
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Integral Quadratic Constraints for Neural Networks

Gronqvist, Johan; Rantzer, Anders

DOI:
10.23919/ECC55457.2022.9838065

2022

Link to publication

Citation for published version (APA):
Gronqvist, J., & Rantzer, A. (2022). Integral Quadratic Constraints for Neural Networks. 1864-1869. Paper
presented at 2022 European Control Conference (ECC). https://doi.org/10.23919/ECC55457.2022.9838065

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.23919/ECC55457.2022.9838065
https://portal.research.lu.se/en/publications/2310c11a-9723-404b-b41b-b5a604fe7908
https://doi.org/10.23919/ECC55457.2022.9838065

Integral Quadratic Constraints for Neural Networks

Johan Grönqvist Anders Rantzer

Abstract— The formalism of Integral Quadratic Constraints
(IQCs) is well-established in robust control. It has recently
been used for systems with a neural network as one of
its components, however, using only a small subset of the
established techniques for obtaining IQC relations. We provide
a larger set of IQCs relevant for the nonlinearities commonly
used in neural networks, introduce new constraints for the
rectified linear unit and the leaky rectified linear unit, and
draw on the established literature to build a library of IQCs to
use in connection with neural networks. Finally, our examples
show how improved guarantees can be obtained with a larger
library of IQCs.

I. INTRODUCTION

In recent years, deep learning with neural networks has
achieved impressive successes in many fields. Following in
the footsteps of this progress, many groups have worked on
robustness for systems involving neural networks. Several
heuristic frameworks exist for training neural networks to
improve robustness and some can provide formal guarantees.
Within the field of automatic control, Integral Quadratic
Constraints (IQCs) [6], building on previous methods in
robust control [12], [14], [10], [11], can provide guarantees
in the presence of nonlinearities, and problems formulated
within the IQC-formalism reduce to semidefinite program-
ming problems that can be solved efficiently.

Neural networks are well-suited to the IQC formalism,
and previous work along this line draws on old results.
We mention work on static properties like reachability [5]
and Lipschitz constant estimation [3], which can be used
as one part in a larger analysis of robustness of the full
system, and such analyses can be used to bound the output
variations for a given input variation, as in [4]. The closed
loop system can also be analysed as a whole [13], [2], and
provide guarantees of local or global stability in the presence
of uncertain dynamics. A recurrent neural network (RNN)
can also be viewed as a feedback system, and robust RNNs
were studied in [8]. The IQC formalism has also been used
in other contexts to provide other kinds of guarantees, and
those kinds of guarantees would transfer to systems with
neural networks. Its limitation is that the IQC-framework
requires all nonlinear elements, as well as all properties, to
be expressed in terms of quadratic forms, limiting the set of
questions that the framework can answer. Its strength is that
guarantees are global and hold even in the face of adversarial
attacks on the network.

Here, we present a larger class of constraints that can be
used for neural networks, than used in the works cited above.

johan.gronqvist@control.lth.se
anders.rantzer@control.lth.se

We also provide examples showing that a larger library of
constraints can enable stricter bounds on the behaviour of
neural networks, and that there is a trade-off in the choice
of constraints. All our discussions and results refer to the
continuous time case, but analogous results exist for the
discrete time case, with the exception of the Popov IQC.

After introducing our notation, we schematically introduce
neural networks in section II, and then describe the rectified
linear unit (relu) activation function and the constraints that
hold for the repeated relu-nonlinearity in section III. Bias
terms in neural networks and studies of signals relative to a
reference value are described in section IV, and section V
presents the very short list of incremental IQCs. We then dis-
cuss constraints for the leaky rectified linear unit (leakyrelu)
and other activation functions in section VI and selection of
constraints in section VII before finally presenting our two
examples in section VIII. The first example considers the
static gain of a neural network, construct, while the second
considers closed-loop stability with our neural network in
the loop.

A. Notation

Our function sign(x) takes values ±1 for nonzero values,
and 0 for vanishing x, and we say that real values can have
three signs, ±1 and 0. A hat denotes the Laplace transform
of a function, as in f̂(z) =

∫∞
0
f(t)e−ztdt. The Hermitian

conjugate of A is written A?, and a ? is also used to denote a
convolution, (f ? g)(T) =

∫ T
0
f(T − t)g(t)dt. We write relu

for the rectified linear unit, relu(x) = max(0, x). The terms
static and soft constraint refer to ineuqalities of the forms

x(t)TGy(t) ≥ 0∫ ∞
0

x̂(iω)T Ĝ(iω)ŷ(iω) dω ≥ 0
(1)

where the first holds for all t. We note that a static constraint
implies soft constraint, using the same constant matrix G.

