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Popular summary in English

Resonant waves are waves whose amplitude decays over time (or space), which means
they are present only for a rather short time (or in a rather short region of space). As
with any kind of wave, they are determined by their frequency and wave number, which
encode their lifetime and effective spatial range, respectively.

The thesis investigates the direct and inverse resonance results regarding seismic waves
travelling close to the Earth’s surface. First, we want to obtain information about the
possible wave numbers for the resonant seismic waves, as well as information about the
number of them. This information depends on the elastic properties of the material, in
which those waves travel, and it is called direct result. We cannot obtain exact, but only
asymptotic values for them, that is, values for large frequencies or large modulus of the
wave number.

The typical example to explain what an inverse problem is in mathematics is the
example of the drum. In that case, the inverse problem consists in determining uniquely
the shape of a drum from the knowledge of the frequencies of its normal modes. Likewise
here, supposing we know the values of the wave numbers of those resonant waves, we
want to reconstruct the properties of the medium from them. This is what is called an
inverse problem.

There are many applications of inverse problems in real life, for instance, in medicine
with X-ray tomography measurements, in oil exploration measurements, where one can
determine the presence of oil in a specific area of the Earth’s inner layers from frequencies
or wave numbers measured on the surface, or, in a similar way, in the study of the Mars’
inner structure.

iv
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Preface

This thesis investigates the direct and inverse resonance problems for surface waves in
seismology. The direct resonance problem aims to find information about resonances
from a differential operator with certain properties. Resonances describe the oscillation
and the decay of waves on non-compact domains and, likewise for the eigenvalues, they
can be computed explicitly only in very few cases, such as the Eckart barrier potential. In
general, it is only possible to determine the distribution of the resonances asymptotically,
similar to the Weyl law for the eigenvalues. Resonances can be considered an analogue
of eigenvalues (see [54]), as well as poles of the resolvent, for a class of operators with
continuous spectrum. Unlike eigenvalues, the solutions of the differential equation at
the resonances are not L2. Therefore, to make things work, we need to introduce a
cut-off function that allows us to extend the resolvent meromorphically to the whole
complex plane.

The theory of inverse problems started to arise in 1966 after the paper of Kac "Can
one hear the shape of a drum” (see [27]). In particular, the author posed the ques-
tion of whether it were possible to draw the shape of a drum from the knowledge of
the frequencies of its normal modes. Mathematically, this questions whether it is pos-
sible to reconstruct uniquely the domain of the Laplacian from the knowledge of its
spectrum. This query remained unsolved for over 26 years, when finally in 1992 Gor-
don, Webb and Wolpert proved that the answer is negative in the general setting of a
compact Riemannian manifold (see [24]). The answer would be positive if the domain
were convex and with analytic boundary, as proved by Zelditch later on. Unlike this
first example of inverse problem, in our case, the domain is fixed and we want to re-
construct the parameters that determine the differential operator from eigenvalues plus
some other quantities, such as, in general, scattering or spectral data. In relation to seis-
mology, this means reconstructing the parameters that determine the elasticity of the
medium in the interior of the Earth from measurements performed on the boundary
of the Earth’s surface, which are, for example, the frequencies or the wave numbers of
surface waves (eigenvalues and resonances). The Earth is a compact domain, but, for
simplification, we consider it as a flat half space R? x (—00,0] prescribed with some
boundary conditions rendering the problem an exterior boundary value problem.



It is important to stress that we study an inverse resonance problem, where the set
of data is limited only to eigenvalues and resonances. The importance that inverse res-
onance problems carry is two-fold. On the one hand, it leads to data (eigenvalues and
resonances), which are easily obtained in the laboratory from scattering cross sections as
opposed to other data like scattering functions and normalizing constants, which cannot
be obtained directly from laboratory measurements (see [9]). On the other hand, this
is a relatively unexplored area of mathematics. In fact, there are only a few examples of
complete characterizations of inverse resonance problems, for instance by Korotyaev (see
[30]), who solved it on the half-line for compactly supported potentials with Dirichlet
boundary condition, or Christiansen, who solved it on the whole line for step-like po-
tentials (see [13]), using some results from an earlier paper of Cohen—Kappeler ([15]).
Some other examples are [6, 25, 26, 32]. It is important to stress that what we call
resonances in this thesis differs from what physicists usually describe as resonances. In
particular, we study the mathematical resonances in terms of the wave number £ and
not the frequency w, where the latter would lead to a wave with amplitude decreasing
in time with an exponential rate given by the imaginary part of the frequency. Hence,
these would be spatial resonances, where the amplitude exponentially decays or increases
in space with rate involving the imaginary part of the wave number. These resonances
would precisely be the so-called Regge poles, which are resonances with respect to the
angular variables, in the case of a spherical domain (see [45]).

In the first chapter of the thesis, starting from the elastic wave equation and viewing
the effective Hamiltonian as a semi-classical pseudo-differential operator, we recover a
system of ordinary differential equations (see [36]) prescribed with some boundary con-
ditions. The system can be decoupled into a scalar exterior Neumann boundary value
problem, called the Love problem, and a system of two coupled differential equations
with boundary conditions, called the Rayleigh problem.

In the second chapter of the thesis we will study the Love problem. We employ a dif-
feomorphism to recover a Schrodinger-type differential operator with Robin boundary
condition. Then we describe the framework of scattering theory and introduce the Jost
solution, the Jost function, and their properties. As direct results, we obtain information
on the spectrum and the resonances. In particular, we obtain new results on the asymp-
totics of the resonance counting function and resonance-free regions for a Schrodinger
operator with Robin boundary condition. For the inverse resonance problem, we follow
the ideas of Korotyaev [30] (see also [8, 42]) and we adapt them to our formalism and
our different boundary conditions. We obtain a new result of characterization of a class
V, of potentials by a class W, of Jost functions, where the latter can be reconstructed
by eigenvalues and resonances (and the known asymptotic behaviour of the Jost function
on the physical sheet). Moreover, following a procedure similar to [43, 3], which were
done for the Rayleigh problem in the matrix case, and adapted to our Love scalar prob-



lem we obtain a new equation for the resolution of the inverse spectral problem, which
is similar to the Gelfand-Levitan equation (see [34, 11]). In this way, we can prove a
new inverse result from a suitable class M, of Weyl-Titchmarsh functions, that can be
recovered by eigenvalues and resonances, and a class V}  of potentials, which describe
the medium in the Love problem.

In the third chapter, we study the Rayleigh problem. First, we introduce the ho-
mogeneous case, that was studied by Secher and Colin de Verdiere (see [46, 20]), and
show how the resonances, which are present also in the homogeneous case, behave. In
the Rayleigh case the setting becomes slightly more difficult as we need to define a four-
sheeted Riemann surface for the wave number £ such that the quasi-momenta for the
P and S waves are single-valued and holomorphic. Then we recover some Gauge sym-
metries of the fundamental solution of the Rayleigh system of equations (Jost solution)
that arise from the symmetries of the Hamiltonian operator itself. Those symmetries
simplify the reflection matrix and the reflection coeflicients, and reduce the number of
degrees of freedom. Afterwards, we make a change of variables, following the papers of
Pekeris and Markushevich (see [40]) and following the notation as in [19], that makes
the Rayleigh operator become Schrédinger-type with eigenvalue —&2, but with Robin
boundary condition. The Schrodinger-type form of the equation, on the one hand,
helps us prove analytic properties of the fundamental solutions, but on the other hand
causes the potential to be no longer self-adjoint. Unlike the Love problem, we cannot
recover the Jost function from the resonances, as the Jost function is not entire in the
complex plane and the Hadamard factorization theorem cannot be applied. Hence, we
need to define a function F'(£), constructed by factors of determinants of the Jost func-
tion evaluated in each of the four sheets of the Riemann surface. We prove a new result
on this function F'(§) being entire. Moreover, from the estimates of the Jost function,
we prove a new result on the £ function to be of exponential type and Cartwright class
(see [33, 29, 10, 53]) and consequently obtain new direct results of the resonance count-
ing function and resonance-free region. This thesis arises from a collaboration of more
than three years with my former supervisor Alexei Iantchenko, and some of the results
in the first part of chapter 3, especially sections 3.3, 3.6, and 3.7 of the thesis, can also
be found in the working document [17, 18]. However, various parts of the presentation
and results are different, as well as the Riemann surface.
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Chapter 1

Physical background and

assumptions

1.1 Physical framework

In this chapter, we follow the same mathematical setting as in [36]. When an earthquake
occurs and seismic energy is released, a part of the energy propagates through the body
as seismic body waves and another part propagates along the surface as seismic surface
waves, which occur when the medium is stratified. Body waves move towards the Earth’s
surface and divide into two types: the P waves and the S waves.

P waves stand for primary waves because they are faster than the other seismic waves
and reach the seismograph station first. They are also pressure waves because they are
longitudinal, which means the particles oscillate along the direction of propagation of
the wave. The other type of body waves is the S waves, which are secondary waves
because they are slower than the P-waves and are shear transverse waves. That means
the particles oscillate in an ellipse that lies on a plane perpendicular to the direction of
propagation of the wave. Both P and S waves have a spherical wave-front, which means
that they propagate radially in every direction from the source of the earthquake and,
by the Huygens principle, each point of the wave-front serves as a secondary source.
Whenever a ray meets an interface between two layers of different refraction indices, it
turns into a refracted wave and a reflected wave. The first law of reflection tells us that the
incident wave, the reflected wave and refracted wave must lie in the same plane (incident
plane). The reflection angle, that is, the angle between the normal to the interface and
the reflected wave, and the refraction angle, the angle between the normal to the interface
and the refracted wave, are regulated by the Snell’s laws and in particular, depend on the
acoustic impedance index of the two layers Z; and Zy. For example, if a ray passes from
a layer with velocity o to a layer with higher velocity as, the refracted angle will be



larger than the incident angle, following

sin ¢ sinr

aq a2

)

where 7 is the incident angle and 7 is the refracted angle. After a seismic phenomenon,
many events of wave reflections and refractions follow and give rise to many kinds of
waves. Surface waves are the ones that travel between the ground and a fixed layer with
a lower velocity than the body waves. Their amplitude decays exponentially in terms of
the depth and with a decay rate depending on the wavelength of the wave, which means
the shorter the wavelength, the faster the decay. Surface waves can be divided into Love
and Rayleigh waves. Love waves are generated by the constructive interference between
horizontally polarized S-waves, and Rayleigh waves are generated by the constructive
interference of P waves and vertically polarized S waves. Whenever a wave meets an
interface, a part of the energy of the wave is lost because of the refraction, with modulus
depending on the incident angle. In particular, for incident angles large enough there
could be total reflection. When a seismic body P-wave meets another layer we not only
have a reflected P-wave but also a reflected S-wave, as we see in Figure 1.1. In particular
for values of the incident angle lower than a certain value, there is neither a transmitted
nor a reflected S-wave starting from an incident P-wave. The energy in those processes is
broken down following the impedance ratio y = %, where Z; = p;v; is the impedance
value of the medium 7 which depends on the mass density p; and the velocity v;. In
particular for v = 1 the energy is completely transmitted and for values of 7y close to
0 or 0o the energy is completely reflected. This is the case of the interface between the
Earth and the atmosphere. Usually, when passing from a medium with a certain mass
density to another with a lower mass density, the velocity of the acoustic wave decreases.

1.2 'The elastic wave equation

The equations that describe the surface waves can be obtained starting from the elastic
wave equation in the seismological framework of the half-space with domain R? x
(—00,0]. From Newton’s second law F' = ma, applied to an infinitesimal volume
of an elastic solid, and taking into account only the linear perturbations of the medium,
we recover the linear solid elastic wave equation in R?

