature.

Residual Connections

An important innovation that has enabled the training of truly deep (L > 100) CNN
and transformer models is the introduction of residual connections, or, synonymously,
skip connections[136]. Given a standard feedforward layer f(l), its output is computed as
aaa = f(xxx ;θ ). Using a residual connection, the layer is modified to instead perform the
mapping:

aaa l = f (l)(xxx ;θ ) + xxx (eq. 4.43)
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In words, the modification entails simply adding the input to the output of the layer
before feeding it to the next layer.

An intuition behind the advantage of residual connections is that they facilitate the
learning of identity mappings. In other words, the network can learn to output the same
value as the input, which is useful when the optimal function is close to the identity
function.

4.6 Conjectures & Conundrums

DL systems has achieved empirical success across a wide range of applications,
outperforming traditional algorithms and occasionally even human-level
benchmarks[203]. However, a successful mechanistic or functional theory of statistical
learning as it relates to such systems has yet to emerge[204]. This section reviews some
recent observations and corresponding hypotheses that aim to explain why and how
DL systems perform at a remarkably high (compared to other learning frameworks)
level for a variety of tasks.

The Importance of Depth

Model depth (i.e. large numbers of consecutive layers) has for a long time been
suggested as playing an important role in the success of DL systems, as it intuitively11

should allow models to learn efficient hierarchical feature representations[31].
Empirically, this view has been well-supported—deep architectures consistently
outperform their shallow counterparts in various tasks, such as image classification [? ]
and natural language processing[184].

While scarce, formal theories for the benefits of depth include the expressive
efficiency of deep networks[205, 206], which posits that deep models can represent
certain functions more compactly (i.e. with fewer parameters) than shallow models,
and the hierarchical representation of features, wherein lower layers has been shown
learn simple, local features and higher layers can capture more abstract, global
information[207].

The Unreasonable Effectiveness of Gradient Descent

At face value, the success of SGD (and its adaptive variants) as the algorithm of choice
for fitting ANN models to large datasets is somewhat surprising [208]. Despite being a
local, first-order optimization method (and fitting ANNs to large datasets typically being
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highly nonconvex problems with multiple local minima[209]), SGD has repeatedly been
shown to yield solutions with low error rate, often outperforming more complicated
optimization schemes. More confusing yet, solutions found by SGD frequently seem to
generalize well to unseen data[135].

One class of explanations for the effectiveness of SGD emphasizes its implicitly
regularizing properties. In particular, the noise introduced by using randomly sampled
small batches during optimization has been shown to guiding the algorithm towards
solutions with better generalization performance than large-batch training[210].
Additionally, the convergence to wider minima in the loss landscape, which typically
(for poorly under stood reasons) corresponds to network configurations with better
generalization, has been observed for SGD [211].

It has recently been noted[212] that the classic view of generalization has very weak
empirical support in overparametrized DL systems, where the number of model
parameters exceeds the size of the training data. Loosely speaking, the bias-variance
trade-off (discussed in section 3.4) implies that out-of-sample performance is expected
to decrease with excess model capacity in noisy real-world problems. This is in sharp
contrast to the empirically supported double descent phenomenon[213, 214] (illustrated in
Fig. 4.3). As the size of an ANN model increases, test error initially decreases as the
model capacity increases, then increases into the classical overfitting regime as
expected. However, as the parameter count grows further, the test error starts
decreasing again and eventually falls below the previous optimum. This phenomenon
is arguably related to the lottery ticket hypothesis, which posits that large networks
contain sparse subnetworks (so-called ’winning tickets’) that, when trained in isolation,
can achieve comparable performance to the full network[215]. This hypothesis suggests
that the success of extremely overparametrized networks are due to the presence of a
larger number of ’winning tickets’ following parameter initialization[216].
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Figure 4.3: The double descent phenomenon. On many supervised ML tasks, overfitting does
not seem to occur for sufficiently overparametrized ANN models. Figure modified
from Belkin et al. [213], ©PNAS.
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Great ideas originate in the muscles.

THOMAS A. EDISON

CHApTER 5

MuScLE-COMpuTER INTERfAcINg

S EAMLESS integration of man and machine has long been a subject of
fascination in both art and reality[217]. Although science fiction12 often envisions
interfacing occurring at the level of the CNS, a far more practical point of neural

interception is at the level of skeletal muscles[19]. As is covered in chapter 2, volitional
muscle contractions are accompanied by local electrical activity that can be transduced
via EMG. The availability of EMG signals forms the principal motive for pursuing
Muscle-Computer Interfaces (MCIs)[218]—systems that transform myoelectricity from
a mere correlate of muscle activity to actionable output commands.

MCIs have found use in a number applications and been identified as a promising
research avenue in many others[218]. In prosthetics (see chapter 6), MCIs can be used
to facilitate control of artificial limbs [219, 26, 27]. In rehabilitation, MCIs can be used
to restore motor functions in patients with neuromuscular impairments, such as stroke,
through for example augmenting motor relearning[220] or informing the behaviour of
an assistive exoskeleton[221]. Outside the realm of the clinical, MCIs have seen tentative
use in virtual reality and gaming, where they could serve as a control interface for users
to navigate virtual environments or manipulate game elements[20, 222]. Common to
almost all aforementioned applications is the need for mappings between EMG signals
and relevant representations of concurrent motor intent (limb kinematics[223], encoded
grasps[224], latent distributions of motor unit firings[225], etc.). This signal processing
task, which is the topic of this chapter, is commonly and appropriately referred to as
motor intent decoding.

Section 5.1 defines some commonly reported properties that make motion-decoding
MCI systems appealing. Section 5.2 presents the standard tools for EMG signal
acquisition and preprocessing for the purpose of facilitating subsequent extraction of
intent. Section 5.3 reviews algorithms for mapping preprocessed signals to output
motion commands. Section 5.4 gives examples for evaluative frameworks that aim to
quantify motor decoding performance. Lastly, section 5.5 briefly lists and comments on
some alternative, non-EMG modalities that have been proposed for use with MCIs.
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5.1 Desiderata

Robustness

In the context of MCI, robustness refers to the ability of a system to maintain consistent
and reliable performance in the presence of noise and shifts in EMG signal properties
(brought about by, for example, fatigue, changes in body position, and perspiration-
induced changes in electrode-skin impedance)[226, 29]. As such, the robustness of an
MCI system influences the overall reliability of the system across operating conditions.

Naturalness

Naturalness of control refers to the degree to which an MCI system allows users to
perform movements in a manner that resembles innate motor behaviour[28]. This is
particularly relevant in the context of prosthetics, where the goal is to replicate
physiological movements to facilitate activities of daily living. The main promise of
pattern recognition control (discussed in section 5.3) is to provide high naturalness by
mapping EMG patterns to output commands corresponding directly to the moment
performed by the user[227, 228].

Simultaneity of Control

Simultaneous control refers to the capacity of an MCI system to manage multiple
degrees of freedom (DoFs) concurrently, enabling the user to execute coordinated
movements involving multiple joints[229, 230]. While arguably not strictly necessary
for all applications (e.g. a prosthesis might provide sufficient function even if only able
to perform a preselected set of grasps), simultaneous control is clearly an inherent
property of natural motor function in healthy individuals.

Proportionality of control

Proportionality of control refers to the ability of an MCI system to modulate the
magnitude of the generated output command in relation to the intensity of the user’s
muscle activity[231]. This is relevant in scenarios where the user needs to perform
movements with varying force or speed, as it allows for a graded control of the output
based on the user’s intent[225]. Proportionality can be seen as a property that may
contribute to the overall naturalness and functionality of an MCI system, depending
on the specific requirements of the intended application.
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5.2 EMG Acquisition & Processing

By definition, all interfaces for myoelectric decoding functions by acquiring and
processing EMG signals. An archetypical processing pipeline from raw EMG to
decoded motion intent is illustrated graphically in Fig 5.1.

Figure 5.1: Typical signal processing pipeline from EMG signals to decoded motor intent.

Sampling

Due to the low amplitude of raw iEMG and sEMG signals (typically in the range of 1-2
mV during voluntary contractions), amplification (with gain of around 60 dB) with is
usually required before further processing[232]. Differential amplifiers with high
common-mode rejection (⪆ 100 dB) are commonly required in EMG systems to
reduce common-mode noise (e.g., interference from power lines and other electronic
devices) which can otherwise be of prohibitively high amplitude in relative terms[233].
As the energy content of surface EMG is largely concentrated to frequencies between
10 and 500 Hz, analog-to-digital sampling rates between 1 and 10 kHz (as dictated by
the Shannon-Nyquist sampling theorem[234]) are typically used for sEMG[235]. For
iEMG, which unlike sEMG is not naturally low-pass filtered by the capacitance of
tissue, may (depending on application) require higher sampling rates[236].
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Preprocessing

Following the acquisition of digital EMG signals, preprocessing techniques are often
applied to condition the data and mitigate the influence of noise or artifacts that might
compromise subsequent analysis. Baseline correction involves removing any DC offset
from the signal, ensuring that the EMG waveform is centered around zero[237].
Filtering techniques, such as bandpass filtering, are commonly employed to extract the
frequency components of interest (typically in the vicinity of 20-500 Hz) and remove
unwanted noise such as power line interference and motion artifacts[225]. Outlier
removal is another set of preprocessing steps that aims to identify and eliminate data
points or segments that are inconsistent with the expected characteristics of the EMG
signals, possibly due to movement artifacts, noise, or other external factors[238]. A
simple such method is the use of clipping, where individual voltage samples outside
some range of appropriate values are assumed to not be genuine reflections of muscle
activity and are as such rounded down[239].

Segmentation & Feature Extraction

After relevant preprocessing, segmentation it typically used to transform the continuous
EMG waveform into separate windows that can be processed end-to-end in subsequent
motor decoding[27]. The standard approach to segmentation is the sliding window
technique, wherein a fixed-length window is moved across the EMG signal in discrete
increments, referred to as the window step size. The selection of an appropriate window
width and step size has significant bearing on subsequent analysis—shorter window steps
result in higher temporal resolution, enabling more frequent updates of outputs thus a
more responsive system. Naturally, this comes with increased computational costs, as all
subsequent window-wise operations must occur more frequently. Similarly, the width of
the window bounds the amount of information available in subsequent analysis. While
too short windows almost universally results in poor decoder performance, the maximum
appropriate window size depends heavily on the subsequent analysis[240, 241].

Feature extraction is of central importance in the processing of segmented EMG
signals for pattern recognition-based MCI systems. This step aims to condense the
information content of the raw data contained in windows into a more compact
representation that can be used for the subsequent decoding of movement intent[242].
Concretely, features are intended to be as discriminative as possible, i.e. assuming
different values for different possible motor intents. The importance of informative
features is reflected in the large number of features and feature sets that have been
proposed in the literature[243, 244].
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A more recent development is the (highly relevant to the work of this dissertation)
class of methods that do not employ any feature engineering but instead use
parametrized models to learn instrumentally useful representations of the raw voltages
of EMG windows, typically by leveraging deep ANN models[245]. Such methods are
reviewed in section 5.3.

The Hudgins feature set[25], sometimes known as the TD4 features (where TD
denotes time-domain), is arguably most popular set of features used in motor intent
decoding. It consists of four computationally light-weight features: Mean Absolute
Value (MAV), Zero Crossings (ZC), Slope Sign Changes (SSC), and Waveform Length
(WL) that are extracted channel-wise from windows of raw sEMG voltages. Due to
their common use as a benchmark in the work of this dissertation and elsewhere, they
are defined below.

The MAV is a simple feature that represents the average amplitude of the EMG signal:

MAV =
1
N

N∑
i=1

|xi| (eq. 5.1)

where N is the number of samples in the analysis window, and xi is the i-th sample in
the EMG signal.

ZC is the number of times the EMG signal crosses the zero amplitude level. It is a
measure of the frequency content of the signal:

ZC =

N−1∑
i=1

|sgn(xi+1 − xi)− sgn(xi)| (eq. 5.2)

SSC is the number of times the slope of the EMG signal changes sign. This feature
helps to succinctly summarize the presence or absence of high-frequency components in
the EMG signal.

SSC =
N−1∑
i=2

H(|xi+1 − xi| · |xi−1 − xi|) (eq. 5.3)

WL is the cumulative length of the EMG signal waveform over the analysis window.
It can be viewed as a simple measure of the signal’s complexity.

WL =
N−1∑
i=1

|xi+1 − xi| (eq. 5.4)
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5.3 Motor Intent Decoding

Gesture Recognition

Myoelectric gesture recognition here denotes methods for motor intent decoding that,
given an input EMG window, return a discrete gesture or grasp selected from a finite
set of prespecified alternatives[246]. The principal reason for this problem formulation
is its strong amenability to the type of classification methods reviewed in section 3.3.1.
Using this framework, a training dataset containing (multiple repetitions of ) attempts
at performing every gesture that the MCI should be able to detect—together with
concurrently acquired EMG signals—must first be collected from the prospective user.
After preprocessing, segmentation, and (optionally) feature extraction, this data can be
used to train a ML model. A large variety of classification algorithms available from the
wider ML literature have been applied to this end, including but not limited to SVMs
(e.g. [247]), kNNs (e.g. [248]), Random Forests (e.g. [249]), Hidden Markov Models
(e.g. [250]), and arguably most popularly, LDA (e.g. [251, 252, 253]).

A large number of studies on classificatory methods based on DL have been
conducted in recent years. As mentioned in section 5.2, such methods typically eschew
feature engineering by operating on raw EMG. In addition to avoiding information
loss from potentially false beliefs on the part of researchers on what constitutes
discriminatory properties of EMG signals (cf. the bitter lesson from section 3.1), deep
ANNs can leverage data and computational resources at scale to learn arbitrarily
complicated nonlinear mappings from small EMG variations to output motion
commands.

Several systems that make use of CNNs for decoding motor intent from sEMG have
been proposed. Atzori et al.[254] applied a shallow (4 layers) CNN to raw 12-channel
EMG and found it to exhibit slightly lower accuracy than state-of-the-art classical
methods using traditional feature engineering. Since then, multiple systems (e.g.
[255, 256, 257, 245]) based on deeper CNNs trained on more data have succeeded in
outperforming traditional feature-dependent approaches in terms of offline
performance metrics. Paper II [258] of this dissertation introduced a meta-optimization
framework for designing CNN architectures specifically for EMG processing.

Geng et al.[259] demonstrated the feasibility of extracting gestures from extremely
short time windows of spatially dense data by letting a CNN operate on raw,
instantaneous HD-sEMG. A CNN-based pipeline for processing HD-sEMG for the
purpose of simultaneous control is proposed in paper I [260] of this dissertation.

RNNs of various types have, given their inherent suitability for tasks with strong
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intertemporal structure, been applied to EMG in several studies (e.g.
[261, 262, 263, 264, 265, 266]). The access to temporal context afforded by such
architectures can improve decoding accuracy above that achieved by window-based
methods by providing appropriate ’priors’ for the classification decision. However,
with limited training data, this can result a period of increased error at the onset of
movement[262], as the memory cells of the network have not yet updated to absorb
the new context.

Like in many problem domains where input data can naturally be construed as a
sequence of elements, early use of transformer models have generated promising results
for EMG gesture recognition. Zabihi et al.[267] proposed a transformer-based
architecture termed TraHGR, and demonstrated competitive performance with
traditional pattern recognition, CNNs, and RNNs on open data. Rahimian et al.[268]
introduced TEMGNet, a vision (i.e. encoder-only) transformer for EMG gesture
classification and demonstrated that the method exhibited high performance with
lower computational inference costs than available alternatives. Zhang et al.[269]
introduced LST-EMG-Net, a transformer-based hybrid architecture for EMG
classification. Paper vI of this dissertation leverages the variable sequence length
allowed by transformers together with a positional encoding scheme to build a single
model that can be trained on EMG signals acquired using arbitrary electrode
measurement geometries. To the best of my knowledge, this represents the first
application of attention between channels (as opposed to temporal segments) .

Kinematic Regression

In contrast to gesture recognition, regression and regression-adjacent methods do not
produce a categorical decision as output. Instead, such methods aim to map an input
EMG window to some continuous numeric representation of concurrent movement
intent. MCIs built on top of such methods inherently allow for proportional control, as
the output values can be directly related to the force or velocity of the intended grasp or
movement.

To train ML methods to perform this task, some measurable correlate of continuous
motor intent must first be collected concurrently with EMG. Examples of time series
used for this purpose include joint angles[270], force/torque measurements[271], or
direct measurements of position and velocity of limbs[272]. These data can be acquired
through means such as datagloves[273], motion capture systems[274], inertial
measurement units[275], or force-sensitive resistors placed at specific joints[276]. Like
with classification, a variety of regression algorithms have been evaluated for the task of
estimating such values from EMG signal features (e.g. [277, 278, 279]). Feature-free

81



Chapter 5: Muscle-Computer Interfacing

DL approaches have also been evaluated for this type of task multiple times (e.g.
[257, 280, 281, 282]) with promising performance in both offline and online settings.

In prosthetics, acquiring continuous target values from amputees is significantly
more challenging due to the absence of limbs. In such cases, alternative methods can
be employed to obtain a suitable proxy for graded motor intent. One approach is to
use contralateral limb movements to obtain ground truth targets while instructing the
user to imagine performing symmetrical actions with both limbs[283]. Another simple
method is provide a smoothly ramping visual prompt while instructing the user to
ramp contraction intensity in conjunction with this . While such steps complicate the
calibration process, they can often be worthwhile—proportional MCIs for prosthesis
control has been shown to lead to higher levels of user adaptions[223].

An alternative method for achieving proportionality with ML methodology is to
estimate gestures (using a classifier) and intensity of contraction
separately[284, 285, 286]. Following classification, the detected gesture can be
performed with velocity directly proportional to an estimate of the underlying force of
contraction (typically the channel-averaged MAV value of the current EMG window,
or some nonlinear transformation thereof ). Paper Iv [239] of this dissertation extends
this framework by introducing an ANN model that, via some simple assumptions, can
learn to output proportional estimates of movement intent despite being trained
exclusively on categorical targets.

Motor Unit Decomposition

Motor unit decomposition refers to the process of separating HD-sEMG signals into
their constituent MUAPs (see section 2.5). This separation allows for the extraction of
motor units spike trains, together with MU-specific surface waveforms[287]. Practical
algorithms towards this end are typically predicated on template matching or blind
source separation though Independent Component Analysis with convolutive kernel
compensation[288, 289]. While deep learning has been applied in attempts to extract
motor unit spike trains[290], difficulties in obtaining ground truth target values has so
far precluded further development.

Once obtained, spike trains provide information on the number of active motor
units and their respective frequency of activation. Such factors provide considerable
insight into the underlying motor intent and can as such be used to to modulate the
behaviour of external devices[291]. Concretely, many methods have been introduced to
derive appropriate values of force, velocity, or position from (features of ) the neural
drive, primarily for the application of prosthesis control.
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5.4 Quantifying Performance

While the standard classification and regression metrics discussed in section 3.5 have seen
significant use in MCI research, a number of special metrics have been introduced to
better capture important desiderata in motion decoding. Gijsberts et al.[292] proposed
the movement error rate metric as an alternative to accuracy to better handle prediction
delays. Similarly, motion selection time, motion completion time, and motion completion
rate have frequently seen use for quantitative evaluation in of prosthesis controllers[293,
294, 295]. Notably, even with application-tailored offline metrics, a number of studies
have found that their correlation with performance in functional real-time tests is only
weak[296, 293, 27]. As such, good offline performance should arguably be considered at
best a supplement to online evaluation metrics.

Multiple frameworks exist for quantifying the real-time performance of myoelectric
control algorithms. Tests based on Fitts’s Law, originally conceived of as an
information-theoretic relationship in the context of graphical computer user
interfaces[297], have seen frequent use in studies on myoelectric control[298, 284, 299].
Similarly, in prosthetics, the Motion and Target Achievement Control tests[300, 301]
are popular methods for evaluating the real-time performance of control algorithms
without handling the complex minutia of physically instantiated artificial limbs.

5.5 Non-Electrical Modalities

Mechanomyography

Mechanomyography is a non-invasive technique that measures the mechanical
vibrations produced by muscle contractions. These vibrations are typically detected
using accelerometers, piezoelectric sensors, and/or microphones placed on the skin
surface. Compared to EMG, mechanical recordings provides a more direct measure of
muscle force generation and can be less susceptible to crosstalk between adjacent
muscles. Furthermore, mechanomyography signals are less influenced by changes in
skin-electrode contact impedance and are thus generally more stable over time[302].
Despite these advantages, MCIs based exclusively on these principles have so far seen
limited adoption—mechanical surface signals have significantly lower spatial resolution
compared to EMG, which limits the ability to discriminate between muscle
movements associated with different motor intentions[303].
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Sonomyography

Sonomyography is a technique that utilizes ultrasound imaging to visualize and analyze
muscle activity. The high spatial resolution and penetration depth of ultrasound
imaging allows for a detailed examination of individual muscle fibres and fascicles. By
capturing real-time images of muscle contractions, sonomyography provides a
non-invasive method for assessing muscle function and potentially a pathway to
real-time decoding of motor intent[304]. However, ultrasound equipment is currently
quite cumbersome and analysis of ultrasound images computationally expensive,
making it difficult to incorporate in portable or wearable applications.

Magnetomyography

Magnetomyography is a technique that measures the magnetic fields generated by the
electrical activity of muscles during contractions. This technique uses sensitive
magnetometers, such as superconducting quantum interference devices (SQUIDs) or
optically pumped magnetometers (OPMs), to detect the weak magnetic signals
produced in conjunction with the electrical signals associated with muscle activity[305].
Due to the considerable infrastructure for cooling and shielding required to operate
such devices, their usefulness for portable applications is currently highly limited.
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Now this I say, brethren, that flesh and blood
cannot inherit the kingdom of God.

1 CORINTHIANS 15:50

CHApTER 6

UppER LIMB PROSTHETIcS

T HE human hand is one of the primary interfaces by which we both sense
and manipulate the world around us[306]. The dexterity granted by opposable
thumbs supported by a neural basis for fine-grained motor control and

feedback is not only hypothesized as a causal factor of our species unmatched
technological capabilities[307], but also a necessity for many of our social and
economically productive activities. In light of its importance, it is unsurprising that
losing ones arm or hand through amputation is considered a traumatic event, for most
on par13 with losing approximately a decade of healthy life years[308]

An amputation can be either congenital (present at birth) or acquired, with the
latter resulting from various etiological factors such as traumatic injuries, circulatory
disorders, malignant tumors, and infections[309]. Amputations can be further
classified according to the anatomical level at which the limb is severed. In the context
of upper-limb amputations, taxonomies of amputation levels typically include (from
distal to proximal): partial hand amputation, metacarpal amputations, wrist
disarticulation, transradial (below elbow) amputations, elbow disarticulation,
transhumeral (above elbow) amputations, and shoulder disarticulation. The differences
in incidence and prelavence between amputation levels are substantial, with distal
amputations being far more common than proximal amputations[310].

Following an amputation, several treatment options are available to potentially
restore functionality and improve the quality of life for the affected individual. Limb
replantation is a surgical procedure that involves the reconnection of a severed limb to
the body[311]. While this approach may restore function and sensation, the success of
the procedure is highly dependent on the type of injury and the time elapsed since
amputation. Limb transplantation involves the transfer of a limb from a deceased
donor to an amputee[312]. Despite offering the potential for good outcomes, this
option carries risk of graft rejection and necessitates lifelong immunosuppression.
Alternatively, a prosthetic limb might be used to restore a measure of functionality and
appearance to the user[313].
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Control of upper-limb prosthetics is currently by far the most widespread
application of myoelectric interfaces in both industry and research. This chapter is a
brief discussion on such devices. Section 6.1 describes how artificial limbs are typically
function mechanically. Section 6.2 describes methods for controlling powered
prostheses. Section 6.3 describes methods for providing sensory feedback, so far mainly
in research applications. Lastly, section 6.4 describes a selection of surgical techniques
that have been used to improve the functioning of prosthetics limbs.

6.1 Mechanical Actuation

Passive Prostheses

The oldest[314], most reliable, and to this day most popular[315] method of actuating a
replacement limb is to not actuate it at all. Passive prostheses primarily serve an aesthetic
purpose but can also provide non-negligible functional utility to unilateral amputees by
providing support to the other hand[316]. These devices are typically designed to
resemble the natural limb in shape, size, and color, although task-specific variants
(hooks, tools, etc.) exist. While passive prostheses do not possess any active or
externally powered mechanisms, they may incorporate friction-based joints, allowing
manual changes in e.g. joint positions depending on the current need of the user.
Compared to all available alternatives, such prostheses are low-cost, lightweight, and
require minimal maintenance[317].

Body-Powered Prostheses

Body-powered prostheses are mechanically actuated devices that rely on the user’s
residual limb and movements of the rest of the body to provide functional control[318].
These prostheses typically consist of a harness system and a cable mechanism that
translates the user’s shoulder and/or torso movements into prosthetic limb motion. The
two main types of body-powered prostheses are voluntary-opening and
voluntary-closing systems. Voluntary-opening systems require the user to apply tension
to the cable through shoulder or torso movements, which in turn opens the prosthetic
terminal device (e.g., hook or hand). A spring or elastic element provides the closing
force when the tension is released. Conversely, in voluntary-closing systems, the user
applies tension to close the terminal device, and a spring or elastic element reopens it
when tension is released. Body-powered prostheses are robust compared to active
prostheses, and additionally provide users with some measure of indirect
proprioceptive feedback[319].
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Electrically Powered Prostheses

Electrically powered prostheses utilize small electrical motors and batteries to actuate
the prosthetic device and are usually controlled by EMG signals from residual muscles.
The conventional type of powered hand prosthesis is the single-DoF gripper. This type
of prosthesis is easy to control and provides a basic open-and-close mechanism for the
prosthetic fingers, allowing the user to perform simple grasping and holding tasks[320].

Powered multifunctional prostheses, albeit typically both expensive, heavy, and
fragile (compared to aforementioned alternatives), are capable of simultaneously and
independently actuating multiple degrees of freedom. These devices typically feature
10 motors, which can be compared to the 27 inherent DoFs present in the human
hand. This increased level of complexity allows for the execution of more intricate and
coordinated movements, mimicking the range of motion exhibited by the natural hand
to a greater extent. However, more dextrous hands typically exhibits weaker grasp
forces, as space constraints induced by multiple motors necessarily reduces their
allowed size and by extension force[321]. In so-called underactuated designs, each
actuator (motor) is used to drive more than one DoFs through tendon or linkage-based
mechanisms, limiting weight and cost while retaining the ability to perform a larger
range of motions than would be possible with a one-to-one relationship between
motors and DoFs[322].

6.2 Artificial Efference

In body-powered prostheses, the actuation mechanism is directly coupled to the
control of the device. For electrically powered prosthetics however, the control signal
must be supplied exogenously. The by far most common choice of control signal is
EMG collected from remnant muscles of the residual limb.

Direct Control

Direct control makes makes use of pairs of sEMG electrodes placed on antagonistic
muscle pairs located superficially in the residual limb of the user. The difference in some
measure of amplitude (typically rectified and low-pass filtered EMG) between the signals
from a single pair are then mapped directly to the force driving a single DoF. Due to the
limited number of suitable muscle pairs in even a fully intact arm, direct control can
only accomodate a handful of simultaneously controllable DoFs. For multifunctional
prostheses, additional DoFs must be controlled sequentially by use of auxiliary protocols,
e.g. based on co-contraction or non-EMG inputs for DoF switching.
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Direct control is by far the most common control method in commercially available
prostheses—it is both highly robust very simple to implement on embedded hardware.
However, this approach has obvious limitations. Direct control is not natural or
intuitive, as the muscle activation patterns required to perform some motion do not
correspond to the natural pattern that would correspond to the same motion with an
intact limb. This lack of intuitive leads to increased cognitive burden, and has been
proposed[323] as one of many explanation for the high abandonment rate of
myoelectric prostheses[315, 313].

Pattern Recognition Control

Pattern recognition control functions by the principles outlined in section 5.3. In brief,
sampled EMG is processed in real-time to extract features from a continuously updated
signal window; features are in turn is fed to a decoding algorithm running on
embedded hardware. The algorithm returns an estimate of the concurrent motion
intent, which is thereafter converted to a motion command that is mechanically
actuated by the prosthesis. The main advantage of this approach over the simpler direct
control paradigm is the possibility of natural control (detected patterns can be mapped
to the same movement that the pattern corresponds to in a healthy individual) and
multiarticulate control (an arbitrary number of DoFs can be involved in when
performing a detected motion). Simultaneity and proportionality of control (as
defined in section 5.1) are compatible with, but do not follow automatically from, this
approach.

As is apparent throughout chapter 5, the research literature abounds with proposals
for advanced signal processing and ML methods for intuitive EMG decoding.
However, very few have so far been translated into clinically viable systems, and the
proportion of users that control their myoelectric prosthesis via pattern recognition is
still low[324]. Examples of commercially available systems that incorporate pattern
recognition include Myo Plus by Ottobock[325], Sense by Infinite Biomedical
Technologies[326], and Coapt[327]. While none of the aforementioned companies
have disclosed the exact algorithm(s) comprising the processing pipeline, it is
reasonable to assume (based partially on the calibration protocols of these systems,
which only instructs the user to repeat a set of prespecified grasps and/or gestures) that
nothing more advanced than classificatory gesture recognition (e.g. LDA on some
compute-efficient feature set) is involved.
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6.3 Artificial Afference

Researchers and users alike frequently stress that sensory feedback is simultaneously (i)
one of the most important and (ii) exceedingly rate in commercially available
prostheses[328]. Together with a functioning controller, the integration of sensory
feedback constitutes a closed-loop system[329], allowing for motor behaviour more
similar to that characteristic of a healthy individual. This section covers some methods
in contemporary research that have been proposed to provide actionable feedback to
the user.

Sensor Modalities

Sensor modalities are the methods by which prosthetic devices acquire information from
the environment or the user’s intent. Various sensor types have been explored in upper
limb prostheses, examples of which include:

Force and pressure sensors measure the magnitude of force applied to an object
during manipulation. These sensors can be integrated into prosthetic fingers or
grasp surfaces, allowing the user to receive feedback on grip strength and object
interaction[330].

Thermal sensors measure the temperature at various points on the surface of the
prosthesis . Like the thermoreceptors of regular skin, they can be useful to the
user in the management of objects that are very hot old cold[331].

Angle and position sensors measure what it says on the tin. This data can
provide useful proprioceptive information on the current state and posture of
the prosthesis[332].

Feedback Mechanisms

Feedback mechanisms relay sensor information to the user. Several feedback methods,
both invasive and non-invasive, have been proposed and explored for upper limb
prostheses. Some examples include:

Vibrotactile feedback involves the use of small vibrating motors (tactors) placed
on the user’s residual limb or other body locations. The tactors generate vibrations
in response to sensor data, allowing the user to interpret force, pressure, or other
sensory information[333].
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Electrical stimulation delivers electrical current through electrodes placed on the
user’s skin to generate a perceptual sensation. The intensity, frequency, and
spatial distribution of the stimulation can be modulated to convey different
types of sensory information[334].

Auditory feedback uses sound to convey information about the prosthetic limb’s
status or environmental interaction. For example, different tones or synthesized
sounds can represent force levels, grip types, or other relevant information[335].

In current commercial systems, the normal functioning of a powered prosthesis has
been noted to provide some measure of useful incidental feedback. For instance, the
sound emitted by motors during operation allows users to gauge the speed of their
prosthetic limb. Similarly, subtle vibrations can indicate the force exerted by a
prosthetic hand while gripping an object[336].

6.4 Surgical Techniques

Osseointegration

Osseointegration[337] refers to the direct connection of a prosthesis to the patient’s
residual bone, creating a stable and long-lasting interface between the device and the
skeletal system. This technique involves the surgical implantation of a titanium fixture
into the medullary canal of the residual bone. The fixture fuses with the bone through a
process called biological fixation, providing an attachment for the prosthetic limb[338].

Osseointegration offers several advantages over traditional socket prostheses,
including a more natural range of motion and reduced skin irritation. Additionally,
osseointegrated prostheses enable direct transmission of mechanical loads to the
skeleton, allowing for better proprioceptive feedback. However, as always, surgical
interventions are associated with risks. Osseaointegrated implants can be rejected or
mediate infections and result in fractures if too loaded[339].

Targeted Muscle Reinnervation

Targeted muscle reinnervation (TMR) is a surgical procedure designed to improve the
control of myoelectric prostheses by increasing the number and spatial separation of
available EMG channels[340, 300]. TMR involves transferring the residual nerves from
the amputated limb to other muscles—which have lost their their biomechanical
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function in the absence of a limb—that are then used to generate EMG signals for
prosthesis control.

During TMR, the severed nerves are coapted to motor nerves in the target muscles
(typically in the chest or upper arm), enabling the reinnervated muscles to produce
distinct EMG signals in response to the user’s intended movements. These signals can
then be detected by surface or implanted EMG electrodes and used to control the
prosthetic limb[341].

Implanted Electrodes

Implanted electrodes[342] are used to directly record electrical activity from muscles,
providing a more stable and spatially precise interface for prosthetic control compared
to surface electrodes. These electrodes are surgically implanted into the muscle tissue,
allowing for a more robust connection over time, negligible cross-talk, and improved
signal-to-noise ratio.

There are different types of implanted EMG electrodes, including intramuscular,
epimysial, and nerve cuff electrodes. Intramuscular electrodes are inserted into the
muscle fibres, while epimysial electrodes are placed on the surface of the muscle. Nerve
cuff electrodes, on the other hand, are wrapped around the peripheral nerves, enabling
the detection of signals from multiple muscles simultaneously.
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CHApTER 7

SuMMARy Of INcLuDED PApERS

T HIS chapter contains brief summaries of the papers contained in this
dissertations: 5 published journal papers (papers I to v), 1 as of yet unpublished
manuscript (paper vI), and 2 published conference papers (papers vII and vIII).

To varying extents, all papers deal with applying ML and DL methods for the purpose
of qualitatively or quantitatively improving the decoding performance of myoelectric
interfaces. According to the author, the main take-home messages of the studies can be
stated as follows: Both papers I and vI demonstrate the capabilities enabled by
overparametrized models and large amounts of data and the possibility of leveraging
such capability in the context of muscle-computer interfacing. Conversely, paper II
suggests that DL models can function adequately even in contexts where excessive
computational resources are unavailable if appropriate design considerations are
complied with. Paper III showcases the potential in a tailored approach toward ANN
training in order to achieve desirable properties of the decoding interface. Paper Iv,
although not demonstrating or suggesting anything in particular, provides a large
dataset that could prove useful for other ML-based methods (as it indeed did for the
study in paper vI). Paper vII concisely illustrate the strengths (and some weaknesses) of
recurrent models for motion decoding. Lastly, paper vIII provides the earliest of
indications that the ’Big Data’ regime can be extended to user-compatible myoelectric
interfaces by substituting a large fraction of the required training data with simulacra.
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Paper I:
Extraction of multi-labelled movement information from the raw
HD-sEMG image with time-domain depth

This paper details the development and implementation of an MCI based on
high-density surface electromyogram (HD-sEMG) signals. Traditional MCI systems
suffer from limitations in terms of control robustness and versatility, mainly due to the
complexity of neuromuscular processes and the difficulty in creating a mapping
between sEMG signals and movement commands. We proposed an alternative
approach by modeling hand gestures as combinations of simpler ”basis” movements,
utilizing multi-label machine learning. This approach has the potential to offer
scalability, stability, and an increased range of performable movements compared to
conventional multi-class (single-label) classification techniques.

We selected 16 labels representing flexion and extension of all digits and the wrist,
thumb abduction and adduction, and wrist pronation and supination. These labels
were chosen based on the assumptions that they engage different forearm muscles or
muscle compartments and, when combined, can capture the major DoFs possessed by
the human hand. A deep learning classifier in the form of a CNN (see Figure 7.1) was
implemented to detect these movement labels in the HD-sEMG signal.

The study introduces a novel method of utilizing structured 3-dimensional input
volumes composed of stacked time slices, each representing the instantaneous muscle
state, to decode movement intent.

96



Chapter 7: Summary of Included Papers

Figure 7.1: The CNN architecture developed and evaluated in paper I.
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Paper II:
Automatic discovery of resource-restricted Convolutional Neural
Network topologies for myoelectric pattern recognition

This paper proposes a method for automatically discovering CNN topologies that are
optimized specifically for myoelectric pattern recognition tasks while being restricted
by limited computational resources. We use a genetic algorithm to evolve CNN
topologies that are optimized for both accuracy and computational efficiency. The
proposed method is evaluated on two publicly available datasets, and the results show
that the evolved CNNs outperform existing state-of-the-art methods in terms of
accuracy while being computationally efficient.

The proposed method is evaluated on two publicly available datasets, and the results
show that it can discover CNN architectures that achieve state-of-the-art performance
while satisfying the resource constraints.
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Figure 7.2: The fitness distribution over the population of myoelectric decoding CNNs as as a
function of runtime during the evolutionary search.
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Paper III:
Learning regularized representations of categorically labelled
surface EMG enables simultaneous and proportional
myoelectric control

This paper evaluates a new framework, termed Myoelectric Representation Learning
(MRL) for the natural control of upper extremity prostheses using sEMG signals. The
framework aims to provide simultaneous and proportional control over multiple DoFs
in real-time. MRL uses a multitask neural networks (see Figure 7.3) and
domain-informed regularization to find nonlinear mappings from forearm sEMG to
multivariate and continuous encodings of hand- and wrist kinematics.

The study collected sEMG from 20 healthy subjects and used the data to calibrate
two control interfaces, each with two output DoFs. One was built using the MRL
framework, and the other used a standard pattern recognition framework based on LDA
for sake purpose of comparison. The online performances of both interfaces were assessed
using a Fitts’s law type test, generating five performance metrics. Stability was evaluated
by conducting identical tests without recalibration seven days after the initial experiment.

The results showed a significant advantage for MRL over LDA in all performance
metrics, indicating that MRL can provide superior real-time performance compared to
the current status quo pattern recognition. There were no significant effects on any
metric detected for neither session nor interaction between method and session,
suggesting that neither method deteriorated significantly in control efficacy.
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Figure 7.3: The proposed multitask ANN that allows for simultaneous and proportional control
from training with categorical target labels.
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Paper IV:
A database of high-density surface electromyogram signals
comprising 65 isometric hand gestures

This study presents a database of HD-sEMG signals to support the development of
robust and versatile electromyographic control interfaces for prosthetic hands. The
signals were recorded from the forearms of 20 able-bodied volunteers who performed
65 different hand gestures in an isometric manner (experiment setup shown in Figure
7.4). The data aims to contribute to better myoelectric decoding schemes and enable
more dexterous control interfaces for prosthetic hands.

The database contains 128 channels of sEMG data and synchronous movement and
joint force information. The 65 hand movements were interpreted as compounds of 16
basis movements, capturing the major DoFs of the hand and wrist. This
decomposition may allow for multi-label machine learning approaches to develop more
dexterous control interfaces. The inclusion of wrist and digit forces enables the
exploration of proportional control for prosthetic hands.

Technical validation of the data included frequency spectra analysis, channel cross-
correlations, and detection of poor skin-electrode contacts. Results indicate that the
acquired signals were of high quality, with limited common noise and crosstalk. The
database is intended to facilitate the development of novel methods and allow for fair
comparison between different approaches.
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Figure 7.4: The recording setup used for the collection of the database. (a) and (b): The
participant’s hand positioned inside the force measurement device. (c): High-density
electrode (skin top view). (d): Position of flexion and extension electrodes on the
arm of a subject.
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Paper V:
End-to-end estimation of hand-and wrist forces from raw
intramuscular EMG signals using LSTM networks

This study investigates the use of deep learning models based on the LSTM
architecture for processing iEMG signals, aiming to improve motor intent decoding for
controlling motorized prostheses in transradial amputees. Three LSTM models were
evaluated, including One-to-One, All-to-One, and All-to-All strategies between input
iEMG channels and output forces. The models were assessed using a dataset of six
iEMG channels with concurrent force measurements from 14 subjects. Results showed
that all LSTM strategies significantly outperformed the baseline feature-based linear
control regression method, suggesting that recurrent neural networks can efficiently
transform raw forearm iEMG signals into representations correlating with forces
exerted at the hand. Moreover, the All-to-All and All-to-One strategies demonstrated
better performance than the One-to-One strategy, indicating that iEMG from muscles
not directly actuating the relevant degree of freedom can provide contextual
information to aid in decoding motor intent (see Figure 7.5).
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Figure 7.5: Example of iEMG presented to, and output force estimates produced by, all
regression models investigated in paper v.
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Paper VI:
Calibration-free myoelectric decoding

In this study, we developed a ML-based framework for efferent myoelectric interfacing
that does not require the collection of new user-specific training data. We designed a
geometry-aware Transformer-based model architecture that can handle input sEMG
windows from arbitrary electrode configurations and outputs a generalized intent
representation. We initially pretrained our model on 30 publicly available sEMG
databases, comprising 510 subjects and 108 unique gestures. Our user-agnostic models
were then evaluated and finetuned on the NinaPro DB2 and DB3 databases. The
results indicated that our calibration-free intent decoding approach performs
competitively with user-specific LDA models, but requires further modifications to fit
on embedded hardware and may need complementary approaches for prosthetic
applications.
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Figure 7.6: The geometry-agnostic, encoder-only transformer model introduced in paper vII. By
extracting learnable feature vectors from all channels and subsequently feeding the
sequence of channel-wise (position-encoded) feature vectors to a transformer, the
model can operate on EMG signal windows from arbitrary measurement geometries.
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Paper VII:
Exploiting the intertemporal structure of the upper-limb sEMG:
comparisons between an LSTM network and cross-sectional
myoelectric pattern recognition methods

This paper presents a comparative study between traditional cross-sectional myoelectric
pattern recognition methods and a classifier built on the natural assumption of temporal
ordering by utilizing an LSTM neural network.

