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Preface

As I approach the end of this journey, I find myself wanting to put some of the thoughts
I’ve had writing this thesis into words.

About six years ago, during the last year of my Master’s degree in Biomedicine, I participated
in a course in microscopy at the Biology Department. I did not select this course from the
point of view of ’This is what I want to do’, but rather that it was the most interesting course
out of the options I was presented. At the time, I was rather tired of what I was doing, I
knew I had a profound fascination about biology and the molecular processes that makes
up who we are, but the fatigue of studying for so long had finally caught up with me. Little
did I know what I signed up for when I took this course, and where it would take me.

It was during this course that me and my supervisor, Pontus, met. He had just returned
from his post-doc and was having a presentation on the work he had been conducting.
How he and his co-authors had setup a system to measure the force that is generated when
a cell binds to a surface, and all the clever engineering and problem-solving that took place
in order to get it working. I was so fascinated by this, that I decided to ask him about
running my final project for my degree in his lab.

I think it was during this time that he saw what a massive nerd I was. I had always been
the kid who sat in front of the computer, ’wasting my hours away’. However, despite my
interests, I never learned how to code. As with a lot of people, I thought you needed to
proficient in math in order to code, something that was not my strength (also a motivating
factor for studying biology). Thankfully, Pontus proved me otherwise, and we embarked
on a journey together, with the aim of being able to capture and study bacterial infections
using the microscope in an automated way.

Fast forward till today, six years later, with me sitting here wrapping up my thesis. Setting
out I wanted my thesis to reflect this journey, and explore all the subjects that relate to
my work. However, I cannot shake the feeling off of not having truly explored everything
at depth, to give the subjects the respect they deserve. Nevertheless, I do hope it gives a
glimpse of what these last six years have been like. Cheers!
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Populärvetenskaplig sammanfattning på svenska

Mikroskopi är idag ett fundamentalt verktyg inom forskning, där det tillåter oss att skåda
in och utforska våra prover i hög detalj. Mycket utav utvecklingen av nya mikroskopimeto-
der har strävat efter att öka den detaljnivå vi kan uppnå. Samtidigt har utvecklingen inom
hårdvara, med tillgång till bättre och mer kraftfulla instrument, lett till utveckligen av me-
toder där fokuset är att studera en hel population av celler. Till skillnad från när vi studerar
ett fåtal celler i hög detalj, tillåter det oss att sätta perspektiv på det vi ser. Det ger oss en
förmåga att säga vad det normala beteendet som man kan förvänta sig är, och vilka celler
som sticker ut i en population. Med andra ord, vad som är intressant.

Samtidigt finns det ett stort intresse av att veta hur varje individuell cell beter sig. Varje
cell är, precis som oss människor, unik. De har olika historia, olika ålder och befinner sig i
olika tillstånd. Precis som våra celler i kroppen är unika, är även de cellerna som kan orsaka
sjukdom unika. För att förstå varför vissa personer är mer känsliga mot sjukdom, och hur en
infektion svarar på våra behandlingar behövs en förståelse och an förmåga att studera celler
på individuell nivå, samtidigt som vi bibehåller ett perspektiv utifrån populations-nivå.

Denna brist på perspektiv har länge varit ett problem inom mikroskopi. Den vanliga lös-
ningen på detta problem är att vi, som människor, kan tolka en bild och peka på vad det är
som är intressant eller inte. Vi är, trots allt, extremt duktiga på att tolka visuell information.
Men detta är inte en helt felfri lösning. Som människor kan vi vara relativt okonsekventa,
vi tolkar oftast utifrån hur vi vill att datan ser ut. Med andra ord, vi saknar förmågan att
vara objektiva i vår metodik för att samla in bilder i hög detalj.

Min avhandling har till stor del handlat om att utveckla ett verktyg som tillåter oss att sätta
perspektiv på det vi studerar med mikroskopi. Detta har lett till Arbete 1, där vi presenterar
en allmän strategi (data-styrd mikroskopi) för hur vi kan arbeta med mikroskopi för att
samla in data på en hel population, samtidigt som vi kan samla in data med hög detalj
på relevanta fynd i populationen. Vi presenterar även här en teknisk lösning, och utför
metoden i tre olika scenarion: ett för att studera en population av celler mer allmänt, ett
för att fånga det ögonblick som bakterier infekterar mänskliga celler, och ett där vi studerar
och fångar in data på relevanta (från ett populations-kontext) cancerceller och följer dem
över tid. Denna metod tillåter oss att samla in data i hög detalj på ett objektivt sätt, och att
sätta perspektiv på det vi studerar.

I Arbete 2 har vi vidare utvecklat på vår metod, där vi försöker lösa problemet att hitta en
och samma cell i flera olika mikroskop. Eftersom vi, genom mikroskopi, jobbar på en så
ofantligt liten skala, är det oftast väldigt svårt att orientera sig och hitta rätt inom ett prov.
Det är lite som att spela På spåret och gissa vart man är, fast utan alla ledtrådar man får
på varje nivå. Eftersom vi har tillgång till data på en hel population, så utgick vi från att
det borde finnas samband mellan celler och deras grannar i ett prov som är unika för just
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dem. Genom att använda sig av dessa unika samband kom vi fram med en lösning där vi
snabbt kan kalibrera ett prov på ett nytt mikroskop. Det öppnar dörrarna för oss forskare
att återanvända prov, att lättare justera provet med nya markörer (för det vi vill visualisera
inom cellerna), och att kunna tolka ett prov med data insamlat från flera system.

COVID-19 pandemin var en stor omställning för samhället och vården. Likväl var det en
stor omställning för många forskningslabb, där en kapplöpning startade för att så snabbt
som möjligt förstå sig på hur viruset fungerar och hur vårt immunförsvar svarar på dess
infektion. Det var i detta kontext som mitt tredje arbete utfördes. Genom den erfarenhet
jag samlat på mig inom mikroskopi och att analysera bilder på stora dataset, bidrog jag
med hjälp för att studera hur framtagna antikroppar kan förhindra bindningen av virus-lika
partiklar till celler. Antikroppar är ett protein som immunförsvaret producerar i respons mot
en patogen. En bättre förståelse kring hur antikroppar verkar, och vad skillnaden mellan
en bra och en dålig antikropp är kan leda till framtagningen av bättre vaccin-program och
behandlingar inom sjukvården.

I Arbete 4 medverkade jag i ett arbete där bakterien Streptococcus pyogenes var i fokus. S.
pyogenes enda värd är människor, och ansvarar för över 600 miljoner infektionsfall per år
globalt. På bakteriens yta dominerar ett protein, M-proteinet, ett multi-funktionellt protein
som bakterien (bland annat) använder sig för att binda till ytor och förhindra immunför-
svarets förmåga att göra sig av med bakterien. I arbetet upptäckte vi att fibronektin binder
till bakterien (specifikt M-proteinet) olika mycket beroende på mängden antikroppar som
finns i miljön. Fibronektin är ett protein som vi människor producerar, och bidrar (bland
annat) till att skapa den miljön som celler befinner sig i. Mängden fibronektin varierar be-
roende på var i kroppen man kollar. Till exempel, i saliv har du en relativt låg mängd fibro-
nektin jämfört med i blodet. Detta ledde till hypotesen att bakterien är special-anpassad för
olika miljöer i dess förmåga att undkomma immunförsvaret. En bättre förståelse kring hur
bakterien är anpassad till våra olika miljöer och dess infektionsförlopp kan leda till bättre
och mer anpassade behandlingar inom sjukvården.
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Abbreviations

ADC analog-to-digital converter

APD avalanche photodiode

CCD charged-coupled device

CLEM correlative light-electron microscopy

CMOS complementary metal-oxide semiconductor

CNN convolutional neural networks

CTE charge transfer efficiency

DDA data-dependent acquisition

DDM data-driven microscopy

DIA data-independent acquisition

DIC differential interference contrast

EMCCD electron-multiplying CCD

FOV field of view

FP fluorescent protein

FWC full well capacity

GAS group A streptococcus

GFP green fluorescent protein

GUI graphical user interface

HCS high content screening

HTP high throughput

LED light-emitting diode

NA numerical aperture

NF-κβ nuclear factor κβ

PALM photoactivated localization microscopy
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PH phase contrast

PMT photomultiplier tube

PSF point spread function

QE quantum efficiency

ROS reactive oxygen species

SDCM spinning disk confocal microscopy

sGFP split GFP

SIM structured illumination microscopy

SnR signal-to-noise

STED stimulated emission depletion

STORM stochastic optical reconstruction microscopy

T3SS type 3 secretion system

Yops Yersinia outer proteins
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Biology from a microscopist
perspective

When God said ’Let there be light’, he surely
must have meant perfectly coherent light.

— Charles Townes

To understand the power and limitations of using microscopy when studying biology, we
must have an understanding of the nature of light, and how we can bend and shape it for our
purpose. We must understand how light can be measured, interpreted and evaluated, and
how we may be our biggest enemies in uncurtaining of the truth. We must also understand
that, like with most observations, the very act of observing has an impact on the outcome,
and how we can work to minimize this impact when using microscopy. This hold especially
true when studying the very fragile fabric of life, cells. Finally, we must understand the
uniqueness of life itself, how our evaluations of cells at a population level may not propagate
truthfully to the single-cell level, and the spontaneous rise of cellular heterogeneity in what
is seemingly a homogeneous population.

This chapter serves as an introduction to what it is like studying biology from a microscop-
ists perspective.

The scattering of light

The use of microscopy involves the examination of tiny structures and details that are not
visible to the naked eye. But what happens when light is focused on these structures? To
answer this question, we must fist realize that, from the microscopes perspective, there is
a perceivable infinite number of points in space that these structures can be located. In
fluorescence microscopy, these points are continuously illuminating upon excitation, and
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Figure 1: Resolution depends on the ability to resolve individual sources of light. a. Illustration of an airy disk, the theoretical
illumination from a point source. b Points far apart can be resolved. c Points meeting the Rayleigh criteria can still be
resolved. d Points closer than the Rayleigh criteria can not be resolved.

their collective measure results is the acquired image. If we imagine an isolated point,
the light from this point in the microscope will diffract, creating a ripple like effect. This
diffraction, or spreading, is also known as the point spread function (PSF) and can be
visualized as Airy disks (after George Biddell Airy 1; see Fig. 1a and b) in the microscope.
The characteristics of the Airy disk fundamentally dictate our ability to resolve individual
points.

The problem arises when there are two or more points in close proximity. Our ability to
separate the two points as independent light sources depends on the distance and partial
overlap between the local maxima of the two Airy disks. To determine the resolution of
these point sources, a practical criterion is used which takes into account the distance at
which the first Airy disk’s local maxima coincides with the secondary disk’s local maxima
by:

r =
1.22λ

2NAobj
(1)

This criteria is known as the Rayleigh’s criterion, where the numerical aperture (NA) of the
objective and the wavelength λ of the light. The NA can be formulated as:

NA = n sin θ, (2)

where n is the refraction index of the media and θ is the collection angle.

In bright-field images, that is, when there is a continuous illumination of the sample from
all wavelengths of the visible spectra, the Rayleigh’s criteria is given by:

r =
1.22λ

NAcond + NAobj
(3)

2



In fluorescence microscopy, because we both excite and collect the light of the specimen
using the objective, the objective acts as the condenser (NAcond)2. Being one and the same
component leads to the denominator in the equation 3 effectively becoming 2NA.

We now know that our ability to resolve points as separate light sources (in other words: a
high resolution) depends on our ability to achieve the smallest distance possible Rayleigh’s
limit r. But how do we go about optimizing for resolution? The most practical method
for doing so is by creating an as large denominator as possible through the use of objectives
with high NA, or achieving a small numerator by limiting the use of light to that of the
shorter wavelengths. However practical it may be, the use of high NA comes with its own
benefits and drawbacks that has to be taken into consideration when using microscopy.

When examining equation 2, we can see that a limiting factor for achieving a high NA is the
refractive index n. Therefore, we must increase the refractive index between the objective
and the specimen so that a higher NA can be obtained. To do this, mediums with a higher
n than air (which has a n of 1), has to be used such as immersion oil (n differs depending
on the oil) or water (n = 1.33). Furthermore, the refractive index of the sample has to
be taken into consideration, and it is favorable to match the refractive index between the
immersion media, sample and the solution in which the specimen is in. Failing to do so
risk introducing spherical abbreviations and artifacts, decreasing resulting image quality.

The creation of an image

As light travels through the microscope and interacts with the sample, its intricate details are
revealed. However, without the ability to capture and record this information, these details
may go unnoticed or be lost entirely. Therefore, it is essential to have reliable methods for
capturing and storing the images produced by the microscope. In the past, the eye acted
as the primary detector, and the information was captured through hand-drawn depictions
of the underlying observations. However, with the advent of modern technology, we now
have the ability to digitally store this information using specialized detectors.

The process of capturing an image using an electronic camera can be viewed through three
different stages; interaction with the photon, storing the interaction as an electrical charge,
and the analog readout of the charges. This process takes place on the chip of the camera,
and has to be repeated millions of times when capturing a single image. The reason for this
is because each chip is composed of a large matrix of a photosensitive element, pixels (short-
hand for ’picture element’), where each pixel corresponds to a single readout. Since each
pixel corresponds to a single readout, its physical dimensions and composition determines
a number of factors such as resolution and sensitivity.
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Detectors for digital microscopy

The use of cameras for life-science application has been extensively reviewed before (see3–5).
Cameras in the life-science industry can largely be divided into two categories: charged-
coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) cameras.
These types of cameras work by converting incoming photons into an electrical charge
through an array of lightsensitive photodiodes6. Each pixel in the array functions as a
well, accumulating a charge proportional to the number of photons that interact with its
photodiodes during the camera’s exposure time. Each well has a upper limit in its capacity
to maintain a charge, referred to as the full well capacity (FWC). Photodiodes reaching their
FWC during their exposure time cease to increase in their accumulated charge, resulting
in a saturated pixel and loss of information7,8.

Comparison between CCD and CMOS

The major differences between these technologies lie in the method for reading the charge
held in each pixel. For CCD cameras, the accumulated charges are shifted along transfer
channels to a readout amplifier using a series of voltage steps. In other words, the read-out
is performed one row at a time, and a single read-amplifier is used for the whole chip7,9.
In CMOS cameras, each pixel is readout individually through its own amplifier, and each
column of pixels has its own analog-to-digital converter (ADC)8. This means that, in a
CMOS camera, each pixel’s charge can be converted into a digital signal independently,
allowing for a faster readout time, lower power consumption and a lower generation of
heat.

Low light situations

In low-light situations, specialized cameras, such as scientific CMOS (sCMOS) and electron-
multiplying CCD (EMCCD) cameras, are designed to provide improved performance.

sCMOS cameras are a type of CMOS camera that combines the advantages of both CCD
and CMOS technologies. They offer high sensitivity, low readout noise, high frame rates,
and a wide dynamic range, making them well-suited for low-light imaging applications3.
These cameras have been used in a variety of applications, including single-molecule ima-
ging, super-resolution microscopy, and live-cell imaging.

EMCCD cameras, on the other hand, are a specialized type of CCD camera specifically
designed for extremely low-light imaging applications. EMCCD cameras utilize electron
multiplication technology to amplify the signal before digitization, effectively reducing
readout noise and improving the signal-to-noise ratio in low-light conditions5. The elec-
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tron multiplication process occurs in a dedicated gain register, allowing for flexible control
of the amount of amplification by adjusting the voltage applied to the register.

Detectors for confocal microscopy

In confocal microscopy, detectors play a crucial role in collecting emitted fluorescence sig-
nals from the sample. Photomultiplier tubes (PMTs) have been the traditional choice for
confocal microscopy due to their high sensitivity and ability to detect very low light levels 10.
PMTs work by converting incident photons into electrons through the photoelectric effect.
These electrons are then multiplied through a series of dynodes, generating a detectable
current proportional to the number of incident photons. The high amplification provided
by PMTs allows for the detection of weak signals in low-light conditions 11. Alternatively,
avalanche photodiodes (APDs) offer a more compact and efficient solution for detecting
low-light signals, as they have lower noise levels and faster response times than PMTs. A
key difference in their working principles is that APDs 12 utilize an avalanche process, where
incident photons generate primary electrons which are accelerated by a strong electric field,
leading to the ionization of more atoms and a cascade multiplication of electrons. When
compared to cameras such as CCDs and CMOS, PMT and APD distinguishes themselves
in that the incoming data is handled as a single stream that has to be recombined into an
image post acquisition.

Detector parameters

When choosing a detector for digital microscopy, several key parameters should be taken
into consideration to ensure accurate and high-quality imaging. These parameters include
sensitivity to noise, readout speed, pixel size, sensor size, quantum efficiency, dynamic
range, and bit depth.

