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ABSTRACT

Nonlinear analysis of structures at high temperatures is studied.

Both geometric and material nonlinearities are taken into account.

Continuum mechanics relations are used to derive general finite
element equations. An alternative formulation to Total Lagrangian
(TL) and Updated Lagrangian (UL) formulations named Partially up-

dated Lagrangian (PL) formulation is presented.

An isotropic small strain constitutive model using the von Mises
yield criterion is derived for high temperature conditions. The
model developed can be characterized as combined elastic-plastic-
viscoplastic. The strain components are treated separately but
plastic strains and viscoplastic (creep) strains are allowed to

interact.

A new formulation of the creep behaviour is given. Both primary

and secondary creep are considered.

As an application of the derived finite element equations and the
constitutive model steel beams and frames are studied. The theory
is implemented in a computer program, CAMFEM. The program operates
on a command language with possibilities to store user-defined

matrices on files and to create macro commands.

Comparison with éxperimental observations shows that the present
theory well describes experimentally observed phenomena.

Rey words: Finite element method, constitutive model, high temper-
dture, plasticity, visco-plasticity, creep, steel, beams, frames,

computer program, command language, macro command.






1. INTRODUCTION

1.1 General remarks

High temperatures are characteristic for the operating conditions
in many industrial processes and in engineering applications such
as combustion engines and nuclear reactors. In such cases special
attention must be given to the choice of materials and the design

of structural components.

Severe mechanical and thermal loading may also result from acci-
dental situations. The design of structural members with regard to
fire is a classical example. Another example is the nuclear power
industry where rigorous safety requirements have made it necessary
to consider a variety of conceivable accidents, many of which in-
volve thermal shock loading. In many cases the consequences of
failure are such that extreme care must be taken to ensure safe

and economic design. These applications require methods of analysis
which can account for thermal effects in a prober way. Knowledge

of the performance of structural materials at high temperatures

is also of great importance.

Structural behaviour is mostly predicted by the finite element
method (FEM). In high temperature technology the results obtained
from Such an analysis depend strongly upon the modelling of the

nonlinear material behaviour such as plasticity and creep.

In the present investigation special interest is focused on the
combined elastic-plastic-thermal-creep behaviour of steel and the
finite element formulation of beams in order to establish a proce-
dure that can be adopted in the analysis of plane steel beams and
frames in the temperature range 0-700%. A building steel structure

exposed to fire is a typical special application.

1.2 Aim and scope of the present investigation

The analysis of plane steel frames at high temperatures is gener-
ally complex due to the many nonlinearities involved. Before the advent
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of high speed digital computers, the analysis had to be performed

with very crude approximations.

The aim of this investigation is to give a reliable and uniform
approach to the analysis of plane steel frames at elevated temper-
ature. Special emphasis is therefore given to a refined constitutive
model for the case of small strains, in order to take into account
plasticity and creep. An attempt is made to formulate the inter-
action between plasticity and creep that is observed in experiments.

In addition the time dependent behaviour is given a new description.

Starting from a general continuum, the finite element equations

for a beam with seven degrees of freedom are derived.

A computer program, based on the theory presented in this report,
has been developed. This program facilitates the nonlinear analysis
of beam members.

1.3 Summary of the contents

In Chapter 2 the basic equations for nonlinear, static problems

are derived from general continuum mechanics. An alternative approach
to the commonly used Total Lagrangian (TL) and Updated Lagrangian
(UL) formulations named Partially updated Lagrangian (PL) formulation

is suggested.

In Chapter 3 a general isotropic, small strain constitutive relation
applicable to steel at high temperatures is formulated. The proposed
model can be characterized as combined elastic-plastic~viscoplastic.
The strain components (elastic, plastic, thermal, creep) are treated

separately, but plastic and creep strains are allowed to interact.

In addition, a new formulation of the creep behaviour is given. Both

primary and secondary creep are considered.

Based on the general finite element expressions derived in Chapter 2,
the corresponding expressions for the beam element considered are

given in Chapter 4.
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During the course of this study the computer program, CAMFEM, was

developed. In Chapter 5 a description of the program is given.

High temperature applications are studied in Chapter 6. Numerical
results are compared with measured results from fire tests and/or
results obtained by other investigators. A parameter study on a
thermally exposed column is performed together with an analysis

of a large plane frame using substructure technique.

Finally, Chapter 7 contains concluding remarks and suggestions

for future developments.

1.4 Notations .

Tensors are generally written in component form with indicial
notation. If not otherwise indicated, the summation convention
is used. For programming purposes,matrix notations are generally
most convenient. Thus, from Chapter 4, the expressions are given
in matrix form.

Notations and symbols in the text are explained when they first

occur. In addition, notations and symbols are listed in Appendix A.
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2. BASIC EQUATIONS OF NONLINEAR PROBLEMS

2.1 Introduction

In structural design linear theories are often used to predict
structural behaviour. However, the study of nonlinear behaviour
is important in a realistic assessment of the loadbearing capa-
city of a structure. The nonlinear behaviour is due to two
sources, namely material and geometric nonlinearities. The

first type of nonlinearity emanates fromnonlinear constitutive
relations and is described in Chapter 3. The second type appears
in that the deformed geometry must be considered when the equ-

librium equations are established.
Some fundamental relations in structural mechanics are dealt
with in this chapter. For a more comprehensive treatment of

continuum mechanics, see Refs. [1] - [8].

2.2 Description of motion

In solving nonlinear problems incremental theories are usually
employed. The formulation of an incremental theory begins by
dividing the loading path of the body into a number of equili-
brium states. When the Lagrangian description of motton is chosen,
the path of one material point is followed through the various
configurations of the body and every position is defined in
relation to a reference configuration. All state quantities
such as displacements, strains and stresses are assumed to be

known with respect to the reference configuration.
A Cartesian reference frame is chosen throughout this study.
The motion of a particle in the body can symbolically be writ-
ten

X = x(X,t) (2.1)

with the rectangular components

¥, = xi(xl,Xz,XB,t) (2.2)
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where X X, and X, are the material coordinates of the particle

'
(coordi;atei in ch reference configuration). The coordinates

of its position Xy Xy and x5 are called spatial coordinates giv-—
ing the current position at time t. The material and the spatial
coordinates are in the following measured with respect to the

same reference axes.

2.3 Displacements, strains and stresses

The Cartesian components of the displacement vector are de-

noted u, . defined by

x, =X, +u, (2.3)

SIS S (2.4)

the Green strain tensor describing the deformation in the current
configuration relative to the reference configuration can be ex-

pressed as (see [1])
1
E = 2(F "E-I) (2.5)

where I is the unit tensor. In Eq. (2.4) ¢, denotes the Kronec-
ker delta. The same deformation can also be measured relative

to the current configuration by the Almansi strain tensor

* —_ -
E = %[I—(F 1)T-g h (2.6)
*
In rectangular components E and E can be written as
9%, 9x
1 k
E._= ol - ) (2.7a)
I3 28X; X 1J
9X_ 3X

*

(" R (2.7b)

E
ij 27173 9x, 9x
i



or expressed in displacements uy

au
E__ = 2= + === + o ) (2.8a)
I3 278X Xy o dX, X

I
|

- s we ) ' (2.8b)
L 9%,

When the displacement gradients are small compared to unity
(small strains and rotations) the product terms of the strain
tensors are normally negligible. In small displacement analysis

the distinction between the strain tensors is usually ignored.

To establish the constitutive equations using the Green strain
tensor E, a stress tensor with the same reference is needed.
The second Piola-Kirchhoff stress tensor E is such a symmetric tensor
defined by (see [1]).

dp_ =T__ N_ as (2.9)

where dg is a fictitious force vector related to the reference
configuration. ﬁ is the outward unit normal vector to the sur-
face dS0 in the reference configuration. The fictitious force
dE is related to the physical force dP in the current configur-
ation by

~ 1

dp = F "-dp (2.10a)

~

or in component form

dp_ = —— ap, (2.10Db)
i

dPi=T, n, ds (2.11)

The tensor T is the Cauchy stress tensor and n is the outward

unit normal vector to the surface area dS in the current con-
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figuration. Now by using the relation between dS and dSo given

by the expression known as WNanson's formula [1]

9x BXJ 0
n, d8 = det | & —=§_ as (2.12)
3j BXN ij J

the relation between the second Piola-Kirchhoff stress tensor

and the Cauchy stress tensor may be written as

El n BXI BXJ
oo = det Il 5 50 T (2.13)
2.4 Equilibrium equations

The equilibrium of a body in the deformed configuration may

be written as

i -p (2.14)

where fi denotes a componen£ of the body force vector per unit
volume. The inertia effects are neglected in Eq. (2.14). A

- fundamental difficulty in the general application of Egq. (2.14)
is that the deformed configuration of the body is unknown. In

a Lagrangian formulation it is convenlent to express the equi-
librium equation in terms of variables referred to the refer-

ence configuratior [1]

e (2.15)
BXJ JI BXI i

Eg. (2.15) can now be multiplied by umightimyfumﬁionsvim =

Vim(X1’X2’X3) and integrated over the reference volume V

9%,
v, & Ay g% [ v, f(,) av’ = o (2.16)
0 im BXJ JI BXI 0 im 1
v v

The divergence theorem yields



i %, 0.0 o
Tt = TR — 2.17
f s T e AV f Vin By A+ f v, N oT o o-=as (2.17)
0 J I 0 0 T

v v S

where ﬁJ denotes the direction cosine between the XJ—axis and
the normal to the surface dSO in the reference configuration.

The surface integral can alternatively be written as

~ o~ i 0 ~ i .0 0o .0 _
{fv, N T as” = [ v, t as” = Iovim t, as” =
S

:IV t. ds (2.18)
S

where %I and tg are components of the second and first Piola-Kirch-
hoff traction vectors and tj an actual force component in the current

configuration.

An incremental form of Eq. (2.17) is

avim ~ Xi 0 avlm ~ 0 (dxi) 0
e AR o1 Tx. & =y (2.19)
0 %y T 0
v v
where
9% 9(dx,)
0 0 ~ i 0 ~ i 0
dp_ = + — L =
L= v, af. av Jov,  dF gmas 4 Jv, ¥ s
o 0 I 0 I
v S ) S
= [ v, af av® + | v, at? as® (2.20)
0 im 1 0 im 1
v S

In BEg. (2.20) it is assumed that the loading is independent of
the deformation (assumed to be valid throughout this study).
The incremental relation between stress and strain is assumed

to be given in a linearized form (see Chapter 3).

dF = Cpoey dE = T (2.21)
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where dgo is an incremental initial or pseudo stress tensor,
C is the incremental material stiffness tensor evaluated at the

current time referring to the reference configuration and

dg = S |————————— 4 —
KL 2 3XK QXL 3XK BXL

1 3(dx,) 9x, ~9x, 3(dx.)
[ — = l—l] (2.22)

is the increment of the Green strain tensor, see Eg. (2.7a).
Eq. (2.3) gives

dx, = du, (2.23)
1 1
and
S T (2.24)
BXI iT BXI

By use of Egs. (2.23) and (2.24) dE can be written as

3 (du,) Ju, Ju, B(dui)

1[ i i i
dE_ = o|—g— (8, + =)+ (6, + —) ]
KL 2 BXK iL BXL iK BXK BXL

(2.25)

Substitution of Egs. (2.21), (2.23) and (2.24) into (2.19)
yields

Bvim Bui 0 Bvim - B(dui) 0

f X (6iI + X ) CIJKL dEKL ave - I TJI 39X av

0 g T 0 I
v v

Bu
1m N0 0]

- — = .26

f T (8, + BXI) av” = ap_ (2.26)

V

Finally the expression for the incremental Green strain tensor
(Eg. (2.25)) is substituted in Eg. (2.26), yielding

v, u, u a(duk)

im i k 0
8 — 2.27
Io 3X ( iI * 09X ) CIJKL (skK * ax B X av ¢ )
v J I g
v, 3(du,) v ou,
+f [ JAm oa® -y B0 6, b av’ - ap
o 0X; I aX o 3% JI 08X,
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where it is assumed that the material stiffness tensor C is
symmetric (CIJKL = CKLIJ = QJIKL: CIJLK)' Eg. (2.27) is the
governing equation including both geometric and material non-

linearities.

2.5 Finite element discretization

In finite element analysis the studied domain VO is divided
into a number of subdomains Vg which are called fintte elements .
For detailed discussions of the finite element method many text
books are available. For more introductory reading, see Refs.
[91 - [13]. The displacements u, are usually chosen as basic
unknowns and approximated within each element by use of nodal

displacement variables ﬁn of the element, i.e.

u, =L N _u (2.28a)
n

du, = I N, du (2.28Db)

when increments of displacements are unknowns. In Eq. (2.28) N
are the interpolation functions. The summation index n in Eg. (2.28)
normally exceeds 3. According to the Galerkin method [14] the in-

terpolation functions are chosen as weighting functions, i.e.

v, =N (2.29)

Substitution of Eq. (2.28) and Eq. (2.29) into Eg. (2.27) and

rearranging the equations gives

&% +x% +x%) ai = ar {2.30)
mn mn mn n m
where
N N
0 Im Kn 0
Km = f 3%, Croxnax, &Y (2.317a)
0 g L
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o] aNim o~ BNin 0
K = f % Ty o3x v (2.31b)
o g 1
v
Y =I E)Nim aui aNKn dVO f aNIm ¢ iu_]g aNkn dVO
mn o %5 89X TIJKL e o 0%y TIIKL 3X X
v v
3N,  3u du, BN
i i k kn o]
+ f m L = T gy (2.31¢c)
0 9%, 89X TIIKL B, 9K
v
MNMin =0 du; o
dR = dp jo %, dE (8t K) av (2.314)

The matrix KO may be called small displacement stiffness matrix
and the matrices K° and X" the initial stress stiffness matrix

and <initial displacement stiffness matrix respectively.

2.6 Choice of reference configuration

With respect to the reference configuration for the incremental
equations either the formulation termed Total Lagrangian (TL) or
the one termed Updated Lagrangian (UL) is usually chosen. In prin-
ciple, however, any previously calculated configuration may be
selected as the reference configuration, although such a general
approach may be more cumbersome.

In the TL-formulation all state quantities are referred to the
initial undeformed configuration. The integrations are performed
over the initial volume (and area), and the material stiffness

tensor must be referred to the initial configuration.

The updated Lagrangian description of motion is based on the
concept that quantities are updated with respect to the state
at the end of each increment. A Lagrangian formulation is thus

used with no initial displacements.
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When the current configuration is chosen as the reference confi-
guration, Egs. (2.30)-(2.31) can be written as

% + k%) an = ar (2.32)
mn mn n m
AN, N
K - f B e s kn gy (2.33a)
v xj ij %,
aN o
KO = [ KB KD gy (2.33b)
mn 90X, Jji ox,
v J i
N, 0
4R = dp + [ =2 ar., av (2.33¢)
m moy ij Jji

where QE now contains the influence of tractions and body

forces in the current configuration, i.e.

ag, av + [ N, dt, as (2.34)
m 1 im 1

ar = [ N,
v s

In Egs. (2.33) and (2.34) the interpolation functions are cal-
culated in the current configuration. The material stiffness

¢, referred to the current configuration, can be related to the
material stiffness tensor C in the TL-formulation by the trans-

formation (see [3])

BXN Bxi axj axk BXZ
¢.. = det |e—]| === == C = = (2.35)
ijke 9x BXP BXQ PORS BXR BXS

Finite element analyses of nonlinear problems by use of either
the TL-formulation or the UL-formulation have been presented

in a large number of papers, see for example Refs. [15] - [29].

According to Ref. [6] there is no theoretical difference between
the TL- and UL-formulations and provided that appropriate
material stiffness tensors are used they should give the same
numerical result. In practice, the TL-formulation seems to be
much more complicated than the UL-formulation as it contains more
terms. It may, however, be more difficult to apply the UL-formula-

tion in a correct way. This is due to that integrations have to
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be performed with respect to the current volume V instead of
the initial volumne VO and due to Eg. (2.35). A third approach,
named Partially updated Lagrangian (PL) formulation outlined in Sec-

tion 2.7, may therefore be found to be an attractive alternative.

2.7 Partially updated Lagrangian formulation

The considered region V0 is divided into subregions (finite
*
elements) and the notation for one such subregion is V . A

*®
local Cartesian coordinate system X is referred to each sub-

* *
region V . The motion of a particle within V can symbolically

be written as

* * *
% =% (X ,t) (2.36)

or in component form

* *

_ * * * 2 37
x, o= X (XX X t) (2.37)

where t denotes time.

The local coordinate system §* is translated and rotated rela-
tive to the fixed global Cartesian system x as the deformation
process proceeds. It is, however, not atrug corotational system
but remains fixed during each step (or iteration) in the com-

putation procedure.

The components of the stress tensor E depend on the chosen
reference for material orientation but is not influenced by

the choice of the local coordinate system §*. The same holds
for the components of the strain tensor E. The equlibrium equa-

tions, Eg. (2.15), can therefore equally well be written as

F (T, —P + £, =0 (2.38)

This corresponds,according to Eq. (2.19) and Eg. (2.20), to
the incremental formulation
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a * 3 * * ( *)

v, X, % v, - 9{dx, % .

2R LG _av o+ [ 2T Ioav = ap (2.39)

*ax. ax. Ot *oxs 9T axt ™

\Y J I v J I

ar” f Yot avt * e as” (2.40
= v, S .

Py = I inafy v+ f vy, ay )

s
* *
where V and S refer to the initial configuration (although
*
translated and rotated) and tg is a component of the first

Piola-Kirchhoff traction vector.

