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Abstract

This paper develops theory for an iterative experimental approach to use one

or more antennas to identify resonances of a scattering system, which could

consist of the antennas and one or more scattering objects. We include realistic

mathematical models for the antennas and for target(s), and we show that the

resonances include e�ects from the antennas and wave propagation as well as

the target scattering operator and its poles. We show how the e�ects of the

antennas and wave propagation paths can be removed, to leave only the e�ect

of the target scattering operator. We include simulations for the case of one

and two cylindrical dipole antennas probing a dielectric sphere, and we show

the e�ect of antenna resonances on the iterative experimental process.

1 Introduction

For remote target identi�cation, one of the challenges is that targets look di�erent
from di�erent viewing aspects. Consequently there has long been interest in making
use of target features that are independent of viewing aspect [19,25]; one class of such
features are target resonances. A promising approach, the Singularity Expansion
Method (SEM) was proposed by Baum [2,3], in which he noted that each target has
a scattering operator that has certain poles in the complex plane [14]. These poles
do not depend on the viewing angle, but the challenge is to �nd a way to extract
the poles from time-domain scattering data [30,32,34,35].

An independent line of investigation determined the time-domain waveform that
returns the most scattered energy from a target [10, 22]. In general, the best wave-
form is a single-frequency waveform whose frequency can be found experimentally
by an iterative process in which each successive backscattered signal is time-reversed
and retransmitted.

The fact that the solution to this problem involves an iterative time-reversal
process thus makes a connection with a long line of work on time reversal, including
[4,16] and references in [16]. Much of this work addresses di�erent types of problems,
such as refocusing on a source through an inhomogeneous medium. Other previous
work addresses the connection between eigenvalues of the time-reversal operator and
target characteristics [6�9,38]. To distinguish our use of iterative time-reversal from
other types of problems whose solutions also involve a time-reversal process, we refer
to our approach as the Resonance Enhancement Method (REM).

REM has been used experimentally to identify acoustic target resonances from
a single-channel system [28,39]. The paper [26] carried out two-channel simulations
for idealized antennas and targets, and suggested a possible connection with Baum's
SEM method.

In this paper we extend the work of [26] to the case of more accurate modeling of
antenna and target behavior. In particular, we address the issue of how the antenna
a�ects our ability to obtain information about the target frequency response. In a
subsequent paper we investigate the connection between this approach and the SEM
method.
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This work focuses on the case of one or more antennas, which could be spatially
distributed, and a target, which could consist of multiple scattering objects, em-
bedded in free space. We assume that the target is located in the far zone of each
antenna, and each antenna is located in the far zone of the scatterer. However, the
scatterer does not need to be in the far zone of the entire antenna con�guration,
only in the far zone of each antenna.

We emphasize that the experiments are done in time domain; however much of
the analysis is carried out in the frequency domain for convenience.

2 Antenna description

The antennas used in this paper act both as a transmitting and a receiving device.
The generic geometry of a typical antenna is depicted in Figure 1, where the radiat-
ing part is colored red, and the supporting electronics with the detector/generator
(in green) is colored blue. The surrounding medium is assumed to be homogeneous,
lossless, and isotropic, characterized by the relative permittivity ϵ(k) and the per-
meability µ(k). Here, k = ω/c is the wave number of the exterior medium, ω is the
angular frequency, and c is the light speed. The assumption of a lossless surrounding
material implies that ϵ(k) and µ(k) are real-valued numbers.1

A transmission line feeds the antenna. The �elds in a transmission line can be
characterized either by the voltage V (k) and the current I(k), or, equivalently, by the
amplitudes, α(k) and β(k), of the two traveling waves. The quantities are monitored
at a �xed position (the reference plane), and the spatial behavior is irrelevant for
us in this paper, and therefore suppressed. For our needs, it is advantageous to use
the amplitudes of the two traveling waves on the feed.

The wave that propagates to the right (from the signal generator to the an-
tenna) has amplitude α(k), and the one that propagates to the left (output from
the antenna, which enters the detector) has amplitude β(k); see Figure 1. The (pos-
sibly complex-valued) amplitudes α(k) and β(k), which both have dimensions of
Volts (V), act like input and output, respectively, to the antenna con�guration. In
terms of the voltage V (k) and current I(k) on the transmission line, the amplitudes
of the waves are de�ned by

α(k) =
1

2
(V (k) + Z(k)I(k)) , β(k) =

1

2
(V (k)− Z(k)I(k))

with inverse
V (k) = α(k) + β(k), Z(k)I(k) = α(k)− β(k)

where the transmission line characteristic impedance Z(k) =
√
µ0µ(k)/ϵ0ϵ(k) is a

positive, real-valued function of k. Note that the characteristic impedance is the
same for all transmission lines, and it is generally frequency-independent.

In the surrounding space, there are two vectors that characterize the interaction
with the antenna, viz., the far �eld amplitude of the antenna in the far �eld zone,

1We allow for a dependence on the wave number k (or frequency), which can be used to model
existing dispersion e�ects.
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α(k)

β(k)

F A(k, r̂)
eikr

r

E0e
ikk̂i·r

ϵ(k), µ(k)O

Figure 1: The generic geometry of an antenna (red), the supporting electronics
with the detector (blue), and its exciting amplitude α(k) and the �eld E0. The
detector/generator is marked with a green box. The reference point (local origin)
is denoted O. The outputs are the amplitude β(k) and the far �eld amplitude
F A(k, r̂).

F A(k, r̂), and the receiving electric �eld, E0(k), at the reference point of the antenna
(usually taken as the local origin O; see Figure 1).

If the antenna acts as a transmitter, we have an excitation of the system from
the generator in the shielded electronics of the antenna. This excitation is quanti�ed
by coe�cient α(k). This excitation generates an electromagnetic �eld outside the
antenna, which in the direction r̂ in the far �eld zone is quanti�ed by the far �eld
amplitude F A(k, r̂). The electric �eld in the far zone is [29]

E(k, r) ≈ F A(k, r̂)
eikr

r
(2.1)

The far �eld amplitude depends linearly on the coe�cient α(k), and we formally
write the relation between the far �eld amplitude of the antenna and the excitation
α(k) as

F A(k, r̂) = f(k, r̂)α(k) (2.2)

which de�nes the dimensionless vector f(k, r̂) ∈ C3. Because the far-�eld electric
�eld is perpendicular to the direction of propagation, the vectors F A(k, r̂) and
f(k, r̂) are restricted to the plane perpendicular to r̂; in other words, the vector
f(k, r̂) can be thought of as being in the (complex) tangent space at r̂ to the unit
sphere.

