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Abstract

SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2
and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANKT induces the
enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but
their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of
SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and
19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending
on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical
investigation. Copy-number variants and truncating mutations in SHANK genes were present in ~1% of patients with ASD:
mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present
in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with
ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK
genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare
frequency of SHANK1 and SHANK?2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In
contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more
than 1 in 50—warrant its consideration for mutation screening in clinical practice.

PLOS Genetics | www.plosgenetics.org 1 September 2014 | Volume 10 | Issue 9 | 1004580


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1004580&domain=pdf

preparation of the manuscript.

* Email: thomasb@pasteur.fr

@ These authors contributed equally to this work.

Citation: Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, et al. (2014) Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity
in Cognitive Impairments. PLoS Genet 10(9): €1004580. doi:10.1371/journal.pgen.1004580

Editor: Gregory S. Barsh, Stanford University School of Medicine, United States of America
Received February 8, 2014; Accepted July 8, 2014; Published September 4, 2014

Copyright: © 2014 Leblond et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Institut Pasteur, CNRS, INSERM, AP-HP, University Paris Diderot, the Bettencourt-Schueller foundation, the Orange
foundation, the FondaMental foundation, the Conny-Maeva foundation, the Cognacg-Jay foundation, the ANR (ANR-08-MNPS-037-01 - SynGen), Neuron-ERANET
(EUHF-AUTISM), the DFG (BO1718/3-1, 4-1) and Baustein L.SBN.0081. The funders had no role in study design, data collection and analysis, decision to publish, or

Competing Interests: The authors have declared that no competing interests exist.

SHANK Genes in Autism Spectrum Disorders

Introduction

Autism spectrum disorders (ASD) are characterized by impair-
ments in reciprocal social communication and stereotyped
behaviors. There is strong evidence of the involvement of different
forms of genetic variations in ASD [1,2]. In particular, chromo-
somal rearrangements, rare de novo copy-number variants and de
novo coding-sequence variants may account for more than 20% of
the cases [1,2]. These events have implicated more than 100 genes
[3], but each gene or genomic alteration often accounts for less
than 1% of the cases. Many of the genes associated with the
disorder are involved in the development or functioning of
neuronal circuits [4]. In particular, mutations in genes coding for
synaptic cell adhesion molecules and scaffold proteins — such as
neuroligins, neurexins and SHANK — have been repeatedly
reported in individuals with ASD [5-10]. These proteins play a
crucial role in the formation and stabilization of synapses [11,12].
The synapse has therefore emerged as a common target for the
different genetic mutations that affect chromatin remodeling,
synaptic translation, formation and functioning [4].

Here, we focused on the three SHANK genes, which code for
large synaptic scaffold proteins of the post-synaptic density [12].
Deletions, duplications and coding mutations in the SHANK
genes have been recurrently reported in patients with ASD [6,8—
10,13-20]. SHANK3 haploinsufficiency has been identified in
more than 900 patients affected with chromosome 22q13 deletion
syndrome, known as Phelan-McDermid syndrome [15]. The
genomic rearrangements observed in these patients are diverse
ranging from simple 22q13 deletions (72%), ring chromosomes
(14%), unbalanced translocations (7%) to interstitial deletions
(9%), all resulting in haploinsufficiency of the SHANK3 gene [21].

The majority of these patients have neonatal hypotonia,
moderate to severe intellectual disability (ID), absent to severely
delayed speech, and minor dysmorphic features [15]. In more
than 80% of the cases, autism or autistic-like behavior is present
[22]. De novo or truncating mutations in SHANK3 have also been
observed in individuals with ASD [6,13,16,17]. Few studies have
explored SHANKI and SHANK?2 in ASD, but all have led to the
conclusion that deleterious mutations in these genes contribute to
the disorder [14,18,19].

Mice lacking any of the SHANK proteins display phenotypes
relevant to ASD [23]. Shankl knock-out mice show increased
anxiety, decreased vocal communication, decreased locomotion
and remarkably, enhanced working memory, but decreased long-
term memory [24,25]. Shank2 knock-out mice show hyperactivity,
increased anxiety, repetitive grooming, and abnormalities in vocal
and social behaviors [26,27]. Shank3 knock-out mice show self-
Injurious repetitive grooming, and deficits in social interaction and
communication [28-30].
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While there is increasing evidence of an association between
SHANK genes and ASD, SHANK mutations are considered to
affect only a limited number of patients and as a consequence,
these genes are not routinely sequenced in clinical practice. In
addition, sequence gaps and annotation errors of SHANKZ2 and
SHANK3 in the human genome assembly (hgl9) have led to
incorrect interpretations of sequencing results obtained in patients
[15]. Finally, the clinical impact of the mutations in the SHANK
genes is still largely unknown.

Our hypothesis was that mutations in SHANK genes might be
more frequent in patients with ASD than previously suggested,
and that each gene might be associated with specific clinical
profiles. To conduct this study, we first corrected the reference
sequence of SHANK2 and SHANK3 (Table S1, Figure S1 & S2
and Text S1: Supplementary Methods). We then analyzed a large
number of individuals with ASD for SHANK copy-number
variants and coding-sequence variants and combined these results
with those reported in the literature. Finally, we performed an
extended clinical investigation in all patients carrying de novo or
truncating SHANK mutations.

Results

Cohorts used for the meta-analysis of SHANK mutations

We performed a meta-analysis of copy-number variants and
coding sequence variants in all SHANK genes (Figure 1). This
meta-analysis included the published data from 14 studies in
addition to a new screening of SHANK copy-number variants and
coding sequence variants. The number of individuals tested and
the result of the meta-analysis are reported in the Table 1,
Figures 2 and 3 and Table S2, S3, S4, S5, S6. In addition to the
results from the literature, we performed a new copy-number
variants analysis of 46 additional cases with ASD and 454 matched
controls. We also performed a mutation screening of all SHANK
exons in 743 independent individuals including 251 cases with
ASD and 492 controls. Finally, we added 429 new independent
cases with ASD and 80 new independent controls to our original
screening of coding-sequence variants of SHANK3 [6]. When
possible, the patients carrying truncating mutations altering
SHANK genes underwent further clinical investigations (Table 2
& S7). The meta-analysis of the frequency of CNVs and coding-
sequence variants altering SHANK genes in patients with ASD
and in controls were also performed using IQ) as a co-variable
(Figure 4).

