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Abstract

Often integrating ordinary differential equations or
differential algebraic equations (DAE) do not consti-
tute the problem alone. A common complement is
finding the root of an algebraic function (an event
function) that depends on the states of the problem.
This formulation of a model enables the possibility
of including discontinuities, an important part of the
Functional Mock-up Interface standard which allows
hybrid models of differential algebraic equations. The
problem of root-finding during integration is however
difficult. Both in a theoretical aspect and as a software
problem.

An implementation of software for root-finding is
done in Assimulo, a Python/Cython wrapper for in-
tegrators. The implementation takes the Functional
Mock-up Interface standard into consideration. The
implementation is made usable for a wide variety of
integration algorithms and is also verified and bench-
marked with advanced industrial models, showing
good indications of being robust and scaling well for
large systems.

Keywords:FMI; JModelica.org; Assimulo; events;
discontinuities; Illinois algorithm; safeguard

1 Introduction

Models based on differential equations may contain
discontinuities. One simple example is the bouncing
ball. Gravity acting on the ball is modelled with a dif-
ferential equation while the bouncing on the floor will

The authors gratefully acknowledge the support from the
Lund Center for Control of Complex Engineering Systems
(LCCC).

result in discontinuities in the velocity. A result from
the velocity changing sign by impact. A reasonable
way to model this would be to restart the integration
of the differential equation with new initial values as
the ball hits the floor. In this way, the discontinuity is
modelled with what is called an event and the handling
of that event (event handling).

Models with discontinuities are not only interest-
ing theoretically but are also widely used in industry,
something the Functional Mock-up Interface (FMI)
standard 1 contributes to by making distribution and
use of these models convenient. The explanation for
why it is used by the industry can be found in [3],
where the elements that give rise to discontinuities in
models are listed. Some of them are:

• Friction

• Impact phenomena

• The degrees of freedom vary in time

• Time dependent input functions

Most advanced models in industry consist of many
separate but interacting parts and, therefore, have at
least one or some of the listed properties. With to-
day’s modelling tools and computational power, more
and more advanced models become realistic to sim-
ulate. Which means new and increased demands on
the integrators to support the solving of models with
discontinuities robustly and with good scaling of the
performance regarding the size of the models.

There are many difficulties with having discontinu-
ities in differential equations. Missing a discontinuity
or acting on the wrong discontinuity can be disastrous,

1See https://www.fmi-standard.org/.
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leading to integrating the wrong equations or missing
impacts. Furthermore the integration methods make
assumptions on the smoothness of the solution and the
incorrect handling of the discontinuities will most cer-
tainly violate these assumptions. The result will be
an incorrect error estimate, leading to a significant de-
crease in the integration performance[6], or even lead-
ing to an incorrect solution.

To construct a state of the art event detection algo-
rithm, undertaking these considerations of the need for
correct event handling and performance, the demands
will be that it should be robust and scale well, handling
large systems originating from industry. It should also
be clear what data is expected from the user, and in re-
turn the algorithm should guarantee correct event de-
tection and event handling.

The contributions of this article is an implementa-
tion of an event algorithm with robust event handling
and good performance. Using a safeguard and apply-
ing the domain formulation (used for event localiza-
tion in the FMI specification, explained in Section 2.4)
as opposed to the zero-crossing paradigm that uses a
sign change to detect events. This algorithm converge
and gains a robust performance and has an advantage
for a special set of problems, this will be seen for the
clutch example later. Given the additions to the event
algorithm, a benchmark using advanced industry rele-
vant models following the FMI standard was made to
ensure that the performance is not compromised. In
Assimulo2 the algorithm can be utilized as a module
that can be mounted onto solvers as needed. This re-
sult in an extension of Sundials and increases the num-
ber of solvers that can handle discontinuities and there-
fore the number of solvers that support the FMI stan-
dard.

Section 2 starts by giving background and motiva-
tion and moves on to highlighting the principles of
event detection and event localization and the difficul-
ties associated with it. In Section 3, the ideas for the
event location algorithm are laid out. Leading up to
the presentation of the algorithm in Section 4, where
details of the implementation are discussed. Section
5 demonstrates and verifies the implementation on a
number of test examples together with testing the per-
formance. A summary and critical examination of the
algorithm and the results are given in Section 6.

