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Supporting Information—The effects of counterion exchange on charge
stabilization for anionic surfactants in nonpolar solvents
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S1. Materials

S1.1. Acid-base neutralization.

A 1 wt % solution of NaAOT was prepared in water and run through a column containing Amberlite
IR120 hydrogen form to obtain the acid form of AOT in a 1 L round bottom flask. This material was not
isolated, and it was immediately neutralized with a solution of metal hydroxide in water. The hydroxides
were used as provided: lithium hydroxide monohydrate (≥ 99.0%, Sigma–Aldrich), potassium hydroxide
(99% trace metals basis, semiconductor grade, Sigma–Aldrich), and rubidium hydroxide solution (50 wt %
solution in H2O, 99.9% trace metals basis, Aldrich). The pH was monitored, and the base solution added
to neutralization. The water was carefully evaporated to avoid bumping.

S1.2. Metathesis.

A 0.1 M solution (150 mL) of NaAOT in ethanol was combined with a 1 M solution (300 mL) of cesium
chloride (> 99%, BDH) in water in a separating funnel. The resulting polar solvent solution was clear.
Diethyl ether (50 mL) was added to the separating funnel, and the extraction left overnight. The organic
phase containing the CsAOT was isolated, and the solvent evaporated.

S1.3. Surfactant purity

LiAOT (Calc. for C20H37LiO7S: C, 56.1%; H, 8.7%; S, 7.5%. Found: C, 56.0%; H, 8.6%; S, 5.1%; Na,
0.0%.); NaAOT (1H NMR (300 MHz, CDCl3) 0.87 (12 H), 1.27 (16 H), 1.54 (2 H), 3.19 (1 H), 4.02 (4 H),
4.34 (2 H). Calc. for C20H37NaO7S: C, 54.0%; H, 8.4%; Na, 5.2%; S, 7.2%. Found: C, 54.0%; H, 8.3%; Na,
4.9%; S, 7.0%.); KAOT (Calc. for C20H37KO7S: C, 52.2%; H, 8.1%; S, 7.0%. Found: C, 52.4%; H, 8.1%;
S, 3.8%; Na, 0.0%.); RbAOT (Calc. for C20H37RbO7S: C, 47.4%; H, 7.4%; S, 6.3%. Found: C, 46.6%; H,
7.2%; S, 3.7%; Na, 0.0%.); CsAOT (Calc. for C20H37CsO7S: C, 43.3%; H, 6.7%; S, 5.8%. Found: C, 43.3%;
H, 6.7%; S, 4.0%, Na, 0.0%; Cl, 0.0%.)
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S1.4. PMMA latexes

MC1 and MC2 latexes were a gift from Merck Chemicals Ltd. and were prepared using the method
described by Antl et al [1]. MC2 latexes also included a magenta dye that was added during polymerization.
The Z-average solvodynamic diameter of MC1 in dodecane was 412 ± 5 nm with a polydispersity index of
0.07 (Malvern ZetaSizer Nano S90). The solvodynamic diameter of MC2 in dodecane was 438 nm with a
polydispersity index of 0.01 (Brookhaven ZetaPlus).

S2. Methods

S2.1. Sans2d (ISIS)

A simultaneous Q-range of 0.004–0.80 Å−1 was achieved utilizing an incident wavelength range of 1.75–
16.5 Å and employing an instrument set up of L1=L2=4 m, with the 1 m2 detector offset vertically 150
mm and sideways 269 mm. The beam diameter was 12 mm. On LOQ, data were recorded on a single two-
dimensional detector to provide a simultaneousQ-range of 0.008–0.24 Å−1 utilizing neutrons with 2 ≤ λ ≤ 10
Å. The beam diameter was 8 mm.

Data have been fit to models as described in the text using the SasView small-angle scattering software
package [2]. Form factors (P (Q)) for spheres [3, 4] and ellipsoids [5, 6] were used depending on the system
being studied. The distribution of particle size has been accounted for using the Schulz distribution [7].

S2.2. I911-SAXS (Max IV Laboratory)

Samples were measured in a 1.5 mm diameter quartz capillary in a flow-through cell to ensure that the cell
geometry was equivalent for solvent and sample measurements. Data were recorded on a two-dimensional
hybrid pixel array X-ray detecctor (PILATUS 1M, Dectris). A Q-range of 0.016–0.76 Å−1 was achieved
using an X-ray wavelength of 0.91 Å and a sample-detector distance of 1.4 m. Data were radially integrated
using YAX 2.0, a macro script for ImageJ [8, 9]. Data have been fit to a spherical form factor [3, 4] using
the SasView small-angle scattering analysis software package [2]. The distribution of particle size has been
accounted for using the Schulz distribution [7]. The fitting was weighted by |

√
I(Q)|.

S3. Small-angle scattering data fitting

The best fit parameters to SANS and SAXS data are shown in the following tables. Experimental SANS
curves for MAOT surfactants in dodecane-d26 are shown in Figure S1. The sphere radius (r) and the width
of the Schulz distribution (σSch) are shown. For CsAOT in dodecane-d26, the scattering curve is fit to an
ellipsoidal form factor with rp as the polar radius and re as the equatorial radius. The scale factor for SANS
measurements is equivalent to the volume fraction of inverse micelles in the solution as the scattering length
densities for surfactant and solvent are fixed.

Porod analysis was also performed on the SANS measurements of MAOT surfactants in cyclohexane-d12.
At high-Q, the total scattering (I(Q)) is sensitive to local interfaces and can be related to the specific surface
area (Σ) through the Porod law, Equation S1 [10] .

lim
Q→∞

I(Q) = 2π∆ρ2ΣQ−4 (S1)

By determining the asymptote in the limit of high-Q (practically for AOT inverse micelles at Q > 0.1 Å−1)
and assuming strong binding, it is possible to estimate the surface area of each surfactant molecule at the
inverse micelle interface [11]. Porod plots are shown in Figure S2 and calculated areas per molecule (as) are
shown in Table S1.
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Figure S1: SANS curves for MAOT surfactants in dodecane-d26. The droplets (CsAOT excluded) have radii between 16 and
20 Å. CsAOT droplets are well fit as ellipsoids with a sphere equivalent radius of 30 Å.

Table S1: SANS and SAXS data fitting parameters for MAOT inverse micelles in cyclohexane.

SANS in cyclohexane-d12
Surfactant Fit scale / 10−3 r / ±1 Å σSch as ± 1 / Å2

LiAOT 2.68 15.3 — 215
NaAOTa 3.34 15.6 — 217
KAOT 2.91 16.6 — 198
RbAOT 2.72 17.4 — 176
CsAOT 3.51 12.9 0.26 182

a Previously measured (Smith et al. [12])

SAXS in cyclohexane
Surfactant r / ±1 Å σSch

LiAOT 10.0 0.07
NaAOT 10.8 0.13
KAOT 10.0 0.12
RbAOT 10.0 0.15
CsAOT 9.6 0.20

Table S2: SANS data fitting parameters for MAOT inverse micelles in dodecane-d26.

Surfactant Fit scale /10−3 r / ±1 Å

LiAOT 3.37 16.4
NaAOT 3.21 16.6
KAOT 2.86 20.0
RbAOT 2.41 20.1
CsAOTa 1.81 29.9

a Fit to ellipsoidal form factor with rp = 112.7 Å and re = 15.4 Å. r denotes the sphere equivalent radius.
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Figure S2: Porod plots (I(Q) ·Q4 as a function of Q) for SANS measurements of MAOT surfactants in cyclohexane-d12.
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