SHANKT in ASD

Altogether, our new screening of 306 patients with ASD and
454 controls and the previously published copy-number variants
studies (Table S3 & S5) showed that deletions disrupting SHANK 1
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Author Summary

Autism spectrum disorders (ASD) are a heterogeneous
group of neurodevelopmental disorders. Mutations alter-
ing genes involved in the junction between brain cells
have been repeatedly associated in ASD. For example,
SHANK1, SHANK2 and SHANK3 emerged as one family of
genes that are associated with ASD. However, little was
known about the number of patients carrying these
mutations and the clinical outcome. Here, we performed
a new genetic screen of SHANK mutations and these
results were analyzed in combination with those of the
literature. In summary, SHANK mutations account for ~1%
of patients with ASD and were detected in the whole
spectrum of autism with a gradient of severity in cognitive
impairment: mutations in SHANK1 were rare (0.04%) and
present in males with normal IQ and autism; mutations in
SHANK2 were present in 0.17% of patients with ASD and
mild intellectual disability; mutations in SHANK3 were
present in 0.69% of patients with ASD and up to 2.12% of
the cases with moderate to profound intellectual disability.
Given the high frequency and impact of SHANK3 mutations
in individuals with ASD and intellectual disability—more
than 1 in 50—this gene should be screened for mutations
in clinical practice.

were detected in 0.04% (n=2/5 657) of patients with ASD and
were never found in 19 163 controls (Meta-analysis — Inverse
variance method - fixed effect model P =0.19, OR =2.73, 95%
CI=0.60-12.48) (Table 1 and Figure 2). The two independent
families with SHANK]I deletions were reported by Sato el al.
(2012) [19]. A de novo deletion of 63.4 kb altering both the
synaptotagmin-3 gene (SY73) and SHANKI was detected in a
Swedish male with normal IQ) and ASD [19]. An inherited exonic
deletion of 63.8 kb altering both SHANKI and CLECIIA
segregated in a four-generation Canadian family in which male
carriers—but not female carriers—have ASD [19]. No SHANK1
duplications were found.

We screened a sample of 251 patients and 492 controls for
SHANKI coding exons. As for the SHANKI mutation screening
by Sato et al. (2012), no de novo truncating mutation sequences
were identified. Based on the two cohorts of 760 patients with
ASD and 492 controls (Table 1, Figure 1 & 3, Tables S4, S5, S6,
S7 & S89), rare inherited coding-sequence variants predicted as
damaging were, however, more frequent in patients with ASD
than in controls (3.16% in ASD, 1.02% in controls, Fisher’s exact
test two-sided, P=0.012, OR=3.17, 95% CI=1.18-10.72). The
rare variants observed in patients with ASD were not observed in
an additional sample of 500 control chromosomes.

The 4 males with SHANK1 deletions were diagnosed with ASD
and an IQ in the normal range (mean IQ) = 107) and good verbal
ability without significant language delay [19] (Figure 4). Interest-
ingly, sex differences might modulate the phenotype since females
carrying an inherited SHANKI deletion exhibited anxiety and
shyness, but did not fulfill criteria for ASD [19].

SHANK2 in ASD

SHANK?2 deletions were found in 0.05% (n=3/5657) of
patients with ASD, and never in controls (n=0/19 163; Meta-
analysis — Inverse variance method - fixed effect model, P =0.076,
OR =3.76, 95% CI=0.87-16.25) (Table 1, S3 & S5, and
Figure 2). All deletions were de novo and disrupted coding exons.
No SHANKZ2 duplications were reported. We identified two
patients with a SHANKZ2 de novo deletion (Table 2). For patient
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AUL_001, the breakpoints were previously sequenced using whole
genome sequencing [31] (Table 2, Figure S4 and Text S1). The
second patient (RDB_30769) carried a de novo deletion of 1.8 Mb
encompassing SHANK2. These two patients were not included in
the calculation of the prevalence since they were not part of our
cohort screened for copy-number variants. They were identified
during clinical screening and the exact number of patients with
ASD investigated was not available.

Based on the mutation screening of Berkel et al. (2010) and
Leblond et al. (2012), the prevalence of truncating SHANK2
coding-sequence variants was 0.12% in patients with ASD (n=1/
851), and such variants were not found in any of the 1 090 controls
(Figure 1 and 3, Table 1, Table S4, S5, S6, S7 & S10). This
prevalence is similar to the one reported in the four large-scale
studies in ASD using exome sequencing [32] (de mnovo or
truncating SHANK2 mutation 1/965, 0.10%). Finally, we
observed rare coding-sequence variants predicted as damaging
in 4.58% of the patients with ASD compared with 2.66% of the
controls (Fisher’s exact test two-sided, P =0.025, OR =1.76, 95%
CI=1.05-2.97).

The individuals carrying a SHANK2 de novo deletion were
diagnosed with autistic disorder or pervasive developmental
disorder not otherwise specified (PDD-NOS) in combination with
mild to moderate ID (mean 1Q) = 62%17) (Figure 4). They displayed
early signs of developmental delay, mild motor delay and significant
language delay. They also displayed minor signs of dysmorphism
(broad nasal bridge, thin upper lip, pointed chin, clinodactyly) and
abnormal neurological examination (Table 2). Specifically, cases
6319-3 and AU038-3 had mild axial hypotonia, oral dyspraxia and
minor signs or cerebellar dysfunction (including dysmetry and
dysdiadochokinesis). These clinical signs are unspecific, but were
also reported in patients with ASD with more complex chromo-
somal rearrangements encompassing SHANK2 [33]. The individ-
ual carrying the de novo truncating mutation R841X (SK 0441-003)
had a normal IQ and diagnosed with ASD without any
developmental delays or dysmorphic features.