2See http://www.jmodelica.org/assimulo.

2 Background

Assimulo is a Cython/Python wrapper around various
Ordinary Differential Equations (ODE) and Differen-
tial Algebraic Equations (DAE) solvers. An important
aspect of Assimulo is to make it easy to access both
state of the art solvers and more experimental solvers
for both industry and the academic world. Assimulo
is also the back-end simulation engine for JModel-
ica.org.

On the other hand, for enabling the exchange of
models in industry and the academic world there is the
FMI standard, which is a standardized way of formu-
lating models of ODEs. PyFMI can be used to wrap
models that are instances of the FMI standard (FMUs)
making them easy to simulate with Assimulo.

A powerful use of Assimulo and the FMI would be
to give industry a larger variety of solvers from the aca-
demic world, while the academic world is given access
to a large number of relevant models from industry,
offering remedies for two weaknesses often present in
the world of numerics.

The FMI allows advanced hybrid dynamic models
by also allowing event functions. This standard there-
fore demands that the solver can handle discontinuities
in the form of events. Currently, the only solvers in
Assimulo that can do so are those of Sundials [12] and
LSODAR and many solvers do not have the possibil-
ity of handling discontinuities on their own, leading to
the need of a module in Assimulo that can handle the
discontinuities for all solvers.

2.1 A motivating example

A motivational example for when the zero-crossing
approach fail to detect the event correctly is:

model motivating_example

Real y;

Real x(start = 1.0);

equation

y = noEvent(if 1-time > 0 then (1-time)^5

else 0);

der(x) = if y <= 0 then -x else x;

end motivating_example;

The model has a variable y that smoothly goes to
zero at t = 1 which should result in an event there.
With the usual approach for detecting events, using an
FMU from JModelica.org, the event is found signifi-
cantly later than it occurred because the event is not
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localized. This is especially a problem when the inte-
grator take large steps. It is clear that the robustness of
the event detection is questionable in for this case.

With an FMU from Dymola the event is not detected
at all.

2.2 The theory of event location

Integration methods are dependent on that the problem
has a continuous solution with continuous derivatives
to a certain order [3]. Moreover, mathematically, con-
tinuity is needed to guarantee a unique solution. For
example for the problem of an explicit ODE

ẏ(t) = f (t,y(t)), y(t0) = y0,

f should be continuous in t and Lipschitz continu-
ous in y to guarantee a unique solution by the Picard-
Lindelöf theorem. This is a big concern with multi-
step methods, which will incorrectly use information
before and after discontinuities if the problem is inte-
grated straight forwardly without explicit event han-
dling.

To avoid integrating over a discontinuity, the event
formulation can be used. One way of looking at a
problem formulated with events is to imagine that it
has two states, each state representing a different con-
tinuous right hand side. The discontinuity then be-
comes switching between these two states (an event).
More formally, the point in time of switching is de-
cided by the sign change of an event function, g(t,y),
and at this time the integration is re-initialized with
updated continuous variables and discrete variables,
where the different states are represented by discrete
variables that only change at events. For example, the
discontinuous problem:

ẏ = f (t,y) = |y|,
is rewritten with the event formulation as:

ẏ = f (t,y,s) =

{
y if s = s1

−y if s = s2,

g(t,y,s) = y,

where g and f are continuous for a fixed value of the
discrete state s (that represent a state). The downside
being that this add a root-finding problem for the event
function g on the interval of the latest time steps, tn and
tn+1, in case an event is detected.

What is described in this section is usually called
discontinuity handling. It can intuitively be divided
into three steps:

• Event detection

• Event localization (in [tn, tn+1])

• Event handling

The detection is often done by checking the sign of
g after every time step. Locating the event is done
with a root-finding algorithm and the event handling is
mainly a modelling question that is done by the user.

The integrating of ODEs with discontinuities has re-
ceived a lot of attention over the years. Many of the
differences between the approaches is how g will be
represented on [tn, tn+1] and how the time of the event
is localized.