In receiving mode, the excitation of the antenna is made by an incident plane
wave (see Figure 1)

E0(k)e
ikk̂i·r
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where k is the wave number of the surrounding material, the unit vector k̂i denotes
the direction of the plane wave, and the constant, complex vector E0(k) denotes the
exciting �eld at the origin. This excitation generates a traveling wave in the port,
which is quanti�ed by the coe�cient β(k). Due to linearity of the antenna system,
the connection between E0 and β(k) can be written as [11,17,21,27]

β(k) =
2πi

k
s(k, k̂i) ·E0(k) (2.3)

for some dimensionless vector �eld s(k, k̂i). The extra factor 2πi/k is included so
that a reciprocal antenna has the property s(k, r̂) = f(k,−r̂) [12, 18, 33,36].

The relation (2.3) is not a complete description of a receiving antenna. In gen-
eral, there are two more contributions to the system. First, there is a term that
quanti�es the re�ection of the received traveling wave in the transmission line by
the electronics. With the assumption of the load matched to the transmission line
(which can almost always be arranged), this term vanishes. Moreover, there is a
scattering contribution generated by the incident plane wave. This term is usually
appreciable, but we can ignore this contribution in this paper, as we amplify the
re-radiated, time reversed signal α(k) (the scalar A below). Thus, the scattered
contribution is negligible compared to this re-radiated signal, and the scattered con-
tribution can be ignored.

For a reciprocal antenna s(k, r̂) = f(k,−r̂), and the receiving case is

β(k) =
2πi

k
f(k,−k̂i) ·E0(k) (2.4)

Under these assumptions, the antenna, both in transmitting and receiving mode,
is characterized by a single complex vector �eld f(k, r̂). The variation of this vec-
tor �eld with frequency and direction can complicate our e�orts to obtain target
information.

2.1 Antenna example

A center-fed, cylindrical dipole antenna of length 2ℓ and radius d illustrates the
antenna characterization above. This antenna has an approximate far �eld ampli-
tude [15]

F A(k, r̂) = − iZ(k)I0(k)

2π

cos (kℓ cosϑ)− cos(kℓ)

sinϑ
ϑ̂

where I0(k) is the amplitude of the current at the antenna feed and ϑ is the angle
between the extension of the linear antenna (z axis) and the observation direction
r̂; see the inset in Figure 2. This current I0(k) and the voltage V0(k) at the feed are
related to the antenna impedance Zin(k) and the amplitudes α(k) and β(k) via

α(k) + β(k) = V0(k) = Zin(k)I0(k) =
Zin

Z(k)
(α(k)− β(k))

which implies

β(k) =
Zin − Z(k)

Zin + Z(k)
α(k) ⇒ Z(k)I0(k) = α(k)− β(k) =

2Z(k)

Zin + Z(k)
α(k)
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The antenna impedance has an approximate expression obtained by the induced-emf
method. The result is [15, 24]

Zin(k) = − iZ(k)

2π sin2 kℓ

{
4S(kℓ, kd) cos2 kℓ− S(2kℓ, kd) cos 2kℓ

− sin 2kℓ (2C(kℓ, kd)− C(2kℓ, kd))
}

where the functions C(x, y) and S(x, y) are
C(x, y) = ln

2x

y
− 1

2
Cin(2x) +

i

2
Si(2x)

S(x, y) =
1

2
Si(2x) +

i

2
Cin(2x)− y

and the sine integral Si(x) and the modi�ed cosine integral Cin(x) are [1, Sec. 5.2]

Si(x) =

∫ x

0

sinx

x
dx

and

Cin(x) =

∫ x

0

1− cosx

x
dx

respectively. The antenna characteristic vector f(k, r̂) then has the form

f(k, r̂) = − i

π

Z(k)

Zin(k) + Z(k)

cos (kℓ cosϑ)− cos(kℓ)

sinϑ
ϑ̂ (2.5)

In fact,

f(k, r̂)α(k) = F A(k, r̂) = − iZ(k)I0(k)

2π

cos (kℓ cosϑ)− cos(kℓ)

sinϑ
ϑ̂

= − i

2π

2Z(k)

Zin + Z(k)
α(k)

cos (kℓ cosϑ)− cos(kℓ)

sinϑ
ϑ̂

From (2.5) we see that the cylindrical dipole antenna has its own resonance
behavior. Its variation with kℓ is illustrated in Figure 2. The radius of the antenna
in this example is d = 0.01ℓ. The far �eld pattern is evaluated at its maximum
value at ϑ = π/2 (horizontal plane), which is the direction of the main lobe in the
frequency interval we are using in this paper, kℓ ∈ [0, 4.5] (at higher frequencies
the horizontal plane is not the main lobe). The �gure shows maximum radiation at
kℓ ≈ 1.9, 4.1 and zero radiation at kℓ = π. At the latter frequency the antenna is
completely mismatched to the transmission line (|Zin| → ∞).

3 The scattering cycle

Our aim in this section is to develop a mathematical model for the received signals.
We assume there are N antennas illuminating the target as shown in Figure 3. The
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1 2 3 4

0.1

0.2

0.3 z
r̂ϑ

2ℓ

kℓ

|f(kℓ, ϑ = π/2)|

Figure 2: The antenna parameter |f(k, ϑ = π/2)| as a function of kℓ for a cylindrical
dipole antenna of length 2ℓ and radius d = 0.01ℓ.

received signals are the βi(k) in antennas i = 1, 2, . . . , N , due to scattering of the �eld
from an excitation αj(k) in antenna j = 1, 2, . . . , N . More precisely, we consider the
received signal βi(k) after the transmitted signal has been scattered by the obstacle;
see Figure 3. Each antenna is characterized in the simpli�ed model (2.2) by the
radiation characteristic vector f j(k, r̂), j = 1, 2, . . . , N , which also contains the
orientation of the speci�c antenna. The reference point of each antenna j is given
by the local origin Oj, j = 1, 2, . . . , N . We treat each antenna separately, and we
neglect coupling between the antennas (in practice, they are separated by a large
distance). If several antennas transmit simultaneously, the signal generated by each
antenna has to be added by superposition.