The study found that the LSTM approach outperforms traditional gesture recognition
techniques which are based on cross-sectional inference. These findings held both when
the LSTM classifier operated on conventional features and on raw sEMG and for both
healthy subjects and transradial amputees.
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Figure 7.7: The myoelectric pattern recognition procedure for (a) the cross-sectional classifiers
and (b) the LSTM network time series classifier.
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Paper VIII:
Can deep synthesis of EMG overcome the geometric growth of
training data required to recognize multiarticulate motions?

This paper proposes a technique intended to circumvent the combinatorial explosion
of training data required for pattern recognition approaches to myoelectric control.
The technique involves using EMG windows from 1-DoF motions as input and EMG
windows from 2-DoF motions as targets to train generative DL models to synthesize
EMG windows for to multi-DoF motions. Once trained, such models can be used to
complete datasets consisting of only 1-DoF motions, enabling calibration protocols
that scale linearly with the number of DoFs.

The paper evaluated synthetic EMG produced in this way via a classification task
using a database of forearm surface EMG collected during 1-DoF and 2-DoF motions.
Multi-output classifiers were trained on either (I) real data from 1-DoF and 2-DoF
motions, (II) real data from only 1-DoF motions, or (III) real data from 1-DoF motions
appended with synthetic EMG from 2-DoF motions. When tested on data containing
all possible motions, classifiers trained on synthetic-appended data (III) significantly
outperformed classifiers trained on 1-DoF real data (II), although significantly
underperformed classifiers trained on both 1- and 2-DoF real data.
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Figure 7.8: Schematic overview of the synthesizer model introduced in paper vIII.
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CHApTER 8

CLOSINg REMARkS

I N 1773, John Hunter made the first systematic attempt at explaining the ability of
the common torpedo fish to produce extracorporeal electrical fields, inadvertently
laying the foundation for our modern understanding of electrochemistry[343].

Exactly 250 years later, consensus holds that electric organs have evolved independently
multiple times in the animal kingdom, with at least five instances originating from
skeletal muscles[344]. Using the right tools, humans may soon be able to join our
distant fish relatives in turning muscles from organs of movement to organs for
communication. Electrical signals produced by muscles are not only strong, making
them simple to detect and record, but correlates to a substantial degree with
volitionally produced motor intent. As a consequence, the research literature abounds
with proposals (some of which comprise this dissertation) for transducing
myoelectricity into control signals for external devices.

By circumventing the dissipative properties of tissue, iEMG provides high signal
quality and spatial precision, making latent intent decoding from signals relatively
simple—mapping signal envelopes directly to output DoFs is often sufficient. As was
discovered in paper v of this dissertation, more sophisticated processing may be used to
improve iEMG decoding performance even further. Even so, for many practical
applications, the invasive and delicate measurement setups required for iEMG can be
obstructive, particularly if intended to function in mobile setting. In such contexts,
sEMG holds a clear edge as a risk-free alternative, in particular for the long-term
recordings required for muscle-computer interfacing. Without access to spatially
precise recordings, HD-sEMG (involved in papers I and Iv) can be construed as a way
of providing sufficient information via overwhelming quantity. As such signals are
inherently convoluted, involving the superposition of MUAPs from multiple muscles,
methods for extracting and aggregating information from across measurement
locations are necessary to infer anything beyond the simplest of output commands.

While careful feature engineering has yielded accurate classificatory motor decoding
models, Deep Learning has recently emerged as a promising approach for end-to-end
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extraction of intent from raw sEMG signals. As has been corroborated here (papers I,
II, and vI) and elsewhere, deep models can learn signal representations directly from
raw data; as in many other domains, the ability of ANNs to learn something akin to
intuitions in domains where humans have none has resulted in decoding performances
better than those of previous, handcrafted alternatives. While results so far have been
highly promising, improvements in this area seems eminently possible both on the
algorithmic side and on the application-specific side.

Accurate decoding of motions is necessary for MCIs to be functional, but is likely
not sufficient. To be compatible with the wide array of applications proposed in
human-computer interfacing, decoding algorithms should ideally exhibit some degree
of proportionality and simultaneity. The findings of paper I indicates that
simultaneous control over a large number of DoFs is possible in principle. Future work
in multi-label decoding should focus on investigating the potential for generalization
to novel label combinations. Paper III demonstrated the feasibility of simultaneous and
proportional control without a force-varied training dataset by using domain-informed
regularization. A number of extensions of this approach seem plausible. The algorithm
of paper III worked in the context of sEMG signal envelopes, drastically reducing the
information available to the network. A valuable contribution to this specific research
agenda would be to device more sophisticated regularization objectives that still gives
the decoding algorithm access to the full spectral content of input signals.

It is debatable to what extend the specific choice of ANN model architecture plays a
role in determining final performance[201]. More certain is the fact that model
architecture matters a lot for the size of any given implementation, and by extension its
(for MCIs crucially important) ability to fit in embedded systems. In paper II, an
evolutionary algorithms was applied to search for optimal CNN topologies and
constraining the search space to exclude prohibitively compute-intensive architectures.
We showed that lightweight application-specific models can be developed that
maintain high performance in comparison to previous, general architectures. In light
of this finding, more meta-optimization seems warranted—while such considerations
are strangely rare at the forefront of contemporary research in artificial intelligence, it is
arguably more important in the data- and compute-limited context of sEMG signals.

Achieving inter-user models is a significant challenge in the development of
muscle-computer interfaces, but of unparalleled importance, especially for commercial
and industrial applications. In paper vI, we introduced a geometry-aware
Transformer-based model architecture that can operate on input sEMG windows
collected from arbitrary electrode configurations and output generalized intent
representations, enabling the creation of user-agnostic models with performance
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comparable to user-specific models in certain scenarios. However, the accuracies of
these models are still subpar, requiring further refining work and, perhaps more
importantly, data. Methods for collecting large unlabelled EMG datasets could be a
promising future research direction to truly leverage the seeming lack of upper limits
on performance in large ANN models[345]. Keeping in mind the scarcity of memory
and processing power characteristic of embedded systems, such endeavour must be
matched by attempts at knowledge distillation.

Expanding the inter-user framework to amputees presents significant challenges due
to the smaller population size and variability in residual limb characteristics. These
factors can significantly impact the performance of MCIs and limit the applicability of
generalized models. Consequently, there is a need for tailored approaches that
accommodate the specific needs of amputees in the development of prosthetic
applications. One complementary approach was investigated in paper vIII, where a
generative deep learning framework was proposed to synthesize EMG data for
multi-degree-of-freedom motions, potentially enabling simpler calibration protocols.
Additional exploration into the use of transfer learning and/or domain adaptation
techniques that leverage pre-trained models on non-amputee data and fine-tuning
them using a smaller dataset from amputees seems likely to yield fruit.
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NOTES

1 Assuming the non-existence of purported phenomena such as psychokinesis (see e.g. [346] for a critical
review).

2 For example, the contraction of a residual biceps muscle could be used to control the flexion of a
prosthetic elbow, while the contraction of a residual triceps muscle could be used to control its
extension.

3 The opaqueness of biological systems has in fact been theorized[347] to be evolutionarily adaptive: In
an environment full of pathogens set on manipulating host behaviour, inscrutable complexity can in
fact be a viable defence mechanism. This hypothesis, albeit intriguing, lies far outside the scope of this
dissertation.

4 Neuroscience might reasonably be construed as also belonging in this category.

5 The prompt used was ”Write a pithy introduction for a chapter on Machine Learning”.

6 If a stochastic target function is considered, the expression for the total error should also include an
irreducible error term.

7 It is worth noting that many unsupervised problems can be formulated as supervised learning problems
via self-supervised learning, as is discussed in section 3.2.

8 This also explains the need for a nonlinear activation function following the convolution operator in eq.
4.21—without it, a sequence of convolutional layers would only ever be able to learn linear mappings.

9 The terminology stems from the field of natural language processing, where e.g. autoregressive self-
supervised training objectives are often used, necessitating causal masking of the input sequence of the
decoder (cf. [348]). The term encoder-only used to describe (for example) vision transformers signifies
that no causal masking is performed

10 Some recent work dispute the claim that normalization facilitates training by reducing internal
covariate shift and instead propose alternative explanations for its tangible effect on
convergence[349, 350, 351].

11 The ostensible power of depth is sometimes informally motivated through compositionality[352]. In
image classification, many high-level concepts in can naturally be defined through their compositional
relationships with lower-level concepts—for example, faces might be construed as consisting of eyes,
noses, and mouths, whereas these in turn can be understood as compositions of more basic shapes.

12 Exemplified in works like Neuromancer, Blindsight and The Matrix, among many others.

13 In terms of lost quality-adjusted life years.
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In contemporary muscle-computer interfaces for upper limb prosthetics there is often a trade-off 
between control robustness and range of executable movements. As a very low movement error rate 
is necessary in practical applications, this often results in a quite severe limitation of controllability; 
a problem growing ever more salient as the mechanical sophistication of multifunctional myoelectric 
prostheses continues to improve. A possible remedy for this could come from the use of multi-label 
machine learning methods, where complex movements can be expressed as the superposition of 
several simpler movements. Here, we investigate this claim by applying a multi-labeled classification 
scheme in the form of a deep convolutional neural network (CNN) to high density surface 
electromyography (HD-sEMG) recordings. We use 16 independent labels to model the movements of 
the hand and forearm state, representing its major degrees of freedom. By training the neural network 
on 16 × 8 sEMG image sequences 24 samples long with a sampling rate of 2048 Hz to detect these 
labels, we achieved a mean exact match rate of 78.7% and a mean Hamming loss of 2.9% across 14 
healthy test subjects. With this, we demonstrate the feasibility of highly versatile and responsive seMG 
control interfaces without loss of accuracy.

The electromyogram (EMG)1 is a time signal which describes the bioelectrical activity in skeletal muscles. The 
morphology of the EMG is associated with the activation, or firing, of motor units during muscle contraction. 
The signal is acquired by measuring the difference in electrical potential between points in (intramuscular EMG; 
iEMG) or on the skin covering (surface EMG; sEMG) a muscle or muscle group of interest. A high-density sur-
face EMG (HD-sEMG)2 is a form of sEMG where the measurement is typically acquired via a two-dimensional 
grid of electrodes placed on the skin of the subject. Because sEMG is a non-invasive technique it has since long 
been successfully applied in clinical routine, most notably for diagnosis of neuromuscular disease3. Since EMG 
is a predictor of muscle forces4, an alternative use of sEMG is as a control signal for a system which transforms 
the myoelectric signal into an executable command for a device, such as a prosthesis5, an exoskeleton6 or a video 
game7. A system controlled by EMG signals is commonly referred to as a muscle-computer interface (MCI).

For applications of this kind, where the MCI output is to be interpreted as a movement command, it is desir-
able to have a natural control scheme, which means that the sEMG generated by one movement corresponds to 
MCI output encoding that very movement. To create a device with this property would require a sufficiently accu-
rate computational estimate of the actual mapping between the space of possible sEMG signals and some space 
of possible movement commands. Such a mapping has proven itself elusive and difficult to model for a variety 
of reasons. The most important reason is that the neuromuscular processes that occur during muscle activity are 
inherently very complex and are at best ambiguously described by a sEMG measurement. This complexity is due 
to the physiological fact that each muscle is composed of a set of motor units, each which in turn is composed 
of many individual muscle fibers. When activated, each motor unit emits an action potential representing a sum 
of the electrical fields emanating from all its individual fibers8. As such, the signal from each sEMG electrode 
represents an aggregate of action potentials from adjacent motor units, additionally obfuscated by propagation 
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through muscle-, fat- and skin tissue. Furthermore, the sEMG is notably affected by complicated types of noise, 
such as motion artefacts and other measurement problems9.

Because of the complications described above, most commercially available MCI-reliant products (of which 
myoelectric prostheses are perhaps the most common) rely on simpler control schemes such as two-electrode 
proportional control10. The raw sEMG has traditionally been assumed to have small discriminatory power in 
movement classification due to its observed stochasticity, nonlinearity and unpredictability11–13. Because of this, 
previous studies aimed at improving the standards of myoelectric decoding have instead often relied on manual 
feature engineering14, where each sEMG channel, commonly segmented into time blocks15, is condensed into a 
set of more robust and descriptive numeric values called features. Such features can subsequently be used to train 
and evaluate a classifier. However, the creation of discriminatory sEMG features is, as in most applications of 
inferential statistics, a labor-intensive process that requires from the designer a good understanding of the physics 
of the specific problem domain. More recently, Geng et al.16 defined the concept of a sEMG image as a grayscale 
image with intensity values proportional to the raw HD-sEMG measured at a single time instant and achieved 
unprecedented performance by applying a deep learning image classification algorithm directly on such data. 
From such results it can be postulated that spatial patterns correlated with movement information exists in the 
instantaneous raw HD-sEMG and allows for exploitation by a classifier.

Independent of feature extraction, modeling the relationship between myoelectric activity and movements is 
often, quite naturally, framed as a multi-class statistical classification problem. In the relevant case of hand move-
ment recognition, the class set would consist of the set of detectable movements, while the observation instances 
are represented either by raw sEMG or sEMG features. While certainly a useful framework, a problem inherent 
to multi-class classification approaches is that the performance of any multi-class classifier devised for movement 
recognition by necessity decreases as the number of classes increase. This is mainly due to the fact that the EMGs 
associated with similar (in the sense of recruiting mutual motor units) movements are highly correlated17,18 and 
thus even a sophisticated classifier used in conjunction with well-crafted features eventually lack sufficient dis-
criminatory power. In this sense, the cardinality of the detectable movement set always represents a compromise 
between classification quality (i.e. control robustness) and versatility (i.e. range of detectable movements).

In this paper we propose an alternative approach, designed to mitigate the issue of interclass correlations. We 
model a hand gesture not as a monolithic class, but as a combination of elements from a given set of simpler ‘basis’ 
movements. In the language of multi-label machine learning19, the necessary and sufficient condition for a given 
hand movement is constituted by the presences and absences of certain mutually independent labels. The set of 
detectable movements is thus the set of possible movement label combinations. The potential value provided 
by the proposed framework is thought to lie mainly in its potential for scalability and stability. Importantly for 
prosthesis control applications, the detection of each label can be viewed as a separate classification task. Thus, in 
contrast to the traditional multi-class (single-label) approach, the introduction of additional classes (labels) does 
not directly compete for performance with those already existing. In a related sense, the multi-label approach 
presents a new source of stability, namely that of partial errors. When a single-label classifier infers movement 
intent erroneously, the prediction is by definition wholly unwanted and can result in, for example, erratic prosthe-
sis behaviour. The output of a multi-label classifier, on the other hand, might provide a largely stable experience 
for the user if the majority of labels are correctly predicted most of the time, even if some individual labels are 
sometimes mispredicted. Lastly, and perhaps most notably, a multi-label model of this kind might ideally be able 
to learn to infer compound movements consisting of labels combination that do not explicitly occur in its train-
ing data, thereby massively inflating the effective range of performable movements. This ability would however 
require the modulation of the sEMG associated with one label combination induced by other, not previously 
observed, label combinations to be negligible; a property not explicitly investigated in this study.

For our experiments we adopted the use of 16 labels, shown in Fig. 1, representing flexion and extension 
of all digits and the wrist, thumb abduction and adduction and wrist pronation and supination. These labels 
were selected on the assumptions that (1) they represent movements that utilize different forearm muscles or 
muscle compartments20 and (2) they, when allowed to superpose, adequately capture the major degrees of free-
dom possessed by the human hand. By virtue of the first assumption, they should each generate HD-sEMG 
signals that contain discernible patterns that, when compared pairwise across labels, are distinct enough to allow 
for recognition of individual labels. We implemented a deep learning21 classifier in the form of a convolutional 
neural network (CNN)22,23 with the purpose of detecting these movement labels in the HD-sEMG signal. The 
detection of more complicated movement is in our framework equivalent to simultaneously detecting multiple 
movement labels separately; some examples of such ‘compound’ movements that incorporate multiple active 
labels are shown in Fig. 1. To allow for exploitation of both spatial and temporal signal patterns, the classification 
procedure is performed on rescaled images with time-domain depth, i.e. sequences of consecutive sEMG images; 
analogous to short clips of sEMG ‘video’. Previous related work24 has been successful in demonstrating the efficacy 
of methods where the time-varying spatial distribution of acquired HD-sEMG is used in order to efficiently gen-
erate volitional movement commands. However, the use of structured 3-dimensional input volumes composed 
of stacked time slices; each depicting the instantaneous muscle state and together leveraged for the purposes of 
decoding movement intent, has no precedent in the MCI literature. While deep neural networks, particularly 
those of the convolutional kind, have been successfully utilized for classification of sEMG in the past16,25–28, to 
the best of our knowledge no work has been produced to date where EMG movement decoding is treated as a 
multi-label classification problem.

Hand prostheses that allows for multiple degrees of freedom have existed for some time (see, for example, 
the Bebionic hand, Michelangelo from Ottobock and the LUKE arm from Mobius bionics). However, such pros-
theses are typically interacted with via sequential control strategies reliant on predetermined remnant muscles 
contraction patterns and as such do not operate with a natural control scheme. Development of natural control 
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algorithms capable of naturally utilizing the large number of available degrees of freedom is therefore positioned 
well to be absorbed by the growing number of mechanically very sophisticated upper limb prostheses.

Methods
Data acquisition. 14 adult and able-bodied subjects (9 male and 5 female, age range 25–57 years, median 
age 37 years) participated in this study. The study was approved by the Regional Ethical Review Board in Lund, 
Sweden and was conducted according to the tenets of the Declaration of Helsinki. All participants gave their 
informed written consent. During acquisition, two 8-by-8 electrode arrays with a 10 mm inter-electrode distance 
(ELSCH064NM3 from OT Bioelettronica, Turin, Italy) coated with conductive gel were attached to the volar 
part of the right forearm of the subjects. The two electrode arrays covered the skin over the extensor digitorum 
communis (EDC) and flexor digitorum profundus (FDP) muscles, respectively. The right hand of the subject was 
subsequently placed inside a custom-built rig where the forearm was comfortably resting, and the hand fixed 
to the rig while allowing for isometric contractions of the muscles corresponding to the set of movement labels 
defined for the recording protocol. While seated comfortably in a chair the subject was instructed, through a 
graphical user interface on a computer screen, to perform a sequence of hand movements as is shown in Fig. 2. 

Figure 1. (left) Visualization of the label basis, constituted by 16 movements, used for multi-label classification 
and (right) some examples of compound movements constructed by combining labels.

Figure 2. The experimental setup of the acquisition system.
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Each individual movement lasted for 5 seconds and was repeated 5 times, with 5 seconds of rest in between each 
movement repetition. The onset of each new movement was accompanied by a sound cue.

Because the number of possible movement label combinations was far too large (216 = 65536) to be exhaus-
tively explored in a reasonable timeframe, a subset of movement combinations was selected on the criterion that 
the movements should be representative of the most commonly performed hand gestures in a realistic environ-
ment29,30. Beyond the single label movements, every 2-label combination was recorded, excluding movements 
containing finger extension together with finger flexion, or with two digits separated by one or more inter-
mediate digits. In addition, some commonly used 3, 4 and 5 label combinations were manually selected to be 
included: Extension of all finger, flexion of all fingers (Palmar grasp), flexion of digits 2 to 5 (i.e. excluding the 
thumb), Palmar grasp + pronation of wrist, extension of index finger + flexion of digits 3–5 (pointing), flexion 
of thumb + flexion of index finger + flexion of middle finger (3-digit pinch), 3-digit pinch + pronation of wrist, 
flexion of thumb + flexion of index finger (key grasp) and key grasp + pronation of wrist. This constituted 65 
distinct movements in total, representing a total recording session time of approximately 1 h for each test subject.

The sEMG was amplified and sampled with an OT Bioelettronica Quattrocento (OT Bioelettronica, Turin, 
Italy) with a bipolar measurement scheme and a sampling frequency of Fs = 2048 Hz. Prior to sampling, a 
10–900 Hz analogue bandpass filter was applied to each channel. A LabVIEW (National Instruments, Austin, 
TX) application was implemented to synchronously acquire the sEMG and the concurrent movement stimulus 
label set at each time sample.

preprocessing. Once acquired, the HD-sEMG time series were digitally filtered channel-wise, first with a 
2:nd order Butterworth band stop filter (48–52 Hz) for removal of power line interference and thereafter with a 
20:th order Butterworth band pass filter (20–380 Hz) for suppression of noise. Samples coinciding with moments 
of rest were discarded at this point, justified by the assumption that rest state detection is computationally simple31 
and thus might undeservedly improve the performance of our classification scheme. In addition, samples cor-
responding to the first and last second of each 5 s movement repetition were discarded to eliminate effects from 
transient signal behavior.

The 128 filtered signals were for each sampled time point restructured into matrices of shape 16 × 8 with 
element positions corresponding to relative electrode placement. These matrices, each representing a single time 
instant, were individually linearly rescaled into the range [0, 1], where 0 and 1 represent the smallest and largest 
measured voltage, respectively, across the electrode array at the time of sampling. The resulting normalized matri-
ces could subsequently be interpreted as digital grayscale images. With this method, a specific pixel (i.e. matrix 
element) value in the resulting images does not necessarily correspond to the same measured voltage across all 
images. The purpose of this preprocessing procedure was to extract only the spatially structured pattern of motor 
unit action potentials across the muscles of interest; information which was conjectured to be of greater discrimi-
natory utility than raw myoelectric voltages. Compared to channel-wise or otherwise inter-sample normalization 
methods, the per-image approach taken here has the additional benefit of temporally isolating the detrimental 
impact of high absolute value outlier samples (e.g. noise spikes). The images were grouped into sequences of 
consecutive sampled time points via a sliding window of 24 samples in length and with 12 samples (50%) overlap. 
Thus, each sequence represents a time length of 23/Fs ≈ 11 ms. The window size and overlap preprocessing hyper-
parameters were selected ad-hoc, justified by the fact that they represent a minimal decision delay, operate at 
the (presumably) relevant timescale of sEMG fluctuations and generate a sufficiently large set of image sequence 
instances (approximately 110000 instances per test subject) for later training and testing of the classifier. In the 
last preprocessing step, each image sequence was assigned a ground truth label set of 16 bits, where each bit 
encodes the presence or absence of a certain label during that time interval, determined by a label-wise majority 
vote over the 24 sampled label sets of the sequence. Majority voting is not strictly necessary within the presented 
experimental framework, as we have discarded all transient signal sections with ambiguous movement affiliation, 
but rather serves as a universally applicable method for compressing the sequence of label sets of the window into 
a single label set.

The resulting image sequence instances were distributed into a training, testing and validation set as follows: 
instances from the 2:nd and 3:rd repetitions of each movements were used for training, instances from the 4:th 
repetition for testing and instances from the 5:th and final repetition for validation. Image sequences originating 
from the 1:st repetition of each movement were discarded since they for some subjects were wrongly labeled 
because the subjects occasionally forgot to perform the new movement and instead continued with the preceding 
movement. In all cases when a mistake occurred, an experiment supervisor successfully spotted the error and 
notified the subject before the 2:nd repetition began, thus preserving the integrity of repetition 2–5 for all move-
ments and subjects. With the outlined procedure, the training, testing, and validation sets are all balanced w.r.t. 
the number of unique movement combinations (but not necessarily the number of individual basis movement 
labels). The preprocessing described here was performed via the use of custom MATLAB (The MathWorks Inc., 
Natick, MA) scripts.

CNN model. The structure of the CNN used in the current study was inspired by the one used by Du et al.25 
and is illustrated in Fig. 3. The topology and hyperparameters of the network described below were found empir-
ically via evaluation on previously collected data and were not subject to change at any point during the current 
study. The input layer is a tensor of size 16 × 8 × 24, representing one HD-sEMG image sequence generated in 
accordance with the preprocessing steps described above. It is followed by 4 convolutional blocks, connected in 
a feed-forward configuration, with 128, 64, 64 and 64 filters with kernel sizes 3 × 3, 3 × 3, 1 × 1 and 1 × 1, respec-
tively. Each convolutional block follows a Convolution-BatchNorm32-rectified linear unit (ReLU)23 structure, and 
the 3:rd and 4:th convolutional blocks have residual blocks33 incorporated to facilitate convergence. The output 
from the last convolutional block is fed through a cascade of 3 fully connected blocks with a dropout34-fully 
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connected (FC)-BatchNorm-ReLU structure with 512, 512 and 128 output neurons, respectively. All dropout 
layers have the dropout probability hyperparameter set to 0.5 during training. The last FC layer contains 16 
output neurons, one per label, and a final sigmoid activation layer for generating label probabilities. To generate 
categorical label predictions, the 16 outputs of the final layer is simply compared to a probability threshold value 
t ∈ [0, 1]. If the i:th output element is greater than t, then the i:th label is predicted as present, otherwise absent. 
A higher threshold intuitively represents a higher requirement of prediction certainty on the part of the network 
to include a label in a prediction. The selection of t presents a directly impactful avenue of model tuning that is 
unavailable to (single-label) multi-class methods. In general, the threshold could be set separately for each label to 
achieve an arbitrarily low false positive- or false negative rate, but likely at the cost of a corresponding increase of 
the other. As such, the selection of threshold should reflect the evaluated importance of type I errors (i.e. ground 
truth absent labels predicted as present) relative to the importance type II errors (i.e. ground truth present labels 
predicted as absent). For example, in prosthesis control applications an argument could be made for a greater 
imperative to minimize the former (false positives), as such errors are more likely than the latter (false negatives) 
to be perceived by a user as directly antithetical to control stability. In our experiments we sidestep these con-
siderations for the sake of brevity by adopting the same threshold across all labels; namely that which generates 
the highest exact match rate on the validation set (as is determined during model fitting). The neural model was 
implemented in Python 3.5 with the use of TensorFlow35, an open-source machine learning library capable of 
running on graphics hardware. The model contains 4636560 learnable parameters.

Model fitting. For backpropagation21,36, two different loss functions were evaluated: binary (per-label) 
cross-entropy loss37 and BP-MLL loss; a loss function developed by Zhang et al.38 specifically for training neural 
networks with multi-labelled output. Both loss functions were used in conjunction with a weight decay of 2∙10−6. 
During training, the Adam algorithm39 with a learning rate of 0.03, mini-batch size of 3000, β1 = 0.9, β2 = 0.999 
and ε = 10−8 was used for optimization. All learnable parameters of the network were initialized via random sam-
pling from a truncated normal distribution with zero mean and unit variance. Training proceeded for up to 250 
epochs; after every even-numbered training epoch the model was evaluated on the validation set. If no improve-
ment over the best validation exact match rate so far was detected for 5 consecutive validations the training was 
halted prematurely to avoid overfitting (so-called early stopping). The order of the examples in the training set 
was randomly reshuffled prior to the onset of each new epoch. The classification probability threshold of the final 
network layer is determined by evaluating the fitted model on the validation set and selecting the threshold value, 
out of 11 candidate values sampled uniformly between 0 and 1, that maximizes exact match rate. Training was 
performed once per test subject training set with the fitted model applied once on the test set of the same subject 
to obtain performance metrics. The optimization procedure lasted for approximately 1–2 h per test subject on 
a desktop computer equipped with a GeForce GTX 1070 GPU (NVIDIA, Santa Clara, CA). The average time 
required for extraction of labels from an image sequence instance (i.e. a single network forward-pass) was 1.6 ms.

Comparison with a single-label classification scheme. In order to verify the viability of our method 
compared to a more conventional single-labeled classifier operating under similar conditions, an alternative net-
work topology was evaluated on the same data set. The last two layers of this network were set as a FC layer with 
65 output units (representing the set of unique recorded compound movements) followed by a softmax activation 
layer. Categorical prediction was performed by finding the output unit with the largest activation, as is convention 
in (single-label) multi-class classification, and thus no thresholding was neither required nor possible. During 
training, categorical cross-entropy37 was used as the loss function to be minimized. With these final layers and 
loss function except, the network and the optimization procedure were identical in structure and hyperparameter 
selection to the model presented above. The BP-MLL loss, due to being inherently multi-label, was not utilized 

Figure 3. Illustration of the topology of the deep convolutional neural network.
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to train this network. As was the case for the multi-label network, training and evaluation was done once per test 
subject.

Results
A set of performance metrics relevant to multi-label classifications were selected to benchmark the predictive 
power of the fitted model. These were calculated once per subject on the entirety of their respective test set; the 
values reported in the following sections were acquired by computing the arithmetic mean and standard devi-
ation for each metric over all subjects. Compiled results are presented in Table 1, and all results presented per 
subject, label and compound movement are available in Supplementary Tables 1–3. For all subjects, the optimal 
classification probability threshold of the neural model (derived via iterated evaluation on the validation set as 
described in the previous section) was determined to be 0.5 and 0.9 when trained with cross-entropy loss and 
BP-MLL loss, respectively. The metrics reported here were generated by models operating at these thresholds.

exact match rate. The Exact Match Rate (EMR)40 represents the proportion of observed image sequence 
instances where every single label is correctly predicted by the classifier:
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=
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where N denotes the training set cardinality, and pt,i and yt,i denotes the prediction and ground truth, respectively, 
of the i:th label in the t:th test instance (1 if label is present, 0 if not). 1(∙) is the indicator function, returning 1 in 
the case that its argument is a true condition, 0 otherwise. While closely related to the accuracy metric of conven-
tional single-label classifiers, EMR is in a general sense much stricter the larger the set of possible labels is; a single 
mispredicted label in one instance marks it as failed when computing the EMR.

In the comparative case of a classifier randomly predicting each label as either present or absent with uniform 
probability, the expect an EMR baseline of = = ≈ .− −2 2 0 000015Q 16 1

65536
. We achieved a mean EMR of 0.788, 

standard deviation σ = 0.079 when the network was trained with cross-entropy loss. With BP-MLL loss training, 
the resulting numbers were reduced to 0.694, standard deviation σ = 0.084. With cross-entropy loss, individual 
subjects reached EMR values as high as 0.879 and as low as 0.607.

Hamming loss. The Hamming Loss (HL)40 operates on each label independently by measuring the ratio of 
wrongly predicted individual labels to total number of labels over all observed instances:
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where Q = 16 is the number of possible labels. tp, tn, fp and fn denote true positive labels, true negative labels, 
false positive labels and false negative labels, respectively. In contrast to the other metrics presented here, a lower 
HL corresponds to more correctly predicted labels and is thus desirable. By its definition, HL can never exceed 
1-EMR, but might be considerably smaller if the classifier often partially misclassifies instances.

In the comparative case of a classifier randomly predicting each label as either present or absent with equal 
probability, the expected HL would reach a baseline of 0.5. We achieved a mean HL of 0.031, standard deviation 
σ = 0.012 when the network was trained with cross-entropy loss. With BP-MLL loss training, the resulting num-
bers increased to 0.034, standard deviation σ = 0.012. With cross-entropy loss, individual subjects reached HL 
values as low as 0.017 and as high as 0.057.

Jaccard index. The Jaccard Index (JI)41, sometimes referred to as intersection-over-union, is a statistic for 
measuring similarity between two sets; A and B:
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here we calculate its value between the set of predictions from the test set and the test set ground truth by consid-
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JI is presented as it represents a simultaneously global and fine-grained measure of classifier performance. In our 
experiments, we achieved a mean JI of 0.840, standard deviation σ = 0.056 when the network was trained with 

EMR HL JI P R

Cross-Entropy Loss 0.787 ± 0.064 0.029 ± 0.011 0.847 ± 0.055 0.894 ± 0.040 0.878 ± 0.054

BP-MLL Loss 0.695 ± 0.086 0.034 ± 0.013 0.827 ± 0.055 0.856 ± 0.049 0.891 ± 0.044

Table 1. Average performance metrics of the classification process across subjects. The range of each value 
represents its standard deviation across all subjects.
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cross-entropy loss. With BP-MLL loss, the resulting numbers were reduced to 0.827, standard deviation σ = 0.053. 
With cross-entropy loss, individual subjects reached JI values as high as 0.908 and as low as 0.708.

precision and recall. To investigate the possibility of classifier biases, brought about by an unbalanced train-
ing set, we calculate the Precision (P) and Recall (R) metrics19 commonly used in binary information retrieval 
tasks42,43. Just as for the HL and JI, we extend the definition of these metrics to the multi-label problem domain by 
viewing each classification as Q = 16 independent binary instances:
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Precision represents the fraction of all predicted labels that are truly present, while recall represents the frac-
tion of all truly present labels that is predicted as present. Over some family of classifiers with similar HL, it is 
therefore usual to observe an inverse relationship between P and R: A more ‘lenient’ classification scheme will 
likely retrieve more of both correct and incorrect labels, while a ‘strict’ scheme will retrieve fewer of both44. A 
high value of both P and R indicate that the classifier indeed exerts discriminatory power and does not simply 
capitalize on unbalanced data w.r.t. label abundance. The relationship between precision and recall for varying 
label probability thresholds in the approach taken here is presented in Fig. 4.

In our experiments, we achieved a mean precision score of 0.890, standard deviation σ = 0.042 and mean 
recall score of 0.868, standard deviation σ = 0.055 when the network was trained with cross-entropy loss. With 
BP-MLL loss, the resulting numbers were instead P = 0.852 (σ = 0.049) and R = 0.891 (σ = 0.041).

the single-labeled network. When the modified network was used to predict a single class out of the 65 
recorded compound movements, only the accuracy was calculated for comparison as our selected performance 
metrics have no clear counterpart for single-label classification performance. Over all subject, the mean accuracy 
achieved was measured as 0.7813, standard deviation σ = 0.068. Individual subjects reached accuracies as high as 
0.855 and as low as 0.620.

Discussion
The main aim of this study was to assess if it is possible to extract information from HD-sEMG measurements that 
allow for decoding of several independent hand and wrist movements simultaneously. To investigate the feasibil-
ity of such a multi-label classification approach, we implemented a deep convolutional neural network to detect 
up to 16 possible movement labels when given a 24 samples long sequence of sEMG images with a sampling rate 
of 2048 Hz. With all resulting metrics vastly outperforming a random guessing baseline, the method used in the 
current study can reliably be said to succeed in its task of extracting information from movement-specific spati-
otemporal patterns present in the HD-sEMG. Furthermore, precision and recall scores indicate that this result 
is not an effect of bias induced by label imbalance or scarcity. Across all performance metrics cross-entropy loss 
proved slightly to moderately superior to BP-MLL loss for model convergence, despite the latter being specifically 
developed for use in multi-label models. This could possibly be an effect of plateaus on the high-dimensional 
function surface as has been previously pointed out45 as a possible problem with BP-MLL loss.

In general, comparing the results from the current study with prior studies concerned with sEMG decoding 
is not straightforward, mainly since previous work has exclusively operated within a single-label framework, i.e. 
with a smaller set of unique classes and thus with a higher expected performance baseline. Momentarily ignoring 
the issues presented by comparing single-label and multi-label classifiers, a fair comparison of performance can 

Figure 4. Precision-recall curves. The colored regions represent the different loss functions, with upper 
and lower bounding curves of each region corresponding to the subjects with highest and lowest EMR, 
respectively. The curves were plotted parametrically by linearly interpolating precision and recall calculated at 
11 equidistantly spaced label detection probability thresholds between 0 and 1.
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still only ever be made between classifiers with a similar number of inferable classes. Even so, when trained on 
data from our experiments and tested on the same subject, EMR values close to, and sometimes higher than, 
accuracies of single-label approaches were produced26,46,47, despite our method being able to represent many 
more movements (65 unique movements as demonstrated in this study, and possibly many more of the untested 
compound movements) and EMR being a much stricter measure of performance than accuracy. A comparison 
with our own single-label classifier verifies that the multi-label approach does not carry with it any discernible 
reductions in performance to negatively offset the benefits argued for in this paper (scalability, stability and tun-
ability), and additionally validates our method of utilizing raw sEMG image sequences for predictive purposes. 
Our results thus indicate that encoding hand movements with a multi-label framework could be a useful abstrac-
tion for modeling the complex relationship between the spatial and temporal variations of the sEMG and gestures 
constituted by multiple degrees of movement freedom.

Despite these encouraging results, some limitations on the part of our methodology need to be addressed 
before methods such as the one under investigation here can be implemented for use in practical circumstances, 
clinical or otherwise. Due to the scope of this study, data from each subject was collected during a single recording 
session. The presented results as they stand thus do not guarantee robustness against long-term signal variations, 
e.g. slight translation of electrode position over time. Further studies in this area would need to be designed to 
quantify and counteract such effects, or otherwise be able to tolerate small differences between the distributions 
generating the training-time data and the inference-time data.

The total recording session time of 1 h followed by the 1–2 h of network training necessary to fit the model 
might be seen as prohibitively long for the method to be of realistic utility. However, only 2 out of the 5 recorded 
movement repetitions were used for the subsequent fitting of the model. Hence, even within the current frame-
work, a much more manageable recording time; less than half of that in our experiments, would suffice in order to 
create classifiers on par with those presented in this paper. Notably, the severity of these time constraints depends 
heavily on the issue of stability over time discussed in the previous paragraph, as the rate of classifier performance 
deterioration will determine the required frequency of recalibration. If recalibration is required often, the time 
required for each recalibration session must be short if the method is to have any practical feasibility. Conversely, 
if recalibration is only rarely required, the recording training procedure could be allowed to last for much longer. 
This puts further emphasis on the importance of stability over time as an object of inquiry in future studies.

One additional area of concern is that of the requirement of our method on inference time memory and 
computational complexity. While the extraction of the label set from an image sequence is performed in a shorter 
time (<2 ms) than the time between consecutively acquired image sequences (~6 ms), and much shorter still than 
would be required in a real application (~100 ms)15, our setup has access to computational resources considerably 
larger than what can always be expected to be available. Future studies should focus on finding more compu-
tationally efficient multi-label classifier architectures to allow for utilization in important but resource-limited 
applications such as myoelectric prostheses and other types of wearable technology.

In the approach taken here, the selection of labels was based on the empirical assumption that individual 
finger and wrist movements should be statistically separable while also providing a good approximation of 
the movement of the hand and wrist state. In the future, it could be of interest to investigate more systematic 
approaches for the delimitation of the degrees of freedom of the hand, perhaps via the application of unsuper-
vised machine learning, e.g. sparse autoencoders or self-organizing maps. It is likely that better basis movement 
labels, in the sense of generating more distinct and separable sEMG patterns while their combination space still 
adequately span the space of performable hand and wrist movements, can be designed.

One intriguing possibility of multi-label classifiers that was not explicitly investigated in this study is that of 
generalizability to unobserved label combination. Further studies should determine how well a classifier could be 
made to generalize learned patterns for this task. To be successful with such an approach would however require 
some way of ensuring that the (likely highly nonlinear) modulation of the sEMG caused by the introduction of 
unseen label combinations is sufficiently small to not disruptively violate the learned classification boundaries.

In closing, the topology, hyperparameters and optimization procedure of the network itself, while clearly 
functionally sufficient for achieving the goals stated here, can doubtlessly be improved upon in future work. As 
successful CNN design heuristics are lacking in the area of myoelectric pattern recognition, it could be of interest 
to investigate more technically sound methods of topology selection, e.g. supervised optimization procedures 
such as genetic algorithms.

Data Availability
Data collected during and code written for this study is available from the corresponding author on reasonable 
request.
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A B S T R A C T   

Convolutional Neural Networks (CNNs) have been subject to extensive attention in the pattern recognition 
literature due to unprecedented performance in tasks of information extraction from unstructured data. Whereas 
available methods for supervised training of a CNN with a given network topology are well-defined with rigorous 
theoretical justification, procedures for the initial selection of topology are currently not. Work incorporating 
selection of the CNN topology has instead substantially been guided by the domain-specific expertise of the 
creator(s), followed by iterative improvement via empirical evaluation. This limitation of methodology is 
restricting in the pursuit of naturally controlled muscle-computer interfaces, where CNNs have been identified as 
a promising research avenue but effective topology selection heuristics are lacking. With the goal of mitigating 
ambiguities in topology selection, this paper presents a systematic approach wherein we apply a novel evolu-
tionary algorithm to search a space of candidate topologies. Furthermore, we constrain the search-space by 
excluding topologies with excessive inference-time computational complexity, making the obtained results 
implementable in embedded systems. In contrast to manual topology design, our algorithm requires the user to 
only specify a relatively small set of intuitive hyperparameters. To validate our approach, we use it in order to 
create topologies for myoelectric pattern recognition via movement decoding of surface electromyography sig-
nals. By collating offline classification accuracies obtained from experiments on a collection of publicly available 
databases, we demonstrate that our method generates computationally lightweight topologies with performance 
comparable to those of available alternatives.   