Noise

When performing microscopy, we need the ability to distinguish between actual signal
(detected photons originating from our sample) and signal stemming from the equipment
itself. The ratio between true and false signal (from the perspective of trying to observe
the specimen) is referred to as the signal-to-noise (SnR)5,13,14. Each step in the process of
acquiring an image, from interacting with a photon to the subsequent conversion to an
analog signal, is subject to noise, and can be categorized into four categories: Poisson noise
(or photon shot noise), dark noise, readout noise and fixed-pattern noise8.
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Poisson noise

Poisson noise arises from the fact that the interaction we are trying to measure - the number
of photons - is a stochastic process and follows Poisson counting statistics 14,15. This means
that there is a constant fluctuation in the number of photons originating from a single
light source that interact with our photodiode. This noise cannot be eliminated but can
be reduced by increasing the number of emitted photons from the light source (by, for
instance, increasing the intensity of the light source) or increasing the exposure time (which
allows for a higher statistical likelihood of ’true’ signal due to a larger sample size).

However, it is important to note that increasing the intensity of the light source or exposure
time also increases the likelihood of other sources of noise, such as dark noise or readout
noise as we will see next.

Dark noise

Dark noise (a.k.a dark current or thermal noise) is the fluctuations in the amount of elec-
tronic charge accumulated in each pixel in the absence of photons. This buildup is a con-
sequence of thermal excitations that liberate electrons, and is directly correlated with the
temperature of the chip.

We can drastically decrease the impact of dark noise by cooling the camera during acquisi-
tion. Each 20°C decrease in temperature reduced the accumulated dark noise levels by an
order of magnitude, and cooling the camera to 0°C can reduce the dark noise to negligible
quantities for most microscopy applications. Additionally, in the case for CCDs, cooling
the chip of the camera had additional benefits. Each time a charge is transferred along its
channel, there is a possibility of leaving some charge behind. This results in a blurring and
dimming of the regions farthest from the amplifier. Cooling the chip improves its charge
transfer efficiency (CTE)), reducing some of these artifacts7.

Readout noise

Readout noise stems from an imprecision in the measurement of each charge packet by
the read amplifier. Read noise typically increases as a function of readout speed, where
higher readout speeds decreases our ability to make a precise measurement. While read
noise may vary with readout rate, it is independent of exposure time and the number of
photons collected. Thus, as with poisson noise, the level of readout noise can be minimizes
by collecting more photons.
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Fixed-pattern noise

When a photon hits a photodiode, it generates an electrical charge that needs to be ac-
cumulated over the camera’s exposure time. However, not all photodiodes have the same
response to the same amount of light, resulting in a fixed-pattern noise. This noise can
be caused by variations in the charge collection efficiency between photodiodes, as well as
other factors like dust particles or uneven illumination. As a consequence, some pixels may
be more sensitive than others, producing consistent differences in brightness across mul-
tiple exposures. In sCMOS cameras, variations in amplifier gain between pixel-to-pixel and
column-to-column can also contribute to fixed-pattern noise8. However, improvements
in the design of sCMOS have helped to reduce this effect 16,17.

Fortunately, flat-field correction methods can be applied after image acquisition to reduce
fixed-pattern noise. These methods involve using a calibration image taken with uniform
illumination to estimate and correct the variations in sensitivity across the pixels. Although
fixed-pattern noise is more noticeable in CMOS cameras than in CCD cameras due to
differences in their design, it can be effectively removed with proper correction techniques 1.

Pixel size

The size of each pixel on the chip of the camera plays a critical role in our ability to gather
and transform photons into visual information. The smaller the pixel, the finer we can
distinguish details that is present in the sample. However, this only works to a certain
limit, considering our ability to distinguish individual objects between each other depend
on their proximity and their PSF.

In order to achieve optimal spatial resolution, it is essential to carefully match the pixel size
to the optical resolution of the microscope system. Here, a general rule of thumb is the
Nyquist theorem 18, which states that the sampling rate of the imaging system must be at
least twice the maximum spatial frequency present in the specimen to accurately represent
the information. Smaller pixels enable higher spatial resolution, and thus allow for the
detection of finer details in the specimen. To ensure adequate sampling for high-resolution
imaging, an interval of 2.5 to 3 samples for the smallest resolvable feature is suggested6,7.
However, as pixel size decreases, the number of photons that can be captured by each pixel
decreases, which in turn can lead to a decrease in the SnR.

On the other hand, larger pixels allow for the capture of more photons, providing a higher
SnR and in that context, improved image quality. However, the use of larger pixels, as we
can imagine considering Nyquist criteria, instead lead to an under-sampling and a loss of
spatial resolution. To find the appropriate pixel size for a given microscope system, one
should consider the objective lens’ NA and the wavelength of the light (λ). According to
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the Abbe’s diffraction limit formula 19 and the Nyquist theorem 18, the optimal pixel size
can be calculated as:

Optimal pixel size = (0.5 ∗ λ)/NA (4)

Sensor size

In addition to pixel size, the size of the sensor of the camera is an important factor when
acquiring images. The sensor size determines how large of an area that is captured of the
projected image. Naturally, a camera with a large sensor size is capable of acquiring a larger
area of the field of view. However, there may be trade-offs that one has to consider when
picking a camera with a larger sensor20,21.

• Pixel density: When picking a camera because of the size of its sensor, one must not
neglect the size of the individual pixels. If the sensor size is increased but contains
the same amount of pixels, the pixel size will be larger, potentially leading to a loss
of spatial resolution. On the other hand, if the sensor size is increased while the
pixel size remains the same, the number of pixels in the acquired image will increase,
potentially leading to higher resolution but with an impact on other factors such as
file size, oversampling, and signal-to-noise ratio20,21.

• File size: If the sensor size is increased while the pixel size remains the same, the
number of pixels in the acquired image will also increase. This results in larger im-
age files due to the increased number of pixels. Larger files can lead to increased
storage requirements and slower data transfer speeds, which may be a concern in
high-throughput or time-lapse applications20. However, with the fast read- and
write-speed that we see today with modern drives, this is rarely a limiting factor.

When selecting a camera for microscopy applications, it is important to consider the trade-
offs between sensor size, pixel density, and file size. The optimal choice will depend on
the specific requirements of the imaging system, such as the desired field of view, spatial
resolution, and imaging speed. Additionally, the compatibility of the camera sensor with
the microscope’s optical system should be taken into account to ensure adequate sampling
of the full resolution available with a particular lens.

Quantum efficiency

Quantum efficiency (QE) is a crucial factor in determining the sensitivity of a camera
system. QE refers to the ability of the photodiodes to successfully register the incoming
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photons. Unfortunately, we cannot register all the incoming photons; some photons will
miss the photodiode entirely, some will be absorbed by surrounding material, and some
simply fail to elicit a charge within the diode. QE is determined as the percentage of the
photons hitting the chip that is successfully registered and measured6,7,13.

Multiple factors influence QE of a camera system. These include the wavelength of the
incoming photons and, to a lesser degree, the temperature of the chip. The QE of a camera
is typically represented as a graph that plots the percentage of photons detected by the diode
against the wavelength of light. This graph is commonly referred to as the QE curve. The
peak of this curve varies depending on the material used in the diode’s construction and
represents the wavelength at which the photodiode has the highest efficiency in converting
light into an electrical signal.

Dynamic range and bit depth

Once the photon has been registered in the photodoide and converted into a voltage by
the read amplifier, the voltage must be digitized by the ADC. In the ADC, the voltage is
transformed into a analog signal representing a digital gray value, which corresponds to the
signal amplitude (i.e. proportional to the number of photons hitting the diode or pixel)6.
The digital gray value ranges between 0 and 1, where 0 represents no signal and 1 represents
the maximum charge capacity the pixel can store. However, as pointed out above, pixels will
never be 0 because of the noises associated with capturing an image. The number of steps
within this range is dictated by the bit depth of the camera, and is typically expressed as 2n,
where n is the dynamic range in bits. For example, a pixel in a 12-bit camera can display
212(4 096) different values between 0 (absolute black) and 1 (complete saturation; white).
However, as demonstrated in Figure 2, there is a point at which a higher bit depth might
provide excess information about the sample, depending on the structure being studied.

Figure 2: Visualization of the gradient of gray values as the number of bits increase. One bit allows for only two values (21, e i.
black and white) whereas in the 8-bit, the gradient is smoother with 256 (28) gray values.

9



In practice, the dynamic range is often defined as the ratio of the maximum measurable
signal to the minimum measureable signal. For CCD cameras, this is typically specified as
the ratio of the FWC (maximum possible signal) to the read noise (minimum detectable
signal considering the SnR).5 However, the usable dynamic range of the camera is typically
smaller than this maximum value due to nonlinear effects and the fact that the minimum
quantifiable signal intensity in photoelectrons is actually well above the read noise level7,8.
For instance, a camera with a 16,000 electron FWC and a readout noise of 10 electrons
would have a dynamic range of 1600:1, or between 10- and 11-bit resolution (1021 and
2048 possible gray values respectively). Thus, a camera with a bit depth of 12 (4096 possible
gray values) would be more than enough to sufficiently sample the intensity information.
Storing the images in a higher bit depth than the camera can distinguish simply implies
that we are oversampling the data, resulting in larger file sizes than what is necessary.

Widefield and Confocal microscopy

The microscope was a revolutionary tool that allowed us to see things we had never seen
before, to witness the invisible and explore the microscopic world with newfound clarity.
The pioneers of this new field of study include Robert Hooke, who first described the
microscopic structure of cork cells (and also coined the term cell)22,23, Marcello Malphigi,
who studied the anatomy of plants and animals23, and Antonie van Leeuwenhoek, who is
credited with the discovery of bacteria and other microorganisms22. With the microscope,
these scientists and many others gained a new perspective on the world and the creatures
that inhabit it, and a seed of modern biology was sown.

As our understanding of the world around us grew, so did the demand for more advanced
microscopy techniques. This led to a series of innovations, such as the development of
compound microscope and the subsequent invention of electron microscopes, pushing the
boundaries of magnification and resolution. The late 20th and early 21st centuries wit-
nessed the integration of digital imaging and computer-assisted analysis, which transformed
microscopy by enabling researchers to capture, manipulate, and analyze images with un-
precedented precision and efficiency. Today, widefield and confocal microscopy stand as
two of the most commonly used and relevant techniques.

Widefield

Widefield microscopy might be seen as the most straighforward of the microscopy tech-
niques. As the name may suggests, in widefield microscopy, a large section of the specimen
is illuminated and captured at a time. To understand how we can generate an image in
widefield, lets take a look at two conventional methods of light microscopy and follow the
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Figure 3: The lightpath as it travels through the microscope. a In brightfield, a lamp (typically a tungsten-halogen) illuminates the
sample by first passing through the field diaphragm and the condenser. The condenser focuses the light into a beam.
A aperture diaphragm is typically associated with the condenser for controlling contrast. The light passing through
the specimen is subsequently collected with an objective and registered on a detector. b In fluorescence microscopy,
the light (a lamp or LEDs) is first passed through an excitation filter to narrow down the wavelength to an appropriate
excitation range for the fluorophore (in this example: UV). A diachroic mirror allows the passing of some wavelengths
whereas others are reflected. The light is focused by the objective onto the specimen, where the excitation light
excites any fluorophores situated in the specimen. Emitted light (green) are collected with the objective, and as the
light travels back down, it is reflected towards the detector by the dichroic mirror. The lightpath in microscopes can
vary greatly depending on setup, but the principles remain the same.

light as it travels through the microscope.

Brightfield

Brightfield microscopy is a common method in widefield microscopy that involves the
unfiltered transmission of white light through the specimen. This light is typically generated
using a lamp or light-emitting diodes (LEDs), and travels through a series of diaphragms
and the condenser before it interacts with the specimen.

The diaphragms, such as the field and aperture diaphragms, help control the amount and
the angle of the incoming light, while the condenser focuses the light onto the specimen
(see Figure 3). The condenser has to be aligned with the focal plane of the specimen to
ensure that the incoming light is uniform and focused correctly on the entire field of view.
Köhler illumination24 is often used in this context to optimize the distribution of light and
enhance image contrast, and consists of a series of steps to ensure the condenser is properly
aligned with the focal plane of the specimen and the objective2.
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However, when working with transparent or low contrast specimens, such as living cells or
thin tissue sections, the contrast in the brightfield images may be insufficient for any valu-
able information to be extracted. To overcome this, various contrast-enhancing techniques
have been developed. The two most common ones are:

• Phase contrast: Phase contrast (PH), invented by the Nobel Prize winner Frits
Zernike25, is a technique that exploits the differences in the refractive index of differ-
ent parts of the specimen to generate contrast26. In PH microscopy, an annulus and
a phase plate is introduced in the light-path, shifting the phase of the light passing
through the specimen relative to the light passing through the surrounding medium.
This phase shift results in variations in brightness and contrast in the image, and
thereby helps in our ability to resolve low-contrast specimens (see Figure 4a).

• Differential inteference contrast: Compared to phase contrast, differential inter-
ference contrast (DIC) utilize polarized light and optical interference to generate
contrast based on the structure of the specimen as well as gradients in the specimen’s
refractive index. In DIC, the light is first polarized and split into two orthogon-
ally polarized beams that travel through the specimen along slightly different paths.
When these beams are combined, they interfere with each other, generating an im-
age with enhanced contrast that reveal fine detail and structures within the sample27.
See Figure 4b for an illustration of the light-path in DIC.

When comparing the two, phase contrast is generally easier and cheaper to setup than
DIC. However, phase contrast produce halo effects around the specimen, which appear as
bright or dark rings around the edges. These artifacts can sometime obscure fine details and
make it difficult to interpret the image accurately. On the other hand, DIC offers improves
contrast and resolution when compared to phase contrast, and allow for the visualization
and perception of fine structure of the specimen. However, DIC requires more complex
and sometimes expensive polarizers and prisms.

Fluorescence

When working with fluorescence widefield microscopy, the path the light travels differs
when compared to brightfield. Instead of using white light, fluorescence microscopy in-
volves the excitation of fluorophores within the specimen using specific wavelengths of
light. As this light interacts with the fluorophores, the light is absorbed and the fluoro-
phore enters an excited state. Eventually the fluorophore exits its excited state, releasing
the absorbed energy in the form of a photon. However, during this process, some energy is
inadvertently lost, causing the emitted light to be in a longer wavelength compared to the
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Figure 4: The principle behind phase contrast and differential interference microscopy (DIC). a In phase contrast, a condenser
annulus is introduced in front of the condensor, causing parallel light wavefronts to emanate from the holes in the
annulus. These wavefronts interact differently with the specimen depending on the reflactive index and length of
travel. The phase-shift caused by the specimen is finally filtered by a phase ring. This process results in a difference
in signal amplitude depending on the phase. Unlike DIC, the circular nature of the condenser annulus and the phase
plate prevents orientation dependant artifacts. b In DIC techniques, contrast is achieved by utilizing the polarization
of light. In the case of Nomarski DIC, polarization is achieved by passing the light through a polarizer. A Nomarski
prism subsequently splits the linear polarized light into two orghogonal components (denoted e ray and o ray in the
schematic, where e=extraordinary and o=ordinary). As the light interacts with the sample, the e ray and o ray travel
are interfered by the sample, resulting in a phase difference. Once the light is collected using the objective, another
Nomarski prism (angled perpendicular to the first prism) combines them into a single beam of light. Finally, the light
emerging from the second Nomarski prism is passed through an analyzer to form an image.

excitation light. This phenomena is known as Stoke’s shift, and it is the foundation in our
ability to perform fluorescence microscopy 1,28.

While mercury or xenon lamps have traditionally been used as a high-intensity light source
capable of illuminating in specific wavelengths, in recent years, light-emitting diodes (LEDs)
have gained popularity due to their lower heat production, longer lifespans, and more pre-
cise control of the excitation wavelengths. As the excitation light enters the microscope,
it is first passed through a filter which selects a narrow range of wavelengths optimal for
exciting the fluorophore. The light then passes through a dichroic mirror, which allow the
light to travel through towards the specimen through the objective.

Upon reaching the specimen and the specimen fluoresce, the emitted light is captured by
the objective and travels back down through the same path as the incoming excitation light.
However, when interacting with the dichroic mirror, the longer wavelength light is reflected
and focused towards the detector. In widefield microscopy, the detector is often a CCD
camera or a CMOS sensor, which captures the incoming light and produce the final image.
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Because of the fact that the light is unhindered in widefield microscopy, the speed of ac-
quisition is considerably faster when compared to techniques such as confocal microscopy.
However, the presence of out-of-focus light contributes to the final image, resulting in a
decrease in contrast and the ability to distinguish finer details, and is particularly a problem
when working with thicker specimens or samples with high autofluorescence. In terms of
resolution, widefield microscopy is limited by the diffraction of the light, which restricts the
resolution to around 200 nm laterally (x-y) and 500 nm to 700 nm axially (z), depending
on the NA of the objective and the wavelength of light used (see Chapter 1: The scattering
of light).