II. NEURAL NETWORKS

A simple feedforward neural networks is a sequence of
“linear” layers interspersed with nonlinear activation func-
tions. More generally, the description would be in terms of a
block diagram, where the blocks represent affine or nonlinear
mappings. The nonlinear activation functions are often scalar
and are then applied componentwise, but they can also be
vector valued nonlinear functions, e.g., softmax.

A. Network structure

A feedforward neural network, depicted in Fig. 1, shows
the sequence of layers. Each layer, indexed by k =

ζ0 ξ1 ζ1 ξ2 ζ2 . . . ζN ζN+1
W1

b1
ϕ W2

b2
ϕ WN+1

bN+1

Fig. 1: A neural network, with input ζ0, output ζN+1, and
a sequence of N hidden layers with affine mappings ξk =
Wkζk−1 + bk and nonlinear mappings ζk = ϕ(ξk), for k =
1, . . . , N . Compare (2).

G(s)

∆

Fig. 2: Standard block diagram for IQC-formalism, where
P is an LTI system, and ∆ contains everything else in the
system.

1, . . . , N + 1, has an input ζk−1, an internal variable ξk, and
an output ζk. Every layer but the last also has a nonlinear
activation function, denoted ϕ, that acts componentwise on
ξk, and our numbering scheme is chosen to have the activa-
tion function appear N times. Layer k (for k = 1, . . . , N) is
described by the two equations

ξk = Wkζk−1 + bk

ζk = ϕ(ξk)
(2)

where the scalar nonlinear function ϕ acts componentwise,
so that i-th components of ζk and ξk satisfy ζk,i = ϕ(ξk,i).

The input to the network is the input to its first layer, ζ0.
The output of the network is the output of the last layer, and
is ζN+1 = ξN+1 = WN+1ζN +bN+1 as the final layer lacks
an activation function.

B. Structure of the Nonlinearity

The activation function, which we denote by ϕ, is a
nonlinear function from R to R, which componentwise on
the vectors ξk for k = 1, . . . , N , and we can combine all
appearances of ϕ into a single vector structure as

ζ =



ζ1,1
...

ζ1,n1

...
ζN,1

...
ζN,nN


=



ϕ(ξ1,1)
...

ϕ(ξ1,n1
)

...
ϕ(ξN,1)

...
ϕ(ξN,nN

)


= ϕ(ξ), (3)

where the vectors ξk and ζk have nk components each,
labeled ξk,i and ζk,i for i = 1, . . . , nk.

To analyse a closed loop system, e.g., the system shown in
Fig. 4 and used in our second example, we first restructure
it as a system in the form shown in Fig. 2. The nonlinear
block ∆ will contain all our variables ξk and ζk, and we
describe its nonlinea structure as a repetition of the activation
function over all components of all the variables ξk,i (for k =

−2 −1 0 1 2
−2

−1

0

1

2

x

re
lu
(x
)

(a) relu

−2 −1 0 1 2
−2

−1

0

1

2

x

le
a
k
y
re
lu
(x
)

(b) leakyrelu

−2 −1 0 1 2
−2

−1

0

1

2

∆xre
lu
(∆

x
+
1)

−
re
lu
(1
)

(c) relu, ref +1

−2 −1 0 1 2
−2

−1

0

1

2

∆xre
lu
(∆

x
−

1)
−

re
lu
(−

1)

(d) relu, ref -1

Fig. 3: Four variants of relu: plain, leaky, with positive
reference value and with negative reference value, described
in sections III, VI, IV and IV, respectively. Dashed lines
show y = 0 and y = x.

1, . . . , N). The nonlinearity is thus repeated (or “diagonal”)
on the vector ξ = [ξT1 ξ

T
2 . . . ξ

T
N]T . When discussing repeated

nonlinearities later, we may use the full vector ξ, or a smaller
vector comprising a subset of its components.

III. RECTIFIED LINEAR UNIT

The rectified linear unit (relu) is a very common choice
of nonlinearity, and we introduce the scalar function, before
discussing constraints valid for repeated relu.

