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Actively controlled cardiac afterload

Henry Pigot ∗ Ylva Wahlquist ∗ Kristian Soltesz ∗

∗ Lund University, Dept. Automatic Control, Sweden
(e-mail: {first.last}@control.lth.se)

Abstract: Ex vivo (outside of the body) working heart models enable the evaluation of isolated
hearts. They are envisioned to play an important role in increasing the currently low utilization
rate of donor hearts for transplantation. For the heart to work in isolation, an afterload (flow
impedance) is needed. To date, afterload devices have been constructed by combining multiple
constituent elements such as pumps, flow resistances, and flow capacitances (compliances),
typically to replicate the structure of so-called Windkessel models. This limits active control
to that achievable by varying these elements, making it slow and subject to the problem of
dynamic coupling between parameters. Here we present a novel concept to achieve Windkessel
dynamics through a very simple variable flow impedance. The impedance is actively controlled
using feedback from a pressure measurement. Through simulations we demonstrate the ability
to perfectly emulate Windkessel dynamics, while imposing tight pressure limits needed for
safe operation—something not achievable with the verbatim implementation using constituent
elements.

Keywords: Artificial organ, physiological modelling, control of physiological and clinical
variables

1. INTRODUCTION

Ex vivo working heart models enable the organ to be
studied in isolation from other physiological systems. In
addition to being a valuable tool in basic physiology
and pharmacology research, such models show potential
for use in functional evaluation of donor organs prior
to transplantation, as described by White et al. (2018);
Gellner et al. (2020a). Functional evaluation may facilitate
the safe use of organs from marginal donors—organs
that would otherwise go unused—by providing clinicians
with concrete evidence of organ performance, thereby
expanding the organ donor pool.

Cardiac afterload is the impedance the body poses to
blood flow from the beating heart. Ex vivo working heart
models rely on devices that emulate this load. Ideally,
a cardiac afterload device mimics physiological after-
load while also enabling beat-to-beat control of arterial
pressure—pulmonary artery pressure, if used with the
right side of the heart, or aortic pressure if used with the
left side. Ensuring that arterial pressure remains between
prescribed limits is critical for the safety of the organ
under test. When beating outside of the body, the heart
lacks the protective pleura that otherwise prevents over-
extension of the ventricle in the event of high arterial
pressures. Similarly, it is necessary to maintain a lower
bound on aortic pressures to ensure sufficient perfusion of
the coronary arteries during diastole despite variations in
heart performance. These two factors make beat-to-beat
control of cardiac afterload particularly important in ex
vivo working heart models.

Cardiac afterload devices traditionally take one of two
forms: a verbatim implementation of the common Wind-
kessel lumped parameter models made up of discrete resis-

Fig. 1. Schematic of the afterload mechanism (above
dashed line) connected to the heart (below). The
afterload consists of a plunger actively controlled to
position 0 < D ≤ 3. The flow through the device con-
sists of the aortic flow i, and an auxiliary contribution
q, chosen to ensure q+i > 0. Plunger position control
is based on measurements of aortic pressure ?.

tive and compliant elements as in Westerhof et al. (1971);
Gellner et al. (2020b), described further in section 2.2, or
as a fixed resistive element supplemented by a centrifugal
pump attached to the artery as in White et al. (2015).
The latter are capable of maintaining a lower bound on
diastolic aortic pressure as set by the pump speed, while
systolic pressures are dependent on the geometry of the



afterload. Windkessel-based afterload designs rely on the
tuning of resistive and compliant elements to set diastolic
and systolic pressures. However, the parameters in both
these afterload concepts are only slowly adjustable, such
as in Fisher et al. (1984); Hatami et al. (2019); Gellner
et al. (2020b), and the parameters are inherently coupled,
making them unsuitable for beat-to-beat control of arterial
pressures.

In Pigot et al. (2022), a novel nonlinear afterload con-
cept was introduced. The concept is based on a variable
compliance chamber that enables diastolic and systolic
limit control. Here, we propose a more versatile, actively
controlled afterload concept designed to mimic physio-
logical afterload and provide beat-to-beat arterial pres-
sure control. The use of feedback control enables a much
simpler operating principle, consisting of a constant flow
source and variable flow conductance controlled at high
bandwidth relative to hemodynamics. We describe the
variable-conductance concept using first-principles models
and provide a control strategy to emulate common after-
load models with the addition of pressure limits. We then
investigate the afterload concept using simulation.