Confocal

Confocal microscopy, in contrast to widefield, introduces a new element to the light-path
that significantly alters the way in which images are generated. The key difference in con-
focal is the use of a pinhole places in conjugate focal plane of the objective. This pinhole
effectively blocks out-of-focus light from reaching the detector, which greatly improves the
contrast and axial resolution of the resulting image 10.

In confocal, the light source is often a laser, which provides high-intensity, monochromatic
light to the microscope. The incoming light is directed through a set of scanning mirrors,
which allow the beam to scan across the specimen in a raster pattern. This enables the
microscope to collect data from one point of the time, creating a point-by-point image of
the specimen.

As the specimen fluoresce, the emitted light is collected by the objective and directed back
throught he dichroic mirror. The emitted light then passes through the pinhole, which only
allows in-focus light to reach the detector (a PMT or APD). This results in a significant
reduction of the background signal, and an increase in image contrast and axial resolution
(300 nm to 500 nm) compared to widefield.

Comparison between widefield and confocal

When comparing widefield and confocal, it is evident that the two techniques come with
their unique advantages and drawbacks. While both techniques are relatively equal in xy-
resolution, they differ in other aspects that may impact their suitability for particular ap-
plications.
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Image contrast and axial resolution

Confocal microscopy offers improved image contrast and axial resolution compared to
widefield microscopy, due to the use of a pinhole to block out-of-focus light. This makes
confocal microscopy particularly advantageous when imaging thicker specimens or samples
with high autofluorescence, where widefield microscopy may struggle with high back-
ground signals and reduced contrast. However, that being said, deconvolution algorithms
can be applied in which the out-of-focus light in an image is compensated for.

The process of deconvolution involves using mathematical algorithms to reverse or com-
pensate for these effects, thereby enhancing the image quality, resolution and contrast in
the final image. Deconvolution can be described mathematically29:

image(x, y, z) = object(x, y, z) ∗ PFS(x, y, z) (5)

where * denotes the convolution operations, object(x,y,z) represents the original, undis-
turbed image, and PFS(x,y,z) is the point spread function of the system.

In other words, one must know the PFS of the system in order to restore the ’original’, un-
disturbed image. Inaccuracies or incomplete information about the PFS can introduce
artifacts or errors in the deconvolved image, potentially compromising data reliability.
Furthermore, as we can see in equation X, one must capture the three dimensional data
(z-stacks) in addition to the focal plane of interest in order to correctly perform deconvolu-
tion29. This can significantly slow down acquisition and lead to additional photobleaching
and phototoxicity, particularly when used with higher magnifications.

Speed of acquisition

Widefield microscopy offers a faster image acquisition speed compared to confocal mi-
croscopy, as it captures a large section of the specimen simultaneously. In contrast, con-
focal microscopy scans the specimen point-by-point, which takes more time to generate
an image. For applications that require rapid imaging or real-time observations, widefield
microscopy may be a more suitable choice.

Photobleaching and phototoxicity

Confocal microscopy, due to its point-by-point scanning and the use of high-intensity laser
light, may cause increased photobleaching and phototoxicity in the specimen compared
to widefield microscopy. This can be particularly problematic when imaging live cells or
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other sensitive samples. Widefield microscopy, with its lower light exposure, may be a more
suitable choice for such specimens.

In conclusion, the choice between widefield and confocal microscopy depends on the spe-
cific requirements of the application, the sensitivity of the specimen, and the available re-
sources. Each technique offers unique benefits and limitations, and researchers must care-
fully consider these factors when selecting the most appropriate method for their imaging
needs.

Relevance and considerations in the presented work

Naturally, the choice of imaging system and equipment were of great importance in the my
work. Considering my work primarily revolves around acquiring large, live-cell population-
wide datasets of the specimen in question, high throughput was essential when picking the
microscopy technique.

The throughput of a widefield microscope is without a doubt hard to question, providing
an easy means for fast acquisition with a relatively low photon-dosage, thereby minimizing
phototoxicity and bleaching of the cells. Here, the model of the microscope made a big
difference. When I began working we had just purchased and installed a new microscope;
specifically the Nikon Ti-E2 model. What makes this model stand out is its 25mm field
of view (FOV), making it acquire up to 50% more data in a single image compared to
the more common 18mm FOV. This drastically increases the throughput of the system,
and reduces the redundancy of image-stitching for large samples. Furthermore, the choice
of camera was an important consideration for our applications. In order to utilize the full
FOV that the microscope was capable of, without sacrificing resolution (in the form of
pixel size) or sensitivity (CMOS and QE), there was really only one camera on the market
at the time capable of meeting these needs: the Nikon Qi2. While there are other cameras
that outperforms the Nikon Qi2 in terms of QE and pixel size (the Qi2 has a peak QE of
77% and 7.3 μm2 pixels), these parameters are still relatively good, especially considering
the large sensor (36.0× 23.9mm). While there may be other cameras capable of reaching
a higher theoretical resolution, this was not our top priority.

Breaking the diffraction limit

In conventional microscopy techniques such as widefield and confocal, we are limited in our
ability to resolve and distinguish points based of the diffraction limit of our configuration.
Considerable work has gone into the challange of breaking this diffraction limit and to
open up new avenues in terms of image resolution.
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These techniques are referred to as super-resolution, and they have had tremendous impact
on our understanding of biological processes at the nanoscale.

STED microscopy

Stimulated emission depletion STED microscopy is a super-resolution technique that was
first proposed by Nobel Prize winner Stefan Hell in 199430,31. STED microscopy works
by selectively depleting the fluorescence surrounding molecules, thereby sharpening the
effective PSF and improves the resolution beyond the diffraction limit.

The process of (STED) relies on two laser beams; one for excitation of the fluorophores and
another, called the STED beam, for de-excitation. The STED beam has a doughnut-shaped
intensity profile, which selectively depletes the fluorescence from molecules at the periphery
of the excited region, leaving only a smaller central area to emit fluorescence. By scanning
the sample point-by-point, STED microscopy can generate images with resolutions down
to 20 nm to 50 nm, significantly surpassing the diffraction limit.

PALM and STORM microscopy

Stefan Hell was not alone in receiving the Nobel Prize in Chemistry 201431. Among him,
Erik Betzig and Willam E. Moerner shared the prize for their development of photoactiv-
ated localization microscopy (PALM)32 and stochastic optical reconstruction microscopy
(STORM)33, respectively. PALM32 and STORM are localization-based super-resolution
techniques that rely on the stochastic activation and localization of individual fluorophores
within a sample.

By controlling the activation and subsequent imaging of a sparse subset of fluorophores
at a time, the position of each fluorophore can be determined with a higher, nanometer
precision compared to conventional microscopy. By repeating this process thousands of
times, and accumulating the positions of all fluorophores, a high-resolution image can be
reconstructed, typically achieving resolutions down to the 10 nm to 30 nm range.

Structured Illumination Microscopy

Structured illumination microscopy (SIM)34 is a super-resolution imaging technique that
improves the resolution of an image by utilizing patterned illumination to extract higher
spatial frequency information from the sample. The excitation light is modulated with
periodic patterns, typically achieved by passing it through a patterned grid or using a spatial
light modulator, and then projected onto the specimen.
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When the sample is illuminated with these structured patterns, it creates interference pat-
terns that contain high-frequency spatial information about the sample, which is normally
inaccessible in conventional widefield or confocal microscopy due to the diffraction limit.
By acquiring multiple images with different phase shifts and orientations of the illumina-
tion pattern, SIM allows the reconstruction of a high-resolution image, effectively doubling
the resolution compared to the diffraction limit.

The process of acquiring an image in SIM involves three main steps34:

1. Acquiring raw images: Multiple images (typically 9 to 15) are captured with varying
phase shifts and orientations of the structured illumination pattern. This ensures that
high-frequency information from different spatial directions is collected.

2. Demodulation: The raw images are processed to extract the high-frequency inform-
ation contained within the interference patterns. This is achieved through a series
of mathematical operations, including Fourier transformations and filtering, which
separate the low- and high-frequency components of the images.

3. Reconstruction: The demodulated information is combined to generate the final
super-resolved image. This is done by merging the high-frequency components from
the demodulated images with the low-frequency components from the conventional
image.

SIM is particularly advantageous for live-cell imaging, as it is less phototoxic and faster than
other super-resolution techniques like STED or PALM/STORM35. Additionally, SIM can
be used with a wide range of fluorophores and can be adapted for multicolor imaging,
allowing the simultaneous visualization of multiple structures within a sample. However,
it is worth nothing that SIM typically provides a more modest resolution improvement
compared to other super-resolution techniques, achieving a resolution of approximately
100 nm to 130 nm in practice35,36. Furthermore, the image reconstruction process in
SIM can be sensitive to noise and sample drift, which may introduce artifacts or errors in
the final image if not properly accounted for37.

On the combination of multiple techniques

When performing experiments utilizing microscope, the choice of method depends on the
restrictions of the specimen and the requirements of the experiment in question. These lim-
itations can be in the form of specimen thickness and resolution requirements that narrow
down the potential choice to a handful of techniques. However, it is sometimes neces-
sary to not only acquire data from one system, but many. This acquisition of data, where
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information from one technique is supplemented and correlated with data from another
technique, is refereed to as correlative microscopy.

One of the most common applications where data from two modalities are acquired is in
correlative light-electron microscopy (CLEM)38–40. CLEM combines the high-resolution
structural data of electron microscopy with the molecular specificity of fluorescence micro-
scopy, providing a more comprehensive understanding of the specimen.

There are also applications where information is gathered on multiple modalities using
solely light microscopy (for a review, see41). Light microscopy offers various advantages,
including the ability to study living specimens, less complex sample preparation, and a wide
range of contrast mechanisms. The complexity and challenges with performing correlative
microscopy lies in the correlation of the data and images. Moving the sample from one
microscope to the next means that the images you take are on different coordinate systems,
and finding the same region of interest between the two is hard even for an experienced
microscopist. Furthermore, problems quickly arise when working in the high-fidelity space,
where nano-scale offsets in calibration causes the data to be misaligned.

Most applications of correlative light microscopy (that I am aware of ) has been performed
where the two imaging techniques are combined into one system42–48. This removes the
problem of having to solve alignment of the coordinate space, leaving only the problem of
aligning the images taken themselves. While I have stumbled upon solutions for solving
the alignment problem when using multiple microscopes, or when the experiment calls for
sample preparation and thus the removal of the sample off the stage in-between acquisi-
tion49–52, there does not seem to be a general solution for quickly calibrating a sample and
perform correlative light microscopy on multiple systems.

How life created light

Using microscopy, we possess the ability to dive deep down into the cell, observing its
complex machinery and intricate processes in real-time. However, without fluorescent
proteins (FPs), like the green fluorescent protein (GFP) and its variants, investigating the
inner workings of life would be substantially harder. Moreover, because they can be ge-
netically encoded, FPs have given us a way to directly link and see individual molecules in
real time, revealing their intrinsic behaviour and interactions with unprecedented detail.
Without this bio-molecular tool, we would be limited to indirect methods that provide
only a fraction of the information that FPs can offer.

The GFP was discovered in the 1960s when Osamu Shimomura et al.53, who was interested
in the fluorescent capabilities of Aequorea victoria, isolated the protein as a by-product while
studying its associated counterpart aequorin (a calcium sensitive protein capable of emitting
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light of the blue spectrum)54. Despite its discovery, the true potential of this protein was
not realized until Douglas Prasher successfully cloned the gene for GFP55, and Martin
Chalfie successfully expressed it in Escherichia coli and Caenorhabditis elegans 56. However,
the wild-type variant of GFP was poorly fluorescent, and had in fact a stronger peak in the
ultraviolet spectra rather than the green57. Additionally, the protein, being evolved to fold
in the colder climate of the Aequorea victoria, was in its wild-type unstable for mammalian
expression. To understand the transformation that GFP has underwent to where it is today,
we must first explore the structure of the protein and its fluorescent capability.

Fluorescent proteins

Green fluorescent proteins

The GFP is a 28-kDA protein capable of emitting green fluorescence upon the stimulation
of light from the blue to ultraviolet spectrum. The protein folds into a barrel like structure,
where its 11 β-sheets surrounds the fluorescent chromophore forming core in a helical lattice
(see Figure 5). This chromophore consists of the three amino acids, Serine 65, Tyrosine 66
and Glycine 67 that are covalently bound to each other through series of post-trancriptional
modifications55,58. Notably, these modifications are dependant on oxygen, and as a by-
product produces hydrogen peroxide which can be toxic to the organisms producing the
protein. Roger Y. Tsien et al.57,59 pioneered the work of improving the photostability of
the protein, as well as increasing its capacity to emit light in the green spectra, by replacing
the Serine 65 with Threonine (S65T).

Yet, these modifications did not solve all issues that hindered the GFP from widespread
adoption. The wild-type variant was unstable at the warmer temperature needed for mam-
malian expression60, largely attributed to the fact that the protein was evolved to fold in
the colder habitat of Aequorea victoria. Furthermore, the wild-type variant was prone to
dimerization because of a hydrophobic patch in one of its β-sheet, and . The amino acids
contributing to this hydrophobic patch was, most notably, Ala 206, Lys 221, and Phe 22361.
This was troublesome, as anything tagged with a GFP would now be prone to dimerization
as well, even though the two tagged proteins might not find itself in that conformation
naturally. This was eventually solved by replacing one or several of these amino acids to
positively charge residues, such as A206K (Alanine 206 replaced with Lysine)62,63. Any
interaction between monomers would now be suppressed due to the electrostatic repulsion
caused by the positively charged amino acids.

Naturally, it is difficult to cover all the work that has been performed on the wild-type
variant of GFP to the versions that we have today. However, an important exception is
the development in shifting the excitation and emission wavelengths of the GFP towards
the longer wavelengths. Without the additional proteins capable of emitting light in other
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wavelengths, we would be limited to studying a single kind of molecule at a time. Work by
Roger Y. Tsien et al.58 showed that it was possible to manipulate and alter the fluorescent
spectra of the GFP by substituting amino acids in or around the chromophore. For in-
stance, if the Tyrosine 66 is replaced with a Histamine or Tryptophan, the protein instead
emits light in the blue or cyan spectra respectively. However, the absence of red FPs, at the
time, limited the range of biological systems that could be studied simultaneously.

Red fluorescent proteins

In parallel to the improvements on GFP, there was considerable interest in unlocking the
use of FPs in the longer wavelengths of the visible spectra. Lukyanov et al.65 hypothesized
and showed that the fluorescence seen in reef corals, some among them in red, were not
due to unidentified pigments, but rather of other GFP-like proteins. This work lead to
the identification of 6 homologous proteins and share the same β-sheet structure as GFP.
Most notably was their isolation of drFP583, a variant with a peak excitation of 558nm and
with an emission peak of 583nm. This variant, later referred to as DsRed (stemming from
the organism it was isolated from, Discosoma, and its red color profile), was the wild-type
variant of many of the red FPs we have today. However, three major issues resided with
this variant; from crystallization it was found to have a strong affinity to form a tetrameric
structure66–68, slow maturation69–71, and its residual green fluorescent component65,71.
Further mutagenesis eventually solved these issues72,73, growing the plethora of fluores-
cent proteins with different spectral profiles (e.g. mOrange, mStrawberry, mCherry74 and
mScarlet75) that we have today.

Figure 5: The three dimensional structure of the superfolder GFP resembles a barrel-like structure with 11 β-sheets surrounding
the fluorescence-capable chromophore. a Rendering of the 3D structure of superfolder GFP. Water molecules and
ligands can be seen surrounding the structure. b Top view of the 3D structure. c The containing chromophore
and its chemical structure. The amino-acids within and around the chromophore dictate the characteristics of the
fluorescence. Images are from the RCSB PDB (csb.org) of PDB ID 2B3P 64.
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Split GFP

One creative development of GFP came with the introduction of split GFP (sGFP). In
this technique, first demonstrated by Cabantous et al.76, the GFP molecule is divided into
two fragments: a larger N-terminal fragment (residue 1-214) and a smaller C-terminal frag-
ment (residue 215-238). The N-terminal fragment, known as GFP1-10, encompasses the
first 10 β-strands of the GFP and adopts a structure resembling the entire GFP, with the
exception of the missing 11th β-strand. On the other hand, the C-terminal fragment,
GFP11, comprises this absent 11th β-strand. In their isolation, these fragments are non-
fluorescent. However, upon association, GFP1-10 and GFP11 complete the β-barrel struc-
ture and the containing chromophore, restoring fluorescence in the process. The unique
properties of sGFP have provided opportunities for various applications, including, but
not limited to, the investigation of protein-protein interactions77–79 and cellular localiz-
ation78,80–83, thereby broadening the scope of GFP-based technologies in molecular and
cellular biology.