A. Scalar relu

We let x ∈ R and y = ϕ(x) = relu(x) = max(0, x) ∈ R
denote the scalar input and output of the relu function.

The relu function is shown in Fig. 3a, and it satisfies

y = 0 if x = 0

y ≥ 0 and y ≥ x
(y − x)y = 0

(4)

For any two inputs xi ∈ R and xj ∈ R with xi 6= xj , the
function is “rate-limited” or “slope-restricted”, in the sense
that (yi − yj)/(xi − xj) ∈ [0, 1]. We use it in the form

(yi − yj)((xi − xj)− (yi − yj)) ≥ 0 (5)

which holds for all xi, xj .

B. Repeated Relu

We introduce two classes of constraints for the repeated
relu-nonlinearity, and then combine these with established
forms of constraints from the literature, to build our library
of IQCs for the repeated relu-nonlinearity.

Input and output are now vectors x ∈ Rn and y =
relu(x) ∈ Rn, for some integer n.

The quadratic equality of the scalar case, (y − x)y = 0,
now appears repeated n times, and in the vector case we
use it as an inequality (y−x)TGx ≥ 0 which holds for any
diagonal matrix G. The lack of sign constraints on G reflects

the equality in the constraint. We list this constraint as IQC
1 below.

From the linear vector inequalities y − x � 0 and y � 0,
we can form positive semidefinite quadratic forms[

y − x
y

]T
G

[
y − x
y

]
≥ 0 (6)

for any matrix G with nonnegative entries.
For a dynamic system, where x(t) and y(t) = relu(x(t))

are vector-valued signals, we additionally convolve our vec-
tor of nonnegative signals with a nonnegative convolution
kernel, and we obtain a new vector of nonnegative signals.
The procedure leads to the inequality∫ [

ŷ(iω)− x̂(iω)
ŷ(iω)

]T
Ĥ(iω)

[
ŷ(iω)− x̂(iω)

ŷ(iω)

]
dω ≥ 0 (7)

which holds if the entries of the matrix H(t) are nonnegative
for all t. These inequalities are used in used in IQCs 2 and
6 below.

C. Constraints

We now list our full set of constraints for the repeated relu-
nonlinearity, including both the two forms above, as well as
other IQCs from the literature.

For static constraints, we assume vectors x ∈ Rn and
y = relu(x) ∈ Rn, for some integer n. When we list dynamic
constraints, we assume vector-valued signals x and y so that
x(t) ∈ Rn and y(t) = relu(x(t)) ∈ Rn for all t and for
some integer n.

We refer to these IQCs as IQCs for the absolute setting,
to distinguish from IQCs listed in sections IV and V.

From the quadratic equality (4), we obtain
IQC 1 (Absolute; Equality Constraint): For any diagonal

matrix G, with y = relu(x),

yTG(y − x) ≥ 0 (8)

holds as a static constraint, with the associated soft IQCs.
The lack of sign constraints on G reflects the fact that we
have an equality constraint.

Products of the linear inequalities (4), combined using
nonnegative coefficients or nonnegative convolution kernels
give a class of static constraints, and of soft IQCs.

IQC 2 (Absolute; Combination of linear): For any matrix
G with nonnegative entries, and y = relu(x), the static
constraint [

y
y − x

]T
G

[
y

y − x

]
≥ 0 (9)

holds.
For any matrix-valued convolution kernel H(t) with non-

negative entries for all t,∫ ∞
−∞

[
ŷ(iω)

ŷ(iω)− x̂(iω)

]
Ĥ(iω)

[
ŷ(iω)

ŷ(iω)− x̂(iω)

]
dω ≥ 0

(10)
holds, for y(t) = relu(x(t)).

To use the rate-limit inequalities, (5), we let ei be the i-th
cartesian basis vector and (following [3]) define the matrix
Eij = (ei − ej)(ei − ej)T . This give us

yTEijx = (yi − yj)T (xi − xj) (11)

and enables us to use the rate-limit as
IQC 3 (Absolute; Rate-limit): For a matrix G with non-

negative elements Gij , with y = relu(x),

yTEijGij(x− y) ≥ 0 (12)

holds for all i, j, as well as the corresponding soft IQC.
IQC 4 (Absolute; Popov): For any diagonal matrix G, and

y(t) = relu(x(t)),∫ ∞
−∞

x̂(iω)?(iωG)ŷ(iω) dω ≥ 0 (13)

holds.
There are several formulations that build on the original

result of Zames and Falb [15] to obtain IQCs for repeated
nonlinearities, and we quote the result from [1]. We use a
static variant, as well as the full result.