. 9?
divo(u) = pa—tl;, (L1)

where u(x,t) is the displacement vector, p(z) is the density of mass, and o (u) is the
symmetric third-rank stress-tensor which satisfies Hooke’s law (in the unidimensional
case F' = kx)

o(u) = ce(u),

10
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1
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E refracted
i \\ P-wave
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Figure 1.1: Scattering of a P-wave between two different layers [35].
that component-wise becomes
2 1
oij(u) = § Cijki€r (1), er(u) = B (O + Opug) -

k=1

The index 7 of the element 0; of the stress tensor indicates that the stress is applied
on a plane perpendicular to the direction 7, while the index j indicates the direction
in which the stress is applied. The tensor €(u) is called infinitesimal strain tensor and,
for example, its component €y informs us about the elongation that the particles along
the [ axis undergo in the k direction, plus the elongation that the particles along the
k axis undergo along the [ direction. The tensor c is the fourth-order stiffness tensor
that characterizes the elasticity of the medium, that is how much it gets stretched or
shrunk under stresses. We consider the solutions of the elastic wave equations in the half-
solid space X = R2 . X (—00,0], augmented with boundary conditions at 0X =

{z=0},
OFu; + Myu; = 0,

11



u(t=0,z,2) =0,
atu(t — O,l’l,.’EQ, Z) - h(ﬂfl,l’g, Z))
Ci3kl

Oruy(t,z1, 22,2 =0) =0,

M, = _ 0 cigzi(zr,20,2) O 22: Cijki(1,22,2) 0 0
! = p(x1,29,2) Oxjdxy
Z 0 Cz‘j3l(33171‘2,z)3_i0i3kl($1,$2’z)a 0
8SU] p(z1,22,2) 0z p(xr1,29,2) 0z dxy,

_22:(3 cizk (1, T2, )) o 22: <3Cijkz($1,$2,z)> 0
0z p(z1,x9,2) oxy, = 0z; p(x1,x2,2) oxy’

Let « denote the pair of variables (x1, x2). Since the medium is elastic, the stiffness

tensor satisfies the following symmetry condition
Cijkl = Cjikl = Cklij for any i, j, k, I.

Moreover, it satisfies the strong convexity condition (or ellipticity condition)

3 c 3
ikl
> eynzi3

1,7,k,l=1 1,j=1

which physically means that the medium will undergo a strict elongation in all directions
regardless from which direction we apply the stress, and mathematically means that the
displacement vector is strongly convex, that implies the smallest eigenvalue to be positive.

We assume that the medium is stratified: the elastic properties change much more
rapidly in the vertical direction than in the horizontal. More specifically (see [36, Section
2]), we make the following assumptions.

Assumption 1.2.1. We assume that the stiffness tensor and density to satisfy the scaling prop-
erty

Cijkl ‘ z

T(xa Z) = Cijl (.’E, g) 3

where € € (0, €| is the semi-classical parameter.

Assumption 1.2.2 (Homogeneity). We assume that below a certain depth Z 1, where Z =
2, the medium is homogeneous, so the stiffness tensor is constant

Cijkl (iL', Z) = Cijkl (x, Z]) fm’ A S Z[. (1.2)

12



Assumption 1.2.3 (Limiting velocity). We assume that for any wave number & the following
condition holds

ér;%vL(x,f, 7)) <wvp(x,& Z5). (1.3)

Condition (1.3) implies the existence of surface waves. It is called the limiting velocity
condition and it is the lowest velocity such that the matrix made of the coefficients of the
second order derivative and the matrix of the terms without derivative are singular (see
[36, Section 3]).

In the case of an elastically isotropic material, the stress produces the same elongation
regardless of the direction from which the stress is applied. In this case the 81 components
of the stiffness tensor ¢;j3; reduce their number to only 2 independent values y and A,
called Lamé parameters.

Assumption 1.2.4 (Elastically isotropic medium). We assume the medium to be elastically
isotropic, hence the stiffness tensor can be simplified in the following way

Cijkt = A0ij0rs + p (0ixdj1 + 0adjn.) - (1.4)

In particular, f is called shear modulus and it is zero in liquid or gases, and A is
called Lamg¢ first parameter and it depends on how thick the layer is. We set /i := £ and

A := 2 that are the density normalized Lamé parameters. After those assumptions, the
equation (1.1) becomes

[62@2 + ITI} v =0,

where v(t, z, Z) 1= u(t, z, z). We view H as a semi-classical pseudo-differential operator
in the standard quantization on R? (see the appendix). Thus,

e 07v + Ope (H(x,€)) v ~ 0,

where Op, (H (x,§)) is the semi-classical pseudo-differential operator with operator-
valued symbol H (x,&). The symbol H(z, ) is obtained by the Fourier inversion for-
mula, using a partial Fourier transform in the variables z = (1, x2). With this trick,
we get rid of the partial derivatives with respect to £1 and x2 and the result is an ordinary
differential operator in Z depending on the wave vector components £; and {2, which
are the dual variables of x; and x3. The symbol of H is separated into two different
orders through the semi-classical parameter €

H(x7£) = Ho(.iv,f) + EHl(‘Taf)a
where

0 R 0
Hyq(x,§) = —8707;331(% 2)87 - Z;Cij?)l(xa Z)gjé)?

13



2
—lzclgkll‘ Z Z( szle)>§

2
+ Z Cijri(x, Z)E;. (1.5)
4 k=1
and
2./ 9 0 0
Hljil(x,f) = — Z (%Cijgl(x, Z)) 87 —1 Z <Mcijkl($, Z)) gk (16)
j=1 J G k=1 J

For fixed (z, &), the operator-valued symbols Hy(x, &) and Hi(x, &) are ordinary dif-
ferential operators in the Z variable with domain

3 2
Z (Cﬁ?ﬂ(x O)ng (0) 4 Z Cigklfkvz(0)> = 0} :
=1 k=1

In the case of an isotropic medium, we can decouple the effective Hamiltonian Hy as

H0($,§) = Hé(l’,f) @ H§($7£)7

D:{UGH%R)

where HY is the scalar Love operator with eigenfunctions corresponding to the surface
Love waves, while HJ! is the matrix-valued Rayleigh operator with eigenfunctions cor-
responding to surface Rayleigh waves. The spectrum of Hy(x,&) consists of a discrete

spectrum with elements inside the interval (0, a(Zy) 1€ \2) and an essential spectrum

AUZ1) [€]? 00 (see [36]).

1.3 Decoupling into Love and Rayleigh operators

In physical experiments, we see that surface waves decouple into Love waves, which are
transverse waves where the oscillation of the particles is perpendicular to the direction of
propagation of the wave, and Rayleigh waves, which are a composition of a longitudinal
wave with oscillation of the particles parallel to the direction of the wave propagation
and a transverse wave. The result of these two waves, longitudinal and transverse, makes
the single particle move on an ellipse, or more precisely, on a helix since the area of
the ellipse will change with time due to the damping of the wave. Mathematically, we
would expect to be able to decouple this 3 by 3 matrix-valued differential operator into
the direct sum of a scalar differential operator, whose eigenvalues would be the energies
of the Love waves, and a 2 by 2 differential operator, whose cigenvalues would be the
energies of the Rayleigh waves.

14



The velocity of the P-wave and S-wave are

cp =1/ ;\ + 2/, cg = \//Tj, 1.7)

We make the substitution v(x, Z) = P(&)p(z, Z), where p(x, Z) isavector p(z, Z) =
(901(1‘, Z)a 802('177 Z)a @3($7 Z)) and

I SO S S I
PE)=| lE7'& —lg™ta o |,
0 0 1

is a rotation around the Z-axis. After the substitution, the differential operator becomes

gy + (A + 200) € 0 —ile| (i + A )
= 0 ~gzhgy + BEP 0
—ilel (A + iy ) 0 — 5 (A + 20y + e

and the decoupling is obtained. For the Love waves, we have the following Neumann
boundary value problem for the eigenfunctions

0 8(,02

— ozl gy tilE e = Aps, (L8)
o .
87(0) = 0. 1.9)
For the Rayleigh waves, we get the following boundary value problem for the eigenfunc-
tions
0 8@1 0 1 ~ 2 _
“ ozt ez T ‘f‘( (A )“‘)\82903)“‘()\4‘2#)’&‘ o1 =ANp1, (110)
0 0 0
~ gt 5 el (O + g )+l = Agn QD
, dp1
ilelesto) + 22 0) =0, @
N a(ﬂ 8903
INE| == 57 0) + (A 42 )82 (0) =0. (1.13)

The solutions of (1.8) and (1.10)—(1.11) are the two types of surface modes, Love and
Rayleigh waves, that are decoupled in the principal part of the semi-classical differential
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operator in an isotropic medium. We can construct the lower order term of the solution
by a perturbative method, that means expanding both the eigenfunction and the eigen-
value in powers of the semi-classical parameter € and then solve recursively the respective
equation at each order of ¢, as is shown in Theorem A.1.4 in the Appendix.

We suppose that Ho(z, £) has 91 eigenvalues
A <. <Ay <... <Apy
with eigenfunction @, o(Z, z, ). Then, those eigenfunctions satisfy
Ho®q0 = AaPo0+ O(e)

and, as in Theorem A.1.4, we can construct @4  ~ ®o 0+€Pq 1+..., Ag e ~ Ago+...
and each order satisfies

Ho (1)04,6 = (I)a,s © Aa,e + 0(600)’

where o denotes the composition of symbols. Multiplying @ 0(Z, z, §) times the factor
ﬁ and defining

Joe(Z,2,6) = ;g@a,o(zaﬂfvf)

we obtain that Jo ¢ (Z, z, &) is micro-locally unitary. Then we call W, ( (¢, x, Z) the
solution to the initial value problem

(€07 + Aa(z, D2)[Wae(t,z, Z) = 0, (1.14)
Wae(0,2,2) =0, OWa(0,2,2) = JoWalx,Z), (1.15)
with o = 1, ..., 901, Then, after finding the solution to the previous initial value prob-

lem, thanks to the perturbative method (see Theorem A.1.4 in the Appendix), we can
construct the solution to the initial problem (1.1) which is

m
u(t,z,€2) = Jac(Z,2,6Dp) Wae (2, Z).

a=1
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Chapter 2

The Love problem

2.1 Introduction

In this chapter, we will introduce the Love problem and focus on its direct and inverse
results. Starting from equations (1.8)—(1.9) we can apply a change of variables so that the
resulting boundary value problem assumes a Schrodinger-type form. Classical ways to
transform the Love problem are the calibration transform and the Liouville transform. By
those transforms, we get a Schrodinger-type problem with Robin boundary condition
with energy k2, that is related to the usual energy w? by k% = l“:—j — &2, The difference
between the two types of transforms is that in the former we obtain a potential depend-
ing on the shear modulus /¢ and the wave number &, whereas in the latter we obtain a
potential depending on p and the frequency w. For our purposes, we will use the calibra-
tion transform as we want & to be our spectral parameter to be aligned with the Rayleigh
problem in Chapter 3, where £ is the spectral parameter. Once we have performed the
calibration transform, we need to solve an inverse resonance Schrodinger problem with
Robin boundary condition, where the resonances are the poles of the resolvent with re-
spect to the parameter k (or &) as in Definition 2.5.4. This is a new result and is obtained
by following the result of Korotyaev for Dirichlet boundary condition (see [30]). The
novelty of my work, compared to Korotyaev’s work is to change the definitions of some
quantities and adapt all the results to our different setting. Moreover, all the proofs in
my work are more detailed.

The main goal of this chapter is to retrieve the shear modulus /i (& = p/p, with p
being the density (see Chapter 1) as we do in Theorem 2.5.46, which is a new result. The-
orem 2.5.46 is an application of a characterization (see Theorem 2.5.44) between a class
Wy, of Jost functions (see Definition 2.5.16) and a class V;,, of potentials (see Defini-
tion 2.5.2), which is a new result based on the paper of Korotyaev ([30]) who solved for
Dirichlet boundary condition. We also show classical direct results for the spectrum, for
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example, that all eigenvalues are purely imaginary in k (see Theorem 2.5.20), that there is
finite number of them (see Theorem 2.5.24), the proof that £ = 0 is not in the spectrum
(see Theorem 2.5.27) and the simplicity of all the eigenvalues (see Theorem 2.5.28). We
obtain new direct results for the resonances consisting in the asymptotics of the count-
ing function (Theorem 2.5.37) and the estimates of the resonances and their forbidden
domain (Corollary 2.5.36), which are similar to the results in the Dirichlet case ([30]).
In Section 2.6, we present a new alternative method of recovering the Gelfand—Levitan—
Marchenko equation (see Proposition 2.6.22), which is based on the papers [3] who did
it for the Rayleigh system. In this alternative method the Weyl-Titchmarsh function
is defined as in [22], following an approach that can be extended for not self-adjoint
problem. Furthermore, we prove a new result of spectral inverse problem in terms of a
class Ml;;, of Weyl functions (see Definition 2.6.27) as in Theorem 2.6.28.