* *
The gquantity Xy is replaced by the displacement u,

* *
dx, = du, (2.41)
i 1
and
* *
9x, u,
T = 8, + - (2.42)
CR. X,

which after substitution into Eg. (2.39) yields

* * *
3 im Bui - . v B(dui) * *
Jo—m 8+ ) At av f T —s—av =adp (2.43)
V* axJ BXI * 9% BXI

The constitutive relation, Eg. (2.21), is still assumed to be

valid

aF_ = e, - dro (2.44)

3(au) au 3u° B(du)

u u u 1

S Dk 3 N i ¥ _sa_]

dEKL =3 [ ax* (GZL + BX*) + (52K + ax*) ax* (2.45)
K L K L

in accordance with Eg. (2.25).
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The substitution of Eqs. (2.44) and (2.45) intoEg. (2.43) yields
(observing symmetric properties of the constitutive tensor <)

3 * * * *
v, Ju, u 9(du, )
im i 2 2 *
f (6, +-—3 C (8, + ) ———— v
* * LK * *
9% AT g TJKL
* N %1 BXK 3XL
s 3(au’)
V.o u, * .
+ f =R T % dav = dr (2.46)
* 5% 3X m
v J
where
v Bu
* v, u, * * * * * *
arR = —qs v —D a4 [y oat e+ [ a’ as
m * 3% ir BX* ~JI & Im i & im i
v J I v

8 (2.47)

The corresponding finite element formulation is in accordance
with Section 2.5

0 _% *
. +x% +x) az =ar (2.48)
mn mn mn n m
with
oN N
o _ Im Kn *
Kon = f* * Croxn Tx W (2.49a)
v E}XJ X
o7 BNim aNin *
K o= i - TJI — av (2.49b)
* 93X X
J I
* *
8o BN, - du, L o [ N ay AN o
mn x ax" ax TIKL ¥ gyt TIRL o F ¥
J I L v J ® L

N. du,
+f im i

*
L

* * CTIRL % - OV (2.49c)
K

*
v BXJ BXI 9X.



17

*
oN 3u
* i 3 * * * * *
ar’ = s e —dy @0 avt s S, afl av o+ fw ad as
m * 9x iT 3% JI 5 1m i % 1m i
v J I v S

(2.494)

It is remarkable that the term K" in Eq. (2.48) is not nor-—
mally considered in an updated incremental finite element ana-
lysis, even when local Cartesian coordinate systems are used.
It corresponds to neglecting local element deformations, which

may give rise to substantial errors, see for example Appendix D.2.

The formulation derived in this section is applied on plane

beam elements in Chapter 4.
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3. CONSTITUTIVE EQUATIONS

3.1 Introduction

In Chapter 2 the fundamental equations for solving nonlinear
problems by the finite element method were derived. A success-
ful application of these equations requires that the nonlinear
material behaviour is adequately modelled.

In the present chapter an isotropic, small strain constitutive

relation applicable to high temperature conditions is suggested.

The class of problems considered here involves nonlinear stress-
strain relations which depend on temperature. In addition non-
linear creep type rate dependence has to be taken into account.
The model proposed herein can be characterized as combined

elastic-plastic-viscoplastic.

It is commonly assumed that instantaneous plaétic strain and
time dependent strain (creep) can be treated as independent
components with separate hardening rules ([41] - [54]1). This
is not physically justified, however, since it is impossible
to make a clear distinction between the two strain components.
In the present model the strain components are also treated
separately, but allowed to interact. A similar treatment is
reported in Refs. [55] and [56].

In addition a completely new formulation of the creep behaviour

is given. Both primary and secondary creep are considered.

Due to the potential applications the time scale considered
is of the order of hours and days rather than months and years.
On the other hand it is assumed that strain rates are suffi-

ciently small to neglect dynamic rate dependence.

In the present chapter the engineering notations g and g are

used for the stress tensor and the strain tensor respectively.

For a more detailed treatment of the basic concepts of the

theory of creep and plasticity see Refs. [30] - [40].
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3.2 Strain components

The total strain rate tensor é is assumed to be decomposed

into four parts
E =&+ &+ &+ & (3.1)

where éE, gP, évp and éT‘arethe elastic, plastic, viscoplastic

(creep) and thermal strain rate tensors respectively. The decom-
position (Eg. (3.1)) may be illustrated for uniaxial stress by

Figure 3.1.

“Short time"
stress strain curve

“Long time*
stress strain curve

Figure 3.1 Strain components

Elastic components of strain are linearly related to the stress

components by the generalized Hooke's law

E E
915 T Sk S (3.2)

where gE is the isotropic linear material stiffness tensor with

the components

E
Cigre = Mi5 S T RO S0 ¥ 84y S5 (3.3)

In Eq. (3.3) X and p are the Lamé constants related to the

elastic modulus E and Poisson's ratio v by

_ VE
= 1) (1=2v) (3.4a)
E

51 ) (3.4Db)

u
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Both E and v may in general be temperature dependent.

The stress rate can be expressed by taking the time derivate

of Eq. (3.2) giving

E LE B E

93 7 Cigke fke T Cigre ke (3.5)
Solving Egq. (3.5) for the elastic strain rate yields

B . _ B E

kg Fklmn (Umn Cmnpq qu (3.6)
where

-V 1+y

Fk!Lmn B E 6k£ 6mn * 2E (6km Gkn * 6kn 62m) (3.7)
The thermal strain tensor is written as

.T :

= T
& akzu (3.8)

where T is the temperature and o the coefficient of thermal

expansion, which may depend on the temperature.

The plastic strain rate éP and the viscoplastic strain rate

éVP will be discussed in later sections.

3.3 Plastic yield surface

The plastic yield condition defines stress states where plastic

deformation occurs and can generally be expressed as

FP(O,T,KP) =0 (3.9)

where <® is a strain hardening parameter. Eq. (3.9) can be
interpreted as a surface, called the yield surface, in the nine-
dimensional stress space. The scalar function FP is called the
yield function or the loading function. When F¥ <0 the plastic strain
rate is zero while plastic strain occurs when FP = 0. Since

stress states corresponding to FP > 0 are not admissible the
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consistency condition FP = 0 must hold for plastic straining.

A widely used yield condition for steel, is the one sug-

gested by von Mises [57] in which yielding occurs when
FF = /3Jé - YP(T,KP) =0 (3.10)

where YP(T,KP) is a scalar function and Jé is the second in-

variant of the deviatoric stress tensor given by

|_£| 1
Jy == oij 045 (3.11)

and

ol.=0,, -%¢

‘=g, - (3.12)
ij i3 3 .

13 “xk

The scalar function /3Jé is also called effective stress o.

3.4 Flow rules

The plastic strain rate can be expressed by the normality con-

dition

P
P . OF
£, = A, —
ij 1 930, .

1]

(3.13)

where i1 is a scalar functiog not yet determined and SFP/Bg
is a normal to the surface F© = 0. The relationship (3.13)
is called an associated flow rule, since it is associated with
the yield function FP. When Egs. (3.10) through (3.12) are

used the normal to the yield surface is given by

Gl
=3 (3.14)
ag

- 1
sFT 95 _ )
30, . dg,, 30, .

i3 i3 13

Qi
Nfw

El
2

The viscoplastic strain rate is often defined by means of a
flow rule similar to that of plasticity. The assumption of
viscoplastic strain rate normal to a viscoplastic loading sur-

face FVP = 0 is normally adopted [32], i.e.
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. VP N BFVP

g =
ij 2 aoij

(3.15)

where iz is a scalar function. The viscoplastic loading func-
tion FYP is assumed to have the same form as F¥ in Eq. (3.10),

i.e.
P P
PG (oN,T,KVP) =vY33! - YVP(T,KVP) (3.16)

where KVP is a hardening parameter describing the hardening

of the viscoplastic loading surface.

It follows from Eg. (3.16) that

VP P

3F © _ OF

30.., 90,. (3.17)
ij ij

and Eq. (3.15) can be rewritten as
VP BFP
€9~ )\2 R (3.18)
ij

The scalar function iz which governs the time dependent behaviour

of the material will be described in Section 3.7.

3.5 Hardening rule

After initial yielding the stress states at which further
plastic deformation occurs depend on the strain hardening para-

meter KP.

The isotropic hardening adopted in this study implies that the
yield surface increases in size and maintains its original
shape. It should be noted that the Bauschinger effect cannot
be modelled by this hardening rule.

The current value of the loading function FP under isotropic
plastic flow can be calculated using the strain-hardening hypo—
thesis. This hypothesis assumes that the hardening is a func-

tion of the plastic strain E?' i.e.



¥ = PR (3.19)

The following functional dependence is commonly used for steel
F == ae (3.20)

where

. \/3 £F &P (3.21)
3 ij ij

The scalar &' is the effective plastic strain. If Egs. (3.13) and
(3.14) are substituted into Egq. (3.21), the equivalent plastic
strain rate is given by

! o! o', o!
P2 5 344y 343, 3 i3 i3
€ _\/3 Ay 3 a)()‘12 g) =AMV 3 52 =M (3.22)

In this study an alternative approach is suggested. Figure 3.2
illustrates experimental curves reported in Refs. [37], [65]
and [66].

Oy
C
BI
A A
v — —
o €y

Figure 3.2 Experimentally obtained stress-strain relations

The curve O-A-B corresponds to instantaneous deformation at
constant temperature with negligible creep. The result from

a creep test at constant stress OA is showed by the dashed

11



25

line A-A'. If the creep test is followed by a further increase
in stress, the observed response is described by the curve
A'-C. If creep strain and instantaneous plastic strain had

been uncoupled, as is often assumed, the response should be
according to curve A'-B'. These tests clearly indicate that

the plastic hardening is affected by the previously accumulated
creep strain. To account for this behaviour the hardening pa-
rameter ¥ must be taken as a function of both plastic strain

and creep strain, i.e.

P_ P P,’EVP) (3.23)

As a natural and simple assumption X may be taken as a func-

tion of the sum EM of EP and EVP. Then the strain hardening

rule described in Egs. (3.20) - (3.22) can be generalized as
F =t Mae (3.24)
where
M g>é¥_ ég, (3.25)
3 i3 i3
in which
I S At (3.26)
ij 1] 1]

Inserting Egs. (3.13), (3.18) and (3.26) into (3.25) one obtains
Gl U (3.27)

Both hardening expressions, Egs. (3.19) and (3.23), can be

summarized by
.P
KP :IK dt (3-28)

where now

(3.29)
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The scalar ¢ is given unit value if the plastic hardening de-

pends on the accumulated viscoplastic strain according to Egs.
(3.24) - (3.26) and zero if plastic and viscoplastic behaviour
are uncoupled.

3.6 Stress-~strain relation

During loading in the plastic region the stress point remains
on the yield surface. The consistency condition must be satis—
fied, i.e.

=2l 5, v+ (3.30)

Egs. (3.10), (3.28) and (3.29) yield

P P
oF P:BF_PE‘% (hy o+ L) (3.31)
K Y 3k
. P P ) .
Noting that 3F /3Y = -1 and with the notation

P
— (3.32)

P .

K

Eq. (3.31) yields
L :-H-dl +gi2> (3.33)

By substitution of Egs. (3.1), (3.5), (3.13) and (3.33) into

Eg. (3.30) and solving for i1 one obtains

P
1 1 [3F E . T . VP “E E F - = ]
== - - - omEa
M [30; ke Brr ™ Sk T B T Ciske k) T AT ey
(3.34)
where thescalar s is defined by
P 3

BB, (3.35)

acij ijkf Bckﬁ
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It may be noticed that the scalar s contains two parts, one

hardening independent part and one hardening dependent part.

A relation between stress rates and strain rates is now obtained
by combination of Egs. (3.1), (3.5), (3.13), (3.34) and (3.35)

. EP . .0
935 = Cike ke T Y15 (3.36)

P
E 9P oF E (3.37)

and
0 EP T vP 1l E oF BFP e :
0 , , 1 At .
G55 % Cigne G ) B S[Cijkl 50, g~ T - H'EAY
P P
E 3F  OF  -E E|_-E E
i3mn do__ do__ Crski Ekl] ke “x2 (3.38)
mn rs

The value of the coefficient B in Egs. (3.37) and (3.38) de-
pends on whether loading or unloading (neutral loading) is

taking place, i.e.

P P
. oF . F - P
o + = =
1 if 30 %15 3T T>0 and F 0
1]
B = (3.39)
0 otherwise

The terms in Eq. (3.38) which contain gE represent the stress
increment due to a thermally induced change in the elastic
constitutive tensor. The term containing BFP/BT in the same
equation accounts for the stress increment caused by a modi-

fication in the yield surface due to a temperature change.
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The guantity H' given by Eq. (3.32) can be interpreted as the
slope of the stress-plastic strain diagram in a standard uni-
axial tension fest. Since dynamic rate dependence is not con-
sidered, such a test is representative for the instantaneous

response upon lcading.

The increment of the stress tensor can be calculated directly
from Egs. (3.36) - (3.38) when the behaviour during a time
increment is either elastic (8 = 0) or plastic (8 = 1). The
computational aspects of the stress calculation in the tran-
sition range from elastic to elastic-plastic behaviour are

described in Appendix B.

Constitutive equations corresponding to Egs. (3.36) - (3.38)
with & = 0 have also been described by Refs. [42] - [44].

Other papers that can be mentioned in the field of constitutive
modelling at high temperatures are Refs. [58] - [64] and [67] -
[711].

3.7 Time dependent behaviour

In Section 3.4 the assumption of viscoplastic strain rate
normal to the plastic yield surface was adopted. The visco-

plastic strain rate thus can be expressed as

a
. VP s 3 Tiq
£,., = A 5

i3 5 (3.40)

QILE

where Eg. (3.14) is used for the normal direction. The scalar
iz can be evaluated from the special case of uniaxial creep.
An explicit expression for iz can be deduced from any creep

law relevant for the present problem.

In Ref. [59] different approaches for the scalar i2 are dis-
cussed and in Ref. [72] a uniaxial law widely used in fire
applications is described. In the following an alternative
creep model will be proposed. In this model the coupling
between plastic strain and viscoplastic strain is taken into

account.

Assume that the scalar iz for the viscoplastic strain rate

can be written as two additive components, i.e.
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: - VP -
Ay =g lo, T ) g,(0,T) (3.41)

where o is the effective stress and KVP is a hardening func-

tion governing the viscoplastic strain rate cf. Eq. (3.16).

The second part of Eq. (3.41) concerns the secondary creep
phase with a constant creep strain rate (stationary creep) and

is assumed to be described by the Norton power law

5.1 = _o_n(m
gz(O'T) = YZ(T)(E(ZO))

(3.42)
where E(20) is the modulus of elasticity at 20°C. The fluidity
parameter Yo and the exponent n can be determined from uni-
axial tension creep tests (o = 011) at different temperatures
and stress levels.

The primary creep phase corresponding to 94 in Eg. (3.41) is
characterized by an initially large strain rate which decreases
due to the strain hardening. The viscoplastic loading function
FVP defined in Eq. (3.16) is used to describe the creep func-
tion gqs and as a consequence of the coupling between plastic
and viscoplastic behaviour described in Egs. (3.24) - (3.27)

it is logical to assume

« =k =t (3.43)
Thus Eq. (3.16) can be rewritten as

VP

(g, ) =5 - Y (T,E) (3.44)

where YVP is a scalar function which can be obtained from uni-

axial creep tests, see Figure 3.3. In Figure 3.3b the function

YP defining the size of the yield surface is also shown.

Tt should be noted that for the case when plastic and visco-

- -VP :
plastic strains are uncoupled eM is replaced by e , defined

in analogy with Eq. (3.21).
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Figure 3.3 a) Creep curves at constant temperature

b) The function YVP(T,EM) obtained from the creep curves in a)

The functien 94 is now written as
9,7, =y <o) (3.45)

where the brackets indicate that

if F¢ 0 (3.46)

@)

]
o

VP

GE s = or'h) ifFT s 0

i

The scalar function ¢ is given in the simplified form

VP -M
ve. _F(g,T,e)
o(F ) = TE(20) (3.47)
or
- VP -M
¢(FVP) _ oY (T,e ) (3.48)

E(20)
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At constant temperature and stress the function 94 in most
cases approaches zero within time since the numerator of Eq.
(3.48) continuously decreases due to strain hardening. This

is illustrated for the uniaxial case o = U?ﬁ in Figure 3.4.

YR, YvVP YP

Creep path
of +—1 A8 (FP)=0

FVP

Figure 3.4 Strain hardening in primary creep

The fluidity parameter Y, can be determined from uniaxial

tension tests and will not be further discussed.

3.8 Verification of the constitutive model

In this section the constitutive model is applied in uniaxial
stress and compared with test data. Ideally a quantitative
calibration of the model requires a complete set of test data
for temperatures in the range 0-700°C for any particular grade
of steel. Much experimental information can be found in
literature but a sufficiently ¢omplete data base is lacking

in most cases.

The approach taken here is instead to identify the relative
temperature dependence typical for the properties of mild
structural steel. The properties of a particular steel qual-

ity can then be specified by standard properties at normal
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temperature (20°C) like yield stress o (20) (= ¥F(20,0)), elastic
modulus E(20) and coefficient of thermal expansion o (20).

The general temperature dependence of different material para-
meters as well as the numerical values of parameters used in

the creep model are given in Appendix C. These parameters are

assumed to give a general description of mild structural steel

and are used throughout this thesis. Standard properties

specified for different grades of steel are given separately

for each particular application.

3:8.2 _ Creep_tests

In this section the creep response of the model is compared

with the tests used to determine the creep parameters [65].

Calculated creep curves for three different temperatures are
shown together with experimental ones in Figures 3.5 - 3.7.

CREEP STRAIN {%} CREEP STRAIN { %)
1.0 t 1 1.0 + t
- 0O EXPERIMENT - O EXPERIMENT
0 =200MPa — CALCULATED 0 =250MPa — CALCULATED
0,[20}= 250MPa 0,(20)= 250MPa
0.5 T+ 0.5 + T
[} o 0
s] 2 =
ol o ul ]
{ + + t
60 120 180 TIME {min} 60 120 180 TIME {min)

FPigure 3.5 Creep curves at 400%
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Oy(ZOl = 250MPa

+ 0.5 + 5 O ki i)
& ul
=] O EXPERIMENT
— CALCULATED
— —
¥ ¢ ; :
60 120 180 TIME (min) 60 120 180 TIME {min}
CREEP STRAIN (%) CREEP STRAIN (%)
1.0 + } 1.0 t }
O EXPERIMENT fill
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0,120} = 360MPa 0,120} = 360MPa O o
05 + 0.5 . —+
0O EXPERIMENT
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t } 1 t +
60 120 180 TIME (min} 60 120 180 TIME [ min}
. o
Figure 3.6 Creep curves at 500 C
CREEP STRAIN (%} CREEP STRAIN (%)
1.0 t } 1.0 ' "
0= 75MPag 0 =100 MPa
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m]
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[
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Figure 3.7 Creep curves at 600°C
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With regard to the assumptions introduced the accuracy of the
results presented in Figures 3.5 - 3.7 are satisfactory. Accurate
fitting is very difficult to obtain for pure creep tests due

to the many uncertain factors in the testing methods [73].
Practically, this may not be so important. A quantitative
agreement with tests such as those described in Section 3.8.4 is,

however, of great importance.