SHANK3 in ASD

In our screening of 306 patients with ASD, we identified one
patient (AU029) carrying a de novo SHANK3 deletion of 1.5 Mb
(Figure S4). Altogether, SHANK3 deletions were detected in
0.18% of patients with ASD (n=10/5 657) and in 0.01% of
controls (n =2/19 163) (Meta-analysis — Inverse variance method -
fixed effect model, P=0.019, OR =4.05, 95% CI=1.26-13.01)
(Figure 2, Figure S4, Table 1 and Table S3, S4, S5, S6, S7).
Deletions of SHANK3 have not been reported in controls before,
so the two deletions reported by Glessner et al. (2009) [34], which
have not been validated, should be interpreted with great caution.
In three families from France and Canada, the SHANK3 deletions
originated from a balanced translocation present in a healthy
parent [6,13]. Interestingly, in two families, a sibling carried the
reciprocal SHANK3 duplication. In the French family, the elder
brother carrying the SHANK3 duplication was diagnosed with
Asperger syndrome [6]. In the Canadian family, the elder sister
carrying the SHANK3 duplication was diagnosed with attention-
deficit/hyperactivity disorder (ADHD) and developmental delay
[13]. In a screen of 160 additional patients with ASD and ID using
Multiplex Ligation-dependent Probe Amplification (MLPA) anal-
ysis, we observed two patients carrying a de novo deletion altering
SHANK3 (Figure S4 and Text S1: Supplementary Methods). For
patient AUN_006, the deletion breakpoint is located within intron
8 of SHANK3 and leads to the loss of SHANK3 (exons 9 to 22),
ACR and RABL2B. For the second patient AUN_007, the
deletion covers the exon 22 of SHANK3 and exons 1 to 3 of ACR.
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and SAM (green).
doi:10.1371/journal.pgen.1004580.g001

We screened 429 patients with ASD for all coding exons of
SHANK3 and found 8 patients carrying heterozygous truncating
mutations (Figure 1 and 3, Figure S5, Table 1, Table S4, S5, S6,
S7 and Table S11), including 6 that appeared de novo in the
probands. For the remaining two, the mothers were not carriers,
but the DNA of the fathers were not available. When all mutation
screenings were included, truncating SHANK3 coding-sequence
variants were found in 0.51% of the patients (n=11/2 147) and
were not found in 1031 controls (meta-analysis — inverse variance
method - fixed effect model, P=0.29, OR =2.85, 95% CI=0.41—
19.96) (Table 1, S5 & S11, and Figure 1 & 3) [6,13,16,17,35]. We
observed an enrichment of truncating mutations in exon 2la of
SHANK3. We therefore screened an additional sample of 138
cases with ASD for exon 2la and identified a novel de novo stop
mutation (Q1243X) in one boy with autism and moderate 1D
(Table 2 & Figure S5).

Individuals with SHANK3 truncating mutations displayed
autism with moderate to severe/profound ID (mean 1Q); 31%8)

PLOS Genetics | www.plosgenetics.org

(Figure 4). The individuals carrying SHANK3 deletions had also
manifestations of the Phelan-McDermid syndrome [15]. For
example, the boy carrying the L1142Vfs*¥153 mutation was non-
verbal, showed a global developmental delay with neonatal
hypotonia and typical dysmorphic features of Phelan-McDermid
syndrome, including wide nasal bridge, pointed chin, deep-set
eyes, flat mid-face, large ears, long eyelashes, bulbous nose, and
high-arched palate (Table 2). He also developed generalized
epilepsy at the age of 10 years, which was characterized by
intolerance and resistance to variety of anticonvulsant medica-
tions. By contrast, the boy carrying the de novo truncating
mutation S1202Cfs*81 was verbal and had moderate ID.
Although reduced in quality by the opposition of the patient, the
clinical examination was considered in the normal range with no
significant dysmorphic features. Thus, the phenotypic variability of
the Phelan-McDermid syndrome, which was considered to result
from the wide range of deletion sizes, was also observed for
individuals carrying SHANK3 de novo or truncating mutations.
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Figure 2. Prevalence and meta-analysis of copy number variant studies in ASD. A. The prevalence and the confidence interval from a set of
single copy number variant studies and the pooled prevalence and the confidence interval of the meta-analysis. The prevalence is indicated by circles
in red, pink, purple and black for “ASD all” (all ASD patients), “ASD 1Q<70" (patients with ID; 1Q<<70), “ASD 1Q>70" (patients with 1Q in the normal
range), and “CTRL" (controls), respectively. The plotted circles are proportional to the corresponding sample size. B. Meta-analysis of the copy number
variants altering SHANK genes. For each study, the Odds ratio and confidence interval are given. Each meta-analysis is calculated using inverse
variance method for fixed (IV-FEM) and random effects (IV-REM). The statistics measuring heterogeneity (Q, 12 and Tau?) are indicated. The number
under the scatter plot correspond to independent studies: 1 ="[The Paris cohort: this study+Durand et al. 2007 [6]; Sato et al. 2012 [19]; Leblond et al.
2012 [18]]”, 2="[Moessner et al. (2007) [13]; Marshall et al. (2008) [52]; Pinto et al. (2010) [8]; Berkel et al. (2010) [14]; Sato et al. (2012) [19]]",
3="Bremer et al. (2010) [53]", 4 ="Glessner et al. (2009) [34]", 5 ="Sanders et al. (2011) [9]", and 6 ="“Sebat et al. (2007) [51]". IV, Inverse Variance; FEM,
Fixed Effect Method; REM, Random Effect Method; OR, Odds Ratio; Cl, Confidence Interval; IQ, Intellectual Quotient; CNV, Copy Number Variant.

doi:10.1371/journal.pgen.1004580.9g002

Discussion

Mutations of the SHANK genes were detected in the whole
spectrum of ASD with a gradient of severity in cognitive
impairment. SHANKI mutations were detected in individuals
with ASD and normal 1Q, SHANKZ2 mutations were found in
cases with ASD and mild ID, and SHANK3 mutations were
mainly found in individuals with ASD combined with moderate to
severe ID. In the whole spectrum of ASD, we estimated that
0.04%, 0.17% and 0.69% of cases with ASD had heterozygous
truncating mutations in SHANKI, SHANK2 or SHANK3,
respectively (Table 1). Recent exome sequencing studies only
reported one de novo SHANK2 mutation out of 965 patients
[32,36,37] and no truncating coding-sequence variation within
SHANKI and SHANK3. In contrast, we report 0.51% of cases
with ASD carrying truncating coding-sequence variations in
SHANKS3. This difference could be explained by the very low
sequencing coverage of SHANK3 using whole-exome sequencing
technology leading to a low power of detection of SHANK3