2.2 The calibration transform

In Chapter 1, after decoupling the system, we obtained the following Love boundary
value problem

8A3<P2 ~ el _
D2 .
a7 0 =0

where Z ranges in the depth axis, that is, the half-line | —00, 0], with Z = 0 coinciding
with the Earths surface, —oo coinciding with the centre of the Earth, A = w? is the
eigenvalue, w is the frequency, /i is one of the two Lamé parameters and £ represents the
wave vector. We make the calibration substitution

1 d . d 1. s , 2 1.1, ~L oy
v = mu gz \az¥e ) = 4f 2(f) u— GA72 fru+ f2u
and we get
1 " 1 ~IN\ 2 1
u/l |§|2U: /{_(/’f) — = 2 U
2 4\ f1 f
We set the quasi momentum k := Z—? — [€]? and
1" 1\ 1 1 )" 1 1
V:*MT—* (MA> —TW2+A*W2: (\/'EA) _TW2+A*W27 2.0)
20 4\4 fi fir Vit fir

where fif := [i(Z1) is the value of the shear modulus at the depth Z;, below which
the medium is homogeneous. By Assumption 1.2.2, fi(Z) = jis constant for Z < Z7,
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hence also the derivatives /i’ and i” vanish for Z < Z;. This implies that the potential V'
has compact support and depends only on Z as we fixed w and let our spectral parameter
& vary. In this way the potential V' = V[, can be parametrized by w and the resonances
are considered in terms of &.

Remark 2.2.1. In Section 2.5 we will assume that the potential V- € V,,, (Definition 2.5.2),
that implies the Lamé parameter [i to be constant below the depth Z 1 and to be different than
fur in an interval of type (Z1,a + Z1) for a > 0.

The Love scalar equation takes the following form:
—u" +Vu=\u, A= k2, (2.2)

with corresponding boundary condition that becomes of Robin type after the transform-

ation . A'(O)
W (0) 4+ hu(0) =0,  h=—=H1) (2.3)
To resemble the classical formulation, we make the substitution Z = —x, which leads

the domain to become [0, +00) and we study the problem in terms of k. In our case,
the potential of the Schrédinger operator is real because we are considering an elastic
medium. In the case of an inelastic medium, we would have a complex potential that
implies the loss of part of the energy which is converted into heat. We make a self-adjoint
realization in L?(IR ;) of the operator in (2.2) due to the boundary condition (see [11]).
Then the operator appearing on the left hand side of (2.2) prescribed with the domain

D = {u € H*[0,+00) : u/'(0) + hu(0) = 0} (2.4)
and the L2 inner product is self-adjoint.

Remark 2.2.2. We stress that the \ appearing in (2.2) is the eigenvalue of the Schridinger
equation and has nothing to do with the \ appearing in (1.4), that is one of the Lamé
parameters, and which will always appear later as X = % in the normalized form, thus

avoiding any type of confusion between them.

2.3 The Riemann surface

The presence of a square root in the definition of & suggests that we should define a
Riemann surface for & in order for & to be a single-valued holomorphic function there.

We make an analytic continuation of the real positive variable |{] to the whole complex

plane and we define the new complex variable as . Let k,,(§) = i4/&? — ﬁ—j and define

the Riemann surface {2 of k(&) by taking two sheets of the complex plane with cuts
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along iRU [— ﬁ, ﬁ} , €24 called physical sheet and €2_ called unphysical sheet, and
gluing them in a crosswise way. On the one hand, €2 is called physical sheet as all the
€ on this sheet correspond to k with positive imaginary part, which lead to a physical
L? solution. On the other hand, Q_ is called unphysical sheet as all the ¢ on there
correspond to k with negative imaginary part, which give rise to a non L? solution.
We choose a determination of k(&) by picking the branch of the square root so
that k,(§) € iR4, when £ € Q4. The function k,,(§) becomes single-valued holo-
morphic on the Riemann surface 2 and with non-zero derivative everywhere, hence it
is a conformal mapping. The quasi momentum k(&) satisfies the following properties

(om0
k., <[0+i0,\/%+i0)> - [—“jﬂ@)

ko (£€) = i€ + O(E[7) £ €0y, Re >0,
ko (£6) = =i + O(l¢| ™) €0 R >0,
and also _
kw(g) = _kw(g) = kw(_f) forg € Q4. (2.5)

In (2.5) the conjugation is made through paths non intersecting the cuts. The reflection
is made by paths that cross the cuts as in Figure 2.1. Hence, when we pass the first
cut on the imaginary axis we get to the sheet {2_ and when we pass through the cut

(—ﬁ, ﬁ) we come back to the original sheet. From (2.5), we see that k,(£) is an

even function on each single sheet.

2.4 Cartwright class functions

In this section we give some definitions and results from complex analysis that will be

useful later on (see [29, Chapter 3] and [33, Chapter 1]).

Definition 2.4.1 (Exponential type function). An entire function f(z) is said to be of
exponential type if there are real-valued constants o, 0 and A such that

1f(2)] < A (2.6)

Jfor z — 00 in the complex plane. The infimum of the o and o such that (2.6) is satisfied
are called respectively order and type of the exponential type.
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Q.

)
(e

Figure 2.1: Reflection from & to —¢ in the physical sheet . The dashed line represents a path in the unphysical sheet
Q_. The red lines represent the cuts of the Riemann sheets.

In the following we present the Hadamard factorization theorem from [16, page 279],
which we will be fundamental for our analysis.

Theorem 2.4.2 (Hadamard factorization). Let f(z) be entire of finite order p and denote
by ay, the sequence of its zeros # O (with multiplicity counted by repetition), so arranged that

0< |a1\ < ’CL2| < \(13] <...

Then
f(Z) _ Zmeg(z) HEp (azn> (2.7)

where (2) is a polynomial of degree q, q < p, m is the multiplicity of = = 0 as a zero of f

and
1—=2 =0
Ep(z) = e i

with p = [p| being the integer part of p. The product (2.7) is uniformly convergent on
compact subsets of C.

Next, we present a theorem from Lindelof from [29, page 20], which proves the
absolute convergence of the harmonic series of zeros of an entire function of exponential
type.

Theorem 2.4.3. Let f(2) be entire, of exponential type, with f(0) # 0 and denote by
{an} the sequence of zeros of f(z) with each zero repeated according to its multiplicity. Put

S(r) = Z i

a
lan|<r
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Then |S(r)| is bounded as r — oo.

The next theorem is also from Lindeldf from [29, page 21] and is, basically, the con-
verse of the previous theorem.

Theorem 2.4.4 (Lindelof). Let
0 <la1| <lazg| <las| < ...,

denote by (1) the number of ay, having modulus < r (taking account of multiplicities, as
usual), and suppose that n(r) < Kr for some constant K > 0. Moreover, suppose that the
sums

>
a
lan|<r "

remain bounded as v — 0o. Then the product

H(z) =] (1-@1) e

n

is equal to an entire function of exponential type.

The next theorem is from [29, page 22].

Theorem 2.4.5. Let f(z) and g(2) be entire and of exponential type. If the ratio % is
also entire, then it is of exponential type.

Definition 2.4.6 (Cartwright class). A function f is said to be in the Cartwright class with
indices p+ = A and p_ = B, if f(z) is entire, of exponential type, and the following
conditions are fulfilled:

/ log" | f(x)|dx
R

Trz <o r)=4 p-(f)=B (2.8)

where p+(f) = limsup,_, Miﬂy)' andlog™ (z) = max {log z, 0}.

Basically, for a function to be of Cartwright class means that it is of exponential order
1, of type A in the upper half-plane and B in the lower half-plane and with positive part
of the absolute value of its logarithm in L' (IR, IT), where II is the Poisson measure (see

(371)

d
an(e) = - :tg. (2.9)
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For these functions, the Hadamard formula (2.7) can be simplified. Cartwright class
functions are very useful in view of a version! of the Paley-Wiener theorem because they
can be written as the Fourier transform of a compactly supported function (see Lemma
2.5.34). Another useful application of the Cartwright class property is the Levinson the-
orem (see [29, page 69]), which is the counterpart of the Weyl law for the resonances. We
denote by AV (7, f) the number of zeros of an entire function f with positive imaginary
part with modulus < 7, and by N_(r, f) the number of zeros with negative imaginary
part having modulus < r. Moreover, N (f) := lim, oo N1 (7, f). The total number
of zeros with modulus smaller than r is N (r, f) := N4 (r, f) + N_(r, f).

Theorem 2.4.7 (Levinson). Let the function [ be in the Cartwright class with p4 = p— =
A for some A > 0. Then

Ni(r, f) = %(1—1—0(1)) Jforr — o0.

Given & > 0, the number of zeros of f with modulus < v lying outside both of the two
sectors | arg z| < 0, |arg z — w| < & is o(r) for large .

2.5 'The scattering problem

By a direct problem (or forward problem) we mean the problem of finding the scattering
or spectral data associated with a differential operator in a certain class and all their
properties. As we can see from (1.8) and (1.9), the boundary value problem is determined
by V, for fixed h. Hence, we want to define a suitable class for this pair, such that we
can find a mapping from this pair to the scattering data of the problem.

In this section, we introduce the Jost solution and the Jost function because they are
the key ingredients we need to be able to obtain information about the scattering data.
Below we give some definitions that are essential for our next results.

Definition 2.5.1 (Bargmann-Jost-Kohn). We define the Bargmann-jost-Kohn class of po-
tentials®, and we denote it by L 1, as all the real functions V () such that the potential and
its first momentum are integrable

/Oo (14 2)V(z)|dr < oo. (2.10)
0

"The standard version of the Paley-Wiener theorem states that the Fourier transform of Hardy space
functions on a real line (in the upper half plane) are functions in L?(R.). Tt can be both stated for the upper
half-plane and for the unit disc, which can be mapped into each other through a Mébius transformation.

“For this class of potentials it is possible to write the Jost solution in terms of a transformation operator,
as we will see. Potentials in this class are short-range potentials.
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Definition 2.5.2 (Class of potentials). We denote by V,, the class of real potentials V
such that V€ LY(Ry), supp V' C [0, 2] for some x1 > 0 and for each € > 0 the set
(1 — €,;xr) Nsupp V. has positive Lebesgue measure.

Remark 2.5.3. We give these two definitions of classes of potentials Ly 1 and V., to point
out that we could solve the inverse problem with either class of potentials. If we consider
V'€ Vg, then we can reconstruct the potential from only eigenvalues and resonances as
data. Otherwise, if V' € Ly 1 we can reconstruct the potential from the scattering data, such
as the scattering function, the eigenvalues and the L? norm of the eigenfunctions.

Associated to (2.2), the resolvent operator R(k) = (—% +V - k2> ! isbounded
from L?(R) to H%(R) for all but a finite number of k¥ for Im k& > 0. The existence of
the resolvent for Im k£ > 0 follows from the spectral theorem. The resolvent operator
can be extended from Imk > 0 through the continuous spectrum (Imk = 0) to a
meromorphic operator-valued function

R(k) : L(QJ(RJF) - Hl%)c(RJr)v keC

on the complex plane. The proof of the existence of the meromorphic continuation can
be found in [21, Theorem 2.2]. This definition has to be interpreted in the sense that
for every cut-off function x € C2°(R4) with x = 1 on supp V, the cut-off resolvent
XRx(k) is bounded for every k € C, except for a finite number of points which are
eigenvalues (Im £ > 0) and resonances (Im & < 0) (see [21, Section 2.2]).

For an elliptic self-adjoint operator in L?(%) of a bounded set ¥, the eigenvalues
must be real, countable and accumulate at infinity (see [47, Theorem 8.3, Chapter 1]).
The exact values of these can be obtained only in specific cases, such as for the sphere
or the disc where the spherical symmetry allows us to write the Dirichlet Laplacian in
spherical coordinates, or in the case of a square where by separation of variables we can
reduce the problem to two one-dimensional ones. In all the other cases for the Laplace-
Beltrami operator, we can usually find an asymptotic formula for the eigenvalues or an
asymptotic formula for the number of them, that is, the Weyl law.

On the halfline, for the Laplacian plus a real compact perturbation, the L? spectrum
consists of an essential spectrum [0, +00) and a possible set of negative discrete eigen-
values. In terms of k, where A\ = k2, the L? spectrum, then, consists of a discrete set
of pure imaginary eigenvalues and an essential spectrum (—00, +00). Moreover, some

. . 2 . . .
other k arise for which (—j? +V - k2> 4 = 0 has a non-trivial solution, but such
solutions are not in L2, These are called the resonances and we define them below.