As described in previous sections creep and plasticity influ-
ence each other. Tests show, for instance, that accumulated
creep strain reduces the development of subsequent plastic
strain through an increase of the yield stress, see Figure 3.2.
The following example is a qualitative verification that the
model describes this behaviour. None of the experiments re-
ported that indicate this interaction are specified to the

extent that a quantitative comparison is possible.

Assume constant temperature conditions (T = SOOOC), and con-

sider the following stress history:

I Instantaneous loading up to a certain stress level
(011 = 100 MPa = O.30y(20))

IT Constant stress during a time interval, so that creep
strain will develop

IIT Subsequent instantaneous loading up to stress levels

where yielding occurs.

The response of the model is shown in Figure 3.8, assuming on
one hand that there is no interaction between creep and plasti-
city (£ = 0) and on the other hand that -when the hardening is

dependent on both plastic strain and creep strain (£ = 1).

When compared to Figure 3.2 the result clearly shows that the
approach with a state variable EM that is a combined measure
of plastic and creep straining gives a more realistic treat-

ment of the plastic hardening.
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Figure 3.8 Effect of creep strain on subsequent yield

3.8.4___Nonisothermal behaviour

In the following example the model is applied for nonisothermal
conditions. Test specimens have been loaded to a constant
stress level and then the temperature has been increased at

the rate 10°C min—1, see Ref. [74]. The time independent part
of the response in this kind of test can be visualized by
cutting a plane at constant stress through the stress-strain-
temperature surface as shown in Figure 3.9. A temperature-
strain relation is obtained from the projection of the inter-

section line on the base plane.
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Figure 3.9 Stress-strain-temperature surface

By use of the present constitutive model the response undér/
nonisothermal conditions was calculated. The results for four
different stress levels are shown in Figure 3.10 and compared
with test results. It should be noted that the temperature

dependence of the material parameters used is quite independent
of these tests.
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Figure 3.10

Comparison between experimental and calculated wvalues.
The ratio between actual stress and yield stress at room

temperature (Uy(20) = 710 MPa) is denoted k
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As can be seen in Figure 3.10 the agreement between calcu-
lated and experimental values is good for small values of k.
The difference for higher values of k is mainly due to the
material instability at high stress levels and low tempera-
tures. In this range a transition from the marked yield plateau
at normal temperature to a smooth stress-strain relation at

high temperatures takes place, c.f. Figure 3.9.

Tt should be noted that this verification example is of con-
siderable practical interest since it concerns an existing
stress state combined with heating to high temperatures, which

often is valid in practice.

3.9 Summary and conclusions

The scope of this chapter was to derive a material model for
structural steel at high temperature conditions. The model is
based on the theory of plasticity and viscoplasticity. It can
be represented by a rheologic model where plastic strains and
strains due to creep are treated as additive components (see
Figure 3.11).

Q-

Linear spring

Frictional slider

M
m
g W

P . p
r eP= A\ 3F J‘ Viscous damper
| LT
| Thermal expansion
| element
L. 1

913

éVF‘
arP

g280
éT

Figure 3.11 Rheologic model
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Since there is no clear distinction between plastic and creep
strain neither from experimental nor from a theoretical point
of view, the plastic part and the viscoplastic part of the

model are coupled through the hardening rules associated with

them. This is indicated by the dashed line in Figure 3.17.

A main advantage with the proposed model is the well defined

regions, see Table 3.1.

Region FP FVP EP )'\2
94 ! 9,

T
I <0 <0 o | >0
1T <0 >0 0 >0 } >0
ITI =0 >0 >0 >0 i >0

Table 3.1 State regions

Table 3.7 can be illustrated as in Figure 3.12,

YP,YVP R
Not admissible <7 Y

Figure 3.12 State regions
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These three regions completely characterize the material be-
haviour at any stress state. Another important advantage is
that all material parameters can be determined from well de-

fined tests at isothermal conditions.

The validity of the proposed model is verified by comparison
with experimental results. The agreement between calculated
curves and experimental results is generally good in view of
the limited amount of test data available to calibrate the

model. The model is open for further development .
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4. FINITE ELEMENT ANALYSIS OF PLANE BEAM STRUCTURES

4.1 Introduction

In this chapter finite element equations are derived for a
straight, plane beam element and a computation procedure is

outlined.

A local Cartesian coordinate system (X?,XZ,XE) refers to each
element of the structure. This coordinate system may gradually
be updated after each time (load) increment or iteration step.
The plane bending occurs in the X: - X;—plane and the X:—axis
is oriented in the longitudinal direction of the beam element

studied, see Figure 4.1.

In addition to the assumption of plane bending it is assumed
that the influence of shear deformations and of the normal
strains in transversal directions of the beam element are negli-
gible. It is further assumed that the normal strain in the longi-
tudinal direction is small and that the associated stress is

substantially larger than any other stress component.

X3
hAfx?‘
v*
o Aty * -
N v
1%
X3
Oy
Oy v* X
f %
X4

* * *
Figure 4.1 Gradually updated Cartesian coordinate system (Xl'XZ'XB) fo£
studied beam element. Locations of the integration volume V
at three different time points are shown
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Finite element formulations for nonlinear beam and frame ana-
lysis have been reported frequently, see for example [77] -
[94]. The derivation given in this chapter is, however, believed
to be novel as it starts from the general theory presented in
Chapter 2 and is based on a partially updated Lagrangian for-
mulation.

4.2 Basic beam theory formulation

The assumptions of negligible shear deformations and transversal

normal strains correspond to the kinematic relation

* *
* * % % OW (Xl)
ug = ug X)) - Xy (4.7a)
X
1
*
u, = 0 (4.1b)
* * *
Uy =W (Xl) (4.1¢c)

* * * *
where u, and w are displacements in the X1— and X3—directions

referring to a longitudinal reference axis. The interpolation
functions Nin defined by

u, =N, u (4.2)

* *
are primarily related to u, and w , i.e.

0
* * -k
vy = Nun(xl) u (4.3a)
w =N (x*) i (4.3b)
wn 1 n

Substitution of Egs. (4.2) and (4.3) into Eq. (4.1) yields

*
Nin = Ngn &) - X

(4.4a)

N, =0 (4.4b)
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*
N, o= an(Xl) (4.4c)

It may especially be noted from Egs. (4.1) and (4.4) that

3 ¥ 3 *
u u
1 3
s +—5 =0 (4.5a)
3X3 BX1
9N N
In 3n
— t—5 =0 (4.5b)
Bx3 3X1

Eq. (2.49a) can according to Eg. (4.4) be written as

N
K0 = —dmg o In gt (4.6)

Here the material quantity CT is defined by the relation
dF , = ¢, a8 - &% (4.7)

in accordance with Egq. (2.44) and with the assumption that

only the longitudinal strain component E11 has an influence

on T11.
*
Bu1
The assumption of small deformations (|—x[<<1) and that the
stress component T11 geometrically has aX1 a substantially

larger influence than any other stress component TIJ will now
.be applied. Egs. (2.49b), (2.49c) and (2.49d) can finally be

reduced to

£ =) BT 30 gy (4.8)
v



3 du_ oN
K= —Ame 3 %m0t
mn . BX* T BX* BX*
v 1 1 1
a 3 * *
j N3m u3 Bu3 8N3n «
+ % 8 * * CT * * av
v X1 3X1 3X1 3X1
3 N, du.
N N u
1 3 3 ~Q
dr = j ( *m + *m *) dTll
* 3
v Bx1 Bxl x1
0% o* *
+ [ (N, at] + N, dtl ) as
Lodm ST T3m O3

S

Substitution of Eqg.

* *
(4.10) gives with X_l = X, X3 = z and Uy =W
2
3N a*n ] N
0 _ um wm un *
Kmn—f*! = 2 I(cT {1 -~z )| 5 |av (4.11)
v - X 2
3°N
= wn
- 3x2 J
o anm ~ ann *
= .12
Kmn I* X Tll ax av (4.12)
v
u aNum 2 21\]w m} ol \r | Ban *
I(mn = f 9x 2 (CT 9x P 39X av
* % _] 1
V —
—._z—.
* N aN * * 9N
wm W un * wm 9w ow wn *
+ — - —_ ——
N Pl G b ah | 5 e [ G Com? T W
v 32N v
wn
2 (4.13)
Lox
. N 37N N et ~o N *
um win wm w o~ wm
= - KA N -z =25 gf, +
ar_ f*( 2 2 T 5 AT,V +j*[( m T % 5y Of)
v * v
+ N df*]dv* + f [ i atd* . w 0*] * (4.14)
wm “t3 . My ™ % 55 1 " um dt3 as

*
av + [ (N, af
« Im
A

*

1

(4.9)

* *
+ N3m df3) av

(4.10)

(4.4) into Egs. (4.6), (4.8), (4.9) and
* *
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In these expressions N and N are functions of the coordi-
% um W

nate x = X1 only, according to Eg. (4.4).

Matrix notations will now be used. Eg. (4.3) may be re-

written
e (x) N_(x) RIS (4.15)
uo—l = Nul X R an x u1 = $Nu u -
*J ( ( —%
v _Nwl X) Nw2 b3 I an(x) u, Eﬂw_

The beam element studied is initially straight and prismatic.
The area of the cross section is denoted by A and the length

*
by L. (v = AL). If also the following notations are introduced
D, D= i CTI_1 -z 1 an (4.16)
2
D21 D22 -z ZJ
H = £ T,, da (4.17)

Egs. (2.48), (4.11), (4.12) and (4.13) are written as

-k *
& + k% + & @i = ar (4.18)
0 CREE el [an
k= 2;15 S D, D, u |dx (4.19)
L|°% ex ] ax
Dot Pool |o%
w
9x
. Nt an
k0= [ g ¥ ax ' (4.20)
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u rBNE 32NT1 Bw* r 1 o 3 3 Bw* r » r aNu-I
K =] |+— YoEE— ID ) e dx + =2 )| = |ax
Lolex g2 i % 117 3 L ° ox | T11 12]| ax
- - 2
D21 9 Nw
o |
8N$ Bw* 2 an
Ty G e (4.21)

BN
ar” = f {Ni N$ BTW} ( |‘de} dn) dx (4.22)
L A
*
! af,
*
—-zdf1

A similar expression is obtained for the contribution from

* * )
the tractions dt? and dtg according to Eq. (4.14), while the

contribution to dR* of stress increment d$?1 is

o BNz 32Nrf: r WNO
dr j—a;— K‘ 5 ‘(J 1 dTlldA) dx (4.23)
Li_ 9x” | A -
ow
ax
_‘Z
4.3 Plane beam element with internal nodal displacement

The beam element that will be used in the following chapters

is shown if Figure 4.2. A local coordinate system is introduced
with x = X: and z = X;. The cross section of the beam is assumed
to be constant.

The nodal variables are deliberately marked to be located on
a reference axis at an initial distance 24 from the centroidal

axis of the beam. In most applications z. will be set to zero.

0

_*
An internal nodal variable u, is introduced in order to get

a better approximation of the longitudinal strain distribution.
This internal displacement can be eliminated by static conden-
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sation on the element level before assembly of the global

system of equations.

X3

Xy

Figure 4.2 Nodal variables of beam element

* *
The displacements uo(x) and w (x) of the reference axis are

approximated by polynominal functions

*
BouoW - [1
e 1
w(x)! |O 0 0 1
Yger?*u1,_iz...a7
Uyr Uyee s,
* *
uO(O) = u1 uO(O.SL)
* Lk
w (0) = u, W x(O) =

According to Figure 4.2

a,]

1 (4.24)

can be expressed in the nodal variables

(4.25)
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where ,x denotes differentiation with respect to x. Thus

—%

H

P — = _ .
o] = 1 0 0 o 0 0 o ][] = e (4.26)
3 1 4 ||-*
- - = 0 0 - u
i L 0 0 L T |2
2 2 4 ||-*
= 0 0 = 0 0 - —lla
! 2 12 12| "3
o, 0 1 0 0 0 -0 0 |lu,
—%
o 0 0 1 0 0 0 0 5
3 2 3 1 _*
= - = = = 0
% 0 2 L 0 21 6
2 1 2 1 —*
o 0 = — 0 -= = 0
7 13 12 3 1.2 7

The row matrices Nu and Nw can according to Egs. (4.16), (4.24)
and (4.26) be expressed as

—Nﬂ=ﬂ x x* 0 0 o Ok (4.27)
2 3

)

(@]
o
o
—
o
kg
=

Derivation of Eg. (4.27) yields

oN,, ]

—u . G

LX {o 1 2x 0 0 0 0 (4.28)
| 2

o 6 0 0 0 1 2% 3x ‘

% '
© o 0o 0o o 2 6xJ

2%

w
sz

Substitution of Egs. (4.27) and (4.28) into Egs. (4.19) to

(4.23) gives the expressions needed for the computation of the
element equations

K ai = ar (4.29)
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where according to Eg. (4.18)

=x"+ & + " (4.30)

Eq. (4.29) is written in a blocked form

—% * 1
(K K 1 @ |=ar (4.31)
aa ab a a

where Kza is a 6x6-matrix and K., an 1x1-matrix. The displace-
- -k
ment du; = du7 is eliminated by static condensation so that a

system of six element equations is obtained

—_ —% %
K__ du_ = @R (4.32)
aa a a

where
K =X _ -k KoK (4.33)
aa aa ab “bb “ba ’
& = ar’ ~1 " (4.34)
Ra = By ™ Kap Kpp By :

-% —

When dua has been computed dub can be determined from
—% B -1 * % (4 35)
dub = Kbb (de - Kba dua) .

In the assembly of the element equations into a global system
of equations all nodal displacements need to be referred to a
comnmon X1 - X3—syitem, see Figure 4.2. The angle between the
X1—axis and the X1-axis is denoted by a. The element equations,

Eg. (4.32), are before assembly transformed into

- _ —F
¥ 6 an -G &’ (4.36)
aa o a o a
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The relation between local and global displacements is given by

—% %] T . -
dqu = |du, | =| cosa sima O 0 0 0 jdu, | =G du_ (4.37)
1 1 o a
_F -
du2 -sino coso 0 o] 0 0 du2
-k 0 0 0 —
du3 o] 0 1 du3
- . -
du4 0 0 0 coso sina 0 du4
-% -
du 0 0 0 -sino cosg 0] |du
5 5
—% d_
du6 0 0 o] ¢] 0 1 U

-k
The vector du can thus easily be obtained from Egs. (4.37)
and (4.35) as soon as the guantities dﬁa have been calculated

from the global system of equations.

11

Finally, the strain and stress incregents dE and dT11 have
to be calculated. The assumption |au1{<<1 yields
*

BX1
* lon ]
_ ( ow 1 u =%
e, = 1} w2 du (4.38)
N
| ¥
X
32N
w
ax2
and according to Eq. (4.7)
« w1l
o r ow ‘ u -% ~0
- _ - 4.3
T TG B TEex (M -9 (4.39)
N
v
Ix
82N
W
axz

where the derivatives of Nu and Nw are expressed in Eqg. (4.28).
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4.4 Numerical integration

An important step in the nonlinear finite element analysis is
the numerical integration of the element matrices. For the
beam element studied this implies integration of Eqgs. (4.11)
- (4.15) or of Egs. {(4.19) - (4.23). Numerous methods for
numerical integration are valid such as the trapezoidal rule,
Simpson's rule, various types of Gaussian quadrature and Lo-
batto's integration formula. For a more detailed discussion
on the subject, see Refs. [6] and [95]. Simpson's rule in
combination with layer integration is adopted in this study

and will be discussed in the following.

A typical expression for a non-zero term of the volume inte-

grals is

*
[ f(x,2) av
*
v

where f is a function of the position in the local Cartesian

coordinate system. Application of Simpson's rule yields

« 2m

[ £(x,2) av = (% a, [ £(x,,2) d&)L (4.40)

o i=0 *a *
where

L ) - 2L 24 =L

B T’ 1 T 2T em % Tem’ 7 %am Em (4.47)
and

x, =i (4.42)

i 2m

where L is the length of the beam element, A is the area of
the cross section and m is the number of subintervals for the
numerical integration.

To solve the area integration in Egq. (4.40) the cross section

is divided into a number of layers. The geometry of each layer
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is defined by its area and distance from the reference axis,
see Figure 4.3. The area integration is evaluated by simple

summation, i.e.

I f(x,,z) da =
a  * i

[ e =]

fix,,z.) A, (4.43)
g 133

where n denotes the number of layers.

—— - .
Reference axis

Figure 4.3 Division of cross section into layers

In this study one subinterval (i.e. m = 1) and 16-20 layers

(i.e.16 < n < 20) are used in the calculations.

In the case of pure linear elastic material properties the

integration is performed in an exact way.

4.5 Calculation procedure

The plane frame to be analysed is idealized as an assemblage
of finite elements interconnected by nodal points. The nodal
load history and the temperature distribution are prescribed.
The problem is to determine nodal displacements, support reac-
tions, internal forces, strains and stresses for each element
as a function of time. In order to incorporate the time de-
pendent properties, the time domain is divided into a discrete
number of intervals and a time step integration is performed
in which increments of displacements, strains and stresses

are calculated and added to the previous ones. In each time

(load) step the finite element method is used with respect to the
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space domain. The nonlinear equilibrium equations for each
element are established and element matrices and load vectors
are transformed to a global coordinate reference frame in
which the equilibrium equations for the entire structure are

established giving a system of equations
K Au = AR (4.44)

where K denotes a system matrix, Au an incremental displace-

ment vector and AR an incremental load vector.
The basic operations in each time step are

- calculation of element matrices and load vectors
- the solution of the system of equations
- calculation of internal quantities such as strain and

stress

The present work does not include the calculation of the
structural temperature distribution. This can, however, be
performed by standard finite element programs for temperature
analysis (see Refs. [96] - [98]). The temperature distribution
may alternatively be given as experimental data. In the follow-
ing the temperature histories in all elements are assumed to

be known from the outset.

In the solution of a nonlinear problem the change in load dur-
ing a time increment is applied in finite increments. The in-
crements of the displacements are obtained by solving (4.44).

+
The total displacements t Atu at time t+At are

B LYy A (4.45)

The strains and stresses are calculated in the same way.