IQC 5 (Zames-Falb): For a symmetric matrix G with
nonpositive off-diagonal entries, and for which Gii ≥∑
j 6=i |Gij | for all i, the following hold for y = relu(x)

and for any α < 0 and β > 1.

yTGx ≥ 0 (14)

(y − αx)TG(βx− y) ≥ 0 (15)

Additionally, for a matrix-valued real symmetric convo-
lution kernel H(t) with nonnegative entries for all t, and a
stronger constraint on the diagonal elements of G, Gii ≥∑
j 6=i |Gij |+

∑
j ‖Hij‖1 for all i, the two soft IQCs∫ ∞
−∞

ŷ(iω)?
[
G− Ĥ(iω)

]
x̂(iω) dω ≥ 0 (16)∫ ∞

−∞
[ŷ(iω)− αx̂(iω)]

?
[
G− Ĥ(iω)

]
[βx̂(iω)− ŷ(iω)] dω

≥ 0 (17)

hold, where y(t) = relu(x(t)).

IV. BIAS AND REFERENCE VALUES

In many cases, we are interested in the behaviour of a
system relative to a known, constant, reference value. We
may be tracking the deviations from a stationary point, but
reference values can also be used as a trick to handle bias
terms in the neural network.

The relative setting considers deviation of the system
relative to a constant reference point, looking for constraints
on the mapping from ∆ξ = ξ − ξ(ref) to ∆ζ = ζ −
ζ(ref) = relu(ξ) − relu

(
ξ(ref)

)
= relu

(
∆ξ + ξ(ref)

)
−

relu
(
ξ(ref)

)
.

The repetitive structure used in section III-B is lost, as
each scalar relu has its own reference value, and two relus
with different reference values are no longer “the same”
nonlinearity. We deal with this issue in section IV-B.

The relative setting provides a middle ground between the
absolute setting discussed in section III and the much smaller
set of incremental IQCs (listed in section V).

A. Bias

The affine term, b, in (2), poses a problem for analyses
that are limited to linear and quadratic forms. To amend this,
we introduce reference values. For an input ζ0, we choose
a reference input ζ0(ref) and let ξ(ref) and ζ(ref) denote
vectors satisfying (2) with ζ0

(ref) as the input. In terms of
∆ξ = ξ − ξ(ref) and ∆ζ = ζ − ζ(ref), the relations read

∆ζk = ζk − ζk(ref) = relu (ξk)− relu
(
ξk

(ref)
)

∆ξk = ξk − ξk(ref) = Wk∆ζk−1

(18)

and we find the equations of a neural network with different
nonlinear mappings, but without bias terms.

B. Scaling and Grouping

We consider rescaled variables for any vector component
with nonvanishing reference value[

∆ξ′

∆ζ ′

]
=

1∣∣∣ξ(ref)
∣∣∣
[
∆ξ
∆ζ

]
, (19)

and we find

∆ζ ′ = relu
(

∆ξ′ + sign
(
ξ(ref)

))
− relu

(
sign

(
ξ(ref)

))
.

(20)
After rescaling every relu unit with nonzero reference value,
the mapping from ∆ξ′ to ∆ζ ′ behaves as relu units with
reference values that are either ±1, or 0.

Grouping relus according to the sign of their reference
values (positive, vanishing or negative), and rescaling as
above, we now have three groups of repeated nonlineari-
ties, behaving as relus with reference values 1, 0 and −1,
respectively. The three functions are shown in Figs. 3a, 3c
and 3d.

C. Constraints

For our static constraints, we assume vectors x(ref), ∆x
and ∆y. After grouping according to the sign of x(ref)

and rescaling as described in section IV-B, we have vectors
denoted by x

(ref)
+ , x(ref)

0 , x(ref)
− , ∆x+, ∆x0, ∆x−, ∆y+,

∆y0, ∆y−, satisfying

x+
(ref) � 0; x0

(ref) = 0; x−
(ref) ≺ 0

∆y+ = relu
(

∆x+ + x+
(ref)

)
− relu

(
x

(ref)
+

)
∆y0 = relu(x0)

∆y− = relu
(

∆x− + x−
(ref)

)
− relu

(
x−

(ref)
)

∆x′+,i =
∆x+,i

x+,i(ref) ; ∆y′+,i =
∆y+,i

x+,i(ref)

∆x′0,i = ∆x0,i; ∆y′0,i = ∆y0,i

∆x′−,i =
∆x−,i∣∣∣x−,i(ref)

∣∣∣ ; ∆y′−,i =
∆y−,i∣∣∣x−,i(ref)

∣∣∣ .