Definition 2.5.4 (Resonance). We define a resonance of the differential operator P =

—% + V' to be a pole of the meromorphic continuation of the resolvent R(k) in the un-
physical sheet Tm k < 0 with E2 =\ We Jjointly enumerate the eigenvalues and resonances
as ()‘j)jeN’ where \1, ..., \N are the eigenvalues.

26



Remark 2.5.5. In the definition of resonances, we consider the number of eigenvalues N to
be finite. Indeed, we will prove this fact later in Theorem 2.5.24.

Remark 2.5.6. With a slight abuse of terminology, we might call the kj, such that \j = kzjz

is an eigenvalue or a resonance, also an eigenvalue or resonance for the sake of simplicity.

Remark 2.5.7. The self-adjointness of the problem implies that if k is a resonance, —k is
also and with the same multiplicity [21, Section 2.2].

Eigenvalues and resonances are the scattering data we use to solve the inverse reson-
ance problem. They can be seen as zeros of the Fredholm determinant (see [49]) or of
the Jost function. The Jost function is defined in terms of the Jost solution, introduced
below (see Definition 2.5.11 for the Jost function).

Definition 2.5.8 (Jost solution). 7he Jost solutions f* are the unique solutions to the dif-
ferential equation (2.2) that satisfy the following condition

fi(x, k)= etk for x> xg. (2.11)

The radiation condition (2.11) tells us that the solution of the differential equation
must behave like a plane wave (eigenfunction of the Helmholtz operator) far from the
scattering area (for x > x7) and implies uniqueness. Since V' € L1 then the Jost
solution can be rewritten as:

[z k) = e 4 / Az, t) et dt, 2.12)

where A(x,t) is the kernel of the scattering transformation operator (see [34, Section
4.2] or [22, Theorem 2.1.3]). The transformation operator is a continuous function for
0 < x <t < o0, and satisfies

Az, ) = % /m SV, (2.13)
A0 < 5Q (T3 ) e @C) 14
where
Qule) = [ V@), 2.15)
Qi(z) := /;O Qo(t)dt = /:o(t —x)|V(t)|dt. (2.16)

The self-adjointness of the differential operator implies that, for real k, f~(z,k) =

fH(z,k) = fT(x,—k). These properties suggest that we remove the superscript +
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and — and set f1(z,k) =: f(x, k). Accordingly, we will refer to f~ as the conjugate
of f. By solving (2.2) with the variation of constants method, we can get a Volterra-type
equation for the Jost solution f(x, k) (see [34, Section 4.2])

ﬂ%@zﬂ%”—/mﬁnwf_iﬂv@f@kMt (2.17)

In this form, the Jost solution can be naturally expanded as a power series of the potential,
by Volterra iteration. Below we state some properties of the Jost solution.

Proposition 2.5.9. The Wronskian W (f, f)(x) = f(xz, k) f'(x, k) — f'(z, k) f(x, k)
is independent of x.

Proof. 'This follows from the fact that in our differential equation the term of order one
in the derivative is missing. Then the Wronskian between two eigenfunctions for the
same (real) eigenvalue is constant in z, for example

LW F)w) = 7 KT )+ S BTG ) — f o, )G )

— [ k) F@ k) = (<V 4+ k) (f(a, k) Fw, k) — fla, k) f(@,k)) = 0. O
Proposition 2.5.10. 7he Jost solutions f(x,k) and f(x,k) are linearly independent for
real k # 0.

Proof. Since the Wronskian is independent of x, we can compute it for x — 00, as the
Jost solution is known by the boundary condition at infinity intrinsic in its definition.
Hence, we have

WS T) = lim W(f, (@) = lim (fF = [F) (@) = =2k 218)

T—00

This ends the proof. 0

The two Jost solutions f and f are two linearly independent solutions of the differ-
ential equation (2.2), hence they form a basis of the space of solutions and we can write
the general solution to the boundary value problem (2.2)—(2.3) as a linear combination
of them

o(z, k) = a(k)f(z, k) + (k) f(z, k). (2.19)

Imposing the boundary condition (2.3) on ¢ we get:

alk) [£(0, )+ £(0,k)] + b(k) | F(O, ) + (0. k)| =0
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which gives us a one-parameter family of solutions

o k) = ok) { [ FO. W)+ FO.R)] £, k) = [0, k)h+ £/(0,8)] Fla,B) } -
(2.20)
We let o(x, k) satisfy the condition

0(0,k) = 1, (2.21)

and we determine the constant ¢(k)

1 1

T AT

Definition 2.5.11 (Jost function). We define the Jost function f1,(k) of the Schridinger
operator —% + V in (2.2) with Robin boundary condition (2.3) as the quantity

Fu(k) = £(0,k)h + f'(0, k) (2.22)
where f(0, k) is the Jost solution evaluated at x = 0.
We enumerate the zeros of f}, as (kj)jeN in the same way as in Definition 2.5.4.

Remark 2.5.12. It is important to point out that if k; is a zero of f1,(k) then the Jost solution
f(x, kj) satisfies the boundary value problem (2.2)—(2.3).

The Jost function contains information on the Jost solution at the boundary. It is a
fundamental quantity for the problem because its zeros correspond to our data (eigen-
values and resonances). The goal is to find enough analytic properties so that we are able
to reconstruct the Jost function from its zeros. Below we define the regular solution (see

[11, Section 1.2]).

Definition 2.5.13 (Regular solution). We define the regular solution o of the Cauchy prob-
lem (2.2) with Robin boundary condition (2.3) as the quantity

plank) = = 5o [Tl (@) = Fu(R) T ) @23)

The Jost function corresponds to the Wronskian between the regular solution ¢(z, k)
to the problem (2.2) and the Jost solution f(z, k) evaluated at x = 0. Indeed

W (e, f)(:(} =0, k) - 90(07 k)f/(ov k) - (p/(o, k)f(ov k)
S0 K) = (—h)F(O0,F) = fi(b) (2.24)

29



For real k& # 0 we can easily obtain the property

fu(k) = fu(=Fk), (2.25)

since h and the kernel A(z,t) are real. In order to keep the property (2.25) valid also

for complex k, we need to define the complex conjugation operation as f; (k) = fr,(k)

and we can prove that, similarly, f;(k) = f,(k) = fn(—k) holds for k € C. From
(2.25)

90(55’ k) = 2_27]1 [f(ov _k)h + f,(ov _k)] f(xv k) - [f(07 k)h + f/(07 k)] f(l‘, _k)}
= ARV R) = (k) )
- % (k) (@, k) = Ful—R) F(w, R)] = % [2i T { fy(=k) f (w, k)],
so, we obtain .
(P(ka) = _%Im{fh(_k)f(ka)} (2-26)
We can write the Jost function in a polar form
Iu(k) = [ fu(k)le"™ (2.27)

where 0(k) is called the scattering phase. From (2.25) we can recover an interesting

property of the scattering phase, indeed

Fr(k) = [ fu(k)|e®®) = | fr (k)[R = f,(~k)

then 6(k) = —9(—k), so the scattering phase is an odd function. From (2.26), (2.27)
and (2.12) we can write the general solution in the following form

| fn(R)]
k

o0
oz, k) = {sin (kx +0(k)) + / A(z, t; k) sin (kt + 6(k)) dt} .
Definition 2.5.14 (Scattering function). We define the scattering function S(k) of the
problem as the negative of the ratio between the Jost function f1,(k) and the reflected Jost
function fn(—k)
fn(=Fk) 2i5(k)
S(k) = ——F—~F = —e™. (2.28)
(%) fn(k)
f(O,—k’)

Remark 2.5.15. In the case of Dirichlet boundary condition it is usually defined as FO0E)

where f(0, k) is the Jost function in the Dirichlet case (see [30] or [34, Section 4.2]). In the
case of Robin boundary condition, it is usually defined as in (2.28) (see [51]).
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2.5.1 Properties of the Jost function

In this subsection we will obtain some properties of the Jost function, that will help us
with the direct and inverse results. For the following, we recall the definition of NV (f).
In the following and throughout we define the (complex) Fourier transform

a(k) = /I o) de,

k € C, for g € L*(I) with bounded support, where I is an interval. Moreover, through-
out the thesis we denote by C the upper and lower half, respectively, of the complex
plane C.

Definition 2.5.16 (Class of Jost function). We define the class W, of Jost functions as the
class of all entire functions f such that:

I f(k) #0 forall k € R and for some F' € V5, the function f is given by

F(k) = ik [1—1(15(0)—15(@)}, B(k) = /0 " p(@)etithay,

2ik
(2.29)

1I All zeros ku, ..., kn of the function f in C are simple, belong to iR and satisfy for
n = 1, ,N = N+(f) N

k1| > |k2| > ... > |kn| >0 and  fr(=k,)(—1)" <O0. (2.30)

It will be clear later why we call W, class of Jost functions. In particular, the goal is

to prove a bijection between V,, and W, (see Theorem 2.5.44). In order to do so, we

first have to prove that the Jost function is entire and that it satisfies the two conditions
of the definition of the class.

In the next theorem we prove that the Jost solution and the Jost function are entire
in k (see also [38, Lemma 3.1.4.] for the Dirichlet case and V' € L ;1 potential).

Theorem 2.5.17. For each fixed x > 0, the Jost solution f(x,k) and the Jost function
In(k) are entire in k.

Proof. Recall from (2.17) the following Volterra-type equation

Flo k) = ek — / - Wvu) F(t kL.

Multiplying (2.17) by e ~*% and defining the Faddeev solution as

X(xv k) = f(l', k)e_ikx
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we get

1 —2ik(z—t)
x(z, k) =1- / ——V(t)x(t, k)dt. (2.31)
" 2ik
Iterating (2.31) gives the series
= Z O (x, k) (2.32)
=0
where
XO(z, k) =1
and

0 . 00 —sz(tj 1—tj5)
Oy = v [ [ / et
x t1 2

b1 j—1

with the convention that ¢y = x. Moreover, we have the estimate

o1 T k| —Tm k) [(t1 —2)+ (b2 —t1 )+ (=t 1)
bz [
t t1 (max(l |k‘))

V()] [V(#)|dty - - dt

(|Imk| Imk)(z;—x)
= V(t)| - |V (t)|dtr - - - dt
(max(1, k)" / / /tl 1

B (|Imk| Imk)(z;—x) ” 2.33)
B (max(1, |k]))" I </ac Ve > '

where we have used the fact that the potential has compact support, V(z) = 0 for
x > 1, and in the last passage, we have used that those l-integrals with respect to
different variables are equal to [ times the product of the integral of the potential divided
by {!. Each term of the power series is bounded by the term appearing in (2.33), which
leads to a uniformly convergent series on every compact set of k. By Weierstrass M-test,
also the original series (2.32) converges uniformly and absolutely on every compact set,
hence, x(z, k) is entire in k. Then, also f(z, k) = x(z, k)e’*® is entire in k.
For f'(x, k) we have

f/(.I', k>€—ika:

1 —2ik(x—1t1)
:ik‘/ %V(tl)dtl
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00 00 ] L €—2ik(a¢—t1) 1— eQik(tQ—tl)
V(t)V (¢t o, k)dtidt
+/x /t1 2 %k (1) (2) (27 )dtydts

that for the same argument lead to f’(x, k) being entire in k. Therefore fj,(k) is also
entire. O

From the proof of Theorem 2.5.17 we get

G 1 fgcxl ’V(t)’dt : Imk|-Imk)(x;—=x
Ix(z, k) <1+ <lz:l' <max(1,|k|)> el | J(@r—z)
=1

_ 1 f;cf |V (t)|dt ! (| Tm k|-Im k) (z;—=)
_1+<§“<HM><(1J1€D> —h)e 7 (2.34)

that becomes

z ! [V(?)|dt
|X($ k)‘ < GWG(HIHM Imk)(z;— z)

since 1 < ellTmk[=Imk)(zr—z)
In the physical sheet, Im k > 0, (2.34) becomes

Je 1V ()|dt

Ix(z, k)| < e max(@LIkD ", (2.35)

Subtracting x(*)(z, k) in both members of (2.32), and repeating the same steps as in
the proof of Theorem 2.5.17 we get

Lo T 1V (6)|de

Ix(z, k) — 1] < e maxLED — 1 (2.36)

forImk > 0.
In the following, we state some properties of the Jost function (Proposition 2.5.18,
Proposition 2.5.19 and Theorem 2.5.28) as in [34].

Proposition 2.5.18. f,(k) cannot vanish for real k # 0.