When using (4.44) to calculate the incremental displacements
Au, the problem is linearized in each time step. According to
the material and geometric nonlinearities this linearization
may result in an error which corresponds to an equilibrium
unbalance of the system. Out-of-balance forces P appear as

the difference between total applied loads and the internal
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forces. When using a true incremental solution procedure these
out-of-balance forces are ignored. A simple modified incre-
mental method ([13]) is to add t§ from the previous step to
the right side of Egq. (4.44) (a self-correcting incremental

procedure)

Kbu = AR+ P ’ (4.46)

An alternative procedure is to eliminate the out-of-balance
forces by using an iteration method such as the Newton-Raphson
procedure [6]1, [91, [99) - [102]. It should, however, be noted
that for path dependent problems, undesired effects of artifi-
cial detours in the deformation process can occur when state
variables are continuously updated during the iterations in

the time steps. One way of handling this problem is described
in Ref. [103].

In this work a true incremental or a self-correcting incremental
procedure is used. These approaches are the most straight for-

ward ones and are well adopted for computer implementation.

4.6 Substructuring

Nonlinear computer analysis of large structures can often be
very expensive and available computer storage may not be suf-
ficient. However, in many cases nonlinear behaviour is concen-
trated to a small part of the structure. This part can then
often be treated as a substructure, while, in order to
simplify the nonlinear analysis, the surrounding substructures
must behave elastically. When stiffness properties of each sub-
structure are determined, the substructures can be treated as
complex structural elements and an ordinary assembly of struc-—
tural analysis can be used for the partitioned structural model.

The technique is exemplified by the frame in Figure 4.4.

The frame is subjected to high temperature conditions on the
first floor. The nonlinear effects are assumed to be limited

to elements included in substructure II (Figure 4.4b). The
effect of substructure I, in which elastic behaviour is assumed,
can be simulated by attaching "coupled springs" to substructure

IT at the boundary nodes (Figure 4.4c). The values of the "spring
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stiffness" can be determined by statical condensation of
the equations for substructure I, including all nodes. A

description of substructural analysis is given in Refs.

[104] - [105].

I [

|

e | I

& i |

Ve R B /7‘L7 vy 7 /T Veed /77|

L |
a) Real structure b) Partitioning in
substructures

Figure 4.4 Substructure analysis

&

c¢) Structure of
nonlinear analysis
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5. COMPUTER PROGRAM

5.1 Introduction

The development of new computer programs has often been a
necessity for many researchers. A lot of work has been doubled,
since previous experience have not been considered and existing
computer codes have not been used. During the course of this
study the computer program CAMFEM was developed [106]. The main
purpose of the development of CAMFEM has been to create a problem
independent program structure which easily can be connected to
specific subroutines to form programs for analysis of different
classes of problems, see Refs. [107]-[109]. The program structure
includes general facilities needed in most calculations and much
time can be saved because only the problem dependent parts have
to be written. One objective has been to make the program structure
as clear as possible in order to make it easy to introduce new
parts in the program. The computer program is primarily intended

to be a research tool.

All data used in the calculations are stored in matrices named

by the user. This facilitates inspection and manipulation of the
matrices at any stage of the calculation process. An internal data
handling system in which all matrices are stored column-wise in

one single array is adopted.

CAMFEM is based on a command language. The program is subdivided
into a number of program modules, which are executed separate-
1y by commands given by the user. In general a command consists
of a command name followed by arguments. The command name is

a logical name of some operation (e.g. ADD = matrix addition,
INV = matrix inversion) and the arguments are user-defined
matrices, which contain either numerial values or alphanumeric
text (to be used in macro commands). One facility of CAMFEM

is the possibility to store the user-defined matrices on files.
This makes it possible to stop the calculation at an arbitrary

stage and later restart the calculation.
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In a time stepping procedure the same sequence of commands is
to be executed several times. Such a sequence of commands can
be defined as a macro command. The calculation procedure is de-
fined by a set of macro commands created by the user. Simply
by rearranging the macro commands the calculation procedure
can easily be changed. CAMFEM may therefore be seen as a high
level language for analysis of structural behaviour. In a
conventional finite element program a modification in the cal-
culation procedure usually results in a lot of changes in the

program code.

The program language is FORTRAN 77 and all calculation is per-

formed in double precision.

It should be noted that in CAMFEM a concept is used where
each node consists of only one nodal variable todescribe the
topology. This facilitates various arrangements of coupling

between elements. Internal hinges are taken into account just

by introducing additional degrees of freedom as described in
Figure 5.1. It should be noted that no change of the program
code has to be performed since these arrangements are completely
handled by the user.

Ug

Hinge

Figure 5.1 Internal hinge

The set of problem independent commands is briefly described
in Section 5.2 and specific ¢ommands introduced in this wofk
are described in Section 5.3. In Section 5.4 an example on the

usage of the commands is given.
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5.2 Problem independent commands

The problem independent commands can be divided into four groups.

These commands can be linked together with problem dependent com-

mands to a special prupose version of CAMFEM, see Pigure 5.2.

PROBLEM COMMANDS

INDEPENDENT
COMMANDS SYSTEM

Figure 5.2

BASIC
COMMANDS

MATRIX

SPECIAL PURPOSE
COMMANDS VERSION OF

CAMFEM

GRAPHICS
COMMANDS

PROBLEM
DEPENDENT
COMMANDS

Groups of commands

In the following a brief description of the contents of the
groups of commands will be given. A more detailed description
is given in Appendix E.

The group of basic commands includes commands for control of

execution, data handling and macros.

The commands for control of execution are

STOP
PRON
PROFF
QUON
QUOFF

Stop execution

Turn printing on

Turn printing off
Turn question mode on
Turn question mode off
Write a comment line
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The commands for data handling are

LOAD Load numeric matrix

LTEXT Load text matrix

DELETE Delete matrix

COopy Copy one matrix into another
PRINT Print matrix

SAVE Store matrix on file

OLD Read matrix from file
UNSAVE Delete matrix on file
CREFIL Create file

DELFIL Delete file

The commands for macros are

EMACRO Execute macro
PMACRO Set parameters to macro
BMACRO Break execution of macro

The second group consists of matrix commands that can be used

for different matrix operations. The commands are

ADD Add two matrices

SUB Subtract one matrix from another

MULT Multiply two matrices

INV Calculate the inverse of a matrix
DET Calculate the determinant of a matrix
EIGEN Solve an eigenvalue problem

TRANS Transponate a matrix

CONDRC Reduce a matrix

To perform a finite element analysis some system commands for

creation, condensation and solution of systems of equations

are needed. The system commands are

ELIN Assemble element matrices

CONDES Perform static condensation

SOLVES Solve a symmetric system of equations
SOLVTR Perform Gaussian reduction

SOLVLM Perform load vector modification
SOLVBS Perform back-substitution

The fourth group contains graphic commands for generating plot
information in device independent form on a direct access file,
which later on can be interpreted by commands for visible out-
put. These commands will not be further described here. The
reader is referred to Ref. [106].
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5.3 Problem dependent commands

For nonlinear analysis of plane beams and frames a special
version of CAMFEM was created by introducing commands based

on the theory described in the previous sections. The new
commands basically deal with the calculation of element stiff-
ness matrices, element load vectors and strains and stresses
in the integration points. On the structural level mainly the
problem independent commands are used. In the following a

brief description of the commands used in this study is given.
The geometry and topology of each beam element being a part

of a structure are defined by its length L, slope o and six

global node variables (see Figure 5.2).

Yp

Figure 5.2 Element geometry and topology

The structural behaviour shows various nonlinearities in differ-
ent parts of the structure. In order to take into account the
range of nonlinearity that may appear, the calculation of the
element stiffness matrix is performed by a command with dif-

ferent arguments:
BEAM2E EP EM

calculates the elastic element stiffness matrix EM from element

properties stored in EP (contains the modulus of elasticity,
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cross sectional area, element length, element slope...).

BEBM2E EP EM STATE GEOM

calculates the elastic-plastic element stiffness matrix EM by

usage of EP (which now also contains information of the stress-
strain relation), state variables (o, EM) stored in STATE and
the cross sectional geometry (Aj, zj c.f. Eg. (4.43)) stored

in GEOM.

BEAMZ2E, EP EM STATE GEOM TDMP TEMP EL

calculates the elastic~plastic-thermal element stiffness matrix

EM and the element pseudo load vector EL based on temperature
dependent material properties (T, E(T), oy(T)...) stored in

TDMP and a temperature variation described by the matrix TEMP.

With regard to geometric nonlinearities different approaches
for the element stiffness matrix EM are available, see Table
5.1.

Type of analysis EM contains

K2 (Eq. (4.1 | ¥%(Bq. (4.12)) | k% (Bq. (4.13))

Small displacements YES YES/NO NO
Large displacements YES YES YES/NO
(the "geometry" is

updated)

Table 5.1 Alternative geometric nonlinearities.

For each élement it is possible to choose which type of non-
linearity that is to be taken into account. The choice is in-

dicated by a number stored in EP.

When eleméht matrices and load vectors have been assembled and
the systefi of equations have been solved (see the problem in-
dependant commands ELIN, SOLVTR, SOLVLM and SOLVBS in Section
5.2 and Appendix E) strains, stresses and internal forces can

be obtained by the command BEAM2S given with arguments corre-
sponding to elastic, elastic-plastic and elastic~plastic~thermal

calculation
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BEAM2S EP EN DISP RINT CONV
BEAM2S EP EN DISP RINT CONV STATE GEOM
BEBM2S EP EN DISP RINT CONV STATE GEOM TDMP TEMP

where

EN contains the topology of the element
DISP contains total and incremental displacements
RINT contains the integrated internal forces

CONV specifies whether or not a convergence criterion is achieved

(to be used in an iteration process)

An advantage with the present procedure is that elements that
remain elastic throughout the analysis can be treated as elastic
even in a nonlinear analysis. In a conventional nonlinear ana-
lysis all elements are often treated in the same way. It is

also possible to change the assumed behaviour during the ana-

lysis.
Tt should be noted that for elastic elements no numerical inte-
gration is needed. Therefore, an exact integration was performed

for elements with elastic properties only.

5.4 Example on the usage of CAMFEM commands

In order to demonstrate the usage of the commands in CAMFEM,
the contents of two macro commands, STEP and ASSEM used for
the solution of one loadstep, are shown in Figure 5.3. The
structure to be anéiysed consists of two elastic beam elements

only.

In Table 5.2 the contents of some of the user-defined matrices

are explained.

The two macros a¥e used in order to analyse the cantilever

beam in Figure 5.4.
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MATRIX STEP 20 ROWS

1 C
2 C PERFORM ONE INCREMENTAL STEP
3 C
4 C Create global stiffness matrix
S LOAD K
& EMACRO ASSEM 1 EP1 EN1
7 EMACRO ASSEM 1 EP2 ENZ
8 C Solve the system of equations
? SOLVTR K BOUND PIV TEST
10 LOAD DU
11 SOLVLM K DU DR BOUND PIV
12 S0LVBS K DU DR BOUND
13 € Update displacements
14 ADD U DU U
15 C Btore incremental and total displacements in DIGPL
14 COPY DU DISPL POSH1
17 COPY U DISPL POSZ
18 € Calculate element forces
19 BEAM2S5 EP1 ENt1 DISPL DUMMY CONV
20 BEAM2S EP2 EN2 DISPL DUMMY CONV

MATRIX ASSEM 4 ROWS

1 € Calculate and assemble element matrix
2 PMACRO EP EN
3 BEAMZE EP EM
4 ELIN K EM EN

Figure 5.3 Macro commands

Matrix Contents

K Global stiffness matrix

BOUND Boundary conditions

DU Incremental displacements

DR Incremental loads

8 Total displacements

EPi Element properties for element i
ENi Topology for element i

Table 5.2 Contents of matrices in Figure 5.3
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a) Load and geometry

Figure 5.4 Cantilever beam
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b) Element numbers and global

node variable numbers

The calculation procedure for a small displacement analysis

is shown in the computer listing in Figure 5.5. Tt should be

noted that the matrices to be used are previously created and

stored on a file (BEAM) from which they are read by the com-

mand OLD.

arn CAMFEM A

(23] VERSION JUNE 1984 113

S0LD ALL BEAM

#30LD ALL BEAM
1 ROWS 7 COLUMNS IN MATRIX EN%
1 ROWS 7 COLUMNS IN MATRIX EM2
1 ROWS 2% COLUMNE IN MATRIX EP1
1 ROHWS 25 COLUMNS IN MATRIX EP2
4 ROWS 2 COLUMNS IN MATRIX FOS51
1 ROWS 2 COLUMNS IN MATRIX POS2
1 ROWS 1 COLUNRS IN MATRIX CONY
1 ROUWS 1 COLUNMNS IN MATRIX TEST
1 ROWS 4 COLUMNS IN MATRIX BOURD
9 ROWS 1 COLUMNS 1IN MATRIX DU
9 ROWS 1 COLUMNS IN MATRIX U
% ROWS 7 COLUMNS IN MATRIX X
T ROWS 2 COLUMNS IN MATRIX DISPL
9 ROWS 41 COLUMNS IN MATRIX DR
20 ROWS IN MATRIX STEP
4 ROWS IN MATRIX ASSEH

>EMACRO STEP
*2EMACRO STEP
START OF MACRO GTEP

aC

##C PERFORM ONE INCREMENTAL STEP

st

+#C Create global stiffness matrix

*3LOAD K

MATRIX K PREVIOUSLY DEFINED
¢ 9 ROWS 9 COLUMNG)

TERG MATRIX

*#*EMACRO ASSEM 1 EF1 ENY
START OF MACRO ABSEM

%3¢ Caloulate and assemble element matrix

#¥PHACRO EP EN

+LBEANZE EP EM

*RELIN K EM EN
END OF MACRO ASSEM

*#EMACRO ABSEM 1 EPZ EN2
START OF HACRO ASSEM

#3C Calculate and assemble slement matrix

++PNACRO EF EN

*4BEAN2E EP EM

##ELIN K EM EN
END OF MACRO ASSEM

#%C Solve the systen of wauations

*#SOLVTR K BOUND PIV TEBT

+#L.0AD DU
MATRIX DU PREVIOUSLY DEFINED
¢ % ROWS 1 COLUMNS)

Y

IERO MATRIX

2*SOLVLM K DU DR BOUND PLV

#%8OLYBE K DU DR BOUND /

##C Update displacements

#2ADD U DU U

¥a¢ Store inoresental and total displacements in DISPL

*%COPY DU DISFL POS1

*%COPY U DISPL POSZ

#3C Calculate element faroes

+*BEAM2S EP1 EN1 DISPL DUMHY CONV
ELEMENT FORCES FOR EL. RO, 1
ERFEARSRATERARTIRRANIIREENAIRE

.oono 1.000 1.000 .ooo -1.000 -,5000

#$BEAM2S EP2 EN2 DISPL DUMMY CONV
ELEMENT FORCES FOR EL. NO. 2
AERREREERRRERERERAI NSRRI EERER
ML) 1.000 5000 .noos ~1.000 B
END OF MACRO STEP

YPRINT U
+#PRINT U

MATRIX U % ROWS 1 COLUMNB

1
1 .000000
2 000000
¥ .000000
4 .na0ocn
B -.104147
4 -.375000
7
[
9

-.500000

**STOP

CALCULATION TERNINATER

Figure 5.5 Example of a computer list from CAMFEM
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In a nonlinear analysis CAMFEM offers a great flexibility. A
step~by-step procedure is obtained if the macro command STEP

is executed repeatedly with a new incremental load vector DR

in each load step. A Newton-Raphson iteration procedure can be
obtained if commands calculating the out-of-balance forces are
included in the macro command STEP. Similarly, a modified Newton-
Raphson procedure can be established by simple modifications of

the macros.

For a more detailed description of the usage of commands in CAMFEM,
see Refs. [106] and [107].

5.5 Concluding remarks

A computer program, CAMFEM, has been developed. A set of problem
independent commands is described in Appendix E. The program is
extended with the nonlinear material model described in Chapter

3 and the beam element described in Chapter 4. In Appendix D the
validity of the program for isothermal conditions is shown by some

verification examples.

A number of applications involving temperature dependent material

properties are given in Chapter 6.
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6. NUMERICAL RESULTS

6.1 General remarks

In this chapter a number of examples concerning high temperature
analysis of steel components are shown. In order to verify the
present calculation model, numerical results are compared with
results obtained from fire tests and/or other numerical studies

on simply supported beams. In addition a parameter study on a
single column is presented and the capability of the computer pro-
gram to analyse large frame structures is demonstrated. In all

examples the material parameters given in Appendix C are used.

6.2 Simply supported beams with no axial restraint

In Ref. [120] an experiment concerning a fire ‘exposed IPE 80
steel beam is described. Geometry, load and boundary conditions

are shown in Fig. 6.1.

P=5.4 kN
IPE 80 5.2
——————— T ——— Ieo 3.8
w
—
46
| £:=570 | £ =570 L mm

Figuxe 6.1 Fire exposed beam

In the test, the temperature was measured by four thermocouples
along the length of the beam. The intention was to have a uniform
temperature distribution all over the beam. If this was fulfilled
or not is not reported. However, the average value of the temper-

ature as a function of time is shown in Fig. 6.2.

Uniform temperature distribution with temperature values of Fig.
6.2 every 2.5 min 1is used as input data for the computer calcu-

lation. Linear interpolation is applied for intermediate times.



68

Temperature °C

800-’
700
600+
5001
4001
300+
200+

100+

+ + Time {min)
10 20

Figure 6.2 Average temperature of the beam vs time

According to measurements, the yield stress of the steel at
room temperature was found to be 392 MPa (i.e. oy(ZO) = 392 MPa).
Due to the symmetry of the beam only one half was modelled, see

Fig. 6.3. Four beam elements were used in the analysis.

Y

L e | e | me ] en

7 A

P
@»@@»@»%
T 1 1
|

Figure 6.3 Finite element model

The cross sectional area was divided into 20 layers each descri=-

bed by the area and the distance from the centroidal axis.

A true incremental calculation was performed with a time step

At = 0.25 min. In Fig. 6.4 the calculated midpoint displacement

w 1s shown as a function of time. The displacement at time 0 is
denoted W In the same figure the experimentally obtained curve
is also shown together with calculation results reported by Forsén

{1217,
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As can be seen in Fig. 6.4 the discrepancies between the experi-

mental curve and the curve obtained in this study are small.

w—wy {mm)
45 + |
O Experiment ,'
-~ Forsén [121] |
—Present analysis [}
/
1
30 T /
/
/
/
/
/
1.5 + // o
/
/ o
// °
P °
PR
1 f f t
5 10 15 20" Time (min)

A frequently used verification for thermal creep analysis is the
experimental fire test results of a beam reported by Stanzak and
Harmathy [122]. The beam was made of ASTM A36 grade steel, with
W200x25 (AISC 8WF17) section and a simply supported spém of 4.724 m
(186 in.), see Fig. 6.5.