PLOS Genetics | www.plosgenetics.org 6

mutations. This coverage issue of SHANK3 was indeed observed
by other groups [38]. Interestingly, regions with low coverage of
SHANKS3 correlate with high percentage of GC; and the majority
of the mutations detected in our study were located in the exonic
region of SHANK3 showing a very low coverage (Figure S3).
The prevalence of each SHANK mutations appeared to be
different when the severity of cognitive impairment was considered
(Figure 4, Table 3 and Table S6). This was particularly relevant
for SHANK3 in individuals with ASD and ID. The prevalence of
de novo or truncating SHANK3 mutations in these patients was
2.12% (copy-number variants: 6/917 patients with I1Q<70;
prevalence = 0.65%; coding-sequence variants: 9/611 patients
with 1Q<70; prevalence =1.47%), 0% in patients with ASD
without ID and 0.01% in controls. Our prevalence of SHANK3
deletions in patients with ASD and ID is similar to that reported
by Cooper et al. (2011) in a large sample of 1 379 patients with
autism and developmental delay (0.87%) [10]. Altogether, in
addition to the large deletions observed in Phelan-McDermid
syndrome, mutations of SHANK3 account for more than 1 out of
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Figure 3. Prevalence and meta-analysis of coding-sequence variant studies in ASD. A. The prevalence and the confidence interval from a
set of single coding-sequence variant studies, and the pooled prevalence and the confidence interval of the meta-analysis. The prevalence is
indicated by circles in red, pink, purple and black for “ASD all” (all ASD patients), “ASD 1Q<70" (patients with ID; 1Q<70), “ASD 1Q>70" (patients with
normal 1Q), and “CTRL" (controls), respectively. Three categories are used to study the prevalence of coding-sequence variants in ASD and controls: all
or “A” (all mutation), Damaging or “D"” (damaging missense mutation; score obtained from polyphen-2), and Truncating or “T” (mutation altering
SHANK protein). The plotted circles are proportional to the corresponding sample size. B. Meta-analysis of coding-sequence variant studies altering
SHANK genes. For each study, the Odds ratio and confidence interval is given. Each meta-analysis is calculated using inverse variance method for fixed
(IV-FEM) and random effects (IV-REM). The statistics measuring heterogeneity (Q, 1> and Tau?) are indicated. The number under the scatter plot
correspond to independent studies: 1="This study”, 2=" Sato et al. (2012) [19]”, 3="Berkel et al. (2010) [14]", 4="Leblond et al. (2012) [18]",
5="Boccuto et al. (2012) [17]", and 6 =“[This Study and Durand et al. 2007 [6]]", 7 = “[Gauthier et al. (2009-2010) [16,471]", 8 ="“Moessner et al. (2007)
[13]”, 9="Schaff et al. (2011) [35]". IV, Inverse Variance; FEM, Fixed Effect Method; REM, Random Effect Method; OR, Odds Ratio; Cl, Confidence

Interval; 1Q, Intellectual Quotient; CNV, Copy Number Variant.
doi:10.1371/journal.pgen.1004580.9003

50 cases diagnosed with the combination of ASD and ID.
Detection of such mutations should therefore be considered in
clinical practice. This clinical screening should: (i) improve the
quality of genetic counseling of ASD and ID for patients and their
family relatives; (i) increase our understanding of the clinical
features associated with SHANK mutations together with the
developmental trajectories of the patients [39], (i) enable the
development of a large number of independent induced plurip-
otent stem cells (IPSC) carrying SHANK mutations [40], (ii1) set
the ground for future large scale clinical trials targeting these
synaptic defects [41].

Contrary to the de novo SHANK mutations, the role of the
inherited sequence variants remains difficult to ascertain. Our
study provides some insights regarding this issue. There is a trend

for more SHANKI (unadjusted P=0.012) and SHANK2

PLOS Genetics | www.plosgenetics.org

(unadjusted P =0.025) inherited deleterious mutations in patients
with ASD than in controls (Table 1). However, these associations
do not survive Bonferroni correction for multiple testing. Despite
our meta-analysis that includes several mutations screening, we
were underpowered to detect associations with low effect size
(Table S12). The power to detect an odds ratio of 1.5 (two-sided)
for SHANKI, SHANK2 and SHANK3 missense inherited
damaging variants were 8%, 34% and 17%, respectively. Further
studies with larger cohorts of patients stratified by IQ) are therefore
needed to achieve appropriate statistical power. Interestingly, in-
frame deletions predicted to remove several amino acids in the
SHANK?2 and SHANKS3 proteins were only detected in patients
with ASD and their parents, never in controls. Previous functional
studies have shown that inherited variants are associated with a
statistically significant reduction in the density of synapses,
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Figure 4. Scatter plots of the intellectual quotient and the Autism Diagnostic Interview-Revised (ADI-R) scores of the patients with
ASD screened for SHANKT7-3 mutations. Mutations in SHANK1-3 are associated with a gradient of severity in cognitive impairment. SHANKT
mutations were reported in patients without ID (green dots). SHANK2 mutations were reported in patients with mild ID (orange dots). SHANK3
mutations were found in patients with moderate to severe deficit (red dots). Black dots correspond to the patients enrolled in the PARIS cohort
screened for deleterious SHANK1-3 mutations (n=498). In addition to the PARIS cohort [6,8,18], three patients with a SHANKT deletion [19] and two
patients with a SHANK2 deletion [14] were included in the scatter plot. A high score of the ADI-R is associated with a more severe profile. The
threshold of the “Social”, “Verbal”, “Non-Verbal” and “Repetitive Behavior” Scores are 10, 8, 7 and 3, respectively.

doi:10.1371/journal.pgen.1004580.g004

although not as severe as the reduction caused by the de novo or
truncating mutations [6,18,42-44]. Together, these genetic and
functional data suggest that, although present in healthy parents,
some inherited SHANK mutations might contribute to the
development of ASD.