2. METHOD

2.1 Variable-conductance afterload

We want to control a dynamic aortic flow impedance using
a variable flow conductance. An ideal, time variable, flow
conductor relates aortic pressure ? to aortic volumetric
flow i through Ohm’s law

? =
i

.
, (1)

where the conductance . is the reciprocal of the resistance
' = .−1.

The conductance is varied by moving a plunger that
changes the flow path cross section area between some
small—but non-zero—minimum value and some larger
maximal value, as shown in Figure 1. The plunger is
designed so that its position D is directly proportional to
the conductance throughout its range of motion 0 < D ≤ 3:

. = .0
D

3
> 0. (2)

While the heart is viewed as a flow source in the Wind-
kessel model literature, see Westerhof et al. (2009), it is
arguably more physiologically correct to consider it as a
power source as discussed by Pigot and Soltesz (2022),
providing a time-varying instantaneous power profile

F = ?i. (3)

In normal physiology, a flow reversal can occur at the
beginning of diastole, just before the aortic valve closes,
after which the diastolic aortic pressure facilitates coro-
nary perfusion until the start of systole. The coronary
flow is small relative to total cardiac output, and thus not
explicitly modeled in the Windkessel literature. From (2)
we get that D > 0 ⇒ . > 0. Taking this into account, (1)
dictates ? < 0 whenever i < 0 (being the case during flow
reversal) while D > 0. A problem with this is that unlike the
arterial vasculature that can provide a reverse flow thanks
to its compliance, our plunger cannot. To eliminate this

problem, a mechanically forced auxiliary perfusate feed
flow q is introduced between the heart and the variable
conductance, as schematically illustrated in Figure 1.

With the auxiliary flow in place, our conductance model
(1) is extended into

? =
i + q
.

. (4)

The auxiliary flow rate q needs to be sufficiently large to
ensure a positive aortic pressure. Let Fmin be the smallest
expectable instantaneous power. If Fmin ≥ 0, we can omit
the auxiliary flow and thus set q = 0. Otherwise, combining
(3) and (4), we can write

?. =
F

?
+ q. (5)

Knowing that . > 0, we can re-write (5) as

?2 − q
.
? − F

.
= 0 (6)

with solutions

? =
q

2.
±

√(
q

2.

)2
+ F
.
. (7)

There thus exists a positive real solution ? if and only if
q2

4.2
+ F
.
> 0. (8)

Since . > 0 according to (2), the condition (8) can
equivalently be written

q2 + 4F. > 0. (9)
The case requiring the largest q thus occurs when −F. is
maximal. Letting Fmin < 0 denote the smallest expected
power, the worst case condition occurs at Fmin.0, making

q ≥ 2
√
−Fmin.0 (10)

sufficient. Note, however, that (10) is only a necessary
condition if Fmin is attained while . = .0.

2.2 Emulating dynamics

Linear time-invariant reference dynamics Our objective
is to actively control the position D of the plunger in
Figure 1 to emulate desired dynamics between aortic
pressure ? and flow i. In a realistic scenario one could
measure the aortic pressure ? with either a sensor in the
perfusate stream, or—knowing the plunger cross section
area—by the force by which the perfusate pushes onto
the plunger. However, accurate direct measurements of
aortic flow i or instantaneous cardiac power F at a
sample rate matching the time scale of the involved cardiac
dynamics (at least tens of Hertz) remain elusive. We will
circumvent the need for such measurements, through using
the combined actuation model of (4) and (2) as a very
simple soft sensor providing an estimate

i =
.0

3
D? − q. (11)

In (11) we use the same notation for measured and actual
pressure, as well as for estimated and actual flow. This
brings us to a set of assumptions that we make:

• Disturbances acting on the pressure measurement and
plunger position control are negligible.
• Discrepancies between the plunger model (2) and the
dynamics of the device implementing it are negligible.
This allows us to utilize (2) in (11).