EEEEEREEEERENERREREE o
} :]:203#~8
4Losmm + o.snz.mL ’Ea_al‘m

L 4.724m |

Figure 6.5 Simply supported test beam
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The beam is loaded by a uniform locad of 2.11 kN/m (120.6 lbs/in.)
and by two concentrated loads equal to 12.05 kN (2707 1lbs), each
0.914 m (36 in.) from the mid-span. In the test, the temperature
distribution along the length of the beam was measured at the
mid-span and the quarter-span sections. Fig. 6.6 shows the time-
temperature variations measured at the mid-span for the top flange
(Tt), the center line of the web (Tw) and the bottom flange (Tb).
According to measurements the temperature distributions at the

quarter-span sections were essentially the same at the mid-span.
Temperature (°C)

600 1

400

200+

+ t + t } Time [min)
20 40 60 80 100 120

Figure 6.6 Time-temperature curves measured at the mid-span of the
beam in Fig. 6.5

In the present analysis the temperature is assumed to be uniformly
distributed in the longitudinal direction and varied guadratically
in the transverse direction, i.e.

2 T +T

z 4z t b
Tlz) =T, + (T =T 2 , 2

) (6.1)

in which z is the distance from the centroid axis and h is the
height of the beam (203 mm). The temperatures Tt’ Tw and Tb are
taken from Fig. 6.6.

Taking the symmetry into account, one half of the beam is divided
into four finite elements as shown in Fig. 6.7.
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Figure 6.7 Finite element model of one half of the beam shown in Fig. 6.5

The cross sectional area of the beam is divided into 16 layers.
The temperature in each layer is calculated by use of Eg. 6.1

and Fig. 6.6 for seven discrete times. The results are given in
Table 6.1 and are used as input data for the computer calculation.
The temperature distribution for times other than those shown in

Table 6.1 is obtained by linear interpolation.

Temperature (OC)
z  (mm) 0 min 20 min 40 min 60 min 80 min 100 min 120 min
100.52500 20. 70. 126. 206. 282. 367. 467.
98.57500 20. 1. 128. 209. 285. 370. 470.
95.65000 20. 71. 130. 212, 290. 375, 474.
87.84375 20. 72. 138. 222. 303. 388. 486.
76.13125 20. 74. 148. 236. 322. 407. 503.
58.56250 20. 77. 163. 256. 348. 432. 526.
35.13750 20. 80. 181. 281. 380. 463. 555.
11.71250 20. 84. 197. 304. 408. 489. 579.
- 11.71250 20. 86. 212. 325. 431. 510. 600.
- 35.13750 20. 89. 226. 345. 451. 527. 617.
- 58.56250 20. 91. 238. 363. 467. 539. 630.
- 76.13125 20. 93. 245. 375. 476. 545. 638.
- 87.84375 20. 94. 250. 382. 481. 548, 642.
- 95.65000 20. 95. 253. 387. 483. 549, 644,
- 98.57500 20. 95. 254. 388. 484. 550. 644.
~100.52500 20. 95, 255. 389. 485. 550. 645.

Table 6.1 Input time-temperature values for different layers

In Ref. [123] stress-strain curves for an ASTM A36 steel at
elevated temperatures are reported. According to the results
shown the yield stress at 20°C can be set to 310 MPa.

The uniformly distributed load is simply replaced by lumped

concentrated loads.

A true incremental time-~stepping procedure with At = 1 min was
employed. The midspan displacement (corresponding to nodal Variable

number 14) is shown in Fig. 6.8 as a function of time. In the
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same figure the experimental curve is also shown together with
results obtained by other investigators.

Midpoint displacement [mm)

120 + ; /D
~—— Harmathy [1241 / /
Chen [45] (t0elements) ]
—.~ Strain hardening creep law i/
100 + —»= Time hardening creep law / jm}

[ Experiments
—— Present analysis {4elements)

20 40 60 80 100 120 Time {min}

Figure 6.8 Midpoint displacement vs time for fire tested beam

Both Harmathy [124] and Cheng [45] used a set of material para-
meters related to the test on ASTM A36 steel reported in [123].
Harmathy used a finite difference method only applicable to
simply supported beams. Cheng used a finite element method and

an incremental solution method with Newton-Raphson iterations to
analyse the beam.Considering the independent set of material data
and the number of finite elements used in the present study the
results obtained are acceptable.

In Fig. 6.9 the calculated stress distribution for the mid-section

is shown after 110 min and compared with the one obtained by Cheng
[457.
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Figure 6.9 Stress distribution at mid-section

6.3 Simply supported beam with fixed supports

The simply supported beam described in Section 6.2 was free

to move in the longitudinal direction. In this section the present
model is compared with numerical results for a simply supported
axially restrained, fire protected beam reported by Furumura ([1251)
and shown in Fig. 6.10.

q=30 kN/m
' i3
8 jloOO
4 7m + 7llz_t)()-)l‘mm

Figure 6.10 Simply supported beam with axially fixed supports

In Ref. [125] a computer program has been used in order to deter-
mine the temperature distribution in the beam when the temperature
outside the fire protection was raised in the manner for fire tests.
The result is given in Fig. 6.11, where the subscripts t, w and b
on the temperature denote top flange, centerline of web and bot-

tom flange respectively.
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Temperature {°C}
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200 +
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Figure 6.11 Calculated time-temperature curves ([125])

As temperature input values for T Tw and Tb every 10 min are

tl

used. A linear temperature distribution between T, and Tw and

t
between T, and Tb is used in the numerical studies in Ref. [125]

and also adopted herein.

The yield stress at 20°C is in Ref. [125] assumed to be 340 MPa
(i.e. cy(20) = 340 Mpa) and is valid as input in the present analysis.

One half of the beam is divided into four equal beam elements

and a true incremental procedure (At = 1 min) is used. The result
for the midpoint displacement is shown in Fig. 6.12 and compared
with those reported by Furumura.

In Fig. 6.13 the axial restraint force at the support is shown.
The force increases rapidly until the beam begins to yield after
about 30 minutes. The rate of displacement at the nidpoint in-
creases markedly at the same tifie (Fig. 6.12).

In Fig. 6.14 comparison is also shown for the midpoint rioment:
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Midpoint displacement (mm)
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Figure 6.12 Calculated midpoint displacement
Axial support force (MN)
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—— Furumura [125]
-—— Present analysis
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Figure 6.13 BAxial support force
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Figure 6.14 Midpoint moment

The differences between the results obtained in this study

and those reported in Ref. [125] are in the author's opinion
mainly due to the different stress-strain descriptions used.

In Ref. [125] the yield stress is assumed to be less temperature
dependent than the general concept adopted in this study. For
instance, at 300°C the yield stress is about 10 percent higher
than the corresponding value used in the present analysis. In
addition, the stress-strain relations after initial yield are
assumed to be linear. This implies that, if yield stress levels
YP are determined from these relations, higher values than those
suggested in this study, will be obtained. The somewhat earlier
yield and the differences in the calculated displacement and
forces (cf. Fig. 6.12 and 6.14) are results from the above men-

tioned differences in material parameters.

This example demonstrates rather clearly the influence of the
description of the nonlinear material behaviour. Although discre-

pancies occur, the behaviour is to a large extent the same.
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6.4 Single column at high temperature conditions

In this section a parameter study on the behaviour of a single
column exposed to a temperature rise is performed. The column

is shown in Fig. 6.15.

—j

4
- HE 2004

£ “ o 200
—k

190 mm

Figure 6.15 Single column

The column of length 2% and with an initial displacement 6 at
the midlength is centrically loaded by an axial force P. The
extent of axial restraint of the column is described by an axial
spring with stiffness k, i.e. k = 0 means that the support is

free to move while k = = corresponds to a fixed support.

The temperature is assumed to be uniformly distributed in the

column and the temperature rise is given by Fig. 6.16.

Temperature (°C}
600 U t + +

400 1

2004 “AT=10°C mint

t ¥

0 10 20 30 40 50 Time (min)

Figure 6.16 Temperature in column
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Due to the symmetry in geometry and loading only one half of
the beam is studied using four beam elements of equal length
(see Pig. 6.17).

Figure 6.17 Element subdivision and nodal variable numbers

In the finite element model (Fig. 6.17) displacements correspon-

ding to nodal variable numbers 1, 14 and 15 are prescribed to zero.

Furthermore, the cross sectiohal area of each beam was divided
into 20 layers and the yield stress at room temperature was chosen
to be 340 MPa.

The calculation procedure took place as follows. The column
was first loaded by the axial force P (no restraints). Starting
with this state of stress as initial condition a true incremental
méthod is used in order to determine the behaviour of the column
when the temperature is raised. The influence of three parameters
has mainly been studied:
~ the effect of axial restraint (value of spring stiffness k)
- influence of initial displacement §

- influence of the column slenderness.

The calculated horizontal displacement at midlength (correspon-
ding to nodal variable number 13) and the axial support (corres-
ponding to nodal variable number 14) are compared With a réference

column in the following subsections.

The calculations are terminated either after 50 minutes or if the
axial support force decreases below the value of the initially
applied external load.
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As a reference column the one shown in Fig. 6.18 is used. In

this reference case the supports are assumed fixed (k = «).

3m

Figure 6.18 Reference column

The results for the horizontal displacement w and the axial sup-
port force Hare shown in Fig. 6.19. Note that the axial force H

is initially equal to the applied load P = 0.5 MN.

In Fig. 6.19 it can be seen, that when the column yields after
about 8 minutes, the horizontal displacement increases very
rapidly for this rather slender column. This rapid increase

is due to the fact that when yield occurs in the midpoint section
many material points are Hffected at the same time since strains
are mainly due to the axial displacements (no bending). As also
can be seen the support force decreases drastically after the:
maximum value is redched:
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Figure 6.19 Results for the reference column
a) Horizontal displacement
b) Axial support force

In this subsection the influence of the axial restraint is studied.
Calculations for three different values of the spring stiffness have

been performed. The results are shown in Fig. 6.20.
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Figure 6.20 Influence of axial restraints

30 MN/m corresponds to the stiffness

The axial stiffness k
experienced by a column in a ten to twelwe storey frame.

A decrease of the axial stiffness means that the initial yield
occurs later, at a higher temperature, since now the column is
able to expand. A calculation model where it is assumed that the
column is free to move may differ very much from "reality", al-
though axial restraints corresponding to fixed supports (k = =)
very seldom can be found in a real structure. As seen in Fig.
6.20 even a moderate restraint may cause buckling of the column
leading to an earlier failure. Axial restraint is of practical
interest for multistorey and/or multibay systems locally exposed
to high temperatures. In such cases the thermal expansion of the
heated member will be resisted by the surrounding structural

system, which may have a significant stiffness.

The influence of axial réstraints on concrete beams under fire

conditions have been studied by Forsén [126].
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In the reference case the initial displacement § of the mid-
point of the column is very small. This leads to simultaneous
yield in a major part of the cross section, essentially caused

by axial overloading.

In Fig. 6.21 it is shown that for larger values of &, yield
occurs earlier, now due to bending effects in the outer fibres.
The very rapid increase of the horizontal displacement disappears,
the displacement curves become smoother as do the curves descri-
bing the axial support force. The peak values of the latter

curves are also significantly smaller for larger values of §.

H{MN}
1.6 T T T T

w(mm}
200 T T T

160 1 4
£—Reference §=0.010m)

0 | ¢ " ;
0 10 20 30 40 50 Time 30 40 50 Time
{min} (min}

a) Axial support force b) Horizontal displacement

Figure 6.21 Influence of initial displacement

In this subsection the effect of a decrease of the slenderness of

the column is studied. The slenderness ratio is reduced to half
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the value of the reference case, simply by changing the length

of the column. Since the design stress increases with decreasing
ratios the applied external load is changed in proportion. Accor-
ding to the Swedish Regulations for Steel Structures, 1970 [127]
the design stress. for the slenderness of the reference case is
about 140 MPa while, if the slenderness ratio is halved, the
design stress is about 200 MPa. The applied load is therefore
increased proportionally, giving P = 0.70 MN. In Fig. 6.22 the
results for this new column are shown for the axial support force

and the horizontal displacement.
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a) Axial support force b) Horizontal displacement
P

Figure 6.22 Results for column with decreased slenderness

Fig. 6.22 shows that slender columns are more sensitive to
axial restraint. The horizontal displacement for the shorter
column does not increase in the same manner after yield. Here
the yield is mainly due to the axial compressive load and does
not occur in the mid-section only.
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6.5 Large scale frame structure

In order to demonstrate the capability of the present version of
the computer program an analysis of a four storey frame will be
shown. The geometrical properties of the frame and the permanent

external load are shown in Fig. 6.23.

q=20 kN/m
+— IEENEE RN R E R EEEREEEEER R K]
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U&Gi#\_*i##&tj%%&#i IEREERIIIEERER! Beams: HE 260 B
q
4x3.5m REERRI IR IEREERI[IEEREEI|[RRRER] Columns: HE 2004
S S q] Oy (20) = 340 MPa
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J““ NGLL N R ZaNVe NG AV AN 77 RSV 77 Y. =
5x7m

+—
—

Figure 6.23 Geometrical layout of the frame

The load consists of the uniformly distributed load and of a
temperature rise in the shaded members in Fig. 6.23. The temper-
ature is assumed to be uniformly distributed in this part and

the rate of heating is assumed to be 100C/min.

The nonlinear behaviour is assumed to be concentrated to the
part of the frame exposed to elevated temperature while the
surrounding structure is assumed to behave elastically, see
Fig. 6.24.

The hinges are assumed to be centrically located.
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Figure 6.24 Subdivision of the frame

By a statical condensation procedure the elastic part is treated
as a substructure and is used as an ordinary structural element
now with degrees of freedom valid at the boundary nodes between
the elastic and nonlinear part. The finite element model of the

nonlinear part is shown in Fig. 6.25.
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Figure 6.25 Element subdivision and global node variable numbers

Thus the structural element for the elastic part only influences
the stiffness corresponding the nodal variable numbers 13, 14, 15,
26, 27 and 29. It should be noted that the hinges are taken into
account just by introducing additional rotational degrees of free-
dom (for example nodal variable number 15 and 16 for the upper left
hinge in Figure 6.25).

The output data from the nonlinear analysis was extensive. The
intention here is only to demonstrate some of the characteristics

of the behaviour rather than account for all details of the results.
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In Fig. 6.26 the calculated displacement patterns for the non-

linear part of the frame at various times are shown.

Time
(min)

Time

{min} —— S0mm

—— 50mm

20

30

Figure 6.26 Displacement patterns
In Fig. 6.27 the midpoint displagement w and the right end

horizontal displacement h of the beam are shown separately to-
gether with the elongation u of the left column.

Displacements {mm)

601

Time (min}

Figure 6.27 Calculated displacements
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As can be seen the horizontal displacement h increases almost
linearly with time, The midpoint displacement of the beam w
firstly decreases due to the thermal expansion of the columns
but when yield occurs in the mid-section this displacement very
rapidly increases until collapse. The elongation of the column
starts to decrease after about 50 min due to further yield. The
approximate spread of yielded zones is shown in Figure 6.28.

Time Yielded zone @
{min)

40
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Figure 6.28 Spread of yielded zones

Finally, the moments at the fixed supports are shown in Figure
6.29 and normal forces in the left column and the beam are shown
in Figure 6.30.
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Figure 6.29 Moments at the fixed supports
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7. CONCLUDING REMARKS

7.1 Discussion and conclusions

The research work described in this thesis is concerned with
finite element analysis of structures at high temperature with

special application to steel beams and frames.

Based on the general expressions for the Partially updated La-
grangian formulation (PL) derived in Chapter 2 the corresponding
matrices are derived for a plane beam element with an internal
degree of freedom in Chapter 4. Results indicate that if a coarse
element subdivision is used, the PL-formulation is more accurate
than in a UL-formulation, where the local element deformations

are ignored.

The elastic-plastic-viscoplastic constitutive model derived in
Chapter 3 is verified for uniaxial stress for nonisothermal con-
ditions. The agreement between numerical results and experimental
values is quite satisfactory. It is also shown that the experimen=-
tally observed increase in yield stress due to prior creep can be
taken into account. This is because both plasﬁic strains and creep

strains are treated as interacting non-elastic strains.

The computer program CAMFEM developed during the course of this
study is based on a command language. Experience has shown that the
modularized program structure is very useful in a research environ-
ment where new fields of application are studied. The user-defined

matrices and macro commands offer a large flexibility.

The finite element equations for beams in combination with the uni-
axial form of the presented constitutive model are used to predict
the behaviour for steel skeletal structures. Although guite inde-

pendent material parameters are used, the numerical results are in

satisfactory agreement with experimentally observed results.
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7.2 Future developments

A crucial point in the analysis of structures at high temperatures
is the modelling of the nonlinear material behaviour. Although a
theoretical description in many cases can be derived, the need for
more experimental work is essential, especially determination of

the creep parameters. The present constitutive model is restricted
to small strain isotropic conditions. It might be of interest also
to derive expressions for large deformations. In addition, a consti-
tutive model with kinematic hardening would be necessary in order

to take into account the Bauschinger effect.

In this work plane steel skeletal structures are studied, assuming
the temperature to be uniformly distributed over the width. An
improved description of the behaviour is to include effects as
torsion, buckling of the flanges and the effect of shear deformations.

The calculation procedure adopted here is a true incremental one.
This can give differences from the redl behaviour if not sufficiently
small time steps are used. Further developments of efficient and
stable numerical procedures for problems involving both material

and geometric nonlinearities are of interest.



APPENDIX A. NOTATIONS
Notations and symbols are explained in the text where they
first occur. Most of the notations used are given in this

appendix as well.