(21)

where the last three equations are componentwise for com-
ponent i.

For dynamic systems, with vector-valued signals instead
of vectors, we group and rescale analogously, remembering
that the reference values are constant and known in advance.

While the linear inequalities in (4) still hold for ∆x0 and
∆y0, we only have ∆y+ � ∆x+ and ∆y− � 0 for the
other components, and we use all the linear inequalities to
construct static and dynamic constraints analogous to IQC 2

IQC 6 (Relative; Combinations of linear): For any ma-
trix G with nonnegative entries,

∆y+ −∆x+
∆y0 −∆x0

∆y0
∆y−


T

G


∆y+ −∆x+
∆y0 −∆x0

∆y0
∆y−

 ≥ 0, (22)

holds.
For any matrix-valued convolution kernel H(t) with non-

negative entries for all t,∫ ∞
−∞

∆̂y+(iω)− ∆̂x+(iω)

∆̂y0(iω)− ∆̂x0(iω)

∆̂y0(iω)

∆̂y−(iω)


?

Ĥ(iω)


∆̂y+(iω)− ∆̂x+(iω)

∆̂y0(iω)− ∆̂x0(iω)

∆̂y0(iω)

∆̂y−(iω)


dω ≥ 0 (23)

holds.
The rate-limit is used in two ways, giving us two different

constraints. Firstly, we get one copy of IQC 3 for each sign
in x(ref).

IQC 7 (Relative; Rate-limit I): For any sign
σ ∈ {+, 0,−}, the vectors ∆x′σ and ∆y′σ satisfy IQC
3.

Secondly, each component of in ∆x and ∆y is a difference
between a value and a reference value, giving us a static
constraint, with its associated soft IQC.

IQC 8 (Relative; Rate-limit II): For any diagonal matrix
G with nonnegative elements,

∆yTG(∆x−∆y) ≥ 0 (24)

holds.
IQC 9 (Relative; Popov): For a sign σ ∈ {+, 0,−}, IQC

4 holds for ∆xσ and ∆yσ .
For each sign of reference values, our mapping from ∆x′

to ∆y′ satisfies the conditions required for IQC 5 to hold.
IQC 10 (Relative; Zames-Falb): For a sign σ ∈

{+, 0,−}, IQC 5 holds for ∆x′σ and ∆y′σ .

V. INCREMENTAL CONSTRAINT

In the incremental case, the rate-limit is our only remain-
ing source of inequalities, in the variant without mixing

IQC 11 (Incremental; Rate-limit): For vectors x(1), x(2),
∆x = x(1) − x(2), ∆y = relu

(
x(1)

)
− relu

(
x(2)

)
, IQC 8

holds for ∆x and ∆y.

Zames-Falb constructions cannot be used, as the mapping
from ∆x to ∆y is not a function (we can have, e.g., ∆x = 1
together with any value of ∆y between 0 and 1).

VI. OTHER ACTIVATION FUNCTIONS

Feedforward networks often use the relu or leakyrelu
activation functions for internal layers, but other activation
functions are also used, and we first discuss how to use our
full list of IQCs for leakyrelu, before discussing what subset
we can retain for other activations functions.

For internal layers, relu is somtimes replaced by a different
componentwise function, and the vector structure of the
repeated nonlinearity is retained. These functions typically
satisfy a rate-limit and vanish for vanishing input, and
constraints based on rate-limits are still available to us.

The final layer somtimes uses a softmax nonlinearity,
defined by

ζN+1,i =
eξN+1,i∑
` e
ξN+1,`

(25)

The softmax nonlinearity is not a repetition of a scalar
function, and its set of IQCs differs from those of repeated
nonlinearities. The output of softmax is nonnegative, and it
is rate-limited to [0, 1].

A. Leaky Relu

The leakyrelu activation function is parametrized by a
scalar value a ∈ (0, 1), and is defined as

leakyrelua(x) = max(ax, x) = ax+ (1− a) relu(x), (26)

As a sum of a linear term and a relu nonlinearity,
any leakyrelu can be reformulated in terms of the relu-
nonlinearity, and the full set of IQCs for relu is still available.