1. Introduction 

Improvements related to the efficacy of the relevant hardware and 
algorithms have, during the preceding decade, led to a noticeable in-
crease in research concerning the class of machine learning methods 
colloquially known as Deep Learning [1,2]. Among such methods, few 
have contributed more to the newly emerged feasibility of methodology 
based on Pattern Recognition (PR) than the Convolutional Neural 
Network (CNN) [3]. Since 2013, every winning participant of the annual 
Large Scale Visual Recognition Competition [4] have opted for some 
form of CNN-based approach [5], lending credence to a view of the CNN 
model as the gold standard for tasks involving image recognition. 
Distinguished contributions to this competition, such as AlexNet [6], 
GoogleNet [7], and ResNet [8] succinctly illustrate many of the 

relatively recent algorithmic innovations in the field that have drasti-
cally reduced and sometimes virtually eliminated problems (vanishing 
gradients, covariate shift, etc.) traditionally afflicting aspiring domains 
of neural computation. Parallel to this development in the computer 
vision discipline, the incorporation of CNN models has turned out to be a 
successful strategy in many somewhat adjacent areas where information 
extraction from unstructured signals is of value, e.g. speech recognition 
[9], text parsing [10], and drug discovery [11]. One such area in which 
Deep Learning in general and CNNs in particular have rapidly advanced 
concerns the task of myoelectric pattern recognition [12]; a task for 
which progress holds great promise for the future development of 
muscle-computer interfaces. A muscle-computer interface is here 
defined as systems which, in a wide sense, extracts a control signal from a 
given set of neuromuscular signals, i.e. an electromyogram (EMG) [13]. 
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Salient technical domains in which functional myoelectric interfacing of 
this kind currently play an important role or in the future might have 
potential to play important roles include video game interfacing [14], 
exoskeleton piloting [15] and prosthesis control [16]. In the primarily 
envisioned use case of upper limb prosthetics, the control signal 
extracted by the interface is to be interpreted as a movement instruction 
that is subsequently fed to a powered actuator, i.e. a robotic arm. With 
the end user in mind, it is for this kind of application highly desirable 
with a natural control scheme; here meaning that the EMG generated by 
one’s skeletal muscles while performing a movement corresponds to 
output encoding that very movement. This notion is corroborated by 
surveys conducted with amputees, where intuitive and precise motor 
control is reported as a prioritized feature in the development of pros-
thetic limbs [17–19]. 

Currently commercially available, myoelectrically controlled hand 
prostheses often allow for motorized actuation of multiple independent 
degrees of freedom (DoFs) with a finely resolved range of exertable force 
levels almost on par with that of the natural human hand [20,21]. 
However, for almost all such modern prostheses, the methods for 
inferring the intent of the user and subsequently controlling the afore-
mentioned functionality are still fundamentally dissimilar to the corre-
sponding process in the natural hand. In the typical case, a sparse setup 
of electrodes records the surface EMG (sEMG) produced by the 
contraction of an agonist-antagonist muscle pair in the residual arm of 
the prosthesis user. The averaged amplitude of the recorded signal is 
used for direct binary or proportional control of a single DoF [22], while 
techniques based on e.g. cocontraction (simultaneous contraction of 
antagonistic muscle pairs), sequential contractions, or non-EMG inputs 
[23] are used to cycle between different DoFs. Due to their robustness to 
noise and stability over time, such control schemes are unlikely to be 
perceived as uncompliant or to behave erratically during usage. How-
ever, they clearly do not possess the desired naturalness and are 
furthermore restricted to efferent control of only one DoF at a time, 
severely limiting real-time dexterity. To bridge the growing gap sepa-
rating the mechanical sophistication of available prostheses and their 
comparatively primitive control methods, efforts have been made to 
instead bring methods based on pattern recognition to bear on the 
problem (see [24–26] for reviews). In the resulting body of work, the 
task of decoding movement intent from neuromuscular activity is 
naturally formulated as a task of supervised learning. Formulated with the 
terminology of inferential statistics, this framework views sEMG, or 
descriptive features [27] extracted from sEMG, as observations of inde-
pendent variables, while the corresponding observations of dependent 
variables consist of an encoding of the wrist- and hand motions cooc-
curring with sEMG acquisition. The task of myoelectric pattern recog-
nition is then reducible to deducing the values of the dependent 
variables given an instance of independent variables. Encoding of mo-
tion can be either continuous, e.g. quantification of individual muscle 
forces, or categorical, e.g. the presence or absence of mutually exclusive 
gestures, in which case the task becomes that of statistical regression or 
classification, respectively, with much of the contemporary technical 
literature focused on the latter alternative. In this framework, a diverse 
set of predictive algorithms including versions of k-nearest neighbours 
[28–30], linear discriminant analysis [31], support vector machines [32, 
33], hidden Markov models [34,35], and decision trees/random forests 
[36], have been considered as potential candidates for achieving reliable 
prosthetic control. Whereas previous studies (with few and distinct 
movements) have managed to generate impressive classification accu-
racies exceeding 95% [37], extremely few of these methods have yet 
been judged to exhibit the stability, validity and reliability required for 
widespread use in daily routine. 

As in many other disciplines, the inability of ‘traditional’, feature- 
based machine learning to conclusively offer a satisfactory solution 
has led researchers to investigate the application of Deep Learning. From 
a high-level perspective, a muscle-computer interface operating with a 
natural control scheme must, explicitly or implicitly, contain within it a 

computable function mapping some subspace of physically possible 
EMG signals to efferent commands (corresponding to some subspace of 
natural movements). Given that such a mapping exists and has accept-
able fidelity, i.e. sufficient information about movement intent is 
embedded in the EMG signal, the task can be formulated as approxi-
mating the mapping to a satisfactory degree. From this view, feed- 
forward multilayer artificial neural networks, in their capacity as uni-
versal function approximators [38], are intuitively a promising class of 
algorithms to pursue. Although research is still in its infancy, a number 
of studies ([39–49], among others) incorporating deep neural models 
have persuasively argued that reliable discernment of movement in-
formation from raw sEMG measurements is possible, with performance 
often surpassing that of classical methods in one or several respects. 
Related to their success in computer vision, CNNs have been applied to 
high-density sEMG (HD-sEMG) [50], where surface electrodes arranged 
in a 2D grid are used to capture a sEMG image, to exploit latent spatially 
encoded signal characteristics and achieve unprecedented performance 
[40,47,48]. Recently, recurrent models have been used to the same ef-
fect [43]. Furthermore, unsupervised Deep Learning such as sparse 
autoencoders [45] and deep belief networks [46] have been used to find 
EMG embeddings of discriminatory power comparable to handcrafted 
features. 

The ability of all of the methods described above to operate directly 
on sampled myoelectric voltages and thus circumvent manual feature 
engineering is encouraging in the sense that no arbitrary decision 
regarding compression of spatiotemporal information needs to be made 
but is instead automatically deduced from the signals themselves. 
However, this welcome simplification is accompanied by a drastic in-
crease in the number of arbitrary tuning considerations inherent to the 
algorithms themselves. For example, to use a CNN requires not only the 
specification of training-time hyperparameters (learning rate, minibatch 
size, etc. [1]), but also a selection of a network topology. Sometimes 
denoted architecture in the literature, the term topology in this context 
simply refers to the sequence of layers, each possibly having hyper-
parameters of its own, the interlace of which constitute the network. 
With some recent algorithmic innovations such as AdaNet [51] exempt, 
the topology is typically treated as a hyperparameter to be selected prior 
to implementation. In computer vision, successful topologies have 
typically been the result of strenuous research, often stretching over 
many years [52]. This presents an inconvenience to new prospective 
domains of CNN application (such as myoelectric pattern recognition) 
where no validated topology design heuristics exist a priori, and no 
guarantee can be provided that the quality of previously successful to-
pologies will be conserved when transferred to the new problem 
domain. More specific to the field of prosthetics, limitations of memory 
and processing power in the inference-time environment of algorithms 
put computational restrictions on topologies, making transfer of results 
from adjacent fields yet more difficult. 

Naturally, we are not the first to notice the intractable properties of 
CNN construction, and a body of work discussing methods for automatic 
topology selection has grown rapidly for some time (see, for example 
[53–56]). One of the earliest attempts at this task is that of 
neuro-evolution [57]; a class of methods for generating well-behaving 
network topologies and/or parameters/hyperparameters based on nat-
ural selection. For some time, the reigning perception has been that such 
automatically generated networks are incapable of matching the per-
formance of their manually designed counterparts [52]. However, 
recent studies undertaken to investigate novel evolutionary approaches 
to topology search have, backed by promising results, argued against 
this view [52]. Such studies have as of yet mostly focused on tasks of 
traditional image recognition (i.e. pertaining to computer vision) and 
have not been concerned with finding suitable topologies for domains 
where reliable alternatives are lacking. Thus, issues such as domain 
transferability and limited resources are seldom addressed. 

In an attempt to relieve the problems outlined so far, we here propose 
a novel procedure aimed at discovering new and promising CNN 

A.E. Olsson et al.                                                                                                                                                                                                                               

168



Computers in Biology and Medicine 120 (2020) 103723

3

topologies without requiring domain-dependent expertise from the 
designer. To this end, we introduce an evolutionary algorithm (EA) [58] 
to generate topologies intended for sEMG decoding in muscle-computer 
interfaces. Whereas genetic algorithms have been applied in the context 
of sEMG decoding previously [59], to the best of our knowledge no at-
tempts of evolving neural network topologies for myoelectric pattern 
recognition been undertaken so far. The presented EA exhibits some 
deviations from previous contributions chosen in order to reflect the 
nature of the problem domain better. Firstly, the algorithm was con-
structed in a way that excludes topologies with too large hardware 
requirement, allowing for direct implementation of results in a 
resource-restricted embedded environment. In most other regards, the 
search-space is unrestricted as to not impose potentially false precon-
ceived beliefs about what constitutes a well-behaving topology. Sec-
ondly, we introduce mutation operators, a mutation imposition formula, 
and a topology encoding scheme method which captures and explores 
the scope of plausible CNNs well, thereby facilitating a comparatively 
rapid convergence. Lastly, we introduce a novel topology regularization 
method, referred to here as neural cleansing, which periodically removes 
superfluous layers that do not contribute to network expressivity 
throughout the search. By doing so, we free up computational resources 
that can subsequently be used for more productive topology alterations. 
By evaluating the approach on publicly available databases we ensure 
that results can be verified and that comparison with related methods is 
possible. With this work, we hope to (1) demonstrate the applicability of 
evolutionary topology search and its usefulness for successful deploy-
ment of myoelectric pattern recognition based on Deep Learning in real 
environments and (2) provide an indication of the feasibility of evolu-
tionary search for neural model selection in biosignal processing in 
general. 

2. Methods 

This section outlines the technical details of the proposed method for 
topology discovery. 

2.1. System overview 

The basic structure of the topology search procedure, as is illustrated 
in Fig. 1, is that of a fixed population size EA with synchronous gener-
ational progression and no crossover. With terminology from evolu-
tionary biology, the highest-level abstraction in this operational 
framework is that of the population of candidate solutions. The popula-
tion consists of a positive integer Cp (here a hyperparameter) individuals, 
each with an accompanying genome. The genome, in turn, uniquely 

encodes the specific solution that the individual carrier represents. In the 
relevant context of topology search, a solution is synonymous with a 
CNN topology. 

The algorithm is initialized via the creation of a (homogeneous) 
population of individuals with genomes that represent trivial solutions 
which are, presumably, far from optimal. In the implementation used in 
this study, the genomes of the initial populations are selected to encode 
the arguably simplest possible classificatory feed-forward neural model, 
i.e. that of an input layer, a single n-way fully connected layer, and an 
output softmax layer, where n is the number of classes. With an initial 
population created in this way, the algorithm repeats, in sequence, the 
stages of fitness evaluation, selection and mutation. Pseudocode formal-
ization of this iterative procedure is shown in Fig. 2. At the fitness 
evaluation stage, each individual is assigned a fitness value representing 
the quality of the solution it represents. At the selection stage, in-
dividuals are appointed as parents on the basis of attained fitness. At the 

Fig. 1. Flowchart illustrating the EA approach to discovery of CNN topologies for MPR.  

Fig. 2. Pseudocode describing the basic structure of the topology search EA.  
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mutational stage, the genomes of the selected parents are altered before 
they are used as the basis for new individuals which in turn constitute a 
new population, replacing the prior. This cycle is repeated for a positive 
integer G (here a hyperparameter) generations to iteratively improve the 
quality of the genome-encoded solutions present in the population via 
consistent selective pressure. The details of the utilized encoding-, 
fitness evaluation-, mutation-, and selection schemes are explored in the 
following sections. 

2.2. Topology encoding 

The genome of an individual contains all information required in 
order to construct, train and test the performance of the CNN topology it 
represents. In the genome, topology is represented as a dynamic array of 
layers, with the internal order of the array elements representing the 
order in which their respective operations are performed on the input to 
the represented feed-forward network. Each topology list element is in 
turn represented by a static array of parameters, unambiguously 
defining the operating characteristics of the encoded layer instance. 
Encodable layer types, with respective parameters, are shown in Fig. 3 
and given by:  

� Fully Connected [1] with parameters:  
o output neurons (integer).  
� Convolutional [3] with parameters:  

o number of kernels (integer),  
o kernel width (integer)  
o kernel height (integer)  

o horizontal stride (integer)  
o vertical stride (integer)  
� Pooling [3] with parameters:  

o kind (‘average’ [3] or ‘pooling’ [6])  
o window width (integer)  
o window height (integer)  
o horizontal stride (integer)  
o vertical stride (integer)  
� Activation with parameter:  

o kind (‘ReLU’ [6], ‘tanh’ [1], or ‘softmax’ [1]).  
� Dropout [60] with hyperparameter:  

o probability (floating-point number)  
� Batch Normalization [61] (no parameters). 

In this study, convolutional layers use zero-padding to keep the 
spatial dimensions of their output equal to those of their input. In 
addition to the structural information, the genome contains the speci-
fication of initializers, regularizers, and the optimizer used to train the 
network. The reason for their inclusion in the genome is that the optimal 
topology (in the sense of maximizing fitness) is highly dependent on the 
configuration of such parameters during network training. Because we 
are concerned only with maximizing the performance of the topology in 
the absolute sense, initializers, regularizers and optimizer are allowed to 
evolve in tandem with the topology. The initializers are encoded as a 
floating-point number per fully connected and convolutional layer in the 
topology, representing the standard deviation of the normal distribution 
from which the layers initial weights are sampled. The regularizers are 
encoded as a floating-point number per fully connected and 

Fig. 3. Class diagram of the genetic encoding scheme.  
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convolutional layer in the topology, representing the rate of their 
respective weight decay [1]. Lastly, the genome encodes the optimizer 
as a floating-point number representing learning rate. 

2.3. Fitness evaluation 

To calculate the fitness of a given individual (topology) in the pop-
ulation, a training set and a validation set of sEMG signals with move-
ment annotations, collected from one or more human test subjects, are 
needed. One CNN is instantiated, as specified by the genome of the in-
dividual, per test subject. Each such network is trained on motion 
ground-truth annotated sEMG data from a single subject each, and 
subsequently evaluated on validation data from the same subject. 
Backpropagation-based training is performed with the Adam algorithm 
[62] with genome-dependent learning rate, β1 ¼ 0.9, β2 ¼ 0.999, ε ¼
10� 8 and with a minibatch size of 512 for 10 training epochs, mini-
mizing categorical cross-entropy loss [1]. The batch size and total 
epochs values are held constant; allowing them to evolve could lead to 
unbounded growth and thus long evaluation times without a corre-
sponding increase in evaluation quality. At the onset of training, 
network weights are initialized independently by sampling from a 
normal distribution with zero mean and a layer-specific standard devi-
ation (encoded by the genome). Biases are globally initialized to zero. L2 
regularization of weights is applied during training, with the rate of 
weight decay, individual to each layer, encoded by the genome. 
Following inference on the validation set, fitness of individual Ii is 
computed via (1). 

fi¼ 2
bai
a2 (1) 

Here, bai is the arithmetic mean of the classification accuracies ach-
ieved by the topology of the individual Ii on some validation data, 
averaged across all test subjects. This formulation has as a consequence 
that additive increases in validation accuracy will always be rewarded 
by multiplicative increases in fitness, partially counteracting the 
diminishing returns inherent to marginal accuracy gains. The value of 
the hyperparameter a2 2 ð0;∞� is the fitness-doubling accuracy difference 
and represents the additive increase in accuracy required of an indi-
vidual to double its fitness. 

2.4. Selection 

The proposed algorithm incorporates a type of proportionate selec-
tion with elitism [58]. As a first step in this procedure, the individual 
with highest fitness (as determined previously) present in the population 
of the current generation is without any mutations directly transferred 
(‘cloned’) into the population of the next generation. This simple step 
ensures that ‘genetic breakthroughs’ are much less prone to accidentally 
not get retained during generational progression, all with minimal loss 
to exploratory potency of the optimization procedure. Following this 
initial exception, individuals of the next generation are iteratively 
created by repeatedly selecting a random individual from the population 
of the current generation for breeding. Each such selection results in a 
single new offspring individual with a genome which is a mutated 
version of that of its parent. The probability pi of selecting a given in-
dividual Ii for breeding is at each iteration directly (linearly) propor-
tional to the fitness fi achieved by that individual during the preceding 
evaluation step: 

pi ¼
fi
P

jfj
(2) 

There is no hard limit (other than the globally set population size 
Cp � i 8 i) to the number of times a single individual can be selected as a 
parent; but comparatively high performing individuals are likely to have 
numerous derivatives of their genome permeate the population. 

2.5. Mutation 

Each time an individual is selected (in the context of the breeding 
procedure outlined previously), a nonnegative integer m is sampled 
from the Poisson-distributed random variable M with probability mass 
function fM given by: 

fMðmÞ¼ S⋅
ð � logSÞm

m!
(3) 

The sampled value m represents the number of mutations to be 
performed on the genome of the individual in question. The mutation 
procedure utilizes a hyperparameter, referred to as mutational stability, 
which is denoted by S2 ð0; 1�. S can here be interpreted as the proba-
bility of no mutation happening, which follows from simplifying (3) in 
the case of m ¼ 0, whereby PrðM ¼ 0Þ ¼ fMð0Þ ¼ S⋅ð� logðSÞÞ0

0!
¼ S. If m ¼

0, the offspring individual will be an exact copy (‘clone’) of the parent. If 
instead m > 0, m mutations are selected sequentially and at random 
from the set of allowed mutations, each with a respective probability 
(tuneable as hyperparameters). If m > 1, the same mutation can be 
performed multiple times. The set of allowed mutation operators are 
given below. Here, log-uniform distribution is taken to mean the distri-
bution of a random variable which has a uniformly distributed logarithm 
(See Appendix A for details regarding layer creation and modification 
routines.).  

� add-layer: Select a random layer type from the set of allowed layers 
(as presented in section II⋅B) with uniform probability. Insert a layer 
of that type at a random (uniform) index (prior to the terminal FC 
and softmax layers) in the genome topology array. 
� remove-layer: Select a random layer to delete with uniform proba-

bility over all layer present in the network. The terminal FC and 
softmax activation layers are necessary for meaningful network 
output and cannot be removed.  
� modify-layer: Randomly select a layer in the topology with all eligible 

layers weighted uniformly. All layers, except the terminal FC layer, 
the softmax layer, and those of the BN kind, are eligible to this mu-
tation. The selected layer has its parameters modified according to a 
routine specific to each layer type.  
� modify-initializer: The standard deviation of the normal distribution 

used to sample the initial weights is updated for a random FC or 
convolutional layer (probability uniform over all candidates in the 
topology). The new standard deviation is sampled from the log- 
uniform distribution between 10� 3 and 100.  
� modify-regularizer: The rate of weight decay for a random FC or 

convolutional layer (probability uniform over all candidates in the 
topology) is resampled from the log-uniform distribution between 
10� 9 and 100.  
� modify-optimizer: The learning rate to be used during the training 

phase of the topology is resampled from the log-uniform distribution 
between 10� 6 and 100. 

If the selected mutation is undefined for the current topology (e.g. 
remove-layer or modify-layer in cases when no layers other than the ter-
minal fully connected and softmax layers exist in the topology), a new 
attempt at picking a mutation is made. The procedure is repeated until m 
legal mutations have been picked; ensuring that the genome has been 
subject to exactly m mutations before the offspring individual is gener-
ated. For each mutation, the allocation of memory required to instan-
tiate the CNN topology of the postmutational genome and the inference- 
time computational complexity of ditto are estimated. If any of these two 
values exceeds their respective a priori set threshold allowance value (EA 
hyperparameters Cmax

t 2 ½0; ∞� and Cmax
s 2 ½0;∞�), the mutation is not 

performed. Just as in the case of impossible and undefined mutations, a 
new mutation will (repeatedly, if necessary) be resampled from the set 
of possible mutations until a legal mutation is selected. Consequently, at 
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no point during the evolutionary procedure will genomes containing 
topologies with too large (estimated) requirements on computational 
resources exist. (The approach to automatic estimation of resources 
required by a topology is outlined in Appendix B.) 

2.6. Neural cleansing 

The EA as it has been presented so far exerts no direct selective 
pressure for computational efficiency of candidate topologies. During 
the search, ineffective layers (in the sense of contributing neither posi-
tively nor negatively to fitness) can thus remain in the topology of an 
individual indefinitely and adversarially affect both the per individual 
time complexity (thus increasing search time) and the efficacy of the 
ultimate result. This effect is mitigated by having the probability of the 
remove-layer mutation be greater than that of the add-layer mutation, but 
only to a limited extent. Due to the hard limits on memory footprint and 
time complexity imposed during mutation, there is additional risk of 
reaching genetic ‘dead-ends’, where improbable sequences of mutations 
are necessary in order to improve fitness at all. Outright prohibition of 
mutations resulting in ineffective layers, as is done with e.g. topologies 
exceeding the restrictions on computational complexity, would rule out 
this possibility, but would also result in a more restricted search space as 
some topologies becoming impossible to reach. To reduce the risks of 
excessive ‘mutation load’ while retaining sufficient exploratory le-
niency, we instead introduce a novel type of topology regularization 
technique which we refer to as neural cleansing. At equigenerational 
intervals throughout the search, the genomes of the entire populations 
are subject to a routine which removes superfluous layers. A layer is 
regarded as superfluous if the network prior to and after its removal can, 
during training, learn weights and biases which perform the exact same 
input-output mapping. With this definition, all layers except the last in a 
sequence of linear (convolutional and fully connected) layers without 
delimiting activations are regarded as superfluous. Additionally, all 
layers except the last of identical type in uninterrupted sequence are 
regarded as superfluous, even if they do not technically conform to the 
aforementioned definition. The only exception to this rule is activation 
layers, which are allowed to directly succeed other activation layers of 
different kind. An example illustrating change in network topology by 
neural cleansing is presented in Fig. 4. Whereas this process imposes 
preconceived beliefs about what constitutes a well-behaving network, it 

continuously frees up resources which can (hypothetically) generate 
higher performance on the margin. The process requires a hyper-
parameter T, representing the (positive integer) number of generations 
separating consecutive cleansing operations. 

3. Experiments 

Evaluation of the method for CNN discovery was done in two 
consecutive phases: (1) topology search, wherein a topology was auto-
matically constructed to perform myoelectric movement decoding by 
applying our EA and (2) topology evaluation, wherein the performance 
and generalizability of the single topology obtain in the search was 
measured. There was no overlap between data used for search phase 
training, search phase fitness calculation, evaluation phase training and 
evaluation phase testing. All parts of the experiment were performed 
using custom code written for and executed by Python 3.6. The Ten-
sorFlow [63] library was used to instantiate and run the 
genome-encoded neural networks when necessary (for fitness evalua-
tion during the EA search phase and for training and inference during 
the evaluation phase). 

3.1. Topology search 

3.1.1. Search phase data acquisition 
Movement-annotated sEMG signals were acquired from the NinaPro 

database [64]. From this repository the second sub-database (referred to 
here as NinaPro-DB2); constituted by recordings from 40 healthy vol-
unteering subjects while performing, in addition to the resting state, 49 
hand- and wrist movements, was used as the basis for generating to-
pologies. Each recorded movement was performed for a total of 6 rep-
etitions lasting 5 s each, separated by 3 s of rest. The obtained sEMG 
measurements took the form of 12 separate digital time series sampled 
at a rate of 2 kHz and a single synchronously acquired target signal 
encoding the movement class being voluntarily performed at the time of 
sEMG acquisition. Signals acquired from subjects 1 to 4 were used for 
the purpose of evolutionary search, leaving the remaining 36 subjects 
(5–40, henceforth referred to as residual subjects) for later validation (as 
described in section 3.2). This step assumed that the performance of a 
network topology evolved via evaluation on data collected from a small 
number of subjects is predictive of its performance on the data collected 

Fig. 4. The neural cleansing procedure illustrated by a fictional example. The network topologies prior to (upper) and following (lower) the procedure are equivalent 
in the sense that there for a configuration of learnable parameters (weights and biases) for one exists a configuration for the other that represents an identical 
mapping between input and output for all possible inputs. Crucially, the network topology after the operations has a smaller memory footprint and requires fewer 
floating-point operations per forward pass and backward pass during both training and inference. 
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from the remaining subjects. 

3.1.2. Search phase data preprocessing 
The sEMG time series were digitally filtered channel-wise, first with 

a 50 Hz notch filter (Q ¼ 30) for removal of power line interference and 
thereafter with an 8:th order Butterworth band pass filter with a 20–380 
Hz passband for suppression of high- and low frequency noise. To 
accelerate the EA search phase, signals were downsampled by a factor of 
2 (i.e. to a new effective sampling rate of 1 kHz). A simple sliding time 
window technique [65] was used in order to convert the filtered time 
series into images processable by a CNN. This resulted in the creation of 
tensors of shape L � C � 1, where L is the time window length in samples 
and C is the number of separate channel time series (i.e. the number of 
electrodes; C ¼ 12 for NinaPro-DB2). The last dimension represents the 
image colour channels; initially unitary (grayscale) but modifiable by e. 
g. convolutional layers. The first (vertical) and second (horizontal) di-
mensions correspond to time and electrode index, respectively. Each 
‘pixel’ at this stage thus represents a raw myoelectric voltage as sampled 
by one electrode at one time instant. To suppress the number of com-
putations required per individual and image during fitness evaluation, a 
comparatively short time window of duration 100 ms (L¼100 at F ¼ 1 
kHz), with window increments of 25 ms (25% overlap) was used. 

The ground truth movement class of each image-represented time 
window was determined via majority voting over its constituent time 
samples. Movement repetition was used to segment the available time 
windows into a training- and validation sets (per subject) as required by 
the fitness evaluation procedure: Images originating from movement 
repetitions 1 to 4 were used for training, while those from movement 
repetitions 5 and 6 were used for validation; i.e. as the basis for calcu-
lating fitness as described in section 2.3. As with movement class, 
movement repetition affiliation was determined for each image via 
majority voting over the samples of its time window. All images were 
subjected to pixel-wise normalization, i.e. by subtracting the (pixel 
location-specific) mean and dividing the (pixel location-specific) stan-
dard deviation; estimated exclusively from the images in the training set. 
Lastly, both training and validation data were balanced via the random 
removal of example instances (an example instance here refers to an 
image with corresponding class label) of overrepresented classes until 
the number of training and test examples of each movement class was 
exactly equal for all movement classes; this step ensured that the fitness 
of topologies was not impacted by bias towards more abundant move-
ment classes, and furthermore reduced the computational resources 
required for fitness evaluation. 

3.1.3. Running the search 
Table 1 contains the values of the hyperparameters used by the 

evolutionary topology search. These values were selected ad-hoc via a 
small number of unsystematic trials and were not subject to any manual 

fine-tuning. Once the last evaluation step was completed, the fittest 
individual present in the population was extracted and used as the basis 
for the concluding topology evaluation. With 0.05 as the value of a2, the 
lowest (worst) and highest (best) achievable values of fitness were fmin 
¼ 2�/0.05 ¼ 2� ¼ 1 and fmax ¼ 21/0.05 ¼ 220 ¼ 1048576, respectively. 
Based on the current state of available embedded systems [66], the 
default values Cmax

s ¼ 100 MB and Cmax
t ¼ 100 MFLOPS for the upper 

limits to inference-time memory footprint and time complexity, 
respectively, were used. The search was performed on a desktop com-
puter equipped with an Nvidia Titan V GPU. 

3.2. Topology evaluation 

3.2.1. Evaluation phase data acquisition 
In addition to signals acquired from the residual (5–40) subjects from 

NinaPro-DB2, 3 additional publicly available sEMG data sources were 
utilized for model evaluation:  

� First sub-database of NinaPro [64] (referred to here as 
NinaPro-DB1).  
� The sub-database of BioPatRec [67] containing 26 movement classes 

(referred to simply as BioPatRec).  
� First (preprocessed) sub-database of the CapgMyo database [47] 

(referred to simply as capgMyo-DBa). 

NinaPro-DB1 consisted of signals acquired from 27 subjects per-
forming 52 movements (10 repetitions) and rest. The data was provided 
in the form of 10 channels sampled at Fs ¼ 100 Hz. BioPatRec consisted 
of signals acquired from 18 subject performing 27 movements (3 repe-
titions) and rest. The data was provided in the form of 8 channels 
sampled at Fs ¼ 2 kHz. CapgMyo-DBa consisted of signals acquired from 
18 subjects performing 8 movements (10 repetitions). The data was 
provided in the form of 128 channels, arranged in a 16 � 8 grid, and 
sampled at Fs ¼ 1 kHz. 

3.2.2. Evaluation phase data preprocessing 
Preprocessing of the signals originating from the residual subjects of 

NinaPro-DB2 was performed in a similar fashion to the signals from the 
original subjects (1–4) used by the evolutionary search procedure. De-
viations from the previously outlined preprocessing pipeline; made in 
order to be able to compare results with previous work, consisted of: (1) 
using a window length of 200 ms (L¼100 at F ¼ 1 kHz) with 100 ms 
window increments (as well as the previously used 100 ms version with 
25 ms increments), (2) using movement repetitions 1, 3, 4, and 6 for 
training and movement repetitions 2 and 5 for testing [64], and (3) not 
balancing images with regard to movement class abundance. 

NinaPro-DB1 was preprocessed identically to NinaPro-DB2, although 
without any temporal filtering and exclusively using a time window of 
size 200 ms (L¼20 at F ¼ 100 Hz) and with increments of 100 ms. 
Training/testing set segmentation was once again made via repetition 
affiliation in accordance with previous work [64]; with movement 
originating from repetitions 1, 3, 4, 6, 8, 9 and 10 constituting the 
training set and with movements originating from repetitions 2, 5, and 7 
constituting the test set. 

The time series of the BioPatRec dataset were bandpass filtered, just 
as NinaPro-DB2, prior to channel-wise downsampling by a factor 2 in 
order to conform to the standard sampling rate of Fs ¼ 1 kHz. Otherwise 
unmodified, the data was preprocessed in accordance with the 
convention established in previous work [31,43], i.e. samples collected 
during the first and last 15% of each movement repetition were dis-
carded and movement repetition 1 was used for training, leaving repe-
titions 2 and 3 for accuracy assessment. To generate images, a sliding 
window of size 150 ms (L¼150) with increments of 50 ms (33% overlap) 
was once again used. These images were, just as for both of the NinaPro 
sub-databases, subject to pixel-wise normalization. 

Two distinct approaches were undertaken when applying the 

Table 1 
Summary of the hyperparameters required for the evolutionary topology search 
and their respective values selected for the experiments.  

Name Symbol Value 

Population cardinality Cp  250 
Total number of generations G  200 
Fitness-doubling accuracy difference a2  5% 
Mutational stability S  50% 
Mutation type probabilities – add-layer: 10% remove-layer: 15% 

modify-layer: 30%  
modify-initializer: 15% 
modify-regularizer: 15% 
modify-optimizer: 15% 

Topology memory footprint limit Cmax
s  100 MB 

Topology time complexity limit Cmax
t  100 MFLOPS 

Period of neural cleansing T  32  
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evolved topology to the high-density surface recordings of the CapgMyo 
database. In the first approach, the measured myoelectric voltages were 
fed to the neural network in the form of 3-dimensional tensors of shape 
L �H �W and L �W �H, respectively (‘colour image’ representations). 
Here, the height H is the electrode array vertical dimension (16 for 
CapgMyo-DBa) and the width W is the electrode array horizontal 
dimension (8 for CapgMyo-DBa). With the second approach, positional 
relationships between channels were ignored and the arrays of electrode 
measurements were fed to the neural network in the form of 3-dimen-
sional tensors of shape L � W⋅C � 1 (flattened ‘grayscale image’ rep-
resentation). To allow for comparisons with earlier work [40,42,43], 
results for images corresponding to a 150 ms window duration (L¼150) 
were computed. The time window increment was set to be equal to the 
time window size (0% overlap). Images originating from even move-
ments repetitions were used for training, whereas those originating from 
odd repetitions were used for testing. Lastly, images were as usual lin-
early transformed to have (pixel-wise) zero mean and unit variance. 

3.2.3. Determining performance 
The topology specified by the genome of the fittest individual of the 

last generation was used to instantiate and subsequently optimize a 
single CNN movement classifier per test subject and database (input data 
formatted as described in the preceding section). Just as in the search- 
phase fitness evaluation step, the Adam algorithm with learning rate, 
weight initialization and weight decay specified by genome was used to 
train each CNN. No longer subject to as harsh incentives to keep per- 
subject runtime low vis-a-vis the evolutionary search phase, the num-
ber of training epochs was increased to 100 (with minibatch size 512). 
Once trained, the performance of each CNN was quantified by deter-
mining its classification accuracy on its respective set of test sEMG im-
ages, as defined by (4). 

accuracy¼ 100%⋅
number of correctly classified images

total number of images
(4)  

4. Results and discussion 

The cumulative execution time of the evolutionary search phase 
amounted to approximately 45 days. The fitness distribution of the 
population as it varied throughout the evolutionary search is shown in 
Fig. 5. 

Unsurprisingly, the fastest improvements of performance were made 

early in the evolutionary search process, where there presumably exis-
ted many possible topology modifications with net positive impact on 
accuracy and hence fitness. Further along the process, when topologies 
had grown more intricate, most of the possible mutation sequences 
available to an individual were likely distinctly detrimental to fitness, 
leading to a much greater shortage of possible improvements. The 
persistent decrease in rate of fitness increase with regard to elapsed time 
was further caused by the increasing (mean) time complexity of topol-
ogies, increasing evaluation time required per generation. Notably, 
however, fitness never seems to saturate entirely, making the possibility 
of the process having converged close to a global optimum at the final 
simulated generation unlikely. The final topology, with all evolved per 
layer parameters, is shown in Table 2. Interestingly, the network shares 
many features typically observed with manually designed topologies, 
but moreover include some unconventional elements. The use of alter-
nating convolutional and activation layers followed by a small fully 
connected subnetwork is familiar, as is the use of strided convolutions 
and pooling for downsampling early in the network. Surprisingly, the 
search resulted in a topology exclusively using filter kernels and pooling 
windows with extension only in the temporal image dimension. 
Although ReLU activations; ubiquitous in the contemporary Deep 
Learning literature [2], are equally available to the generative process 
via mutation, the topology mostly uses the traditional tanh activation 
function. Additional unconventional ‘choices’ of design include the use 
of a combined tanh-ReLU activation just prior to the fully connected 
subnetwork, and a single batch normalization layer for the entire 
network; just preceding the terminal classificatory FC-softmax layer 
pair. 

Table 3 presents the classification accuracies obtained by training 
and subsequently using the evolved topology from Table 2 for inference 
on the different sources of sEMG data. When trained and subsequently 
evaluated on NinaPro-DB1, the evolved topology achieved a mean test 
accuracy of 81.4% (SD 4.0%) across the 27 subjects. The time required 
to train the evolved topology on data from a single subject in this dataset 
was 51.56 � 7.30 s. For the 36 residual (i.e. not already used for to-
pology search) subjects of NinaPro-DB2 the mean test accuracy 
amounted to 71.0% (SD 7.7%) when applied to the ‘native’ time window 
size of 100 ms and increased only slightly to 71.6% (SD 7.3%) with a 
window size of 200 ms. The required network training times per subject 
were 38.35 � 5.60 s and 56.32 � 4.99 s for a window size of 100 and 
200 ms, respectively. Unexpectedly, the performance on NinaPro-DB1 
significantly exceed that of NinaPro-DB2, in spite of the latter having 

Fig. 5. The population fitness distribution as it varied during the evolutionary search. The dotted horizontal lines separate adjacent generations between which 
neural cleansing was performed. The time spent per generation increased, almost monotonically, throughout runtime as increasingly complex topologies arose and 
spread. The fitness distributions were negatively skewed for the populations of most generations, with the median individual fitness exceeding the population mean 
at all points in time after generation 63 (at approximately 130 h into runtime). 
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more structural similarities (sampling rate, number of channels, etc.) 
with the data used for optimizing the topology than the former, as well 
as having slightly smaller movement set cardinality. We postulate this to 
be an effect, as observed in the performance of e.g. [39,43], of the 
general difficulty of extracting actionable movement information from 
raw, unsmoothed sEMG, given its apparent stochasticity, without more 
sophisticated signal preprocessing and/or feature extraction. With data 

from BioPatRec the topology evolved in the present study, albeit pro-
ducing adequate results (91.4%, SD 4.6%) following a per-subject 
training time of 17.33 � 2.97 s, did not surpass the ‘classical’ (i.e. not 
using Deep Learning) status quo (92.9%) [31]. On the HD-sEMG signals 
acquired from CapgMyo-DBa, the evolved topology reached a perfor-
mance (99.3%, SD 0.6%) comparable to, although slightly worse than, 
the state of the art (99.7%) as reported by [42,43] after a model training 
duration of 38.02 � 1.00 s per subject. 

Importantly, unconditional comparisons between the performance of 
the example topology evolved in the present study and the Deep 
Learning methods of other studies are not inherently meaningful for a 
number of reasons: Firstly and perhaps most importantly, in contrast to 
earlier work, the presented topology is explicitly limited in its use of 
computational resources. The classifier described in the present study 
thus performs with a resource efficiency in compliance with available 
embedded platforms; practically necessary considerations which have, 
to the best of our knowledge, been entirely absent from previous reports 
on myoelectric pattern recognition based on CNNs. Secondly, more so-
phisticated image creation and CNN input data representation tech-
niques, such as the spectrogram-based techniques employed by [41,43], 
are not available to the topology that evolved in the present study. 
Lastly, some specialized layer types; conjecturally instrumental in the 
successes of earlier studies of myoelectric pattern recognition (e.g. the 
locally connected layers used by [40] and the recurrent layers used by 
[43]), are not included in the search space of the EA. Thus, only the CNN 
topology presented in [39], with reported accuracy scores which were 
significantly outperformed by the evolved topology, can be directly 
compared to the topology that emerged in the present study. 

5. Conclusions 

This paper has presented the results of employing a novel topology 
selection evolutionary algorithm for the task of finding a CNN-based 
classifier which is (1) suitable for myoelectric pattern recognition and 
(2) restricted in its inference-time requirements of memory and com-
putations. The main objective of the study was to show the feasibility of 
automatic approaches, sparse in their number of free design parameters, 
to modelling the relationship between myoelectric activity and move-
ment information. The method was successful in creating a topology 
which could discriminate between the movements of some publicly 
available sEMG datasets almost as well as handcrafted state of the art 
models, despite using significantly fewer computational resources and 

Table 2 
Topology encoded by the genome of the fittest individual in the population of 
the last generation (200). The coevolved learning rate was 2.170 ∙ 10-3. The 
approximated values of memory footprint and time complexity of the topology 
(assuming input tensors of shape 100 � 12 � 1 and 50 output neurons) are 14.7 
MB and 98.3 MFLOPS, respectively.  