The scattered �eld Es(k, r) by the obstacle in the far zone from excitation
E0(k, r0) is expressed in the far �eld amplitude F s(k, r̂) and the scattering dyadic
S(k, r̂, k̂i) as [29]

Es(k, r) ≈ F s(k, r̂)
eikr

r
= S(k, r̂, k̂i) ·E0(k, r0)

eikr

r
(3.1)

where r is the distance from the local origin O′ to the �eld point. Here k̂i denotes
the direction of energy propagation for E0, i.e., of its Poynting vector. The scatterer
can be composed of several di�erent obstacles. Therefore, it su�ces to have only
one scattering dyadic. If there are several, non-interacting obstacles, the results are
added by superposition. Our goal in scattering experiments is to obtain as much
information as possible about S.

The scattering dyadic S(k, r̂, k̂i) is completely characterized by the scattering
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Vs

r0

r1

r2

rN

R̂1

R̂2

R̂N

O

O′

O1

O2

ON

Antenna 1

Antenna 2

Antenna N

Figure 3: The geometry of the scatterer Vs and its local origin O′ and the antennas
and their local origins Oi, i = 1, 2, . . . , N . The common origin of the con�guration is
denoted O. The unit vectors R̂i are given by R̂i = (r0−ri)/|r0−ri|, i = 1, 2, . . . , N .

transition matrix of the scatterer Tnn′ , and the relation is [29]

S(k, r̂, k̂i) =
4π

ik

∑
n,n′

il
′−l+τ−τ ′An(r̂)Tnn′(k)An′(k̂i) (3.2)

Here the An denote the vector spherical harmonics (see Appendix A).
We �nd the received signal βi(k) from an excitation in antenna j by analyzing

the scattering and receiving process in a series of steps.

1. Assume the amplitude of the transmitting signal on the transmission line in
antenna j = 1, 2, . . . , N is αj(k).

2. This transmitted signal generates an electric �eld outside the antenna that
radiates energy away from the antenna. Its far �eld amplitude (2.2) in a
general direction r̂ is

F A
j (k, r̂) = f j(k, r̂)αj(k)

The total electric �eld (2.1) at the local origin of the scatterer O′ from antenna
j is, in the far-�eld approximation,

Ej(k, r0) ≈ F A
j (k, R̂j)

eikRj

Rj

= f j(k, R̂j)αj(k)
eikRj

Rj

where the distance between antenna j and the scatterer is Rj = |r0 − rj| in
the direction R̂j = (r0 − rj)/Rj (unit vector in the direction r0 − rj).
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3. The scattered �eld (3.1) at the local origin ri of antenna i is

Es(k, ri) ≈ F s(k,−R̂i)
eikRi

Ri

= S(k,−R̂i, R̂j) ·Ej(k, r0)
eikRi

Ri

where F s(k, r̂) is the far �eld amplitude and S(k, r̂, k̂i) is the scattering dyadic
of the scatterer, respectively.

4. The received signal (2.4) in antenna i is

βi(k) =
2πi

k
f i(k, R̂i) ·Es(k, ri) =

2πi

k
f i(k, R̂i) ·S(k,−R̂i, R̂j) ·Ej(k, r0)

eikRi

Ri

where we have taken k̂i = −R̂i.

5. We collect the results:

βi(k) =
2πi

kRiRj

eik(Ri+Rj)f i(k, R̂i) · S(k,−R̂i, R̂j) · f j(k, R̂j)αj(k).

This is the received signal in antenna i, due to an excitation in antenna j, and
the dimensionless ampli�cation factor Λ̃ij becomes

Λ̃ij(k) =
βi(k)

αj(k)
=

2πik

kRikRj

eik(Ri+Rj)f i(k, R̂i) ·S(k,−R̂i, R̂j) ·f j(k, R̂j). (3.3)

Here the transmitting and receiving antennas are approximately modeled by f j(k, r̂)
and f i(k, r̂), respectively, and the scatterer is modeled by the scattering dyadic
S(k, r̂, k̂i). The diagonal terms in the N ×N matrix Λ̃(k) correspond to the signal
received by the same antenna and the o�-diagonal entries denote the received signal
by the other antennas. The vector of transmitted signals α is mapped by Λ̃ as∑

j

Λ̃ijαj =
∑
j

βi
αj

αj = Nβi

Consequently we de�ne Λ = 1
N
Λ̃ as an N ×N matrix that satis�es β = Λα.

In matrix notation the map from transmitted signals α(k) to the corresponding
received signals β(k) is thus

β(k) = Λ(k)α(k) = D(k)∆(k)D(k)α(k), (3.4)

where D(k) is the N ×N diagonal matrix with entries eikRi/(kRi), i.e.,

Dij = δi,j
eikRi

kRi

and

∆ij(k) =
2πi

N
kf i(k, R̂i) · S(k,−R̂i, R̂j) · f j(k, R̂j). (3.5)
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Both ∆ and Λ are dimensionless. Under the assumption that the scatterer consists
of a reciprocal material (e.g., a dielectric material), the matrices ∆ and Λ are
symmetric matrices, since [29]

S(k, r̂, k̂i) = ST(k,−k̂i,−r̂).

where the superscript T denotes transpose. The matrices ∆(k)∆∗(k), ∆∗(k)∆(k),
Λ(k)Λ∗(k), and Λ∗(k)Λ(k) are Hermitian, and, consequently, their eigenvalues are
real and the eigenvectors corresponding to di�erent eigenvalues are orthogonal. We
note that because of the symmetry, the operation of taking the complex conjugate
of Λ is the same as taking the adjoint.

3.1 Resonance Enhancement

The idea of the Resonance Enhancement Method is to amplify the peaks of S by
experimentally producing multiples of S(k) and its adjoint. These peaks correspond
to resonances, which in theory are independent of the directions of the incident and
scattered �elds. The challenge, however, is that S cannot be directly measured;
rather, what is measured is Λ(k). On the other hand, many of the factors in (3.3)
are known and can be removed. In particular, we assume that the antenna system
response factors f j are all known. The process of removing the system response is
called equalization.

We note that the vectors f i in (3.3) depend not only on the frequency k, but
also on the direction R̂i from antenna to target. We assume that this direction is
known from beamforming or antenna steering.