Most of the methods for localizing the event require
the ability to evaluate g(t,y) on [tn, tn+1]. In doing so
effectively, a continuous extension of y(t) on [tn, tn+1]
is desired. Not using a continuous representation when
solving problems with discontinuities result in larger
global error and more evaluations of f , see [4]. Also,
the dependence between the global error and the tol-
erance was smoother for problems with discontinu-
ities when using an interpolation polynomial for root-
finding.

Further theoretical results strengthening the use of
interpolation polynomials for problems with disconti-
nuities are that if the interpolation polynomial is of the
same order as the integration method the entire method
has this order [16].

Besides the representation of y with an interpola-
tion polynomial, there is the idea that additional states
could be introduced through new state equations of the
form ẏny+1:ny+ng = ġ, where ny is the dimension of y
and ng is the dimension of g [2] [17]. This will force
the integrator to take steps such that the dynamics of g
is captured, if this is not the case it is more likely that
an event will be missed due to two changes in sign of
g are canceled out or that not the first event of many
on [tn, tn+1] is found.

2.2.1 The root-finding problem

The root-finding problem for localizing the event with
the event function, g, have the properties that g ∈
C0 (on a bounded interval [a,b]) and g(a)g(b) < 0.
Through the intermediate value theorem, the existence
of a zero in the interval [a,b] is guaranteed. Due to
the nature of solving the problem numerically, the zero
can often not be found exactly. Therefore the problem
is said to be solved if an interval [a∗,b∗] is found, such
that:
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g(a∗)g(b∗)< 0 and |a∗−b∗|< δ .

This means that the zero of g is contained in a small
interval of length δ . Also, note how the condition
g(a)g(b) < 0 functions as an enclosing property; this
will from here on be known as a regula falsi. The goal
is to find an algorithm that always converge and do-
ing so as quickly as possible for a wide range of func-
tions. The goal can be considered delicate because of
the large spectrum of functions that are allowed.

2.3 Integrators in Assimulo

Presented here are some of the ODE integrators
wrapped by Assimulo that are suited to be used to-
gether with an event localization algorithm and there-
fore use to simulate FMUs. Their types, orders and
interpolation are listed.

Explicit and Implicit Euler: Fixed step-size meth-
ods of order 1 with linear interpolation implemented.

RungeKutta34: Adaptive Runge-Kutta of order
4(3) with a Third-order Hermitian polynomial for in-
terpolation.

Radau5ODE: Runge-Kutta method based on
Radau IIA of order 5, with interpolation from its col-
location solution. The interpolation polynomial is of
order 3 [9] [10].

Dopri5: Runge-Kutta method, is of order 5(4) with
an interpolation of order 4 [9] [10].

RodasODE: A Rosenbrock method of order 4(3).
The order of the interpolation is not stated explicitly,
but it is said to fulfil conditions such that the continu-
ous solution is of the same order as the discrete points.
Uses variable step-size [9] [10].

CVode: Uses BDF methods for stiff problems and
Adams-Moulton methods for non-stiff problems. For
both cases, the solver is of variable-order and has vari-
able step-size. Contains an internal event localization
algorithm [12].

2.4 FMI semantic and domain formulation

The condition that an event occurs when g changes
sign (a change between g< 0 and g> 0, zero-crossing
formulation) means that the zero needs to be treated
as an exception. An option is that one should instead
look for an alternation between the domains g< 0 and
g ≥ 0 [14]. This leads to a formulation similar to the
event formulation in the FMI standard, where the en-
closing and detection properties (regula falsi) change

from g(a)g(b)< 0 to (g(a)> 0)
⊕

(g(b)> 0)3.

3 Event algorithm

3.1 Domain or zero-crossing formulation

The arguments for using the domain formulation, in
addition to being consistent with the FMI standard, are
that the zero is no longer a special case. [11].

The FMI formulation also has a major advantage
when modeling systems that can take an unknown in-
put. Let us suppose that g(t,y) = u(t), where u is a
signal that can become and stay at zero. A practical ex-
ample would be if u is the power to a system. Imagine
now that the system as a safety measure has a magnet-
locking system or clutches that locks when the power
disappears. An event is then expected when u> 0 goes
to u≤ 0 or vice versa. This is an intuitive way to state
the model and would, with the zero-crossing formula-
tion, force the user to modify g or the inequality with a
small ε to ensure zero-crossing. Moreover, the choice
of ε is often not an easy task in this case because of
scaling.