To date, only non-synonymous mutations in the known exons of
the SHANK genes had been reported. However, all SHANK
genes display several splicing isoforms and possibly some exons
were not screened. In addition, other types of mutations such as
synonymous mutations or variations in regulatory regions were
rarely reported. In our cohort, we did not find synonymous
mutations located at alternative splicing sites, but it is warranted
that these variations should be reported in future screening.

It has been proposed that abnormal SHANK levels at the
synapse might result in the mislocalization, de-clustering and/or
functional impairment of several other crucial synaptic proteins
such as cytoskeletal regulators and/or neurotransmitter receptors
[12] (Table 3).

For SHANKI mutations, it is expected that the number of
dendrites and glutamatergic synapses will not be dramatically
affected (if at all). SHANKI mutations might rather lead to an
immature neuronal network with a reduced number of large spine
heads. Accordingly, male individuals carrying SHANKI deletions
do not present with language delay or ID and are diagnosed with
normal 1Q) ASD or Asperger syndrome [19]. Interestingly, females
who are carrier of a SHANKI deletion seem to be protected
against ASD suggesting that X-linked genes escaping the X-
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inactivation process and/or hormonal factors could buffer this
type of synaptic alterations.

For SHANK2 and SHANK3 mutations, it is expected that
affected neurons will have a reduced total number of dendritic
spines and synapses. The reduction in mature glutamatergic
synapses is expected to affect cognitive functions. Accordingly,
most patients with SHANK2 and SHANK3 mutations have
moderate to severe ID. Individuals with SHANK3 mutations are
usually more severely affected than those carrying SHANK2
mutations. This difference in severity of cognitive impairment is in
agreement with the observation that SHANK3 mutations are
highly penetrant (to our knowledge only one validated SHANK3
deletion has been reported to be inherited from a mother with
moderate ID [45]), while for SHANK2, additional genetic/
epigenetic factors might be necessary to develop ASD [18,19,46].

In summary, our genetic and clinical findings provide additional
support for considering SHANK mutations in a broad spectrum of
patients with ASD. SHANK mutations are however not restricted
to ASD. SHANK3 mutations have been identified in patients
suffering from schizophrenia and bipolar disorder [45,47]. More
generally, other genes involved in the same synaptic pathway,
including neurexin and neuroligin genes, appear to be associated
with a variety of neuropsychiatric disorders [11]. Given the broad
spectrum of disorders associated with this synaptic pathway, it is
important to conduct fine-grained clinical investigations of patients
in order to identify the factors that influence the clinical trajectory,
clinical manifestations, and outcome of affected individuals [41].
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Table 3. Summary of the SHANK protein functions and of the main findings obtained for patients with ASD.

RNA & Proteins

Synapses

Spines

Synaptic currents

Controls

mMRNA localization in neurons

expression pattern

localization
expression dynamics

effect loss

zinc dependence

effect of loss

effect of gain

effect of mutation in ASD

effect of loss

soma and dendrites
(hippocampal & Purkinje cells)

high in cortex

glutamatergic synapses
3" Shank at the synapse

decrease in GKAP & Homer

independent

decreased size of spine heads

normal NMDA and AMPA

soma and dendrites (Purkinje cells)

broad in brain (cerebellar Purkinje cells)

glutamatergic synapses
1% Shank at the synapse

increase in NMDAR NR1

dependent

decreased number of mature spines

increased number of mature spines

reduction of synaptic density affect
spine induction & morphology

increase/decrease NMDA*

SHANK1 SHANK2 SHANK3
DNA chromosome 19q13.3 11913.3 22q13.3
damaging mutations in 1.02% 2.66% 1.07%
Controls
truncating mutations in 0% 0% 0%

soma and dendrites
(hippocampal neurons)

high in striatum (cerebellar
granule cells)
glutamatergic synapses
2" Shank at the synapse

decrease in NMDAR NR1 and
AMPAR

dependent

decreased number of mature
spines
increased number of mature
spines

reduction of synaptic density
affect spine induction &
morphology

decrease NMDA and AMPA

Mouse behavior social interactions reduced reduced reduced
vocal behaviors abnormal abnormal abnormal
activity reduced increased reduced
stereotypies increased increased
learning enhanced reduced reduced

(but reduced memory)

Truncating mutations ASD 0.04% 0.17% 0.69%
ASD (1Q>70) 0.12% 0.30% 0%

ASD (IQ=70) 0% 0.33% 2.12%

Q ASD 95£11 62+17 30£8

Penetrance males high high high
females incomplete not reported high

doi:10.1371/journal.pgen.1004580.t003

Materials and Methods

Study samples for SHANK mutations in ASD

Mutation screening of the SHANK genes was performed in
patients with ASD recruited by the PARIS (Paris Autism Research
International Sibpair) study at specialized clinical neuropsychiatric
centers located in France and Sweden (Table S2, S3, S4). Ethnicity
of the patients and controls was ascertained using genetic data
(Figure S6 and Text Sl). The autism-spectrum diagnosis was
based on the Autism Diagnostic Interview — Revised (ADI-R) [48]
and for some of the patients, the Autism Diagnostic Observation
Schedule (ADOS) [49]. In Sweden, in few cases, the Diagnostic
Interview for Social and Communication Disorders (DISCO-10)
[50] was used instead of the ADI-R. IQ) was measured with an
age-appropriate Weschler scale (WPPSI, Wechsler Preschool and
Primary Scale of Intelligence; WISC, Wechsler Intelligence Scale

PLOS Genetics | www.plosgenetics.org
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The frequency of mutation in patients and control individuals was calculated from the total cohort (Table 1). The frequency of mutation in patients with normal 1Q (IQ>
70) and low 1Q (IQ<70) were calculated for the patients with available 1Q scores (copy-number variants for all SHANK: nASD with IQ>70=1 638 & nASD with 1Q<
70=917; SHANK1 coding-sequence variants: nASD with 1Q>70 =354 and nASD with 1Q<70=278; SHANK2 coding-sequence variants: nASD with 1Q>70=335 & nASD
with 1Q<<70 =344; SHANK3 coding-sequence variants: nASD with IQ>70=667 & nASD with IQ<70=611). The mean IQ and standard deviation was given only for
patients carrying truncating or de novo mutations. The black star indicates that Schmeisser et al. (2012) [21] found an increase in NMDA currents, while Won et al. (2012)
[22] found a decrease in NMDA currents in two independent SHANK2 knock-out mice.

for Children; or WASI, Wechsler Abbreviated Scale of Intelli-
gence). For the most severe and/or non-verbal patients, the
Raven’s Standard Progressive Matrices were used to measure
nonverbal 1Q) (NVIQ) and the Peabody Picture Vocabulary Test
(PPVT-4th edition) to measured receptive vocabulary (RV). In
addition, a physical exam was systematically performed to record
specifically basic physical parameters (such as height, weight,
cranial circumference), dysmorphic features and neurological
symptoms. The patients used for the scatter plots of the intellectual
quotient and the ADI-R scores, or for the clinical characteristics,
or for the prevalence, are indicated in the Table S7.