For the process of removing known factors, it is more convenient to write (3.4)
and (3.5) in an expanded matrix notation. We construct a long vector in which the
�rst 3 elements correspond to the 3 polarization components of the �rst antenna, the
next 3 elements correspond to the 3 polarization components of the second antenna,
etc. In particular, we denote by F the 3N ×N matrix

F =


f 1 0 0 · · · 0
0 f 2 0 · · · 0
0 0 f 3 · · · 0
...

...
... · · · 0

0 0 0 · · · fN

 =



f1,1 0 0 · · · 0
f1,2 0 0 · · · 0
f1,3 0 0 · · · 0
0 f2,1 0 · · · 0
...

...
... · · · ...

0 0 0 · · · fN,3



=


f̂ 1 0 0 · · · 0

0 f̂ 2 0 · · · 0

0 0 f̂ 3 · · · 0
...

...
... · · · 0

0 0 0 · · · f̂N


︸ ︷︷ ︸

F̃


|f 1| 0 0 · · · 0
0 |f 2| 0 · · · 0
0 0 |f 3| · · · 0
...

...
... · · · 0

0 0 0 · · · |fN |


︸ ︷︷ ︸

M
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where the f j = (fj,1, fj,2, fj,3)
T are 3× 1 column vectors and where the hats denote

(possibly complex) unit vectors: f̂ j = f j/|f j|. Here M is a nonsingular N × N

matrix, and f̂ i corresponds to the polarization of the �eld at the target due to
illumination from antenna i.

The S matrix also expands to accommodate each polarization and each antenna
separately. We denote the expanded 3N × 3N scattering matrix by S̃, and the
diagonal matrix whose elements consist of the expanded vector of antenna beam
patterns by F̃. We can then write (3.4) as β = Λα where

Λ = DMF̃TS̃F̃MD = M[DF̃TS̃F̃D]M. (3.6)

We note that D and M commute because they are both diagonal.
We write (3.6) as Λ = QSQ, where Q contain known factors whose e�ect we can

remove, and it is Sn that we construct iteratively. The factors Q and S are de�ned
di�erently, depending on which quantities are known. In particular, we consider the
following cases:

1. None of the system parameters or ranges from antennas to target are known. In
this case, we take Q = I and S = Λ. This corresponds to the case in which no
equalization is attempted during the iterative resonance enhancement process.

2. The matrix F(k) is known, but the ranges from the antennas to the target are
unknown. In this case, we take Q = M, and S = DF̃TS̃F̃D. Here S is an
N ×N matrix.

3. The antenna characteristics matrix F is unknown, but the ranges of D are
known. In this case we take Q = D and S = MF̃T S̃F̃M.

4. Not only is the matrix F known, but the ranges from the antennas to the
target are also known, and hence the matrix D is known. In this case, we
take Q = MD and S(k) = F̃TS̃F̃. The matrix Q includes both the system
responses and propagation factors.

In the REM process, we begin with a vector of initial signals α0(k) on the an-
tenna array. The signals α0(k) give rise to transmitted �elds which scatter from the
target and give rise to the associated vector of received signals β0(k) = Λ(k)α0(k).
The received signals β0(k) are then corrected for the antenna responses and possibly
also for propagation, by multiplying by the weight matrix Q−1(k). The resulting
signals are complex conjugated, which in the time domain corresponds to time-
reversing them. The result is a candidate for a new signal to be transmitted. We
amplify all these signals by the same scalar normalizing factor of A, which is chosen
so that each successive transmitted vector α of waveforms has the same total en-
ergy π−1

∑
j

∫
|α0

j (k)|2/Z(k) dk (see appendix), and before transmitting, we again

multiply the resulting signals by Q−1(k) to pre-distort them to correct for the trans-
mitting antennas and possibly also the propagation path. Thus the next signal in
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the REM iteration process is

α1(k) = Q−1(k)A
(
Q−1(k)β0(k)

)∗
= Q−1(k)A

(
Q−1(k)Λ(k)α0(k)

)∗
= Q−1(k)AQ−1(k)Q(k)S∗(k)Q(k)

(
α0(k)

)∗
= Q−1(k)AS∗(k)Q(k)

(
α0(k)

)∗
.

Here ∗ denotes complex conjugation. At the next step, the new signal to be trans-
mitted is

α2(k) = Q−1(k)A
(
Q−1(k)β1(k)

)∗
= Q−1(k)AQ−1(k)

[
Λ(k)α1(k)

]∗
= Q−1(k)AQ−1(k)[Q(k)S(k)Q(k)]∗

[
Q−1(k)AS∗(k)Q(k)

(
α0(k)

)∗]∗
= Q−1(k)AS∗(k)A∗S(k)Q(k)α0(k)

= R(k)α0(k),

where the time reversal matrix is

R(k) = Q−1(k)|A|2S∗(k)S(k)Q(k). (3.7)

Because S is symmetric, the matrices S∗(k)S(k) and R are Hermitian, and con-
sequently their eigenvalues are real and the eigenvectors corresponding to di�erent
eigenvalues are orthogonal.

We see that after even or odd numbers of iterations, the transmitted signals are

α2n(k) = Rn(k)α0(k), α2n−1(k) = AQ−1(k)S∗(k)Q(k)Rn−1(k)(α0(k))∗,

where
Rn(k) = |A|2nQ−1(k) [S∗(k)S(k)]nQ(k).

We note that the e�ect of 2n iterations of the REM process is to raise the product
S∗(k)S(k) to the nth power. Although we do not explicitly treat noise in this paper,
we note that noise is di�erent at each iteration and consequently the REM process
improves the signal-to-noise ratio for [S∗(k)S(k)]n.

The question of what time-domain waveforms the process converges to can be
answered by noting that as the iterations proceed, peaks in the frequency domain
sharpen. Thus the REM iterations in general converge to a single frequency wave-
form whose frequency is that at which the largest eigenvalue of R is greatest.
[10,22,26].

The application of Q−1 can involve some practical di�culties. In particular, Q−1

corresponds to an in�nite impulse response (IIR) �lter, whose application in the time
domain can involve an in�nite-duration signal. Various techniques are known [23]
for approximating an IIR �lter by a �nite impulse response (FIR) �lter and these
could be used here.