3.2 Event detection

One of the usual ways to detect an event is to check
the regula falsi for g(tn,yn),g(tn+1,yn+1) after having
integrated from tn to tn+1. Other ways are, of course,
possible - such as also checking g in the middle of
[tn, tn+1] - but these are considerably slower. This is
the case for many of the more sophisticated methods
for detecting events and they furthermore demand ac-
cess to the partial derivatives of g. This is also the case
for the methods of adding extra states. Demanding the
user to supply these or compute them numerically, giv-
ing the user a solver that scales badly (computing the
derivatives numerically would also result in extra eval-
uations of g) is not an option. It does not align with our
demands of speed, it would also exclude models of the
FMI standard.

Going with the simpler method of checking for a
regula falsi, there is the possibility of having two
events in [tn, tn+1] for a component of g. This is a
problem, as pointed out in Section 2.2. The practi-
cal solution used here lies in letting the user supply a
maximum stepping length, hmax, such that all events
are separated by at least hmax in time.

3The logical symbol
⊕

is XOR and in code the condition
would be (g(a)> 0)! = (g(b)> 0)

Discontinuities handled with events in Assimulo
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3.3 Locating the event

A root-finding algorithm that is usually used in this
context is the Illinois algorithm [5] [13] [12] 4. Natu-
rally, it gives fast convergence for most functions when
doing event localization. There are of course other
root-finding algorithms that would perform well for
event localization, Illinois is however well tested. Fur-
thermore, if g is multidimensional and the first root in
time should be found for any of the components of g
and this vectorization is best done for the Illinois algo-
rithm.

The Illinois algorithm uses a linear interpolation
that weights the function values to ensure conver-
gence. The weight is applied so that the algorithm will
not keep any bracket constant indefinitely. This gives
major advantages when it comes to convergence com-
pared to the false position algorithm. This is especially
evident for all convex functions, a comparison can be
seen in Figure 1.

An improvement can be done for when the function
is zero for most of the interval as Illinois algorithm
behaves badly in this case. This comes from the Illi-
nois algorithm’s inability to use its weights properly -
zero times two is still zero. The intuitive remedy for
this would be to use a bisection step if either g(tn) or
g(tn+1) are equal to zero. With this modification, the
Illinois algorithm behaves better for this case.

3.3.1 Safeguard

To ensure that the algorithm converges a safeguard
method is used [7]. It consist of three points that, if
followed, guarantee that the root-finding algorithm al-
ways converge. These are:

• The new bracket is inside the current interval

• The new bracket is closest to the best bracket 5

• The new bracket is not too close to an existing
bracket

Point one is incorporated in the Illinois algorithm.
Point two is not always valid during the iterations, due
to the weights. Point two is however only meant to
ensure the speed of convergence, something that the
weights do very well.

4The origin of the method is unknown - some believe it to come
from the staff at the computer centre at the University of Illinois
computer department.

5The best bracket is the one with the lowest function value, as
it is expected to lie closer to the root.

Point three is often done by choosing a small num-
ber δ and check if the new bracket is closer than δ to
a previous bracket, if it is the new bracket is moved by
δ towards the middle. It should be noted that Illinois
algorithm dose not originally account for this. There
is, however, no technical problem in implementing this
(Sundials has this modification in its implementation).

4 Implementation

4.1 User interaction

The form of the event function g defined by the user
should be a function returning an array of all the com-
ponents of g. This is also how the event function is
evaluated in the FMI standard, but results in that all
components are evaluated, even if only one compo-
nent has a change in sign when iterating with the Illi-
nois algorithm. However, this gives the possibility of
detecting roots that otherwise would have been missed
due to being close to another root.

Also, the reporting of the found roots should be
done with a separate array. The user cannot know
for which component a root was detected in the case
where the exact zero is not found due to scaling.

The tolerance for enclosing the event cannot be set
and has a default value such that the error caused by it
is small compared to that caused by the interpolation
polynomial.

4.2 Algorithm details

The tolerance for which the domain change is locked
into is somewhat weaker than machine precision.
Specifically, the tolerance is set to:

TOL = max(|tn|, |tn+1|) ·10−13,

being roughly a factor 100 times larger than machine
precision, it still does not introduce an error that is no-
ticeable compared to that of the interpolation polyno-
mial.