Proof. We have

In(k k?)
det<f( ) ) k) — fu(—k)F(0.F)
f

= (f(o, k)+hf(0 k) £(0,—k) — (f( k) + hf(0,=k)) f(0,k)
= f(0,k)£(0,—k) — f'(0, k) (0, k) = =W (£, f)(0),
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for k real. Using (2.18) we obtain

fn(k) fh(_k)> :
det = 2ik. 2.37
(Fo) fin % >
By Proposition 2.5.10 the two Jost solutions are linearly independent for real £ # 0,
then it follows that fj,(£k) cannot vanish, as f,(k) = fr(—k). O

The arguments in the proof of Proposition 2.5.18 do not work for complex k in

general. Indeed, for complex k, f(x, —k) # f(x, k) but f(x,k) = f(z, —k) instead.

Proposition 2.5.18 is equivalent to saying that there are no eigenvalues on R\{0}.

Proposition 2.5.19. f1,(k) and %fh(k) cannot vanish simultaneously.
Proof: We can prove this by differentiating (2.37) with respect to k. O]

In the next theorem we show that for our self-adjoint operator, the eigenvalues and
eigenfunctions are real.

Theorem 2.5.20. The zeros k; of the Jost function fy,(k) in the upper half-plane are purely
imaginary and the eigenfunctions p(x, kj) and f(x, kj) are real.

Proof. We adapt the proof of Theorem 2.3.2 in [22]. From (2.24) we have that if k; is
a zero of fj,(k), then

For = 0, we have C; = f(0, k;) because of condition (2.21), hence
[z, kj) = (0, k5)p(z, kj), f(0,k;) # 0.

Suppose A, and A, with A;, # A, are eigenvalues with eigenfunctions f(x, ky,) and

f(xa km) (kr% = \,), then
o0 d2
/ <—2 + V(ﬂf)> f (@, k) f (2, k) da
0 dx
:/0 S, kn) (_dx? + V(w)) f(x, k) d
using integration by parts and the self-adjointness of the problem (2.2)—(2.3). Hence
0

Mo /0 (@ ko) @, ) = A / £, ) £ (2 Ko,
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which implies

/OO f(.%’, kn)f(x7 km)dCC =0.
0

Assume that \j = a+1b is a non real eigenvalue (b # 0) with eigenfunction f(x, k;) #

0. Since V and h are real then ), is also an eigenvalue with eigenfunction f(z, k;), since

\j # A, then we get

/O " k) T Ry = 0,

which is impossible as (0, k;) # 0. Then all the eigenvalues \; are real, k; are purely
imaginary by Proposition 2.5.18, and the eigenfunctions ¢(x, k;) and f(z, k;) are real.
O

Remark 2.5.21. In the case of V' = 0 with Robin boundary condition, there is only one
eigenvalue —h? plus the continuous spectrum (0, +00). If we add a bounded perturbation

2
V to —dd? the number of eigenvalues can increase, but the set of eigenvalues will still be
bounded as we can see below.

The next lemma shows another classical result for some self-adjoint operators, which
are lowerly semi-bounded for our class of potentials.

Lemma 2.5.22. AssumeV € V. Theself-adjoint realization of—%—l—v in L* (0, 4+00)
with domain (2.4) is bounded from below.

Proof. From [7, Lemma 3, page 221], we know that

/0 V(@) f(x)Pde > =C (¢ fII72 + ] fI[72) (2.38)

for 0 < ¢t < 1. Then the quadratic form defined as

= (-5 +v) 1) |

forany f € H? [0, +00) satisfying the boundary condition (2.3) becomes

oo

alfl = | (I (@) + V(@) f(2)*) dz — hl f(0)?
which using (2.38) yields

q[f1= A= COIf |22 = CtHIfIIZ2 = hlF(O)* (2.39)
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Let x¢ be the standard mollifier in C2° [0, 1) such that x; = 1 in a neighborhood of
zero. Then we can write

1 1
£(0) = - /0 (xef) dz = — /0 (f + xof) da,

that implies

FOI < MIxillz2ll 1122 + lxellzel ]| 2

and

LFOP < 20xil 221172 + 2l xel 72| 1172

For any € > 0 there exists a x; such that

[Ixtllze <€

and we can write (2.39) as
q[f] > (1= Ct =2[n|)||f |72 — (Ct~" +2[hlllxil172) | 1172 (2.40)

so, we take € and ¢ such that

< d t < !
2 - o
6] M 3C

then the coeflicient of the first term of (2.40) is positive and there exists a C' > 0 such
that

q[f] > ~ClIf|[7- [

Remark 2.5.23. In light of Theorem 2.5.20 and Lemma 2.5.22, we conclude that the set
of eigenvalues is bounded.

The next theorem shows a classical result on the finite number of eigenvalues for
self-adjoint Schrodinger operators with Lt potential and first momentum.

Theorem 2.5.24. Let V' €V, then the number of zeros of the Jost function [y (k) in the
upper half-plane is finite.

Proof: We partly follow [22, Theorem 2.3.4]. From (2.36) we know that for k = i7
with 7 > 0 we have

Ll v(o)|de

|f(z,iT)e™ — 1] < e max(LIED — 1. (2.41)
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As x approaches 7, the exponential tends to 1. Then, there exists an @ > 0 such that

Lz L1V (D)|dt 1
e max(Llth) — 1 < 3 x>a, 7>0,
and for the same a > 0 we have
1
flz,iT)e™ > 3 x>a, 7>0. (2.42)

We assume towards a contradiction that the set of eigenvalues A’ = {\;} is infinite.
Since A’ is bounded (see Lemma 2.5.22), then kj = i7; — 0 for 7 > 0. We have

/ f(x, k‘j)f(:U, k‘n)dl‘ = / (f(% kj)eTjZL’) (f(l‘, kn)emx) e—(’Tj'f'Tn)l’dl,

1 00 e—QaT
> 4/ e~ (Titm)e g > T (2.43)
a

after using (2.42) and that 7" := max; 7;. The operator described by (2.2)—(2.3) with
domain (2.4) is self-adjoint, so the eigenfunctions f(z, k;) and f(z, ky,) are orthogonal
in L2(0, 00)

0= [ Hak)fekade = [ fGo k) fGo ks
+ [k ) + £l = Pl do= [ k) fob)ds
+ /0 f2(z, kj)dx + /Oa f(@, k) (f(z,kn) — flz, k) d. (2.44)
The first and the second term of (2.44) are, due to (2.43),
/OO f(, ki) f(2, ky)dz > C, > 0, /Oa 2z, k;)dz > 0.
In order to get a contradiction, we aim to show that
| k) ok = fak)de 0 winsoe. 04

By (2.35), it holds for z > 0

|f(x,k))| < emTIRD emhiw < g max(LIET
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Using (2.13), we can write
a JoLv(pat
’/0 Fa, ky) (f (@, kn) = [, ky)) da| < em™=OTD / |e7™® — 7| d
LTivnldt  pa 00
+ e max(Llk;D) / (/ |A(z,t) (e_T"t — e‘Tﬂ't) ]dt) dx, (2.46)
0 T

then the first term

a
/ ‘e_T"x — e_zj‘ dr —0 asn,j — oo
0

by the dominated convergence theorem. We use (2.14) in

1 T\ Qi) 1 t\ Qi)
< - 1 < = _ 1
A0l < 50 (T31) @0 < S (5) ¢

since (o and () are decreasing, the last term of (2.46) becomes

/ </ |A(z, t) (e7™" — 7T |dt> dx
0 T
< te(O)/ / Qo (t> |6_T”t — e_TJ't‘ dt dx
0o Jo
SC/ Qo <;> le™ ™ — Tjt|dt<C/ Qo< > e ™t — e Tt dt — 0
0

asn, j — oo by the dominated convergence theorem, since the integrand is dominated

by 2Qo (%) which is integrable because

/0 2@0( >dt—2Q1()

Then (2.45) is satisfied and we get a contradiction, thus, A’ is a finite set. O

Remark 2.5.25. In Theorem 2.5.24 it is enough to assume the potential to be in Ly 1, bur
we would need to use different estimates than (2.41). In particular, we could use the estimate

|f(z,i7)e™ — 1| < Q1(x)e? ™) with Q1(x) as in (2.16) (see [22, Theorem 2.3.4.]).

Remark 2.5.26. 7he finiteness of the number of eigenvalues and their sign (negative for \;
with j = 1,..., N) does not surprise us. Indeed, the spectrum for the Laplacian, — A\, for
Dirichlet and Newmann boundary conditions is equal to the essential spectrum [0, +00),
while in the case of Robin boundary condition there is also the eigenvalue —h?. Since —A is
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self-adjoint and if we add a symmetric and relatively compact perturbation® V' the operator
— A+ V will be self-adjoint (Kato-Rellich Theorem) and the essential spectrum is conserved,
hence it will be oess(—A + V') = [0,400) for any dimension. So, the self-adjointness

and the essential spectrum are stable under a symmetric and relatively compact perturbation*

(see [28, Theorem 5.35, Chapter IV] and [28, Theorem 4.3, Chapter V]). The number of
eigenvalues, instead, can increase. In fact, for the Robin Laplacian, we will have instead of
a negative eigenvalue —h* a finite set of real negative eigenvalues \1, ... ,\ \y (hence pure
imaginary in k). The fact that the number of eigenvalues remains finite depends on the
potential being V' € Ly 1 (see [43, Chapter 1.1, page 12]).

The next theorem is a classical result for Schrodinger self-adjoint operator with L1 1
potentials (see [22, Theorem 2.3.6.]).

Theorem 2.5.27. Let V € Ly 1 be real. Then k = 0 is not an eigenvalue of (2.2).

Proof. We adapt the proof from Theorem 2.3.6. in [22]. The Jost solution f(z,0) is a
solution of (2.2) for k = 0, but the asymptotic condition (2.11) implies

lim f(z,0) = 1. (2.47)
T—>r00
We take a > 0 such that
1
f(x,0)>§ for z > a,

and we define

"
o(z) = f(a;,())/a oo

We can see that z() is also a solution of (2.2) for k = 0, because it satisfies

since f”(x,0) = V(z) f(x,0). Moreover, it satisfies:

f(@,0)2(z) = f'(2,0)2(z) = 1,

3We say that V is relatively compact if for any sequence #,, € L?, if Az, is bounded in L? then there
exists a convergent (in L? subsequence of V.

“For the self-adjointness it is enough the potential to be symmetric and relatively bounded. We say that
an operator V is T-bounded if D(T') C D(V) and if there exists @ > 0 and b > 0 so that |V f||7, <
a®[|fz2 + 6% T |72 forany f € D(V).
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which means that f(x,0) and z(x) are linearly independent. Using that f(x,0) is
positive in (a, z) and (2.47) it follows that

lim z(z) = +o0. (2.48)

T—r00

We assume towards a contradiction that y(z) is an eigenfunction in L? corresponding
to the eigenvalue £ = 0. Since f(z,0) and z(z) satisfy (2.2) for k£ = 0 and since they

are linearly independent, we can then write
y(z) = C1f(x,0) + Coz(x).

By (2.47) and (2.48), then, it must be that C; = Cy = 0. Then y(x) is the trivial
solution y(z) = 0, so k = 0 is not an eigenvalue. O

The following theorem is a classical result on the simplicity of the eigenvalues for
self-adjoint Schrédinger operators with Ly 1 potentials. We follow a proof similar to

[34, Chapter 4, page 79].

Theorem 2.5.28. LetV € V,, then the zeros of the function f1,(k) in the upper half-plane
are all simple.

Proof. We assume towards a contradiction that there exists a root kg which is not simple:
fn(ko) = 0and fr(ko) = 0, where the dot indicates the derivative with respect to k.
These two conditions mean that:

f/(O, kO)
1100, ko)

We consider the differential equation satisfied by the Jost solution f(z, k), and its de-
rivative with respect to k

_f(oa k’o)h
—f(0,ko)h (2.49)

—f"(w, k) + V(@) f(z, k) = K f(x, k)

— ", k) + V(2) f(z, k) = 2k f (2, k) + k> f(z, k).