Ethics statement
This study was approved by the local Institutional Review
Board (IRB) and written informed consents were obtained from all
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participants of the study. For the patients who were unable to
consent for themselves, a parent or legal guardian consented to the
study on their behalf. The local IRB are the “Comité de
Protection des Personnes™ (fle-de-France Hopital Pitié-Salpétriere
Paris, France); the “Comité de Protection des Personnes Sud
Meéditerrannée III” (centre hospitalier universitaire de Nimes,
France); the Sahlgrenska Academy Ethics committee (University of
Gothenburg, Sweden); SickKids Research Ethics Board (Toronto,
Ontario, Canada); Hamilton Integrated Research Ethic Board
(HIREB) (Hamilton, Ontario, Canada) and Health Research
Ethics Authority (HREA) (St. John’s, Newfoundland, Canada).

SHANK copy-number and coding-sequence variants in
ASD

SHANK copy-number variants were detected with the Illumina
Human 1M-Duo BeadChip, and validated by quantitative PCR as
previously described [8,18]. For SHANKI and SHANK2, the
sequencing protocol was adapted from Leblond et al. (2012) [18]
and Sato et al. (2012) [19] (Table S8). For SHANK3, because of its
high GC content and the genomic sequence errors, several clinical
and research centers could not screen exon 11 for mutations
[13,16]. We have now corrected the genomic sequence (Figure S2
and Text S1) and provided a new set of primers that successfully
amplified and sequenced all SHANK3 exons. All SHANK primers
and sequencing protocols are provided in Table S8.

To ascertain the frequency of SHANK mutations in ASD, we
included all studies published before April 2012 reporting whole
genome copy-number variant screening or SHANK mutation
screening. We scanned the PubMed database (http://www.ncbi.
nlm.nih.gov/pubmed) with combinations of the following keywords:
“Autis*”, “mutation®” “Shank*”, Prosap*, “‘copy number variants”.
For SHANK copy-number variants, a total of 5 657 cases and
19 163 controls were included, representing 11 studies including this
one (Table S3) [8,9,13,14,18,19,34,35,51-53]. In order to avoid
biasing the estimation of the frequency of the copy-number variants,
we only included studies that analyzed large numbers of individuals
(>200 individuals) and used similar mutation screening procedures
(for details see Table S3 and Text S1). To ensure that the cohorts
were constituted of independent and unrelated cases and controls,
we contacted the corresponding authors of each study. For example,
the cohorts used in the following studies: Pinto et al. (2010),
Moessner et al. (2007), Marshall et al. (2008), Berkel et al. (2010), and
Sato et al. (2012) contained overlapping samples. The number of
non-overlapping samples from these five studies was 1 866 patients
with ASD and 15 122 controls, and the total number of non-
overlapping samples used in the meta-analysis was 5 657 patients
with ASD and 19 163 controls. For patients with ASD, only copy-
number variants validated by an independent method were included
in the analysis. For controls, the two SHANK3 deletions reported by
Glessner et al. (2009) among 2 519 individuals, were not validated
and thus should be regarded with caution.

For SHANK coding-sequence variants, 10 studies including this
one were used (Table S4) [13,14,16-19,35,47]. For all variants, the
hg19 coordinates are given. Because of the very low coverage of
whole exome sequencing (Figure S3 and Text S1), we excluded
mutation screening performed using this approach. Taken
together, a total of 7602 147 patients and 492-1 090 controls
were included in the analysis (SHANKI: 760 patients and 492
controls; SHANK2: 851 patients and 1 090 controls; SHANK3:
2 147 patients and 1 031 controls).

Statistics

The significance of observed differences in copy-number and
coding-sequence variants was determined by a two-sided Fisher’s
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exact test on a two-by-two contingency table. We used Bonferroni
correction for the multiple testing correction (ny = 12, significant
threshold corrected a-value = 0.05/12 = 0.0042). We used G*Pow-
er (v3.1, http://www.psycho.uniduesseldorf.de/abteilungen/aap/
gpower3) to compute for each test the achieved statistical power
(for a two-sided Fisher’s exact test) and the power to detect an odd
ratio from 1.5 to 3 (two-sided) (Table S12). Prevalence and
confidence intervals of single studies were evaluated using Clopper
and Pearson method [54]. Heterogeneity between studies was
assessed by the Q, I? and Tau? statistics. The Q statistic is a chi-
square test for heterogenecity, and the I and Tau® are the
proportion of observed variance in effect sizes across studies for
fixed effect model and random effect model, respectively [55].
Zero total event studies (no events in both ASD and controls) were
included [56]. The meta-analysis was performed using the classical
inverse variance for both fixed effects model and random effects
model. To avoid population stratification bias in the calculation of
the odds ratio (OR), studies without a control group were excluded
(i.e. Boccuto et al. 2012 and Bremer et al. 2012) (Figure 2, 3, and
Table 1). If any contingency tables contained zero values, a
continuity correction was applied to the relevant tables [57]. For
all the calculations and illustrations the R statistical software, and
“metafor” and “meta” packages were used.

Supporting Information

Figure 81 Genomic structure and phylogeny of SHANK family.
A. Genomic structure of human SHANK genes. Conserved
domains of protein interaction are represented in color: ANK
(red), SH3 (orange), PDZ (blue) and SAM (green). Black stars
identify the alternative spliced exons and turquoise stars the
alternative spliced exons specifically retained in the human brain.
Grey bars indicate CpGs islands and the arrows the different
1soforms. The areas of the human genome with missing sequence
are indicated by purple rectangles. B. Phylogenetic tree of
SHANK proteins. SHANK]1 was blasted with non-redundant
protein sequence database and the tree was produced using the
Neighbor joining method with a maximum of sequence differ-
ence = 0.85 and the Grishin Distance.