The small step δ in the safeguard (see Section 3.1.1)
is taken from Sundials as:

δ =
|a−b|

2 ·min(5, |a−b|/TOL)
,

note that δ is a minimum of a tenth of the current
length of the interval and a maximum of half the in-
terval, going from a tenth to a half as the interval goes
toward TOL.
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Figure 1: Comparison between the Illinois algorithm and the false position method, showing how the failing
mode is escaped and fast convergence is achieved.

The domain formulation and the bisection step for
the special case mentioned earlier are used by the al-
gorithm. The algorithm is implemented in Assimulo
using Python. It is called before the complete step
function is called just after a successful step is taken.

5 Application example

For evaluating the implementation, benchmark mod-
els are selected to assert the correctness and scalability
of the event location algorithm. A Furuta pendulum
is chosen for having many event functions, a clutch
model with inputs is chosen for causing events when
the input reach zero for a finite time and a racing car is
chosen for being a large advanced model with events.

The models are FMUs and PyFMI is used for sim-
ulating these models in Assimulo. Benchmarks are
made for each model and each ODE solver that the
event location is implemented for. The quantities in-
cluded in the benchmark are: steps taken, function
evaluations, Jacobian evaluations, event-function eval-
uations, number of events and simulation time in sec-
onds.

The options for the solvers are tuned so that the so-
lution at the final step is found with a relative error of
roughly 10−6 compared to a reference solution, with
10−6 here roughly meaning that the relative error is in
the interval [10−6,2 · 10−6], preferably as close to the
left bracket as possible. Formally, this means that the
solution should satisfy the condition:

10−6 ≤ ||y(tfinal)− yref(tfinal)||2
||yref(tfinal)||2

≤ 2 ·10−6.

This error is foremost tuned by changing the relative-
and absolute-tolerance. In case the integrator takes too

large steps and events therefore are missed, a maxi-
mum step length is also used to tune the accuracy of
the solution. For RungeKutta34, the optional initial
step length is also used - RungeKutta34 would oth-
erwise have a problem reducing the tolerance suffi-
ciently, as it has no possibility to reject its first step.
The other steps are affected by the tolerance through
the variable step-size (even though the step cannot be
rejected ).

For finding the reference solution, CVode with its
internal event location is used. The options for rel-
ative and absolute tolerance is set to 10−12. At this
tolerance, the relative error estimate does not change
if the tolerance is increased or decreased by a factor
10, meaning that significantly more correct decimals
are found for this solution compared to the solutions
satisfying the condition on relative error.

An important reason for using CVode is that it is
extensively tested and well established.

Following the numerical results there is a discussion
of them. In the discussion, important differences be-
tween the solvers are pointed out, and extra emphasis
is placed on the differences between CVode with in-
ternal event location and CVode with Assimulos event
location, here after known as CVode(I) and CVode(A).

5.1 Furuta pendulum

The Furuta pendulum (see Figure 2), generated by Dy-
mola, is an extremely non-linear model and is often
investigated in the field of control theory [18]. This
model of the problem generates events from intro-
duced friction, resulting in a problem with 32 event
functions. When simulated for 5 seconds, 21 events
occur for this problem, making it a good test model
for the.
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Solver options CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Relative tolerance 2 ·10−8 3.1 ·10−8 1.81 ·10−6 1.42 ·10−6 1.8 ·10−7 5 ·10−7

Absolute tolerance 2 ·10−8 3.1 ·10−8 1.81 ·10−6 1.42 ·10−6 1.8 ·10−7 5 ·10−7

Initial step length - - - - - 10−6

Table 1: The solver options to obtain the desired accuracy for the Furuta pendulum. CVode(I) is CVode with
its internal event location, while CVode(A) is Cvode with Assimulo’s event location.

Run statistics CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Steps taken 1107 1050 113 329 231 589

f evaluations 1468 1430 776 2109 1680 2945

J evaluations 34 30 - 329 156 -

g evaluations 1332 1266 372 615 504 787

Execution time 2.760 2.888 0.6183 3.165 0.9516 6.157

Relative error 1.05 ·10−6 1.08 ·10−6 1.13 ·10−6 1.03 ·10−6 1.18 ·10−6 1.13 ·10−6

Table 2: Run-time statistics for the solvers used on the Furuta pendulum. CVode(I) is CVode with its internal
event location, while CVode(A) is CVode with Assimulo’s event location. All other solvers relies on Assimulos
event handling algorithm.