During my studies, we had a project running where utilizing the sGFP variant was key to
our research question. Our primary interest was to further characterize the delivery of ef-
fector proteins through the type 3 secretion system (T3SS) employed by the human patho-
gen Yersinia pseudotuberculosis. The delivered proteins, known as Yersinia outer proteins
(Yops), are effector proteins that are translocated to the host cell upon contact, allowing
the bacterium to evade the immune system. For more detail on the T3SS and Yops in Y.
pseudotuberculosis, I refer to the review by Gloria I. Viboud and James B. Bliska84. In short,
the T3SS is a sophisticated protein complex used by numerous gram-negative bacteria to
secrete effector proteins into the milieu or into the membrane or cytosol of host eukaryotic
cells. The major defining characteristics of the T3SS are the presence of a needle-like struc-
ture extending from the basal body, activation by host cell contact, and the delivery of
effector proteins. This needle-like structure of the T3SS, through which the effector pro-
teins pass, is remarkably narrow, with a diameter of a mere 28 Å85,86. To overcome this
size-restriction, the delivery of effector proteins is orchestrated by an unfolding of proteins
prior to translocation. The specificity of which proteins are translocated is dictated by the
presence of a secretion-signal on either the amino-acid level or the mRNA87.

Attempts to study the translocation of Yops by tagging them with GFP have been unfruit-
ful. The GFP is too large (approximately 28 Ångstroms in diameter) to fit through the
needle of the T3SS and lacks the necessary secretion-signal to be unfolded prior to translo-
cation. However, other fluorescent tools, such as the β-lactamase TEM-1 system, have been
utilized to follow the delivery of effector proteins in Escherichia coli to the host cell88–90.
As the fluorescence measured is a product of a chemical reaction, it would be troublesome
to quantify the amount of effector proteins delivered or correlate the amount of delivered
effector proteins to the cellular outcome. We hypothesized that, instead of using the com-
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plete GFP, the 11th β sheet (GFP11) of sGFP would be sufficiently small to fit through the
narrow corridor of the T3SS, circumventing the need for unfolding and the presence of a
secretion-signal.

After successfully cloning GFP11 onto YopE, we observed an increase in fluorescence upon
bacteria-cell contact. However, the positive interactions were rare and weak in signal, and
the background fluorescence in the negative control was relatively high, making it difficult
to assess the results. Additional development would have to be made in order to increase
the signal-to-noise ratio of the delivered Yops. One means of increasing the fluorescence per
translocated Yop was to tag each Yop with multiple GFP11 subunits in tandem81. However,
doing so meant answering the following questions: could the tandem-complex translocate
at all? And how would additional GFP11 subunits affect the speed of which the effector
protein is translocated? Ultimately, due to time limitations, we decided to pause the project.

Live cell imaging

The desire to study and observe living specimens has been around since the dawn of micro-
scopy. This process of studying living specimens refers to as live cell imaging, and allow us
to in real-time investigate dynamic cellular processes in their native state. Excellent review
articles exists on the subject of live-cell imaging using cell culture (see91,92). Without risk-
ing of repeating what they already have so excellently put into words, I do want to mention
some of the key considerations one has to take when performing live-cell imaging, especially
in the context of fluorescence microscopy.

Phototoxicity

All living things are fragile. When we peer into the microscopic world of living single cells,
we have to make sure our tools and methods are as unobtrusive as possible. That can be dif-
ficult in the context of fluorescence microscopy, considering the very basic element we build
our observation with, light, can be highly damaging to cells in virtually any amount93–95.
At the intensity-levels used in fluorescence microscopy, light not only have the strength to
physically break cellular structures (like the break of double-stranded DNA96), but also to
change the environment of the cells. Fluorophores, as they undergo excitement, sometimes
fail to emit light as they fall back to their rested state. Instead, the high energy electrons
generated can react with the dissolved oxygen in the media. The product of this reaction,
reactive oxygen species (ROS), is highly damaging to cells left unaccounted for. An increase
from the homeostatic levels of ROS, also referred to as oxidative stress, can negatively affect
several cellular structures and processes, such as membranes, lipids, proteins, lipoproteins
and DNA97–102. Albeit cellular systems having been evolved in order to handle oxidative
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stress 103 produced by cellular processes themselves, an excessive amount caused by fluor-
escence imaging will nevertheless alter cell state and impact the experimental outcome.
For this purpose, it is important to consider the monitoring of cellular processes affected
by phototoxicity, like the timing of mitotic stages 104, or the monitoring of ROS directly
through a detection kit. Other, more direct measures like decreaseing the intensity of the
excitation light or reducing the exposure time may help in terms of sample health.

Cell homeostasis

Another consideration that might seem obvious is the maintenance of happy cells through-
out the imaging session. This means keeping the cells in homeostatic temperatures and
CO2 concentrations suitable for that particular cell line. Today, we have excellent incub-
ator champers that we can equip onto our microscopes, providing the specimen a 37°C
environment. An important note here however is to make sure the microscope body and
objectives are kept at similar temperatures as the stage environment surrounding the cells.
The microscope body acts as a massive heat sink, and if the environment has not been been
calibrated for at least 24 hours, heat will participate from the sample through the objective
into the microscope body. This heat-transfer is even worse during the use of immersion me-
dia such as oil or water, causing there to be a direct channel where heat can effectively travel
down from the sample and where we image to the microscope body. Failing to maintain a
homeostatic temperature can have major implications on the cells’ states92.

In terms of providing an ample CO2 rich environment, this is most effectively done by
providing a CO2/air mixture to the atmosphere. The usual target here is to have a 5% to
10%CO2 atmosphere (depending on media) in order to buffer and maintain the pH of the
media. However, it is also possible to grow cells in a unaltered atmosphere, but does require
the introduction of an additional buffer, like HEPES, that can act over longer periods of
time. In my experience, because of the usual small environments that the specimens are in,
it can be difficult to maintain the correct atmosphere and pH levels over time due to the
atmospheric leakage and difficulties in calibrating the enclosure. Thus, I have found that
the additional HEPES buffer may help keeping the cell culture going for longer (> 24 h)
even in the presence of CO2. However, careful consideration should be taken when using
any additional complement, and adequate controls should be in order to make sure the
effect on the biological process in question is not affected.

Use of fluorophores

First, one has to consider the means of staining. The most common approach, where DNA
expressing the protein of interest in fusion with a fluorescent protein (FP) is introduced to
the cells through transfection, results in the additional production of the protein of interest
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than what is otherwise produced. In other words, this may lead to the over-expression of the
protein of interest in the cells 105. This might be undesirable since you leave the territory of
physiological relevance. Furthermore, this means of introducing fluorescence is hampered
by the lack of control in terms of how much DNA each cell ’absorbs’. Each cell in the
culture will be transfected in varying amounts, leading to a heterogeneous level of expression
in the population. Alternatively, one could perform gene-editing on the protein of interest
through CRISPR/Cas9 106, where a fluorescent protein would be introduced in conjunction
with the protein of interest. However, performing gene editing is a more complex and time-
consuming process compared to simple transfection, and requires additional controls to be
in order to ensure insertion was performed correctly.

Other methods, such as introducing antibody fragments in conjunction with a fluorescent
tag targeting the protein of interest, may be advantageous compared to direct FP tagging 105.
Considering the rather bulky GFP, its fusion to a protein of interest may impede proper
folding and/or its function through steric hindrance. On the other hand, direct FP fusion
allow for a 1 to 1 relationship between the protein of interest and the FP, making it easier to
quantitatively assess the protein of interest. However, such a relationship might make S/N
unsatisfactory, considering the lower amount of FPs overall, compared to where you have
multiple fluorescent probes per protein.

The imaging technique

The choice of imaging techniques can have a profound effect on the health of the speci-
men. Different techniques simply requires the use of different dosages of light in order
to achieve satisfactory levels of SnR. For example, considering the same dosage of light, a
widefield will yield an image that is on average 10 to 15 times more intense than that of a
point scanning confocal microscope 107. This is largely due to the nature of the confocal
technique, where the pinholes reject a considerable amount of light passing through. Nev-
ertheless, confocal microscopy remains a viable option for live-cell imaging, particularly
when employing spinning disk confocal microscopy (SDCM).

SDCM is a widely-used technique where two disks, each containing thousands of pin-
holes arranged in a spiral pattern, are introduced to the light-path. The Yokogawa scanner
enhances the system’s light efficiency by adding microlenses to the second disk 108. The
combination of the high scanning speed (up to 360 frames per second) and a high QE
CCD camera, SDCM significantly reduces the amount of photobleaching and toxicity (10
to 15 times) when compared to point scanning 109. While SDCM does not achieve as low
a photon dose as widefield microscopy, it’s significantly lower photon dose compared to
point scanning makes it well suited for high magnification live-cell imaging, especially in
4D92.
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Image interpretation and analysis

What we see depends mainly on what we look for
— John Lubbock

As microscopy has undergone a digital transformation, unlocking its full potential requires
not only a comprehensive understanding of the optics and hardware, but also an under-
standing of how we can interpret and analyse the generated data. Without the ability to
computationally analyze the data, we are left to our own imagination to guide us when
using microscopy. In many ways, it is unfortunate that our brain is so incredibly sophistic-
ated at this task of visually interpreting an image. When we observe an image, we can easily
identify and distinguish between objects in the field of view, we can place what we see in
the context of the sample and we (at least believe) that we can make some sort of temporal
interpretation of what has and will happen to the objects outside of our immediate observa-
tion. Additionally, the human brain suffers from inconsistency, where objects of the same
kind might be interpreted differently. It is clear that despite its remarkable capabilities,
the human brain will inadvertently introduce bias and errors, clouding any attempts at an
objective image interpretation.

In this chapter, we will delve into the various aspects of computational image analysis in
the context of digital microscopy. We will untangle how an image is represented digitally,
how we can extract information about objects and regions, and how this process is affected
by different techniques. We will also explore some of the most popular software solutions
for computational image analysis available for researchers without expertise in coding.

A picture is worth a thousand words

The basics of an image may seem trivial to us. We are surrounded by visual information
that we continuously have to collect (through the eye and its millions of photoreceptors)
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and interpret (through the visual cortex). It is remarkable how our brain can sift through
the noise, filter and focus in on the relevant information and connect that information to
our memory and imagination. In many ways, the saying that ’a picture is worth a thou-
sand words’ holds true. The same can be said from the perspective of computational image
interpretation and digital microscopy. Here, instead of eyes we have a camera that can
almost seamlessly collect information, and a central processing unit (CPU) and graphics
processing unit (GPU) that acts as a visual cortex and brain, performing the task of data
extraction and classification. However, in contrast to the human process of image inter-
pretation and analysis, a computational system will always ’see’ the same given the same set
of instructions, no matter the time of day or glucose levels.

In reality, the digital representation of an image is nothing more than a sequence (typically
referred to as a vector or array) of numbers that, when separated into blocks of columns or
rows, take the form of an image. Each number is a measurement of the amount of light
corresponding from a point in the sample over the course of the exposure time. For instance,
a camera with a chip size of 1024 × 1024 pixels will generate a sequence of 1 048 576
(1024 × 1024) numbers. This point of view makes it evident that, for a computer, the
saying ’a picture is worth a thousand words’ is a gross underestimation (see Figure 6).

Coordinate conventions and indexation

As we’ve alluded to, the result of partitioning of an image into rows and columns is a 2-
dimensional matrix of real numbers. Here, each pixel is indexed according to its row-
and column-position, giving it a spatial representation in the context of the image. For
historical reasons (that I will not dive into here), two paradigms exists for indexing the data
contained in a data structure like a vector or array: (a) zero-based indexing and (b) one-

Figure 6: An image captured on the microscope is made up of individual pixels. a illustrates the raw image captured as seen
in the microscope. b A zoomed in region containing a single nuclei. Here, we can begin to see the individual pixels.
Image is color-coded according to the vales contained in each pixel. c A zoomed in region of panel b plotted in a
heatmap. Here, we can see the individual values of each pixel that makes up the image. This small region compromises
approximately 0.06h of the whole image.
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based indexing. Zero-based indexing is used in some of the most influential programming
languages today (like Java, Javascript, C, C++, C# and Python), and simply determines
that the first element in a data-representation like a list is at the 0th position. In one-
based indexing, the indexing starts from 1 and is more popular in scientific programming
languages like Fortran, R, Matlab and Julia. See Figure 7 for an illustration of the two types
of indexing.

In the context of digital image representation and processing, the sequences (lists or ar-
rays) used to store pixel values can contain various types of data, not just numbers. While
numbers are the basic building blocks in programming and are extensively used in image
processing, other data types can also be employed to represent information in specific ap-
plications. For example, sequences can hold boolean values, complex numbers, or even
custom data structures, depending on the requirements of the image analysis tasks at hand.
This flexibility allows for diverse approaches to image processing, catering to a wide range
of applications and methodologies.

Number representation and types

In programming languages, there are multiple ways to represent numerical values. The most
common representations are integers and floating-point numbers. Integers are, like you
would assume, numbers without any decimal component, while floating-point numbers
have a decimal component and can thus represent numbers with fractional parts. The
precision of the number that these types can represent is limited by the number of bits
allocated to each type.

Figure 7: Indexation of data-collections can either be zero-based (left panel) or one-based (right-panel).
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Integers are, in addition to the number of bits, limited to the number it can represent by
whether it is signed or unsigned. Signed integers can represent both positive and negative
numbers, while unsigned integers can only represent positive numbers and zero. For ex-
ample, an 8-bit unsigned integer can represent values from 0 to 255 (28 possible values in
total) whereas a signed 8-bit integer can represent values from -128 to 127.

Floating-points numbers, on the other hand, provide a way to represent a much larger
range of real numbers, including those with fractional components. They are typically
represented using the IEEE 754 standard 110, which defines both single-precision (32-bit)
and double-precision (64-bit) floating point numbers. The standard specifies a format that
includes a sign bit, an exponent, and a fraction. This representation allows for numbers
with a wide range of magnitudes and precision, but due to the finite number of bits used
(again, an 8-bit float can only represent 256 possible values), floating-point numbers can
only provide an approximation of real numbers.

Programming languages (like Julia 111) keep track of what a chunk of bits represents using
a type system. This type system is used by the compiler (and ultimately the processor) to
figure out how operations on the data should be evaluated. For instance, in Julia, ’UInt32’ is
an un-signed 32-bit integer whereas ’Int32’ is a signed 32-bit integer. When Julia evaluates
addition of these two numbers, it understands that to represent the results, both numbers
have to be converted into a 64-bit signed integer (’Int64’) in order to perform the operation
and contain the results.

Color spaces and representations

In the context of digital microscopy and images in general, various color spaces and rep-
resentations can be used to describe pixel values. Some of the most common color spaces
include RGB (Red, Green, Blue), HSV (Hue, Saturation, Value), and grayscale. Each color
space has its unique characteristics and advantages for specific applications. For example,
RGB is a widely used color space for display systems, while HSV is useful for color-based
segmentation tasks. Grayscale, on the other hand, only contains intensity values. Depend-
ing on the color space and representation used, different data types and number represent-
ations may be employed to store pixel values.

Collections and data-structures

When working with data such as numerical values and strings (i.e. text; ”hello world” ) or
characters, a good way would be to organize them into collections that are suited for the
upcoming operations. There are many ways to organize data, for instance:
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• Vectors: a one dimensional series of values,

• Matrices: two dimensional data structure,

• Arrays: N-dimensional collection.

Moreover, there are other data-structures that may be more suitable for organizing ones
data, like:

• Dictionaries: a glossary of key-value pairs,

• Sets: a data structure containing unique values,

• Tuple: a fixed-length immutable (cannot be changed once instantiated) data struc-
ture,

• NamedTuple: similar to a tuple, but each value is associated with a name.

These data-structures, not mentioning ones you can access by external libraries, allow for
procedures that are both powerful and versatile.
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Example: Implementing shading and flat-field correction

When working with images and image analysis, it is important to be aware of the type of
image one is dealing with. To highlight this, we will go through an example of where we
correct for uneven illumination (through shading correction) as well as the dark current
(flat-field correction), a common problem when performing any kind of light microscopy.
Because I find the syntax of Julia to be the easiest on the eyes, all code shown from here on
out will be expressed as if it was to be executed using Julia.

The first thing we need to to is to load the images into memory. For this, we’ll first declare
their path and load them using the Images package.

using Images

path_to_image = "images/nuclei.tiff"
path_to_flat_field = "images/flat_field.tiff"
path_to_shading = "images/shading.tiff"

image = load(path_to_image)
flat_field = load(path_to_flat_field)
shading = load(path_to_shading)

Code block 1: Declaring the path to the images and loading them into memory.