(TIF)

Figure 82 Genome errors covering SHANK3. A. Representa-
tion of the reference sequence and mRNA of SHANK3 in hgl9
(http://genome.ucsc.edu/). Before the update of hgl9 in March
2012, SHANK3 was supported by NM_001080420.1 carrying
annotation and sequence errors. The false exon 11 was corrected in
March 2012, but the real exon 11 still contained a wrong sequence
with a gap. Using a combination of PCR and BLAST experiments,
we corrected this sequence gb_JX122810. B. The clustalW?2
alignment (http://www.ebi.ac.uk/Tools/msa/clustalw2/) shows
the gap still present in hgl9 and located in the 5'UTR and coding
region of the exon 11 of SHANK3. JX122810 is the GenBank
(http://www.ncbi.nlm.nih.gov/genbank/) accession number of the
validated intron flanking and exon 11 sequences of NM_033517.
El1, Exon 11; E12, Exon 12; gb, GenBank; hg, human genome;
EST, Expressed Sequence Tag.

(TTF)

Figure S3 Read depth for SHANK genes using whole genome
or exome sequencing. The average read depth of whole genome
sequence from Complete Genomics (n=>54) and whole exome
sequence from NHLBI GO Exome Sequencing Project — Exome
Variant server (n=3 510) are indicated in black and gray,
respectively. The Y axis shows the average read number per
nucleotide. On the X axis, the nucleotide positions are according
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to NM_016148 (SHANKI), NM_012309 (SHANK2), and
NM_033517 (SHANK3) from NCBI37/hgl9. The percentage
of GC 1is calculated from sequences with size equal to 5
nucleotides. The arrows show the direction of the transcription.
Truncating, deleterious and neutral coding-sequence variants are
indicated in red, orange and green, respectively. Coding-sequence
variants identified in ASD only, or in controls only, or in both
ASD and controls are indicated by a star, a square or a circle,
respectively. Avg, Average; ME, Mult-Ethnic; EA, European
American; EVS, Exome Variant Server; CG, Complete Geno-
mics.

(TIF)

Figure S4 Characterization of the de movo deletions of
SHANK2 and SHANK3 identified in this study. A. A de novo
deletion of 1.8 Mb including SHANK?2 was identified in a patient
with ASD (RDB_30769) using the HumanCytoSNP-12 Illumina
array. FISH studies using the “RP11-102B19” probe covering
SHANK2 showed one normal chromosome 11 with one green spot
on 11q13, and the second chromosome 11 without the green signal.
The parent’s metaphase karyotype shows a green spot on both
chromosomes 11. White arrows indicate the localization of the
SHANK?2 probe on chromosome 11. B. A de novo deletion of
1.5 Mb was identified in a patient with ASD (AU029) using the
Ilumina Human 1M-Duo SNP array. The results of the SNP arrays
are represented using SnipPeep (CNV viewer; http:/ /snippeep.
sourceforge.net/). Each dot shows Log R Ratio (LRR; in red)
and B allele frequency (BAF; in green). QuantiSNP (CNV calling
algorithm; CN = Copy Number) score is represented with a blue
line and indicates the deletion size. G. Two de novo deletions
altering SHANK3 were identified in two independent patients
(AUN_006 & AUN_007) with ASD and ID using Multiplex
Ligation-dependent Probe Amplification (MLPA) (probemix P188-
B2, P343-C1& P339-A1 - MRC-Holland). The first patient
AUN_006 carried a deletion including SHANK3 (exons 9 to 22),
ACR and RABL2B with a breakpoint in intron 8 of SHANK3. The
second patient AUN_007 carried a deletion of SHANK3 (exons 22
only) and ACR (exons 1 to 3). The parents of AUN_006 and
AUN_007 probands were negative for SHANK3 CNV (FISH and
MLPA analysis not shown). ASD, Autism Spectrum Disorder; 1D,
Intellectual Disability; FISH, Fluorescent In Situ Hybridization.
(TIF)

Figure S5 Pedigrees of the families carrying de novo/truncating
SHANK3 mutations. The chromatograms obtained after Sanger
sequencing show eight new truncating mutations altering
SHANK3 detected in patients with ASD. When the DNA of the
both parents was available (7 out of 9 families), all the mutations
were found to be de novo. The arrows indicate the frame-shift.
The patient carrying the Q1243X was found during our screening
of exon 21 in 138 individuals with ASD.

(TIF)

Figure S6 MDS-Plot: Genetic ancestry of patients with ASD
and controls. The multidimensional scaling (MDS) plot pictures
the genetic distance between individuals. The density of the
genetic ancestry of the HapMap populations (European, Asian,
African, Mexican and Indian) allows confirming the European
ancestry of the majority of the individuals from PARIS and
SUVIMAX cohorts (n =430 ASD and n =837 controls). Patients
and controls with no SHANK mutation are represented by blue
crosses and blue circles, respectively. Patients and controls with
SHANK mutations are indicated in red and in green, respectively.
SHANK3 mutations are identified by diamonds, SHANK2 by
triangles and SHANKI by squares. Diamonds, triangles or
squares are empty when the mutation is a missense and full when
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the mutation is truncating (CVS or CNV). CVS, Coding-sequence
variant; CNV, Copy-number variant.

(TIF)

Table S1 Genomic sequence covering exons 8 and 9 of human
SHANK?2 and exon 11 of human SHANK3. The exonic and
intronic sequences are indicated in blue upper case and in black
lower case, respectively. The primers used for the amplification of
each exon are indicated by the black boxes. The alternative stop in
exon 21b of SHANKS is underlined.

(DOC)

Table 82 Description of the cohort PARIS used for the
screening of SHANK copy-number variants and coding-sequence
variants. PARIS, Paris Autism Research International Sibpair; 1Q),
Intelligence Quotient.