Layer Evolved parameter values 

0. Input N/A 
1. Convolutional number of kernels: 64 

kernel height: 9 
kernel width: 1 
vertical stride: 3 
horizontal stride: 1 
initializer std. dev.: 4.190 ∙ 10� 3 

weight decay rate: 1.673 ∙ 10� 4 

2. Pooling kind: ‘max’ 
window height: 8 
window width: 1 
vertical stride: 2 
horizontal stride: 1 

3. Activation kind: ‘tanh’ 
4. Convolutional number of kernels: 64 

kernel height: 5 
kernel width: 1 
vertical stride: 2 
horizontal stride: 1 
initializer std. dev.: 1.537 ∙ 10� 1 

weight decay rate: 2.071 ∙ 10� 5 

5. Activation kind: ‘tanh’ 
6. Dropout probability: 0.2093 
7. Activation kind: ‘ReLU’ 
8. Fully Connected output neurons: 512 

initializer std. dev.: 2.498 ∙ 10� 4 

weight decay rate: 1.517 ∙ 10� 7 

9. Batch Normalization N/A 
10. Activation kind: ‘tanh’ 
11. Fully connected output neurons: number of classes 

initializer std. dev.: 1.343 ∙ 10� 2 

weight decay rate: 2.504 ∙ 10� 8 

12. Activation kind: ‘softmax’  

Table 3 
Classification accuracies (averaged across subjects) achieved by the best evolved topology when evaluated on some publicly available sEMG datasets, along with the 
state of the art as reported by previous work incorporating CNN models. Standard deviations across subjects are presented (following �) in cases when reported by the 
original publications. In the high-density database (CapgMyo-DBa), ‘2D representation’ refers to the data with relative electrode positioning preserved (i.e. in matrix 
form) whereas ‘flattened’ refers to the same data in vectorized format (rows stacked). The column ‘Reachable by EA?’ indicates whether the model lies within the 
search space of (some hyperparameter configuration of) the presented EA.   

NinaPro [64] BioPatRec [67] CapgMyo-DBa [47] Reachable by 
EA? 

DB1 DB2 26 movements 
version 

2D representation flattened 

200 ms 100 ms 200 ms 150 ms 150 ms 150 ms 

Benchmark classifier with 
handcrafted feature set. 

75.3% � 5.7% 
(from [39]) 

– 75.3% � 7.9% 
(from [39]) 

92.9% � 4.4% 
(from [31]) 

. 99.0% � 0.9% 
(from [31]) 

No 

CNN by Atzori et al. [39] 66.6% � 6.4% – 60.3% � 7.7% – – – Yes 
CNN by Geng et al. [40] 77.8% – – – 99.5% – No 
Multistream-CNN by Wei et al. 

[42] 
84.0% – – – 99.7% – No 

CNN with PCA by Zhai et al. 
[41] 

–  78.7% – – – No 

CNN-RNN by Hu et al. [43] 87.0% – 82.2% 94.1% 99.7% – No 
Evolved CNN (from Table 2) 81.4% � 4.0% 71.0% �

7.7%* 
71.6% � 7.3%* 91.4% � 4.6% L � H �W  L �W � H  99.3% � 0.6% Yes 

98.0% �
1.9% 

98.1% �
1.8% 

*On residual subjects (i.e. 5-40) 
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having been generated without any manually specified design princi-
ples. Both the proposed search algorithm and the resulting topology 
produced here could be utilized in future work involving myoelectric 
pattern recognition. 

As the fitness growth showed no indication of stopping during the 
search process, future work is needed to focus on a more ambitious 
search phase, with larger population size and lasting for more genera-
tions, perhaps via the use of parallelization of fitness evaluations. As the 
main challenge lies in the processing power required by the search and 
not in data storage or transfer, cloud computing could be successfully 
leveraged to this end. As for the search algorithm itself, its current 
instantiation represents a quite general formulation which could be 
extended in a multitude of ways in order to better accommodate the 
intended problem domain. The topology encoding scheme could be 
improved to increase the potential of candidate models by, for example, 
including multiple additional layer types and some parametrization of 
relevant signal preprocessing and image generating techniques. Similar 
improvements are certainly likely to be possible for other elements of 
the presented EA. Beyond algorithmic refinements, additional studies 
are needed to explore the value of the obtained results in the context of 
clinical adoptions: As the current study produced a CNN topology which 
can function with the relatively limited computational resources avail-
able on embedded platforms, evolved classifiers implemented on robotic 
limbs could potentially be the subject of future work. Lastly, the sta-
bility, robustness and online performance of such implementations 
would need to be verified empirically (and compared to the status quo) 
before results can be deployed widely and thereby benefit amputees. 

The evolutionary approach employed in this study is constrained by 
some infrastructural requirements not exhibited by the handcrafted (i.e. 
with a static classifier topology and hyperparameter configuration) ap-
proaches to myoelectric pattern recognition which dominate the liter-
ature. Notably, automatic design of topology introduces a risk of 

hyperparameter overfitting; a problem which in the present study is 
eliminated by using separate data sets for topology search, training of 
the resulting classifier, and final evaluation. Full utilization of automatic 
topology discovery of the kind presented here for constructing classifiers 
adapted to individual users would thus require more extensive data 
collection compared to the status quo. Including the processing power 
and/or time required in order to run the search itself, the effort required 
in order to obtain a single topology can be substantial. Fortunately, as 
we have demonstrated empirically, the method is successful in creating 
a topology with general applicability in the problem domain, even when 
the search is instead conducted with a data sample shared among sub-
jects and with a relatively parsimonious search phase. Presumably, a 
larger one-time investment in the form of a larger data set and a more 
extensive search phase, undertaken prior to deployment, could be used 
in order to yield a more effective topology which can subsequently be 
adapted to data from individual users, as would be the case with tradi-
tional, handcrafted classifier topologies. 
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Appendix A. Layer Routines 

A.1 Layer Initialization 

Here follow the procedures used for selecting initial configuration of new layers after they have been created by the add-layer mutation. 

A.1.1 Fully Connected Layer 
A fully connected layer is initialized by:  

1. Setting the number of output neurons to 2n, where n is sampled from the discrete uniform distribution between 0 and 10 (i.e. log-uniformly 
distributed).  

2. Setting the weight initializer standard deviation to 10x, where x is sampled from the continuous uniform distribution between � 3 and 0 (i.e. log- 
uniformly distributed).  

3. Setting the weight decay rate to 10x, where x is sampled from the continuous uniform distribution between � 9 and 0 (i.e. log-uniformly 
distributed). 

A.1.2 Convolutional Layer 
A convolutional layer is initialized by:  

1. Setting the number of kernels to 2n, where n is sampled from the discrete uniform distribution between 0 and 7 (i.e. log-uniformly distributed).  
2. Setting the kernel height to 2nþ 1, where n is sampled from the discrete uniform distribution between 0 and 7.  
3. Setting the kernel width to 2nþ 1, where n is sampled from the discrete uniform distribution between 0 and 7.  
4. Setting the vertical stride to n, where n is sampled from the discrete uniform distribution between 1 and the kernel height.  
5. Setting the horizontal stride to n, where n is sampled from the discrete uniform distribution between 1 and the kernel width.  
6. Setting the weight initializer standard deviation to 10x, where x is sampled from the continuous uniform distribution between � 3 and 0 (i.e. log- 

uniformely distributed).  
7. Setting the weight decay rate to 10x, where x is sampled from the continuous uniform distribution between � 9 and 0 (i.e. log-uniformly 

distributed). 

A.1.3 Pooling Layer 
A pooling layer is initialized by: 
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1. Setting the pooling kind to ‘max’ or ‘average’ with equal probability.  
2. Setting the window height to n, where n is sampled from the discrete uniform distribution between 1 and 12.  
3. Setting the window width to n, where n is sampled from the discrete uniform distribution between 1 and 12.  
4. Setting the vertical stride to n, where n is sampled from the discrete uniform distribution between 1 and the window height.  
5. Setting the horizontal stride to n, where n is sampled from the discrete uniform distribution between 1 and the window width. 

A.1.4 Activation Layer 
An activation layer is initialized by setting the activation type to ‘tanh’ or ‘ReLU’ with equal probability. 

A.1.5 Dropout Layer 
A dropout layer is initialized by setting the dropout probability to x, where x is sampled from the continuous uniform distribution between 0 and 1. 

A.1.6 Batch Normalization Layer 
A batch normalization layer does not contain any tuneable hyperparameters. As a consequence, layers of this type require no specific routine for 

initialization. 

A.2 Layer Modification 

Here follow the procedures used for altering the parameters of a layer following subjection to the modify-layer mutation. 

A.2.1 Fully Connected Layer 
A fully connected layer is modified by changing the number of output neurons to 2n, where n is sampled from the discrete uniform distribution 

between 0 and 10 (i.e. log-uniformly distributed). 

A.2.2 Convolutional Layer 
A convolutional layer is modified by randomly selecting, with equal probabilities, an action among the possibilities given by:  

� Changing the number of kernels to 2n, where n is sampled from the discrete uniform distribution between 0 and 7 (i.e. log-uniformly distributed).  
� Changing the kernel height to 2nþ 1, where n is sampled from the discrete uniform distribution between k and 7, and k is the result of integer 

division between the vertical stride and 2.  
� Changing the kernel width to 2nþ 1, where n is sampled from the discrete uniform distribution between k and 7, and k is the result of integer 

division between the horizontal stride and 2.  
� Changing the vertical stride to n, where n is sampled from the discrete uniform distribution between 1 and the kernel height.  
� Changing the horizontal stride to n, where n is sampled from the discrete uniform distribution between 1 and the kernel width. 

A.2.3 Pooling Layer 
A pooling layer is modified by randomly selecting, with equal probabilities, an action among the possibilities given by:  

� Switching activation kind (i.e. from ‘average’ to ‘max’ or vice versa).  
� Changing the window height to n, where n is sampled from the discrete uniform distribution between the vertical stride and 12.  
� Changing the window width to n, where n is sampled from the discrete uniform distribution between the horizontal stride and 12.  
� Changing the vertical stride to n, where n is sampled from the discrete uniform distribution between 1 and the window height.  
� Changing the horizontal stride to n, where n is sampled from the discrete uniform distribution between 1 and the window width. 

A.2.4 Activation Layer 
A pooling layer is modified by switching activation kind (i.e. from ‘tanh’ to ‘ReLU’ or vice versa). 

A.2.5 Dropout Layer 
A dropout layer is modified by changing the dropout probability to x, where x is sampled from the continuous uniform distribution between 0 and 

1. 

A.2.6 Batch Normalization Layer 
A batch normalization layer has no hyperparameters and can therefore not be subject to modification. 

Appendix B. Online Complexity Estimation 

B.1 Memory Footprint 

To estimate inference-time memory footprint of a topology during EA runtime a simple heuristic method is used. With the approach taken in the 
present study, the total memory required is computed simply as the sum of the memory allocated by each individual layer. Each layer has a memory 
footprint contribution dependant both on the shape of its input tensor and its current parameter configuration. Layers of all types have a base memory 
allocation constituted by their output volume. The base memory allocation of any layer with an output volume of shape H �W � C is equal to 4H⋅ W⋅ C 
bytes, as single-precision (32 bit) floating-point numbers (4 bytes per number) are used to represent output volume elements. Layers incorporating 
trainable parameter values (weights and biases), i.e. fully connected layers, convolutional layers, and batch normalization layers, allocate additional 
memory to accommodate these learned values as they are each represented by a single-precision floating point number. A fully connected layer with n 
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output neurons applied to an input size of m (where m ¼ H⋅W⋅C if the input is a volume of shape H �W � C) utilizes m⋅n weights and n biases, and thus 
allocates 4n⋅ðmþ1Þ bytes of additional storage. A convolutional layer with n kernels, kernel height y, and kernel width x applied to an input volume of 
shape H � W � C utilizes n⋅y⋅x⋅C weights and n biases, and thus allocates 4n⋅ðy ⋅x ⋅Cþ1Þ bytes of additional storage. A batch normalization layer 
applied to an input of shape H �W � C utilizes C learned means, C learned standard deviations, C weights and C biases, and thus allocates 4⋅ 4⋅ C ¼
16C bytes of additional storage. 

B.2 Time Complexity 

The true time complexity of a CNN topology during inference is difficult to assess accurately, as it depends heavily on the hardware architecture 
upon which the program is executed [66]. For the purpose of this study, a very simple approximation is deemed sufficient. As a first step the estimate 
entails determining the number of floating-point operations (FLOP) required for the forward pass of one image during inference. Just as for memory 
footprint, an estimate of the per layer computational cost (i.e. number of FLOP) is computed and thereafter summed over the entirety of the network. 
Only fully connected and convolutional layers are taken into consideration, as they constitute the assumed clear majority of operations. A fully 
connected layer with n output neurons applied to an input size of m (m ¼ H⋅W⋅C if the input is a volume of shape H � W � C) performs n⋅ m mul-
tiplications and n⋅mþ n additions and thus requires 2n⋅mþ n FLOP per forward pass. A convolutional layer with n kernels, kernel height y, kernel 
width x, vertical stride v and horizontal stride h applied to an input volume of shape W �H � C applies its filter kernel at N ¼ H

v ⋅Wh different input image 
positions (given zero-padding). At each such input image position, the convolution operation performs y⋅x⋅C multiplications and y⋅ x⋅ Cþ 1 additions 
(per kernel). This results in a total requirement of N⋅n⋅ð2x ⋅y ⋅Cþ1Þ FLOP. The approximation of the per-inference number of floating-point operations 
Ototal by the entirety of the network (by summation over all fully connected and convolutional layers) is multiplied with the number of times inference 
is to be performed per second. As the first dimension H of the network input volume is assumed to correspond to time, the number of floating point 
operations per second (FLOPS) required by the topology is equal to Fs⋅Ototal⋅H� 1, where Fs is the sampling rate of the signal(s) used to create the 
network input. 
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Learning regularized representations 
of categorically labelled surface EMG enables 
simultaneous and proportional myoelectric 
control
Alexander E. Olsson1* , Nebojša Malešević1 , Anders Björkman2,3  and Christian Antfolk1* 

Abstract 

Background: Processing the surface electromyogram (sEMG) to decode movement intent is a promising approach 
for natural control of upper extremity prostheses. To this end, this paper introduces and evaluates a new framework 
which allows for simultaneous and proportional myoelectric control over multiple degrees of freedom (DoFs) in real-
time. The framework uses multitask neural networks and domain-informed regularization in order to automatically 
find nonlinear mappings from the forearm sEMG envelope to multivariate and continuous encodings of concurrent 
hand- and wrist kinematics, despite only requiring categorical movement instruction stimuli signals for calibration.

Methods: Forearm sEMG with 8 channels was collected from healthy human subjects (N = 20) and used to cali-
brate two myoelectric control interfaces, each with two output DoFs. The interfaces were built from (I) the proposed 
framework, termed Myoelectric Representation Learning (MRL), and, to allow for comparisons, from (II) a standard pat-
tern recognition framework based on Linear Discriminant Analysis (LDA). The online performances of both interfaces 
were assessed with a Fitts’s law type test generating 5 quantitative performance metrics. The temporal stabilities of 
the interfaces were evaluated by conducting identical tests without recalibration 7 days after the initial experiment 
session.

Results: Metric-wise two-way repeated measures ANOVA with factors method (MRL vs LDA) and session (day 1 vs 
day 7) revealed a significant ( p < 0.05 ) advantage for MRL over LDA in 5 out of 5 performance metrics, with metric-
wise effect sizes (Cohen’s d ) separating MRL from LDA ranging from |d| = 0.62 to |d| = 1.13 . No significant effect on 
any metric was detected for neither session nor interaction between method and session, indicating that none of the 
methods deteriorated significantly in control efficacy during one week of intermission.

Conclusions: The results suggest that MRL is able to successfully generate stable mappings from EMG to kinematics, 
thereby enabling myoelectric control with real-time performance superior to that of the current commercial stand-
ard for pattern recognition (as represented by LDA). It is thus postulated that the presented MRL approach can be of 
practical utility for muscle-computer interfaces.

Keywords: Electromyography, Prosthetic control, Online performance, Regression, Deep learning, Representation 
learning, Regularization, Multitask learning
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[1]. Most salient within the category of clinical applica-
tions is perhaps the field of hand- and wrist prosthet-
ics, where myoelectrically controlled prostheses have 
been part of clinical routine since the 1960s [2]. In this 
application, electromyography (EMG) signals are pro-
cessed by an MCI and transformed into movement com-
mands intended to modulate the behaviour of a powered 
actuator, i.e. a robotic replacement limb. The proto-
typical system [3] designed to this end utilizes a sparse 
setup of surface EMG (sEMG) electrodes which meas-
ure the activities of a single antagonistic muscle pair 
located superficially in the residual limb of the ampu-
tee. The difference in some measure of intensity (e.g. 
signal magnitude) between the sEMG signals from the 
pair can thereafter be mapped directly to the force driv-
ing a single motorized degree of freedom (DoF) which 
is typically instantiated as the grasp aperture of a hand-
replacing gripper. Within this framework, the additional 
DoFs possessed by multifunctional prostheses (which 
have recently become more available to hand- and arm 
amputees [4]) must be controlled sequentially by use of 
auxiliary protocols, e.g. based on co-contraction [5] or 
non-EMG inputs [6], for DoF switching. The enduring 
preponderance of this direct control framework can be 
understood in light of the robustness brought about by 
the relative simplicity of the relevant hard- and software, 
as well as the ease with which the intensity of contraction 
of a single muscle group can be controlled volitionally. 
However, disadvantages such as limited dexterity, lack 
of intuitiveness, and an associated cognitive burden have 
been observed among users [7]; these are thought to be 
among the main reasons for the high abandonment rates 
by which devices controlled in this way are afflicted [8].

The divide that separates the direct control paradigm 
from advances seen in mechatronics has for a time 
spurred research into potential alternatives. A notewor-
thy candidate to this end is the use of myoelectric pattern 
recognition [9–11]—a class of methods which formu-
lates the control problem as one of supervised machine 
learning. Within this framework, example segments X 
of a multichannel sEMG time series (typically acquired 
from the forearm) or more information-dense features 
[12] of the same, are, together with encodings of co-
occurring movements y , fed to a machine learning algo-
rithm which generates a computable function fθ . This 
learned function represents an approximate mapping 
between sEMG and movement and is typically derived 
by selecting the free parameters θ such that fθ minimizes 
some loss metric 

∑
t L(yt , ŷt , θ) , where X t and yt are the 

sEMG segment and (a numeric encoding of ) the concur-
rent movement, respectively, at time t, and ŷt = fθ (X t) 
is (a numeric encoding of ) the inferred movement. Fol-
lowing such initial calibration, fθ can be used to process 

previously unseen segments by recognizing movement-
specific sEMG patterns; an MCI based on pattern rec-
ognition can thus be understood as a form of gesture 
recognition system.

The contemporary engineering research literature 
shows no signs of scarcity when surveyed for approaches 
based on pattern recognition aiming to accommodate 
the mechanical sophistication of available robotic limbs. 
Algorithms from the broader machine learning discipline 
such as linear discriminant analysis [13]; support vector 
machines [14]; hidden Markov models [15]; and deci-
sion trees/random forests [16] have, among several oth-
ers, been applied for this purpose; such methods have 
at times reached impressive classification accuracies of 
more than 95% for movement class sets with cardinali-
ties exceeding 10 [17]. As in most other technical pur-
suits in which statistical inference plays a part, Deep 
Learning [18] in the form of, for example, convolutional 
neural networks (e.g. [19–23]) and recurrent neural net-
works (e.g. [24, 25]), has recently found widespread use 
in myoelectric control research [26] and has frequently 
attained exceptional accuracy scores. Unlike their ‘classi-
cal’ machine learning counterparts, such methods avert 
the need for manual feature engineering via their ability 
to gainfully operate directly on raw sEMG, but are often 
hampered by a need for time-consuming hyperparameter 
tuning; large datasets; and/or requirement on computa-
tional resources infeasible for embedded systems [27].

Independent of the minutiae of any specific algorithm, 
the improvements over the industrial and clinical sta-
tus quo made possible by pattern recognition are quite 
apparent. Importantly, use of pattern recognition is con-
gruent with complete naturalness of control: The task of 
mapping a detected movement attempt to a movement 
command corresponding to the very same movement 
is trivial, thus enabling an intuitive form of steering. 
Similarly, multiarticulate control can be realized either 
implicitly, by detecting separate multiarticulate move-
ments and/or grasps as individual classes, or explicitly, 
by detecting each DoF separately using multi-output ver-
sions of pattern recognition [22, 28–30]. In spite of such 
alluring promises, the fact remains that remarkably few 
implementations of pattern recognition have so far been 
deployed at scale in the daily life of amputees [31].

Conjecturally, one of the main obstacles separating 
myoelectric pattern recognition from widespread adop-
tion within prosthetics relates to the phenomenon of 
drift in the data-generating distribution P(X |y) from 
which sEMG is sampled [32]. Stated succinctly, the sta-
tistical relationship connecting measured myoelectric 
activity X to movement y is not necessarily identical to 
the relationship which was valid at the time of calibration 
data acquisition, making the problem a specific instance 
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of model overfitting. Variations in electrode positions; 
skin conductivity; limb placement and load; and fatigue 
are all examples of mechanisms which modulate the 
characteristics of the acquired sEMG [32], making the 
learned mapping fθ (X) = ŷ obsolete and thus degrad-
ing MCI performance over time [33]. Drift of this kind 
has in the past been mitigated either by including calibra-
tion data from a varied set of recording circumstances 
(although this approach has limitations regarding scala-
bility [10]) or by using adaptive control strategies [34]. As 
will be argued in this paper, a complementary strategy is 
to develop methods which yield more generalizable map-
pings from sEMG to movement via regularization.

In addition to problems of robustness and stability of 
the aforementioned kind, one drawback of straightfor-
wardly applying pattern recognition relates to propor-
tionality of control. To make effective use of a prosthesis 
it is practical, and perhaps even necessary, to be able to 
not only transmit what movement to perform, but also to 
transmit information of the desired force and velocity—
a capability not granted by basic pattern recognition. A 
naïve solution is to reformulate the classification problem 
as one of direct regression (of kinetics and/or kinemat-
ics), as is certainly notionally consistent [35]. However, at 
some point this requires ground truth measurements of 
relevant regressands, which in principle are impossible 
to acquire from prosthesis users. One way to circumvent 
this anatomical limitation has been the use of mirrored 
training [36], where sEMG from the amputation stump, 
collected during mediolaterally mirrored movements, is 
used to infer the kinematics of the contralateral, intact 
limb. Regression has also been realized by using continu-
ous visual movement instruction stimuli as regressand 
[21], which requires the subject to manually vary the 
intensity of muscle contraction during acquisition of cali-
bration data. Regardless of method, proportional inter-
faces have been observed to lead to higher levels of user 
adaptation [37], potentially due to their greater resem-
blance to natural motor control.

An alternative way of extending myoelectric pattern 
recognition into the continuous domain, that does not 
require continuous target measurements, is to leverage 
the fact that aggregated sEMG activity can be modulated 
volitionally, and thusly estimate movement class and 
intensity of contraction separately. This approach, which 
has been applied both in previous laboratory studies (e.g. 
[38–40]) and commercially [41], use a classifier to deter-
mine what gesture is to be performed. Following classi-
fication, the detected gesture is performed with velocity 
directly proportional to either (I) the concurrently esti-
mated force of contraction (with e.g. instantaneous 
sEMG magnitude as proxy), or to (II) some monoto-
nously increasing function thereof. Such functions can be 

tuned automatically and independently for each detect-
able movement, thereby accounting for systematic dif-
ferences in intensity between movement classes [40]. 
Albeit uncomplicated and demonstrably effective, these 
strategies can be understood as problematic for a num-
ber of reasons. Firstly, there is no guarantee that the pat-
tern associations learned during model calibration will 
be generalizable to all intensities of contraction [10], 
and thus some sEMG patterns might inadvertently be 
classified as patterns cooccurring with other movement 
classes. Such mistakes can plausibly lead to an MCI out-
put perceived as erratic by the user. Secondly, propor-
tionality mediated in this way is not simultaneous over all 
available DoFs, as only a single dimension of proportional 
information (i.e. the globally estimated intensity of myoe-
lectric activity) is available.

In addition to developments in pattern recognition, 
studies of methods which are not directly based on 
regression or classification have demonstrated the poten-
tial of several alternative paths towards natural, simulta-
neous, and proportional myoelectric control. Multisite 
intramuscular EMG (iEMG), which can measure motor 
unit action potentials directly [42], has been investigated 
as a mechanism for direct control, and has furthermore 
been shown to possess functional advantages when com-
pared to proportional pattern recognition [43]. Weakly 
supervised autoencoding has shown promising results in 
unlabelled separation of underlying sEMG signal compo-
nents which can be mapped to kinematics directly [44]. 
Nonnegative matrix factorization has been used [45] to 
extract multiple simultaneous DoFs separately from rec-
tified and filtered sEMG while retaining their respective 
proportionalities. Techniques for deconvoluting high-
density sEMG based on models informed by neuromus-
cular physiology have successfully been applied towards 
the same end [46]. Although at the cutting edge of elec-
trophysiology, such approaches have, possibly due to 
advanced modes of signal acquisition, so far mostly been 
constrained to the laboratory environment.

In order to aid in the pursuit of practical MCIs and to 
alleviate the limitations of available methods, this paper 
introduces a new set of methods aimed at achieving intui-
tive, proportional, and simultaneous myoelectric control. 
Concretely, the framework is constituted by a computa-
tionally lightweight neural network topology with a com-
patible optimization procedure, all described in detail in 
the Methods section. In contrast to previous frameworks 
based on pattern recognition, the proposed combination 
of techniques operates to learn nonlinear mappings from 
forearm sEMG to continuous and multivariate encodings 
of hand- and wrist kinematics, despite only being cali-
brated with sEMG signals labelled with categorical move-
ment instruction stimuli. This affords the framework the 
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advantage of regression-based approaches (i.e. propor-
tionality) but requiring neither kinematic ground truth 
data nor complicated recording protocols. Additionally, 
by incorporating a multi-task learning formulation of 
the kinematic inference problem, the framework implic-
itly allows for independent and simultaneous control of 
all considered DoFs. Due to its reliance on signal repre-
sentations [47] arising from supervised learning with 
regularizing constraints, the novel framework is referred 
to as myoelectric representation learning (MRL). To 
demonstrate the viability of MRL and to quantify differ-
ences in performance compared to the current commer-
cial standard for pattern recognition, this paper includes 
experiments in which test subjects were tested for effi-
cacy of control when using (I) MRL, and (II) pattern rec-
ognition as represented by linear discriminant analysis 
(LDA) [40], to perform a virtual Fitts’s law [48] type test. 
Furthermore, to quantify temporal deterioration of myo-
control quality, the performances of both methods were 
reassessed after 7 days of intermission. Interestingly, dis-
tributed representations learned by the MRL model seem 
insensitive to small drifts in the data-generating distribu-
tion over time, leading to a stable interface across the two 
usage sessions.

Methods
Myoelectric representation learning
In accordance with existing pattern recognition frame-
works for myoelectric control via supervised learning, 
the proposed MRL system operates in two modes: cali-
bration and inference. During calibration, an adaptive 
model is trained to approximate a mapping from sEMG 
to concurrent movement intent. During inference, the 
calibrated model is used to regress kinematics from pre-
viously unseen sEMG samples in real-time. Just as is the 
case with many earlier myoelectric decoding systems, the 
MRL system comprises a preprocessing step followed 
by a multi-layered feedforward artificial neural network 
(ANN) model. To adapt the model to the task at hand, 
the system requires user-specific calibration data in the 
form of:

1 X cal =
[
xcal1 , · · · , xcalt , · · · , xcalT

]
 , where xcalt ∈ FI

b are 
raw sEMG voltages at time t, Fb is the set of all float-
ing-point numbers representable by b bits, I is the 
number of sEMG channels, and T  is the number of 
calibration samples.

2 Y cal =
[
ycal1 , · · · , ycalt , · · · , ycalT

]
 , where 

ycalt ∈ {−1, 0, 1}J is a ternary DoF-wise categorical 
encoding of the movement intent of the subject at 

time t , and J  is the number of DoFs which the system 
is intended to control.

Following calibration, the system can infer DoF-wise 
continuous output ŷ ∈ F

J
b , corresponding to concur-

rent kinematics, from any time slice x ∈ FI
b of a provided 

sEMG time series. During inference time, the system 
provides an output control signal with update rate identi-
cal to that with which the input sEMG is provided.

Two principal modifications distinguish the proper-
ties of the ANN models employed here from those of 
previous applications of Deep Learning for the purpose 
of decoding myoelectric signals. The first modification, 
to which the network topology itself is subject, can be 
viewed through the prism of hard parameter sharing as 
known from the literature on multitask learning [49]. 
This modification, which is elaborated upon in the sec-
tion titled ‘Neural Network Topology’, is the basis for the 
simultaneity of control enabled by calibrated models. 
The second modification, which involves the optimiza-
tion procedure and the appertaining loss function which 
selects the free parameters of any instantiation of the 
topology, can be viewed through the prism of contractive 
regularization, as known from the study of deep autoen-
coders [50]. This technique, which has been reformulated 
for the intended purpose and is presented in the section 
titled ‘Calibration’, allows for proportionality of control 
when deploying calibrated models.

Preprocessing
Prior to instantiation and optimization of the neural 
model, the raw I-channel sEMG signals X cal ∈ FI×T

b  of 
the calibration data set is subject to envelope extraction, 
rescaling, clipping, and nonlinear transformation: Ini-
tially, channel-wise signal envelopes are extracted from 
X cal by full-wave rectification and digital LTI lowpass fil-
tering with a gain-free causal FIR filter (moving average) 
with length W samples. The resulting (unbounded and 
nonnegative) envelopes Eu ∈ FI×T

b  are thereafter linearly 
rescaled elementwise via (1).

Here, p1%i  and p99%i  are the 1st and 99th percentile, 
respectively, of the recorded voltages of the i th sEMG 
channel envelope across all T  samples of Eu . The result-
ing rescaled signals Er ∈ FI×T

b  are subject to clipping and 
transformed by the element-wise square root operator as 
shown in (2).

(1)Er
i,l ←

Eu
i,l − p1%i

p99%i − p1%i

(2)Ecal
i,l ←

√
max(0,min(1,Er

i,l))
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These steps: (I) ensure that all elements of the obtained 
matrix Ecal =

[
ecal1 · · · ecalt · · · ecalT

]
∈ FI×T

b  (which are to 
be used as ANN inputs) are constrained to the interval 
[0,1]; (II) mitigate the influence of outlier samples in X cal ; 
and (III) provide implicit threshold values under which 
the envelopes are taken to equal zero. The square root 
operator is included to bias resolution towards high lev-
els of muscle contraction by smoothing variations in sig-
nal envelopes at values close to the observed maximum. 
Due to the lack of time shifts introduced in the process of 
generating Ecal from X cal , the columns (i.e. time points) 
of the ground truth movement intent matrix Y cal are syn-
chronous with those of Ecal.

When the MRL system operates in inference mode, 
acquired sEMG samples are processed in an identical 
manner by utilizing online filtering and rescaling with the 
calibration data statistics p1% =

[
p1%1 , · · · , p1%i , · · · , p1%I

]
 

and p99% =
[
p99%1 , · · · , p99%i , · · · , p99%I

]
 as per Eqs.  (1) 

and (2).

Neural network topology
A network topology of the kind described in this sec-
tion is depicted in Fig.  1. The ANN model takes as 

input an sEMG envelope time slice e = [e1 · · · ei · · · eI ]T , 
obtained as described above, and provides a numeric 
representation of inferred concurrent kinematics 
f (e) = ŷ ∈

[
ŷ1 · · · ŷj · · · ŷJ

]T as output. Although the 
ANN models of the current study are instantiated and 
calibrated end-to-end (as will be described in the next 
section), the mappings they represent can naturally be 
understood as processes constituted by two elements in 
succession: encoding followed by decoding. Initially, e is 
mapped to the input layer which in turn is fed through 
N  blocks, the sequence of which constitute the encoder 
network said to be performing the function H(·) . (The 
depth N  of the decoder network is a hyperparameter to 
be selected prior to network instantiation.) Internally, 
each such encoder block is constituted by a fully con-
nected layer [18] followed by a leaky rectifier linear unit 
(ReLU) activation layer [51], whose output in turn is sub-
ject to layer normalization [52] without learnable param-
eters. The numbers of output neurons of the first fully 
connected block of the encoder network is here set to 
equal 2K  , where K ≥ N  is a model hyperparameter. The 
number of output neurons for each consecutive encoder 
block is set to equal half of that of its predecessor, and the 
number of output neurons at the last encoder block thus 

Fig. 1 Schematic overview of the regression feedforward neural network topology central to the MRL framework. A time slice e of the signal 
envelopes of I -channel sEMG at time t  is fed through an encoder network, constituted by N fully connected blocks, which transforms e into 
an alternative representation, i.e. code, h . A set of J decoder networks, each constituted by a single hidden block, decode this representation to 
independently estimate the activations of J DoFs, interpreted collectively as the proportional and simultaneous output command ŷ  corresponding 
to the movement intent of the user at time t
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equals 2K−N+1 . This output of this last encoder block, 
referred to as the code H(e) = h ∈ FK−N+1

b  , is subse-
quently fed into a set of parallel decoder sub-networks, 
collectively said to be performing the function D(·) . 
These decoder sub-network, each associated with one 
of the J  decodable DoFs, are constituted by a single fully 
connected hidden block (again incorporating leaky ReLU 
activations and parameter-free layer normalization) of 
output size 2S ( S being a hyperparameter) and a termi-
nal fully connected layer with one output neuron with 
linear activation function. The resulting concatenation 
of values {ŷ1, . . . , ŷJ } , each of which is the output of one 
of the decoder networks, constitute the network output, 
i.e. f (e) = D(H(e)) = D(h) = ŷ =

[
ŷ1, · · · , ŷj , · · · , ŷJ

]T , 
where ŷj is to be interpreted as the inferred ‘intensity’ of 
movement intent for the j th kinematic output DoF.

In previous work aimed at achieving simultaneous (i.e. 
multi-DoF) myoelectric control via the use of regression 
ANNs, a distinction is sometimes made between the use 
of shared models and dedicated models [36, 45]. Shared 
models here refer to a type of network where each DoF to 
be inferred is represented as a single neuron in the out-
put layer. Dedicated models, in contrast, use one sepa-
rate network per DoF, each with a single output neuron. 
Within this framework, it has typically been found that 
dedicated models outperform shared models in tasks of 
multivariate kinematic regression [53]. The novel ANN 
topology used in the current study can be construed as a 
hybrid between these two extremes: The encoder H(·) is 
shared between the DoFs and the decoder D(·) is formed 
by dedicated branch networks.

Use of an initial shared network followed by multiple 
task-specific subnetworks, sometimes referred to as hard 
parameter sharing [49], has previously been studied in 
the context of multitask learning, where the simultane-
ous estimation of multiple related target variables often 
results in better performance for all estimations individu-
ally [54]. It is thus hypothesised that the alternative pre-
sented here is an improvement over the dedicated model 
approach: The encoder can learn to transform sEMG into 
a more useful signal representation h for the purpose of 
decoding all DoFs, while at the same time allowing for 
the advantages of using dedicated subnetworks to infer 
the activation strengths of all DoFs separately.

Calibration
The calibration of the MRL neural network topology pre-
viously presented, i.e. the tuning of model parameters 
(weights W  and biases b ) for a given user of the system, 
is specified by two components: (I) a differentiable loss 
metric L = L(Ecal ,Y cal , θ) , where θ = {W , b} is the com-
plete set of free model parameters, and (II) an iterative, 

gradient descent procedure for its minimization with 
respect to the parameter values constituting θ.

The loss metric L , which is to be minimized, is given 
below in (3) and is defined as a weighted sum of the two 
loss functions Li and Lc.

The value of αc ∈ Fb is a hyperparameter representing 
the relative weighting of the two sources of error. The 
first term Li in the definition above is referred to as the 
inference loss and is given in (4).

Here � · �1 denotes the L1 vector norm, i.e. 
�v�1 =

∑
i|vi| . This loss term, which is functionally 

identical to DoF-wise mean absolute error, quanti-
fies the discrepancy between ground truth movement 
intent ycalt  and the corresponding value ŷt = G(H(ecalt )) 
inferred by the ANN model, averaged across all cali-
bration example instances. Importantly, in contrast to 
the more commonly used mean square error of linear 
regression fame, Li penalizes DoF-wise distance from 
estimate to target linearly. When deployed in conjunc-
tion with the topology presented above, Li can addi-
tionally be understood as a form of regularization in 
and of itself: In order to achieve a low value of Li , the 
model needs to accurately infer the activation of all J  
DoFs simultaneously. As has been observed for multi-
task learning models in general [54], multiple related 
sub-tasks of this kind impose regularizing constraints 
onto each other, impacting which kinds of data repre-
sentations are likely to arise throughout the network 
and leading to a synergistic effect whereby the perfor-
mance on every sub-task (i.e. the estimation quality for 
every individual DoF) is expected to improve.

Albeit clearly a necessary condition for desirable 
model behaviour, a low value of Li is not a sufficient 
goal of the optimization procedure in the context of 
kinematic estimation. To realize this fact, one can con-
sider the case of a model which has learned to infer 
only categorical output (i.e. ŷ ∈ {−1, 0, 1}J  ) that per-
fectly matches the provided categorical targets in Y cal 
(e.g. the model in Fig.  2b). Furthermore, assume this 
model performs well only with input sEMG envelopes 
generated at intensities of muscle contraction identical 
to those employed during the collection of the calibra-
tion data Ecal . Such a model, although clearly deficient 
for the task at hand, would achieve very low values of 
Li . To generate calibrated models which in addition 
enable the previously stated goal of proportionality of 
control, as well as achieve adequate performance with 

(3)L = Li + αcLc

(4)Li

(
Ecal ,Y cal , θ

)
=

1

T

T∑

t

�ycalt − ŷt�1
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previously unobserved contraction intensities, the total 
loss function contains a second, regularizing term, 
referred to as the contractive loss, denoted by Lc , and 
defined in (5).

Lc here represents the squared gradient of every indi-
vidual output element ŷj with regard to every individual 
input element ei , computed at the value generated from 
the presented inputs (i.e. the columns of Ecal ) and aver-
aged across all such provided calibration examples. 
Stated equivalently, Lc is Frobenius norm of the Jaco-
bian matrix of the multivariate function performed by 
(the current parameter configuration of ) the network 
[18], averaged across all calibration example instances 
{ecalt , ycalt } , t ∈ [1,T ].

(5)Lc(E
cal , θ) =

1

TIJ

T∑

t

I∑

i

J∑

j

(
∂ ŷj

∂ei

∣∣∣∣
ei=Ecal

t ,i

)2

To understand the consequences of a minimized value 
of Lc , it is important to note that the mapping performed 
by any ANN model with fully differentiable activation 
functions (i.e. compatible with backpropagation) is, by 
definition, continuous in the mathematical sense [18]. 
However, without any constraints, such a model may still 
learn parameter values θ such that the gradient ∂ ŷj/∂ei of 
any element ŷj in the output with regard to any element 
ei in the input becomes arbitrarily large at any number of 
points in the space of possible inputs. To counteract this 
sometimes unwanted property by ‘incentivizing’ models 
to learn to associate limited deviations in input with only 
limited deviation in output, contractive loss of the same 
formulation as that of (5) has previously been applied as a 
form of regularization for the class of unsupervised neu-
ral network models known as contractive autoencoders 
[50].

The postulated relevance of Lc in the current problem 
formulation lies in the common assumption that mus-
cle kinetics, and by extension limb kinematics, correlate 

Fig. 2 The effect of contractive regularization on proportionality of control. The effect is illustrated by a simplified example with univariate regressor 
e = e and regressand y = y . a Plot of calibration data, simulating movement onset, constituted by the sEMG envelope ecalt  with I = 1 channel 
(upper blue) and the concurrent movement instruction ycalt  with J = 1 DoF (lower red). b Plot of the learned mapping ŷ = f1(e, θ) performed by 
an MRL network calibrated by minimizing Li with respect to θ . This model approximates a categorical decision threshold and does not enable 
proportionality. c Plot of the learned mapping ŷ = f2(e, θ) performed by an MRL network calibrated by instead minimizing Li + αcLc with respect 
to θ . This model produces output which varies smoothly with latent muscle activity and thus enables proportionality
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(nonlinearly) with the concurrent signal envelope as 
extracted from sEMG collected at relevant recording sites 
[40]. Formulated in the MRL framework, this assumption 
can be stated differently: increases or decreases of the 
values constituting ŷ should only occur in conjunction 
with, and (approximately) monotonically with, increases 
and decreases, respectively, of the values constituting e . 
A network with this property will both give rise to pro-
portionality of control output and achieve a small value 
for Lc , thereby warranting the inclusion of this loss term 
here. A specific example illustrating how minimizing Lc 
induces proportionality can be viewed in Fig. 2.

With the total loss L established as above, its minimi-
zation with respect to θ is performed iteratively via error 
backpropagation and the AdamW algorithm [55] (requir-
ing hyperparameters η , β1 , β2 , and weight decay � ) for 
gradient descent in minibatches of size B (a hyperparam-
eter). The minibatch affiliation of each individual calibra-
tion example {ecalt , ycalt } is determined randomly at the 
start of every training epoch. All network weights W  are 
initialized randomly via Glorot initialization [56] and all 
biases b are initially set to 0.