4 Simple examples

4.1 One single cylindrical dipole antenna

Let the antenna be a cylindrical dipole antenna of length 2ℓ and radius d, (see
Section 2.1) located at R1 = −R1ẑ, as shown in Figure 4. From (2.5), the far �eld
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Vs
a

R̂1R1 z

ϑ

O = O′

O1

Figure 4: The geometry of the spherical scatterer (radius a) and the linear antenna
atR1 = −R1ẑ and ϑ = π/2. The antenna is in the far �eld of the spherical scatterer.

pattern of the antenna is

f(k, r̂) = − i

π

Z

Zin + Z

cos (kℓ cosϑ)− cos(kℓ)

sinϑ
ϑ̂.

The scattering cycle in Section 3 results in (R̂1 = −ẑ) [see (3.3)]

Λ11(k) = 2πik
e2ikR1

k2R2
1

f(k,−ẑ) · S(k, ẑ,−ẑ) · f(k,−ẑ)

Let the scatterer be a homogeneous, dielectric, spherical scatterer of radius a. Then
Tnn′ = δττ ′δσσ′δmm′δll′tτl, and the scattering dyadic in the backscattering direction
is [29, p. 389]

S(k, ẑ,−ẑ) = − 1

2ik
I2sb(k)

where I2 is the two-dimensional unit dyadic, and where

sb(k) =
∞∑
l=1

(2l + 1)(−1)l (t1l(k)− t2l(k)) (4.1)

The transition matrix entries are

tτl = − jl(ka)(k1ajl(k1a))
′ − γτ (kajl(ka))

′jl(k1a)

h
(1)
l (ka)(k1ajl(k1a))′ − γτ (kah

(1)
l (ka))′jl(k1a)

,

where ϵ1 and µ1 are the permittivity and the permeability of the material inside the
sphere, and

γτ = δτ1
µ1

µ
+ δτ2

ϵ1
ϵ
.

The lambda factor then becomes (note that −ẑ corresponds to ϑ = π/2)

Λ11(k) =
e2ikR1

k2R2
1π
sb(k)

(
Z

Zin + Z
(1− cos(kℓ))

)2

, (4.2)

and, with equalization Option 4 of Section 3.1, the time reversal matrix is [see (3.7)]

Req(k) = |sb(k)|2 (equalized) (4.3)
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or alternatively, if we assume the range R1 is known, then with (non-) equalization
Option 3 of Section 3.1, we have

R(k) =

∣∣∣∣ Z

Zin + Z
(1− cos(kℓ))

∣∣∣∣4 |sb(k)|2 . (not equalized) (4.4)

4.2 Two cylindrical dipole antennas

The two cylindrical dipole antennas, located at r1 and r2, respectively [see Figure 5],
generate an ampli�cation factor

Λ(k) = 2πik

(
e2ikR1

k2R2
1
a(k) eik(R1+R2)

k2R1R2
b(k)

eik(R1+R2)

k2R1R2
c(k) e2ikR2

k2R2
2
d(k)

)

= 2πik

(
eikR1

kR1
0

0 eikR2

kR2

)(
a(k) b(k)
c(k) d(k)

)( eikR1

kR1
0

0 eikR2

kR2

)
,

where 
a(k) = f 1(k, R̂1) · S(k,−R̂1, R̂1) · f 1(k, R̂1)

b(k) = c(k) = f 2(k, R̂2) · S(k,−R̂2, R̂1) · f 1(k, R̂1)

d(k) = f 2(k, R̂2) · S(k,−R̂2, R̂2) · f 2(k, R̂2).

Here we specify the positions of the antennas as R1 = −R1ẑ and R2 = R2R̂2,
where R̂2 = −x̂ sin θ − ẑ cos θ. Note that with our de�nition of the angle θ in
Figure 5, the scattering angle2 is not θ but π− θ. Note also that we have arranged
the two cylindrical dipole antennas in the same direction. Other con�gurations are,
of course, possible.

For the homogeneous, dielectric, spherical scatterer in Section 4.1, we have [29,
p. 387] (

S∥ ∥(k, r̂, ẑ) S∥⊥(k, r̂, ẑ)
S⊥∥(k, r̂, ẑ) S⊥⊥(k, r̂, ẑ)

)
=

1

ik

(
S1(k) 0
0 S4(k)

)
,

where the two diagonal elements S1(k) and S4(k) are de�ned as
S1(k) =

∞∑
l=1

2l + 1

l(l + 1)
(πl(− cos θ)t1l + τl(− cos θ)t2l)

S4(k) =
∞∑
l=1

2l + 1

l(l + 1)
(πl(− cos θ)t2l + τl(− cos θ)t1l)

,

where (Pl(x) denotes the Legendre polynomials){
πl(x) = P′

l(x)

τl(x) = l(l + 1)Pl(x)− xP′
l(x)

.

2The cosine of the scattering angle is de�ned as the scalar product between the incident direction
and the observed one.
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Vs
a R̂1
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R̂2
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z

ϑ1

O = O′

O1

O2

ϑ2

θ

Figure 5: The geometry of the spherical scatterer (radius a) and two simple hor-
izontal electrical dipoles at R1 = −R1ẑ and R2 = −R2 (x̂ sin θ + ẑ cos θ). The
antennas are in the far �eld of the spherical scatterer.

In spherical unit vectors, the scattering dyadic becomes [29, p. 206] (In the geometry
of Figure 5, we have êi∥ = x̂, ês∥ = −θ̂ = −x̂ cos θ + ẑ sin θ, and êi⊥ = ês⊥ = −ŷ)

S(k,−R̂2,−ẑ) = −θ̂S∥ ∥(k,−R̂2,−ẑ)x̂ + ŷS⊥⊥(k,−R̂2,−ẑ)ŷ

= − θ̂S1x̂

ik
+

ŷS4ŷ

ik
(4.5)

and for the two back scattering contributions we have

S(k, ẑ,−ẑ) = − 1

2ik
I2sb(k), S(k,−R̂2, R̂2) = − 1

2ik
I2sb(k)

where the sum sb(k) is de�ned in (4.1).
Let the antennas both be oriented along the x-axis with a phase di�erence δ.