We multiply the first equation by f(x, k) and the second by f(z, k) and subtract the
second from the first

—f(l‘, k)f//(djv k) + f(xv k)f//(xv k) = _2kf2(x7 k)

Then, integrating by parts and considering that

lim (f(:r,k) F(a, k) — f(z, k) f(x,k)) — lim (eikx(ix)(ik)eikx

T—00 T—00
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—(ix)eikx(ik)eikx> =0

we get

F10. )70, k) — 7(0.K)F(0.k) + / " k) f (e k)da

- /OO [z, k) f(x, k)de = —2k /OO (x, k)dx

0 0

which becomes

FO.K)F0, k) — 70, k) (0, k) = —2k / TPk @50

0

Evaluating this equation at ky and using the condition of a multiple root (2.49) we get
a contradiction, in fact, the left-hand side is zero while the right-hand side is not. ~ [J

Remark 2.5.29. For the Robin Laplacian in the half-line the eigenvalue —h? is simple. In
the one-dimensional case, we have seen that the simplicity of the eigenvalue is stable under the
addition of a small compact perturbation. However, for dimensions d > 2, this is not true
in general. Indeed, if we consider —A +V in R3 withV being the Coulomb potential, the
eigenvalues are all simple and accumulating at zero. However, if we add a potential coming
Jfrom an external electric field, we will observe a splitting of the eigenvalues which become
multiple (Stark effect). The same happens if we add a potential coming from a magnetic field
(Zeeman effect).

Those properties of the eigenvalues and resonances proved in Theorem 2.5.20 and
Theorem 2.5.28 depend on the self-adjointness of the differential operator (see [22]). In
the following lemma we obtain some estimates on the Jost function, which will be useful
both for the direct and the inverse results.

Lemma 2.5.30 (Uniform bounds on Jost function). Let V' € V. Then the jost function
is of exponential type and satisfies the following estimates:

|fn(k) —ik| < ||V | e(Tmkl=Imk)er pa (2.51)

v

< |:h‘ + :| ae(\Imk\fImk:)x]ea (2.52)

fh(k)—ik—h+‘/((])';‘/(k3)

I
2

where V(k‘) = f(;” XKV () dt is the Fourier transform of the potential V and a =
Vv .
nila‘)l(l‘,l\k\)’ with ||V := [ |V (z)|dz.

>In physics the Fourier transform of the potential would be the scattering amplitude.
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Proof- These formulas result from the bound on the Jost solution and Jost function and
from the definition of the Jost solution iterating the Neumann series up to the first
order. We first compute the estimate of the Jost solution (step 1), then we do the same
for the derivative of the Jost solution (step 2) and finally, we collect those results to get
an estimate of the Jost function (step 3).

o Step 1. We start from (2.32) and write it as

N
x(z, k) = Zx(l) (z,k) + Ry(z, k)
=0

where Ry (x, k) is the remainder defined as

ooN+1 o =2ik(tj_1—t))
N+1 e J J .
Ry(a.k) [ ( — vm)

N ] 1

“X(tng1, k)dtngr - - dty

with tg = = and with
o0 | _ 621k(t1—z) v 0
= — S — t
Row k) == [ =G Vtox(t. k.

Using (2.34) we get |x(z, k)| < e®e(Tmkl=Imk)zr From the definition of the
Faddeev solution it follows that x (0, k) = £(0, k). The second iterate " (0, k)
of (2.32) can be written as

Ty rr ) -V k
X0, k) = —ﬁ |Vt + ﬂ MV (t)dt = —W-
Then
F(0,k) — 14 (O)Q;kv(k) => XY, k),
=2
7(0) = V(k) | _ <~
'f(txk) —l+ = ——| < ;)x“ (a, k)|

< (T k|~Imk)(z1—z) (ea(a:) _ 1) '
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From (2.33) we can get an estimate (Gronwall inequality) of the Jost solution.
The estimates of the Jost solution after respectively zero and one iteration of the
Neumann series are

1700, k) — 1| = |Ro(0, k)| < ellmkl=Imk)zr g pa (2.53)
and
7(0) — V(k
Fo.k) - 14 YO >‘ — Ry (0, k)] < ellmH-Tmber (g0 _q _ g
a2
< ? (|Imk| Imk) x1€ (2.54)

o Step 2. For f'(x, k) we have

P, k) = ikethe / cos [k (z — 1] V (1) f (¢, K)dty

x

which can be written as
f,(SU, k)e—zkm

1 —2ik(x—t1)
:ik—/ %V(tl) (t1, k)dt,

/-oo 1 +e—2ik(a) t1)

=ik — V(t1)dty

%1 4 e—QZk(x t1) €2ik(t2—t1)
/ / 5 V(t1)V (t2)x(t2, k)dt1dts
t1 lk

Evaluating it at = 0 and resolving the first integral, we get

po.k) =ik~ LOLVO,

00 (001 4 e2ikt1 1— 62ik(t2_t1)
+/ / 2 %k V(t1)V (t2)x (t2, k)dt1dis

from which we derive the estimate

V(0)+ V (k)

2
5 < max(l |k‘|) |Imk| Im k) 3316 (2.55)

10, k) — ik +
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* Step 3. The estimate of the Jost function at the first order in & can be obtained
only considering (2.55) truncated at the zeroth order and it becomes

|fh(k7) . ’Lk‘| < ||V|| e(\Imk\—Imk)xjea‘

Instead, using (2.53) truncated at the zeroth order multiplied by /h and using
(2.55) we obtain

% 7 (k
F1(0, k) + B f(0, k) _ik+‘/(0);v() o
< |:’h‘ + H‘/H:| ae(llmk\—lmk)mlea. 0
= 2

As a corollary of Lemma 2.5.30, we show the form of the previous estimates on the
physical sheet.

Corollary 2.5.31. Let V' €V, then the Jost function [y, is of exponential type and satisfies
the following asymptotic expansion in the physical sheet (Im k > 0)

fn(k) =ik + O(1) for |k| > 1. (2.56)
Proof. In the physical sheet Imk > 0, |Im k| — Im & = 0. Then (2.51) becomes
|fn(k) —ik| < [[V] e
which for k£ > 1 implies

Vi

|
| fn(k) —ik[ < [|[V][e TFT".
This yields (2.56). O

We shall use a version of Lemma 2.1 from Korotyaev [30] adapted to our setting.

Lemma 2.5.32. If V € V,, and if ki, ... ,kn € iRy are the zeros of the Jost function
fn(k) such that |k1| > ... > |kn| > 0, then the normalizing constants m, defined as

mj = /OOO f2(x,kj)dx (2.57)
satisfy
R0 .
m; = Z[fh(_k)]kk > 0, forj=1,...,N, (2.58)

=N

and the following inequalities hold
i(=1)Y fu(kj) >0, and (=1) fu(=k;) <0,  forj=1,...,N, (2,59

where the dot denotes the derivative with respect to k.
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Proof. Since kj is an eigenvalue, then f3,(k;) = 0, which means
7'(0,kj) = —f(0,k;)h. (2.60)
Plugging this formula into the Wronskian (2.18) between f(x, k) and f(z, —k) we get
—2ik; = f(0,k;) [f'(0,—k;) + hf(0, —k;)]

and together with formula (2.50) and (2.60) we get

© f(0,k5) [—hf(o,k:j) - f"(kaj)]
/ [ (z, kj)dx = — k.
0 J
B f(0, kj) |:_hf(07 kj) - f/(ov kj)} . %fh(]@
T SO k) RSO, k) + SO, K] R

J
We can see that for k € iR, as |k| — o0, the Jost function f;, (k) tends to —00. So
the first zero of the Jost function, k1, has negative derivative i f, (k1) < 0, consequently

the next zero has positive derivative i fj,(k2) > 0 and so on. This implies the second
inequality in (2.59), since the ratio must be positive. ]

Remark 2.5.33. From proposition 2.5.19 we can see thar f1,(k;) is different from zero ar
the k; € iR, zero of the Jost function fi,(k). Then (2.58) makes sense.

The following lemma makes a connection between the Jost function and the potential
(compare with Lemma 2.2. in Korotyaev [30]), which makes use of the Paley-Wiener
theorem for functions in the Cartwright class.

Lemma 2.5.34.

(i) Let f be entire, of exponential type, and let po(f) = 0 and p_(f) < 2xr. If the
Jollowing asymptotic holds

1
f(k) =ik [1 ~ 5 (C —g(k)+ O(k‘l))} ; k — oo,
for some g € LY(0,21) and some constant C, then there exists F € LY(0, 1) such
that .
f(k) =ik [1 - ﬂ(F(O) - F(k:))} ,  kec, (2.61)

where p—(f) = 2sup [supp F.

45



(ii) Foreach V. €V, there exists p € LY(0,27) such that
. 1 @y
k) = k(14 G0 =k [1- 2 60) — 5] 60 = [ plarae
(2.62)

Proof. (i) is proved in the same way as [30, Lemma 2.2] with slight modifications.
(ii) From Lemma 2.5.30 we can write

fu(k) = ik [1 - ﬁ (V(O) —2h+V(k)+ O(k‘l))} .

Then the Jost function can be written as

fulk) = ik [1 ey u<k>>}

2ik
where C' = V/(0) — 2h, §(k) = V (k) and u(k) = O(k™"), when k — £o0.
Using the Paley-Wiener theorem, since the function u(k) is entire, of exponential type
and square integrable over horizontal lines, there exist a v € L2(0, ;) which is the
Fourier transform of this function, so u(k) = o(k), where v € L2(0,z;) C LL(0, x;).
Using (i) with p = g + v and p(0) = §(0) + 9(0) = V(0) — 2h we get (2.62) and
integrating by parts we obtain f; (k) = ik(1 + ((k)) (see [30]). O

Lemma 2.5.34 tells us that if we have a function in the Cartwright class with p_ =
27, then by Definition 2.5.16 of the class W, property I is satisfied, but this is not
enough to have a bijection (we already proved thatif f isin W, then is in the Cartwright
class) because we also need property II to be satisfied.

2.5.2 Direct results

In this subsection, we state the direct resonance results for the Love problem in terms of
the parameter k and . We use the property of the Jost function being in the Cartwright
class in order to use the Levinson Theorem 2.4.7. In the following lemma, from estimates
of the Jost function obtained in the previous subsection we recover estimates on the
resonances, which tell us where they are located in the complex plane.

Lemma 2.5.35 (Resonance-free regions). For any zero kn, n > 1, of fi(k), V € V,
the following estimates are fulfilled:

|kn| < Coe2lTmbnler oy = ||V VI (2.63)
Additionally, if V! € LY, then

1
ka2 < Cre2imbaler oy = VI 4 20l [V 4+ 7 (VO] + [V | V.
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Proof. Here we adapt the proof of Corollary 2.3 of [30] to our case. Estimate (2.51)
evaluated at a zero ky, of fr(-, V'), with |ky,| large, implies

[fu(kn) = ikn| < [V || 2T Enler eV

and hence
|k5n| < HVH €||V||62|Imkn|x17

which gives (2.63). If moreover V' € LY(0,00), then (2.52) evaluated at k,, with
|kn| > 1, implies

. v (O) —V (kn) HL ”2 |h| HL I
kn — ]{n < h,—l— ”V” 2|Inlkn|fcl
‘fh( ) ¢ |_ B + 2|l€n| + ‘kn| elle
and hence
V (kn)kn, VI
|—ika| < |kn <—h+ “2/”) ’+ ( 2) + (” 2” +|h| HVH> VIl 2T kenzr

(2.64)
Integrating by parts yields

A~

V() :/m 2RV (2 — [QIk e2ikay (5 )rl _/Oxl sz 2RV (1)

0
o / szm
= "5 < / Vi(z dm) )

thus

~ 1
ken)| <
7 (k)| < g

(V) + e |y

Therefore, (2.64) implies

ImFSCW”+MMWH-OV wam)ﬁm““+v

2
+ ’kn’ <‘h‘ + ”VH) 2|Imkn|x1+HVH
where we have used (2.63) in the last passage. O

As a corollary of Lemma 2.5.35, we infer the resonance free-regions (forbidden do-
main) in terms of the wave number &, with k% = <= — ¢2,
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Corollary 2.5.36. For any &, = 4/ "J—: — k2, n > 1, where ky, are the zeros of fr,(k, V)
with V. € V,, the following estimates are fulfilled:

|€a] < CoedlBetnlzr oy = V] eIV (2.65)

Additionally, if V' € L' (0,00), then
3 1
6nl? < CreResnlen oy = ZVIE 2R VI 5 (VO + [V]]) el

Proof. 'The proof follows from Lemma2.5.35 after substituting the resonances satisfying
kn = —i&, + O(1) for large &,. O

In the following corollary to Theorem 2.4.7, we assume that p_(f},) = 2z, which
we will prove later in Lemma 2.5.41.