• Delay between obtaining a new pressure sample and
updating plunger position is negligible. This allows us
to update plunger position instantaneously based on
fresh pressure measurements.
• The plunger can be moved fast compared to the
time scale of the (cardiac) dynamics that the system
is to emulate. This allows us to assume that there
are no dynamics between change of plunger position
reference and actual plunger position D.
• Pressure is equitemporally sampled at a constant rate
ℎ that is sufficiently faster than the emulated dynam-
ics, and slower than the plunger position dynamics.
This means that F does not change notably between
consecutive sampling instances.
• The auxiliary flow q is controlled to a known constant
level, such that i+q > 0, or equivalently by (4) ? > 0
is maintained at every instance.
• Historic pressure-flow data are consistent with the
reference dynamics. This means that it is sufficient
for us to maintain this consistency from one sample
to the next in order to perfectly track the reference
dynamics.

We deem it realistic to approximate the above assump-
tions related to modeling and measurement well through
adequate hardware design, and discuss the topic further in
section 4.

Let the reference dynamics that we wish to emulate be
expressed through a continuous-time transfer function
� (B) (such as a Windkessel model) from aortic flow i

to pressure ?. Zero-order-hold sampling of � at rate ℎ,
and subsequently applying the inverse I-transform then
produces a difference equation

?: = � (@−1)i: , (12)

where subscript : indicates the time C = :ℎ, so that for
instance ?: = ?(:ℎ), and where @−1 is the backward shift
operator such that @−<?: = ?:−<.

If � is of order =, � can be parameterized as

� (@−1) = 10 + 11@−1 + . . . + 1=@−=
1 + 01@−1 + . . . + 0=@−=

, (13)

As a consequence of zero-order-hold sampling, there is no
approximation error associated with (13) at the sampling
instances. The constant coefficients 1: and 0: of (13) can
be numerically (and in some cases analytically) determined
based on � and ℎ as described in for example Åström and
Wittenmark (2011), and thus assumed to be known to us.
For future convenience we also introduce the notation

�1 (@−1) = 11@−1 + . . . + 1=@−=, (14a)
�1 (@−1) = 01@−1 + . . . + 0=@−=, (14b)

that enable us to write

� (@−1) = 10 + �1 (@−1)
1 + �1 (@−1)

. (15)

Let ?̃: denote the pressure measurement sampled at
time C = :ℎ, calculated in simulation using (7). We use
(3) and (11) to reconstruct the (directly immeasurable)
instantaneous power

F: = ?̃: ĩ: = ?̃:

(
.0

3
D: ?̃: − q

)
. (16)

where ĩ: is the actuation-model-based flow corresponding
to ?̃: .

If (13) lacks direct term, signified by 10 = 0, we
can—assuming as stated above that we have historically
matched the reference dynamics—solve for the pressure

?: = �1 (@−1)i: − �1 (@−1)?:︸                           ︷︷                           ︸
2:

. (17)

The right-hand-side, denoted 2: can be considered known
at sampling instance :, since �1 (@−1)?: is a known lin-
ear combination of previously computed pressures, while
�1 (@−1)i: = �1 (@−1) (F:/?: ) only relies on previously
computed pressures and reconstructed instantaneous pow-
ers. One can note that in order for the reference dynamics
to be trackable, it is required that 2: > 0. We will not
go into details of analysing conditions for this, but suffice
it to conclude that any reasonable LTI system (such as
a Windkessel model) intended to describe the dynamics
between aortic flow i and pressure ? will stay in the
regimen of ? > 0.

Thus ?: is known and the plunger can be moved to a new
position D: that is consistent with both the reconstructed
instantaneous power F: of (16) and the aortic pressure ?:
of (17) dictated by the reference dynamics. This is done
by combining (5) and (2), resulting in

D: =
3

.0?:

(
F:

?:
+ q

)
. (18)

If there is a direct term, signified by 10 ≠ 0, (13) instead
gives us

?: − 10i: = �1 (@−1)i: − �1 (@−1)?:︸                           ︷︷                           ︸
2:

, (19)

where 2: is the same as in (17) and thus can be considered
known. Using (3) we can eliminate i: from (19) and arrive
at the quadratic equation

?2: − 2: ?: − 10F: = 0 (20)
with solutions

?: =
2:

2
±

√
22
:

4
+ 10F: . (21)

In order to honor continuity of the pressure profile, the
positive solution that minimizes ?: − ?:−1 is chosen. We
may also note that the solutions of (21) turn complex when
22
:
+ 410F: < 0. For the concerned Windkessel models it

holds that 10 ≥ 0, leading to complex solutions if and only
if F: < −22:/(410).
As in the case without direct term, the computed reference
pressure ?: is used to update the plunger position from
D:−1 to D: according to (18). This procedure is then
repeated each time a new pressure measurement sample
arrives.