Figure 2: A Furuta pendulum. The red cylinders being
joints with given frictions and the blue cylinders being
bars with given weights.

The first thing to note is that CVode(A) achieves
the same error as CVode(I) with higher tolerances,
somewhat adding robustness to the solving process.
Nonetheless, the execution time is longer despite us-
ing fewer function evaluations.

Dopri5 is the solver that performs best.

5.2 Clutches with input

This system is of practical industrial interest, where
an input signal causes events when reaching zero for

Figure 3: Plot of the input and where the first event
is found for the different solvers. The event found by
the reference solution and CVode(A) can not be distin-
guised in the figure.

a finite time, very much as described in Section 3.1.
The number of events that occur for the 5 seconds that
the system is simulated varies, as some of them are
handled internally by the FMI’s event iteration. How-
ever, all the events are detected and handled in one
way or another, as indicated by the small relative er-
rors the problem is solved for. The FMU is generated
by JModelica.org.

The events caused by the input signals are lo-
cated with close to machine precision for CVode(A)
and only with the current step length when de-
tecting g(tn+1) = 0 for CVode(I). Despite this, the
same choices for tolerances give the same rela-
tive error. This is however still considered an
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Solver options CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Relative tolerance 6 ·10−7 6 ·10−7 1.7 ·10−6 7 ·10−5 4.39 ·10−5 5.033 ·10−9

Absolute tolerance 6 ·10−7 6 ·10−7 1.7 ·10−6 7 ·10−5 4.39 ·10−5 5.033 ·10−9

Max step length - - - 0.1 0.1 -

Initial step length - - - - - 10−10

Table 3: The solver options to obtain the desired accuracy for the Clutch system with the input signal. CVode(I)
is CVode with its internal event location, while CVode(A) is CVode with Assimulo’s event location.

Run statistics CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Steps taken 1594 1594 656 305 233 5312

f evaluations 2568 2552 4498 2370 1275 26545

J evaluations 71 71 - 305 93 -

g evaluations 2480 2733 1876 1739 1746 6223

Execution time 8.476 8.425 17.56 7.709 6.756 55.42

Relative error 1.11 ·10−6 1.07 ·10−6 1.16 ·10−6 1.08 ·10−6 1.24 ·10−6 1.09 ·10−6

Table 4: Run-time statistics for the solvers used on the Clutch system with the input signal. CVode(I) is CVode
with its internal event location, while CVode(A) is CVode with Assimulo’s event location. All other solvers
relies on Assimulos event handling algorithm.

important result, finding the events with good ac-
curacy is desired and is expected to pay off for
other models. The first event from the input sig-
nal at 0.0375 is found to be 0.375000000000015,
0.378400333934374, 0.375000000000025 for the ref-
erence solution, the CVode(I) and the CVode(A) re-
spectively, a significant improvement as can be seen in
Figure 3. Radau5 performs best for this model.

5.3 Racing car

A large and advanced model from industry is the rac-
ing car. Here, the model not only contains the racing
car but also a virtual driver. It consists of a regulator
that tries to drive the car on an eight-shaped course.
One reason for simulating this might, for example, be
to investigate the dynamic response of the car.

Consisting of 47 states, 44 event functions and sim-
ulated for 30 seconds, this is the largest model used
for testing. During simulation, the model caused 11
events. The model is developed and generated from
Dymola originating from the Vehicle Dynamics Li-
brary, see Figure 4.

Here, CVode(A) performs better than CVode(I), in
the sense that it needs less tolerance for achieving the
same error. This is a good sign of robustness and scal-
ability.

For the racing car model, evaluations of f are more

Figure 4: A picture of the car in Dymola.

costly compared to those in the Furuta model. This
makes CVode the most effective integrator. Also note
that Radau5 need the setting hmax = 0.1 for its maxi-
mum step length to capture all the events.