Prior to being fed into the ANN model for loss evalua-
tion and parameter updating, the input sEMG envelope 
time slices of each minibatch is at every iteration cor-
rupted additively with isotropic white Gaussian noise of 
predefined variance σ 2 (a hyperparameter). This step, 
inspired by its analogue in denoising autoencoders [57], 
has a twofold purpose: Firstly, it acts as a form of data 
augmentation, whereby the model overfitting to spuri-
ous patterns in the calibration data is made more unlikely 
[18]. Secondly, an ANN model calibrated with such input 
data will learn to map elements close to each other in 
the space of possible inputs e to elements close to each 
other in the space of possible outputs y [57]. In conjunc-
tion with the minimization of the contractive loss Lc , 
this effect contributes to calibrated models which has the 
here desired property of proportionality.

Before the calibration process begins, a percentage 
P (a hyperparameter) of the available calibration data 
{Ecal ,Y cal} is sampled randomly, without replacement, 
to be held out and used as validation data {Eval ,Y val} . 
At the conclusion of every Adam update iteration, this 
validation data is used to compute a validation error 
Lv = L(Eval ,Y val , θ) of the model parameter configu-
ration θ at that iteration. The optimization process con-
tinues until Lv is greater than that obtained V  iterations 
previously (i.e. a form of early stopping) or until a total 
of M parameter update iterations have been performed, 
whichever comes first ( M and V  are hyperparameters). 
At this point, the model is considered calibrated and can 
be used for real-time inference of continuously encoded 
movement intent (i.e. kinematics).

Benchmark myoelectric pattern recognition framework
For the purpose of verifying the conjectured advan-
tages of using MRL for myoelectric control, a propor-
tional myocontrol pattern recognition method based on 
LDA is here chosen as the object of comparison due to 
its paradigmatic role in contemporary and commercially 
available prosthetic systems [41]. Implementation details 
and hyperparameter values are selected to be identical to 
those of Method 2 introduced by Scheme et  al. in [40], 
as this approach, like MRL, only requires sEMG col-
lected at a single level of muscle contraction for calibra-
tion. Furthermore, the selected method has been used 
in clinical settings for some time and thus represents a 
reliable application of pattern recognition for myoelec-
tric control. For brevity, the method for motion-normal-
ized proportional control denoted Method 2 in [40] will 
in its entirety henceforth be referred to simply as LDA. 
Importantly, LDA does not require any manual tuning of 
parameters (e.g. gains and thresholds), thus eliminating 
the risk that the experiment supervisor impacts the qual-
ity of the calibration results in the current study. A brief 
summary of this method is provided below.

In contrast to MRL, LDA does not operate on sEMG 
envelopes alone; instead, a sliding window is used to 
extract 4 time-domain features per channel from the 
raw sEMG signals: Mean Absolute Value (MAV), Zero 
Crossings, Slope Sign Changes, and Waveform Length, 
all introduced by Hudgins et  al. in [12]. As LDA is not 
inherently simultaneous over the available DoFs, each 
detectable movement combination is instead assigned a 
unique categorical value to be inferred in order to allow 
for multiarticulate control. For a problem formulation 
involving J independently controllable, bidirectional 
DoFs, LDA thus operates to map each processed feature 
time window to a member of the set of 3J possible move-
ment classes (each bidirectional and categorical DoF can 
independently assume 3 mutually exclusive states). LDA 
achieves proportionality by computing a proportionality 
scalar PCm , contingent on the index m ∈

[
0, 3J − 1

]
 of the 

currently inferred movement class, to each feature win-
dow. PCm is computed in parallel with the running clas-
sification process by use of the MAV feature as detailed 
in (6), (7), and (8).

(6)PCm =

(
1

Cm

I∑

i=1

Si,mMAVi

)2

(7)Cm =
I∑

i=1

Si,m
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MAVi is the MAV feature value of the i th sEMG chan-
nel of the processed window,MAVcal

i,m,k is the MAV fea-
ture value of the i th sEMG channel of the k th feature 
window of the m th movement of the calibration data, 
and Km is the total number of calibration data feature 
windows for movement m . As before, I is the number of 
sEMG channels. The training of the classification algo-
rithm, together with the computation of the class centres 
C = [C1 · · ·Cm · · ·CM] and of the matrix S = {Si,m} , con-
stitute the entirety of the LDA calibration which is per-
formed on a subject-wise basis.

Experiments
Subjects
20 able-bodied subjects (age range 24–58 years, median 
age 32 years, 13 male, 7 female, 18 right-handed, 2 left-
handed) without history of known neuromuscular or 
musculoskeletal disorders participated in the current 
study. The study was approved by the Regional Ethics 

(8)Si,m =
1

Km

Km∑

k=1

MAVcal
i,m,k

Review Board in Lund, Sweden and was conducted in 
accordance with the tenets of the Declaration of Helsinki. 
All subjects were informed about the contents of the 
experiments, both verbally and in writing, and gave their 
informed and written consent.

Each subject participated in two separate experiment 
sessions: the first session, hereinafter referred to as day 
1, consisted of both calibration data acquisition, model 
calibration, and evaluation of the two methods (MRL and 
LDA) for myoelectric control. This first session lasted for 
a total duration of 1 h or less, with some variations across 
subjects. The second session, carried out one week later 
and hereinafter referred to as day 7, entailed evaluation 
of both methods without any recalibration (in order to 
quantify interface stability) and thus lasted for a shorter 
duration (approximately 30  min). None of the subjects 
had prior experience with the studied myoelectric con-
trol methods.

Calibration data acquisition
A Myo armband (Thalmic Labs, Canada), composed 
of 8 circularly arranged dry surface electrodes of size 
100  mm2, was used to acquire sEMG time series from 

Fig. 3 The acquisition setup. Photographs depict a the Myo armband used for recording sEMG signals and b the placement of the Myo armband 
on the arm of a subject
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subjects (see Fig. 3a). Prior to A/D conversion, EMG volt-
age signals were filtered using a built-in analogue band-
pass filter with passband 5–100  Hz and a 50  Hz notch 
filter. Digital signals were sampled with 8-bit precision at 
a rate of Fs = 200 Hz and transferred at that same rate to 
a host desktop computer (on which all signal processing 
was performed) wirelessly via Bluetooth. The Myo arm-
band was placed enclosing the dominant forearm of the 
subject at a level approximately 1/3 of the distance from 
the elbow joint to the wrist joint (see Fig. 3b). A photo-
graph depicting the armband position and orientation 
was taken on day 1 in order to provide guidance for the 
redonning on day 7. The process of donning the armband 
could always be completed in a time of at most one min-
ute. Following the placement of the armband, the subject 
was seated comfortably at approximately 1 m distance 
from a computer screen with the elbow resting on a table 
placed in front of the subject. The subjects could freely 
vary the position and angle of the elbow joint during all 
parts of the experiment.

The current study concerned the independent control 
of 2 separate DoFs: flexion and extension of the wrist 
(communicated to subjects as ‘wrist right’ and ‘wrist left’, 
contingent on the handedness of the subject), and flexion 
and extension of all digits simultaneously (communicated 
to subjects as ‘hand close’ and ‘hand open’, respectively). 
A ternary movement encoding approach was employed 
in the current study, resulting in 32 = 9 possible com-
pound movements (listed in Table 1).

Prior to calibration data acquisitions, sEMG was 
recorded while the subject performed all movements, 
excluding rest, with maximum voluntary contraction 
for 5  s. This step served to familiarize the subject with 
the movement combinations under consideration and 

was used to compute a maximum voluntary contraction 
(MVC) signal magnitude value specific to each move-
ment by summing the MAV over all 8 sEMG channels.

Calibration data was recorded via an automated acqui-
sition program which prompted the subject to perform 
all nonrest movements for 3 repetitions, each lasting for 
a duration of 5 s and separated by 3 s of rest. To aid the 
subject in applying a sustainable and consistent level of 
contraction across movements, the MAV of the EMG 
signal, extracted via a sliding window of length 0.5 s and 
summed over all channels, was mapped to the height of a 
bar shown in real-time on the computer screen together 
with a threshold set to equal 50% of the movement-spe-
cific MVC magnitude computed earlier; subjects were 
instructed to keep the height of the bar as close to the 
threshold as possible. Once the program was concluded, 
recorded sEMG was saved together with synchronized 
movement instruction stimuli signals. An example of 
such calibration data from a single subject is shown in 
Fig. 4.

Calibration of models
The MRL model and the LDA model described previously 
were both automatically calibrated immediately following 
the conclusion of the data acquisition phase. The meth-
ods were executed with Python 3.6, using the SKLearn 
library [58] to implement the LDA model and the Ten-
sorFlow [59] library to implement the MRL model. No 
part of the calibration of either method required any 
manual intervention by the experiment supervisor.

The hyperparameter of the MRL framework had been 
selected empirically based on data from pilot work with 
subjects who were not participating in the current study 
and were not subject to change for the duration of the 
experiments; exact numerical values are presented in 
Table 2. Analysis of the ANN topology resulting from this 
configuration using the computational cost estimation 
heuristics from [27] revealed an approximate inference-
mode time complexity of 5.5 MFLOPS (at 200 forward 
passes per second, i.e. synchronously with sEMG sam-
pling) and a memory footprint of 59.5 kB (excluding the 
computational cost of preprocessing); these are require-
ments compatible with contemporary embedded systems. 
Furthermore, the use of a preprocessing filter length of 
W = 0.5 s (100 samples at Fs = 200 Hz) corresponds to 
a group delay (i.e. lag) of (100− 1)/(2Fs) = 0.2475 s for a 
FIR filter [60]—less than the typically desired maximum 
delay of 300 ms in myocontrol applications [61].

Calibration of the MRL model was performed accord-
ing to the procedures outlined previously in the section 
titled ‘Calibration’. The average (across subjects) wall time 
required to calibrate a single MRL model with data col-
lected from a single subject on the desktop computer 

Table 1 The calibration movements for  right-handed 
subjects, all recorded on day 1

Movement class Description Ternary 
movement 
encoding

m = 0 Rest y = [0, 0]
m = 1 Wrist flexion y = [−1, 0]
m = 2 Wrist extension y = [1, 0]
m = 3 Flexion of the digits y = [0,−1]
m = 4 Extension of the digits y = [0, 1]
m = 5 Wrist flexion and Flexion of the digits y = [−1,−1]
m = 6 Wrist flexion and extension of the 

digits
y = [−1, 1]

m = 7 Wrist extension and flexion of the 
digits

y = [1,−1]

m = 8 Wrist extension and extension of the 
digits

y = [1, 1]
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(equipped with a Nvidia Titan V GPU) was measured as 
97.96  s (SD 0.43  s). An illustration of the mapping per-
formed by a calibrated MRL model is presented in Fig. 5.

LDA was calibrated as per the specifications of the pre-
viously summarized original study [40], with hyperpa-
rameter values as those of the same study, using a feature 
window of duration 160 ms (32 samples) and inter-win-
dow time increments of 15  ms (3 samples). The feature 
window was moved across the entirety of each collected 
EMG without regard to when individual movement rep-
etitions started and ended. All 8 · 4 = 32 features were 
individually renormalized to have zero mean and unit 
variance across all calibration data feature window loca-
tions. During real-time inference, features were similarly 
rescaled with the calibration set means and variances 
prior to being processed by the classifier. The ground 
truth movement class m of each calibration data fea-
ture window was determined via a majority vote over its 
constituent time samples, thereby resolving ambiguities 
regarding the class affiliation of feature windows contain-
ing a shift in contraction level. The average (across sub-
jects) wall time required to calibrate the LDA model to a 
single subject was measured as 1.31 s (SD 0.09 s).

Fig. 4 Calibration signals acquired from a representative, right-handed subject. The calibration data is constituted by raw sEMG ( X cal ) and trinary 
( −1 , 0 , or 1 ) DoF- and sample-wise encodings of concurrent movement instruction stimuli ( Y cal ). a Wrist flexion. b Wrist extension. c Flexion of the 
digits. d Extension of the digits e Wrist flexion and flexion of the digits. f Wrist flexion and extension of the digits. g Wrist extension and flexion of the 
digits. h Wrist extension and extension of the digits

Table 2 The hyperparameters of  the  MRL framework 
and their respective values selected for the current study

Hyperparameter Symbol Value

Floating point precision b 32 bits

Number of sEMG channels I 8

Number of decodable DoFs J 2

Envelope extraction filter length W 0.5 s

Size of first encoder layer 2
K 128

Encoder network depth N 5

Code size 2
K−N+1 8

Decoders hidden layer size 2
S 32

Contractive loss weigh αc 10
−2

Adam hyperparameters η 10
−4

β1 0.9

β2 0.999

Corruptive noise variance σ 2
10

−1

Weight decay � 10
−6

Minibatch size B 2
12

Validation set percentage P 10%

Validation lookback V 300

Maximum number of iterations M 5000
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Although previous studies (e.g. [33]) have made use 
of the same combination of feature set and acquisitions 
setup as the LDA benchmark framework of the current 
study, concerns can be raised over the appropriateness 
of the selected time-domain features due to the relatively 
limited sampling rate of the system (200  Hz). This, in 
turn, could potentially make comparisons between MRL 
and LDA unbalanced, as the former utilizes high fre-
quency information to a lesser degree than the latter. To 
verify the absence of any such adverse effects on the LDA 
classifier originating from insufficient signal bandwidth, 
10% of calibration examples (selected randomly) were 
for each subject withheld during calibration and used 
to compute a validation accuracy. The average (across 
subjects) validation accuracy obtained in this way was 
92.71% (SD 4.05%). This level of performance is in line 
with what is expected in light of previous studies with 
comparable number of detectable movement classes [10], 
indicating that the acquisition setup provided sufficient 
information for the selected feature set and classifier.

Evaluation
Common offline measures of inferential performance 
(e.g. classification accuracy) have often been found to 
exhibit only limited correlation with the quality of myoe-
lectric control as estimated by functional tests [10]. 
Efficacy of control was for this reason here instead evalu-
ated using a type of real-time test originally introduced 
by Williams and Kirsch in [62] and based on Fitts’s law 
[48]. The test makes use of a human test subject to lever-
age the myoelectric control method under investigation 
to steer a cursor towards a set of circular targets pre-
sented to the subject on a computer screen. The subject 
and the control method are thereafter evaluated in uni-
son via the calculation of a set of performance metrics; 
each metric aggregated over multiple subjects is assumed 
to constitute an informative measure of control method 
quality. This particular approach to the evaluation of 
man–machine control interfaces has been validated for 
use with control based on forearm myoelectricity multi-
ple times (e.g. [38, 44]).

In the current study, the performance of each subjects 
with both myoelectric control methods were evaluated 
in sequence. To eliminate confounding effects on meas-
ured performance originating from user adaptation, 10 
subjects were randomly selected to be evaluated using 
MRL first and then using LDA, whereas the remain-
ing 10 subjects were selected to be evaluated using LDA 
first and then using MRL. All subjects were blind to the 
order in which the methods were presented to them. On 
day 1, the evaluation phase was undertaken directly fol-
lowing data acquisition and model calibration, with the 
Myo armband unmoved. On day 7, the evaluation phase 
followed directly after the initial redonning of the Myo 
armband. Evaluative tests were otherwise conducted 
identically on day 1 and on day 7.

The control interface
For both LDA and MRL, detection of wrist flexion and 
wrist extension corresponded to cursor translations left 
and right, respectively, whereas detection of flexion of the 
digits and extension of the digits corresponded to cur-
sor translations down and up, respectively (as shown in 
Fig. 6). For LDA, the direction of cursor translation was 
determined according to the detected movement class, 
with 1-DoF movements leading to cursor translation par-
allel to the screen coordinate axes and 2-DoF movements 
leading to cursor translations parallel to the axes’ diago-
nals. Cursor speed was scaled linearly such that PCm = 0 
(as defined in (6)) resulted in a speed of 0 pixels per sec-
ond and PCm = 1 resulted in a speed of 540 pixels per 
second. Detection of the rest class resulted in a cursor 
speed of 0 pixels per second. For MRL, the velocities of 
the cursor in the x - and y directions were separately set 

Fig. 5 Example of MRL calibration results from a single subject. 
Each point represents the output ŷ =

[
ŷ1, ŷ2

]T  of the calibrated MRL 
model when fed an 8-channel sEMG sample from the calibration 
data, coloured according to the movement instruction stimuli with 
which it cooccurred. Each ‘trail’ connecting the origin to a cluster 
represents the onset and conclusion of a movement repetition
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to equal the first and second element of the ANN-esti-
mated kinematics ŷ , respectively. The cursor speed was 
scaled linearly such that �ŷ�2 = 0 resulted in a speed of 0 
pixels per second and �ŷ�2 = 1 resulted in a speed of 540 
pixels per second. Although MRL in principle allows for 
position control, whereby ŷ are mapped directly to the x - 
and y-coordinates of the cursor, the decision was made 
to consistently use this type of velocity control in order 
to be able to fairly compare results with those obtained 
with LDA.

Acclimation
Prior to evaluation, subjects underwent a brief acclima-
tion exercise to become familiarized with the control 
interface. This preparatory step was intended to mitigate 
the impact of user adaptation during subsequent tests. 
The exercise consisted of steering the cursor towards 8 
targets presented to the subject one at a time; 4 targets 
were placed along the x - and y axes with peripheries 
touching the screen edge, and 4 targets were placed simi-
larly at the ends of the coordinate axes’ diagonals. Once 
each target had been reached 5 times the exercise was 
considered complete. The acclimation exercise, which 
lasted for 3–5 min, was performed prior to the Fitts’s law 
test on day 1 and day 7 for both MRL and LDA.

The performance test
Every combination of 20 possible center coordi-
nates (5 per coordinate system quadrant) and 2 pos-
sible radii were selected as targets for the Fitts’s law 
test, resulting in 20 · 2 = 40 unique targets (all shown 

in Fig.  7). The possible radii were selected as 60 pixels 
and ⌈

√
2 · 60⌉ = 85 pixels on a monitor with resolution 

1920× 1080 pixels, corresponding to circular targets 
covering 0.6% and 1.2% of the total screen area visible to 
the subject, respectively.

In an order established randomly for each subject, tar-
gets were one by one plotted on the screen; the cursor 
was at this time held stationary at the origin. After 3  s 
(selected to minimize the impact of reaction time and 
planning), a vibration cue was given to the user through 
the Myo armband, and the subject was granted control 
of the cursor. The instruction of the subject was at this 
time to move the cursor to the presented target as rap-
idly as possible. As in previous studies [38, 44], the target 
was considered successfully reached once the cursor had 
resided within its boundary for a dwell time of 0.3  s. If 
20 s passed without the subject successfully reaching the 
target, the task was reported as failed. Following success 
or failure, the target was removed from the screen, the 
cursor recentred, and the subject prompted to rest for 
5  s, after which a new target was presented. The proce-
dure was repeated until all 40 targets-reaching tasks had 
been attempted exactly once by the subject.

When all targets had either been successfully reached 
or failed, a set of 5 performance metrics, named com-
pletion rate ( CR ), completion time ( CT ), path efficiency 
( PE ), overshoot ( O ), and throughput ( T ), was calcu-
lated from the cursor trajectories traversed during the 
test. These metrics, defined in [62] and summarized in 
Table 3, characterize separate aspects of the performance 
of the test subject and control method across all targets. 

Fig. 6 Decodable DoFs and corresponding cursor translations in the test environment for a right-handed subject. Gestures incorporating 
combinations of the DoFs allowed for cursor translations in intermediate directions
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To calculate T  , the target-specific index of difficulty ( ID ) 
was defined as in [62] for each of the 40 targets.

D is the Euclidean (straight-line) distance from the ori-
gin to the target and W is the diameter of the target. Each 
of the 40 targets were thus assigned an ID out of 3 · 2 = 6 
possible values (from the 3 values of D and the 2 values 
of W  visible in Fig. 7) ranging from 1.17 bits to 2.38 bits.

The gold standard
Once both myoelectric control methods had been evalu-
ated on day 1, each subject was instructed to complete 
the aforementioned performance test using a regular 
computer mouse. As the computer mouse did not allow 
for vibration stimuli, task onset was instead accompanied 
by a visual trigger presented on the screen. Just as for 
myocontrol evaluation, targets were considered reached 

(9)ID = log2

(
D

W
+ 1

)

after a dwell time of 0.3 s (i.e. no clicking was required) 
and considered failed after 20 s. This step was undertaken 
once per test subject and was not repeated on day 7. The 
same set of 5 performance metrics was calculated from 
the obtained trajectories with the purpose of contrasting 
myocontrol efficacy with that of the arguably best avail-
able tool of contemporary man–machine interfacing 
– the performance achieved with a computer mouse dur-
ing this step is for this reason denoted the gold standard 
(GS).

Statistics
The analysis described in this section was performed 
using SPSS Statistics version 27.0. Linear regression 
models with ID as independent variable and target-wise 
completion time as dependent variable was fitted for 
MRL and LDA independently using all targets from all 
session and subjects. As in previous studies [38, 44], a 
high value of R2 was seen as indicative of the validity of 
the Fitts’s law test.

Fig. 7 The Fitts’s law test. a The 40 combinations of target positions and radii selected for the current study. No target was placed on any of the 
coordinate axes, thus requiring the subject to activate both DoFs, either sequentially or simultaneously, for successful task completion. b Screen 
capture of the view of a subject while steering the cursor towards one of the targets presented during the test. The red ‘tail’ tracking the cursor 
represents the positions occupied during the preceding 0.3 s (60 samples at the 200 Hz sampling rate). A target was considered reached after a 
dwell time of 0.3 s, i.e. when the entirety of the tail was situated within the target periphery

Table 3 The real-time myocontrol performance metrics calculated for each subject and control method

Metric Abbreviation Summary

Completion rate [%] CR The proportion of targets which are successfully reached

Completion time [s] CT The total time from the start of the task to the target being reached, averaged across all targets (excluding failed 
attempts)

Path Efficiency [%] PE The ratio between the length of the optimal (straight line) path from the origin to the target and the distance 
traversed by the cursor, averaged across all targets

Overshoot O Total number of occurrences during the test wherein the cursor leaves the target prior to dwell time elapsion, 
divided by the total number of targets

Throughput [bits/s] T The ratio between the (target-wise) index of difficulty and the (target-wise) completion time averaged across all 
successfully reached targets
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Full factorial two-way repeated measures multivariate 
analysis of variance (MANOVA), with independent varia-
bles method (with two levels: LDA and MRL) and session 
(with two levels: day 1 and day 7) and all 5 performance 
metrics as dependent variables, was used to simultane-
ously assess the impact of control approach and time 
since calibration on aggregated control efficacy. p-values 
of less than 0.05 after Bonferroni correction for 3 esti-
mated terms (method, session, and method*session) were 
considered significant. Due to the statistical significance 
of results obtained via MANOVA (see the Results sec-
tion), this step was followed by post-hoc metric-wise uni-
variate analysis of variance (ANOVA) in order to assess 
the impact of the independent variables on each metric 
separately. As with MANOVA, two-way full factorial 
repeated measure designs with a p < 0.05 significance 
level (subject to Bonferroni correction for multiple com-
parisons [63]) were employed for this step. In addition to 
the p-values obtained via MANOVA and ANOVA, the 
Cohen’s d effect size [64] separating MRL from LDA was 
computed for each metric using the full concatenation of 
results obtained on day 1 and on day 7.

Results
For MRL, a strong linear relationship (coefficient of 
determination R2 = 0.97 with p = 0.0010 ) was observed 
between ID and CT. The corresponding value for LDA 

Table 4 Means and  standard deviations of  performance 
metrics obtained on day 1

Metric Method

LDA MRL GS

CR[%] 97.00 ± 4.78 99.38 ± 1.34 100.0 ± 0.0

CT [s] 5.23 ± 1.67 3.73 ± 1.51 1.23 ± 0.16

PE[%] 41.42 ± 8.58 49.20 ± 10.91 82.17 ± 1.96

O 0.60 ± 0.32 0.36 ± 0.24 0.00 ± 0.00

T [bits/s] 0.51 ± 0.12 0.69 ± 0.22 1.62 ± 0.20

Table 5 Means and  standard deviations of  performance 
metrics obtained on day 7

Metric Method

LDA MRL

CR[%] 97.38 ± 5.27 99.63 ± 1.19

CT [s] 5.38 ± 1.79 3.45 ± 1.29

PE[%] 38.75 ± 9.15 50.73 ± 9.13

O 0.59 ± 0.26 0.42 ± 0.25

T [bits / s] 0.49 ± 0.13 0.71 ± 0.20

Fig. 8 Graphical summary of myocontrol performance metrics. Metrics of motion-normalized proportional linear discriminant analysis (LDA) and 
the proposed myoelectric representation learning (MRL) method were obtained from evaluations conducted immediately following calibration 
(day 1) and after one week of intermission (day 7). Performances achieved by test subjects using the gold standard (GS), i.e. a computer mouse, are 
included for reference. Markers and error bars represent arithmetic means and standard deviations, respectively, across all 20 test subjects
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was computed as R2 = 0.89 with p = 0.0019 , lend-
ing credence to a view of a Fitts’s law test as suitable for 
method evaluation and by extension the appropriateness 
of throughput T  as a measure of overall performance.

Summary statistics of performance metrics obtained 
with all methods during day 1 and during day 7 are pre-
sented in Table 4 and in Table 5, respectively; the same 
data are summarized graphically in Fig.  8. MANOVA 
detected a significant effect of method ( p = 0.012 ) on the 
full set of 5 performance metrics. No significant effect 
of neither session ( p = 1.00 ) nor the interaction term 
method*session ( p = 0.070 ) was detected.

For CR , ANOVA detected a significant effect of method 
( p = 0.044 ) and non-significant effects of session 
( p = 1.00 ) and method*session ( p = 1.00 ). The effect 
size separating the mean value of CR across both sessions 
for MRL (99.50%) from that of LDA (97.19%) was com-
puted as d = 0.62.

For  CT  , ANOVA detected a significant effect of 
method ( p = 0.000042 ) and non-significant effects of 
session ( p = 1.00 ) and method*session ( p = 0.62 ). The 
effect size separating the mean value of CT  across both 
sessions for MRL (3.59 s) from that of LDA (5.31 s) was 
computed as d = −1.07.

For PE , ANOVA detected a significant effect of method 
( p = 0.00030 ) and non-significant effects of session 
( p = 1.00 ) and method*session ( p = 0.27 ). The effect 
size separating the mean value of PE across both sessions 
for MRL (49.96%) from that of LDA (40.09%) was com-
puted as d = 1.02.

For O , ANOVA detected a significant effect of method 
( p = 0.016 ) and non-significant effects of session 
( p = 1.00 ) and method*session ( p = 1.00 ). The effect 
size separating the mean value of O across both sessions 
for MRL (0.39) from that of LDA (0.60) was computed as 
d = −0.74.

For T  , ANOVA detected a significant effect of method 
( p = 0.00033 ) and non-significant effects of session 
( p = 1.00 ) and method*session ( p = 0.97 ). The effect 
size separating the mean value of T  across both sessions 
for MRL (0.69 bits/s) from that of LDA (0.50 bits/s) was 
computed as d = 1.13.

Discussion
The main aim of the current study was to empirically 
evaluate the hypothesized advantages of using the pro-
posed MRL framework for myoelectric control. For all 
considered performance metrics, a significant advantage 
was detected for MRL over LDA. For the T  metric, which 
characterize overall efficacy of control in terms of trans-
mitted information, the effect size separating MRL from 
the benchmark LDA method was computed as d = 1.13 , 
showing that subjects achieved slightly more than one 

standard deviation higher performance with MRL than 
with LDA. For metrics characterizing more specific 
aspects of myoelectric control quality, the results show 
that the performance of MRL surpassed that of LDA, 
although sometimes to a lesser (but still consistently sig-
nificant) degree. Anecdotally, all but 2 subjects indepen-
dently expressed preference for MRL over LDA while still 
blind to the experimental condition, some noting that 
control with the latter sometimes resulted in unpredict-
able cursor movements, whereas the former allowed for 
‘smoother’ steering and was conducive to ‘course-cor-
rections’ if the cursor did not follow the initially planned 
trajectory.

Contrary to what was expected in light of some previ-
ous findings [33], the current study failed to detect any 
statistically significant deterioration in performance 
over time for either control method (neither MANOVA 
nor ANOVA detected any significant effect of session 
or method*session on any metric). A potential expla-
nation for this discrepancy lies in the properties of the 
EMG recording setup used in the current study: as the 
electrodes had relatively large pickup area compared to 
what is typical, the signals they acquired could plausibly 
be resistant to small variations in electrode positioning 
over time [65]. Although it is also consistent with previ-
ous findings [66–68] to assume that subjects underwent 
continuous motor learning, which potentially obscures 
the effects of drift in EMG distribution, the results are 
nevertheless encouraging in that they indicate that MRL 
does not require frequent recalibration in order to retain 
its advantages over the LDA approach.

In addition to validating the MRL framework, the find-
ings presented in the current study support a favourable 
view of myoelectric control based on regression of kin-
ematics (i.e. proportional estimation of multiple DoFs 
simultaneously) more generally. As was experienced by 
the subjects of the current study, incorrect estimations 
can have a substantial effect on the perceived quality of 
control when the space of possible movements is quan-
tized, as is the case with LDA. Conversely, errors on the 
part of the continuous MRL algorithm were perceived 
as easier to counteract, allegedly due to the less ‘jittery’ 
nature of the resulting interface. Compared to many 
conventional methods with this advantage, the type of 
regression proposed in the current study requires neither 
continuous target values nor mirrored training, allowing 
for straightforward use by both unilateral and bilateral 
amputees.

In a manner similar to the current study, one previous 
approach has applied regression models calibrated with 
entirely categorical target values for the task of myoe-
lectric control of hand prostheses (see e.g. [69]). This 
earlier approach, termed on–off goal-directed training 
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[70], applies ridge regression to estimate a linear map-
ping from EMG features to concurrent multi-label visual 
movement instruction stimulus. Once calibrated, the 
linear regression model use EMG to infer continuous 
force-patterns exerted by the digits in real-time. Notably, 
due to its assumptions, this method requires an approxi-
mately linear relationship between the selected EMG 
features and activation intensity to hold true for all steer-
able output DoFs in order to function effectively. This is 
not the case for the MRL framework introduced in the 
current study: a large class of possible nonlinear rela-
tionships between EMG and kinematics can be learned 
by the proposed ANN model during calibration. Con-
sequently, the nonlinearity of the relationship between 
EMG and kinematics need not be fully captured by the 
selection of EMG features (i.e. the signal envelope in the 
current study) used as input to the MRL network model.

A salient limitation of the MRL framework as pre-
sented here relates to scalability with regard to the 
number of decodable DoFs. The current study was suc-
cessful in extracting kinematics concerning two DoFs, 
but required calibration data of every possible move-
ment combination, resulting in the recording of 32 = 9 
movements. As the number of performable movement 
combinations 3J grows geometrically with the number of 
independent DoFs J  , larger numbers of DoFs quickly lead 
to infeasible calibration data acquisition durations. This 
drawback is not unique to MRL but is, to the best of our 
knowledge, shared by all contemporary pattern recogni-
tion frameworks aimed at multiarticulate control. Future 
work could potentially focus on solving this problem 
by formulating generative sEMG models to artificially 
provide compound movement calibration data using 
subject-specific signals acquired exclusively from 1-DoF 
movements.

One avenue of algorithmic improvement for MRL 
concerns the preprocessing of sEMG signals. In the cur-
rent study, the choice was made to let the ANN model 
operate on sEMG envelopes; this was motivated by the 
observed monotonic relationship between kinematics 
and sEMG magnitude, which is a necessary property to 
allow for the application of proportionality-inducing 
contractive regularization. However, a body of previous 
work (cf. [11]) has been unanimous in establishing that 
higher frequency content of sEMG signals reflects factors 
of the movement-dependent generative process, mak-
ing information encoded at such frequencies discrimi-
native for the purpose of movement decoding. With the 
MRL approach introduced and used in the current study, 
most high frequency information is discarded (due to 
envelope extraction) and cannot impact the estimation 
of kinematics. A question which could warrant further 
investigation is whether MRL can be extended to include 

more sophisticated sEMG signal features (handcrafted or 
learned) while at the same time guaranteeing proportion-
ality by keeping the regression output constrained by the 
magnitude of the sEMG envelope.

Conclusions
This paper has introduced an algorithm (MRL), based 
on regularized multitask learning, for the purpose of 
extracting proportionally encoded hand- and wrist 
movement intent pertaining to multiple DoFs from 
the forearm sEMG. To investigate the suitability of the 
proposed framework for use with muscle-computer 
interfaces, it was evaluated on able-bodied subjects 
with a Fitts’s law type test and compared to a standard 
approach, based on LDA, for myocontrol. MRL was 
found to be superior to LDA in the sense of significantly 
outperforming the latter in all considered metrics of 
real-time efficacy of control. Furthermore, neither MRL 
nor LDA could be demonstrated to undergo significant 
deterioration in any performance metric over a time of 
7  days. Although these findings are promising, future 
work will have to examine performance over a longer 
time period in order to ascertain long-term stability.

In addition to its advantages related to efficacy of 
control, the proposed MRL system is computationally 
lightweight and can operate in real-time with relatively 
restricted hardware resources. Future work could thus 
focus on implementing this approach in the context of 
wearable computing platforms without expectations 
of reduced quality of control. Such endeavours should 
ideally study control of physically instantiated robotic 
limbs and involve forearm amputees.
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a database of high-density surface 
electromyogram signals comprising 
65 isometric hand gestures
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Control of contemporary, multi-joint prosthetic hands is commonly realized by using electromyographic 
signals from the muscles remaining after amputation at the forearm level. although this principle is 
trying to imitate the natural control structure where muscles control the joints of the hand, in practice, 
myoelectric control provides only basic hand functions to an amputee using a dexterous prosthesis. this 
study aims to provide an annotated database of high-density surface electromyographic signals to aid 
the efforts of designing robust and versatile electromyographic control interfaces for prosthetic hands. 
The electromyographic signals were recorded using 128 channels within two electrode grids positioned 
on the forearms of 20 able-bodied volunteers. The participants performed 65 different hand gestures in 
an isometric manner. the hand movements were strictly timed using an automated recording protocol 
which also synchronously recorded the electromyographic signals and hand joint forces. to assess the 
quality of the recorded signals several quantitative assessments were performed, such as frequency 
content analysis, channel crosstalk, and the detection of poor skin-electrode contacts.

Background & Summary
The electromyographic signal (EMG) encodes information related to the recruitment patterns of motor neu-
rons innervating skeletal muscles close to the site of signal acquisition. A good understanding of the underlying 
electrophysiology is important for studying human biomechanics1 and for diagnosing neuromuscular disease2. 
Furthermore, the knowledge of the underlying neurophysiology behind motor control acquired non-invasively 
by surface EMG (sEMG) and high density surface EMG (HD-sEMG) has attracted increasing interest in the 
pursuit of novel human-computer interfaces3. Among salient uses for this application of the technique in the field 
of upper-limb prosthetics, where sufficiently accurate mappings from measured forearm myoelectricity to hand- 
and wrist kinematics could be used to deliver intuitive motor commands to a robotic replacement limb. At pres-
ent, commercially available myoelectric prostheses are most commonly controlled via direct, proportional control 
of a single degree of freedom (DoF)4. Advanced multifunctional prostheses5 are within this framework typically 
controlled sequentially by employing some protocol for switching between active DoFs6. Although simple, this 
type of interface is often perceived as slow and unintuitive by the user, requiring nontrivial cognitive efforts and 
leading to a high number of users abandoning their prosthesis7. Efforts to improve the ability to automatically 
decode forearm sEMG into natural movement commands, therefore, have the potential to be of considerable 
value for transradial (forearm) amputees.

Despite having been the subject of studies for several decades, the exact relationship connecting sEMG to 
limb kinematics remains in part elusive. Due to the apparent stochasticity, nonstationarity, and nonlinearity of 
sEMG with respect to muscle contractions8–10, many studies aimed at the extraction of motor intent have found 
success by refraining from modelling this relationship explicitly and instead resorting to a combination of man-
ual feature engineering and machine learning11. With this strategy, the information density of acquired sEMG 
signals is increased by compression into a set of numeric descriptors (i.e. features) via a sliding time window tech-
nique. Given that the selected features capture discriminative properties of the latent generative process, pattern 

1Department of Biomedical engineering, faculty of engineering, Lund University, Lund, Sweden. 2the BioRobotics 
institute, Scuola Superiore Sant’Anna, Pisa, italy. 3Department of excellence in Robotics and Ai, Scuola Superiore 
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Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden. ✉e-mail: nebojsa.malesevic@bme.lth.se; 
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recognition algorithms12–15 can thereafter be deployed to map such features to grasps and motions. More recently, 
the application of automated feature learning in the form of deep neural networks16–23 has enabled end-to-end 
mappings directly, from raw EMG to movement representations. Such methods are arguably uniquely appropri-
ate for processing HD-sEMG due to the signal’s structural resemblance to conventional image data. Both feature 
engineering and deep learning circumvent the complexity of explicitly modelling the underlying electrophysiol-
ogy, but at the cost of requiring labelled data sets containing (I) recorded EMG and (II) numeric representation 
of synchronous performed movements.

Multiple databases18,24–29 exist which contain collections of EMG or HD-sEMG together with synchronous 
movement stimuli and/or joint angle time series. The general importance of publicly available resources of this 
kind can be understood as twofold: firstly, it allows for the development of novel methods by other researchers 
without requiring time-consuming data collection. Secondly, it allows for inter-method collation, as the perfor-
mances of different methods are difficult to compare fairly if evaluated on data sets with differing characteristics.

The aim of this data set was to contribute to the development of better myoelectric decoding schemes by 
presenting a new HD-sEMG data set, distinguished by a different approach compared to previous contributions 
to the same end. 128 channels of sEMG data were recorded at the level of the forearm from 20 able-bodied and 
healthy participants with a recording protocol constituted by 65 unique movements. These 65 movements were 
furthermore interpreted as compounds of 16 basis movements that capture the major DoFs of the hand and wrist. 
It is our hope that this type of decomposition will allow for multi-label machine learning20 approaches to be lever-
aged and potentially lead to the development of more dextrous control interfaces. Furthermore, forces exerted at 
the level of the wrist and the digits were collected and are provided here to allow for regression-type approaches, 
which might offer new possibilities in the domain of proportional control for prosthetic hands.

Methods
Participants. Twenty able-bodied volunteers (14 men and 6 women) aged between 25 and 57 years (mean 
age 35 years) participated in the study. All participants were right-handed and neurologically intact. All partic-
ipants provided informed consent, and the study was approved by the Regional Ethical Review Board in Lund, 
Sweden (Dnr 2017-297).

High density sEMG recording. The EMG signals were recorded using a Quattrocento (OT Bioelettronica, 
Torino, Italia) biomedical amplifier system. The Quattrocento is able to acquire up to 400 channels sampled with 
16-bit resolution. In this study, the EMG recording chain comprised high density sEMG electrodes, preamplifiers 
with 5x gain located at the electrode connectors, amplifiers within the Quattrocento device, and the A/D convert-
ers. In total, including preamplifiers and amplifiers, the HD-sEMG signals were amplified 150 times. The EMG 
signals were sampled at 2048 Hz and a hardware high-pass filter at 10 Hz and a low-pass filter at 900 Hz were used 
during recordings.

The electrodes used in his study consisted of 64 contacts arranged in an 8 × 8 matrix, with an inter-electrode 
distance of 10 mm (ELSCH064NM3, OT Bioelettronica, Torino, Italy). To reduce common-mode noise in the 
EMG signal, the recording was performed in a differential manner. In this mode, consecutive channels were 
subtracted, where the enumeration of the electrode channels is shown in Fig. 1c. Due to the electrode orientation 
with respect to the underlying muscles, the differentiation of the EMG signals was done along the muscle fibers. 
As the result, ch1 signal was calculated as the difference between EMG signals at electrode contacts 2 and 1, ch2 
as the difference between signals at contacts 3 and 2, and so on. This methodology also implies that channels that 
are a multiple of 8 (ch8, ch16…) have different EMG signal pick-up area as contacts 8 and 9 (contacts 16 and 17, 
and so on) span along the whole length of the electrode. Additionally, the last channel of the electrode (ch64) is 
calculated as the difference between EMG signals at first contact of the next electrode (contact 1) and the last 
electrode contact (contact 64) of the current electrode.

Two HD-sEMG electrodes were positioned on the dorsal and the volar aspects of the forearm with the inten-
tion to cover, or partially cover, the main fingers flexors and extensors (flexor digitorum profundus – responsible 
for flexion of fingers D2-D5, extensor digitorum communis – responsible for extension of fingers D2-D5), wrist 
flexor/extensor (flexor carpi radialis, flexor carpi ulnaris – responsible for wrist flexion, extensor carpi radialis 
longus, extensor carpi ulnaris – responsible for wrist extension) and pronator/supinator (pronator teres, supina-
tor), and thumb flexor/extensor (flexor pollicis longus – responsible for thumb flexion, extensor pollicis longus 
– responsible for thumb extension) and thumb abduction (abductor pollicis longus). As the HD-sEMG electrodes 
can cover a relatively large area, the positioning of the electrodes was guided by physiological landmarks, such as 
distance from the elbow for the distal placement, and distance from the ulna for radial orientation. The electrodes 
were placed approximately 3 cm from elbow (elbow to closest electrode corner) and 2 cm from ulna (edge of the 
ulna to edge of the electrode). The positions of the electrodes are shown in Fig. 1. An electrode consists of a thin, 
flexible substrate layer on which a foamy single-use double-adhesive layer is applied. The foamy layer has holes 
punched at the locations of electrode contacts which were filled with a conductive gel. This structure permits 
a tight and comfortable fit on a forearm regardless of the circumference. In addition, to ensure firm electrode 
contact throughout a long measurement (lasting approximately 1 h) an elastic bandage was placed over both elec-
trodes. The reference electrode, which was in the form of a ribbon, was placed around the wrist.