Running the code above (see Code block 1) in a terminal will output the data-structure
of the last line of code (loading the shading image; see below). Here we can see that we
now have a 367 × 514 large Array, with the trailing curly brackets declaring the type -
Gray{N0f16}, and the size - (2) that the Array can contain. This means that the Array in
its current state can only contain values of the Gray{N0f16}. The trailing information ’with
eltype Gray{N0f16}’ simply states the elements’ type.

367×514 Array{Gray{N0f16},2} with eltype Gray{N0f16}:
Gray{N0f16}(0.0) Gray{N0f16}(0.0) Gray{N0f16}(0.0) ...
Gray{N0f16}(0.0) Gray{N0f16}(0.0) Gray{N0f16}(0.0) ...
Gray{N0f16}(0.0) Gray{N0f16}(0.0) Gray{N0f16}(0.0) ...
... ... ... ...

The next step would be to define a function that corrects for the shading as well as the
flat-field image. Functions are a contained sequence of code that has a local variable scope
(meaning its variables cannot be seen outside its scope), accepts arguments and returns the
result. In fact, in Julia, the result of a function can be a data-structure (like a corrected
image) but also another function. This means that for our dataset, we can first create a
function which takes two images, the flat-field and the shading image, calculates how the
data should be transformed and return a new function where input is a single image (the
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one we need to correct). This way, we can declare how shading and flat-field correction is
performed early on in the code and reuse the procedure (given that we may have more data
in our dataset). This would look like:

function generate_correction(shading::Array{T, 2}, flat::Array{T,2}) where T
shading_norm = maximum(shading) ./ shading

image -> (max.(image, flat) .- flat) .* shading_norm
end

Code block 2: Defining a function in Julia in order to perform flatfield and shading correction. Returns a new function that we
can apply to our images.

A few noteworthy things happen here:

• The ::Array{T, 2} syntax:

This syntax declares which types of argument the function accepts. In this case, T
can be any type (declared through where T in the end), but it allows us to specify that
the two arguments should contain the same type of element.

• The .-, .+ and ./ syntax:

This syntax means that the basic operation (subtraction, addition and division) should
be performed per-element (i.e. broadcasting). Normally these operations expect two
inputs. Using broadcasting, we can perform the operation on elements (pixels) in
the image in one line. An alternative expression that could be implemented here
is: image -> @. (max(image, flat) - flat) * shading_norm) The @. states that all oper-
ations should be performed element-wise.

• The image -> ... expression:

Here, we declare an anonymous function. This function takes one argument (for
the sake of clarity, I’ve named it image) and performs the right-hand side expression
using this argument. Since this is the last expression of the function, and I have not
declared a return-statement elsewhere, this anonymous function is returned.
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Moving on, we can now generate our anonymous function and apply it to our image (see
Code block 3).

using Images

function generate_correction(shading::Array{T, 2}, flat::Array{T,2}) where T

shading_norm = maximum(shading) ./ shading
image -> (max.(image, flat) .- flat) .* shading_norm

end

path_to_image = "images/nuclei.tiff"
path_to_flat_field = "images/flat_field.tiff"
path_to_shading = "images/shading.tiff"

image = load(path_to_image)
flat_field = load(path_to_flat_field)
shading = load(path_to_shading)

corr = generate_correction(shading, flat_field)

corr(image)

Code block 3: Generating and applying our correction to the image.

In our example, we had a simple case of reading images in a directory into memory using
the Images library, we declared a function for generating the correction-procedure as a new
function, and we applied this to our image of interest. We could as well just have written
the sequence using variables for the different images in the first place. The reason we did
not do that is to improve re-usability promote readability. For instance, we most likely have
multiple images that we wish to perform our correction on. This can be done by:

...
file_paths = readdir(path_to_image_seq)

# readdir only gives us the filename, we need the full path like:
file_paths = joindir.(path_to_image_seq, file_paths)

image_seq = map(file_paths) do img_path
load(img_path)

end

corr = generate_correction(shading, flat_field)

# image sequence is a ::Vector{Matrix{T}}
map(corr, image_seq)

Code block 4: In a scenario where we have a series of images that need to be corrected, we can utilize the map function.
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Here (see Code block 4), we utilize the map-function in two locations. Map is a procedure
which takes a function and a collection, and executes the function for all elements in the
collection. In our implementation, we expand the map with the (’do’) syntax, which enables
us to declare an anonymous function. This allows us to have a temporary local variable
(img_path; each file in our directory), that we iteratively call load on. The neat thing here
is that the resulting data-structure will be the same as the input (a vector) when using map.
Finally, when we have access to our corr function, we can map over the list of images,
applying the correction on all images in one line (see Code block 4).

...
shading_sequence = map(shading_file_paths) do img_path

load(img_path)
end

shading_stack = cat(shading_sequence, dims=3)

shading = mean(shading_stack, dims=3)

Code block 5: Calculation of the shading image. In our case, we have multiple images taken for estimating the shading in our
system. These can be loaded in using themap function, creating a List of images in the memory. To concatenate
the list into something more manageable, we apply the cat function with the keyword-argument dim of 3. This
results in the a 3 dimensional Array. To calculate the mean shading per pixel and reduce the 3 dimensional array
to a 2D image, we can again utilize the dims keyword-argument.

Moreover, several presumptions were made during this example, such as the estimation
of the shading and flat-field images in our system. This would typically be calculated by
taking the mean value for each pixel from a series of images taken in the same system. This
could be done in a similar manner as when we loaded the images, with the exception of
first creating a 3-dimensional array where all images are stacked on top of each other, and
utilize the dims optional argument of the Julia’s mean function (see Code block 5).
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Image segmentation and classification

In the context of digital microscopy, image segmentation and classification are crucial steps
in order to detect and analyse the content of the image. Segmentation refers to the process of
partitioning an image into distinct regions, while classification assigns labels or categories to
these segmented regions based on specific features or characteristics. The task of extracting
and subsequently measuring the content of an image varies depending on the specimen and
modality used during acquisition. Acquisition on the microscope should be optimized for
high S/N while, at the same time, making sure pixels are not saturated (i.e. pixels on the
camera-chip reach their FWC, which leads to the loss of information).

When we see an image, our brain immediately picks out content that is rich in S/N and
texture. Consider the raw image of nuclei in Figure 8, how much signal compared to
background would you estimate this image contains? In fact, in this rather rich image (∼ 50
nuclei), 89% of the data is made out of background (estimated using Otsu’s theshold 112).
For this image, the task would be to: (a) identify individual nuclei, (b) separate and label
the different nuclei and (c) measure the features of the nuclei. This different steps have to be
adjusted depending on the specimen and signal characteristics of the image, with the goal
of finding an algorithm able to handle this specific content in different circumstances (e. g.
different S/N or, in our case, density of the nuclei). In our example, (a) could be achieved
by thesholding on the background, (b) would simply be done by labeling all objects not
touching and (c) would depend on the research question.

Image segmentation techniques

There are several methods for image segmentation, ranging from simple thresholding tech-
niques to more complex machine learning-based methods. Some of the most commonly
used techniques include:

• Thresholding: This is a simple yet effective method for segmenting an image based
on pixel intensity values. Typically, a threshold value is calculated based on estim-
ating the background intensity, and pixels with intensities above this threshold can
be assigned to different regions or objects. Popular algorithms here are: Otsu’s 112,
Adaptive 113 and Sigma-clipped 114.

• Edge detection: This method identifies edges or boundaries within an image by
detecting areas with rapid changes in intensity values. Common edge detection al-
gorithms include Sobel 115, Canny 116, and Laplacian of Gaussian (LoG) 117.
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• Region growing: This method starts with a seed point or region and iteratively ex-
pands the region by including neighboring pixels that meet specific criteria, such as
intensity or texture similarity 118,119.

• Watershed: This technique treats the image as a topographic surface and segments
the image by finding watershed lines that separate regions with different intensity
values 120.

• Clustering: This method groups pixels based on their similarity in intensity or other
features, such as color, texture, or spatial proximity. Examples of clustering al-
gorithms include K-means and hierarchical clustering 121,122.

• Machine learning-based methods: These approaches utilize machine learning al-
gorithms, such as random forests, support vector machines, or deep learning models
like convolutional neural networkss (CNNs), to segment and classify image regions
based on learned features or patterns 123.

Figure 8: Illustration of the signal distribution of a fluorescence image. The raw image depicts cell nuclei imaged at 20X mag-
nification (NA=0.75; top left). The majority of the content in the image is made out of background (89 %; lower left
panel). A heatmap of a nuclei in the image (red square in the raw image) reveals a clear cutoff between background
and signal (white color; top right image). The threshold between background in the complete image using Otsu’s
algorithm is for this nuclei a conservative estimate (bottom right panel).
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Example: Image segmentation example

Because theory is best accompanied by real-world examples, I have put together an example
of an image-segmentation pipeline using the nuclei example from before. The goal of this
short exercise is to compare two segmentation algorithms (Otsu’s and sigma-clipped) as well
as to see the full process of loading an image to visualizing data. From an image-analysis
perspective, this image is rather simple to segment.

Loading packages and defining functions

To begin, we need to load the necessary packages and define functions that we will use
later on. Like mentioned previously, the reason we do this at the start of the code is for
readability and consistency.

In Code block 6, we start of by defining three functions, two functions for each thresholding
technique and one function to filter out objects depending on their area (number of pixels).
In more detail, these functions do:

• otsu_segmentation: This function segments the image using Otsu’s method, which
estimates the optimal threshold value for separating the image into foreground and
background classes based on their intensity values. The algorithm works by minim-
izing the within-class variance or maximizing the between-class variance, making it
effective when the image histogram has distinct peaks corresponding to the back-
ground and the object.

• sigma_segment: This function segments the image using a sigma-clipping approach,
which iteratively estimates the background intensity by removing outliers based on
the mean and standard deviation of the intensity values in the image. Pixels with
intensities that are more than a specified number of standard deviations away from
the mean are considered outliers and are excluded from the background estimation
process. The function returns the median and standard deviation of the background,
which we use to segment the image with (by providing the n_sigma argument).

• filter_on_size: This function filters objects in an image based on size. Using count-
map from StatsBase, it creates a dictionary with the count of unique pixel values,
representing object sizes. An empty output array (out) of the same size and type
as the input image (lb_img) is initialized. The function iterates over non-zero in-
put pixels, providing the value (v) and index (i and j), and looks up the count of
that value in the dictionary (object_sizes). If the size associated with this value falls
within the allowed range (between minsize and maxsize), it assigns the pixel value
to the output array. Finally, the filtered output array is returned.
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using Images
using SparseArrays
using StatsBase
using SegmentationUtils
using RegionProps

# Functions for segmenting and extracting data
function sigma_segment(image, n_sigma)

# median and std of background
m, s = sigma_clipped_stats(image)

return image .> (m + s * n_sigma)
end

function otsu_segment(image)
t = otsu_theshold(image)
return image .> t

end

function filter_on_size(lb_img, minsize, maxsize=Inf)
# Returns a Dict with the labels as keys, and the
# values being the count of each key
object_sizes = countmap(nonzeros(lb_img))

out = zeros(eltype(lb_img), size(lb_img))

iterator = Iterators.zip(nonzeros(lb_img), findnz(lb_img)...)
for (v, i, j) in iterator

# if the size is outside the provided limits
if maxsize > object_sizes[v] > minsize

out[i,j] = v
end

end

return out
end

Code block 6: Declaration of the segmentation functions. Here, we declare sigma_segment and sigma_segment, two func-
tions that segment the image based on different approaches for estimating the background. Lastly, a function
that takes a labeled image and filter the objects based on size (the number of pixels).

Applying our segmentation algorithms to the image

Once we have defined our algorithms, the next step is to apply them to our image. As
we’ve seen, the otsu_segment algorithm simply takes the image and applies the estimated
threshold to the image (see Code block 7). For the sigma_segment, we need to provide the
number of standard deviations that we estimate our content lies above. In our case, using
an n_sigma of three, after empirical testing, segments the image well. In our case, both
methods are followed by a closing operation, a morphological operation that smoothens
object contours and closes small holes or gaps within segmented objects. See Figure 9 for
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a comparison between the resulting segmentations using Otsu’s and Sigma-clipped. For
a more comprehensive comparison of segmentation algorithms in the use of life-science
application, I refer the reader to the following reviews by Anne L. Plant et al. 124, Jisha John
et al. 125 and Anne E. Carpenter et al. 126.

path_to_image = "images/nuclei.tiff"
img = load(path_to_image)

# Otsu segmentation
seg = otsu_segment(image) |> opening

# Segmentation using histogram clipping
seg = sigma_segment(img, 3) |> opening

Code block 7: Loading of our raw image into memory and performing our segmentation algorithms. To remove small objects
(noise) and smooth edges, we can perform an opening operation on the segmented image.

Measure object features and data-analysis

Once we have our segmented masks, it is time to analyze the properties of the content they
represent. However, before we do anything, we need to be able to distinguish between
the objects in the image. Since the segmentation algorithms only return a BitArray (an
array containing true or false), we need to convert this into a format where all objects are
distinguishable. For this, we can use the label_components from the Images library to
assign a unique value to each connected component. Once each object has been labeled, a
good approach is to already now filter out objects that we know we do not need to measure
(like small objects). Here, we can utilize the function we wrote previously to keep objects
that are of a certain size (in our case, > 100 pixels).

The benefit of performing image analysis in scientific languages with a big community is
that everything does not have to be written from the ground up. We do not need to write
handlers and interpreters for how images are loaded, nor write functions for common meth-
ods such as estimating Otsu’s threshold nor label connected components in an image. The
same holds true for measuring object features in an image. Inspired by the regionprops
function in Matlab, my colleague Johannes Kumra Ahnlide wrote an equivalent function
in Julia, that takes a raw image, a segmented image and a series of values that corresponds
to the labels we wish to measure (provided by the selected keyword argument. Region-
props extracts intensity-based information (e.g. mean, median, minimum and maximum
intensity) about each object in the raw image. Additionally, it performs measurements of
some basic morphometrical features (e.g. circularity, area, the perimeter) each object and
returns a generator that, when collected, results in a series of NamedTuples. This collection
can then immediately be used to, for instance, save to a .csv file or loaded into a DataFrame
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(data-structure for tabular data; provided by the DataFrames library) for further analysis.
See Code block 8 for an implementation of this procedure.

Interpreting the data

Interpreting image data can be challenging without understanding the underlying prop-
erties and characteristics of the objects being analyzed. In our case, we are working with
nuclei that are relatively homogeneous in size, shape, and texture. However, segmenta-
tion algorithms may not always be perfect for all scenarios, making it crucial to evaluate
and adjust the methods used for obtaining the data. Plotting the data in association with
the image data can be a powerful tool for detecting potential issues in the segmentation
procedure and enhancing our understanding of the data. In Julia, this would be relatively
simple considering we already have access to the DataFrames library. By complementing
it with the Colors and a suitable plotting library of our choice, we can effectively visualize
and render the data in a comprehensive manner.

Consider the data from our previous example. In Figure 10, I have plotted a scatter plot
of the mean intensity versus the area of each nucleus, color-coding a third feature (circu-
larity) in both the scatter plot and the segmented image. As we can see in the image, two

Figure 9: Different techniques for segmenting a image of nuclei. The raw image (left column) when segmented using sigma-
clipped (middle column) and otsu’s (right column) algorithm for estimating the threshold between background and
signal. Sigma-clipped segmentation using three standard deviations performs better overall (but picks up small un-
wanted fragments) compared to Otsu’s, in this case, more aggressive threshold (nuclei are not kept intact).
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...
minsize = 100
filt_labels = filter_on_size(

sparse(label_components(img)),
minsize

)
labels = unique(nonzeros(sparse(filt_labels)))
properties = regionprops(img, filt_labels, selected=labels)

# if we wish to export it
using CSVFiles
save("props.csv", properties)

# or if we wish to continue data-analysis in Julia
using DataFrames
df = DataFrame(properties)

...

Code block 8: In order to extract data from the segmented image, we can utilize the RegionProps package (inspired by the
regionprops from MATLAB; written by Johannes Kumra Ahnlide). First, we filter out objects that are smaller than
what we estimate cell nuclei are. Next, we look up all the unique values in our labeled image. These are just
integers referring to the label of each object in the image. Using the regionprops function, we measure properties
(e.g. intensity- and shape-based features) of the objects in the raw image. Finally, we can either return a .csv file
to export the data, or use a table-like datas tructure (DataFrames) for further analysis in Julia.

objects stand out in terms of circularity. However, the scatter plot did not sufficiently dis-
tinguish these improperly associated objects (what appears to be multiple nuclei in close
proximity). Only one object appears to be an outlier on the area-axis. Depending on the
questions asked and the analysis objectives, these objects could potentially introduce errors
and wrongful interpretations down the line. A further investigation (data not shown) re-
vealed that these objects could be distinguished using the perimeter, area, and circularity as
a means for separating them from the otherwise homogeneous population of single nuclei.
By visualizing the data in conjunction with the original image, we can better identify the
sources of potential discrepancies, adjust our segmentation analysis accordingly, and make
more informed decisions.