(DOC)

Table 83 Description of the cohorts used for the analysis of
SHANK copy-number variants. *” Indicate the publications with
overlap in the cohorts. * The total number of independent cases or
controls is not the addition of the cohorts from each study due to the
redundancy of the cases and controls tested from these publications.
The independent numbers were obtained in collaboration with the
authors of the corresponding publications (see Material & Method
in supplementary Appendix). The parental DNA of controls was not
available. PARIS, Paris Autism Research International Sibpair
study; SSC, Simons Simplex Collection; AGP, Autism Genome
Project; ACC, Autism Case Control; SAGE, Study of Addiction:
Genetics and Environment; CHOP, Children’s Hospital of
Philadelphia; WTCCC2, Wellcome Trust Case Control Consor-
tium; AGRE, Autism Genetic Resource exchange; NIMH,
National Institute of Mental Health; SNP, Single Nucleotide
Polymorphism; CEU, Utah residents with Northern and Western
European ancestry from the CEPH collection; BAC, Bacterial
Artificial Chromosome; CGH, Comparative Genomic Hybridiza-
tion; ROMA, Representational Oligonucleotide Microarray Anal-
ysis; ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism
Diagnostic Observation Schedule; DSM-IV-TR, Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition-Text
Revision; DISCO, Diagnostic Interview for Social and Communi-
cation Disorders; IQ, Intellectual Quotient; RPM, Raven’s
Progressive Matrices; PPV'T, Peabody Picture Vocabulary Test.
(DOC)

Table S4 Description of the cohorts used for the analysis of
SHANK coding-sequence variants. * In this study, controls were
tested using allelic discrimination by TagMan technology and only
for the variations identified in ASD. The parental DNA of controls
was not available. SUVIMAX, Supplémentation en Vitamines et
Minéraux Antioxydants; ADI-R, Autism Diagnostic Interview-
Revised; ADOS, Autism Diagnostic Observation Schedule; DSM-
IV-TR, Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition-Text Revision; DISCO, Diagnostic Interview for
Social and Communication Disorders; 1Q), Intellectual Quotient;
RPM, Raven’s Progressive Matrices; PPVT, Peabody Picture
Vocabulary Test; SSC, Simons Simplex Collection.

(DOC)

Table S5 Prevalence of SHANK CNVs and coding-sequence
variants in patients with ASD and controls. * Sato et al. (2012),
Durand et al. (2007) Leblond et al. (2012) contained overlapping
cohorts. For this study, the French and Swedish cases are in
Leblond et al (2012) and the Canadian cases are in Sato et al.
(2012). "The controls from Sato et al. 2012 are not included here
because they were only tested by Tagman for the variants
identified in ASD. “The two SHANK3 deletions reported by
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Glessner et al. (2009) in control subjects have not been validated
and should be interpreted with caution. GSV, Coding-Sequence
Variant; 95CI, 95% Confidence Interval.

DOC)

Table S6 Prevalence of SHANK CNVs and coding-sequence
variants in ASD patients with or without ID. * Sato et al. (2012)
and Leblond et al. (2012) contained overlapping cohorts. For this
study, the French and Swedish cases are in Leblond et al (2012)
and the Canadian cases are in Sato ct al. (2012). ® The controls
from Sato et al. 2012 are not included here because they were only
tested by Tagman for the variants identified in ASD. CSV,
Coding-Sequence Variant.

(DOC)

Table 87 Genetic and clinical features of ASD patients carrying
de novo/deleterious SHANK mutations. * Mother showed anxiety
and shyness. ® Mutations not present in the mother and father not
tested (DNA unavailable). © Father had a balanced translocation
t(14;22)(p11.2;q13.33). ¢ Mother had a balanced translocation
t(14;22)(p11.2;q13.33). © No epilepsy, but abnormal EEG with
bilateral epileptiform discharges. f Relatives of proband IV-1. &
Case reports not reported in a systematic screening of SHANK2
or whole genome analysis. ® Patient detected in an additional
mutation screening of SHANK3 exon 21. * Relatives of AU016_3.
3 Not included in the figure: large deletion involving numerous
genes or complex chromosomal rearrangement. ¥ For SHANK3,
we only included in figure 2 the patients from the PARIS cohort. !
No pictures available. ™ The phenotypic features were character-
istic to the Phelan-Mcdermid syndrome. AS, absence seizures;
ASD, autism spectrum disorder; Asp, Asperger syndrome; Aut,
autism; CNV, copy number variant, CSV, coding-sequence
variants; del, deletion; f, female; ID; inh, inherited; m, male; U,
unknown; vy, years; GTCS, generalized tonic-clonic seizures.

(DOC)

Table 88 Primers used for mutation screening of SHANKI and
SHANK3. The red sequences correspond to the M13 adaptor
(M13F = TGTAAAACGACGGCCAGT & MI3R =GGATAA-
CAATTTCACACAGG). PCR, Polymerase Chain Reaction;
TpQ, Tampon Q (from Qiagen); DMSO, Dimethyl sulfoxide.
(DOC)

Table S9 SHANKI coding-sequence variants identified in 760
patients with ASD and 492 controls. “Nucleotide positions are
according to NM_016148 from NCBI37/hgl9 on the positive
DNA strand (chromosome 19). The patients with ASD used for
this analysis came from this study (n =240) and from the study of
Sato et al. (2012) (n=>509). The Grantham matrix and GERP
scores were obtained from SeattleSeq Annotation 134. We used
the Fisher’s exact test (2-sided) and Pearson’s Chi-squared test with
Yates’ continuity correction. P, p-value; ASD, Autism Spectrum
Disorder; MAF, Minor Allele Frequency; GERP, Genomic
Evolutionary Rate Profiling; pph2_class, polyphen-2_class.
(DOC)

Table $10 SHANK2 coding-sequence variants identified in 851
patients with ASD and 1 090 controls. #Indicates de novo
mutations. “Nucleotide positions are according to NM_
012309.3 from NCBI37/hgl9 on the positive DNA strand
(chromosome 11). "Maximum Grantham score (215) given for
non-sense variants. The patients with ASD and the controls used
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for this analysis came from Leblond et al. (2012) (455 ASD & 431
controls) and from the study of Berkel et al. (2010) (396 ASD &
659 controls). The Grantham matrix and GERP scores were
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