The HD-sEMG signals were recorded with the OT Biolab program (OT Bioelettronica, Torino, Italia) that 
saves the uncompressed data in a proprietary file format.

isometric force recording. A custom-made force measurement device was used to obtain hand forces dur-
ing the recording protocol30. The device was designed in a manner that enables independent acquisition of finger 
and wrist isometric forces. The motivation for choosing an isometric setup was to simulate muscle behaviour in a 
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forearm amputee where the remaining muscles have a relatively small contraction amplitude. The hand position 
inside the force measurement device is shown in Fig. 1.

The device comprises nine strain gauges, four measuring D2-D5 flexion/extension forces, two measuring 
thumb flexion/extension and abduction/adduction, and three measuring wrist flexion/extension, pronation/supi-
nation, and radial/ulnar deviation. Force gauges and hand joints were interfaced through 3D printed finger braces 
which were specifically chosen for each participant. Using the braces, the fingers were placed in a neutral posi-
tion, approximately in the middle of the range of motion. During the recording protocol, the force measurement 
device was placed on the table with the participant sitting in front of it. The chair height was adjusted to provide 
the participant with a comfortable body posture during the recordings. Although the device could be adjusted for 
both, right and left hand, for simplicity in this study it was used only in the right-hand setup (as all participants 
were right-handed).

The measured hand forces were provided as analog signals in the range of 0–5 V for the force range ± 100 N, 
where in neutral position (0 N) the force sensors value was 2.5 V. Within this range, the sensor output was pro-
portional to the force with less than 1% full-scale error. The signals from the force sensors were digitalized using 
a NI-USB 6218 (National Instruments, Austin, Texas, USA) A/D with 16-bit amplitude resolution and sampling 

Fig. 1 Measurement setup. (a) The participant’s hand was positioned inside the force measurement device. Two 
64 contacts electrodes were placed on dorsal and volar aspects of the upper forearm. Preamplifiers were placed 
at the electrode connector and amplified EMG signals were routed to Quattrocento device. HD-sEMG signals 
were displayed on a laptop screen in real-time while hand forces and cues were shown on a separate screen in 
front of the participant. (b) Hand positioned inside force measurement device taken from a different angle.  
(c) Pinout of ELSCH064NM3 electrode (skin top view). The differentiation of the EMG channels was done 
along the increasing channel indexes. For example, the first output (ch1) is calculated as the difference between 
EMG signals at contacts 2 and 1, ch8 as 9-8, and the last output (ch64) as the difference between the first of the 
next electrode and the last of the current electrode. (d) Position of flexion and extension electrodes in supinated 
and fully pronated forearm orientations.
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frequency of 200 Hz. The visualization and the recording of the signals were managed by a custom-made 
LabVIEW (National Instruments, Austin, Texas, USA) program. The same program controlled synchronization 
between the Quattrocento and the force signals by generating TTL pulses recorded by both devices. The pulses 
generated by one of the digital outputs of NI-USB 6218 were 0.2 s wide and occurring every 2 s. The forces pre-
sented in this paper are given in volts [V], and the transfer function between sensor analog output and the force 
is the following:

force = analog_voltage*40–100 [N]
The detailed description of the measurement device and its error validation could be found in our previous 

publication30.

recording protocol. The recording session was initiated by a brief explanation of the protocol to the partic-
ipant, after which he/she signed the informed consent. Next, the chair height and finger braces were adjusted to 
fit the participant to ensure comfortable body posture and hand fit inside the force measurement device. Before 
applying the electrodes, the participant was informed about the specific hand movements to be performed during 
recordings. The list of all the movements was provided to the participant, and a time period was given to the par-
ticipant to go through the list and try to execute the hand movements with the hand outside the force measure-
ment device. In the case the participant felt that a specific hand movement was difficult to execute, the participant 
had an opportunity to ask for an explanation and practice the movement in both an isometric manner and in a 
free-hand manner. Upon confirming that the participant was able to perform the hand movements from the list, 
the electrodes were placed on the upper forearm. Subsequently, the participant was asked to place the hand into 
the force measurement device and perform random hand movements so that the electrode-skin contact could 
be assessed. At this stage, it was checked if there were any EMG channels containing high noise or spikes that 
occurred during the muscle contractions. The presence of a high amplitude signal was usually an indicator that 
some of the electrodes have poor contact with the skin surface. In these cases, the elastic bandage covering the 
electrodes was tightened. If there were still channels with high amplitude noise, the electrode was removed and 
reapplied at the same position (with a new foamy layer and gel). Upon confirming that the EMG channels were 
not contaminated with excessive noise nor movement artefacts the automated measurement protocol was started.

The recording protocol consisted of 66 hand movements (65 unique movements and one repeated 
twice) with five repetitions separated with rest periods each lasting 5 s. As the main aim of this data-
base was to provide useful data for EMG classification, specifically for multi-label classification, the selec-
tion of movements was made so that it comprised all single degree of freedom movements (1DoF) that 
could be obtained by the means of the force measurement device, such as flexion/extension of individ-
ual fingers, but also, compound movements comprising combinations of basic movements. In this study, 
16 basic/1DoF movements were selected, two per D2-D5 fingers (flexion-extension), four for thumb 
(flexion-extension-abduction-adduction) and four for wrist (flexion-extension-pronation-supination). To make 
the movement commands more understandable for the participants, terms flexion-extension for D2-D5 fingers 
were replaced with bend-stretch, flexion-extension-abduction-adduction for thumb with down-up-left-right, and 
flexion-extension-pronation-supination for wrist with bend-stretch-rotate anti clockwise-rotate clockwise. With 
16 basic movements, the number of all the possible combinations is very high, and it would be impractical to 
record all of them. Thus, the subset of compound movements was derived using several rules:

 1. All co-contractions of a single joint were excluded from the list. For example, a command to simultane-
ously flex and extend a finger was not included as the net finger force would be zero, thus it would not be 
detected by the force sensor.

 2. For movements comprising two fingers, only flexions of adjacent fingers were included in the list. Besides 
being more common in activities of daily living, the flexions of adjacent fingers are movements that could 
be performed without specific motor skills or extensive training (unlike flexion of non-adjacent fingers).

 3. Hand movements including combinations of joints flexion and extension were excluded from the list, 
with the exception of wrist extension that was included with fingers flexions, and pointing movement that 
included extension of index finger together with flexion of D3-D5 fingers. Similar to the rationale provided 
for rule 2, hand movements comprising a mixture of joints flexions and extensions are rare in activities of 
daily living, and difficult to execute.

 4. For the multi-joint hand movements (>2 DoF movements), the selection was based on the most common 
hand grips and gestures. These movements include known muscle synergies that enable easy and intuitive 
execution even in an isometric fashion.

 5. As the fingers extensions were underrepresented in the recording set, two instances of D2-D5 fingers 
extensions were included in the list of movements (movement codes 58 and 60 in Online-only Table 1).

During the pilot measurements (not included in this study), the list of movements was modified and some of 
the hand movements were removed if there were difficulties in performing them. In total, 66 hand movements (65 
unique) were used in this protocol, see Online-only Table 1.

The measurement was guided automatically by the custom-made software developed in LabVIEW. The 
graphical interface presented to the participant textual commands for the next/current hand movement (as in 
Online-only Table 1). The onset of the hand movement was directed by a large green light indicator (visual cue) 
and a short beeping sound (auditory cue). The participant was supposed to “hold” the movement at a comfortable 
force level until the visual indicator was turned off. The movement end was also signalled by the change of the 
displayed textual command, which during the rest periods comprised words “Rest, prepare for: (movement from 
Online-only Table 1)”. Each hand movement was performed five times before switching to the next movement. 
The transition between different movements was additionally highlighted by the change of the text colour, which 
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toggled between red and blue after the fifth repetition of a movement. This feature was added as it was noted dur-
ing the pilot recordings that the participants tend to focus more on the movement onset cue than on the textual 
command. This often resulted in producing the same hand movement for extra repetitions although the move-
ment textual command was changed. With the colour change between different hand movements, the occurrence 
of wrong repetitions was significantly reduced.

Data processing. The HD-sEMG data recorded with OT Biolab was filtered offline to further remove power 
line noise. A zero-phase 3rd order band-pass Butterworth filter centered at 50 Hz with 4 Hz width implemented 
in Matlab (command: filtfilt) was used for this task. No additional processing was done to the HD-sEMG signals.

The signals acquired with two devices (Quattrocento and NI-USB 6218) and recorded with two programs run-
ning in parallel (OT Biolab and LabVIEW) were synchronized using the common TTL pulses that were supplied 
to both recording chains. In the offline processing, these pulses were detected in both files and the signals were 
truncated so that the beginning was at the leading edge of the first pulse, while the end was at the trailing edge 
of the last pulse. As an additional check, the pulses were counted in both files to verify that there was no missing 
data. To join the HD-sEMG data sampled at 2048 Hz and force and movement label data sampled at 200 Hz, 
interpolations were performed so that all the signals matched the HD-sEMG sampling rate (2048 Hz). This step 
was done using Matlab command interp1.

The onset and cessation of each movement were presented to the participant using visual and audio cues. 
Nevertheless, the hand movement was usually delayed due to physiological reaction time, but also due to reduced 
focus of the participant during prolonged measurement. Thus, the real movement onset and cessation were not 
matching the movement labels that correspond to movement cues. To provide movement labels that correspond 
to real hand movements, a temporal re-labelling was done (see Fig. 2a). The main aim of this process was to 
provide movement (class) labels that separate rest periods from movements, thus providing consistent signals 
for training procedure of a classifier, but also providing better segmented data for classifier testing purposes. The 
temporal re-labeling relied on measured hand forces as the indicators of the movement offset and cessation. The 
algorithm of temporal re-labeling can be described as the sequence of the following steps:
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Fig. 2 An example of the recorded signals, markings, and histograms of latencies for movement onsets and 
cessations. (a) shows an EMG channel (out of 128) from the electrode placed over the volar portion of the 
forearm. Superimposed with the EMG signal (blue) are ring finger force (red), movement cue timings presented 
to the participant (yellow), and the re-labelled movement durations estimated using force levels (purple). This 
signal example comprised movements 31 (Ring finger: bend + Wrist: rotate anti-clockwise), 32 (Ring finger: 
bend + Wrist: rotate clockwise) and 33 (Middle finger: bend + Index finger: bend). From the figure, it could be 
noted how the force fluctuates during movements, similarities, and differences between consecutive repetitions 
of the same movement, but also clear differences between the EMG and the force profiles when switching to a 
completely different finger (joint). (b) shows latencies of re-labelled movements for all repetitions, movements, 
and participants. Mean latencies for onset was 0.24 s, while for the cessation was 0.7 s.
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•	 In the period preceding the movement cue, the “rest” hand forces were obtained as the average values within a 
1 s window. This resulted in a 1 × 9 vectors (one for each sensor) that was updated before each movement cue.

•	 The “rest” hand forces were subtracted from each force channel. This process was done in a loop that stepped 
through the signal in a sample-by-sample manner, where the “rest” vector was updated at the beginning of 
each movement cue.

•	 Subtracted signals were rectified and all 9 force channels were summed together for each sample, resulting in 
a 1 x (signal_length) vector.

•	 For each hand movement, the algorithm found the minimal hand force within 1 s period preceding the move-
ment onset cue, and maximal hand force during 5 s after the movement onset cue.

•	 The real movement onset was then defined as the sample at which the summed force signal was above 50% of 
the difference between minimal and maximal movement forces.

•	 A similar procedure was done for estimating when the real hand movement ended. For each hand movement, 
the algorithm found the maximal hand force within 1 s period preceding the movement cessation cue, and 
minimal hand force during the 5 s after the movement cessation cue.

•	 The real movement cessation was then defined as the sample at which the summed force signal crosses below 
50% of the difference between minimal and maximal movement forces.

Calculated latencies between the presented cue and the real movement were joined for all participants, move-
ments, and repetitions (Fig. 2b). Based on the cumulative data, mean latencies were extracted; 0.24 s (std = 0.33 s) 
for onset and 0.56 s (std = 0.46 s) for cessation. It should be noted that movement onset was expressed by both 
auditory and visual cue, while movement cessation was only expressed by turning off of the visual cue (onscreen 
virtual LED). This fact could be used to explain the differences between latency distributions for onset and ces-
sation of the movements. Another difference between these two conditions is that for onset, participants were 
focusing on the incoming cues, while for the movement cessations, the participants were focusing on maintaining 
the desired hand gesture, and transitioning to rest state required more time. Finally, as the movement executions 
were rhythmical (5 s on, 5 s off, 5 s on…) it was possible to anticipate the timing of the onset cue, which is also the 
reason for some early movement onsets (before actual cue). The observed movement latencies (relabelling results) 
are comparable with previous studies focused on human reaction time31,32.

Data records
The data presented in the current paper can be downloaded from figshare33 and used freely for any purpose. This 
section describes the contents of the provided files.

Each file, encoded in.mat format, contains data recorded from a single test participant and is named according 
to the convention sx.mat, where x is the participant index (i.e. an integer in the range 1–20). Each file contains 
a set of variables, listed below, together constituting the data and metadata connected to the participant. L here 
denotes the total number of sampled time points across the entirety of the recording session.

•	 subject: An integer in the range 1–20, representing the participant number (same as in file name).
•	 Fs: The sampling rate of the HD-sEMG signal and of the synchronized forces and movement stimuli signals, 

here always equal to 2048 Hz.
•	 emg_extensors: An L × 8 × 8 matrix containing the sEMG samples of the 64 channels recorded from the dor-

sal side of the forearm. The second and third matrix indices correspond to the relative positions of the corre-
sponding electrodes along and across the forearm, respectively.

•	 emg_flexors: An L × 8 × 8 matrix containing the sEMG samples of the 64 channels recorded from the volar 
side of the forearm. The second and third matrix indices correspond to the relative positions of the corre-
sponding electrodes along and across the forearm, respectively.

•	 force: A L × 9 matrix containing the 6 force channels, samples synchronized with those of the EMG signals.
•	 class: An 1D array of length L containing integers in the range [0,65] which encodes the class of the movement 

stimuli being presented to the participant concurrently with collected sEMG and forces. Array elements of 
value 0 denote the rest state.

•	 labels: An L × 16 Boolean matrix, computed directly from the class variable via a lookup table. The truth value 
of labels(i, j) is 1 if the movement which the participant is prompted to perform at time j incorporates the i:th 
DoF and 0 if it does not.

•	 repetition: An 1D array of length L containing integers in the range 0–5 which encodes the repetition number 
of the movement stimuli being presented to the participant.

•	 adjusted_class: The class variable following automated re-labelling as described in the Data Processing section.
•	 adjusted_labels: The labels variable following automated re-labelling as described in the Data Processing 

section.
•	 adjusted_repetition: The repetition variable following automated re-labelling as described in the Data Pro-

cessing section.
•	 outlier_scores_extensors: An 8 × 8 matrix containing channel-specific outlier scores, computed via the method 

described in the Technical Validation section, of the sEMG channels presented in emg_extensors. The value 
stored in outlier_scores_extensors[i, j] corresponds to the channel emg_extensors[i, j, :].

•	 outlier_scores_flexors: An 8 × 8 matrix containing channel-specific outlier scores, computed via the method 
described in the Technical Validation section, of the sEMG channels presented in emg_flexors. The value 
stored in outlier_scores_flexors[i, j] corresponds to the channel emg_flexors[i, j, :].
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technical Validation
In addition to the protocol followed during recording sessions for ascertaining the quality of acquired signals 
(described in the Methods section), the resulting dataset was subsequently assessed quantitatively in an offline 
setting. This validation of HD-sEMG signals entailed (i) extracting signal frequency spectrums from all EMG 
channels, (ii) computing the cross-correlations between all possible pairs of channels for all recording sessions, 
and (iii) computing a channel outlier metric separately for each participant and EMG channel. The details and 
implications of these approaches are given in the following sections.

Frequency spectra. The frequency spectra of the EMG signals comprising the current dataset are summa-
rized graphically in Fig. 3. A single spectrum was computed for each participant and channel (20 128 = 2560 
spectrograms in total) using Welsh’s method; the curves plotted in Fig. 3 represents quartiles, computed 
frequency-wise, over all such spectra. Excluding the discontinuities induced by offline notch filtering at 50 Hz 
power line interference, the morphologies of the spectra correspond to those expected in light of the previous 
studies34. As it could be expected, there was a notable variation in average amplitude between deciles, which is 
a result of the variation in average amplitude between channels – the 128 electrodes cover muscles situated at 
different depths, and different muscles are moreover recruited for different numbers of unique movement classes, 
resulting in significant variation in amplitude and by extension observable variations in vertical offsets of deciles.

Channel correlations. The two HD-sEMG electrode arrays used for the current study were, during the 
experiments, placed on the skin in a way to cover multiple forearm muscles. Consequently, when a participant 
attempted to perform a movement, a specific subset of covered muscles was recruited, leading to a spatially clus-
tered pattern of activity in the concurrent HD-sEMG. This behavior is the consequence of the nature of the 
electromyography technique that relies on the electrical signal traversing along the muscle fibers (action poten-
tial) which is then transmitted through tissues radially, eventually reaching recording electrodes. The ampli-
tude of this signal on different electrodes is proportional to the distance between the source (muscle) and the 
recording points (electrodes). The zero-lag cross-correlation coefficient between a given pair of EMG channels 
is therefore expected to be large for channels with electrodes situated close together, and small for channels with 
electrodes situated far apart. In the event of non-negligible interference or other types of noise shared across 
multiple channels (e.g. excessive motion artefacts), this regularity can no longer be expected to hold true, as even 
signals acquired by electrodes far apart would exhibit notable covariation. To verify the absence of this type of 
noise in the presented dataset, the zero-lag cross-correlation coefficient between every possible pair of channels 
was computed for each participant and compared to the physical distance separating the electrodes of the pair. 
The analysis was performed on whole signals (comprising all movements) for all electrode pairs within the same 
row or column, and for all the participants. Only pairings where both channels belong to the same electrode 
row/column were used. This also means that only channels within the same electrode were considered, as the 
distance separating the two 8 × 8 electrode arrays was not noted. As the electrodes were coarsely aligned with the 
direction of muscle fibers of major muscles within the forearm, the electrical activity picked by electrode rows  
(channels 1-2-3… 63–64) and columns (channels 1-9-17-… 56–64) is resulting from different physical pro-
cesses. In the case of electrode rows, the electrical signal is directly coupled with the propagation of action 
potentials along the muscle fibers, while in the case of electrode columns the signal is reaching recording sites 
by passive radial propagation from muscle fibers through surrounding tissues. To observe both of these effects 
the cross-correlation was calculated for the two directions separately and is presented in Fig. 4. In Fig. 4a, the 
observed relationship of the inter-electrode distance across muscles and channel cross-correlation is presented; 
Fig. 4b contains the observed relationship of the distance along muscles and channel cross-correlation. In both 

Fig. 3 Aggregated representation of HD-sEMG signal spectra from all participants, movements, and channels. 
The central red line represents the median spectrum and the blue regions represent the quartiles (computed 
separately for each frequency bin).
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cases, a strong negative relationship was observed between the variables, indicating that the amount of common 
noise and crosstalk was limited, but it is notable that the channel cross-correlation decreases much slower in 
the case of electrodes placed across the muscle. As mentioned before, this behavior reflects underlying electro-
physiology coupled with the zero-lag cross-correlation method which was used to assess channels crosstalk. The 
employed method results in (1) higher cross-correlation values between channels across the muscle where the 
signal from muscle fibers is only attenuated in proportion to the electrode-fiber distance (Fig. 4a), and (2) lower 
cross-correlation when the signal is propagated with some time delay (Fig. 4b).

Outlier scores. As the used HD-sEMG electrodes have some mechanical constraints, such as limited cur-
vature and adhesion properties, there is always a possibility of having a poor skin-electrode contact at specific 
electrode portions. This issue results in an increased environmental noise level (50 Hz) and the appearance of 
movement artifacts in the form of high-amplitude spikes during some specific contractions that deform the fore-
arm surface more than the electrode can follow. Thus, the signal quality of HD-sEMG can plausibly be expected 
to vary across channels for a given participant and recording session. Although the movement artifacts spikes are 
usually very sparse, as they appear together with some specific hand gestures, they could potentially, impede some 
of the machine-learning algorithms by providing false EMG behavior.

In subsequent offline processing of signals, it may thus be of interest to exclude channels deemed as outliers by 
some appropriate measure of channel deviation. In order to provide such a measure in the current dataset, a sim-
ple outlier score was defined and calculated for each individual channel and recording session. To calculate this 
score, denoted Oi for the ith channel, the following procedure was carried out: initially, the 99th percentile of all 
rectified voltages sampled from each channel, denoted pi

99%. for the ith channel, was calculated. This value approx-
imates the voltages reached by the considered channel at signal peaks. This statistical measure proved to be more 
robust than simply finding the maximum voltage across all samples. Next, the first and third quartile (Q1 and Q3, 
respectively) were extracted from the lists of all such values across all channels (pi

99% for all i) and used to compute 

a)

b)

Fig. 4 Coefficient of determination R2 of channels pairs for all 8 possible inter-electrode distances (a) 
perpendicular to muscles and (b) parallel to muscles. The central markers represent means and the upper 
and lower delimiters of the error bars represent the 75th and 25th percentile, respectively, computed across all 
participants and possible channel pairings.
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the interchannel interquartile range as = −IQR Q Q3 1. In accordance with one common definition of a statisti-
cal outlier, a nonzero outlier score Oi was lastly assigned to the ith EMG channel if and only if pi

99% exceeded a 
threshold voltage given by = + . ⋅T Q IQR3 1 5 . For such channels, i.e. where >p Ti

99% , the value of Oi was set 
to be proportional to the number of IQRs with which pi

99% exceeded the threshold:

=
−

O
p T

IQR
max(0, )

i
i
99%

A channel with an outlier score Oi = 0 can be interpreted as falling within expected boundaries of valid EMG 
amplitude variation. For a channel with nonzero Oi, the outlier score is intended to quantify the degree to which 
the channel generated notably higher peak voltages, as caused by e.g. signal high-amplitude spiking, than those 
of the other channels. With the provided list of scores, it is possible to exclude channels at an arbitrary level of 
acceptable channel deviation.

Due to the bipolar sampling protocol used to acquire EMG signals during recording sessions, an outlier score 
was computed only for the − ⋅ =128 (8 2) 114 channels not originating from the electrodes at the proximal end 
of the two electrode arrays (the remaining 16 channels were automatically given an outlier score of 0). In the 
current database, recording sessions contained an average of 92.24% (SD 3.61%) channels with an outlier score of 
0. Among channels with nonzero outlier score, the mean value of Oi was calculated as 2.63 (SD 3.68).

In addition, due to the bipolar setup, channel 128 (the last channel of the second electrode) should not be used 
as it was not referenced in the same manner as other channels.

Code availability
The signal recording was performed using two programs in parallel: OT BioLab version 2.0.6254 available at 
www.otbioelecttronica.com for recording HD-sEMG and synchronization signals, and the custom recording 
software developed in LabVIEW 2016 for force signals recording, generating synchronization pulses, visualizing 
forces, and generating commands and cues. Data post-processing was done in Matlab and Python. The custom 
codes for temporal re-labeling and outlier scores are available at the GitHub repository: https://github.com/
Neuroengineering-LTH/HDsEMG-database-Associated-codes.
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LSTM Networks
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Processing myoelectrical activity in the forearm has for long been considered a
promising framework to allow transradial amputees to control motorized prostheses.
In spite of expectations, contemporary muscle–computer interfaces built for this
purpose typically fail to satisfy one or more important desiderata, such as accuracy,
robustness, and/or naturalness of control, in part due to difficulties in acquiring high-
quality signals continuously outside laboratory conditions. In light of such problems,
surgically implanted electrodes have been made a viable option that allows for long-
term acquisition of intramuscular electromyography (iEMG) measurements of spatially
precise origin. As it stands, the question of how information embedded in such signals
is best extracted and combined across multiple channels remains open. This study
presents and evaluates an approach to this end that uses deep neural networks
based on the Long Short-Term Memory (LSTMs) architecture to regress forces exerted
by multiple degrees of freedom (DoFs) from multichannel iEMG. Three deep learning
models, representing three distinct regression strategies, were evaluated: (I) One-to-
One, wherein each DoF is separately estimated by an LSTM model processing a
single iEMG channel, (II) All-to-One, wherein each DoF is separately estimated by an
LSTM model processing all iEMG channels, and (III) All-to-All, wherein a single LSTM
model with access to all iEMG channels estimates all DoFs simultaneously. All models
operate on raw iEMG, with no preliminary feature extraction required. When evaluated
on a dataset comprising six iEMG channels with concurrent force measurements
acquired from 14 subjects, all LSTM strategies were found to significantly outperform
a baseline feature-based linear control regression method. This finding indicates that
recurrent neural networks can learn to transform raw forearm iEMG signals directly into
representations that correlate with forces exerted at the level of the hand to a greater
degree than simple features do. Furthermore, the All-to-All and All-to-One strategies
were found to exhibit better performance than the One-to-One strategy. This finding
suggests that, in spite of the spatially local nature of signals, iEMG from muscles
not directly actuating the relevant DoF can provide contextual information that aid in
decoding motor intent.

Keywords: iEMG, force, deep learning, LSTM, recurrent neural networks, regression, proportional control,
simultaneous control
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INTRODUCTION

Voluntary movements of fingers are controlled by intrinsic
muscles located in the hand and extrinsic muscles, that also
control wrist movement, located in the forearm (Blana et al.,
2017). After a wrist disarticulation or transradial amputation,
whereas the hand itself is lost, the extrinsic muscles, although
shortened, will largely remain in place and innervated. Typically,
such remnant muscles can still be contracted voluntarily by the
amputee and thereby produce detectable myoelectric activity
that can be measured with electromyography (EMG). For many
decades now (Wirta et al., 1978), processing EMG signals
originating from remnant muscles has been considered a leading
candidate in the ongoing pursuit of tools that allow amputees to
better control prosthetic hands.

The standard form of myoelectric control interface in
commercially available upper limb prostheses is known as direct
control (Paciga et al., 1980). In this framework, pairs of surface
electrodes measure the amplitudes of EMG from antagonistic
muscle pairs located superficially in the residual limb; the
difference between each pair of channels can subsequently be
used to control a single degree of freedom (DoF) of an active
prosthesis. Although simple and robust, direct control exhibits
some crucial disadvantages compared to the functionality
afforded effortlessly by the healthy human hand: First, control
is not intuitive, as the activation pattern required to perform
a movement do not correspond to the physiologically natural
pattern. Second, the limited number of electrode pairs that
can be accommodated by the approach means that only a
handful of DoFs can be controlled simultaneously, hampering
dexterity. This is in sharp contrast to the impressive mechanical
abilities of contemporary high-end active hand prostheses—
such devices could, if provided with sufficiently precise control
commands, articulate a large number of DoFs simultaneously
and independently (Saikia et al., 2016). This shortcoming of
control has been conjectured to be one of the main drivers of
the high abandonment rate of myoelectric upper limb prostheses
(Biddiss and Chau, 2007).

A somewhat more recent development is myoelectric control
based on pattern recognition (Hudgins et al., 1993; Scheme and
Englehart, 2011; Zecca et al., 2017). In this control framework,
the movement intent of the user is inferred by a machine learning
model that operates on continuously segmented multichannel
surface EMG (sEMG) signals. To learn an appropriate mapping
via supervised learning, training data must be provided to
the model in the form of example sEMG time windows and
corresponding measures of movement intent (e.g., kinematic
regressands or categorical target motion classes). Aside from
this requirement of initial calibration data, pattern recognition
control exhibits many promising advantages compared to the
direct control paradigm: the subjective sensation of control can
be made completely intuitive, and a relatively large set of DoFs
(dependent on the size of the electrode array) can in theory
be controlled simultaneously (Scheme and Englehart, 2011).
However, due to problems of robustness and stability over time
of algorithms, clinical adoption remains uncommon (Jiang et al.,
2012). Furthermore, being predicated on sEMG puts practical

limits on the kind of information that can be made available to
machine learning models of this kind. Signals originating from
deeply situated muscles are attenuated to a significant degree,
and even superficial muscles can generate levels of crosstalk
that hamper the task of separately decoding multiple DoFs
(Lowery et al., 2002). Thus, in addition to improving algorithms,
a promising avenue for improving control interfaces is to provide
algorithms with more informative raw input signals.

By invasively inserting needle- or fine-wire electrodes directly
into muscles, EMG signals that have very precise spatial origin
can be acquired. Intramuscular EMG (iEMG) signals of this
kind exhibit negligible crosstalk and a high degree of correlation
with concurrent kinematics (Lowery et al., 2006; Kamavuako
et al., 2009), but would most likely be too delicate to use as
the basis of control for a wearable system. Surgically implanted
electrodes (Brånemark et al., 2001; Hobby et al., 2001; Kuiken
et al., 2009) have been proposed as a way to circumvent this
problem and are quickly becoming a realistic alternative fit for
widespread adoption. With these approaches, individual muscles
can be recorded for extensive periods of time, even chronically,
thereby potentially providing a long-lived control interface
between the user and the prostheses. This kind of setup entails a
further benefit of better resisting electrode shift—a phenomenon
known to severely impair the performance of pattern recognition
control based on sEMG over time due to distributional shifts
(Kyranou et al., 2018).

Only a handful of previous studies (Hargrove et al., 2007;
Cipriani et al., 2014; Smith et al., 2014, 2016) have experimentally
investigated the use of iEMG as the input to prostheses
control interfaces, likely in part due to the inherent difficulties
in acquiring iEMG signals invasively. Due to the already
highly informative content of iEMG signals w.r.t. concurrent
kinematics, such studies have justifiably either opted for the use
of dual-site, amplitude-proportional linear control (e.g., Smith
et al., 2014), or relatively simple pattern recognition algorithms
operating on extracted signal features (e.g., Hargrove et al.,
2007). Even so, we hypothesize that more sophisticated signal
processing could increase the correlation between intramuscular
signals and kinematics further, and, in accordance, a more
elaborate approach is examined in the current study. Inspired
by the success of deep learning for decoding motor intent from
sEMG (for reviews of the field, see (Phinyomark and Scheme,
2018; Rim et al., 2020; Buongiorno et al., 2021; Xiong et al.,
2021), we use models based on the Long Short-Term Memory
(LSTM) architecture (Hochreiter and Schmidhuber, 1997) to
regress forces exerted by multiple DoFs at the level of the hand
and wrist from multichannel iEMG acquired from extrinsic
muscles. Notably, the proposed algorithms evaluated here differ
from existing attempts of iEMG force regression in that no
feature extraction step is undertaken; rather, the concurrently
measured force values are inferred directly, in an end-to-end
fashion, from time windows of minimally preprocessed iEMG
voltages. Furthermore, to quantify the impact that combining
information originating from different muscles has on force
regression performance, we let some models operate on a single
iEMG channel and some models operate on all channels in
order to automatically learn ways to aggregate spatially encoded
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information. Whereas the algorithms of the current study were
trained and tested offline on a publicly available database, steps
were taken to ensure that all parts of the processing pipeline
can be executed in a functionally equivalent manner in a real-
time scenario.

MATERIALS AND METHODS

Data Acquisition
The database of fine-wire iEMG recordings and concurrent force
measurements used in this study was collected for a previous
study and has been made publicly available (Malesevic et al.,
2020). For the sake of completeness, all properties of the database
relevant for the current study are restated in brief here. Data
were collected from 14 male, neurologically intact subjects aged
between 25 and 57 years (mean age 39 years). All subjects gave
informed and written consent prior to participation, and the
study was approved by the Regional Ethics Review Board in
Lund, Sweden (Dnr 2017-297). Each recording session lasted
approximately 30 min and used one out of two possible electrode
placement protocols: (I) The Short Residual Limb protocol,
targeting the following six muscles of the forearm: flexor carpi
radialis (FCR), extensor carpi radialis (ECR), pronator teres
(PT), flexor digitorum profundus (FDP), extensor digitorum
communis (EDC), and abductor pollicis longus (APL) and (II)
The Long Residual Limb protocol, targeting the following six
muscles of the forearm: flexor digitorum profundus (FDP),
extensor digitorum communis (EDC), abductor pollicis longus
(APL), flexor pollicis longus (FPL), extensor pollicis longus
(EPL), and extensor indicis proprius (EIP).

Intramuscular EMG (iEMG) signals were sampled at a rate of
Fs = 10240 Hz. A custom-built measurement device (Malešević
et al., 2019) was used to hold the hand stationary for the duration
of acquisition (thus ensuring isometric contractions, as would
be the case with forearm amputees) and record forces exerted
at the level of the hand and wrist. In total, nine force gauges,
corresponding to the major degrees of freedom (DoFs) of the
hand and wrist, were used: one per finger (D2–D5), two for
the thumb, and three for the wrist. Consequently, each session
always comprised six channels of iEMG and nine channels of
force (synchronized sample-wise). Two of the subjects carried out
both protocols, resulting in a dataset comprising 16 recording
sessions, out of which eight were recorded with the Short
Residual Limb protocol and eight were recorded with the Long
Residual Limb protocol. Subjects were assigned to placement
protocols randomly.

In total, each recording session comprised 22 unique
tasks, each corresponding to a movement incorporating either
activation of a single or activation of a combination of some or all
of the six muscles being assessed in the study. The current study
makes use of only the first eight tasks of the database (shown
in Table 1), representing movements that incorporate a single
DoF at a time. Furthermore, to not bias training and test data
toward higher force levels and to consequently better simulate the
intended use case of prosthesis control, only signals originating
from the sine tracking substage were used. During this substage,

TABLE 1 | The subset of movement tasks utilized in the current study.

Code in database Description

1.X Index finger: flexion-extension

2.X Middle finger: flexion-extension

3.X Ring finger: flexion-extension

4.X Little finger: flexion-extension

5.X Thumb: flexion-extension

6.X Thumb: adduction-abduction

7.X Wrist: flexion-extension

8.X Wrist: supination-pronation

the subject was instructed to contract relevant muscles to track
a low-frequency (0.1 Hz) sinusoid with amplitude equal to 20%
of the force measured during maximum voluntary contraction
plotted in real time on a screen. Each of the eight relevant sine
tracking substages comprises 10 periods of such a sinusoid.

Preprocessing
As all algorithms proposed in the current study are intended
for online execution, signal preprocessing steps were conducted
in a manner compatible with this requirement. To initially
reduce the impact of voltage spikes and other outlier samples,
all iEMG channels were individually clipped at the 99 and 1
percentile levels and subsequently filtered using a second-order
digital Butterworth low-pass filter with a cutoff frequency of
500 Hz. Similarly, all force channels were individually low-pass
filtered using a second-order Butterworth filter with a cutoff
frequency of 10 Hz. Following these introductory preprocessing
steps, all signals were downsampled by a factor of 10 (i.e., to
Fs = 1024 Hz) in order to reduce computational complexity and
facilitate faster convergence of learning algorithms.

Based on iEMG-movement-force matchings provided
together with the database, filtered iEMG- and force signals were
restructured in the following way: first, each of the nine force
channels was separated, on the basis of the sign of the Tracking
Cue variable provided in the database, into two new channels—
one new channel representing positive phase (flexion, adduction,
and pronation) and one new channel representing negative phase
(extension, abduction, and supination). All 18 resulting phase-
specific force channels were subsequently rectified, ensuring that
both phases had a positive and similar envelope. Second, each
iEMG channel was paired with a single such force channel on
the basis of the matchings provided with the database. All force
channels that had not been paired with an iEMG channel, i.e.,
force channels originating from DoFs not actuated by any of the
electrode-penetrated muscles, were at this stage discarded. Third,
a list of elicited movements (i.e., tasks) that were matched with
any of the remaining iEMG-force matchings was created; signal
parts originating from elicited movements not contained in the
list were discarded and not used further in the current study. As
a result, the T time samples remaining following this selection
could be represented as two synchronous signal matrices with
matched rows: E ∈ RT × 6, containing the six iEMG channels,
and F ∈ RT × 6, containing the six matched force channels.
Subject-specific elicited movements remaining after this stage are
presented in Table 2.
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In order to represent the resulting data in a way amenable to
machine learning methodology, the iEMG signals contained in
E were segmented into individual regression instances by using a
sliding window of width 512 samples (500 ms) with increments of
64 samples (62.5 ms). Each time window was assigned a ground-
truth force vector by simply selecting the last row (i.e., time
sample) of the sliding window in F. In an online application,
this would correspond to inferring the current force from the
preceding 500 ms of iEMG, with delays between consecutive
inferences of 62.5 ms—well in line with acceptable values of
myocontrol delay (Farrell and Weir, 2007).

Intramuscular EMG (iEMG) time windows with appertaining
force vectors were lastly partitioned into a training set and a test
set on the basis of sinusoid period: signal windows originating
from the first 7 periods (out of the available 10) of each sine
tracking task were designated as training data, signal windows
originating from the 8th period were designated validation data,
and signal windows originating from the 9th and 10th period
were designated as test data. All iEMG windows were linearly
rescaled using the channel-wise mean and standard deviation
computed from the training set; training iEMG data thus had
zero mean and unit variance. All target force values were
similarly normalized to have unit variance across training set time
windows, but were, due to their rectified nature, not transformed
to have non-zero mean.

Deep Learning Models
All deep learning models of the current study were implemented
using the TensorFlow 1.12 library (Abadi et al., 2016) and
executed in Python 3.6 using a desktop computer equipped
with a Nvidia Titan V GPU. All architecture choices and
hyperparameters were empirically selected on the basis of
performance achieved on the training and validation sets;

TABLE 2 | Overview of subject-wise elicited movements selected for regression
model training and testing.

1.X 2.X 3.X 4.X 5.X 6.X 7.X 8.X

Subject 1

Subject 2

Subject 3

Subject 4

Subject 5

Subject 6

Subject 7

Subject 8

Subject 9

Subject 10

Subject 11

Subject 12

Subject 13

Subject 14

Subject 15

Subject 16

Cells shaded green represent elicited movements that remained
following preprocessing.

performance on test set data was never allowed to impact the
design of deep learning models.

Three separate strategies for regressing forces, each with a
corresponding neural network architecture (all illustrated in
Figure 1), were implemented in the current study:

1. One-to-One. Each individual force channel is estimated
by a deep learning model processing a single matching
iEMG channel. This approach requires six models in
order to infer all output forces—one model per iEMG-
force channel pair.

2. All-to-One. Each individual force channel is estimated
by a deep learning model processing all available
iEMG channels. This approach requires six models in
order to infer all output forces—one model per force
channel to be inferred.

3. All-to-All. A single LSTM model operates on all six iEMG
channels and estimates all force channels simultaneously.
This approach only requires that a single model is trained
to infer all output forces.

As can be seen in Figure 1, the neural model architectures
associated with the three above mentioned strategies are almost
identical in structure: The input iEMG window is initially filtered
by a 1D convolutional layer consisting of 64 filter kernels of size
21 with unit stride. Zero padding was used to keep the time
dimension size of the output identical to the time dimension
size of the input. Output feature maps of size 512 = 64 are
subsequently fed into the central LSTM layer, whose output (of
size 64) at the final time step is fed into two consecutive fully
connected layers. All convolutional-, LSTM-, and fully connected
layers (except the last) are followed by leaky ReLU activation
(Maas et al., 2013), layer normalization (Zhou and Yang, 2019),
and dropout with probability 0.2. Notably, only the initial
convolutional layer and the final fully connected layer differ in
size between regression strategies; thus, the number of trainable
parameters (and thus memory footprint and computational
complexity) of the different model types (given in Table 3)
is highly similar.

Irrespective of regression strategy, all deep learning models
were fitted to the training data in an identical manner using the
AdamW algorithm (Loshchilov and Hutter, 2019) with learning
rate η = 10−4, β1 = 0.9, and β2 = 0.999 to iteratively
minimize the mean squared error loss function. During training,
a weight decay of λ = 10−9 was applied. Training proceeded
in minibatches of size 32 until the loss on the validation set had
not decreased for 25 consecutive epochs or a total of 250 epochs
had passed, whichever came first (i.e., a form of early stopping).
For all model types, training was performed independently for
each of the 16 recordings in the database. By design, for the One-
to-One and All-to-One strategies, one model was trained per
output force channel.