Latin letters

A cross sectional area
< material stiffness tensor
g? elastic material stiffness tensor
gFP elastic-plastic material stiffness tensor
Cr material tangent modulus
13 cross sectional functions
E Green strain tensor
g* Almansi strain tensor
E modulus of elasticity
F deformation gradient tensor, material flexibility tensor
rd plastic loading function
FVP viscoplastic loading function
G matrix related to element geometry
G, transformation matrix
H normal force
H' slope of an effective stress=strain curve
I unit tensor
I moment of inertia
Jé second invariant of the deviatoric stress tensor
KO small displacement stiffness matrix
K° initial stress stiffness matrix

K initial displacement stiffness matrix
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beam length

interpolation functions

outward unit normal in the initial configuration
pseudo force vector

physical force vector

element nodal force vector

element nodal force vector in a partially updated
configuration

surface in the current configuration
surface in the initial configuration
surface in a partially updated configuration
Cauchy stress tensor

second Picla-Kirchhoff stress tensor
initial stress tensor

temperature

volume in the current configuration

volume in the initial configuration

volume in a partially updated configuration
material coordinate vector l

material coordinate vector for a partially updated
configuration

yield stress level
primary creep stress level
integration constants

material stiffness tensor referred to the current
configuration

body force component per unit volume in the current
configuration '

body force component per unit volume -in the initial
configuration

body force component per unit volume in a partially
updated configuration
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9 creep function for primary creep

9, creep function for secondary creep

n creep exponent

a outward unit normal in the current configuration

t time

?i component of the second Piola-Kirchhoff traction vector

tg component of the first Piola-Kirchhoff traction vector

tg* cgmponent of the first Piola-Kirchhoff tractiop vector
with respect to a partially updated configuration

u displacement vector referred to the initial configuration

3* displacement vector referred to a partially updated
configuration

u nodal displacement vector referred to the initial
configuration

G* nodal displacement vector referred to a partially updated
configuration

u; axial displagement_along the reference axis in a partially
updated configuration

\A weighting function in the initial configuration

vz weighting function in a partially updated configuration

w* lateral displacement in a partially updated‘configuration

X spatial coordinates

5* spatial coordinates in a partially updated configuration

X,2 coordinates

Greek letters

o coefficient of thermal expansion, load factor, slope
LI coefficients

8 scalar

Y, fluidity parameter (primary creep)

Y, fluidity parameter (secondary creep)



initial displacement

{ronecker's delta

total strain tensor
elastic strain tensor
plastic strain tensor
thermal strain tensor
viscoplastic strain tensor
effective plastic strain
effective permanent strain
stress tensor

initial stress tensor
deviatoric stress tensor
effective stress

uniaxial yield stress

hardening parameter for the plastic loading function FP
hardening parameter for the viscoplastic loading function FVP
Lame's elasticity constant, temperature dependent scalar
Poisson's ratio

Lame's elasticity constant, loading parameter

scalar function for plastic strains

scalar function for viscoplastic strains

scalars

scalar function



Othexr notations

tensor {wavy underscore)

e indices denoting time (left superindex)
t+At(.)

T
(+) transpose of (*)
det () determinant of (-)

time differentiation (3/3t)

X partial differentiation (3/9x)
A(*) increment of (*)

dag+) differential of (-)
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APPENDIX B. CALCULATION OF STRESS IN THE TRANSITION RANGE
FROM ELASTIC TO PLASTIC BEHAVIOUR

B.1 General remarks

Consider a time increment At between t and t+At. The corres-
ponding temperatures are tT and t+AtT while the increments of
the total, thermal and viscoplastic strain tensors are denoted
be, AET and AEVP respectively. The actual stress tensor is tg
and the elastic strain tensor tsE. In the following the stress
calculation is described both in the general three-dimensional

case and for the special case of uniaxial stress.

B.2 General formulation

Assume that the behaviour is elastic and calculate a trial stress

increment tensor, cf. Egs. (3.1) and (3.5)

A5, = THRECE e o aer - AEZE) + AC

B t B
i3 i3k8 “°ka k2 i

19k8 Tk (8.1)
where AQE is the change of the elastic material stiffness tensor
SE during the time interval. The stress increment Aé is added to
the stress state at the start of the increment i.e.
Bty = o4 46, (B.2)
13 i3] 13
The plastic yield function for this stress at the end of the

time increment is written as

~ - -~ - B.3
tAtP t+Atg, ErE, beAto tHAES, | ERALOP (B.3)

~

(
where

t+At§P - YP (t+AtT' t+AtK) (B.4)

is the value of YP at time t+At provided that plastic yield
does not occur. It should be noted that the hardening due to

incremental viscoplastic strains is taken into account in (B.4}.
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If the yield function is less than or equal to zero, i.e., if

t+At§P £ 0, the predicted stress increment is correct, but if

t+At§P > 0 yielding occurs during the time increment and one
must determine the stress and strain at the level of the initial

yield surface.

To obtain the stress increment necessary to cause yield, write
the yield condition Eg. (3.10) as

-2

2
: t+nAtyP) -

t L} ‘l t “'
( Uij + nAOij?( cij + nAoij) ( 0 (B.5)

in which primes indicate deviatoric components and nAé' is the
portion of the stress increment necessary to cause yield. Assuming
that

t+nAtYP - tyP . nA?P (B.6)

where
-P _ t+At-P t P
= v -

AY Y (B.7)

the scalar n can now be solved to yield

2 1/2
_ b+ (b” -~ 4ac)
= 7 (B.8)
in which
a = 861000, - 2a3F . adF
i i3 3
b = 2% a5, - dagf - &P (B.9)
ij ij 3
o Bor By 2P P
ij ij 3

The corresponding strain increment tensor necessary to cause
yield can be determined noting that the material behaves elas-
tically up to yield. The following relation is valid



t -~
v (o + nAom ) (B.10)

Fklmn mn n

where an expression for the flexibility tensor tg is given in
BEq. (3.7) and £ = t + nAt is the time for initial yield. The

. R -B .
strain increment Ae” is then obtained from

E t E
Berg = Fxg T kg (B-11)
where
t E t t
akz = szmn On (B.12)

The stress and temperature states at initial yield are now known
*
and the remaining stress increment Ag occurring after yield is to
be determined. The elastic-plastic portion of the strain increment
after yield is given by
* T VP -E

Ask2 = Aakz - Aekz - Agki - Aakz (B.13)

-where AEE is given by Eg. (B.11). The consistency condition gives

- P - P - P

t OF * t oF P tOF X
(ac_ .)Acij S T Gy VAT = 0 (B.14)

ij 13

where the asterisks indicate increments after yield and the partial
derivates of FP should be evaluated at the time for initial yield.

*
The stress increment Ao is written as

* t+At E * t *
Acij = Cijkl(Aekl - AAI akz) + AC

E tE
19x8 ke (B.15)

in which the normality condition is used for the plastic strain
tensor and the notationtg;is used for the gradient of the yield
surface at time t. The second term in Eg. (B.14) is obtained from
Eq. (3.33) as

- P -
R AP - Faran, + ead) (B.16)
BKP 1 2

Substitution of Egs. (B.15) and (B.16) into Eg. (B.13) and

solving for AX, yields

1
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- - - P
* *
t (t+At E A ACE tEE 1+ t(aF

* .
- - B.
1 cijkl £1e + 1ke kg a7 YAT - "H EAX2] (B.17)

ta t+At B t tH' (B.18)

= +
s 15 Cijke %k

Substitution of AA1 into (B.15) gives

py e (PYMEE 1At B £ £ EHAEE
i3 i1jkL s ijmn “mn rs rsk k2
- - P - - - -
_ 1 t+At E t t BL' * £ ' * t+At E t t *E t B
s Cijre kgl Gor 70T~ H'EAA) + 7 C, i ®on 2rsCraxe xp!
*E LR (B.19)
* BC 5k Fxe

A corresponding expression for the case when the stress point
already lies on the yield surface at time t is given in rate form
in Egs. (3.36)-(3.38).

Finally the stress state and hardening parameter at the end of
the time increment can be obtained by

-~ *
t+At0A. = to‘. + nho, . + Ao, (B.20)
ij ij ij ij

B B h ¢ £8, 7 , (B.21)

and used as initial values for the next time increment.

B.3 Uniaxial stress state

For the sake of simplicity the index 11 is dropped inthe following.
The trial stress increment is for uniaxial stress given as

86 = e - 2T - 2e"P) + nmte (B.22)
in which
A = POt G

hot (B.23)

is the change of the elastic modulus during the time interval At.
Then the trial stress is



=% + 45 (B.24)

To check whether or not the yield criterion is satisfied,

calculate
EHAEEP 15] - t+Ata (B.25)
Y
where t+At8 =0 (t+AtK, t+AtT) is the yield stress at time t+At
if plastic yield does not occur. If t+At§P is greater than zero

yield occurs and the portion of the stress increment to cause

yield can be determined from

t t
o, - | ol
n = % (B.26)
|ac| - A5
where
- t+At t
Ao = o )
Y Y y

The corresponding elastic strain increment is' given by

E E

The elastic-plastic strain increment after yield is calculated as

* -
At = he = AeT - ae'T - AET (B.27)

and the stress increment after yield can now be obtained from

* * *t g £ * *
Ay = TR AE - é[t+AtEAE + AEeE - sgnto (tH'gsz + 8001
.
+ ARTET (B.28)
in which

. _ - .
ro = o (%, B0 o (B, o (B.29)

Y Yy Y

* T :
pE = Ty L Ty : (B.30)
R T (B.31)



since
Tor, * toart T oav. * *
(B—T‘)AT = ('——?) ('a-,ir—')AT = ~Ao (B.32)
3y ¥
and
_ c _
tall = (Eg—F_) = sgn o (B.33)
11

The scalar parameter AA1 describing the hardening due to plastic

strain is finally given by

Iy * *E * + *
santo (F2%as + ARTE - a0 -tH'£A)\2
Akl = b4 {B.34)

At Eo,

The calculation procedure adopted in this study is summarized
by the steps a)-1) below. The simpler superscripts "1" and "2*
are used to indicate time t and t+At respectively.

2
25 = %m(ae - peT - 2Ty 4 (1—E - 1nlg
E

b) Calculate accumulated trial stress

o= %] -5 (%, m
Y
where
ol s m AN, = (g, +g )ALt
- 2 27 9179
d) If Fr £ _0_the calculated_stress is_correct. Jump_to 1.

e e R e e L L N L L e I L Rl e s T Lo oL

o (1|<, 1T) - |1cl
D AR

la0) _Aay



in which

A =0 %k fmy -0 (e,
Y M y

£f) Assume that

H
n
=
+
=
H
I
2

=l 4 nat

g) Calculate_elastic_strain_increment up_to_yield

and the elastic-plastic strain increment after yield

* -
At = Ae-bet - AT - pE"

h) Calculate

P S —p g

- t -

* *
sgntc(zEAx—: + AE —G) - Ao —tH'EM
tE y 2

1 ' 2E+tH'
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K = lK + Axl + EAAZ

B.4 Concluding remarks

The stress calculation for the transition range from elastic

to plastic behaviour has been described. It should be noted that
the derived expressions are also valid if the material already
behaves plastically at the start of the time interval. In that

case the scalar n gives zero value.

The new stress state obtained may depart from the yield surface.
This discrepancy can be practically eliminated if the increments
considered are sufficiently small. Alternative procedures to ensure
that the yielding condition is satisfied are presented in Ref.
[34].
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APPENDIX C. TEMPERATURE DEPENDENT MATERIAL PARAMETERS

C.1 Introduction

Tests onmild structural steel at different temperatures [75]
with cy(20) = 340 MPa and E(20) = 2.1'105 MPa are used to
determine the general temperature dependence of the modulus

of elasticity and the plastic hardening function YP. The temper-
ature dependence of the coefficient of thermal expansion is
determined from tests reported in [76] while creep parameters
are obtained from tests reported in [65].

As a general concept parameters are required for discrete temper-
atures and linear interpolation is used to calculate parameters
for intermediate temperatures. Special arrangements have been
introduced to describe the scalar function YP and the creep para-
meters.

c.2 Plastic hardening function YP

For each discrete temperature the function YP(T, EM) is specified
by its values in four points viz. EM = 0, EM = 0.2%, EM = 1.0%
and EM = 3.0 %. For intermediate values of EM a third order poly-

nomial is used.

C.3 Creep parameters

In Section 3.7 the scalar function YVP was introduced to describe
the primary part of the creep strain rate. The principle adopted

in this study is to take YVP as a fraction of YP for all temper-.
atures and stresses, i.e.

¥V - - ¥ (c. 1)

This approximation is shown in Fig. C.1.



YP,Y VP

YP

YVP=}J. YP

EM
. ) ; . VP
Figure C.]1 Approximation of the scalar function Y

The chosen variation of the parameter u with the temperature is

shown in Fig. C.2. As can be seen in the figure primary creep
is neglected for temperatures below 400°c,

1.0 4

0.5

r ; T T(°c}
200 400 600

Figure C.2 Variation of the parameter p in Eq.

(C.1) with
temperature

The exponent n(T) in Eg. (3.42) for the secondary creep

phase is assumed to have a constant value. The temperature

effect on secondary creep is described by the fluidity
parameter YZ(T)'
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C.4 Numerical values of material properties

Numerical values of various material parameters at different
temperatures in the range 20-700°C are given in Table C.1.
Values for the elastic modulus E and the plastic hardening

. P . . .
function ¥ are given in relative form.

The creep tests used to determine the creep parameters were per-—
formed in the temperature range 400—600°C. Therefore, the creep
parameters given outside this range have been obtained by extra-

polation and to some extent pure judgement.

The values given in Table C.1 are used in all numerical applica-
tions presented in this thesis. The temperature dependence repre-
sented by those values may be considered as generally representa-

tive for the behaviour of mild structural steel.

- g | im0y | fur0.002) | ¥Pir,0.01) | ¥5(r,0.03)
©c) | B20%) | ¥¥(20,0) | ¥ (20,0 7 (20,0) ¥ (20,0)
20 1.00 1.00 1.00 1.01 1.03
100 0.97 0.93 0.94 1.00 1.13
300 0.83 0.68 0.75 0.94 1.23
400 0.70 0.58 0.65 0.84 1.13
500 0.56 0.35 0.43 0.67 0.87
600 0.46 0.24 0.30 0.44 0.51
700 0.20 0.14 0.17 0.24 0.25

T | a(m)10° | wm) | v (m) | logy, (M| n(m)

(°c) min_ min_

20 0.88 1.00 | 0.01 10.1 7.5
100 0.95 1.00 | 0.03 12.1 7.5
300 1.14 1.00 | 0.08 14.1 7.5
400 1.24 | 0.98 | 0.21 15.5 7.5
500 1.33 | 0.86 | 0.82 18.4 7.5
600 1.43 | 0.77 | 1.95 21.1 7.5
700 1.52 | 0.68 | 5.17 24.7 | 7.5

Table C.1 Material properties at different temperatures
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APPENDIX D. VERIFICATION EXAMPLES

D.1 General remarks

In this appendix some numerical examples are presented which
concern geometric and material nonlinear problems under iso-
thermal conditions. In addition, a linear analysis of a ther-

mally loaded fixed bar is presented.

The purpose of these examples is not only to verify the validity
of the theoretical procedure developed in the previous chapters
but also to demonstrate the accuracy and the capability of the

computer program.
The derivation of the nonlinear beam expressions in Chapter 4
results in an initial displacement stiffness matrix x4, Special

attention is therefore drawn to the influence of this matrix.

D.2 Influence of the initial displacement stiffness matrix K"

In this section the influence of the initial displacement stiffness
matrix K% is demonstrated by an example. A cantilever beam with a
transversal and an axial compression load is studied, see Fig. D.1.

P/1000 £ - 1000
E.AI ! b A = 1000
e ==___ W| I=100
~ ~
~— L =100
| |
T L |

Figure D.1 Cantilever beam with a transversal and an axial compression load

The material is assumed to behave elastically. Exact solutions
by means of elliptic integrals can be found in Refs. [110] and
[111]. In Ref. [111] highly accurate results are presented in
tabular form with five and six digits and are here used as

comparative exact values. The solution of this large displacement
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problem was performed by atrue incremental procedure with the
load step AP = L2/200EI . In Table D.1 the results for two
different finite element discretizations are shown.

@E 1 element 8 elements Exact
EI u u u u (A:oo)
Without XK | With K Without K | With K [111]
0.2 | 0.00007 | 0.00007 0.00007 | 0.00007 | 0.00007
0.4 | 0.00016 0.00016 0.00016 0.00016 | 0.00016
0.6 | 0.00026 | 0.00026 0.00026 | 0.00026 | 0.00026
0.8 | 0.00038 0.00039 0.00039 0.00039 | 0.00039
1.0 | 0.00053 | 0.00055 0.00056 | 0.00056 | 0.00056
1.2 | 0.00072 0.00077 0.00077 0.00077 | 0.00077
1.4 | 0.00098 | 0.00106 0.00106 | ©0.00107 | 0.00107
1.6 | 0.00134 0.00148 0.00149 0.00149 | 0.00150
1.8 | 0.00189 | 0.00215 0.00217 | 0.00218 | 0.00220
2.0 | 0.00283 | 0.00336 0.00343 | 0.00344 | 0.00345

Table D.1 Results for the normalized vertical displacement w/L

As can be seen from Table D.1 the results for the calculations

performed with eight elements are very close to the exact solution.

In Fig. D.2 the error in the results for the vertical displacement
in the calculation with one element only is shown.

ﬂ_2
EI
201
/
ZL////wuh K¢
L6—~/
Without KV
..' /
|
1.2 4+
|
i
|
0.8 1
0.4 } t t } Error
0 10 20 (%)

Figure D.2 Error in the vertical displacement w/L
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The results indicate that if a coarse element subdivision is
used (as normally applied in practice), the initial displacement
stiffness matrix K" should be taken into account in geometric
nonlinear analysis.

D.3 Large displacement analysis of cantilever beam subjected
to a concentrated moment

An example much used to check the accuracy of nonlinear programs
is a cantilever beam subjected to a concentrated moment M at the
free end (Fig. D.3).

=oEL
EI = M=aT
l i EI:
f L =1 L =1000

Figure D.3 Cantilever beam with end moment

The cantilever beam was divided into five equal beam elements and
the load was applied in increments (Ao = 1/200).

Exact solutions are represented by circular curves with radius
R = EI/M. In Fig. D.4 calculated deformed configurations for
four values of o are compared with exact ones.

- EL
L
— EXact
e Céalculated M= O.EEI
1 ] M=0

Figure D.4 Comparison between calculated configurations and exact ones
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D.4 Cantilever beam with two transversal point loads

In previous sections, results from calculations were compared
with exact values. In this section a cantilever beam with two

transversal point loads is analysed (Fig. D.5).

P 159 P .
E=30-10
 A=02
I I =1/6000
w
52.03 | 50.73

| |
[l | i
| |
| I

L

Figure D.5 Cantilever beam with two transversal point loads

This example is chosen because earlier comparisons of numerical
results of different methods are available. The results for the

transversal end displacement are shown in Table D.2.