The radiation characteristic vectors f 1(k, r̂) and f 2(k, r̂) are

f 1(k,−ẑ) =
i

π

Z

Zin + Z
(1− cos(kℓ)) x̂

since ϑ1 = π/2 and ϑ̂1 = −x̂, and

f 2(k, R̂2) =
i

π
eiδ

Z

Zin + Z

cos (kℓ sin θ)− cos(kℓ)

cos θ
θ̂

since ϑ2 = π/2 + θ and ϑ̂2 = −θ̂.
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The scattering dyadic then simpli�es to

a(k) = f 1(k,−ẑ) · S(k, ẑ,−ẑ) · f 1(k,−ẑ)

=
1

2ikπ2

(
Z

Zin + Z

)2

(1− cos(kℓ))2 sb(k)

b(k) = c(k) = f 2(k, R̂2) · S(k,−R̂2,−ẑ) · f 1(k,−ẑ)

=
eiδ

ikπ2

(
Z

Zin + Z

)2

(1− cos(kℓ))

(
cos (kℓ sin θ)− cos(kℓ)

cos θ

)
S1(k)

d(k) = f 2(k, R̂2) · S(k,−R̂2, R̂2) · f 2(k, R̂2)

=
e2iδ

2ikπ2

(
Z

Zin + Z

)2(
cos (kℓ sin θ)− cos(kℓ)

cos θ

)2

sb(k)

The time reversal matrixR(k) in (3.7) can now be formed. Without equalization,
i.e., using equalization Option 3 of Section 3.1 with known ranges R1 and R2 (and
thus removal of D in (3.4)), we get

R(k) = 4π2k2
(
a∗(k) b∗(k)
c∗(k) d∗(k)

)(
a(k) b(k)
c(k) d(k)

)
(4.6)

We can also form an equalized version of the time reversal matrix (Option 4 in
Section 3.1). We obtain

Req(k) =
1

π2

(
sb

∗(k) 2e−iδS∗
1(k)

2e−iδS∗
1(k) e−2iδsb

∗(k)

)(
sb(k) 2eiδS1(k)

2eiδS1(k) e2iδsb(k)

)
(4.7)

5 Numerical illustrations

In Figure 6, we illustrate the di�erential scattering cross section in the backward
direction (RCS), dσ

dΩ
(k,−k̂i, k̂i)/πa

2 as a function of ka for a homogeneous, dielectric
sphere of radius a. The de�nition of the di�erential scattering cross section in the
backward direction (RCS) is [29, p. 207]

dσ

dΩ
(k,−k̂i, k̂i) = 4π

∣∣∣S(k,−k̂i, k̂i) ·E0(k)
∣∣∣2

|E0(k)|2

where E0(k) is the amplitude of the incident �eld at the origin of the scatterer. For
a spherical dielectric scatterer, this expression simpli�es to [29, p. 390]

dσ
dΩ

(k,−k̂i, k̂i)

πa2
=

|sb(k)|2

k2a2
=

1

k2a2

∣∣∣∣∣
∞∑
l=1

(2l + 1)(−1)l (t1l(k)− t2l(k))

∣∣∣∣∣
2

(5.1)

where we used the sum sb(k) de�ned in (4.1). The explicit values of the permittivity
and the permeability of the sphere in the �gure are ϵ1/ϵ = 16, µ1/µ = 1, respectively.
This value of the permittivity is chosen for clarity and illustrative value of the �gures.
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Figure 6: The di�erential scattering cross section dσ
dΩ

(k,−k̂i, k̂i)/(πa
2) in the back-

ward direction as a function of ka for a homogeneous dielectric sphere. The location
of the real value of the poles in Table 1 is marked with a dashed curve, and the
corresponding (τ, l) values are displayed in parenthesis; see also Figure 7.
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Figure 7: The poles in the complex ka-plane of the transition matrix tτl. The red
triangles mark the poles for τ = 1 and the green diamonds correspond to τ = 2.
Note the scale on the imaginary axis.
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A smaller value of the permittivity pushes the resonances to higher frequencies with
similar resonance structure.

The detailed frequency behavior of the di�erential scattering cross section in
the backward direction depends on the frequency behavior of the transition matrix
entries tτl in (5.1), which have poles in the lower complex ka plane. These poles
give rise to resonances in the di�erential scattering cross section in the backward
direction and in the eigenvalues of Λ or ∆. Some of these resonances are very sharp
and they correspond to poles close to the real ka axis.

The locations of the poles closest to the origin for the geometry in this numerical
example are given in Table 1. In Figure 7, we show the locations of the poles in
the complex ka plane. Poles with the same l value are connected by lines. From
the �gure, we observe that the poles appear in families, corresponding to the same
τ and l indices. There are no poles in the complex upper-half plane and the poles
are symmetrically located in the third and forth quadrant of the complex ka plane
(only forth quadrant shown).

The plot of the di�erential scattering cross section in the backward direction is
thus a plot of the behavior on the real axis of a function that is the magnitude
squared of a meromorphic complex-valued function. The resonances in Figure 6
correspond uniquely to the poles of the transition matrix, and the location of the
�rst poles with indices (τ, l) are displayed in the �gure. Comparing Figures 6 and 7,
we notice that the resonances occur approximately at ka corresponding to the real
part of the complex pole of a certain transition matrix entry. The closer the pole is
to the real axis, the better is the agreement. We also observe that the sharpness of
the resonance is related to the value of the imaginary part of the pole � the smaller
the imaginary part, the sharper the resonance. The small shift in frequency comes
from the �background" part of the meromorphic function that is analytic in the
neighborhood of the pole; see [37] and Appendix B. The height of the resonance is
related to the residue of the corresponding pole, but it also a�ected by the properties
of the function near the poles. These poles are the singularities of the Singularity
Expansion Method (SEM) [3].

5.1 One single antenna

In this �rst con�guration, we employ a single central-fed, cylindrical dipole antenna
and a spherical scatterer. The geometry of the antenna in the �rst pair of examples
is speci�ed by ℓ = 1.5a and d/ℓ = 0.01. In Figure 8 and 9, we show the �rst
three powers of the time reversal matrices for the equalized case in (4.3) and for the
unequalized case in (4.4) (the matrices are just 1 × 1 in this case). The equalized
case shown in Figure 8 is almost identical to the di�erential scattering cross section
in Figure 6. The only di�erence is that the curves in Figure 6 are divided by (ka)2

This division diminishes the higher frequencies in Figure 6 and, for this reason, the
two �gures di�er slightly.