Baseline Method
In addition to the deep learning processing pipeline described
above, the current study included a conventional, amplitude-
proportional linear control method in order to verify that
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FIGURE 1 | Schematic illustrations of deep learning algorithms used for myoelectric force regression: (A) model architecture used for the One-to-One regression
strategy, (B) model architecture used for the All-to-One regression strategy, and (C) model architecture used for the All-to-All regression strategy.

the introduction of more computationally resource-intensive
methods was warranted. A simple linear force regression
algorithm was selected to represent the status quo for this
purpose. The mean absolute values (MAV) feature (Hudgins
et al., 1993) was computed channel-wise for each iEMG
window in the training set and in the test set. Using the
training set data, one univariate ordinary least squares (OLS)
linear regression model was fitted to each iEMG channel
to predict the concurrent force of its paired force channel.
Consequently, this method is here referred to as One-to-One
linear regression.

Evaluation
The performance of the trained models was evaluated on the
test set of iEMG time windows and corresponding ground
truth force vectors by computing two standard offline regression

metrics: the Root-Mean-Squared Error (RMSE) and the Variance
Accounted For (VAF). Each computed scalar value represents the
performance of a single regression method on a single recording
session from the database.

The RMSE metric quantifies the normalized euclidean
distance between the ground truth force values vector and the
vector of force values produced by the regression model under

TABLE 3 | Numbers of learnable parameters and inference times of models.

Model Number of parameters Wall time of
single inference

One-to-One Linear 6 × 2 6 × 1 ms

One-to-One LSTM 6 × 36801 6 × 54 ms

All-to-One LSTM 6 × 43521 6 × 58 ms

All-to-All LSTM 43653 62 ms
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consideration. The recording-wise RMSE is here symbolically
defined in Equation 1:

RMSE =
1
N

N∑
n


√

1
C
∑C

c = 1

((
ŷn,c − yn,c

)2
)

ymax

 (1)

where N is the total number of iEMG windows in the test set
(variable across recording sessions) and C = 6 is the total
number of force channels. yn,c and ŷn,c are the ground truth and
estimated value, respectively, of the cth force channel associated
with the n:th iEMG window and ymax is the maximum value
of the regressand across the test set. Due to the fact that the
RMSE metric increases as the discrepancy between the true
and predicted value increases, a lower value represents better
regression performance.

The VAF metric quantifies the proportion of variance of
the ground truth that the trained model output accounts for.
The recording-wise VAF metric is here symbolically defined in
Equation 2:

VAF =
1
C

C∑
c

(
1−

Var
(̂
yc − yc

)
Var

(
yc
) )

(2)

yc and ŷc are aligned vectors of ground truth and estimated
values, respectively, of the cth force channel. A higher VAF metric
represents better regression performance.

Statistics
Statistical computations were performed using functions
provided with the SciPy library in Python. For all statistical
analyses, differences at the α = 0.05 level were considered
significant. Initially, the non-gaussianity of all metrics and
methods was tested with Shapiro–Wilk tests—as the gaussianity
of RMSE metrics could not be rejected for any of the regression
methods, a one-way repeated measures ANOVA was employed
to detect any difference between methods. As a significant
difference in RMSE between methods was detected in this way,
post hoc analyses in the form of paired samples t-tests between
all pairings of regression methods [

(
4
2

)
= 6 comparisons

in total] were conducted. Furthermore, the arithmetic mean
was selected as the summary statistic to represent the RMSE
values achieved by each regression method over all recordings
in the database. In contrast, the VAF metric was found to
exhibit a significantly non-gaussian behavior for all regression
methods. Consequently, a Friedman test was used to establish
whether any difference between methods existed. Due to the
non-gaussianity of the VAF metric, the median was selected as
the summary statistic to represent the VAF values achieved by
each regression method over all recordings in the database. As
a significant difference in VAF between methods was detected
by the Friedman test, post hoc analyses in the form of Wilcoxon
signed-rank tests between all pairings of regression methods was
conducted. For post hoc analyses performed on both metrics,
acquired p-values were subject to Bonferroni correction for

multiple comparisons; p-values are presented in corrected form
throughout the Results section.

RESULTS

Examples of input and output signals produced by all
regression methods are shown in Figure 2. RMSE and VAF
values achieved by all models are summarized graphically in
Figures 3, 4, respectively.

For the RMSE metric, one-way repeated measures ANOVA
found a significant (p = 1.4 · 10−9) difference in performance
between regression methods. As per post hoc paired samples
t-tests, the decreases in mean between MAV-based linear
regression (mean RMSE 0.123, SD 0.020) and the One-to-One
strategy (mean RMSE 0.104, SD 0.018), the All-to-One strategy
(mean RMSE 0.081, SD 0.018), and the All-to-All strategy (mean
RMSE 0.077, SD 0.016) were 0.019 (p = 2.9 · 10−4), 0.042
(p = 1.1 · 10−5), and 0.046 (p = 1.0 · 10−6), respectively.
Thus, all LSTM-based methods exhibited significantly better
performance than the baseline method. Furthermore, both the
All-to-One strategy and the All-to-All strategy significantly
outperformed the One-to-One strategy, with differences in
mean of 0.023 (p = 1.6 · 10−6) and 0.027 (p = 2.6 · 10−8),
respectively. Lastly, a non-significant difference in mean of 0.004
(p = 2.2 · 10−1) was found between the All-to-One strategy and
the All-to-All strategy. Significant differences in RMSE between
methods as presented in this section are summarized in Table 4.

For the VAF metric, a Friedman test found a significant
(p = 1.9 · 10−6) difference in performance between regression
methods. As per post hoc paired samples Wilcoxon signed
rank tests, the increases in median between MAV-based linear
regression (median VAF 21.5%) and the One-to-One strategy
(median VAF 40.3%), the All-to-One strategy (median VAF
59.6%), and the All-to-All strategy (median VAF 60.9%) were
18.8% (p = 9.0 · 10−2), 38.0% (p = 3.8 · 10−3), and 39.4%
(p = 4.6 · 10−3), respectively. Thus, all LSTM-based methods
with the exception of the One-to-One strategy exhibited
significantly better performance than the baseline method.
Furthermore, both the All-to-One strategy and the All-to-All
strategy significantly outperformed the One-to-One strategy,
with differences in median of 19.2% (p = 5.6 · 10−3) and 20.6%
(p = 2.6 · 10−3), respectively. Lastly, a non-significant difference
in median of 1.3% (p = 1.0) was found between the All-to-One
strategy and the All-to-All strategy. Significant differences in VAF
between methods as presented in this section are summarized
in Table 5.

DISCUSSION

The main aim of this study was to investigate the use of deep
learning models based on the LSTM architecture to regress
forces pertaining to multiple kinematic DoFs from concurrently
acquired iEMG—specifically, the possibility of circumventing the
need for hand-crafted signal features by letting such models map
raw iEMG segments directly to regressand force values. From the
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FIGURE 2 | An example (from a random subject) of input iEMG presented to, and output force estimates produced by, all regression models, together with
synchronous ground truth force measurements. Segments of iEMG channels (columns) and paired force channels shown here were selected from the task of the
recording protocol in which they were maximally correlated; as such, the columns do not represent mutually concurrent time intervals in this illustration.

FIGURE 3 | Tukey box plot of Root-Mean-Squared Error (RMSE) metrics achieved by all evaluated force regression methods. Whiskers extend 1.5 interquartile
ranges below and above the first and third quartile, respectively. ***p < 0.001 and ****p < 0.0001.

obtained results, it was apparent that all proposed deep learning
regression strategies outperformed the baseline One-to-One
linear regression method in the sense of producing significantly
lower mean RMSE values across recordings. Furthermore, two
out of three deep learning methods were found to produce
significantly better VAF metrics than the baseline. Together
these findings lend credence to a view of end-to-end force
estimation via deep learning methodology in general and
via LSTMs in particular as a promising method to increase
the accuracy of real-time proportional motor intent decoding
through iEMG processing.

An additional aim was to evaluate differences in performance
between the three examined deep learning regression strategies:

estimating the force exerted by each DoF separately from a
single iEMG channel originating from the active muscle (One-
to-One), estimating each force channel separately but from all
available iEMG channels (All-to-One), or directly estimating
all force channels simultaneously from all available iEMG
channels (All-to-All). For both computed performance metrics,
it was found that the All-to-All and All-to-One strategies
significantly outperformed the One-to-One strategy, indicating
that information from muscles other than the prime mover
increased the accuracy of force estimates. Two explanations of
this finding are hypothesized here: First, aside from a single
prime mover muscle, multiple synergist muscles can be causally
implicated in the actuation of a single DoF. Relatedly, when one
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FIGURE 4 | Tukey box plot of Variance Accounted For (VAF) metrics achieved by all evaluated force regression methods. Whiskers extend 1.5 interquartile ranges
below and above the first and third quartile, respectively. **p < 0.01.

tries to selectively produce isometric force on a specific joint,
other joints are usually stabilized by co-contraction, or even
opposing contraction of the antagonist muscle. Measurements
from such ancillary muscles could thus help regression models
paint a more exhaustive picture of the biomechanical state of
the arm when estimating forces. Second, even signals from
muscles not mechanically involved in the current motion could
in theory provide contextual information (of factors such as pose,
fatigue, etc.) that correlate non-linearly with exerted force and, by
extension, gives rise to better model performance.

TABLE 4 | Paired absolute differences in mean value of the RMSE metric across
recording sessions (upper triangular part of table), and corresponding p-values
(lower triangular part of table), separating regression methods.

One-to-One
Linear

One-to-One
LSTM

All-to-One
LSTM

All-to-All
LSTM

One-to-One Linear 0.019 0.042 0.046

One-to-One LSTM p = 2.9 · 10−4 0.023 0.027

All-to-One LSTM p = 1.1 · 10−5 p = 1.6 · 10−6 0.004

All-to-All LSTM p = 1.0 · 10−6 p = 2.6 · 10−8 p = 2.2 · 10−1

Pairings exhibiting a significant difference at the α = 0.05 level are shaded red.

TABLE 5 | Paired absolute differences in median value of the VAF metric across
recording sessions (upper triangular part of table), and corresponding p-values
(lower triangular part of table), separating regression methods.

One-to-One
Linear

One-to-One
LSTM

All-to-One
LSTM

All-to-All
LSTM

One-to-One Linear 18.8% 38.0% 39.4%

One-to-One LSTM p = 9.1 · 10−2 19.2% 20.6%

All-to-One LSTM p = 3.8 · 10−3 p = 5.6 · 10−3 1.3%

All-to-All LSTM p = 4.7 · 10−3 p = 2.6 · 10−3 p = 1.0

Pairings exhibiting a significant difference at the α = 0.05 level are shaded red.

From the perspective of conserving computational resources,
it is promising that the All-to-All strategy performed at a level
either higher than or indistinguishable from both of the other
deep learning regression strategies; as only a single model is
required to regress the forces exerted by all DoFs, both the
computational complexity and memory footprint of this strategy
are lower compared to the other approaches. This is of particular
interest for prosthesis control—algorithms that would need
to be implemented in an embedded processing environment,
where computational resources are limited. Unfortunately, the
resources required by the All-to-All LSTM model are still
markedly higher than those of status quo feature-based linear
control methods, even when considering the fact that no feature
extraction step is necessary in the processing pipeline. The total
number of parameters required to instantiate an All-to-All LSTM
model was in this study 43,653 (see Table 3); assuming single-
precision floating-point numbers are used, these require 175 kB
to store in memory. Together with all intermittent activation
maps (i.e., output volumes of layers) of the model requiring
538 kB to store, this represents a total memory footprint of
approximately 713 kB—well within limits of existing embedded
processors. As such, it is unlikely that memory footprint would
be a limiting factor in realistic scenarios; the main bottleneck in
this regard is instead likely the inference delay of the model. In
principle, the highest acceptable inference delay is equal to the
time between consecutive iEMG windows—with this delay, force
values of windows are inferred at the same rate as that which
they are sampled at. Whereas the inference delay of the All-to-
All strategy (Table 3) narrowly falls below the window step size
of 62.5 ms, values were measured from a model running on a
GPU-equipped desktop computer. In an embedded application,
the window duration could be decreased, and/or the window
separation time could be increased, to reduce the real-time
computational burden. However, for control delay not to become
noticeable by the prosthesis user, the delay of the control system
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should fall below 300 ms (Englehart and Hudgins, 2003). With
mechanical delays inherent to the prosthesis itself, this leaves
approximately 125 ms available for algorithm-induced delays
(Farrell and Weir, 2007). To circumvent these issues, a possibility
is to let LSTM models operate continuously on iEMG samples
as they are acquired instead of on a window-wise basis, as has
been considered in previous studies using sEMG (Olsson et al.,
2019). Nevertheless, it is apparent that future work that focuses
on finding more computationally efficient LSTM regression
architectures would be of value. As all algorithms considered in
the current study were both trained and evaluated on a publicly
available dataset, comparisons with alternative methods can be
carried out transparently and straightforwardly.

Aside from the questions of computational complexity
discussed above, a salient limitation of the approach taken in
the current study is the necessity of regressand force values.
Naturally, for amputee prosthesis users, acquisition of target force
values prior to model training would not be possible. For the
supervised learning approach to model training taken in the
current study to be made applicable, some appropriate proxy
regressand would thus have to substitute for forces measured at
the level of the hand and wrist. A well-tried candidate solution
is the use of mirrored training (Nielsen et al., 2011), whereby
force measurements would be taken from the intact, contralateral
hand while the amputee performs motions bilaterally. Another
possibility is to ask the user to slowly increase and decrease
the intensity of muscle contraction in accordance with some
visual cue and subsequently use said cue as ground truth to
be inferred from EMG, as has been investigated previously
(Ameri et al., 2019).

The superior performance of deep learning methods in the
current study is in line with findings from the general machine
learning literature that indicate that signal representations
automatically learned from data are oftentimes more informative
than features designed manually toward the same end (Bengio
et al., 2013). An intriguing research direction of specific interest
for developing embedded, online motor decoding systems is that
of reverse engineering the content of learned EMG features.
If carried out successfully, this project could allow classical
methods to enjoy some of the higher performance exhibited
by deep learning methods without as high computational
costs. Furthermore, for the purpose of leveraging the finding

that information from multiple muscles improve performance,
comparisons with sensor fusion techniques that allow for non-
linear feature interactions (e.g., kernel regression; Bishop, 2006),
but are less computationally demanding than recurrent neural
networks, could be the focus of future work.
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Calibration-Free Myoelectric Decoding

Alexander E. Olsson, Neboǰsa Maleševic, Anders Björkman, Christian Antfolk

Abstract

Machine learning (ML) has for a long time been the central tool for motor-intent
decoding of surface electromyography (sEMG) signals, with envisioned uses of ML-based
muscle-computer interfaces ranging from prosthetics to consumer electronics. Existing
myoelectric pattern recognition algorithms, albeit functional, require the collection of
substantial amounts of gesture- and user-specific training data to achieve acceptable
performance, making them impractical for many purposes. This paper presents a
ML-based framework for efferent myoelectric interfacing intended to work for new users
without collecting any new training data. At the core of our approach lies a
geometry-aware Transformer-based model architecture that (i) can operate on input
EMG windows collected from arbitrary electrode configurations and (i) outputs a
generalized intent representation. These properties make it possible to train a single
model instantiation on virtually all publicly available EMG databases. We initially
pretrain our model on a selection of 30 such databases, together comprising 510 subjects
and 108 unique gestures. The resulting configuration-agnostic model was thereafter both
evaluated directly and finetuned on the NinaPro DB2 and DB3 databases and evaluated
w.r.t. inter-subject performance. We demonstrate that user-agnostic models finetuned
on Ninapro DB2 are competitive with user-specific Linear Discriminant Analysis (LDA)
models, indicating the feasibility of calibration-free intent decoding. However, as trained
models are much larger than what would fit on embedded hardware, modifications are
needed to make the method practically viable. Furthermore, all interuser models of this
study underperform the user-specific LDA status quo on amputee data, indicating
complementary approaches might be necessary for prosthetic applications.

1 Introduction

The surface electromyogram (sEMG) recorded from muscles during voluntary movement
represents the aggregated electrical activity of the individual motor units that contribute to
the execution of the movement[1]. Due to its non-invasive nature and the direct relationship
with the latent neural drive, sEMG has many times been identified as a practical path
towards efferent neural interfacing[2]. As a control modality, sEMG has been applied
generously by researchers for purposes such as virtual reality[3], rehabilitation robotics[4],
and, perhaps most saliently, upper-limb prosthetics[5]. However, despite satisfying several
practical desiderata and showing promise in an abundance of studies, intuitive sEMG-driven
control has yet to make a broad impact in human-computer interfacing, clinical or otherwise,
outside the lab[6].

One potential explanation for the apparently unrealized potential of myoelectric interfaces
stems from the fact that the relationship between sEMG and concurrent kinematics is highly
nonlinear and characterized by apparent stochasticity. In the field of upper-limb prosthetics,
which places stringent demands on control system robustness, this issue has typically been
managed by resorting to using direct control [7]. This approach, wherein a limited number of
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kinematic degrees of freedom (DoFs) are controlled linearly by sEMG amplitude collected from
antagonistic muscle pairs, is not amenable to intuitive control over multiple kinematic Degrees
of Freedom (DoFs), limiting its usefulness in, for example, approximating the full dexterity of
the human hand for the purpose of controlling multifunctional prostheses or interacting with
virtual environments.

To create interfaces that allow for natural and high-throughput extraction of movement
information, machine learning (ML) (or, interchangeably, pattern recognition) has for a long
time been viewed as the most, if not the only, viable approach. In this paradigm, the problem
of modelling the complicated mapping from sEMG to (some measurable proxy of) movement
intent is circumvented by fitting a statistical model to example pairings of sEMG windows
and either a categorical (e.g. gesture) or or continuous (e.g. joint kinematics) target, making
the problem one of either classification or regression, respectively. To reduce the complexity of
the task, informative and motion-discriminative features are typically extracted and used as
the input to myoelectric motor decoding systems[8]. More recently, studies on large Artificial
Neural Network (ANN) models have indicated that feature engineering might be considered
superfluous if sufficient data is available to learn signal representations ’from scratch’[9].
ML-based decoding systems, whether they are operating on features or raw sEMG, have
many times demonstrated impressive classification accuracies for wide ranges of performable
motions. Even so, due to large variation in movement-conditional sEMG between users
individuals[10], a considerable amount of user-specific training data is needed to achieve an
acceptable level of performance. Conjecturally, this need to tailor models to individual users
has been a significant obstacle to clinical applications, and downright prohibitive for
commercial and industrial applications[11].

A number of techniques has been proposed to ease the training burden of myoelectric decoding
systems, so far primarily in the context of prosthetics. Matsubara and Morimoto[12] reduced the
error rate of a cross-user classifier by identifying components of feature vectors associated with
interuser variation. Khushaba et al.[13] employed canonical correlation analysis (CCA) to map
feature vectors from individual users to those of an expert. More recently, a number of cross-
subject approaches, such as transfer learning[14] and adaptive domain-adversarial training[15],
have been explored for deep neural networks. While the full impact of such innovations have
yet to be determined, they all require the collection of some non-negligible amount of data from
the actual end user.

In image- and natural language processing, it has been found that pretraining large models
on related objectives often gives rise to surprisingly capable models. Famous examples of so-
called weakly supervised or self-supervised pretraining include Mahajan et al.[16], who found
that initializing a Convolutional Neural Network (CNN) by predicting hashtags associated
with an Instagram dataset improved downstream image classification, and the GPT family of
models[17, 18, 19], which have achieved remarkable success on a number of language processing
tasks simply by optimizing for next token prediction over a large text corpus.

In the domain of sEMG data, no vast reservoirs of unlabelled signals yet exists. However,
a number of open dataset have been introduced comprising hundreds of users and unique
gestures. To the best of our knowledge, no previous work has attempted to aggregate more
than one dataset for the training of a single mode, as different dataset are typically obtained
from varied and idisynchratic electrode geometries . The work presented in this paper is an
attempt at circumventing such issues and incorporating multiple datasets in the training of
a single, unified model. The central part of our model is a Transformer[20] model that can
operate on arbitrary measurement geometries and produce arbitrary intent representations.
We initially train this model on a selection of 30 sEMG databases and use the NinaPro DB2
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and DB3 databases[21] for finetuning and testing. The results demonstrate the potential of our
approach to calibration-free intent decoding, as we show user-agnostic models exhibit similar
performance when compared to user-calibrated benchmark models.

2 Experiments

2.1 Data

A full list of the 30 databases used for pretraining in this study is presented in Table 1.

The raw digital sEMG signals of the databases were all initially resampled to the same
temporal resolution of Fs = 1 kHz using the standard fractional resampling approach[22] in a
channel-wise manner. Databases with a native sampling rate of over 1 kHz were initially
bandpass filtered (using an 8th order Butterworth filter) with a passband from 10 to 450 Hz
and thereafter downsampled. Conversely, databases with a native sampling rate under 1 kHz
were appropriately upsampled and bandpass filtered to conunteract aliasing.

A sliding window of size 200 ms and an overlap of 50 ms was used to segment all databases
into discrete sEMG windows. As it proved infeasible to compute representative channel-wise
summary statistics across all databases, we instead employed a window-wise normalization
strategy similar to those of [23] and [24]. Each sample window was linearly rescaled to the
range [−1, 1], where 1 represents the maximum (absolute) voltage observed in the window.
While this approach destroys all information on absolute amplitude, it maintains both the
relative amplitudes of channels and their respective spectral morphologies.

While it would be possible to represent the ground-truth target movement of each window using
one-hot encoding over all 108 unique gestures and grasps, this approach would arguably come
with a problem. Many movement are only present in a few or even a single dataset, making
them difficult to recognize in arbitrary measurement geometries. For this reason, we instead
employ a multi-label intent encoding strategy highly similar to that introduced in [24]. We
define 18 binary basis labels (named and listed in Table 2) corresponding to the major degrees
of freedom (DoFs) of the hand and wrist. Each of the 108 movements was decomposed (using
a manually constructed lookup table) to this representation and stored together with relevant
sEMG windows. Notably, all windows where no labels at all were present (i.e. the rest class)
were excluded. This aided significantly in both easing the computational burden of training
and in the design of the ANN model (see section 2.2). As detection and separation of rest
is a relatively simple problem that could be solved in practice by a separate, simpler activity
detection model, this was deemed a reasonable choice. After the exclusion of sEMG windows
coinciding with rest, a total of 9.2 million sEMG windows remained and were stored as a unified
pretraining dataset.

As is discussed in the next section, the model introduced here operates not only in sEMG
time windows, but furthermore require the specification of the positions of the channels
comprising the measurement geometry. Unfortunately, none of the public databases used in
this study provide quantitative data on the absolute or relative positions of electrodes during
signal acquisition. However, as all provide either photographs of the measurement setup,
qualitative descriptions thereof, or both, an approximate lookup table could be constructed in
order to map individual channels to corresponding locations for all databases. Concretely, the
distance of each electrode from the elbow and its angle from the top of the forearm was
manually estimated, from which the full 3D coordinates could be computed assuming a
simplified model of the forearm as a cylinder.
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The exercise B sub-databases of Ninapro DB2 and DB3 datasets were in this study used both
for (i) finetuning models to a specific geometry and (ii) for quantifying performance. The
sub-database comprises 17 non-rest movement (Table 3), each repeated 6 times 5 seconds.
Although 12 channels of sEMG (Fs = 2 kHz) are provided, we discarded channels 11 and 12
(corresponding to the Biceps Brachii and Triceps Brachii, respectively) as none of the
pretraining databases contain electrodes placed outside the forearm. For both DB2 and DB3,
preprocessing was performed similarly to the pretraining database: sEMG signals were
bandpass filtered at 10 to 450 Hz, decimated to a sampling rate of Fs = 1 kHz and segmented
into 200 ms windows with 50, and each window was annotated in accordance with the
movement class with which it coincided (using the postprocessed movement stimuli present in
the database). To enable zero-shot inference via the principles in outlined in section 2.3.1, a
table containing the decomposition of the movement classes into corresponding multi-label
representations was created (see Table 3). Like previously, sEMG windows coinciding with
rest were discarded.

2.2 Geometry-Aware Motion Recognition Model

A graphical overview of the model architecture is depicted in Figure 1. The model takes two
inputs, the first of which is a 200 samples long sEMG windows (at Fs = 1 kHz, i.e. 200 ms)
consisting of N signal channels (as stated previously, N may vary between inputs). The second
input is a N × 3 position matrix P , where Pn,1, Pn,2, and Pn,3 represents the x-, y-, and
z-coordinate, respectively, of the nth channel. The coordinates are specified in the following
manner: In a coordinate system the forearm is modelled as a cylinder with radius and length
1, the x-coordinate goes from palmar to dorsal, and y-coordinates goes from medial to lateral.
The z-axis represents the distal direction, where z = 0 is the elbow and z = 1 the wrist.

The sEMG window is processed channel-wise by a content encoder network, The content
encoder network is a convolutional neural network (CNN)[25] whose parameters are shared
between input channels. It consists of 24 consecutive convolutional layers, each of width 26,
with GELU activation functions[26], all followed by layer normalization[27]. Zero-padding
(asymmetric, from the left) is used before every layer to keep the length (200) of the output
volumes constant through the network. The number of kernels differs between layers: 64 for
layers 1 to 6, 128 for layers 7 to 12, 256 for layers 13 to 18, and 512 for layers . All layers make
use of residual connections[28]; for layers where the input and output has differing channel
number (layers 1, 7, and 19), the method from [28] is used. After the last convolutional layer,
the size of the output volume is N × 200 × 512; its values at the final time instant of the
window (i.e. a N × 512 sequence of feature vectors) are fed channel-wise trough a linear, fully
connected layer to produce a N × 1024 sequence of content encodings denoted CE.

Channel-wise content encodings are positionally encoded in order to (i) supply the model with
information on the underlying measurement geometry, and (ii) supplement the permutation-
invariance of transformer models. In the model presented here, this positional encoding is
performed on the basis of channel coordinates. For each channel n, the coordinate vector
[Pn,1,Pn,2,Pn,3]

T is fed through a position encoding network, consisting of an MLP with 4096
hidden neurons and 1024 outputs applied channel-wise, producing a N × 1024 sequence of
positional encodings PE. The combined signal representation X to be processed further is
then obtained simply from element-wise addition as X = CE + PE.

Like the vision transformer[29] (in turn inspired by BERT[30]), the sequence of channel
encodings to be fed through the transformer is prepended with an additional learnable class
encoding xclass of size 1024. The input Z = [xclass,X]T to the transformer is thus a
(N + 1)× 1024 sequence.
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The transformer is of the encoder-only type, identical in structure to the vision transformer.
It comprises 24 layers, each composed of (i) multi-head self-attention (MSA) module with 16
heads (each with a key, value, and query size of 64), followed by (ii) a point-wise multi-layer
perceptron (MLP) module with a hidden size of 4096 using a GELU activation function after
the hidden layer. Like in most Transformer implementations, both the MSA and MLP module
make use of layer normalization and residual connections. The output O of the transformer is
a sequence of shape (N + 1) × 1024; the first element O1,∗ in the sequence (corresponding to
the learnable class encoding) is considered a fixed-length representation of the EMG window,
encoding both the content of the EMG signals and the geometry used for acquiring them.

The output representation is either fed to a classifier head or a multi-label head, depending on
training objective.

The multi-label head is used during pretraining. It is a two-layer MLP with 4096 hidden neurons
and 18 outputs ŷ (one per movement label). Although the purpose of this layer is to perform
multi-label classification, the standard single-label softmax activation function is applied to the
output. Similar to [31] and [16], we found softmax outputs more conducive to optimization
than standard label-wise sigmoid. The details of how the output of the multi-label head is
handled during training and inference are given in sections 2.3 and 2.3.1, respectively.

When finetuning on a dataset with static measurement geometry (Ninapro DB2 or DB3 in this
study), the transformer output representation is fed to the classifier head. The classifier head
is composed of a single fully connected layer with softmax that maps O1,∗ to 17 outputs ĉ, each
representing the (approximate) probability of the input belonging to one of the 17 movement
classes in Exercise B of Ninapro DB2 and DB3 (see Table 3).

Counting the position-encoding MLP, the CNN, the linear projection into content encodings,
the Transformer, and both output heads, the model has 315 million free parameters (weights
and biases) in total. The model can handle arbitrary number of channels N (up to memory
constraints, which due to the transformer module grows like O(N2)).

2.3 Pretraining

During pretraining, a single instantiation of the model described in the previous section (with
a multi-label head) was fitted to the data from Table 1, comprising 9.2 million examples. Each
example took the form of a tuple (x,y,P ), where x ∈ RN×200 is a 200 ms long N -channel
sEMG window, y ∈ {0, 1}18 the DoF-wise label representation of the concurrent movement,
and P ∈ [−1, 1]3 the 3D coordinates of the N electrodes.

Categorical cross-entropy was used as the loss function to be minimized. As the ground truth
target labels y do not sum to 1 (they do not technically describe a probability distribution),
they were linearly renormalized. While no theoretical justification for this step exists, we, like
previous work[31, 16], found that this loss formulation facilitates convergence significantly better
in multi-label settings than the seemingly more reasonable label-wise sigmoid approach[24].
With ŷ as the output of the multi-label head, the loss associated with a single example thus
be formulated as:

Lpretrain =
18∑
j=1

DKL(
yi∑18
k=1 yk

||ŷi) where DKL(p||q) = p · log p

q
(1)

and log
0

0
:= 0

The batch-wise loss was thereafter obtained as the uniformly weighted average over the examples
comprising the batch.
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The Adam algorithm[32] with β1 = 0.9, β2 = 0.999, and a batch size of 4096 was used to
minimize Lpretrain with respect to the parameters via backpropagation. All parameters were
initialized using Glorot intialization[33]. Training proceeded for 100000 iterations, using a base
learning rate of ηbase = with linear warmup for Swarmup = 10000 iterations and inverse square
root decay, such that the learning rate ηi at iteration i can be described by:

ηi = ηbase ·min

(
i

Swarmup

,

√
Swarmup

i

)
(2)

To not bias training towards databases with long recordings, a special sampling scheme was
used to construct individual training batches. Each of the 30 databases were assign a simple
quality metric:

Qi = Si ·
√
Mi · Ci (3)

Where Si, Mi, and Ci are the number of subjects, unique movements, and sEMG channels,
respectively, of the ith database. Batches were constructed by random sampling from each
database weighted by its respective quality metric. As such, the number of elapsed epochs at
the end of training (100000 iterations with batch size 4096) was not constant across databases.
For example, 19.1 epochs elapsed for the Hyser database[34], whereas only 1.1epochs elapsed
for the database from Khusbaba et al [35].

Some further modifications was performed to individual examples before being fed to the model.
To limit memory usage during training (by far the most significant bottleneck in this study),
each sEMG window was limited to only 16 channels. For examples originating from databases
with larger electrode arrays, 16 channels were randomly selected at the sampling of each window.
For databases with less than 16 channels, all channels were included and the input zero-padded
to conform to the standard batch tensor size. Furthermore, the input position matrix P was
corrupted with additive, white Gaussian noise with mean 0 and standard deviation 0.2 to
represent the uncertainty in the manually estimated positions of the training data

Dropout[36] with probability 10% and label smoothing[37] of 0.1 was employed during training.
Dropout was applied following every convolutional layer, MSA module, and after the hidden
layer of all MLPs.

2.3.1 Zero-shot Inference

As described, the pretrained ANN model with a multi-label head outputs a probability
distribution ŷ ∈ (0, 1)18 over movement labels. Naturally, this output representation lacks
inherent meaning—by construction, more than one label can be associated with each input
sEMG window and position matrix. Thus, in order to be able to use the pretrained model for
inference, we propose two simple algorithms for converting ŷ into a label set l ∈ {0, 1}18,
representing (estimate of) the true discrete movement labels coinciding with the input sEMG
window.

The first algorithm (Algorithm 1) works by iteratively constructing the label set by adding
labels in decreasing order of probability. The process stops when the total probability mass of
all previously selected labels exceeds a threshold value T ∈ [0, 1) (a hyperparameter).
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Algorithm 1 Threshold-based Label Detection

Require: ŷ: probability distribution over labels, T : hyperparameter threshold value
Ensure: l̂: binary vector representing detected labels
1: Initialize l̂← 0 of size 18
2: Initialize currentSum← 0
3: while currentSum < T do
4: Find index j such that ŷj = max(ŷ)

5: Set l̂j ← 1
6: Update currentSum← currentSum+ ŷj
7: Set ŷj ← −∞ to exclude it from future consideration
8: end while

The second algorithm (Algorithm 2) works by comparing the output distribution to a set of
externally provided candidate label sets. The candidate label sets are converted to candidate
probability distributions via linear renormalization, as was done to the ground truth targets
during pretraining. The detected label set is then set to equal the label set whose renormalized
distribution is the most similar (as measured by KL-divergence) to that produced by the ANN
model.

Algorithm 2 Label Detection Based on Candidate Similarity

Require: ŷ: input probability distribution, C: list of candidate label sets
Ensure: l̂: binary vector representing detected labels
1: Initialize D ← empty list
2: for each c ∈ C do
3: Renormalize c to create a probability distribution dc such that

∑
dc = 1

4: Append dc to D
5: end for
6: Initialize minKL← +∞, bestIndex← −1
7: for i = 1 to length of D do
8: Compute kl← KL(Di||ŷ)
9: if kl < minKL then
10: Update minKL← kl, bestIndex← i
11: end if
12: end for
13: Set l̂← CbestIndex

2.3.2 Intersubject Fine-tuning

We trained 40 models specific to the NinaPro DB2 database of healthy subjects and 11 specific
to the Ninapro Db3 database of amputees by finetuning the previously obtained geometry-
agnostic (pretrained) model. All models were trained in a using a leave-one-out cross-validation
strategy: For Ninapro DB2, each finetuned model was thus trained on 39 subjects, excluding
the subject that was to be used later as test data. Similarly, each model finetuned on Ninapro
DB3 was trained on 10 subjects.

As each model was intended to operate under a single measurement geometry, there was no need
for a fully generalized mapping from electrode geometry to positional embeddings. Instead, a
learnable 10 × 1024 matrix was used as the value of PE. This matrix was initialized using
the output of the position-encoding network (described in section 2.2) when fed the manually
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estimated 3D positions of the 10 electrodes, but was thereafter optimized together with the
rest of the model. Naturally, the remaining parameters of the models were initialized as those
learned during pretraining

During finetuning training, the classifier head (as opposed to the multi-label head) with softmax
was used to generate model outputs. With one-hot encoded ground-truth targets y, the loss to
be minimized was the standard multiclass cross-entropy:

Lfinetune =
18∑
j=1

DKL(yi||ŷi) (4)

where ŷi represents the ith softmax output. The Adam algorithm with β1 = 0.9, β2 = 0.999
was once again used, this time with a smaller batch size of 512, to minimize Lfinetune. The
finetuning process lasted for 10000 iterations, using constant learning rate of ηbase = 0.0001.

2.4 Performance Evaluation

Due to its paradigmatic role in myoelectric motor decoding, specifically for prosthesis control
applications, we use the Linear Discriminant Analysis (LDA) algorithm as a intrasubject
benchmark with which to compare both the zero-shot and finetuned intersubject models. For
both Ninapro DB2 and DB3, the TD4 feature set (Mean Absolute Value, Waveform Length,
Zero Crossings, and Slope Sign Changes) was extracted channel-wise from the same signal
windows as obtained from the previous segmentation (200 ms window duration, 50 ms
overlap). Once per subject, feature vectors originating from the first 3 movement repetitions
were used to compute summary statistics (for the purpose of standardization to zero mean
and unit variance) and train subject-specific models, while the last 3 repetitions were
withheld for testing.

The pretrained model used Algorithm 2 (together with the label decompositions of the 17
movement classes) to make inferences during testing—as LDA implicitly assumes that only the
(in this case 17) classes seen during training are possible, this is arguably a more fair comparison
than using Algorithm 1 would be. Both the pretrained model and the finetuned models was
evaluated on (the raw sEMG data of, not the features of) the same test data (comprising
repetitions 4 to 6) as the LDA models.

For all three approaches (user-calibrated LDA, fully general ANN using zero-shot inference, and
database-finetuned ANNs using end-to-end inference), we report database-wide classification
accuracy (fraction of correct inferences to total number of inferences) as the measure of model
performance.

3 Results and Discussion

On a desktop computer equipped with an NVIDIA 3090 GTX GPU, a single forward-backward
pass of a batch through the model required a wall time of 13.1 seconds, corresponding to a total
wall time of approximately 20 days for the pretraining and a total wall time of approximately
36 h for each of the 40 + 11 = 51 finetuned models. A single forward pass of a single example
with 10 sEMG channels lasted for a duration of 70.3 ms. In and of itself, this delay would
be compatible with common numbers given as the acceptable limit of myoelectric control[38].
However, the computational capabilities of the training setup used in this study are not at all
representative of those found in the embedded hardware of, for example. upper-limb prosthetics.
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An important future research direction to make large sEMG decoding models of the kind
introduced in this study viable would thus be one of model distillation, i.e. techniques for
reducing the computational requirements of already trained models. Many previous studies
have approached and proposed solutions to this specific problem (see e.g.[39, 40, 41]) , some of
which could be implemented for sEMG motor decoding ANNs without significant modification

Class-wise test accuracies for all models of this study on the Ninapro DB2 database of healthy
subjects are shown in the confusion matrices of Figure 2. The test set accuracy (across all
subjects and movement classes) exhibited by LDA was 53.1%. While this number is
significantly lower than what is usually reported in the literature, it is important to keep in
mind that the rest class was excluded. As such, the test sets were all almost perfectly
balanced, and the most easily detectable class absent. For the pretrained model using
zero-shot inference and intersubject finetuned models making end-to-end inferences the
accuracies were 24.7% and 50.9%, respectively. While the pretrained model underperforms
the benchmark substantially, it produces results far better than those expected from random
guessing. This indicates the feasibility of not only inter-user models, but fully general motor
intent decoding models independent of specific geometries. Perhaps more importantly,
intersubject models achieve approximately the same accuracy as LDA, despite never having
observed data from the subject during training. In light of this finding, we suggest that the
method outlined in this paper could represent an path towards fully calibration-free
myoelectric interfaces.

The test set accuracies (across all subjects) obtained on the Ninapro DB3 database of amputees
were 34.8% for LDA, 7.7% for the pretrained model using zero-shot inference, and 9.7% for the
database-finetuned ANN making end-to-end inferences. Class-wise accuracies are shown in the
confusion matrices of Figure 3. Thus, whereas the aforementioned results on healthy users are
promising, the performance on amputees is far less impressive. A likely explanation for this is
the major difference in the spatial configuration of muscles in the forearm between healthy and
amputee subjects[42].The same coordinate on the forearm of an amputee and healthy subject
might not even correspond to the same underlying muscle(s)[43]. As the pretrained model of
this study is optimized to extract instrumentally useful signal representations from exclusively
intact subjects, this difference makes data from amputees far out of distribution for the models.
Future research could aim to remedy this shortcoming, for example by introducing alternative
positional encoding schemes that do not explicitly rely on cylinder surface coordinates. A
potential step in this direction could be to represent the positions of electrodes via their position
relative to muscles instead of globally on the forearm. In this way, a form of transfer learning
between the signal domain of healthy users and amputee users could be obtained.
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Figures

Figure 1: Overview of the architecture of the motion decoder neural network model. The
N × 200 input EMG window (where the number of channels N and their spatial distribution is
allowed to vary between inputs) is first fed channel-wise through a temporal 1D CNN in order
to obtain channel-specific feature vectors for each of the N channels. Feature vectors are then
linearly embedded into fixed-length representations (content encodings), positionally encoded
in accordance to the positions of their respective electrodes, and fed through a Transformer
encoder model [20]. Like in a standard Vision Transformer [29], the transformer is fed an
additional learnable token whose value following processing by the transformer module is fed
into either a classifier head or a multi-label head, depending on the phase of the training.)
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(a) User-calibrated LDA

(b) Finetuned model

(c) Zero-shot model

Figure 2: Confusion matrices of the two calibration-free approaches (zero-shot and finetuned)
and the reference user-calibrated LDA method on the exercise B sub-database of the Ninapro
DB2 database of healthy subjects. Values are aggregated across all 40 subjects.
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(a) User-calibrated LDA

(b) Finetuned model

(c) Zero-shot model

Figure 3: Confusion matrices of the two calibration-free approaches (zero-shot and finetuned)
and the reference user-calibrated LDA method on the exercise B sub-database of the Ninapro
DB3 database of amputees. Values are aggregated across all 11 subjects.
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Tables

Table 1: Overview of the 30 EMG datasets used for training the geometry-aware, inter-user
EMG motion decoding model.