Available software for image analysis

In the context of microscopy and life-sciences, it is unreasonable to expect that every user
will possess the necessary coding skills to write the analysis for the images they obtain.
Indeed, not everyone shares an enthusiasm for learning programming solely for the purpose
of image analysis. Nevertheless, extracting information in an unbiased and robust manner
necessitates the implementation of image analysis methodologies. To address the challenge
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Figure 10: Illustration on two forms of visualizing the data of our nuclei. Left panel displays a scatterplot of the area and the
mean intensity of the nuclei in the image. Here, we can see one datapoint that stands out from the rest. Right panel
displays the segmented objects in an image. Both plots are color coded according to the circularity.

of limited coding experience, several free, open-source software options with user-friendly
graphical user interfaces (GUIs) have been developed. These platforms provide accessible
solutions for individuals with varying levels of programming experience.

• Fiji/ImageJ: Fiji 127(standing for Fiji is just ImageJ) is an open-source, Java-based im-
age processing platform that builds upon the core functionality of ImageJ 128. De-
veloped by the National Institutes of Health (NIH), ImageJ is a versatile image pro-
cessing and analysis software with applications in life sciences, including microscopy
and bioimaging. Both Fiji and ImageJ offer extensive libraries of plugins and mac-
ros that can be easily customized to suit specific requirements, enabling tasks such as
image filtering, segmentation, and quantification with minimal programming know-
ledge 129.

• CellProfiler: Developed by the Broad Institute, CellProfiler 130,131 is an open-source
image analysis software specifically designed for high-throughput, large-scale bio-
logical image analysis. With a user-friendly interface, CellProfiler allows biologists
and other researchers to create custom pipelines for processing and analyzing large
datasets without requiring extensive programming skills. This software is useful for
quantifying phenotypic characteristics, such as cell morphology, protein localization,
and gene expression patterns.
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In addition to Fiji/ImageJ and CellProfiler, other open-source alternatives include:

• Napari: Napari is a fast, interactive, and multi-dimensional image viewer for Python,
which can handle a wide range of imaging data types. Its plugin-based architecture
allows users to extend its functionality, making it a versatile tool for various image
analysis tasks 132.

• Icy: A flexible, open-source software platform focused on bioimage informatics,
providing both easy-to-use tools and advanced image processing algorithms 133.

• QuPath: An open-source digital pathology and whole-slide image analysis software,
particularly useful for analyzing tissue sections and tissue microarray slides 134.

While the software options mentioned offer valuable tools such as access to powerful pre-
built segmentation algorithms and a graphical user interface (GUI), some potential draw-
backs and limitations should be considered:

• Limited customization: While the available software options offer a wide range of
tools and features, there might be specific tasks that require additional customization
or scripting. Users with limited programming skills may, even though they revert
to a software with user friendly GUI, need to seek help from the software’s user
community or external resources.

• Scalability and performance: Some software platforms may not be optimized for
handling very large datasets or high-throughput analysis, which could result in per-
formance bottlenecks or slower processing times. It is essential to ensure that the
chosen software can handle the volume of data you intend to process. Additionally,
you cannot ignore the foundation that the software was built upon. For instance,
consider Fiji and ImageJ. Being built on Java and at a time where the datasets were
smaller, Fiji does not stand up in terms of performance in high-throughput situ-
ations compared to languages high-performance languages (like Julia) or languages
utilizing C for image analysis (like Python).

• Updating and maintenance: Open-source software relies on the user community
and developers for updates and maintenance. However, this ’drawback’ holds true
for custom-written code in languages like Python and Julia as well, as most of the
image-analysis functionality comes in the form of community built libraries and
packages.

• Lack of specialized tools: Some research fields may require highly specialized image
analysis tools that are not available in the general-purpose software options. In these
cases, users may need to explore niche or commercial software solutions, or develop
custom tools to meet their specific needs.
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Despite these potential drawbacks, the open-source software options available for image
analysis can provide powerful solutions for many users in microscopy and life sciences. It is
important to note that the challenges faced when using these software platforms are often
similar to those encountered when learning to code in languages like Python 135,136, Julia 137,
and MATLAB 138 on your own.

The key is to carefully evaluate the software’s capabilities and limitations in relation to
the specific requirements of your project and to invest time in learning and mastering the
chosen platform. With proper evaluation and commitment, researchers can harness the
power of both open-source software and custom-written code in languages like Python,
Julia, and MATLAB to address their image analysis needs.

In conclusion, the choice between open-source software and custom-written code in pro-
gramming languages depends on individual preferences, project requirements, and the level
of expertise. If the prospect of learning how to code is not exciting, one should steer to-
wards the open-source softwares, but make sure to learn the basics of image analysis. On
the other hand, if someone need high customizability and full control, try pick up a lan-
guage and code! It is essential to understand the benefits and limitations of each option
and choose the one that best fits the needs of the researcher and the project.

My story and lessons learned

When I embarked on my PhD-studies, I had little programming knowledge. My first en-
counter with a programming language was just six months prior when, during my master’s
degree, I had began coding in Matlab. I was given the opportunity to develop a program-
matic solution to finding bacteria and cells interacting with each other, and subsequently
image them using a higher magnification and NA objective. Valiantly trying to understand
and learn from my supervisors code, the notions of pointers and compilers was still all new
to me. After some time, I managed to create an executable file that we could run on the
microscopy-computer in order to detect events between bacteria and host-cells. However,
it was rather static in the way that no other analysis could be performed, it was slow and I
don’t remember if the coordinate space for the events was fully transformed to match that
of the microscopes.

It wasn’t until my colleague Johannes, who’s an expert coder, joined the lab that we switched
to a, at the time, rather new programming language called Julia. I remember I scoffed at the
idea, why would you need another programming language other than Matlab, considering I
had a working solution? Nevertheless, he pointed out some problems and I gave in to what
felt like starting from scratch again. The syntax was new and foreign, and I remember being
mad that indexation was done using square brackets rather than parentheses, something I
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find rather silly today considering the very stripped down syntax of Julia. I also remember
me having problems and him showing me his solutions in what appeared to be written in
another language other than Julia. At the time, I had no idea about concept of syntactic
sugar (syntax which make expressions ’sweeter’ to the eyes and easier to understand) and
how the compiler interprets code, and that knowledge in this domain could produce code
that was (for me at the time) best described as wizardry.

Since the beginning I had a somewhat maximalist view on the topic of object-oriented
versus functional programming. To me, it simply made sense organizing code into a func-
tional approach where we focus on the transformation of the input to output, rather than
trying to model the world around us using objects. This point of view has changed to the
point where I on occasion borrow ideas from the object-oriented style, like the considera-
tions in regards to encapsulation and polymorphism during the design of custom structures
and types, and how they interface with other functions. However, I think my point of view,
coming from the side of functional programming, has helped me focus on what matters
most to me: the code describing the transformation of data between states.

As we continued developing new analyses and solving image-analysis problems in Julia, the
aim of our project had evolved into the development of a framework where we could load
different analysis-pipelines. We focused on abstraction and responsibility, isolating pro-
cesses which were common for all pipelines (for instance, the conversion of pixel position
into the stage-coordinates of the microscope), so that we had a solid infrastructure. This
resulted in us hosting services using Julia, transferring the images over HTTP, and the abil-
ity for the user to load pre-defined image-analysis pipelines at the start of their experiments.
During this journey, I had also began looking into the domain of web-development, ex-
perimenting with languages like ELM and Elixir. However, I had little time for this in the
scope of our project, and had to postpone that phase of my journey to after my PhD.

Going from a complete novice to where I am today opened my eyes to the realm of com-
puter science, and it sparked an interest beyond my imagination. I learned to be resilient,
to not be daunted by the ugly red text that appears in ones face as the code vomits errors.
I learned the art of problem-solving and, perhaps most importantly, how to learn. I dis-
covered that no matter how far you’ve come in your coding journey, around the corner is a
intimidating boss (monads) waiting at the end of the dungeon, ready to slap you in the face.
This taught me to be humble, to always keep learning, and the embrace new challenges.
As I look forward to the future with anticipation, I am eager to see the innovative software
projects I will have the opportunity to contribute to, and the diverse scientific fields they
will encompass.
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Heterogeneity in cell biology

It is not the strongest of the species that survive, but the one most responsive to change.
— Charles Darwin

In this final chapter, we will embark on a journey to uncover the intricacies of cellular
heterogeneity, a phenomenon that permeates every aspect of life sciences. With the found-
ations of microscopy and image analysis behind us, we will now focus on the biological
implications of these variations among individual cells. Cellular heterogeneity not only
challenges our understanding of the biology at play, but it also has profound implications
for disease diagnosis and treatment, as well as the development of targeted therapeutics.

To fully appreciate the scope and impact of cellular heterogeneity, we will begin by ex-
amining the various factors that contribute to its existence. From external factors in the
cellular environment to the inherent stochasticity of biological processes, we will explore
the complex interplay of forces that shape each cell’s unique characteristics. Building on
this understanding, we will delve into the microscopy techniques that has the potential to
revolutionize our ability to study heterogeneity at unprecedented scales and resolutions.
Moreover, we will explore the topic of heterogeneity in diseases, how variations at the cel-
lular level impacts our understanding of disease progression, and how this perspective ties
into the work of my thesis.

Sources of heterogeneity

The very idea of heterogeneity is not foreign to us: in fact, we all perceive ourselves as
unique individuals, that no walking soul on this planet is an exact copy of one another.
This holds true for identical twins, where the notion of the individual holds true even in
the presence of genetic similarity. Then why, when we shift our focus towards the smallest
living organisms, cells, do we anticipate homogeneity in their properties?
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During experiments, it can be difficult to assess the source of the variability one observes.
It could just as well stem from inaccuracies in the tools we use in order to perform the
observation in the first place. To compensate for this, it is common to reconcile towards
the appeal of statistics of large numbers to correct for any potential inaccuracies. However,
in doing so, the importance of each individual molecule is diminished. Moreover, cellular
function often involves a very small number of molecules, like DNA that, in a single or
very few copies, gives organisms their unique genetic identity. So, can we truly disregard
the significance of individual molecules and the distinctiveness of cellular properties?

In reality, discrete and inherently random biochemical reactions involved in gene expres-
sion give rise to significant variability even among genetically identical cells (for review,
see 139–143). Indeed, it has long been known that random fluctuations in the expression of
individual genes play a crucial role in shaping cellular heterogeneity, even in cells grown
under homogeneous conditions 144–147. The presence of DNA and its encoded genes in
very low numbers 148 means that these fluctuations do not simply average out. Instead,
they can lead to discernible differences between otherwise identical cells, highlighting the
importance of considering both deterministic and stochastic processes when studying cel-
lular behavior. As we recognize the importance of heterogeneity in cellular behaviour, we
must ask ourselves: which factors influences this heterogeneity?

TheWorld Outside: External Factors

External factors can impact cellular heterogeneity through subtle environmental differ-
ences. In fact, no matter how much we try and optimize for consistency across experiments,
some external factors are out of our control. Variations at the microscopic and nanoscopic
scale in terms of nutrient density or the composition of diffusable molecules used for cell-
cell signalling are in part stochastic processes 141,149–151. Additionally, the cellular response
upon these changes may vary as well, considering the biochemical networks used by cells
to sense the molecular landscape may fluctuate in composition and localization 152–154.

In the context of fluorescence microscopy, cells are immediately under pressure from the
very nature of our observations. Light, in virtually any amount, will be damaging to the
cells93–95. This is a result of high energy electrons failing to be emitted as photons dur-
ing fluorescent excitation, and instead react to the dissolved oxygen in the environment92.
The product of this reaction, reactive oxygen species (ROS), is highly damaging to cells
left unaccounted for. An increase from the homeostatic levels of ROS, also referred to as
oxidative stress, can negatively affect several cellular structures and processes, such as mem-
branes, lipids, proteins, lipoproteins and DNA97–102. Albeit systems have been evolved in
order to handle oxidative stress 103, an excessive amount caused by fluorescence imaging
will nevertheless alter cell state and impact the experimental outcome.

48



Furthermore, one has to consider the variability in experimental procedures and data ac-
quisition that is introduced by the investigator/lab that performs the experiment. This vari-
ability can significantly impact the reproducibility and comparability of microscopy data,
as demonstrated in a recent study by Staffan Strömblad et al. 155 that assessed the sources
of variability in high-content imaging data of migrating cancer cells across three different
laboratories. The authors found that the highest technical variability occurred between
laboratories, and to a lesser extent, between individuals conducting the experiments. This
variability can hinder the ability to perform high-quality analysis, and our ability to assess
cellular heterogeneity overall. However, it is important to note that certain data processing
approaches, such as batch effect removal, can help overcome this variability and enable a
more reliable analysis of image-based datasets that originate from different laboratories.

The Dance of Chance: Inherent Factors

When discussing the sources of cellular heterogeneity, it’s crucial to acknowledge that nearly
all adjustments made to achieve a controlled setup are imperfect, despite our best efforts.
Some factors, like the external ones, cannot be completely excluded for since we cannot
(yet) control the fluctuations and gradients of environmental parameters that affect gene
expression at that level. Despite this, a substantial body of work, both from mathemat-
ical models and experimental studies, supports the notion that inherent factors, such as
stochastic gene expression, influence cellular heterogeneity 139–143,156–158.

Another noteworthy example of processes that influence cellular heterogeneity are those of
periodic nature. These periods, or pulses, are observed throughout the animal kingdom,
from bacteria 146,159–162 to fungi 163,164 and mammals 165. This is an important mechanism
for temporally controlling cell function. For instance, in mammals, the pulsatile nature
of the stress response pathway mediated by p53, which regulates the DNA damage re-
sponse 166–168, and nuclear factor κβ (NF-κβ), involved in immune responses 169–171, high-
lights the significance of periodic mechanisms in temporally controlling cell function. Of
course, this in in addition to the more well studied and beautifully orchestrated systems
like the cell cycle, calcium dynamics and multicellular phenomena based on coordinated
pulsing 163. The specific state of each cell in terms of these rhythms contributes to the overall
phenotype at both the single-cell and population-wide level.

Additionally, cellular age is an influencing factor that contributes to the phenotypic het-
erogeneity 172. Cellular age arises from asymmetrical cell division, and has been demon-
strated in budding yeast 173,174 as well as in bacterial systems, such as in Methylobacterium
extorquens 175. This age-dependent variation can impact cellular behavior, including re-
sponse to environmental changes, stress tolerance, and survival under various conditions.
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The many faces of disease: Heterogeneity in Pathology

As the time has come for me to write this section, I have found my self in a rather peculiar
situation. Waking up the other night I could feel something was not alright. And what at
first started off as nothing more than a tingling sensation in my throat was met with itching
and a runny nose two days later. I am getting sick! Funny is the irony that life plays you.
From what I am getting sick, I do not know. However, I do find my self imagining all
the hurdles and boundaries that, whatever it is, has to break through in order to cause the
symptoms I’m experiencing.

Every surface of our body, except a few exceptions like the urethral tract and our eyes, are
covered with bacteria and other organisms. Most of the time, our co-inhabitants are not
harmful. In fact, without them, we would not survive. For instance, take the pathogen
that is causing a ruckus in my body as of now, triggering the immune-system and the
symptoms I’m feeling. Let us presume it is an bacteria, albeit it being unlikely. The first
hurdle it had to overcome is to establish a foothold. It has to be able to grow, and the
microbiome inhabiting my upper respiratory tract and nasal cavities are not making it easier.
For whatever it is infecting me, it has to fight for real-estate and food in order to even have
a chance of infecting me.

It is in these environments that cellular heterogeneity reveals its significance. The diverse
characteristics of individual cells within a population enable them to adapt and thrive,
even in highly competitive environments. This inherent heterogeneity has profound im-
plications for understanding the development and progression of various diseases 176. Thus,
we cannot close our eyes to the characteristics of each individual in the quest to understand
and treat diseases more effectively. By appreciating the complexity and adaptability of these
cellular populations, we can begin to explore new avenues for treatment and prevention of
infections and other health challenges.

In the following sections, we will delve into how cellular heterogeneity influences the mani-
festation and progression of different types of diseases, with an emphasis on the areas related
to my thesis and the works I have been involved in. Specifically, we will examine the roles
of heterogeneity in bacterial infections, viral diseases, and cancer.