When the time reversal matrix is iterated, the largest value of the largest eigen-
value is ampli�ed and all other values diminish. The largest value of the largest
eigenvalue corresponds to the position of a largest resonance that is excited in the
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τ l z0 = x0 − iy0

1 1 0.754− 0.0240i
2 1 1.053− 0.0724i
1 2 1.096− 0.0068i
2 2 1.377− 0.0118i
1 3 1.419− 0.0016i
1 1 1.541− 0.0459i
2 3 1.701− 0.0018i
1 4 1.729− 0.0003i

τ l z0 = x0 − iy0

1 2 1.893− 0.0261i
2 1 1.920− 0.0820i
2 4 2.008− 0.0003i
1 5 2.030− 0.00006i
2 2 2.207− 0.0975i
1 3 2.237− 0.0115i
2 5 2.306− 0.00004i
1 6 2.324− 0.00001i
1 1 2.333− 0.0546i

Table 1: The locations of the poles z0 of the transition matrix entries, tτl, closest
to the origin and the real axis in the complex ka-plane for a homogeneous dielectric
sphere with material data ϵ1/ϵ = 16 and µ1/µ = 1.

transition matrix. The position of this pole is shown by a dashed vertical line in the
�gures. Which resonance that is ampli�ed depends on the excitation. We notice
that di�erent resonances are ampli�ed in the equalized and in the unequalized cases.
The curves in Figures 8 and 9 illustrate this di�erence in excitation very clearly. The
reason is that in the unequalized case the scattering characteristics, shown by the
curve in Figure 8, are multiplied by a frequency taper (antenna characteristics),
which is shown by the dashed curve in Figure 9. This frequency taper suppresses
certain frequencies � in particular in an interval close to the largest resonance (1,5).
This observation emphasizes the importance of equalization.

Figures 8 and 9 also point to a shortcoming of the equalization procedure: if
there is no measured signal in a certain frequency band, no amount of equalization
can amplify a non-existent signal. Similarly, attempts to amplify a very weak signal
in a band are likely to amplify noise in that band.

A slightly smaller antenna, ℓ = 0.9a is employed in Figure 10. This �gure
depicts the behavior of the unequalized data. The equalized behavior is identical to
the curves in Figure 8. Since the antenna is smaller, its frequency taper is shifted
towards higher frequencies, and, in this case, the ampli�cation occurs close to the
largest resonance (1,5).

5.2 Two antennas

In Section 4.2, we analyzed the con�guration of two identical cylindrical dipole
antennas in a spatially distributed con�guration. The time reversal matrices for
the unequalized and the equalized cases are given in (4.6) and (4.7), respectively.
The largest eigenvalues of R and Req are illustrated in Figure 11. The antenna
parameters in this �gure are ℓ = 1.5a, d = 0.01ℓ, δ = 90◦, and θ = 30◦.

The two antennas illuminate the target in a di�erent way (spatially distributed
illumination) compared to the one antenna case in Section 4.1, and as a consequence,
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Figure 8: The value of the equalized Rn
eq for n = 1, 2, 3 for a single cylindrical

dipole antenna. The value is normalized with maximum absolute value of Req in the
interval. The position of the �rst resonance in the transition matrix (1,5) is shown
by a dotted vertical line. The second dotted line, (1,3), shows the position of the
resonance of the unequalized data. In this example ℓ = 1.5a and d = 0.01ℓ.
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Figure 9: The same data as in Figure 8 but with unequalized data. The dashed
curve shows the frequency taper of the antenna that is multiplied to the scattering
data. The value is normalized with maximum absolute value of R in the interval.
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Figure 10: The value of the unequalized Rn for n = 1, 2, 3 for a single cylindrical
dipole antenna with data ℓ = 0.9a and d = 0.01ℓ. The value is normalized with
maximum absolute value of R in the interval. The equalized case is identical to the
curves in Figure 8. The dashed curve shows the frequency taper due to the antenna
that is multiplied to the scattering data. The position of the largest resonance in
the transition matrix is shown by a dotted vertical line.

di�erent resonances are ampli�ed. In particular, for the longer antenna con�guration
in Figure 11, the unequalized case ampli�es the minor resonance (1,2), while the
equalized case ampli�es the main resonance (1,5). In Figure 12, the antennas are
smaller: ℓ = 0.9a, d = 0.01ℓ, δ = 90◦, and θ = 30◦, and both the unequalized
and the equalized iterations amplify the main (1,5) resonance. We conclude that
properties of the illumination is important for the result.

6 Conclusions

We have shown, for realistic target and antenna models, that the iterative REM
procedure can provide information about target resonances. We have shown that
the process converges to the resonances of the overall antenna-target system, and
we have proposed some approaches for removing the antenna response and range
e�ects when these are known. We have shown that di�erent antenna responses can
result in di�erent target resonances being identi�ed.

We note that because the process uses data that is sampled in the time domain,
the REM process converges automatically even to very narrow frequency-domain
peaks. The only sampling issue that arises is in plotting the frequency-domain
response.
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Figure 11: The largest eigenvalue λ(ka) of R (red curve) and Req (black curve) for
two identical cylindrical dipole antennas in Figure 5. The value is normalized with
maximum absolute value of λmax in the interval. The position of the corresponding
pole in the transition matrix is shown by a dashed vertical line. In this example
ℓ = 1.5a, d = 0.01ℓ, δ = 90◦, and θ = 30◦.
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Figure 12: The same data as in Figure 11, but the excitation is made with a shorter
antenna ℓ = 0.9a.
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A variety of interesting questions are left for the future.

� One of the advantages of REM over simply measuring the broadband response
once and raising it to a power is the improvement in the signal-to-noise ra-
tio of the resonance response. How much additive noise [20, 28] can REM
accommodate?

� How does the REM process perform in the presence of interference?

� Can we use time-gating to identify resonances of a buried target?

� Is it possible to include a constraint that the transmitted waveform should
have constant amplitude, and if so, does the modi�ed process still provide
target resonances?

� How can we best use the information provided by REM for target classi�ca-
tion?

� How much extra information can be obtained from the use of polarization
diversity?

� How can we use the REM process to identify the SEM poles in a stable way?
The issue of extracting the SEM poles we take up in a subsequent paper.

Appendix A Spherical vector waves

The vector spherical harmonics are de�ned as [5, 29]
A1n(r̂) =

1√
l(l + 1)

∇× (rYn(r̂)) =
1√

l(l + 1)
∇Yn(r̂)× r

A2n(r̂) =
1√

l(l + 1)
r∇Yn(r̂)

A3n(r̂) = r̂Yn(r̂),

where the spherical harmonics are denoted by Yn(r̂) de�ned as

Yn(r̂) = Yn(θ, ϕ) =

√
εm
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)

{
cosmϕ
sinmϕ

}
,

where Pm
l (x) are the associated Legendre functions, and where the Neumann factor

is de�ned as

εm = 2− δm0, i.e.,

{
ε0 = 1

εm = 2, m > 0.