Enforcing pressure limits Pressure limits can be imposed
to ensure that the aortic pressure ? remains within a safe
span ?min ≤ ? ≤ ?max. A simple way to achieve this is to
clamp ?: to this span before applying (18). Doing so will of
course violate the dynamics whenever the limits are active,
but provide a practically feasible alternative to online
adjustment of Windkessel model parameters to maintain
pressure limits in presence of e.g. arrythmic events, as



illustrated later in section 3. Note that the Windkessel
state (?,i) must be tracked during clamping so as not to
disrupt the desired dynamics.

Two-element Windkessel model Starting with the sim-
plest Windkessel model, made up of two elements as de-
scribed in Frank (1899); Westerhof et al. (2009), the dy-
namics from flow to pressure are expressed by the transfer
function

� (B) =
'?

1 + �'?B
. (22)

Zero-order-hold discretization and subsequent application
of the inverse I transform, as outlined in section 2.2, yields

� (@) = 10 + 11@−1
1 + 01@−1

, (23)

where
10 = 0,

11 = '? (1 − g1) ,
01 = −g1,

and
g1 = 4−ℎ/(�'?) .

The lack of direct term means that we can employ (17)
with

2: = '? (1 − g1) @−1i: + g1@−1?: . (24)

Four-element Windkessel model Similarly, the 4-element
Windkessel model as described in Deswysen et al. (1980);
Westerhof et al. (2009) is expressed by the transfer func-
tion

� (B) = '2 +
'?

1 + �'?B
− '2

1 + !/'2B
. (25)

The zero-order-hold discretized version has the structure

� (@−1) = 10 + 11@−1 + 12@−2
1 + 01@−1 + 02@−2

, (26)

where
10 = '2 ,

11 = '? − '2 − g1 ('? + '2),
12 = '2g1 − '?g2 + '?g1g2,
01 = −g1 − g2,
02 = g1g2,

and
g2 = 4−'2ℎ/! .

The presence of direct term means that we can employ
(21) with

2: =
(
11@

−1 + 12@−2
)
i: −

(
01@

−1 + 02@−2
)
?: . (27)

2.3 Simulation examples

Simulations were performed to emulate 2- and 4-element
Windkessel dynamics, with and without pressure limiting.
The simulations were implemented in Julia, and the code
and data used to generate the results published here are
available on GitHub, see Pigot (2023). Measured human
aortic volumetric flow from Stergiopulos et al. (1999)
was used as input to discretized Windkessel models with
parameters fit to the corresponding human aortic pressure
measurements as described in Pigot et al. (2021), provided

Table 1. Windkessel model parameters used in
the simulations.

Model '? � '2 !

mmHg
L/min

L
mmHg

mmHg
L/min

mmHg ·min
L/min

2-element 13.6 0.0996

4-element 13.6 0.0743 0.952 0.0952

in Table 1. Both data sampling and model discretization
were done with period ℎ = 5ms. The product of the input
flow and resulting pressures from each model were used as
the driving cardiac power for the respective simulations.

Maximum plunger displacement 3 was set to 3 cm, and
maximum conductance .0 = 0.9 (L/min)/mmHg was tuned
heuristically to yield displacements within this range. The
lower bound q ≥ 49.6L/min given by (10) (for the 2-
element model) is very conservative in practice, since F<8=
does not correspond to the fully open plunger position
where . = .0. Therefore, q was set heuristically to a value
below that, 21L/min. The initial plunger position was set
to D = 3/2 to generate the first ? and i values used for
plunger position control, which avoids excessive loading
of the heart during startup. After several beats, transient
behavior caused by the initial conditions dies out and
the simulation reaches steady-state. The simulation results
reported in section 3 show the last two of 20 cardiac cycles,
long after initial condition transients become negligible.

3. RESULTS

Figures 2 and 3 show afterload simulations where the
plunger position is actively controlled to replicate the 2-
and 4-element Windkessel dynamics in Table 1, respec-
tively. The plots illustrate simulation with (blue, solid)
and without (red, dashed) upper and lower pressure lim-
its on aortic pressure ?. The limits were set to 80 and
105mmHg for illustrative purposes, though a wider range
of admissible pressures would generally be considered.