B. Other scalar nonlinearities

Many other activation functions satisfy rate-limits, and
IQCs 3, 5, 7, 8, 10 and 11 hold for these as well.

As an example, we conisider the tanh activation function
which satisfies tanh(0) = 0 and has a derivative tanh′

satisfying 0 ≤ tanh′(x) ≤ 1. The bounds are identical to
the bounds on relu, and the tanh activation function satisfies
IQCs 3, 5 and 11 in the same way as relu. In the relative
formulation, our rescaling trick no longer works, and we are
limited to IQC 11.

1) Softmax: The softmax function gives rise to a con-
straint like IQCs 2 and 6 due to its nonnegativity. Its rate-
limit also enables constraints like IQCs 3, 7, 8, 11, but only
when mixing components of the same softmax unit.

In the relative and incremental setting, we have constraints
analogous to IQCs 8 and 11.

As softmax is not a diagonal nonlinearity, we cannot
directly use the result of [1]. Zames-Falb-style results for
rotation-free nonlinearities (like softmax) are available from
[9], but those results are not applicable to softmax, as
softmax(0) 6= 0.

VII. SELECTION OF CONSTRAINTS

The library of constraints provided above aims at com-
pleteness, but, in practice, we want to limit our use to a
subset of the available constraints.

Assembling all inputs to all relu-units in a single vector,
as in (3), a constraint on the full vector introduces a large
number of decision variables in the resulting SDP problem.
A sparse SDP problem with a smaller number of decision
variables is obtained by using one set of constraints per
layer, only using ξk and ζk for a single k in each constraint.
However, our constraint now only expresses knowledge
about correlations withinthe same layer, and our resulting set
of guarantees will not be as strong as with the full constraint.

As an intermediate step, we select constraints that mix
adjacent layers, or, more generally, adjacent blocks in our
block diagram. The structure of the neural network already
couples adjacent layers, and our constraints follow this struc-
ture. This choice obtains good expressivity in the contraints,
and retains a high degree of sparsity in the resulting SDP
problem.

VIII. EXAMPLES

A. Static Gain of a Deep Network

We consider a simple network with a single hidden layer
defined by the equations

x1 =

(
1
−1

)
y0; y1 = relu(x1)

x2 =
(
1 −1

)
y1

(27)

where y0 and x2 are the scalar input and output, respectively.
The network is designed so that x2 is identically equal to

y0 in all cases, and we compare analyses of the static gain
of this network in the absolute and incremental settings.

In the incremental setting, we have two sets of signals
with different superscripts y(1)i and y

(2)
i , and we focus on

the static gain from ∆y0 = y
(1)
0 −y

(2)
0 to ∆x2 = x

(1)
2 −x

(2)
2 .

In the incremental setting, all we have access to is the rate-
limit, and we cannot exclude that relu(x) = x might hold.
In that case, the full network behaviour would be

∆x2 =

(
1
−1

)(
1 0
0 1

)(
1 −1

)
∆y0 = 2∆y0 (28)

and a gain of 2 cannot be excluded in the incremental setting.
In the absolute setting, we have access to the equality

y(x−x) = 0, telling us that y is either 0 or x, as well as to
y ≥ 0 and y ≥ x, allowing us to deduce which of the two
cases actually appear.

The numerical procedure uses the constraints and the S-
procedure to transform the gain-bound claim x22−λ2y20 ≤ 0
to an SDP problem. Numerically, we do find the values 1
and 2 for the absolute and incremental setting, respectively.

We conclude that the static constraints available in the
absolute setting have more expressive power than those
available in the incremental setting.

Consequently, a deep network build by stacking several
identical layers on top of each other gives us a gain bound

w 1
s2

kp + kds NN

y
yest

u
−

Fig. 4: Block diagram of system used in Closed Loop
example.

Training Iterations

0 500 1000 1500 2000
10

-1

10
0

10
1

10
2

10
3

y

Fig. 5: Training loss vs. number of gradient steps, with
guaranteed stability achieved after 884 steps.

that grows exponentially with depth in the incremental set-
ting, while it remains constant in the absolute setting.

B. Closed Loop Stability

We consider a double integrator controlled by a stabilizing
PD-controller. The output is filtered through a neural network
before passing to the controller. Our network structure is a
few-layer variant of the network from the previous example,
with their first-layer weights fixed, and with remaining
weights trained from random initialization. We use the main
theorem of [6] together with the KYP lemma [7] to obtain
closed-loop stability guarantees based on the IQC formalism.