Bacterial infections and the ability to cope with dynamic environments

As with every organism, the goal is to survive. This means that, in addition to the ability to
adapt over time, organisms must also be capable of adapting to sudden and drastic changes
in the environment if they are to stand a chance. This ability manifests itself in several ways
in bacterial population, and may be the reason why some bacterial infections are easier to
clear than other.

50



This resistance to environmental changes is best exemplified by the survival of Escherichia
coli in the presence of antibiotics. At first, when a genetically identical population of bac-
teria are exposed to the antibiotics, the majority of the population is killed. Over time
however, the rate of killing decreases, until a small population of cells are left 177. This
survival cannot be hedged on the evolution of antibiotic resistance; the exposure is simply
too quick for any such mechanism to take place. Instead, the survival is hedged on a small
population of slow-growing bacteria, known as persistors 178,179, and was first reported for
almost 80 years ago in the case of staphylococcal infections treated with penicillin 180. This
slow growth grants tolerance to the antibiotics and can result from various external or in-
ternal factors, such as nutrient shifts 181 or the expression of certain virulence genes 182. For
instance, in E. coli, the formation of persisters has been linked to fluctuations in the ex-
pression of an intracellular toxin called HipA. When the level of HipA surpasses a certain
threshold, cells become dormant and tolerant to antibiotics 183.

Phenotypic heterogeneity also plays a role in the evasion of host immune systems by cer-
tain bacterial species. For example, Salmonella can form a subpopulation of bacteria that
do not express flagella, allowing them to avoid detection and elimination by eukaryotic
defense pathways 184. This strategy highlights the adaptive benefits of maintaining a diverse
population in response to environmental changes and stresses.

Heterogeneity in Streptococcus pyogenes and the M-protein

Streptococcus pyogenes, or group A streptococcus (GAS), is a gram-positive human patho-
gen responsible for > 600 million infections each year. Most commonly, these infections
result in relatively mild disease development (e.g. strep throat or impetigo). However, the
infection can also progress into more severe, life threatening manifestations, such as necrot-
izing fascitis, sepsis and streptococcal toxic shock syndrome, with a mortality rate of 15 to
25 % 185,186. This wide range of outcomes, especially when the high prevalence of asymp-
tomatic carriers (1% to 5%) 187,188 is taken into account, underscores the importance of
understanding the cellular heterogeneity when addressing these infections.

The diverse disease outcomes associated with S. pyogenes infections can be largely attributed
to the M-protein, a dominant feature on the bacterium’s surface. This protein is highly
variable, so much in fact that the GAS strain classification relies primarily on the M-protein
makeup. The M-protein is responsible for a wide range of functions important for the
survival of the pathogen, including resistance to phagocytosis and antibacterial activity of
histones, as well as adherance and intracellular invasion 189–191. Historically, the different
GAS strains were typed using serotype-specific anti-serum against the M-protein 186, but is
now more commonly typed based on sequencing in hypervariable region in the emm gene
encoding for the protein 185,192, with over 250 emm types having been identified at the time
of writing 186,193,194.
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In many ways, the tight co-evolution of the bacterium and the host and its immune system
can be seen as a clash between two, highly complex, heterogeneous system. On one hand,
you have the immune-system, its different cell types and highly variable antibodies trying
to recognize and opsonize the pathogen. On the other side, the functional importance
of the M-protein has forced it to not only have hyper-variable regions, but to also adapt
other strategies in order to evade the immune system. For instance, some M-protein has
the capacity to bind to the Fc-region of antibodies, causing the antigen-recognizing Fab-
domains to be pointing away from the bacterium 195,196. In addition to this camouflage,
it has also been shown to display molecular mimicry towards the human myosin protein.
This pushes the immune-system to produce antibodies that are potentially cross-reactive,
and may be contributing factor to disease progression in rheumatic heart diseases 186,197.

In conclusion, the cellular heterogeneity in S. pyogenes infections, driven largely by the
highly variable M-protein (considering the now more predominant emm typing), plays a
crucial role in the diverse disease outcomes observed. A better understanding of this hetero-
geneity and the underlying mechanisms is essential for developing improved diagnostics,
treatments, and preventive measures to combat the wide spectrum of diseases caused by
this pathogen.

At the interface of where two heterogeneous systems collide

The adaptive immune system is highly specialized at combating pathogens and foreign
particles that may cause harm to our health. A central part of adaptive immune system
is the production of antibodies, or immunoglobulins, large Y-shaped proteins made up of
four polypeptide chains (two identical heavy chains and two identical light chains; for a
review, see 198,199). Antibodies are responsible for a wide-range of functions, including op-
sonization, neutralization and complement activation by binding to antigens on foreign
proteins 199. Considering the enormous range of possibilities when it comes to the avail-
able antigens that can be out there, it is remarkable how such a heterogeneous system have
emerged in order to protect us. On top of this, during antigen presentation and the mat-
uration of B-cells, the derived antibodies should not only bind to the antigen sufficiently
enough to elicit an immune response, but also be incapable of binding to any host-protein
in the process.

I was fortunate to be part of a rather exciting project (Paper 5; not included in this thesis)
with the intent of extracting and producing antibodies from isolated B-cells reactive to-
wards the M-protein of Streptococcus pyogenes. This project200 was spear-headed by Wael
Bahnan (a senior scientist at the time) and Pontus Nordenfelt (my supervisor), who made
a rather remarkable finding. Among the antibodies they extracted, one antibody stood out
functionally, both eliciting an increased activation of NF-κβ, but also in its ability to pro-
mote a higher bacterial association in THP-1 cells (a phagocytic cell line) compared to the
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other antibodies extracted. Because the antibody in question (referred to as Ab25 in the
paper) also showed protective function in mice models, structural epitope characterization
was warranted in order to investigate the mode of binding and what set this antibody apart
from the rest. Remarkably, what was found was that Ab25 was capable of binding to two
distinctly different epitopes on the M-protein, specifically a region that has previously only
been associated with Fc-mediated binding201,196. This is emphasized by the inability of an-
other antibody, referred to as Ab49, which bound to one of the same epitopes as Ab25, but
was unable to elicit an immune response. This lead to the presentation of a new antibody-
binding mechanism, where the antibody, albeit having structurally identical Fab (fragment
antigen-binding) regions, can bind to the same protein through two structurally different
epitopes and only then trigger immune activation.

Learning from the COVID-19 Pandemic

A few months ago, I told my co-worker and friend Johannes that I would like to witness
a miracle. Something so crazy that my beliefs would be questioned, the kind of stuff that
gets written in stone tablets for surviving generations to remember. Like witnessing a comet
hitting the moon or an event of similar magnitude (without the loss of human lives that
is, I do want everyone to live happily ever after). It was when I reiterated this story to my
supervisor that he said ”Did you forget about COVID-19?”

He was right, the COVID pandemic was of that magnitude, causing the world to pause
and our priorities to be re-evaluated. The COVID-19 pandemic has been an unpreced-
ented event in modern history, affecting millions of lives, economies and healthcare sys-
tems around the globe. While it has brought immense challenges and suffering, it has also
provided us with valuable lessons in understanding the importance of cellular heterogen-
eity, both in terms of the virus’ ability to spread, but also in how our body responds and
fights off the infection.

The virus responsible for the COVID-19 pandemic, SARS-CoV-2, exploits host cellular
functions for its own replication by specifically targeting the angiotensin-converting en-
zyme 2 (ACE2) receptor on human cells. This interaction facilitates the virus’s entry into
the cell, where it commandeers the host’s cellular machinery to reproduce and generate new
viral particles. Early attempts in treating patient suggested the use of convalescent plasma
or monoclonal antibodies, in part because of the partial success seen in such strategies in
treatments of Respiratory Syncytial Virus202 and Ebola203.

The heterogeneity of the virus itself, through genetic mutations and the emergence of differ-
ent variants, has further complicated the pandemic204–206. Some variants have shown in-
creased transmissibility207, resistance to neutralization by antibodies, or partial escape from
vaccine-induced immunity208–210, which has led to alterations in public health strategies
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and vaccine development.

Moreover, the COVID-19 pandemic has emphasized the significance of individual vari-
ability in disease progression and outcomes. Patients infected with the virus have exhib-
ited a wide range of symptoms and severity, from asymptomatic carriers to those suffering
severe complications or death. This variability can be attributed to factors such as genetic
predisposition211,212, pre-existing health conditions, and differences in individual immune
responses213. Cellular heterogeneity, both in the host and the virus itself, plays a crucial
role in determining the course and outcome of the infection.

One critical aspect of understanding the immune response to the virus is recognizing the
variability in individual responses. An individual’s immune response can differ signific-
antly214–216, with some mounting a robust response capable of clearing the virus, while
others may experience a more subdued or delayed response that may lead to severe dis-
ease215. This has implications not only for treatment but also for vaccine development, as
vaccines need to elicit a strong and effective immune response to provide protection against
the virus.

These lessons from the COVID-19 pandemic underscore the need for continued research on
cellular heterogeneity in diseases, as well as the development of tailored treatment strategies
based on individual patient characteristics. As we move forward, it is crucial to integrate
these insights into our understanding of other diseases and their management, ultimately
improving patient outcomes and their quality of life.

Assessing heterogeneity using microscopy

For much of its history, microscopy has not been a suitable means for the study of het-
erogeneous populations due to the large amount of data necessary to obtain meaningful
and statistically relevant results. However, advancements in imaging technology, automa-
tion and computation analysis have improved the method for the last 20 years. Today,
microscopes can be equipped with larger, faster and more sensitive detectors, allowing us
to capture more of our sample in a single image. We have improved upon the hardware,
in terms automated stage controllers, filter wheels and imaging modalities. Furthermore,
in the domain of computation, the continued development of cheaper and powerful com-
ponents allow us to perform increasingly sophisticated image and data analysis. This digital
revolution of the microscope now allow us to truly tap into its power of spatio-temporal
resolution at the scale necessary to study cellular heterogeneity.

Today, this use of microscopy is referred to as high throughput (HTP) microscopy, or
high content screening (HCS) when in combination with automated image analysis of
multiple parameters. HTP microscopy and HCS allow us to automatically capture, store
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and analyze terabytes of data in a single experiment, quantities that would otherwise over-
whelm any human operator 150,217–224. This process of acquiring data provides us with rich
phenotypic data about the spatio-temporal properties at the single-cell level, while simul-
taneously maintaining the scale of the whole population and a large number of observa-
tions 150,218–220,225–227. Furthermore, HTP microscopy and HCS solves some of the prob-
lems traditionally associated with microscopy, such as it being a labor-intensive method,
hard to reproduce results (owing to the low number of observations) and biased interpret-
ation caused by the human factor228–232.

The Omics Revolution: Systems Microscopy

The omics revolution has significantly advanced out understanding of biological systems
by providing comprehensive and holistic views of molecular components and their inter-
actions233–235. Incorporating omics technologies, such as genomics236–238, transcriptom-
ics239–241, proteomics242–246, and metabolomics247–249, into the field of systems biology
has led to a deeper understanding of complex molecular networks governing cellular beha-
vior250–254. The omics fields have produced some groundbreaking achievements, such as
the development of AlphaFold244 in proteomics and the completion of the Human Gen-
ome Project238 in genomics. However, while the power of these techniques are immeasur-
able, especially in combination with one another, they lack the spatial context needed to
resolve inter-cellular variation and intracellular spatial variations over time255–258.

This need for spatial, temporal and inter-cellular information has prompted the integration
off advanced microscopy techniques with systems biology approaches, a concept referred to
as ’systems microscopy’256. Systems microscopy combines HTP microscopy with quantit-
ative multiparametric data acquisition and population data derived from numerous levels
of resolution. As the concept of systems microscopy emerged, several challanges were iden-
tified, including the standardization of data quality, repeatability, throughput in image
analysis, public databases and the bioinformatic infrastructure needed to parse, organize,
interrogate and share image-derived quantitative data as well as metadata256,259,260. While
some of these challenges have been solved since its emergence 130,261–266, much work and
cooperation is still needed before we can truly call microscopy an ’omics’ technology and
harness its power for studying cellular heterogeneity.

Data-driven microscopy

While HCS has become a central method for assessing large quantities of data at the
population-wide context, it is still hindered by throughput in high-resolution applications.
This had lead to the development of techniques where a data filtering and selection step is
integrated into the image analysis pipeline, and the coordinates of points of interests are sent
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back to the microscope for imaging in the higher resolutions223,267–270. This process, most
commonly refereed to as feedback microscopy or smart microscopy, where the microscope
can be programmed to respond to image content in real-time.

One of the earliest implementation of a pipeline where segmentation and event detection
was incoroporated into the acquisition steps were that of Ellenberg et al227. To test their
setup, they aimed at targeting and image cells in the two most transient mitotic stages,
prophase and anaphase. To do this, they coupled the image acquisition pipeline with auto-
mated segmentation, feature extraction and a trained classifier able to detect cells in the
correct phases, and subsequently switched to a, what they refer to as, ’complex imaging’
mode. In addition to showing the capability of feedback microscopy, the released software
accompanying the paper, Micropilot, was shown on multiple microscopy manufacturers
hardware, enabling for more vendor-agnostic approach to microscopy.

The outcome of these techniques is the ability to steer the microscope and acquire high-
resolution images of cells of interest based on predefined segmentation algorithms or de-
tection algorithms optimized for recognizing events in a population of cells. However,
the means for finding the cells of interest are in that of a more static nature, where the
segmentation and data filtration algorithms are pre-defined. What this entails is that the
population-context is at large disregarded, and the methods are more akin to targeted event
detection based on pre-defined criteria. While successful at identifying cells of interest in
the context of the experiment, the methodology of feedback microscopy or event-driven
microscopy lacks the necessary focus on the population-wide context needed to study cel-
lular heterogeneity.

In contrast to the terms feedback or event-driven microscopy, I am more inclined (although
the risk of being biased) to use the term data-driven microscopy (DDM). DDM aims at
being a more general approach, where data describing the population is either used directly
or taken into consideration when steering the microscope. In many ways, feedback micro-
scopy and event-driven microscopy are steps in the process of DDM, but do not suffice on
their own for the study of cellular heterogeneity due to the lack of population-wide context.
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The present investigation

Objectives

The objective of this thesis has been to develop a method for studying single cell interactions
using microscopy at both the population-wide level as well as high resolution. What started
off as a project with the goal of being able to target bacteria interacting with human cells
for high magnification, developed into something much broader and generally applicable
(Paper I), and an exciting spin-off project that I am looking forward to finishing (Paper
II). In addition to my own work, the experience and expertise I’ve acquired throughout
my thesis has enabled me to help and collaborate with other researchers in their work.
These collaborations have taken many forms, from training of people on equipment and
experimental design using microscopy (Paper III), to the acquisition and analysis of data
(Paper IV).
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Results and comments

Paper I

Data-drivenmicroscopy allows for context-specific acquisition of high-fidelity image data

Background

Techniques such as high throughput (HTP) microscopy and high content screening (HCS)
allow researchers to acquire and analyse large datasets at a population-wide level using mi-
croscopy228,230,229,226. This has several benefits compared to other HTP techniques, such
as the spatial information and the ability to resolve information of processes over time.
However, most high-resolution applications are typically acquired from manually selected
points, resulting in data that lack the population-context potential bias.

Several solutions such as feedback microscopy or intelligent microscopy have been pro-
posed, where automated detection of cells of interested are in-cooperated into the targeting-
selection for high-resolution267,268. However, there is no generally accepted solution for
how feedback-based microscopy could effectively integrate image analysis with hardware
control in a way that allow for information from the image analysis to inform and drive
hardware control. Additionally, no solutions have been presented that allow for targeted
image acquisition based on population parameters, and where individual cells are located
in the context of the overall population.

Key results

• We present a general framework, data-driven microscopy (DDM), that allows for
high-fidelity single cell data to be acquired based off the population-wide context.

• DDM consists of two imaging strategies, data-independent acquisition (DIA) aim-
ing at population-wide characterization at the single cell level, and data-dependent
acquisition (DDA) which aims at the targeted high-fidelity acquisiting of cells of
interest within the population.

• DDM is a modular framework where the image analysis pipeline can be developed
and loaded separately into the framework, allowing for different applications to be
performed.

• As proof of principle, DDM was applied to three diverse experimental settings.

• A plugin in the subject of characterizing transfection efficiency showcase the syner-
gistic relationship of combining a population-wide dataset and high-fidelity dataset.
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Using the high-fidelity data, the population-wide estimation could be further en-
hanced.

• An infection plugin was developed for the identification of interactions between
fluorescent bacteria and host-cells. This showcased the capacity of DDM to per-
form population-wide characterization and high-fidelity imaging of rare events in a
live-cell setting.