Corollary 2.5.37 (Number of resonances). LetV € V. Then

2xr

N(Tafh) =

- (I+o0(1)) forr — o0

For each § > 0 the number of zeros of the Jost function with real part with modulus < r
lying outside both of the two sectors | arg § — 5| < 6, |arg§ — 37”] < diso(r) for larger.

Proof. 'The result follows from Theorem 2.4.7 and the fact that p_(fj,) = 2z7. O

2.5.3 'The inverse problem

The goal of the inverse problem is to reconstruct the potential from given data. In the
inverse scattering problem, these data can be, for example, the scattering function in
addition to eigenvalues and normalizing constant. In the inverse spectral problem, the
data are the spectral data, which could be the Weyl function. In our inverse problem,
we want to reconstruct the potential starting from eigenvalues and resonances.

In this subsection we present the first inverse resonance result, where from eigenvalues
and resonances we can retrieve V' after proving a bijection between the class W, and V,
(see Theorem 2.5.44), following the result of Korotyaev (see [30]). The characterization
is made by adapting the Marchenko theorem (see [38, Chapter 3]) to our case with
Robin boundary condition, which we state below.

Definition 2.5.38. For N € N, we define Sy to be the set of functions S (k) such that

1 S(k) is continuous and satisfies the identities S(k) = S(—k) = S(—k) ™! for each
ke R.
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2. S(k) =1 = o(1), for |k| = oo, and the function G(x) = 1/2m [,(S(k) —

1)etk@ dk satisfies
G € L'(Ry, (z + 1)dx), G =G+ G,
G1 € L'(Ry), Go € L*(Ry) N L®(Ry).

3. The increment of S(k) and N are related by the following formula

SO+1_ 1

N
+ 4 27

[log (—5(40)) — log (—S(+00))] .
For N € N, let

Ty = {(ki,....,kn) € RY k1| > ... > |kn| > 0}.

The following theorem is the Marchenko Theorem in [38], which is stated for Di-
richlet boundary condition, adapted to our setting with Robin boundary condition.

Theorem 2.5.39 (Marchenko theorem). Consider the mapping

S:Lig (Ry) = | Sv xRY x Ty
N

defined by (V) = (S(k), (ma)y v (k). ) where
i) S(k) denotes the scattering function defined in (2.28),

ii) ky, denote the zeros of the Jost function defined in (2.22),

iii) f(x,kyn) € L*(Ry) are the eigenfunctions of—% + V, with f(x,k) being the
solution of (2.2) with condition (2.11),

iv) .
My = / |f(z, k)| de, kn € Cy.
0

Then the mapping ¥ is one-to-one and onto. Moreover, for° (see [51, 38])

1 [ .
G(x) = 277/ (S(k) — 1)e*dk, Go(z) = G(z) + Z mte=alknl
- kneCy

(2.66)

°In the case with Dirichlet boundary condition G(z) is defined with a minus sign (see [38, 30]).
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we can define the inverse mapping from <S(k), (mn)l’ LN (k”)L ,N) oV € Ly
through

d
V(z) = —Q%A(x,x), (2.67)

where A(x,t) is the unique solution (see [38]) for each x > O of the Marchenko equation
Az, t) = =Go(z +t) — / Go(t+ s)A(x, s)ds, t>x. (2.68)

Remark 2.5.40. Observe that the pair (S(k), my) does not depend on f1,(0) since S(k) =

_ f;:i(_kl? and my, = —i f{L ’E(f,gg), and in the ratios the constant fy,(0) gets cancelled.

In the next lemma we show that the Jost function of our self-adjoint Schrodinger
problem with Robin boundary conditions and V' € V,, is of Cartwright class with

p+(fn) = 0and p_(fp) = 2x;.

Lemma 2.5.41. IfV €V, then the Jost function (2.22) is entire and of exponential type.
In particular, f1,(k) satisfies the following conditions:

/ log™ | fu(k)|dk
R

11 k2 <00, p+(fn) =0, p—(fn) =221

In other words, f, is of Cartwright class (see Definition 2.4.6).

Proof. In Theorem 2.5.17 we proved that fj, (k) is entire. Let 2 := Rekand y := Im k.
Then by Corollary 2.5.31, we can write the integral condition as

/ log " | () ldz _ i logliz + O(1)|
R R

dxr < 0.
1+ 22 1+a2 85

Using Corollary 2.5.31 we have

. log| —y+ O(1
ps(f) = limsup 28I =¥ TOWI_
Y—00 Yy
while using Lemma 2.5.30 we get
. 2rry
p—(fr) <limsup —= = 2x;. (2.69)
Yy——00 y

In order to prove the equality in (2.69), we recall the definitions (2.66), where if Go () =
0 forx > 2dxy forsomed > 1,then V = 0forx > xy. If p_(fr(k)) = 2dx; < 2x7,
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then, thanks to the Jordan lemma, (2.28) and the residue theorem, taking a contour on
the upper half plane, we obtain

o0 . +o0 o ‘
G(z) = % /OO (S(k) — 1)ei*edk = _% <fh(k)f:(£;;( k)> ke g

N
fh( )+fh(_k)> fh zk:a:
=— li k—k; !
PP (6= 5w Z
|
- _Zﬁeiw, if > 2dx;. (2.70)

Hence, Go(z) = G(x) + Z] 1im; 5 s zero for x > 2dxy, so V(x) = 0 for
x > xy, thus, p_(fr(k)) = 2z (see also (30]). O

Remark 2.5.42. The condition p_(f1) = 2x in the definition of the Cartwright class tells
us that the resonances distribute in the unphyxl’m/ sheet following a logarithmic curve. This
is important because it implies that ), v~ is convergent and that, by Theorem 2.4.3 and

Theorem 2.4.4, | [, ( - kﬁ) converges to an entire function of exponential type.
n

Lemma 2.5.30 allows us to use the Hadamard factorization (Theorem 2.4.2), where
m = 0 by Theorem 2.5.27, Ep(z) = (1 — z)e” since the function is of exponential
order one, g(z) = az+bwith e? = f,(0) and (*F2>n Rn)? = i by Corollary 2.5.31.
Hence, in our case, formula (2.7) becomes

fn(k) = e'* Jim 11 <1— ) 2.71)

% kn|<R
where k,, are the zeros of f},(k) counted with multiplicity.

Remark 2.5.43. In the formula (2.71) the constant fy,(0) is uniquely determined by the
resonances. It is possible to obtain f1,(0) from the asymptotics obtained in Lemma 2.5.30,
because the Jost function must satisfy f,(k) = ik + O(1) for large k and changing fr,(0)
will change the asymprotics. Also Korotyaev in the Dirichlet case (see [30, page 224 at the
end of the proof of Theorem 1.1]) claims that the Jost function can be uniquely determined

[from the resonances.

fn (k) is therefore determined uniquely by the resonances k), as explained in Remark
2.5.43. Since Y 7, k is absolutely convergent by Theorem 2.4.3 and since k; is a

resonance if and only if —k; is a resonance, then also > oo EL is absolutely convergent.
n
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Furthermore, we have

so the Blaschke condition is fulfilled, that is, Zzozl Ilriiln ’Tg is absolutely convergent. From
(2.71), differentiating f5 (k) with respect to k, we obtain

L) S T S 2.72)

fh(k‘) R—o0 en| <R "

o (fu())

uniformly on compact subsets of C\ ({0} U | {kn}).
Below we state the main theorem of this section, giving a complete characterization
of the class of potentials V.

Theorem 2.5.44 (Characterization). 7he map Jy, : Vo, — Wy, defined by Jy, (V') =
I is well-defined and bijective.

Proof. We adapt the proof in [30, Theorem 1.1] to our case. First, for fixed h € R we
prove that the map Jj, is well-defined.

Let V' € V,,, then we need to prove that f,(k) € W,,. Using Lemma 2.5.30,
2.5.32 and 2.5.34 we can see that f; (k) is real on iR and satisfies (2.62). From Theorem
2.5.17 and Lemma 2.5.41 we know that f}, is in the Cartwright class with p; = 0 and
p— = 2x7. Then we can use Lemma 2.5.34 and by (2.61), we get the form of (2.29)
which satisfies Condition I of W,. Condition II of W, is fulfilled by Lemma 2.5.32,
hence fj,(k) € Wy, and J}, is well-defined.

Consequently, V' € V,, uniquely determines f5(k) € Wy,, which uniquely de-

termines (S(k), (mj, k)
through the map ¥ of Marchenko theorem. Suppose now f}, is the Jost function of Vi €
V,, and Vs € V,,, then (Sl(k), (m;, kj)j:h_”Nl) _ (Sg(k’), (my, k) j:l,..A,Nz)’
and then using the map ¥ we deduce Vi = V5 from Theorem 2.5.39. Hence the map

j=1..N ) which in turn uniquely determines V' € Lq

J is injective.
We are left to prove that J is surjective. Fix the scattering data fy, (k) € W,,. We
want to construct V' € V,, such that Jj, (V') = f;. We show this by proving that from

A

(2.28) and they satisfy the conditions of the Marchenko theorem. We show that the
scattering function satisfies the conditions (1), (2) and (3) of the Definition 2.5.38.

(1) The scattering matrix S(k) = — f,(—k)/ fn(k) is continuous for k£ € R and it
is analytic everywhere excepts at the ky,, the zeros of fj,(k). From the properties of the
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scattering phase, we can easily check that it holds that S(k) = S(—k) = S~1(—k)
and, if N is even, S(0) = —(—1)oUn), where Ny (fp) is the multiplicity of 0 as a zero

of f.
(2) From (2.51) we have that
| fu(k) —ik| < C, keCy,
| fn(—k) +ik| < Ce*eritmH keCy,
which imply
k) 4+ fn(—k C ) .
506) = 1 = [PELE IR < L 150) = i+ (00 + i)
fn(k) ||
2eImk 2 Imk o
< Cie T + Cy < Ce‘k| ’ keT,. (2.73)

Here and throughout C' denotes a positive constant that can change from line to line.
Using the Jordan lemma as in (2.70), we get that Go(z) = G(x) + Z;V:1 L gike i

zero for © > 2x7. From (I) we have "
AR
Julk) ik [1 = 5t (F(0) — F(b)]
— ok (2F(0) — F(k) — F(~k) ) ,
- kl(— & (PO) - F(k) | = oi5 (26(0) = F(k) = F(=k)) + O(k™)

where F is continuous and bounded as F' € V,,,. We define the following functions

_ _2F(0) — F(k) — F(=k) _ L[ ik
gtg =Sk -1, g= 20k , Gy .—27T/Re gp(k)dk

forp = 1,2. Then G5 € L*(R) N L>(R) since go(k) = O(k~2). The function G is

odd in x € R since g1 is odd in k:

L[ F(R) + F(—k) — 2F(0)
2 J_ 2ik

L[ R PO 20,
27 Jioo —2k

Gi(—x) = dk

and G € L?(R) because it is the Fourier transform of g; which is in L?(R). Since
|S — 1| = |g1 + g2] satisfies (2.73) and g5 is bounded,

0623311111 k

1| < C < ———)\
I

keCy, |kl >1.
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Using the Jordan lemma, G (x) = 0 for © > 27, so since (1 is odd, G'1(z) = 0 for
|z| < 2z;. By Gy being in L? and with compact support we get G1 € L*(R). For
G'(x) we get

() = % / e (k) (S(k) — 1) dk

and using

1 [ ... 1 [ ar
"R F(k)dk = — e'wk (/ €2lkyF(y)dy> dk
0

2 oo 2 J_

by the Fourier inversion formula, (2.74) becomes
F(5)+F(=3) - 2F(0) __FE)+F(=3)
+r(z) =
4 4
where 7(z) € L?(R, ) is obtained through the Paley-Wiener theorem. Then G’ () €

LY (R, (1+ x)dx), because supp Go C [—2x7, 22/].
(3) Since fp, (k) is entire in the upper half plane,

G'(z) = — +7r(x)

B

[ 550z = [ dtios (1) = Jim (| atioe () -
e "

+TILI£10 d(log (fn(2))) +li_r)r(1)/_R d(log(fh(z)))+lj_r>r(1)/ d(IOg(fh(z)))>

where 7 is a closed curve in the upper half plane made by a part that goes from —R to
R passing around z = 0 through a semi-circle v, and an arc yg in the upper-half plane.
The integral over the big arc goes to zero because of the Jordan lemma, while the integral
over the little arc gives a term —miNy(f5). Hence we have

—€

tig | dlog (fa(2))) + lmg [ dlog (fu(2))) = 257 V() + No(2)/2).
(2.76)
We know that S(0) = —(—1)M0(/) and we have scen in Theorem 2.5.27 that zero is
not an eigenvalue, so NVy(f,) = 0. So, we can write

S(0) + 1

1 = M(fn)/2=0. (2.77)
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Computing the first two integrals of (2.76) we have

—€ R
tim [ dllog (7u(2) + lim [ d(og (fa(2)) = _lim _(og (fu(+)

e—0,R—o0 J_R e—0,R—00
—log (fn(+e€)) —log (fr(—R)) + log (fa(—¢))) (2.78)

and since

—log (=5(2)) = log (fu(2)) — log (fn(—2)) = arg fu(z) — arg fa(—2),

we finally obtain

R
lim d(log (f(2))) + lim / d(log (fn(2)))

e—0,R—00 | _g
= log (—S(+0)) — log (—S(+00)) . (2.79)

Inserting (2.79) and (2.77) into (2.76), we obtain

S(0)+1

2i 4

It follows that, all of the conditions of Definition 2.5.38 are satisfied. The other con-
ditions on {my, k;},_, y are implied by Condition II of the class Wy, hence the

(log (=5(+0)) — log (—S(+52))) = N +

Marchenko theorem holds and there exists a unique V' € L1 1 corresponding to the Jost
function. We proved in (2) that supp Gy C [—2xy,2x;|, which implies V' = 0 for
x> xy.