T
Method Number of Number of w/L (Error)
elements increments %

Exact ) 0.655 0
[111]

Martin (TI) 20 100 0.687 4.9
Argyris (TI) 20 100 0,683 4.3
Jennings (T1I) 20 100 0.498 24.0
Powell (TI) 20 100 0.433 33.9
Present (SCI) 4 25 0.649 0.9
Jennings (NR) 2 1 0.650 0.8
Powell (NR) 10 1 0.344 47.5
Bicklund (NR) 4 10 0.657 0.3
[82]

Wei et al (NR) 2 20 0.711 8.6
[94] )

Table D.2 Comparison of solution methods for the vertical displacement
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The results corresponding to Jennings's,Powell's, Argyris's

and Martin's method were transcribed from Ref. [112]. For further
description of the theory see Refs. [77], [79]1, [113] and [114].
In Table D.2 the abbreviations TI, SCI and NR are used for true
incremental, self-correcting incremental and Newton-Raphson

methods respectively.

D.5 Williams's toggle

In the main part of the previously described examples either geo-
metric softening or hardening behaviour occurred. However, the
behaviour of the toggle in Fig. D.6 is characterized by a softe-

ning region followed by a hardening behaviour, see Williams [1151].

P
E =10.278-10% Ib/in? :
Y s A= 0.1829in2 “
€ AN
I=9.0039-10" in
£=12,94 in.
e = 0.320in. and 0.380in.

.

Figure D.6 Williams's toggle

The toggle has been analysed for two different values of the
midpoint rise e. Because of the symmetry, it was only necessary
to model one half of the toggle. Four beam elements have been
used and a displacement incrementation has been performed. The
displacement increment for the midpoint of the toggle is taken
as 0.01.

The results from the calculations are shown in Fig. D.7 and

compared with those obtained by Williams.
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Figure D.7 Midpoint displacement for the toggle
a) e = 0.320 in.
b) e = 0.3B0 in.

D.6 Simply supported beam

This is a classical large displacement problem with. a closed
form solution obtained by Timoshenko [116]. The beam in Fig.
D.8 is subjected to a uniformly distributed load g and the supports

are fixed, thereby allowing membrane forces.

Since the beam is symmetric about the midspan, one half of the
beam was divided into four equal elements. A self-correcting in-
cremental method was used with a loadstep A =0.01. The uniformly

distributed load was approximated with vertical nodal loads only.

E=2.2.10°MPa

:J:h L= 0.5m

A T T T

!
c4§7 53;7 h=0.01m
/ L A= 0.5m2
l | q= 1.5MNm2

Figure D.8 Simply supported beam

The results for the vertical displacement w, the moment M at
the center of the beam and the support horisontal force are

shown in Fig. D.9 and compared with theoretical values.
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Figure D.9 Results obtained for the simply supported elastic beam
in Fig. D.8
a) Midpoint displacement
b) Midpoint moment
c) Support horizontal force



In Subsection D.6.1 asimply supported beamwas analysed considering
geometric nonlinearities only. In this section, the simply suppor-
ted beam in Section D.6.1 is analysed taking into account non-
linear material behaviour only (no fixed supports). In addition

to the parameters in Fig. D.8 a yield stress oy = 300 MPa was
introduced to describe the material nonlinearity. The material

was further assumed to be elastic-perfectly plastic.

The cross—-sectional area was divided into 20 equal layers and a
true incremental calculation was performed. InFig. D.10 the central
deflection w of the beam as a function of the applied load g is
shown. The result is normalized to the conditions at the initial yield
wy and qy respectively. In Fig. D.10 the analytical solution ob-
tained by Prager and Hodge [117] is also shown.

ala,

1.5 +
[

1.4 1+

1.3 1
1.2 + — Analytical

o Present analysis
111+
1.0 + t wiwy

1.0 1.5 2.0

Figure D.10 TLoad-displacement curve for a simply supported
elastic-plastic beam

The elastic-plastic beam described in Subsection D.6.2 has also
been analysed assuming fixed supports (combined geometric and
material nonlinearities). A true incremental solution procedure
was adopted with a load step » = 0.01. The calculated results

are shown in Fig. D.11 and compared with values reported by other

investigators.
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Figure D.11 Load-displacement curve for simply supported elastic~
plastic beam with fixed supports

D.7 Thermal expansion of fixed bar

A bar with linearly varying cross sectional area A(x) is restrained
at the ends x = 0 and x = L (Fig. D.12). The bar is subjected to

a linear temperature variation T(x).

Tix) = Tol1-F)
Alx) = Agl2-+)

L =05m
— — § E = 2.1-10°MPa
_________ - a =103 °¢!
T =100°C
I L | Ag = 1073m?

Figure D.12 Fixed bar

The analysis was performed with five elements of equal length.
The mean values of temperature and cross sectional area were

used for each element.
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In Table D.3 the calculated displacements in the nodes and the
stresses in the center of each element are compared with analy-

tical solutions.

Node Location Displacement (mm) 1 Stress (MPa)

X Calculated Analytical Calculated |Analytical
1 0 0 1 0 - 79.87 - 79.73
2 0.70 0.0520 0.0520 - 89.27 - 89.11
3 0.20 0.0795 | 0.0795 -101.17 | -100.99
4 0.30 0.0813 | 0.0814 | -116.73 | -116.53
5 0.40 0.0557 | 0.0558 ~-137.96 ] -137.71
6 0.50 0 | 0 |

Table D.3 Analytical and calculated values

D.8 Summary and conclusions

In this appendix a number of problems have been analysed in order
to verify the theoretical base considering isothermal conditions.
In geometric nonlinear problems an initial displacement stiffness
matrix is used. It is shown that this matrix is important when a

coarse element subdivision is used.

The results obtained are generally in good agreement with analytical

ones or results obtained by other investigators.
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APPENDIX E. PROBLEM INDEPENDENT COMMANDS IN THE COMPUTER
PROGRAM CAMFEM

STOP

Stop execution
PRON

Turn printing on. Output is written on terminal
PROFF

Turn printing off. No output is written on terminal

LOAD A NI N2
Define a numeric matrix A with N! rows and N2 columns.

N1 and N2 may be given either as digits or as scalar

variables.

The matrix values are given after guestions, or, if
the command is included in a macro, matrix A becomes

a zero matrix.

If matrix A is previously defined and N1 and N2 are
omitted in the command the elements of a are changed
according to input. If matrix a is not previously
defined, or if A is a text matrix, A is defined as a

scalar if N1 and N2 are omitted in the command.

The following specifications can be given in place of

numerical input:

ZERO

Assign zero to the rest of the matrix.

DIAG

Assign values only to the diagonal elements. If only
one value is given all diagonal elements are'assigned
that value.



GO TO N1 N2

Continue input from row N1 and column N2.

GO TO END

Stop input to matrix.

5YM

Make the matrix symmetric, based on the upper-right

part.

LTEXT A N1

Define a text matrix A with N1 rows of 80 characters.

N1 may be given either as a digit or as a scalar

variable.

The character rows are given after questions, or, if
the command is included in a macro, matrix A becomes

a blank matrix.

If matrix A is previously defined it is possible to
change its character rows by omitting N1 in the com-

mand.

If matrix A is not previously defined, or if A is a
numeric matrix, A is defined as a one row matrix if

N1 is omitted in the command.

The following specifications can be given in place of

input of character rows:

*BLANK

Assign blanks to the rest of the matrix.
*GO TO Ni

Continue input from row N1.

*GO TO END

Stop input to matrix.

PRINT Al

[a2 a3...1 [Nt [N2 [N3 wN4]]]
Print matrices aAl, A2 etc.

If Nt is given, only row N1 of the matrices are print-
ed.
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If N1 and N2 are given, only rows Ni to N2 of the

matrices are printed.

If N3 and N4 are given, only columns N3 and N4 of

numeric matrices are printed.

If any of N1, N2, N3 or N4 is negative, or none of the
rows (and columns) specified are inside a matrix only

the name and size of that matrix are printed.

If AaLL is written instead of a matrix name, all ma-

trices are printed.

SAVE A F

Store matrix A on file . If ALL is written instead

of a matrix name all matrices are saved.

oD A F

Read matrix A from file F. If ALL is written instead

of a matrix name all matrices on file F are read.

EMACRO A

[M1 [B1 B2...1]

Execute the commands stored in text matrix A N1 times
(execute macro A). If N1 is omitted the macro is ex-

ecuted one time.
N1 may be given as a digit or as a scalar variable.

A macro may include calls for other macros (EMACRO)

to a maximum level of 10.

Bl, B2 etc are actual arguments of the macro a. If
actual arguments are given, corresponding formal para-
meters must be defined in the macro by the command

PMACRO. The maximum number of actual arguments is 10.

PMACRO PIi

P2...

Define formal parameters of a macro.
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Pl, P2 etc are formal parameters of the macro. All
operations in the macro dealing with P1, P2 etc are
carried out for the matrices given as actual argu-
ments in the command EMACRO. The maximum number of

formal parameters is 10.

BMACRO L

Break execution of a macro. If the integer scalar L
is greater than or equal to 1, execution of the macro

is broken, otherwise execution is continued.

ADD A B

C

Add matrices A& and B. The result is stored in matrix
C.

SUB A B

C

Subtract matrix B from matrix a. The result is stored
in c.

MULT A B

o]

Multiply matrices & and B. The result is stored in c.

A or B may be a scalar.

ELIN A EM EN [J]

Assembly of the element matrix EM into the global
structure matrix a as described by the topology

matrix EN.

EN = [X X i:iivienn. X x}
x X X X
) e
Element Global node
number variable numbers

When J is omitted the assembly of EM is executed for

all elements specified in matrix EN.
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If J is specified the assembly of EM is performed

for row number J in the topology matrix EN.

The command
ELIN P EL EN [J]
is used to assemble element load vector EL into

the global vector P.

SOLVES A

x p B [c]

Solves the symmetric system of equations
AX=P
where A is a symmetric matrix

p is the "load vector"
Prescribed rows in matrix X are specified in matrix B

] X X . . . %]
N e e
Number of Row numbers
prescribed

rows

¢ is a predefined scalar given the value
0 if the system of equations is positive definite and

1 if the system of equations is negative definite.

SOLVIR A

B pIv [c]

Triangularize the matrix a in the system of equations
A X =P

Prescribed rows in matrix X are specified by matrix B

[N X X ... Xl
~— e —————
Number of Row numbers
prescribed

rows

Matrix PIV is created and contains the Gaussian re-

duction factors.

Matrix ¢ is a predefined scalar given the value
0 if the system of equations is positive definite and

1 if the system of eguations is negative definite.




SOLVLM A

X P B PIV

Modify the right hand side P ("load vector") in the

system of equations
A X =P
The matrix B contains the prescribed rows in matrix X

[ X X .. .x]
_
Number of Row numbers
prescribed

Yows

Matrix PIV contains the Gaussian reduction factors
created by the command SOLVTR when matrix a has been

triangularized.

SOLVBS A

X p B [D]

Perform back-substitution in the system of equations
AX =P

The matrix B contains the prescribed rows in matrix x
B X X .. .x]

N

Number of Row numbers

prescribed

rows

Matrix D contains calculated "reactions”.

CONDES A

B C D E

The symmetric system of equations

The row (column) numbers to be condensed are spécified

in matrix E.

[n X X . . .Xx]
Number of Row numbers
rows to be

condensed




APPENDIX F. REFERENCES

[1] MALVERN. L.E.: Introduction to the mechanics of a

continuous medium, Prentice-Hall, Englewood Cliffs,
New Jersey 1969.

[21 FUNG, Y.C.: Foundations of solid mechanics, Prentice-
Hall, Englewood Cliffs, New Jersey 1965.

[3] - WASHIZU, K.: Variational methods in elasticity and
plasticity, Third edition, Pergamon Press, Oxford 1982.

[4] ERINGEMN, C.A.: Mechanics of continua, John Wiley and
Sons, New York 1967.

[5] ODEN, J.T.: Finite elements of nonlinear continua,
McGraw-Hill, New York 1972.

[6] BATHE, K-J.: Finite element procedutes in engineering

analysis, Prentice-~Hall, Englewood-Cliffs, New Jersey 1982.

[7] SPENCER, A.J.M.: Continuum mechanics, Longman Mathematical
Texts, London 1980.

(8] MATTIASSON, K.: Continuum mechanics principles for large
deformation problems in solid and structural mechanics,
Publ. 81:6, Chalmers University of Technology, Department
of Structural Mechanics, Goteborg 1981.

[9] ZIENKIEWICZ, O.C.: The finite element method, Third edition,
McGraw-Hill, London 1977.

[10] HUEBNER, K.H.: The finite element method for engineers,
John Wiley and Sons, New York 1975.

[11] SEGERLIND, L.J.: Applied finite element analysis, John
Wiley and Sons, New York 1976.



[12]

[13]

[14]

[151]

[16]

[173

[18]

[191]

F.2

BECKER, E.B., CAREY, G.F. and ODEN, J.T.: Finite elements,
an introduction, Volume I, Prentice Hall, Englewood Cliffs,

New Jersey 1981.

COOK, R.D.: Concepts and applications of the finite
element analysis, Second Edition, John Wiley and Sons,
New York 1982.

GALERKIN, B.G.: Reihenentwicklung filir einige F&lle des
gleichgewichts vonr Platten und Balken, Wjestwik Ingenow,
No. 10, Petrograd 1915 (In Russian).

BATHE, X-J., RAMM, E. and WILSON, E.L.: Finite element
formulation for large deformation dynamic analysis, In-
ternational Journal for Numerical Methods in Engineering,
Vol. 9, pp. 353-386, 1975.

HIBBIT, H.D., MARCAL, P.V. and RICE, J.R.: A finite element
formulation for problems of large strain and large displace-
ment, International Journal of Solids and Structures, Vol.
6, pp. 1069-1086, 1970.

YAGMAI, S. and POPOV, E.P.: Incremental analysis of large
deflections of shells of revolution, International Journal
of Solids and Structures, Vol. 7, pp. 1375-1393, 1971.

YAMADA, Y.: Incremental formulation for problems with
geometric and material nonlinearities, Advances in Compu-
tational Methods in Structural Mechanics and Design, Sec-
ond U.S.-Japan Seminar on Matrix Methods of Structural
Analysis and Design, University of Alabama Press, pp.
325-355, 1972.

STRICKLIN, J.A., VON RIESEMANN, W.A., TILLERSSON, J.R. and
HAISLER, W.E.: Static geometric and nonlinear analysis,
Advances in Computational Methods in Structural Mechanics
and Design, Second U.S.-Japan Seminar on Matrix Methods

of Structural Analysis and Design, University of Alabama
Press, pp. 301-324, 1972.



F.3

[20] McMEEKING, R.M. and RICE, J.R.: Finite element formulations
for problems of large elastic-plastic deformation, Inter-
national Journal of Solids and Structures, Vol. 11, pp.
601-616, 1975. '

[21] BATHE, K.J. and OZDEMIR, H.: Elastic-plastic large defor-
mation static and dynamic analysis, International Journal
of Solids and Structures, Vol. 6, pp. 81-92, 1976.

[22] HORRIGMOE, G.: Nonlinear finite element models in solid
mechanics, Report No. 76-2, Division of Structural Mechanics,

The Norwegian Institute of Technology, Trondheim 1976.

[23] WOOD, R.D. and ZIENKIEWICZ, 0.C.: Geometrically nonlinear
analysis of beams, frames, arches and axisymmetric shells,
Computers and Structures, Vol 7, pp. 725-735, 1977.

[24] FREY, F. and CESOTTO, S.: Some new aspects of incremental
total Lagrangian description in nonlinear analysis, Finite
Elements in Nonlineax Solid and Structural Mechanics,

Tapir, Trondheim 1978.

[25] ARGYRIS, J.H., BALMER, H., DOLTSINIS, J.ST., DUNNE, P.C.,
HAASE, M., KLEIBER, M., MALEJANNAKIS, G., MLEJNEK, H.-P.,
MULLER, M. and SCHARPT, D.W.: Finite element method - the
natural approach, Computer Methods in Applied Mechanics and

Engineering 17/18, pp. 1-106, 1979.

[26] CESOTTO, S., FREY, F. and FONDER, G.: Total and updated
Lagrangian descriptions in nonlinear structural analysis:
a unified approach, Energy Methods in Finite Element
Analysis, pp. 283-296, Edited by R. Glowinsky, E. Rhodin
and 0.C. Zienkiewicz, John Wiley and Sons, 1979.

[27] NAGTEGAAL, J.C. and DE JONG, J.E.: Some computational
aspects of elastic-plastic large strain analysis, Inter-
national Journal for Numerical Methods in Engineering,
Vol. 17, pp. 15-41, 1981.



[28]

[29]

[30]

[31]

[32]

[331]

[34]

[351

[36]

[37]

F.4

MATTIASSON, K.: On the co~rotational finite element
formulation for large deformation problems, Publ. 83:1,
Chalmers University of Technology, Department of Structural
Mechanics, Go&teborg 1983.

CESOTTO, P.J.S., DE VILLE DE GOGET, V. and FREY, F.:
Improved nonlinear finite elements for oriented bodies
using an extension of Marguerre's theory, Computers and
Structures, Vol. 17, pp. 129-137, 1983.

HILL, R.: Themathematical theory of plasticity, Clarendon
Press, Oxford 1950.

MENDELSON, A.: Plasticity: Theory and Applications, Mac-
Millan, New York 1968.

MROZ, %.: Mathematical models for inelastic material behav-
iour, Solid Mechanics Division, University of Waterloo,
Waterloo Ontario 1973.

AXELSSON, K.: On constitutive modelling in metal plasticity
with special emphasis on anisotropic strain hardening and
finite element formulation, Publ. 79:2, Chalmers University
of Technology, Department of Structural Mechanics, Goteborg
1979.

OWEN, D.R.J. and HINTON, E.: Finite elements in plasticity:

Theory and practice, Pineridge Press Ltd., Swansea 1980.

ODQVIST, F.K.G.:Mathematical theory of creep and creep
rupture, Oxford Mathematical Monographs, Oxford University
Press, Oxford 1966.

HULT, J.: Creep in engineering structures, Blaisdell,
1966.

RABOTNOV, Y.N.: Creep problems in structural members,
English translation edited by F.A. Leckie, North-Holland,
Amsterdam 1969.