Practical examples of pressure-limiting are shown in Fig-
ures 4 and 5, where two arrythmic events are simulated
with pressure limits set at 50 and 120mmHg using the the
4-element Windkessel dynamics in Table 1. In Figure 4
the third beat occurs early (shifted back by 70% of the
cardiac period), as in Pigot and Soltesz (2022), causing the
upper limit to be enforced. To illustrate the lower limit, the
second beat in Figure 5 is delayed by one cardiac period.

In all mentioned examples, the afterload simulations with-
out pressure limits resulted in ? and i that are indistin-
guishable from the corresponding discrete-timeWindkessel
model simulations (error less than single precision machine
epsilon). The pressure-limit-imposed differences in aortic
flow in Figures 2 and 3 appear subtle compared to the
differences in pressure. This is due to the differences be-
tween the minimum and maximum values; the differences
in pressure appear clearer as it is plotted from 70mmHg
to 110mmHg while flow is plotted from −5L/min to
30L/min.
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Fig. 2. Afterload simulation with plunger position D ac-
tively controlled to replicate 2-element Windkessel
dynamics with (blue, solid) and without (red, dashed)
limits on aortic pressure ?, driven by cardiac power
F. The limits are 80 and 105mmHg. The resulting ?
and i without limits are indistinguishable from the
2-element Windkessel model simulation.

4. DISCUSSION

The method presented here illustrates that it is in principle
possible to replicate a wide range of dynamics relating
pressure and flow, using the proposed afterload concept
with auxiliary flow, schematically illustrated in Figure 1.
However, in a viable implementation, the assumption
made in section 2.2 would require explicit attention. There
will for example be noise on the pressure measurement ?̃,
and inaccuracies in the actuation model (2). Investigating
the impact of deviations from the assumptions will be a
central part of future work. A simple way would be to
introduce stochastic noise models, such as additive or mul-
tiplicative Gaussian noise to the simulation and investigate
the impact of its variance on tracking performance. To
get a better understanding of where in the cardiac cycle
the system is most sensitive to measurement noise one
could instead assume perfect tracking up to sample :, then
compute and plot m (?:−?∗: )/m ?̃: , where ?

∗
:
is the pressure

corresponding to the updated plunger position, based the
noise-free measurement ?̃∗

:
, while ?: is the corresponding

pressure that would arise if the measurement was instead
?̃: . Similar analyses can be conducted to map out the
impact of actuation model inaccuracies. However, it can be
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Fig. 3. Afterload simulation with plunger position D ac-
tively controlled to replicate 4-element Windkessel
dynamics with (blue, solid) and without (red, dashed)
limits on aortic pressure ?, driven by cardiac power
F. The limits are 80 and 105mmHg. The resulting ?
and i without limits are indistinguishable from the
4-element Windkessel model simulation.

expected that they are more difficult to accurately char-
acterize than the pressure measurement noise. Depending
on the outcome of the analyses mentioned above, it might
be necessary to de-tune tracking performance to reduce
sensitivities to these deviations from the assumptions.

When first attaching a cardioplegic heart to the afterload
system, it could be set to a constant pressure target. In
this mode, the afterload would provide a flow-controlled
constant pressure source to perfuse the coronary arteries—
so called Langendorff mode perfusion, see Langendorff
(1895)—wherein any perfusate not entering the coronary
arteries would be shunted through the afterload, as evi-
denced by the illustration in Figure 1. After the resump-
tion of normal cardiac rhythm, the afterload dynamics
could be controlled to the desired dynamics, such as 4-
element Windkessel with pressure limits. Our aim is to per-
form such tests in large animal experiments using hearts
procured from pigs. A cyber-physical implementation of
mechanism of Figure 1 has been constructed. Experiments
are planned to commence shortly, once the prototype has
undergone dry run tests.
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Fig. 4. Afterload simulation with the third beat shifted
back by 70% of the beat period. The afterload is con-
trolled to replicate 4-element Windkessel dynamics
with (blue, solid) and without (red, dashed) limits on
aortic pressure ?, with limits set to 50 and 120mmHg.
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Fig. 5. Afterload simulation with the second beat delayed
by one beat period. The afterload is controlled to
replicate 4-element Windkessel dynamics with (blue,
solid) and without (red, dashed) limits on aortic
pressure ?, with limits set to 50 and 120mmHg.
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