• A cell migration plugin was developed for the purpose of characterizing live-cell be-
haviour over time. For this, a cancer cell line (H1299) was characterized, grouped
depending on their migration speed, and targeted for high fidelity imaging. This
experiment further showcased the ability of DDM to acquire, assess and place high-
fidelity live single cell data in a population-wide context.

Discussion

In Paper I, we present a general framework, DDM, capable of acquiring and placing high-
fidelity single cell data in the context of its population. This has for long been a problem,
even in the presence of methods such as HCS, where a few, typically manually, selected
points dictate what data we acquire in the high-fidelity domain. With DDM, we have
implemented a data-centric approach to image acquisition, where population-wide data
describing the population directly dictate and steer the acquisition in higher-fidelity ap-
plications. Using DDM, the user is removed from the process of image interpretation.
Instead, by defining image segmentation plugins, the user can describe more methodolo-
gically how the data extraction should be performed, and interact with the extracted data in
order to find cells of interest for automated high-fidelity imaging. This way, the evaluation
of the data is performed in a data-centric fashion, and not influenced by visual phenomena
that mesmerize and cloud our judgement in the image data.

In contrast to previous work225, DDM distinguishes itself by providing a general solu-
tion for acquiring high-fidelity data based on population-characteristics. Furthermore, the
majority of DDM is written in Julia, a programming language that is getting increasingly
more attention in the field of bioimaging 137. This choice differs from other related work,
which generally relies on the more popular programming language, Python. Although the
decision to use Julia might initially seem like a limitation given the widespread adoption of
Python and R in the research community, it is essential to note that Julia is interoperable
with both languages. We have ensured that our framework includes an simple interface for
incorporating image analysis written in Python. The intent of the paper, however, is not
the technical means for achieving data-driven microscopy, but rather to present the idea,
and showcase our implementation of it. Hopefully, DDM inspires the bioimaging com-
munity to adopt and adapt data-centric methodologies in their pursuit of understanding
complex biological systems.
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Paper II

Correlative imaging using inherent spatial-geometric relationships of cell nuclei

Background

This paper is a spin-off from Paper I where we initially wanted to complement data that we
acquired from one microscopy-system with additional data of the same cells of interest but
from a second microscopy systems equipped with additional modalities. Typically, ima-
ging the same region in multiple systems, referred to as correlative imaging, relies on the
identification of key-markers that one can use to calibrate in-between the different systems.
These can either be derived from the introduction of artificial markers (i.e. beads). How-
ever, this approach may have an impact on the biology and puts a strain on the experiment
setup as it may render some microscopes incompatible with the fluorescent profile of the
markers. On the other hand, several algorithms exists (e.g. BRISK271, SIFT272, SURF273

and ASIFT274) that derive the key-points from the features within the image-data, such as
the texture and intensity profiling. While powerful, these algorithms depend on an over-
lap in the image data (e.g. the same fluorescenct channel or biological information) or a
similar-enough image quality for identifying the key-points, and thus also put a strain on
the experiment design.

Key results

• We describe an alternative means for performing correlative imaging by utilizing
inherent spatial relationships between cells.

• Simulation data aimed at simulating real-live scenarious such as loss of objects (cells
detaching or photobleached) and temporal dynamics (e.g. cell migration) show a
robustness in correlative success in up to 3 μm and 10min time differential between
the datasets.

• Validation of the correlative method was performed by live-cell characterization and
focal-adhesion characterization on three separate imaging systems (low magnification
widefield epifluorescence, SIM and TIRF microscopy)

Discussion

In Paper II, we present a means for performing correlative imaging on multiple microscopy
systems using inherent information about the specimen. This paper came as a by-product
of when we were performing the experiments for Paper I. In our pursuit of studying cell
migration and perform further investigation into the subcellular realm, we realized the need
for other imaging techniques. This lead us to the aim of performing live-cell imaging on one
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system, fix and stain the sample for paxillin (a proxy for visualizing focal adhesions), and
subsequently image cells of interest systematically on secondary systems (SIM and TIRF).
Because the steps of fixation and staining may alter the overall image quality, particularly
in differential interference contrast (DIC), we were hesitant on using the traditional tools
available for image registration. Additionally, because our purpose was to target cells of
interest in our population using DDM, we had access to the spatial information of each
cell. By utilizing this information, we came up with a relatively simple solution where the
spatial position of each cell and their spatial relationship with their neighboring cells was
used to calculate a scale- and rotation-invariant representation. Using this representation,
we could calculate the transformation between the two imaging systems, thus allowing for
cells captured on the primary system to also be accessible on the secondary SIM and TIRF
systems.

Our means for performing correlative microscopy distinguishes itself in the form of not be-
ing reliant on the quality of the images captured in the different systems. Furthermore, our
simulations, particularly when evaluation the allowance for perturbations in the estimated
cell position, hint at the possibility of utilizing spatial information stemming from other
fluorescent channels and markers. For instance, instead of using the nuclei for estimating
the cell centroid in both systems, if the perturbation-tolerance is high enough, this could
allow for the use of another channel or marker, such as the actin or staining of cytosol, to
be used instead. This would allow for further flexibility, as some microscope-setups might
not be compatible with each other in the sense of sharing the same configuration.
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Paper III

Spike-Dependent Opsonization Indicates Both Dose-Dependent Inhibition of Phago-
cytosis and That Non-Neutralizing Antibodies Can Confer Protection to SARS-CoV-2

Background

No one could have anticipated the arrival of the COVID19 pandemic and its broad societal
impact. Considerable efforts were made early on in order to generate neutralizing anti-
Spike antibodies towards the SARS-CoV-2 virus in order to hinder viral entry into host
cells. However, little effort had been made in characterizing the opsonic capability of neut-
ralizing antibodies against SARS-CoV-2. On the other hand, non-neutralizing antibodies,
compromising of the majority of the antibody repertoire generated by B cells, have other
immunological functions such as mediating phagocytosis and complement-dependant im-
mune activation. In this context, we were interested in whether or not anti-Spike antibodies
might mediate phagocytosis as had previously been seen with influenza275–277.

Key results

• Out work shows evidence that convalescent patient plasma and monoclocal anti-
Spike antibodies induce phagocytosis but with diminishing returns when the anti-
body concentrations become too high.

• We demonstrate that the activation and inhibition of phagocytosis are independent
of neutralization potential.

• We present data form an experimenal animal infection model that show that non-
neutralizing antibodies can protect animals from SARS-CoV-2 infection.

Discussion

In Paper III, we were interested in exploring the role of non-neutralizing Spike-specific
antibodies in the context of COVID-19 immunity. While much of the research efforts
have focused on antibodies that neutralize the ACE2-Spike interaction, the potential im-
pact of non-neutralizing antibodies remained largely unexplored. Our research revealed
that Spike-specific antibodies can enhance or reduce Spike-bead phagocytosis by mono-
cytes, depending on their concentration. This concentration-dependent modulation phe-
nomenon could help explain the unclear clinical benefits observed with high concentration
monoclonal antibody treatment for COVID-19. Furthermore, our findings highlight the
potential role of non-neutralizing antibodies in conferring protection against SARS-CoV-2
infection by mediating phagocytosis.
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To better understand the early events following Spike-monocyte contact, we used shorter
incubation times (30 min) and performed dose-response analysis across varying plasma con-
centrations. The results were congruent with our in vitro experiments and in vivo animal
infection data, suggesting a role for non-neutralizing antibodies in infection management.

My contribution to the paper came in the form of providing help with the imaging and im-
age analysis of the bead-based neutralization assay. This was setup to acquire automatically
akin to a HCS procedure. To compensate for intra-well variation, we utilized the median
and standard deviation of the background on the aggregate of all images during the seg-
mentation of the cells and beads. If the segmentation would have been done on a per
image basis, some images would return falsely labeled background as objects. Considering
the segmentation algorithms we use attempt at seperating foreground from background,
images lacking cells or beads (thus only having background) would have returned segmen-
ted objects. These can to some degree be filtered out depending on the object size, but it is
an unnecessary risk.

Our study has important implications for antibody therapy in COVID-19 patients. The
concentration-dependent modulation of phagocytosis by anti-Spike antibodies could par-
tially explain the varying clinical benefits seen with monoclonal antibody treatment. Moreover,
our results indicate that non-neutralizing antibodies generated by vaccines or natural im-
munity might still offer protection against mutated variants of the virus, highlighting the
importance of considering non-neutralizing antibodies in the development of therapeutic
strategies for COVID-19.
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Paper IV

Group A streptococci induce stronger M protein-fibronectin interaction when specific
human antibodies are bound

Background

Streptococcus pyogenes, or group A streptococcus (GAS), is a widespread human pathogen
causing a range of illnesses, some with high mortality rates. Fibronectin (Fn), a glycopro-
tein of the extracellular matrix (ECM), plays a crucial role in cell interactions with their
environment. GAS binds Fn to enhance adhesion to and invasion of host cells through
various Fn binding proteins, suggesting an evolutionarily driven process considering the
abundance in proteins capable of Fn binding278. The GAS M protein, which dominates
the bacterium’s surface, have shown to posses the ability to bind Fn and thus increase the
adhesion or trigger internalization279,280. In addition, some M proteins can bind the Fc
region of antibodies, allowing them to reverse the orientation of the antibodies and reduce
immune activation 196. In this context, we were interested in the effect the presence of Fn
has on the ability of antibodies to opsonize the M protein and trigger phagocytosis.

Key results

• We show that convalescent plasma, as well as certain monoclonal antibodies against
the M-protein increase the Fn-binding affinity to the M1 GAS in an M protein-
dependant manner.

• The enhanced Fn binding capability in the presence of monoclonal anti-M antibod-
ies reduced phagocytosis in a monocyte cell line.

• The increased Fn binding of the M protein is dependant on antibody flexibility as
well as intact Fc domains.

• We show that this phenomena is present in multiple different M types.

Discussion

In Paper IV, we investigated the interaction between group A streptococcus (GAS), a highly
adapted, human-specific pathogen, and the immune system. GAS is known to manipulate
the immune system through various mechanisms, and its M protein is a primary target due
to its spatial configuration and dominance on the bacterial surface. Our study focused on
the ability of GAS to bind to fibronectin (Fn), a high molecular weight glycoprotein of
the extracellular matrix, which the pathogen can utilize to bind to host cells and evade the
immune system.
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We found that human antibodies (Abs) can induce increased Fn-binding affinity in M pro-
teins, likely by enhancing the weak A-B domain binding. This enhanced Fn binding leads
to a reduction in Ab-mediated phagocytosis, indicating that this constitutes a GAS immune
escape mechanism. Our results showed that the Fc domain of Abs is necessary to trigger this
phenomenon, and that Ab flexibility may also play a key role. Furthermore, we observed
that our Abs could enhance Fn binding in 3 out of 5 emm type strains tested, belonging to
different clades, suggesting that this may be a more generalizable phenomenon.

My contribution for the paper came in the form of training for and support for the acquisi-
tion of data using the SIM microscope. In addition, during the review-process of the paper,
there had been an observation that Fn and the antibodies were co-localized on the surface
of S. pyogenes upon inspection of the data acquired using the SIM microscope. This lead
to me testing that hypothesis. The resulting data showed that, when using the complete
dataset that was available to us, we could not with certainty prove that hypothesis. Based
on this, we decided to remove the SIM analysis from the paper

Overall, our findings highlight a novel synergistic interplay between GAS and host proteins,
which ultimately benefits the bacterium, and underscores the complex strategies employed
by GAS to evade the immune system.

Future perspective

I’d like to dedicate this last section to explore what the future might hold. Now I cannot
speak for how accurate this will be, for I am sure there will be surprises and unforeseen devel-
opments along the way. Instead, see this as an attempt at tying all the different technologies
together and envisioning how they might synergistically contribute to our understanding
of biological systems in the years to come.

As I look back on the incredible work that has been done before me (and enabled me to do
what I’ve done), I cannot escape the feeling of being inspired. Never before have we been
able to see deeper, far into the realm of the nanoscopic, allowing us to visualize processes
that were once beyond the reach of our imagination. We have seen strides in automation
and image analysis where we now are at a point of being capable of collecting and analyzing
multi-parametric data of hundreds of thousands of cells simultaneously. Looking forward,
I envision a future where these two, what have been rather parallel tracks of development,
ultimately merge to where the power of high-throughput is combined with high resolution
imaging. This is not without challenges however. Systems need to be in place in order to
maximize for the acquisition of data rich in information. We need better tools and software
for visualizing and interpreting the data. Here, I see a big space for incorporated machine
learning tools, where the user and the machine learning algorithms work in synergy to
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extract rich and novel insights from the multi-parametric space. Possible, this could even
be guided by the software, where the machine learning algorithms see where information
is lacking, and predicts and suggests (based off the metadata and what it has learned) what
experiments that should be performed in order to test the newly generated hypothesis.

We have already seen extensive work in the field of machine learning and artificial intel-
ligence (AI). Now, I am rather reluctant to the use of the word ’intelligent’, as I do not
find these tools particularly clever at this stage, and I am sceptical of the potential of gen-
erating true intelligent systems. However, that does not mean that these systems cannot
mimic intelligence, and I do see the potential future of where these tools can act as a highly-
specialized colleague that can work along side you. Just over twenty years ago, a computer
had just beaten a world champion in chess, but the idea of a computer beating a human at
Go seemed like a far-fetched idea given the substantial increase in complexity (1040to1050

estimated number of legal moves in chess281 compared to∼ 10170 in go282). Back then, the
idea that a machine could predict, with high accuracy, the folding of proteins seemed like
a distant future. This reality was shattered recently with the introduction of AlphaGo283

and AlphaFold244. It appears like the future is here sooner rather than later.

A key aspect that will greatly benefit from the integration of these technologies is our under-
standing of cellular heterogeneity. The convergence of high-throughput data acquisition,
high-resolution imaging and the omics technologies will enable us to examine the pleth-
ora of phenotypes that exists within cell populations, revealing the underlying molecular
signatures and spatial organization that gives rise to their diversity. Here, machine learn-
ing algorithms have a the potential to aid us in deciphering the complex interactions and
relationships between various cell types, providing valuable insights into the role that cel-
lular heterogeneity plays in development, tissue function, and disease progression. As we
continue to refine and optimize these technologies, our capacity to investigate and charac-
terize the nuances of cellular heterogeneity will grow, informing the development of novel
diagnostic and therapeutic strategies tailored to the unique molecular profiles of individual
cells and their microenvironments.

However, we cannot dismiss the risks that comes with using these tools either. These are all
prediction models after all, which is why it is up to us to use them responsibly and interpret
their results in the correct context. They might be a great companion for suggesting what
is going to happen, but it is up to us to ask the questions and test the hypothesis. If we
are going to artificially predict which molecule is able to bind to and alter the function
of protein X, or generate an antibody with good opsonization and phagocytic properties
against protein Y (which I do believe lies in the future), we have to do so responsibly. For
instance, it is with reason that the body has so many checks and balances in the prevention
of auto-reactive antibodies, and even this system fails at times. For this purpose, extens-
ive validation has to be in order for in silico predicted antibodies to be used clinically.
Furthermore, one could easily utilize the same tool used for predicting potential advant-
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ageous molecules to develop harmful agents, a nightmarish scenario that have already been
witnessed by researchers in the pharmaceutical field. In a comment published in Nature
Machine Intelligence284, researchers discussed a case where their model, which normally
strives for low toxicity, were switched to optimize for toxicity. This resulted in the genera-
tion of over 40 000 molecules that were potentially harmful, among them known chemical
warfare agents. If we do not have guidelines and restrictions in place for the use of these
tools, their incredible power might be detrimental for our society.

Another important aspect that I believe will have a profound impact on our ability to study
complex cellular systems is the proper annotation of the data. Normally when we analyze
and interpret microscopy-based data, it is up to us researchers to evaluate the data in its
correct context (e.g. the cell line, cell media, which protein is labeled for fluorescence and
the like). If this context is, in addition to the metadata that is typically acquired by the
microscope), transferred to the database, the richness of the data is further elevated. This
would enable better aggregation of the data acquired in different experiments, microscopes
and users, and let us get deeper insights from the data. Furthermore, cells do not live in
isolation. Instead, we are built by a complex and intricate system of multiple different cell
types. If we are to understand how these systems work, we need to enable for research to be
done where the complexity of these systems are reflected in the experiments. This calls for
an increased ability to study cellular heterogeneity, and I believe microscopy is the perfect
tool for the job given the right environment and proper precautions.

As we embrace the convergence of omics technologies, microscopy, image analysis, and
machine learning, we stand on the precipice of a new era in the study of biological systems.
By overcoming the challenges that lie ahead, we can unlock the full potential of these tech-
nologies, leading to breakthroughs that will not only deepen our understanding of life,
but also transform the way we approach healthcare, drug development, and personalized
medicine.
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