5.4 Summary

The event localization of Assimulo, using the domain
formulation, finds the events caused by the inputs in
the clutch model significantly better than Sundials, us-
ing the zero-crossing formulation.

If the event localization of Assimulo is compared
by looking at the results for CVode(A) and CVode(I),
it is clear that Assimulos event algorithm do not per-
form significantly worse than that of Sundials. For all
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Solver options CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Relative tolerance 5.5 ·10−6 10−5 3 ·10−3 8 ·10−5 3.5 ·10−5 7.3 ·10−3

Absolute tolerance 5.5 ·10−6 10−5 3 ·10−3 8 ·10−5 3.5 ·10−5 7.3 ·10−3

Max step length - - - - 0.1 -

Initial step length - - - - - 10−9

Table 5: The solver options to obtain the desired accuracy for the racing car. CVode(I) is CVode with its internal
event location, while CVode(A) is CVode with Assimulo’s event location.

Run statistics CVode(I) CVode(A) Dopri5 Rodas Radau5 RungeKutta 34

Steps taken 1248 1287 2163 333 358 2817

f evaluations 1720 1736 13152 2143 2330 14085

J evaluations 38 34 - 333 248 -

g evaluations 1485 1478 2409 539 638 3039

Execution time 14.45 14.59 23.76 21.44 17.78 27.49

Relative error 1.31 ·10−6 1.54 ·10−6 1.39 ·10−6 1.57 ·10−6 1.17 ·10−6 1.31 ·10−6

Table 6: Run-time statistics for the solvers used on the racing car model. CVode(I) is CVode with its internal
event location, while CVode(A) is CVode with Assimulo’s event location. All other solvers relies on Assimulos
event handling algorithm.

models except the racing car CVode(A) uses more g
evaluations than CVode(I). Sometimes, this results in
better accuracy for the selected tolerances. This is the
case for the Furuta pendulum and the racing car model.
For the clutch model with an input signal, there is,
on the other hand, nothing to be gained and all that
is achieved is extra g evaluations.

The new solvers that now support event localiza-
tion all performed reasonably. For this set of models
CVode and also Dopri5 performs well, making it to-
gether with all the new solvers supporting event loca-
tion a welcome addition to the toolbox of integrators
supporting event location and therefore also FMUs.

For some of the models, it is noted that Runge-
Kutta methods performs very well as indicated by the
small number steps taken. This is made possible by
the sparse occurrence of events and it is worth not-
ing that none of the models here has events occurring
with a high frequency. In [8], this was investigated
using small balls bouncing around, receiving different
frequencies for the events by changing the number of
balls.

6 Summary and conclusions

It was found that an algorithm based on the Illinois
algorithm works well. The improvements include ap-
plying the domain formulation, extra safeguarding and

the special case when g = 0 resulting in a bisection
step. It was implemented in Assimulo and was shown
to locate certain types of events more accurately for an
industry-relevant model with clutches than Sundials,
without losing much in performance. Much of the per-
formance lost is, of course, because Assimulo’s event
location is written in Python while Sundial’s is written
in C. Further improvements can be made reducing this
difference by typing the variables using the possibili-
ties of Cython in Assimulo, leading to the code exe-
cuting more like C code, even though the differences
in speed can probably never be fully remedied.

The implementation can be used together with many
solvers as it is a separate subroutine, a module that is
easily mounted onto solvers. Resulting in the possi-
bility to choose among many solvers when simulating
FMUs. Also, solvers with interpolation polynomials
of lower order than the method itself still performed
well, without any guarantees from the theory.

For the case of a problem containing a large num-
ber of event functions, the improvement is being able
to choose Runge-Kutta methods, which are good at
solving many of the models with sparse occurrence
of events. In the case of the extreme opposite, many
events occurred with high frequency, CVode with a
hmax matching this frequency would probably perform
best.

More work for the future might include the possibil-

Session 5C: Numerical Aspects of Modelica Tools

DOI
10.3384/ECP14096827

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

835



ity of supplying the partial derivatives of g or of cal-
culating these numerically. Uses might be enhanced
event location, as with [17] or [1]. Further work in
investigating event location for implicit DAEs is also
needed, for example implementing consistent event lo-
calization [15] and test the gain in accuracy and the
loss in computational speed on relevant industry prob-
lems.
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