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Introduction 

The recent emergence of deep learning and computer 

vision-based 3D human pose estimation presents 

opportunities for a form of markerless motion-capture. 

State-of-the-art approaches have achieved remarkable 

accuracy in predicting global and relative joint positions 

[1], however, many potential applications require 

information on joint orientations, e.g., in the fields of 

biomechanics. Furthermore, methods that do include 

joint orientations are incompatible for applications with 

predefined incongruent kinematic chains, i.e., chains 

with differing limb lengths and proportions. Therefore, 

we propose a temporal inverse kinematics (IK) 

optimization technique to infer joint orientations in a 

user customizable kinematic chain from a position-

based 3D pose input. This technique may be particularly 

useful for sports/injury biomechanics, and telehealth 

applications.  
 

Methods  

Due to the ambiguous joint ‘twist’ angle around links, 

the problem of mapping a kinematic chain to a 

hierarchical 3D position set ([𝑃]) is indeterminate. 

Therefore, optimization is needed. A sequential least 

squares programming procedure [2] is developed to 

solve the minimization problem for a 16-joint kinematic 

chain (𝐺)  expressed using the Denavit-Hartenberg 

convention [3] as a hierarchical set of 4 × 4 

transformation matrices ({𝑇𝑗}
𝑒𝑗𝑝𝑎𝑟𝑒𝑛𝑡) with parent-relative 

positions ({𝑟𝑎𝑗
}

𝑒𝑗𝑝𝑎𝑟𝑒𝑛𝑡
) and orientations ([𝐴

𝑒𝑗,𝑒𝑗𝑝𝑎𝑟𝑒𝑛𝑡 ]) for each 

joint (𝑗) (Eqn.s 1&2), with sequential Cardan angle 

rotation parameterization bounded joint ranges of 

motion (ROMs).  

{𝑇𝑗}
𝑒𝑗𝑝𝑎𝑟𝑒𝑛𝑡 = [[𝐴

𝑒𝑗,𝑒𝑗𝑝𝑎𝑟𝑒𝑛𝑡 ] {𝑟𝑎𝑗
}

𝑒𝑗𝑝𝑎𝑟𝑒𝑛𝑡

0 0 0 1
]  (1) 

𝐺 = {{𝑇1}𝑒𝑗𝑝𝑎𝑟𝑒𝑛𝑡 , ⋯ , {𝑇16}𝑒𝑗𝑝𝑎𝑟𝑒𝑛𝑡 }  (2) 

Two IK algorithms are developed, 1) a frame-by-frame 

approach with local and global losses for pose (Eqn. 3), 

and 2) a 5-frame batch temporal approach including 

weighted losses for joint angular difference and 

positional difference (for links with missing joints) 

across frames (25-frame) (Eqn. 4).  

𝐿𝑓𝑟𝑎𝑚𝑒 =  𝐸∠(�̂�,�̂�) + λ1𝐸∠(�̂�𝑎,�̂�𝑏)   (3) 

𝐿𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝐸∠(�̂�,�̂�) + λ1𝐸∠(�̂�𝑎,�̂�𝑏) + λ2𝐸∆�⃗⃗⃗� + λ3𝐸∆𝑠 (4) 

For assessment, we generate a series of motion 

sequences for the kinematic chain with 1) congruent, 

and 2) incongruent configurations, and applied both IK 

algorithms to the resulting joint pose sequences, i.e., 

with joint orientations hidden (see Fig. 1). Agreement 

was assessed using a 10-joint Mean Per Joint Angular 

Separation (MPJAS11) between inferred and ground 

truth joint orientations. Randomly drawn rotations 

within joint ROMs average approximately 1.18 radians 

MPJAS11 error (68 degrees/joint).  

 
Figure 1: IK approach for 6-Degree of Freedom (DOF) pose 

from 3DOF pose. 
 

Results 

Table 1 shows a comparison of average angular errors. 

Where algorithm 1 is initialized with random weights 

for each frame (1rand_w) or fed weights from previous 

frames (1prev_w). 
  Skeleton 

Algorithm  congruent  incongruent 

  e b tot  e b tot 

1rand_w  1.2x10-1 0 4.0x10-2  2.5x10-1 3.5x10-2 9.8x10-2 

1prev_w  6.0x10-2 0 1.8x10-2  1.9x10-2 3.4x10-2 8.2x10-2 

2 5-frame  1.7x10-2 0 5.0x10-3  1.7x10-2 3.5x10-2 7.5x10-2 

Table 1: Accuracy of IK algorithms 1 and 2. MPJAS11 (radians) per 
frame for e: frames with extended/straight limbs, and b: frames with 

bent limbs, for both congruent and incongruent skeleton types. 
 

Discussion 

With frame-by-frame IK and congruent skeletons 

(1rand_w, 1prev_w) we obtain uniquely optimal solutions in 

the case of bent elbows and knees, however, for 

extended/straight limbs the solution space is non-

unique. With our temporal approach (25-frame) we reduce 

ambiguity for these poses, resulting in lower overall 

errors for both congruent and incongruent skeletons, 

with negligible errors associated with the former (0.3 

degrees/joint), and low errors for the latter (4.3 

degrees/joint). This technique allows for accurate 

prediction of joint orientations, for convenient post-

processing of 3D pose estimates (e.g., Fig.2).  

 
Figure 2: Example application using 3D predictions from [4]. 
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