The index n is a multi-index for the integer indices l = 1, 2, 3, . . ., m = 0, 1, . . . , l,
and σ = e,o (even and odd in the azimuthal angle).3 From these de�nitions we see

3The index set at several places in this paper also denotes a four index set, and includes the τ
index. That is, the index n can denote n = {σ, l,m} or n = {τ, σ, l,m}.
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that the �rst two vector spherical harmonics, A1n(r̂) and A2n(r̂), are tangential to
the unit sphere Ω in R3 and they are related as{

r̂ ×A1n(r̂) = A2n(r̂)

r̂ ×A2n(r̂) = −A1n(r̂).

The vector spherical harmonics form an orthonormal set over the unit sphere Ω
in R3, i.e., ∫∫

Ω

Aτn(r̂) ·Aτ ′n′(r̂) dΩ = δnn′δττ ′ ,

where dΩ is the surface measure on the unit sphere.
The parity of the vector spherical harmonics is

Aτn(−r̂) = (−1)l+τ+1Aτn(r̂), τ = 1, 2. (A.1)

The radiating solutions to the Maxwell equations in a homogeneous, isotropic
media are de�ned as (outgoing spherical vector waves)

u1n(kr) =
ξl(kr)

kr
A1n(r̂)

u2n(kr) =
1

k
∇×

(
ξl(kr)

kr
A1n(r̂)

)
Here, we use the Riccati-Bessel functions ξl(x) = xh

(1)
l (x), where h

(1)
l (x) is the

spherical Hankel function of the �rst kind [31]. These vector waves satisfy

∇× (∇× uτn(kr))− k2uτn(kr) = 0, τ = 1, 2

and they also satisfy the Silver-Müller radiation condition [13]. Another represen-
tation of the de�nition of the vector waves is

u1n(kr) =
ξl(kr)

kr
A1n(r̂)

u2n(kr) =
ξ′l(kr)

kr
A2n(r̂) +

√
l(l + 1)

ξl(kr)

(kr)2
A3n(r̂).

A simple consequence of these de�nitions is
u1n(kr) =

1

k
∇× u2n(kr)

u2n(kr) =
1

k
∇× u1n(kr).

In a similar way, the regular spherical vector waves vτn(kr) are de�ned [5].
v1n(kr) =

ψl(kr)

kr
A1n(r̂)

v2n(kr) =
ψ′
l(kr)

kr
A2n(r̂) +

√
l(l + 1)

ψl(kr)

(kr)2
A3n(r̂)

where the ψl are the Riccati-Bessel functions ψl(x) = xjl(x), and where jl(x) is the
spherical Bessel function [31].
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Appendix B Resonances and poles of the transition

matrix entries

The connection between the singularities of the transition matrix tτl and the peaks
in the di�erential scattering cross section in the backward direction, σb(ka) =
dσ
dΩ

(k,−k̂i, k̂i)/πa
2, is described in the literature, see e.g., Reference 37. In this

appendix, we review some of the details.
Denote the location of a pole in a transition matrix entry by z0 = x0− iy0, where

y0 > 0, and denote for simplicity ka = x ∈ R. In a neighborhood of the pole on the
real axis, the transition matrix entry has the form

tτl(x) =
tbg(x)

x− z0
,

where the background transition matrix tbg(x) is a slowly varying analytic function.
On the real axis, close to the pole z0, the di�erential scattering cross section in the
backward direction σb(x) has the form

σb(x) =
1

x2

∣∣∣∣sbg(x)± (2l + 1)
tbg(x)

x− z0

∣∣∣∣2 = σbg(x)

|x− z0|2
=

σbg(x)

(x− x0)2 + y20

where sbg(x) and σbg(x) (background contribution) are smooth functions in the
neighborhood of x0. The maximum of the di�erential scattering cross section occurs
at x = xm, determined by(

(xm − x0)
2 + y20

)
σ′
bg(xm)− 2σbg(xm) (xm − x0) = 0, (B.1)

where prime denotes di�erentiation w.r.t. x. If σ′
bg(xm) = 0 (constant background),

then we conclude the maximum occurs at xm = x0.
If σ′

bg(xm) ̸= 0, then the maximum is slightly shifted away from x0. To proceed,

it is convenient to introduce f(x) =
√
σbg(x) > 0 (note that σbg(x) > 0 in a

neighborhood of x = x0). Then (B.1) can be written(
(xm − x0)

2 + y20
)
f ′(xm) = f(xm) (xm − x0) .

This root x = xm satis�es the approximate equation (use a linear approximation
f(x) ≈ f(x0) + f ′(x0) (x− x0))(

(xm − x0)
2 + y20

)
f ′(x0) ≈ (f(x0) + f ′(x0) (xm − x0)) (xm − x0) ,

with solution

xm ≈ x0 + y20
f ′(x0)

f(x0)
,

which quanti�es the small shift of the resonance due to non-constant background,
i.e., σ′

bg(x0) ≈ σ′
bg(xm) ̸= 0. Note that a decrease in the value of y20, decreases the

shift.
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Appendix C Energy and power �ow

The received and transmitted power at time t are

Pr(t) =
|β(t)|2

Z
, Pt(t) =

|α(t)|2

Z

respectively, and the total energy received and transmitted are (Parseval's theorem
is used)

Er =
1

π

∫ ∞

0

|β(k)|2

Z
dω, Et =

1

π

∫ ∞

0

|α(k)|2

Z
dω

We observe that the power densities of the transmitted and received signals are
|α(k)|2 /Z and |β(k)|2 /Z, respectively.

If we transmit the spatially distributed waveform determined by α(k), which
scatters from the target and results in the spatially distributed signal corresponding
to β(k) on the receiving antennas, then our ability to detect the presence of the
target is determined by the ratio Er/Et. The optimal detectability [10] is thus

sup
α

Er

Et

= sup
α

∫∞
0

|β(k)|2
Z

dω∫∞
0

|α(k)|2
Z

dω
.

Discussion of the e�ect of noise on the power method can be found in [20].
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