Name EMG channels Unique motions Participants Processed size
(GiB)

3DC [44] 10 11 22 1.5
Long-term 3DC [45] 10 11 20 1.8
Biopatrec 2013 [46] 4 11 20 0.12
Biopatrec 2014 [47] 8 27 17 0.52
Biopatrec 2015 [48] 4 10 8 0.15
CapgMyo DB-a [49] 128 11 18 21.5
CapgMyo DB-b [49] 128 11 18 10.8
CapgMyo DB-c [49] 128 13 10 2.5
CSL hdsemg [50] 168 27 5 5.0
Grabmyo [51] 28 17 43 32.6
Huang et al. 2016 [52] 16 12 5 0.62
Hyser [34] 256 34 20 66.0
Khusbaba et al. 2012a [53] 2 10 8 0.11
Khusbaba et al. 2012b [54] 8 15 8 0.94
Khusbaba et al. 2013 [55] 8 14 8 0.44
Khusbaba et al. 2014 [35] 7 8 11 1.4
Khusbaba et al. 2016 [56] 6 6 12 0.80
Malesevic et al. 2021 [57] 128 65 20 65.4
MECLab [58] 8 6 30 7.0
MyoUP [59] 8 22 8 0.54
Nearlab [60] 10 8 11 0.72
Ninapro DB4 [61] 12 53 10 2.7
Ninapro DB5 [61] 16 53 10 3.1
Ninapro DB6 [62] 14 53 9 10.2
Ninapro DB7 [63] 12 41 20 2.3
Ninapro DB8 [64] 16 19 10 5.9
Olsson et al. 2021 [65] 8 8 20 0.32
Ozdemir et al. 2022 [66] 4 10 40 0.72
PutEMG [67] 24 8 44 10.0
SEEDS [68] 126 13 25 125.2

Total 4-256 108 510* 380.6

*Some participants are likely present in multiple databases.
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Table 2: Basis labels used for generalized movement intent encoding.

Label index Name

1 Little finger flexion
2 Little finger extension
3 Ring finger flexion
4 Ring finger extension
5 Middle finger flexion
6 Middle finger extension
7 Index finger flexion
8 Index finger extension
9 Thumb flexion
10 Thumb extension
11 Thumb abduction
12 Thumb adduction
13 Wrist flexion
14 Wrist extension
15 Wrist pronation
16 Wrist supination
17 Ulnar deviation
18 Radial deviation
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Table 3: The movements classes of Ninapro DB2 and DB3, exercise B.

Class number Movement description Basis label decomposition

1 Thumb up [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
2 Extension of index and middle finger, flexion of the others [1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
3 Flexion of ring and little finger, extension of the others [1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
4 Opposing base of little finger [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
5 Extension of all fingers [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
6 Flexion of all fingers [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
7 Index extension, flexion of others [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
8 Adduction of extended fingers [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
9 Wrist supination (axis: middle finger) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
10 Wrist pronation (axis: middle finger) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
11 Wrist supination (axis: little finger) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
12 Wrist pronation (axis: little finger) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
13 Wrist flexion [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
14 Wrist extension [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
15 Radial deviation [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
16 Ulnar deviation [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
17 Wrist extension with closed hand [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
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Abstract— The use of natural myoelectric interfaces 

promises great value for a variety of potential applications, 

clinical and otherwise, provided a computational mapping 

between measured neuromuscular activity and executed motion 

can be approximated to a satisfactory degree. However, 

prevalent methods intended for such decoding of movement 

intent from the surface electromyogram (sEMG) based on 

pattern recognition typically do not capitalize on the inherently 

time series-like nature of the acquired signals. In this paper, we 

present the results from a comparative study in which the 

performances of traditional cross-sectional pattern recognition 

methods were compared with that of a classifier built on the 

natural assumption of temporal ordering by utilizing a long 

short-term memory (LSTM) neural network. The resulting 

evaluation indicate that the LSTM approach outperforms 

traditional gesture recognition techniques which are based on 

cross-sectional inference. These findings held both when the 

LSTM classifier operated on conventional features and on raw 

sEMG and for both healthy subjects and transradial amputees. 

I. INTRODUCTION 

The surface electromyogram (sEMG) [1] acquired from 
the human forearm contains a significant amount of 
information concerning neuromuscular activity associated 
with the evolving state of the hand and wrist during muscle 
usage. In essence, every channel of the sampled sEMG time 
series represents a superposition of motor unit action 
potentials (MUAP) originating from motor units located 
sufficiently close to its respective electrode pickup-site. 
Systems aimed at solving the nontrivial problem of 
untangling this seemingly stochastic, nonstationary and 
nonlinear mixture of bioelectrical factors in order to extract 
actionable commands are typically referred to as muscle-
computer interfaces (MCU) and have been subject to the 
attention of the research community for some time now. 
Current and potential future use cases for direct interfacing of 
this kind include steering of exoskeletons [2], video gaming 
[3], and, likely most commonly, control of upper limb 
prosthetics. 

 This class of prostheses; controlled via voluntary 
neuromuscular activity in the residual limb, are typically 
referred to as myoelectric and have been a part of the clinical 
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repertoire for a number of decades [4]. However, the more 
recent emergence of technologies based on pattern 
recognition has ignited the search for devices which are 
controlled naturally: that is to say, the attempted performance 
of a motion by the user corresponds to MCI output encoding 
the very same movement. Such devices have the potential to 
greatly alleviate the troubles faced by upper limb amputees, 
whose quality of life more often than not lessens after the loss 
of a limb due to the notable decrease of functionality 
accompanying the traumatic event [5]. 

Hitherto proposed systems for natural and real-time 
myoelectric control based on pattern recognition typically 
follow a similar structure, namely that of initial sEMG 
acquisition and signal preprocessing, followed by window-
based feature extraction and culminating in a single multi-
class inference per feature window [6]. Whereas very 
impressive classification accuracies in the excess of 95% 
have been reached with such schemes [7] (although with sets 
of performable movements somewhat limited in cardinality), 
widespread clinical adoption has not yet been realized. 
Although they offer significantly more functionality than the 
status quo, pattern recognition-based method still lacks the 
stability and reliability required for deployment outside of the 
laboratory. Much work is thus still required on this front. 

Traditional classifiers which have oftentimes been 
utilized as the final step within the classificatory framework 
outlined above have been cross-sectional in nature. Here, 
cross-sectional is taken to mean that the classification of one 
feature window is not impacted by the contents of earlier 
parts of the acquired sEMG signal. Thus, while sensitive to 
the temporal structure within each feature extraction window 
(granted a sufficiently sophisticated feature set and/or 
classifier), methods of this kind by necessity disregard the 
intertemporal relationship between windows. Trivially, in 
time series-like signals with strong intertemporal structure, 
cross-sectional classifiers as such by definition forfeit a 
wealth of information with potentially high predictive power. 
We hypothesize that allowing information to flow forwards 
in time to implicitly adjust the Bayesian prior probabilities at 
the moment of each classification decision should have a 
favorable effect on observed system performance. 

A recurrent neural network (RNN) [8] is a type of 
classifier which possess this desired property of allowing 
information from previous signal observations to impact later 
decisions. This class of methods has become ubiquitous in 
many applications of digital signal processing but has not 
until very recently been introduced into the context of 
myoelectric decoding, with highly promising results [9,10]. 
To further explore this avenue of inquiry, this paper presents 
a comparative study in which a traditional myoelectric 
pattern recognition pipeline incorporating cross-sectional 
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classifiers is evaluated alongside a pipeline with a to the 
problem novel long short-term memory (LSTM) [8] recurrent 
neural network classifier. Results are presented in the form of 
relevant performance measures computed sEMG data 
collected from both intact and amputee test subjects. 

 
Figure 1. Visualization of the myoelectric pattern 

recognition procedure for (a) the cross-sectional classifiers 
and (b) the LSTM network time series classifier (when 
applied to extracted TDAR6 features). Note that the LSTM-
based classifier was additionally applied directly to raw 
sEMG measurements (not pictured). 

II. METHODS 

A.  Data acquisition 

The sEMG recording, with corresponding gesture 
annotations, which were processed (offline) in this study 
were collected from the publicly available NinaPro dataset of 
hand gestures [11]. Three separate databases in total; DB2 
[11], DB3 [11] and DB7 [12], were selected for the purposes 
of our analysis. DB2 contains sEMG recordings acquired 
from 40 intact and otherwise healthy test subjects. DB3 
contains sEMG recordings acquired from 13 transradial 
amputees. DB7 contains sEMG recordings acquired from 22 
test subject, of which 20 are healthy and 2 are amputees. As 
such, the data under consideration here represents a total of 
60 intact subjects and 13 amputees with varying amount of 
residual limb remaining. We concentrated our work 
exclusively on exercises A and B; identical across the three 
databases, containing within them both rest and 40 mutually 
exclusive isometric and isotonic postures, wrist movements 
and grasps, all performed by every subject for a total of 41 
motion classes. During acquisition, each such motion is 
performed 6 times for a duration of 5 s each, with 3 s of rest 
separating each repetition. sEMG signals are acquired from 
12 surface electrodes; 8 of which are equidistantly enclosing 
the forearm at the height of the humeroradial joint, 2 of 
which are situated at the flexor digitorum superficialis and 
the flexor digitorum superficialis muscles, respectively, and 
the 2 remaining covering the biceps brachii muscle and its 
antagonist; the triceps brachii muscle. The actual sEMG 
measurements thus take the form of 12 separate digital time 
series sampled at a rate of 2 kHz and a synchronously 
acquired target signal of integers encoding the motion 
cooccurring with sEMG acquisition.  

B. Preprocessing 

In addition to the preprocessing steps already applied to 
the externally collected data as part of the acquisition 
protocol (e.g. Hampel filtering), we separately filter each 
sEMG channel with both a 2:th order 48-52 Hz digital 
Butterworth band stop filter (for removal of power line 
interference) and with a 6:th order 5-500 Hz digital 
Butterworth band pass filter (for the removal of noise). 

 Each time sample is labeled according to its repetition 
affiliation, i.e. assigned an integer value between 1 and 6. 
Moments of rest are grouped together with the repetition 
closest to them in time. The signal can subsequently be 
segmented according to repetition affiliation, with those 
samples belonging to repetitions 1-4 grouped into a training 
sequence and those belonging to repetitions 5-6 into a 
validation sequence. This procedure generates a training and 
a validation sequence, each with an internal order congruent 
with that in which samples were originally acquired through 
time. Thus, as different segments of each sequence are in 
reality extracted from different motions and even recording 
sessions, this method will sometimes result in long ‘jumps’ in 
time between adjacent samples. However, as all 
discontinuities of this kind occur during the moments of rest 
between motions, we assume they do to not significantly 
impact the observable dynamics of the sEMG measurements. 

With temporally structured, raw sEMG training and 
validation data now available for every subject, features are 
extracted via a sliding window of length 100 ms (200 
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samples at the sampling rate of 2 kHz) and with increment 
step size of 50 ms (100 samples, i.e. 50% window overlap). 
The sliding window is independently used to scan the 
training and validation sequences, thus giving rise to two new 
temporally structured sequences of feature values per subject. 
The selected feature set is composed of the 4 time-domain 
features pioneered by Hudgins et al. [13], i.e. MAV (mean 
average value), WL (waveform length), ZC (zero crossings) 
and SSC (slope sign changes), concatenated with the 6 
characteristic polynomial coefficients of a to the samples of 
the window fitted 5:th order AR (autoregressive) model [14]. 
This particular selection of features is ubiquitous in the 
sEMG pattern recognition literature [15] and is typically 
referred to as TDAR6. With 12 concurrent sEMG channels, 
this extraction method generated a total of 12×(4+6)=120 
numeric values per sliding window location. Prior to 
classifier training, all features were rescaled by subtraction by 
the training sequence (per feature) mean and division by the 
training sequence (per feature) standard deviation. To assign 
a ground truth class label to each sliding window location, 
majority voting across the ground truth classes of the 
constituent window time samples are undertaken to 
consistently handle windows covering transient parts (onset 
of motion and rest) of the signal. 

C. Classification 

Five well-known statistical classification algorithms, 
selected to represent the cross-sectional status quo, are used 
for benchmarking of the proposed LSTM-based alternative: 
LDA [16] (linear discriminant analysis), SVM [17] (support 
vector machine), kNN [18] (k-nearest neighbors), RF [19] 
(random forest) and ERT [20] (extremely randomized trees). 
These methods have all with varying degrees of success been 
applied to the problem of myoelectric pattern recognition in 
previous studies [15], with the RF classifier oftentimes 
acknowledged as well-adapted to tasks with large motion 
class set cardinality [11]. As hyperparameter optimization 
lies outside the scope of this study, hyperparameters were 
(when applicable) selected ad-hoc in accordance with what is 
typical in tasks of pattern recognition: For SVM, the kernel 
function is set as RBF (radial basis function). For kNN, the 
number of neighbors is set as 10. For both RF and ERT, the 
number of trees is set as 100. For all classifiers where 
applicable, the multiclass decision function is selected as one-
versus-rest. For implementation1, we utilized the open source 
scikit-learn library [21] (interfaced with via Python 3.6). 

During training, the five cross-sectional classifiers are, 
once per subject, fitted to the training sequence of feature 
values (originating from motion repetitions 1, 2, 3 and 4) 
extracted as described in the previous sections. The training 
data is balanced by randomly discarding window locations 
labeled as belonging to more abundant classes until the 
number of available examples are equal for all motion 
classes. As the rest class is massively overrepresented in the 
collected data, this step is necessary to avoid classifier bias 
and later give meaningful performance metric values. 

The titular recurrent neural model of this paper contains a 
single LSTM layer with 64 output nodes and a tanh output 
gate activation, followed by batch normalization [22] and 
25% dropout [23], ending with a 41-way (the number of 
motion classes) fully connected layer and a SoftMax 
activation layer for classification. For training, we use the 

Adam algorithm [24] with learning rate 0.0005, β1=0.9 and 
β2=0.999 together with L2 weight regularization with a decay 
rate of λ=10-6. The truncated backpropagation through time 
(T-BPTT) scheme for optimization employed here makes use 
of a per training sample memory of 1000 time steps. The 
training procedure proceeded for a total of 50 epochs, with a 
minibatch size of 32. This resulted in an aggregate model 
training time of approximately 2h per test subject on a 
desktop equipped with a NVIDIA GeForce GTX 1070 GPU, 
with models instantiated1 in Python 3.6 via TensorFlow [25]. 

Two separate LSTM networks of this kind are trained 
(subject-wise): one on the training sequence of feature 
windows, and one on the raw sEMG training sequence. For 
the latter case, the raw sEMG signals are downsampled by a 
factor of 2 due to memory restrictions and rescaled in the 
same fashion as the feature sequences. Just as for the cross-
sectional classifiers, data is balanced w.r.t. class labels by 
randomly ignoring time points corresponding to 
overrepresented classes in proportion to relative class 
abundance. This ensures that all classes are used to an equal 
degree in the updating of network weights. 

Following training, all classifiers were evaluated on the 
validation sequences (acquired from motion repetitions 5 and 
6 for each subject). The validation sequences are, in contrast 
to the training sequences, not balanced, as interference of this 
kind would not preserve the temporal ordering required by 
the LSTM networks for proper functioning. The internal state 
of the LSTM cells is not reset following inference, and 
predictions are generated at each time point based on both the 
contemporary sample and the internal representation of the 
validation sequence in its entirety so far. As the LSTM 
network trained on raw sEMG signals thus produces one 
prediction per time sample, simple majority voting with a 
sliding window with the same properties as the feature 
extraction window (i.e. 200 ms in length, 50% overlap) is 
undertaken on its output in order to yield results identical in 
classification rate to those of the other methods. 

D.  Performance metrics 

To evaluate and subsequently compare the manifest 
performance of the fitted classifiers, a set of metrics 
previously introduced in the EMG pattern recognition 
literature is computed for all subjects and motion repetitions 
(listed below). Each metric gives rise to a single descriptive 
scalar value per test subject. 

 Accuracy (Acc): The proportion of sliding window 
locations (globally) which predicted class 
corresponds to their ground truth class. The 
optimal (highest possible) value for Acc is 
100%.  

 Motion Selection Time (MS) [26]: The average 
(across motion repetitions) number of window 
increments between motion onset and the first 
correctly classified window. Motion onset for a 
repetition is defined as the first sample whose 
corresponding ground truth class signal assumes 
a value different from rest. Repetitions where 
selection is never reached (i.e. the classifier 
never correctly infers the correct motion) are 
ignored for the purposes of computing MS. The 
optimal (lowest possible) value for MS is 0. 
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 Motion Completion Time (MC) [26]: The average 
(across motion repetitions) number of window 
increments between motion onset and motion 
completion. Motion completion for a repetition 
is here defined as the sliding window location 
where a total of 20 correct inferences have been 
made by the classifier (cumulatively). 
Repetitions where completion is never reached 
(i.e. less than 20 windows in total are classified 
correctly) are ignored for the purposes of 
computing this metric. The optimal (lowest 
possible) value for MC is 20.  

 Motion Completion Rate (MCR) [26]: The 
proportion of repetitions (globally) for which 
motion completion is reached. The optimal 
(highest possible) value for MCR is 100%. 

 Dynamic Efficacy (DE) [26]: The ratio of correct 
predictions to total predictions (cumulative over 
the repetition) at the window at which motion 
completion is achieved, averaged across all 
repetitions. Repetitions where completion is 
never reached are ignored for the purposes of 
computing this metric. The optimal (highest 
possible) value for DE is 100%. 

In addition, we compute two novel measures of 
performance as defined below: 

 Effective Accuracy (EA): The product of MCR and 
DE. The optimal (highest possible) value for EA 
is 100%. 

 Motion Set Utility (MSU): The proportion of 
motions classes for which all repetitions were 
completed successfully. The computation of this 
metric allows for evaluation of both the classifier 
in question and the selected set of movements, 
and furthermore identifies whether successful 
motion completions are concentrated to a limited 
set of motions or not. The optimal (highest 
possible) value for MSU is 100%. 

III. RESULTS 

The performances of the cross-sectional classifiers 
(operating on the TDAR6 feature set) are presented in table 
1. The performance of the LSTM time series classifier 
(operating on both the TDAR6 feature set and raw sEMG 
measurements) is presented in table 2. With healthy subjects, 
the highest accuracy was achieved with quite a large margin 
by the LSTM network model operating on the TDAR6 
feature set (65.7±7.0%), followed closely by the very same 
classifier operating on raw sEMG voltages (64.0±12.8%). 
The advantages of these classifiers prevailed for amputee 
subjects, where their respective accuracies decreased to 
48.2±13.0 and 37.7±11.9%. In the EMG-specific metrics, the 
RF and ERT classifiers are often similar to and sometimes 
even surpasses the performance of the LSTM network. As 
can be deduced from the ranges presented in the tables, 
intersubject variation is quite significant for many classifier-
metric combinations. 

 

 LDA SVM kNN RF ERT 

Acc Healthy: 

49.7±12.8 
Amputees: 
28.0±11.3 

Healthy: 

52.8±11.9 
Amputees: 
29.7±11.6 

Healthy: 

41.7±13.7 
Amputees: 
22.9±9.9 

Healthy: 

53.0±13.9 
Amputees: 
29.6±13.2 

Healthy: 

52.6±14.3 
Amputees: 
29.4±13.1 

MS Healthy: 
8.3±2.3 
Amputees: 
11.5±5.3 

Healthy: 
6.4±2.4 
Amputees: 
10.6±4.9 

Healthy: 
6.8±2.1 
Amputees: 
11.9±5.3 

Healthy: 
5.6±2.2 
Amputees: 
10.2±4.7 

Healthy: 
5.7±1.9 
Amputees: 
10.3±5.9 

MC Healthy: 
40.2±6.0 
Amputees: 
51.6±8.2 

Healthy: 
38.3±5.5 
Amputees: 
52.3±10.1 

Healthy: 
42.9±6.3 
Amputees: 
57.3±7.9 

Healthy: 
35.9±5.2 
Amputees: 
50.0±10.0 

Healthy: 
36.8±5.4 
Amputees: 
51.4±10.3 

MCR Healthy: 
93.3±3.4 
Amputees: 
65.9±18.2 

Healthy: 
94.9±3.3 
Amputees: 
69.0±17.1 

Healthy: 
88.8±6.0 
Amputees: 
54.5±18.0 

Healthy: 
95.7±3.3 
Amputees: 
71.7±17.9 

Healthy: 
95.4±3.6 
Amputees: 
69.3±18.8 

DE Healthy: 
56.8±6.6 
Amputees: 
46.9±6.6 

Healthy: 
59.2±6.6 
Amputees: 
46.7±7.5 

Healthy: 
53.0±6.3 
Amputees: 
41.7±6.3 

Healthy: 
63.3±7.1 
Amputees: 
49.4±8.7 

Healthy: 
61.8±7.1 
Amputees: 
48.2±8.7 

EA Healthy: 
53.0±6.6 
Amputees: 
31.5±10.5 

Healthy: 
56.2±6.9 
Amputees: 
33.0±9.9 

Healthy: 
47.1±6.6 
Amputees: 
23.3±8.9 

Healthy: 
60.6±7.1 
Amputees: 
36.5±11.6 

Healthy: 
59.0±7.3 
Amputees: 
34.5±11.4 

MSU Healthy: 
89.3±5.2 
Amputees: 
54.3±18.0 

Healthy: 
91.4±5.0 
Amputees: 
56.7±15.5 

Healthy: 
83.0±8.4 
Amputees: 
42.6±16.0 

Healthy: 
92.7±5.2 
Amputees: 
60.6±16.3 

Healthy: 
92.4±5.4 
Amputees: 
57.9±17.8 

Table 1. The performance metrics for each of the cross-
sectional classifiers. The reported values were computed via 
averaging over all subjects across all databases. The reported 
ranges (following ±) represent the standard deviations 
(computed across all subjects). 

 

 LSTM (on TDAR6 features)  LSTM (on raw sEMG) 

Acc Healthy: 
65.1±9.3 
Amputees: 
43.8±12.1 

Healthy: 
64.0±12.8 
Amputees: 
37.7±11.9 

MS Healthy: 
12.7±3.5 
Amputees: 
18.0±7.1 

Healthy: 
13.2±5.0 
Amputees: 
17.3±7.6 

MC Healthy: 
34.3±4.0 
Amputees: 
39.6±7.7 

Healthy: 
36.6±5.3 
Amputees: 
40.8±8.5 

MCR Healthy: 
81.9±6.1 
Amputees: 
63.5±14.1 

Healthy: 
91.3±5.4 
Amputees: 
64.9±20.7 

DE Healthy: 
70.5±5.6 
Amputees: 
67.1±8.4 

Healthy: 
66.2±6.3 
Amputees: 
64.4±12.3 

EA Healthy: 
57.9±7.1 
Amputees: 
43.5±12.4 

Healthy: 
60.6±7.8 
Amputees: 
39.7±12.7 

MSU Healthy: 
72.2±8.4 
Amputees: 
49.6±13.1 

Healthy: 
85.9±8.0 
Amputees: 
52.3±16.8 

Table 2. The performance metrics of the LSTM-based 
classifier. The reported values were computed via averaging 
over all subjects across all databases. The reported ranges 
(following ±) represent the standard deviations (computed 
across all subjects). 
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IV. DISCUSSION AND CONCLUSIONS 

In this comparative study, five cross-sectional 
classification algorithms (LDA, SVM, kNN, RF, ERT) and 
one time-series based classification algorithm (an LSTM 
network) were evaluated on data from a total of 73 subject, 
collected from the publicly available NinaPro database. The 
time series approach resulted in significantly higher accuracy, 
without significant cost to the other selected performance 
metrics. However, compared to other studies utilizing similar 
methods, e.g. [11], and applying them to the same data, the 
performance presented here was notably worse. The reason 
for this is conjectured to lie mainly in our deliberate 
balancing of the training data, resulting in classifiers unable 
to capitalize on the abundance of rest samples in the 
validation data. Somewhat unexpectedly, the use of our 
LSTM network achieved slightly higher accuracy when 
applied to TDAR6 features than when applied to raw sEMG 
data. It is indeed possible that the combination of traditional 
feature extraction-based methods with more modern ‘deep’ 
approaches can yield better results when combined 
effectively than either applied separately. Regardless, our 
results indicate that approaches based on RNN topologies are 
a promising research topic to investigate further in the search 
for stable and accurate myoelectric interfaces.  
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Can Deep Synthesis of EMG Overcome the Geometric Growth of
Training Data Required to Recognize Multiarticulate Motions?*

Alexander E. Olsson1, Nebojša Malešević1, Anders Björkman2, and Christian Antfolk1

Abstract— By being predicated on supervised machine learn-
ing, pattern recognition approaches to myoelectric prosthesis
control require electromyography (EMG) training data col-
lected concurrently with every detectable motion. Within this
framework, calibration protocols for simultaneous control of
multifunctional prosthetic hands rapidly become prohibitively
long—the number of unique motions grows geometrically with
the number of controllable degrees of freedom (DoFs). This
paper proposes a technique intended to circumvent this combi-
natorial explosion. Using EMG windows from 1-DoF motions
as input and EMG windows from 2-DoF motions as targets,
we train generative deep learning models to synthesize EMG
windows appertaining to multi-DoF motions. Once trained,
such models can be used to complete datasets consisting of
only 1-DoF motions, enabling simple calibration protocols with
durations that scale linearly with the number of DoFs. We
evaluated synthetic EMG produced in this way via a classifica-
tion task using a database of forearm surface EMG collected
during 1-DoF and 2-DoF motions. Multi-output classifiers were
trained on either (I) real data from 1-DoF and 2-DoF motions,
(II) real data from only 1-DoF motions, or (III) real data
from 1-DoF motions appended with synthetic EMG from 2-
DoF motions. When tested on data containing all possible
motions, classifiers trained on synthetic-appended data (III)
significantly outperformed classifiers trained on 1-DoF real data
(II), although significantly underperformed classifiers trained
on both 1- and 2-DoF real data (I) (p < 0.05). These findings
suggest that it is feasible to model EMG concurrent with
multiarticulate motions as nonlinear combinations of EMG
from constituent 1-DoF motions, and that such modelling can
be harnessed to synthesize realistic training data.

I. INTRODUCTION

In order to restore upper limb functionality, a myoelectric
prosthetic hand should ideally require little effort to control
and at the same time allow the user to perform a wide range
of grasps and motions. The first desideratum—naturalness
of control—is in theory straightforwardly achievable by
pursuing myoelectric control based on pattern recognition
[1]. Within this framework, the prosthesis control problem
is formulated as one of statistical prediction: by utilizing
data comprised of electromyography (EMG) signals and
concurrent motion labels, machine learning algorithms can

*Research supported by the Promobilia Foundation, the Crafoord Foun-
dation, the European Commission under the DeTOP project (LEIT-ICT-24-
2015, GA #687905), and the Swedish Research Council (DNR 2019-05601).

1A. E. Olsson, N. Malešević, and C. Antfolk are with
the Dept. of Biomedical Engineering, Faculty of Engi-
neering, Lund University. P.O. Box 118, Lund, Sweden.
{alexander.olsson, nebojsa.malesevic,
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2A. Björkman is with the Department of Hand Surgery, In-
stitute of Clinical Sciences, Sahlgrenska Academy, University of
Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
anders.bjorkman@gu.se

be trained to classify EMG time segments as belonging to one
out of multiple predefined motion classes. Decisions from
algorithms trained in this way can be interpreted as motion
commands to be sent to a motorized prosthesis.

By construction, pattern recognition myoelectric control
requires EMG training data from every motion that is to be
performable by the prosthesis user. This presents an obvious
obstacle to achieving diversity of possible motions. The
problem is exacerbated by the fact that simultaneous con-
trol—here meaning the ability to independently steer every
kinematic degree of freedom (DoF) at the same time—is
arguably one of the ultimate goals of the prosthesis control
field [2]. To realize the scope of the problem of achieving
simultaneous control with pattern recognition methods, one
can consider the case of a prosthetic hand with D DoFs, each
of which can assume S states. The number of unique motions
M such a system can perform is M = SD, i.e. the number
of unique motions grows geometrically with the number of
controllable DoFs. Thus, as the mechanical sophistication
of prostheses increases, the number of motions that need
to be recorded from amputees is subject to a combinatorial
explosion. Corollarily, exhaustively recording EMG signals
from every possible motion entails long and complicated
acquisition protocols even for relatively small values of D
and S.

In light of the difficulties in procuring sufficient data for
training simultaneous control methods within the pattern
recognition paradigm, we propose a method intended to
circumvent the need for exhaustive, user-specific datasets. In
brief, we introduce a novel artificial neural network (ANN)
architecture and use it to explicitly model user-independent
relationships between EMG from motions incorporating mul-
tiple DoFs and EMG from constituent 1-DoF motions. Once
trained on pairings of EMG windows from a multi-subject
dataset comprised of 1-DoF motions and all of their possible
combination motions, such models can be used to synthesize
user-specific EMG windows associated with multiarticulate
motions from real examples of 1-DoF EMG windows. Using
this framework, new prosthesis users would only need to
perform all relevant 1-DoF motions (i.e. a total of D · S
unique motions) for the purpose of calibration, after which
standard pattern recognition control interfaces can be trained
on a dataset including synthetic multi-DoF EMG. In this
study, the quality of synthetic EMG produced with this
method was evaluated via a classification task: performance
metrics obtained from multi-output classifiers trained on
real data was compared to metrics obtained from classifiers
trained on real data augmented with synthetic EMG.
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Previous work has been successful in synthesizing EMG
signals for the purpose of training data augmentation, either
via explicit simulations [3] or via deep generative learning
[4]. Although studies concerning EMG motion decoding
has often conceptualized motions as composed of 1-DoF
’basis’ motions for the purpose of multi-output classification
(e.g. [2], [5]), we are not aware of any existing attempts to
leverage this combinatorial view in order to synthesize EMG.

II. METHODS

A. Data

The database of EMG recordings with synchronized mo-
tion annotations used here was originally collected for the
purpose of a previous study [6]. In brief, myoelectric sig-
nals were recorded from 20 healthy subjects using a Myo
armband (Thalmic labs, Canada) consisting of 8 circularly
arranged bipolar surface electrodes. The armband was placed
enclosing the dominant forearm of the subject at a level
approximately 1/3 of the distance from the elbow to the
wrist. EMG signals were sampled at a rate of 200 Hz.
The collection protocol entailed the use of two DoFs: (I)
flexion/extension of the wrist and (II) flexion/extension of all
digits simultaneously. Motions were encoded using a ternary
scheme, wherein each DoF could assume 1 out of 3 values
at each time point: -1 (flex), 0 (neutral/stall), or 1 (extend).
This scheme allows for SD = 32 = 9 possible motions
(listed in table I), all of which were recorded. Each motion
was repeated R = 3 times, with repetitions lasting for 5
seconds and separated by 3 s of rest.

An inter-subject leave-one-out cross-validation design was
used to partition the data for the purpose of training and
evaluating the generative framework. At each iteration, data
from 19 subjects were used to train a synthesizer model via
the procedures outlined in the sections following. Data from
the remaining, held-out subject were lastly used as the basis
for intra-subject classifier training and testing for the purpose
of evaluating the impact adding synthetic training data has
on pattern recognition performance.

TABLE I: The 9 recorded motions comprising the database.

Motion Description Ternary Encoding
Rest [0, 0]
Flexion of the wrist [-1, 0]
Extension of the wrist [1, 0]
Flexion of the digits [0, -1]
Extension of the digits [0, 1]
Flexion of the wrist & Flexion of the digits [-1, -1]
Flexion of the wrist & Extension of the digits [-1, 1]
Extension of the wrist & Flexion of the digits [1, -1]
Extension of the wrist & Extension of the digits [1, 1]

B. Preparation of Synthesizer Training Data

At each cross-validation iteration, raw EMG time series
Xc[n] from the 19 subjects constituting the training data were
clipped at the 1:st and 99:th percentiles and normalized to the
range [−1, 1] separately for each channel c = 1, ..., 8. Con-
ditioned signals Sc[n] obtained in this way were, separately

for each subject, segmented into a set of EMG time windows
{Er

i,j}, where Er
i,j ∈ R600×8 represents the middle 3 s (600

samples) of the r:th repetition of the motion with ternary
encoding i∈{−1, 0, 1}, j∈{−1, 0, 1}. With 8 unique nonrest
motions (from table I) repeated 3 times, 3 ·8 = 24 such time
windows were obtained per subject. To construct training
data for the ANN model, EMG window instances originating
from 2-DoF motions—designated as the target value—were
paired with two EMG window instances originating from
its two constituent, 1-DoF movements—designated as input
values. By including every possible pairing of repetitions,
this approach resulted in a training set consisting of a total
of M · R3 = 4 · 33 = 108 input-output pairs per subject,
where M = SD − D − 1 = 4 is the number of unique 2-
DoF motions and R = 3 is the total number of available
repetitions for each motion.

C. Synthesizer Model

All deep learning models used in this study were im-
plemented and instantiated using the TensorFlow 1.12 li-
brary executed with Python 3.6. Inspired by the variational
autoencoding [7] approach to distribution modeling, the
synthesizer model architecture introduced and applied here
(illustrated graphically in fig. 1) performs a mapping from
two EMG windows recorded during two different single-
DoF motions—DoF 1 and DoF 2, respectively—to an EMG
window recorded concurrently with the motion consisting of
DoF 1 and DoF 2 active simultaneously. Specifically, the
architecture consists of 3 modules: two encoder networks, a
mixer network, and a decoder network.

Fig. 1: Schematic overview of the synthesizer model.
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• Encoder. The encoder networks transform the input 1-
DoF EMG windows Ei,0 ∈ R600×8 and E0,j ∈ R600×8

into code vectors C1 ∈ R1024 and C2 ∈ R1024,
respectively. They consist of 6 2D convolution layers
with kernel sizes [9×1], [1×3], [15×1], [1×3], [15×1],
and [1× 3]; output depths 64, 64, 256, 256, 1024, and
1024; and strides [6 × 1], [1 × 2], [10 × 1], [1 × 2],
[10 × 1], and [1 × 2]. Each layer is followed by leaky
ReLU activation, layer normalization, and 50% dropout.
The encoder networks share weights during training.

• Mixer. The mixer network transforms the encoder out-
put codes C1 and C2 into a mean vector µ ∈ R1024 and
standard deviation vector σ ∈ R1024. This is achieved
using a single fully connected layer of output size 2048
with linear activation function, whose output is split in
two. The obtained vectors are used to define a 1024-
dimensional distribution N(µ, diag(σ)), from which a
sample code C1,2 is drawn and presented as output.

• Decoder. The decoder network transforms an input
mixture code C1,2 ∈ R1024 into an 2-DoF synthetic
EMG time window Êi,j ∈ R600×8. Mirroring the
architectures of the encoders, the decoder consists of
6 2D transposed convolution layers with kernel sizes
[1× 3], [15× 1], [1× 3], [15× 1], [1× 3], and [9× 1];
output depths 1024, 256, 256, 64, 64, and 1; and strides
[1× 2], [10× 1], [1× 2], [10× 1], [1× 2], and [6× 1].
The first 5 transposed convolution layer are followed
by leaky ReLU activation, layer normalization, and 50%
dropout; the final layer is followed by a linear activation.

Models were trained end-to-end to minimize the loss L:

L = Lr + Ls + Ld (1)

The reconstruction loss Lr quantifies the discrepancy
between the synthetic 2-DoF EMG window produced by
the network and the target 2-DoF EMG window provided
during training. It is obtained by computing the squared
Euclidean distance between the absolute frequency spectrum
of the target Ei,j and the absolute frequency spectrum of the
decoder output Êi,j :

Lr = ‖FFT (Ei,j)| − |FFT (Êi,j)‖22 (2)

The spread loss Ls incentivizes the encoder network
to learn different code representations for EMG windows
originating from different 1-DoF motions:

Ls = max(0, 10− ‖C1 −C2‖22) (3)

The divergence loss Ld regularizes the ANN model by
penalizing mixer output distributions N(µ, diag(σ)) with
large Kullback–Leibler divergence compared to the normal
distribution with zero mean and unit variance:

Ld = KL(N(µ,σ), N(0,1)) (4)

Loss minimization was performed iteratively by use of the
Adam algorithm [8] with η = 10−4, β1 = 0.9, β2 = 0.999,
training in mini-batches of size 1024 for a total of 5000
epochs. At the start of the training, all network parameters
were given initial values via Glorot initialization.

D. Synthetic Data Evaluation

Signals from the held-out subject were split into classifier
training and testing data on the basis of repetition: data from
the first and second repetition of each motion for training and
data from the last repetition for testing. This designation was
used to produce 4 pattern recognition training datasets:

• I: Complete. Real EMG from all motions.
• II: Pruned. Real EMG from all 1-DoF motions.
• III: Deep Augmentation. Real EMG from 1-DoF

motions appended with synthetic EMG from 2-DoF mo-
tions produced by the trained synthesizer model. This
training set was created by feeding every combination
of 1-DoF motion repetitions as inputs to the network;
as the first two repetitions of each motion had been
selected for pattern recognition training, this resulted in
22 = 4 synthetic EMG repetitions per unique 2-DoF
motion.

• IV: Additive Augmentation. Real EMG from all 1-
DoF motions appended with synthetic EMG repetitions
for all 2-DoF motions created by simply summing every
possible pair of real EMG signals from 1-DoF motion
repetitions. This reference training set was included as
a comparison to ensure that any classifier performance
gain brought about by the deep synthesizer model
reflects properties of the synthesized signals and not
simply an inflated training set.

For each of the 4 datasets, signals were segmented into fea-
ture vectors with a sliding window technique using 250 ms
(50 samples) time windows with step size 5 ms (1 sample).
A conventional time-domain feature set [9] (mean-absolute
value (MAV), zero-crossings (ZC), slope-sign change (SSC),
waveform length (WL)) was extracted from each window,
producing a 32-dimensional feature vector at each window
location. A target 2-dimensional ternary label vector asso-
ciated with each feature vector was created by a DoF-wise
majority vote over the samples of the time window. All 32
features were normalized to have zero mean and unit variance
across each pattern recognition training set. A single pattern
recognition test set was created in an identical manner using
the last repetition of all 8 nonrest motions.

For each of the 4 pattern recognition training sets, one
3-class Linear Discriminant Analysis (LDA) classifier was
trained per DoF; the D = 2 classifiers trained on each
training set can together be viewed as a single multi-output,
multi-class classifier whose performance is indicative of the
quality of the training set. A choice of two multi-output clas-
sification metrics—Exact Match Rate (EMR) and Hamming
Loss(HL)—were computed to quantify the performance of
each of the 4 multi-output classifiers when operating on the
test set. For both metrics, the difference in mean (across
the 20 cross-validation iterations) was computed between the
pruned (II) and deep augmentation (III) datasets, between
the full (I) and deep augmentation (III) dataset, and between
the deep augmentation (III) and additive augmentation (IV)
datasets. Wilcoxon signed-rank tests with α = 0.05 were
used to assess the significance of observed differences.
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III. RESULTS

An example of a synthetic EMG window produced by a
deep synthesizer model and an example of a corresponding
real EMG window (i.e. from the same subject and motion)
are shown together in fig. 2. Performance metrics achieved
by LDA classifiers trained on complete (dataset I), pruned
(dataset II), and partially synthetic (datasets III and IV) data
are summarized in fig. 3. For the EMR metric, the mean
increase between dataset II (67.86%) and III (75.42%) was
7.59% (p = 0.00039), the mean increase between dataset IV
(70.60%) and dataset III was 4.82% (p = 0.0064), and the
mean increase between dataset III and dataset I (87.96%)
was 12.54% (p = 0.000089). Similarly for the HL metric,
the mean decrease between dataset II (17.95%) and dataset
III (13.41%) was 4.54% (p = 0.00078), the mean decrease
between dataset IV (15.72%) and dataset III was 2.31% (p =
0.014), and the mean decrease between dataset III and dataset
I (6.24%) was 7.17% (p = 0.000088).

(a) Real EMG window. (b) Synthetic EMG window.

Fig. 2: Example of real and synthetic EMG windows from
the same 2-DoF motion and subject.

(a) Exact Match Rate.

(b) Hamming Loss.

Fig. 3: Multi-output performance metrics of LDA classifiers
trained on datasets I-IV.

IV. CONCLUSION

This paper has proposed a deep learning-based approach
for completing EMG pattern recognition training datasets
containing only 1-DoF motions with synthetic EMG asso-
ciated with multi-DoF motions. To assess the viability of the
approach, the impact on classifier performance of partially
synthesized data was investigated. The inclusion of EMG
synthesized via the novel approach resulted in significantly
higher performance (as measured by two metrics) compared
to when using unaugmented data and augmented data created
with a naive reference method. Nevertheless, the quality of
the synthesized 2-DoF data was found to be strictly inferior
to real EMG signals from 2-DoF motions for the purpose
of training pattern recognition algorithms. Even so, these
findings show that it is possible to model a user-independent
relationship between EMG from multi-DoF motions and
EMG from constituent 1-DoF motions, and that such models
can be used to generate practically applicable training data.

Although this work only involved models operating on
EMG from 2-DoF motions, there is no fundamental obstacle
to extending the approach presented here to an arbitrary
number of controllable DoFs. However, the need to record
all combinations for the purpose of initially training a syn-
thesizer model puts a practical upper limit on the number
of DoFs manageable by the approach. In addition to ex-
tending the method to dataset with additional DoFs, future
work could evaluate the use of alternative machine learning
methods aimed at image or signal combining (e.g. [10]).
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