[38]

[39]

[40]

[47]

[42]

[43]

[44]

[45]

[46]

F.5

CRISTESCU, N. and SULICIU, I.: Viscoplasticity, Matrinus
Nijhoff Publishers, The Hague 1982.

BOLEY, B. and WEINER, J.: Theory of Thermal Stresses,
John Wiley and Sons, New York 1967.

BOYLE, J.T. and SPENCE, J.: Stress Analysis for creep,
Butterworths, 1983.

UEDA, Y. and YAMAKAWA, T.: Thermal nonlinear behaviour

of structures, Advances in Computational Methods in Struc-
tural Mechanics and Design, University of Alabama Press,
pp. 375-392, 1971.

CYR, N.A. and TETER, R.D.: Finite element elastic-plastic-
creep analysis of two-dimensional continuum with temper-
ature dependent material properties, Computers and Struc-
tures, Vol. 3, pp. 849-863, 1973.

HAISLER, W.E. and SANDERS, D.R.: Elastic-plastic-creep-
large strain analysis at elevated temperature by the
finite element method, Technical Report No. 3275-78-1,
Rerospace Engineering Department, Texas A&M University,
1973.

SHARAFI, P. and YATES, D.N.: Nonlinear thermo-elastic-
plastic and creep analysis by the finite element method,
AIAA Journal, Vol. 12, No. 9, pp. 1210-1215, 1974.

CHENG, W-G.Creep analysis of steel structures at elevated

temperatures, Dr. Thesis, University of Notre Dame, Indiana
1975.

YAMADA, Y.: Constitutive modelling of inelastic behaviour
and numerical solution of nonlinear problems by the finite
element method, Computers and Structures, Vol. 8, pp.
533-543, 1978.



F.6

[47] RUNESSON, K.: On non-linear consolidation of soft clay,
Publ. 78:1, Chalmers University of Technology, Department
of Structural Mechanics, G&teborg 1978.

[48] ALLEN, D.H. and HAISLER, W.E.: The application of thermal
and creep effects to the combined isotropic-kinematic
hardening model for inelastic structural analysis by the
finite element method, Technical Report No. 3275-79-3,
Aerospace Engineering Department, Texas A&M University,
1979.

[49] ALLEN, D.H. and HAISLER, W.E.: The prediction of response
of solids to thermal loading using the finite element code
AGGIE I, Technical Report 3275-80-1, Aerospace Engineering
Department, Texas A&M University, 1980.

[50] SNYDER, M.D. and BATHE, K~J.: A solution for thermo-elastic-
plastic and creep problems, Nuclear Engineering and Design
64, pp. 40-80, 1981.

[51] ALLEN, D.H. and HAISLER, W.E.: A theory for analysis of
thermo-plastic materials, Computers and Structures, Vol.
13, pp. 125-135, 1981.

[52] LEVY, A.: High-temperature inelastic analysis, Computers
and Structures, Vol. 13, pp. 249-256, 1981.

[53] ARGYRIS, J.H., SZIMMAT, J. and WILLIAM, K.J.: Computational
aspects of welding stress analysis, Computer Methods in
Applied Mechanics and Engineering, pp. 635-666, 1982.

[54] CHENG, W-C.: Theory and application of the behaviour of
steel structures at elevated temperatures, Computers and
structures, Vol. 16, pp. 27-35, 1983.

[55] RUNESSON, K.: Conventional finite element analysis of
elastic-viscoplastic solids subjected to quasistatic and
thermal load, Publ. 80:5, Chalmers University of Techno-
logy, Department of Structural Mechanics, G&teborg 1980.



[561

[571]

[58]

(591

[60]

[61]

[621

[63]

F.7

THELANDERSSON, S.: On the multiaxial behaviour of concrete
exposed to high temperature, Nuclear Engineering and De-—
sign, Vol. 75, No. 2, pp. 271-282, 1983.

von MISES, R.: Mechanik fiir plastischen form&nderung von
kristallen, Zeitschrift filir angewandte Matematik und
Mechanik, Vol. 8, 1928.

GREEN, A.E. and NAGHDI, F.M.: A general theory of an
elastic-plastic continuum, Archive for Rational Mechanics
and Analysis, Vol. 18, pp. 251-281, 1965.

GREENSTREET, W.L., CORUM, J.M., PUGH, C.E. and LIU, K.C.:
Currently recommended constitutive equations for inelastic
design analysis for FFTF components, ORNL-TM-3602, Oak
Ridge National Laboratory, Tennessee 1971.

PUGH, C.E. and ROBINSON, D.N.: Some trends in constitutive
equation model development for high-temperature behaviour
of fast-reactor structural alloys, Nuclear Engineering and
Design, pp. 269-276, 1978.

ALLEN, D.H.: A survey of current temperature dependent
elastic-plastic-creep constitutive laws for applicability
to finite element computer codes, Technical Peport No.
3275-80-2, Aerospace Engineering Department, Texas A&M

University, 1980.

CORUM, J.M.: Future needs for inelastic analysis in design
of high-temperature nuclear plant components, Computers
and Structures, Vol. 13, pp. 231-240, 1981.

KONTER, A.W.A. and KUSTERS, G.M.A.: Influence of consti-
tutive equations on the results of inelastic analysis of
Benchmark problems, Transactions, 6th SMiRT conference,
Paris 1981. "



[64]

[65]

[66]

[67]

[68]

[69]

[70]

[711]

F.8

LEVY, A. and PIFKO, A.B.: On computational strategies

for problems involving plasticity and creep, International
Journal of Numerical Methods in Engineering, Vol. 17,

pp. 747-771, 1981.

FUJIMOTA, M., FURUMURA, F., AVE, T. and SHINOHARA, Y.:
Primary creep of structural steel at high temperatures,
Laboratory of Engineering Materials, Tokyo Institute of
Technology, Number 4, 1979.

NIKITENKO, A.F.: Effect of prior creep strain on instan-
taneous elastoplastic deformation of a material, Strength
of Materials, No. 13, Vol. 2, pp. 155-158, 1981.

ALAN, D.H.: Thermodynamic and computational aspects of
a thermoplastic constitutive theory, Transactions, 6th

SMiRT conference, Paris 1981.

ALLEN, D.H.: A thermodynamic framework for comparison of
current thermoviscoplastic constitutive models for metals

at elevated temperature, Proceedings, International Confe-
rence on Constitutive Laws for Engineering Materials,

Theory and Application, Editors C.S. Desai and R.H. Gallagher,
pp. 61-69, Tuscon 1983.

SCHMIDT, C.G. and MILLER, A.K.: A unified phenomenological
model for non-elastic deformation of type 316 stainless steel
— part I: Development of the model and calculation of the
material constants, Res Mechanica (3), pp. 109-129, 1981.

WENG, G.J.: A unified self-consistent theory for plastic-
creep deformation of metals, Journal of Applied Mechanics,
Vol. 49, pp. 728-734, 1982.

CESOTTO, S. and LECKIE, F.: Determination of unified consti-
tutive equations for metals at high temperature, Proceedings,
International Conference on Constitutive Laws for Enginee-
ring Materials, Theory and Application, Editors C.S. Desai
and R.H. Gallagher, pp. 105-111, Tuscon 1983.



[72]

[73]

[74]

(751

[76]

[771

[78]

[791]

[801]

[811]

F.9

HARMATHY, T.Z.: A comprehensive creep model, Journal of
Basic Engineering, Transaction of the ASME, Vol. 89, 1967.

FESSLER, H. and HYDE, T.H.: Creep deformation of metals,
Creep of Engineering Materials, A Journal of Strain Analysis
Monograph, Edited by C.D. Pomeroy, pp. 85-110, Mechanical

Engineering Publications, London 1978.

BJURSTEN, J.: Steel reinforcement at transient conditions,
Graduate work, Lund Institute of Technology, Lund 1980 (in
Swedish) .

THOR, J.: Deformations and critical loads of steel beams
under fire exposure conditions, Document D16:1973, National

Swedish Building Research, 1973.

ANDERBERG, Y.: Mechanical behaviour of steel reinforcement
at high temperature, Tekniska Meddelanden nr 36, Halmstads

Jdrnverk, 1978, (in Swedish).

JENNINGS, A.: Frame analysis including change of geometry,
Journal of the Structural Division, ASCE 94, No. ST3, pp.
627-644, 1968.

MALLET, R.H. and MARCAL, P.V.: Finite element analysis of
nonlinear structures, Journal of the Structural Division,
ASCE 94, No. ST9, pp. 2081-2105, 1968.

POWELL, G.H.: Theory of nonlinear elastic structures,
Journal of the Structural Division, ASCE 95, No. ST12,
pPp. 2687-2701, 1969.

MARTIN, H.C.: Finite elements and the analysis of geometri-
cally nonlinear problems, Recent Advances in Matrix Methods
and Structural Analysis and Design, University of Alabama
Press, pp. 343-377, 1971.

ORAN, C.: Tangent stiffness in plane frames, Journal of
the Structural Division, ASCE 99, No. ST6, pp. 973-985,
1973.



[821

[83]

[84]

[85]

[86]

[871]

[88]

[89]

[90]

F.10

BACKLUND, J.: Finite element analysis of nonlinear
structures, Dr. Thesis, Chalmers University of Techno-

logy, Department of Structural Mechanics, G&teborg 1973.

BELYTSCHKO, T. and HSIEH, B.J.: Nonlinear transient finite
element analysis with convected coordinates, International
Journal for Numerical Methods in Engineering, Vol. 7, pp.
255-271, 1973.

ALSTEDT, E.: Nonlinear analysis of reinforced concrete
frames, Report No. 75-1, The Norwegian Institute of
Technology, Division of Structural Mechanics, The University
of Trondheim, Trondheim 1975.

KANG, Y-J.: Nonlinear geometric, material and time-dependent
analysis of reinforced and prestressed concrete frames, Dr.
Thesis, University of California, Berkeley 1977.

RAMSETH, S.N.: Nonlinear static and dynamic analysis of
framed structures, Computers and Structures, Vol. 10, pp.
879-897, 1979.

BATHE, K-J. and BOLURCHI, S.: Large displacement analysis
of three-dimensional beam structures, International Journal
of Numerical Methods in Engineering, Vol. 14, pp. 961-986,
1979.

KARAMANLIDIS, D., HONECKER, A. and KNOTHE, X.: Large
deflection finite element analysis of pre- and post-critical
response of thin elastic frames, Nonlinear Finite Analysis

in Structural Mechanics, Springér Verlag, 1987.

BANOVEC, J.: An efficient finite élement method for
elastic-plastic analysis of plane frames, Nonlinear Finite
Element Analysis in Structural Mechanics, Springer Verlag,
1981.

TANG, S.C., YEUNG, K.S. and CHON, C.T.: On the tangent
stiffness in a convected coordinate system, International
Journal of Computers and Structures, Vol. 12, pp. 849-856,
1980.



[91]

[92]

[93]

[94]

[951

[96]

[97]

[98]

F.ll

ARGYRIS, J.H., BONI, B., HINDENLANG, V. and KLEIBER, M.:
Finite element analysis of two- and three-dimensional
elasto-plastic-frames - the natural approach, Computer
Methods in Applied Mechanics and Engineering 35, pp.
221-248, 1982.

ZANATHY, M.H. and MURRAY, D.W.: Nonlinear finite element
analysis of steel frames, Journal of Structural Enginee-
ring, Vol. 109, No. 2, pp. 353-368, 1983.

KASSIMALI, A.: Large deformation analysis of elastic-
plastic frames, Journal of Structural Engineering, Vol.
109, No. 8, 1983.

WEN, R.X. and RAHIMZADEK, J.: Nonlinear elastic frame
analysis by finite element, Journal of Structural Enginee-
ring, Vol. 109, No. 8, pp. 1952-1971, 1983.

WENNERSTROM, H.: Numerical and computer techniques in
finite element analysis, Publ. 81-7, Chalmers University
of Technology, Department of Structural Mechanics, G&te-
borg 1981.

WICKSTRUM, U.: TASEF-2, A computer program for temperature
analysis of structures exposed to fire, Report 79-2, De-
partment of Structural Mechanics, Lund Institute of Techno-
logy, Lund 1979.

BECKER, J:M., BIZRI, H. and BRESLER, B.: FIRES-T, A
computer program for the fire response of structures -
thermal, Report No. UCB FRG 74-1, University of California,
Berkeley 1974.

BATHE, K=J.: ADINAT - A& finite element program for automatic
dynamic inecremental nonlinear analysis of temperatures,
Report 82448-5, Acoustic and Vibration Laboratory, Mechanics
Engineerifiy Department, Massachusetts Institute of Techno-
logy, 1977.



[99]

[100]

[101]

{1021

[103]

[104]

[105]

[106]

[1071

F.12

BERGAN, P.G. and S@REIDE, T.: A comparative study of
different numerical solution techniques as applied to
a nonlinear structural problem, Computer Methods in

Applied Mechanics and Engineering, Vol. 2,pp. 1-17, 1973.

STRICKLIN, J.A., HAISLER, W.E. and RIESMANN, W.A.: Evalua-
tion of solution procedures for material and/or geometri-
cally nonlinear structural analysis, AIAA Journal, Vol. 11,
No. 3, pp. 292-299, 1973.

BERGAN, P.G., HORRIGMOE, G., KRAKELAND, B. and S@REIDE, T.:
Solution techniques for nonlinear finite element problems,
International Journal for Numerical Methods in Engineering,
Vol. 12, pp. 1677-1696, 1978.

CRISFIELD, M.A.: A faster modified Newton-Raphson iteration,
Computer Methods in Applied Mechanics and Engineering, Vol.
20, pp. 267-278, 1978.

ARNESSEN, A.: Analysis of reinforced concrete shells consi-
dering material and geometric nonlinearities, Report No.
79-1, Division of Structural Mechanics, The University of
Trondheim, Trondheim 1979.

PRZEMIENIECKI, J.S.: Theory of matrix structural analysis,
McGraw-Hill, New York 1968.

PETERSSON, H. and POPOV, E.P.: Substructuring and equation
system solutions in finite element analysis, Computers and
Structures, Vol. 7, pp. 197-206, 1977.

DAHLBLOM, O. and PETERSON, A.: CAMFEM - Computer aided
modelling based on the finite element method, Report TVSM-
3001, Lund Institute of Technology, Division of Structural
Mechanics, Lund 1982.

DAHLBLOM, O.: CAMFEM applied to nonlinear structural
analysis, Report TVSM-7016, Lund Institute of Technology,

Division of Structural Mechanics, ILund 1983.



[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

F.13

OLSSON, M.: Finite element analysis of structures subjected
to moving loads, Report TVSM-3004, Lund Institute of Tech-

nology, Division of Structural Mechanics, Lund 1983.

SANDBERG, G.: Fluid-structure interaction - numerical
studies, Lund Institute of Technology, Division of Structural

Mechanics, to be published.
FRISCH~FAY, R.: Flexible bars, Butterworths, London 1962.

MATTIASSON, K.: Numerical results from elliptic integral
solutions of some elastic problems of beams and frames,
Publ. 79-10, Department of Structural Mechanics, Chalmers
University of Technology, G&teborg 1979.

EBNER, A.M. and UCCIFERRO, J.J.: A theoretical and numerical
comparison of elastic nonlinear finite element methods,
Computers and Structures, Vol. 2, pp. 1043-1061, 1972.

ARGYRIS, J.H.: Recent Advances in Matrix Methods of Struc-
tural Analysis, Progress in Aeronautical Sciences, Vol. 4,
Pergamon Press, 1964.

MARTIN, H.C.: On the derivation of stiffness matrices for
the analysis of large deflection and stability problems,
Proceedings, Conference of Matrix Methods in Structural

Mechanics, Wright-Pettersson Air Force Base, Ohio 1965.

WILLIAMS, F.W.: An approach to the nonlinear behaviour
of the members of a rigid Jjointed plane frame work with

finite deflections, Quarterly Journal of Mechanics and
Applied Mathematics, Vol. XVII, pp. 451-469, 1964

TIMOSHENKO, S.P. and WOINOWSKY-KRIEGER, S.: Theory of plates
and shells, McGraw=~Hill, Second edition, 1970.

PRAGER, W. and HODGE, P.G.: Theory of perfectly plastic
solids, John Wiley and Sons, New York 1951.



F.l4

[118] S@PREIDE, T.: Collapse behaviour of stiffened plates using
alternative finite element formulations, Report No. 77-3,
The Norwegian Institute of Technology, Division of Structur-

al Mechanics, The University of Trondheim, Trondheim 1977.

[119] FREY, F.: L'analyse statique non lineare des structures
par la methode des elements finis et son application a la
construction metalligque, These de doctorat, Universite de
Liege, Liege 1978, (in French).

[120] PEYER, E. and NOLKER, A.: Zum Brandverhalten von Gesamt-
konstruktionen des Stahl- und Stahlverbundbaues, 1. Teil
Verfahren, Eignungstests und Vegleichberechnungen zur
experimentellen Untersuchung mit Grossmodellen, Der Stahl-
bau Heft 1, pp. 1-10, 1983, (in German).

[121] FORSEN, N.E.: Steelfire, finite element program for non-
linear analysis of steel frames exposed to fire, Multicon-
sult AS, Oslo 1983.

[122] STANZAK, W.W. and HARMATHY, T.Z.: Effect of deck on failure
temperature of steel beams, Research Paper No. 388, Division
of Building Research, National Research Council of Canada,
Ottawa 1968.

[123] HARMATHY, T.Z. and STANZAK, W.W.: Elevated-temperature
tensile and creep properties of some structural and pre-
stressing steels, Research Paper No. 424, Division of
Building Research, National Research Council of Canada,
Ottawa 1970.

[124] HARMATHY, T.Z.: Creep deflection of metal beam in transient
heating process, with particular reference to fire, Research
Paper No. 673, Division of Building Research, National Re-

search Council of Canada, Ottawa 1976.

[125] FURUMURA, F. and SHINOHARA, Y.: Inelastic behaviour of
protected steel beams and frames in fire, Report of the
Research Laboratory of Engineering Materials, Tokyo Insti-

tute of Technology, Number 3, pp. 1-14, Tokyo 1978.



[126]

(1271

F.15

FORSEN, N.E.: A theoretical study of the fire resistance
of concrete structures, Cement and Concrete Research
Institute, The Norwegian Institute of Technology, STF6&5
AB82062, Trondheim 1982.

Regulations for Steel Structures, 1970, The National
Swedish Committee on Regulations for Steel Structures,
{(In Swedish with an English summary) .