As the previous example showed that a gain-bound of
1 could be obtained with only the static constraints, we
use only the IQCs that immediately follow from those
constraints, and we only use constraints that mix adjacent
layers in the netural network.

We train the network on synthetic data y with loss function
(y − yest)2. As our controller stabilizes the double integrator,
a perfect network will ensure closed loop stability. Our
training progress is shown in Fig. 5 and shows that the loss
function decreases throughout training. After each gradient
step we use the IQC framework to test for closed loop
stability, and we obtain closed loop stability at each gradient
step after the 884th one.

While the first example showed that the absolute setting
provides greater expressivity than the incremental, in terms
of its constraints, this example shows that the full power of
the absolute setting is not always needed.

IX. CONCLUSION

We have provided a list of constraints that can be used for
obtaining guarantees for systems involving neural networks.

Many of the relations have been published in prior work
while some are new.

We have split the discussion into three analysis settings,
and provided two small examples showing that the absolute
setting can provide stronger guarantees than the incremental
setting, but that the full power of the absolute setting is often
not needed.

X. ACKNOWLEDGEMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] F.J. D’Amato, M.A. Rotea, A.V. Megretski, and U.T. Jönsson. New re-
sults for analysis of systems with repeated nonlinearities. Automatica,
37(5):739 – 747, 2001.

[2] Mahyar Fazlyab, Manfred Morari, and George J. Pappas. Safety
verification and robustness analysis of neural networks via quadratic
constraints and semidefinite programming. IEEE Transactions on
Automatic Control, 67(1):1–15, 2022.

[3] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari,
and George J. Pappas. Efficient and accurate estimation of lipschitz
constants for deep neural networks. CoRR, abs/1906.04893, 2019.

[4] Navid Hashemi, Mahyar Fazlyab, and Justin Ruths. Performance
bounds for neural network estimators: Applications in fault detection.
In 2021 American Control Conference (ACC), pages 3260–3266, 2021.

[5] Haimin Hu, Mahyar Fazlyab, Manfred Morari, and George J. Pappas.
Reach-sdp: Reachability analysis of closed-loop systems with neural
network controllers via semidefinite programming. 2020 59th IEEE
Conference on Decision and Control (CDC), Decision and Control
(CDC), 2020 59th IEEE Conference on, pages 5929 – 5934, 2020.

[6] A. Megretski and A. Rantzer. System analysis via integral quadratic
constraints. IEEE Transactions on Automatic Control, 42(6):819–830,
1997.

[7] Anders Rantzer. On the kalman—yakubovich—popov lemma. Systems
& Control Letters, 28(1):7–10, 1996.

[8] Max Revay, Ruigang Wang, and Ian R. Manchester. A convex
parameterization of robust recurrent neural networks. IEEE Control
Systems Letters, 5(4):1363–1368, 2021.

[9] M.G. Safonov and V.V. Kulkarni. Zames-falb multipliers for mimo
nonlinearities. Proceedings of the 2000 American Control Conference.
ACC (IEEE Cat. No.00CH36334), American Control Conference,
2000. Proceedings of the 2000, 6:4144, 2000.

[10] Jan C. Willems. Dissipative dynamical systems part i: General theory.
Archive for Rational Mechanics and Analysis, 45(5):321–351, 1972.

[11] Jan C. Willems. Dissipative dynamical systems part ii: Linear systems
with quadratic supply rates. Archive for Rational Mechanics and
Analysis, 45(5):352–393, 1972.

[12] V. A. Yakubovich. Frequency conditions for the absolute stability of
control systems with several nonlinear or linear nonstationary units.
Automat. Telemech., page 5–30, 1967.

[13] He Yin, Peter Seiler, and Murat Arcak. Stability analysis using
quadratic constraints for systems with neural network controllers.
2020.

[14] G. Zames. On the input-output stability of time-varying nonlinear
feedback systems part one: Conditions derived using concepts of loop
gain, conicity, and positivity. IEEE Transactions on Automatic Control,
11(2):228–238, 1966.

[15] G. Zames and P. L. Falb. Stability conditions for systems with mono-
tone and slope-restricted nonlinearities. SIAM Journal on Control,
6(1):89–108, 1968.