If p_(fn) = 2t, where t := x1 — ¢ with

€0 :=inf{e > 0: |(zr — €,x1) Nsupp V| > 0},

then V' € Vi, but since p_(f5) = 22 as explained in the proof of Lemma 2.5.34, then
V' € V,, is the unique potential corresponding to the Jost function fj, € W, . O

Theorem 2.5.44 suggests an algorithm that enables us to reconstruct the unique po-
tential from a set of resonances.

Algorithm 2.5.45. Starting from a set of eigenvalues and resonances {k;}{° we can retrieve
the potential V,(x) using the following algorithm:

o Construct the Jost function from (2.71) as

Iu(k) = e Jim. 11 <1 — > (2.80)

 knl<R

where f,(0) is determined so that fr,(k) = ik + O(1) as k — oc.
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o Use {k;}{° and f(k) to construct the scattering data (S(k), {m;, kj}j:l N)
Sfrom equations (2.28) and (2.58) as

s =~ [T (225,

n>1

—2lk;] kpn — k;
mj =S (" ]>, j=1,...N.
2kil 51y N+

o Use the scattering data (S(k‘), {mj, kj},_y N) to construct Go(x) in (2.66).
* Solve (2.68) for A(z,t).
* Obtain the potential from (2.67).

After the recovery of the potential V,(z), where we added the subscript w because it
is found for every fixed value of w, we need to recover the Lamé coefhicient pi(), which,
physically, is more interesting. This can be done from the knowledge of the potential at
two different values wi and wo, with wy # wa, as we present in the following theorem.

Theorem 2.5.46. Let V,,, (z) and V,,,(x) be the potential at the frequencies wyi and wo,

with wy # wo, then the Lamé parameter can be retrieved by the following formula
() = fir (v — o)

w% - w% — fr (Vw1 (:E) — Vi, (ZL'))

Proof In (2.1) we defined the potential as

N\ 1 1
Wi a1,
N/ fr

Then the potential difference at two different frequencies, respectively wy and wy is

(2.81)

Vo =

1 1
Vi (2) = Vi (2) = | — — = T -
@) = Vin(o) = (3 - ) @ - d
which leads to (2.81). O

Remark 2.5.47. In the thesis, we do not treat the stability of the resonances. For more details,
we refer the reader to [31, 42] who treat the Dirichlet case.
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2.6 'The spectral problem

In this section, we introduce the Weyl function formalism and we recover a Gelfand—
Levitan type equation (see Proposition 2.6.22) following a similar procedure as in [43,
Chapter 1, Section 1] and [3] adapted to our Love scalar boundary value problem. Then,
we establish a bijection (see Theorem 2.6.28) between a class M, of Weyl function
(see Definition 2.6.27) and the class V;I (see Definition 2.6.1). We do not follow the
usual approach in which the Weyl-Titchmarsh function is defined to be a Herglotz—
Nevanlinna function and, from which by using its integral representation and the Stieltjes
inversion formula, one can obtain the spectral measure (see [50, Theorem 9.17]). Instead,
we follow the approach of [22, Chapter 2] and define the Weyl function in a different
way (see Definition 2.6.3), which is more suitable for non self-adjoint problems. Our
goal is to use this approach for the inverse Rayleigh problem, where the operator is not
self-adjoint and the spectral measure cannot be recovered in the usual way as mentioned
above. However, this approach is not extended to the Rayleigh case in this thesis.

2.6.1 Estimates of the regular solution

We want to obtain an estimate for the regular solution ¢ in the limit & — co. We start
from the Volterra-type expression for the regular solution ¢

oz, k) = cos kz — hsmkkx + /I sin W; =Nyt k). (2.82)
0

We can easily see that this function satisfies the differential equation and the boundary
condition. Indeed

o' (x, k) = —ksinkx — hcoskx + /(;C cos [k(z — )]V (t)p(t, k)dt  (2.83)
and
¢"(z,k) = —k* coskz + hksinkx + V(2)p(z, k)
- /0 " esin [h(x — D] V() (L, k)dt:
thus —¢" (z, k) + V(2)p(z, k) = k?p(z, k). Moreover,

@l(oak) = _h7 @(Oa k) = 17

so also the boundary condition ¢’ (0, k) 4+ he(0, k) = 0 is satisfied. Taking the absolute
value of (2.82) and since |sin kx| < exp(|n|x) and |coskz| < exp(|n|z), where
n = Imk, we get

exp(nlz) - [* exp(lnl(z = t))
ot )] < expllafe) + T+ [P DNy 0)p(e. ar
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We define 87 (k) = maxo<z<7(|¢(z, k)|) exp(—|n|x) and we have then for |k > 1

1 T 1 >
Br(k) < Cr o brl®) [Vl < Ot r(h) [ violar
0 0
which for |k| — oo implies S (k) = O(1), hence p(z, k) = O(exp(|n|z)). Substi-
tuting this estimate on (2.82) we get |¢(z, k)| < Cexp(|n|x). Doing the same for the
derivative of ¢(z, k), as in (2.83), we get

0z, k)| < Clk[” exp(n|z),  v=0,1, |k >1  (2.84)

uniformly in x.

2.6.2 Properties of Weyl function

In this section, we will define the Weyl solution and the Weyl function and present their
properties. These quantities enable another approach to solve the inverse problem (see
[22, Section 2.2]) and will also enable us to recover the Gelfand—Levitan equation in
an alternative way (see Subsection 2.6.3), as the Gelfand-Levitan equation is usually
recovered from the spectral measure.

First, we define the class V1

;> to which the potential belongs throughout the whole
section.

Definition 2.6.1. We denote by V. the class of real potentials V such that V,V' €
LY(Ry), supp V' C [0, 2] for some x1 > O and for each € > 0 the set (x; — €, x1) N
supp V' has positive Lebesgue measure.

In this section A and k are always related via A = k? defined initially for Im k& > 0.
Below we give a definition of Weyl solution that uses those of the Jost solution (Defini-
tion 2.5.8) and the Jost function (Definition 2.5.11) given in the previous section.

Definition 2.6.2 (Weyl solution). We define the Weyl solution ¢(x, \) as the function

[z, k)
Ale,A) = fu(k)

This function satisfies the differential equation —¢” + V¢ = A¢ because the Jost
solution does, but does not satisfy the Robin Boundary condition. In particular:

Imk > 0. (2.85)

¢'(0,A) + ho(0,A) =1 (2.86)
oz, A) = O(e’*®) xr— 00, ke, (2.87)
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where we define the set ¥ := {k € C: Imk > 0,k # 0}. From (2.53) and (2.52) in
Lemma 2.5.30 we get the asymptotics on the Weyl solution for large &

oW (z, \) = (ik)" " exp(ikz) (1 +0 (;)) . v=0,1, |k — oo. (2.88)

The Weyl solution is uniquely determined, modulo a multiplicative constant, by the

differential equation —¢” 4+ V¢ = ¢ (see (2.2)) and the boundary condition (2.86).

Definition 2.6.3 (Weyl function). We define the Weyl function M (X) (or Weyl—Titchmarsh
Sfunction) as the function

f(0, k)
fn(k)’

Remark 2.6.4. In some other textbooks, the Weyl—Titchmarsh function for Robin boundary

condition is defined as M (\) = W (see [50, formula 9.52, Chapter 9]). This

choice entails that M (\) is a Herglotz—Nevanlinna function and using its properties, it is
possible to obtain the spectral measure (see [50, Theorem 9.17]). In our treatment, we follow
the approach and the definition of [22, Definition 2.1.69].

M()) := ¢(0,)\) = A=Ek%Tmk > 0.

Remark 2.6.5. The zeros of the Jost function (Definition 2.5.11) correspond to the poles of
the Weyl function (see Theorem 2.6.16 below). Indeed, at zeros k = k; of the Jost function,

F(0.kj) = =3 1'(0,k;) # 0.
Remark 2.6.6. The Weyl function M maps f (k) to f(0, k), so M is the Robin-to-Dirichlet

map, since the Jost function in the Dirichlet boundary value problem (h = 00) is precisely
f(0, k) (see [30]) In the case of Dirichlet boundary condition, the Weyl function is usually

defined as f(o k ) (ee [50, Jformula 9.52, Chapter 9]) which is Herglotz—Nevanlinna and

can be reconstructed by the Dirichlet and Newmann eigenvalues and resonances.

From the asymptotics of the Jost solution and Jost function we obtain the asymptotics
of the Weyl function, as described in the following lemma.

Lemma 2.6.7. LetV € V1

=y then the Weyl function (see Definition 2.6.3) has the asymp-
totic expansion

M) =+ [1 = % + VZ(:) + O(k_l)] : k] = +oo. (2.89)

ik

Proof. From (2.52) and (2.53) in Lemma 2.5.30, we can get the asymptotics of the Weyl

function . .
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Using (2.52) and (2.54) we can get higher order terms of the expansion of the Weyl
function in terms of k£

V(0) — V (k) . 1
M(\) = (1—,+o(k )) —
2ik (zk +p— YOIV 0(1))

_ ik (1 _ VO - vk .kv(k) + 0(k1)> - 1‘7 -
7 27 1_,_1% _ (0)2—;14: (k) +o(k~1)

)

ik 21k

1 h VO)=V(k) V() +V(k) .
~ ik ll_ik_ e e G
1 ho V(k) _

Note that we can write the Weyl solution as
oz, N) = 0(x, k) + M(N)p(z, k) (2.90)
where p(z, k) and (z, k) are solution of (2.2) satisfying
0(0,k) =0 0'(0,k) =1
0(0,k) =1 ¢ (0,k) = —h

and ¢(z, k) is the regular solution as in Definition 2.5.13. We can see that

W(e(z, k), ¢(x,A)) = W(p(x, k), 0(x,k)) = 1. (2.91)
We denote
A={A=k:kex, frk)=0}
and
N={ =k :Imk>0, fr(k)=0}.

The set A’ consists of all the eigenvalues of the differential equation —f” + V f = \f
(see (2.2)). By Lemma 2.6.7, the Weyl function at the second order can be also written
as

1 h 1

0 ) 1
M)\ =—(1——+— V ()2t qt - k key.
(M) zk( ik+ik ; (t)e +O(k:>>’ |k| — 400,k €
(2.92)

The following definition of the domain of X comes from [22, Chapter 2].
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Definition 2.6.8. We define I as the \-plane with the cut X > 0, and 11, = 1\ {0}. II
and 11y must be considered as a subset of the Riemann surface of the square-root function.

In Definition 2.6.8 we stated that II and II{ must be considered as a subset of the
Riemann surface of the square root because \ as a square of k (k = v/)) lays in two
copies of the complex plane with cuts on the positive real axis and glued together. Hence,
IT and II; live in the first (physical sheet) of these two sheets. Since the cut is placed in
the real positive axis of the IT A-plane, the Weyl function has a jump between above and
below the cut. This motivates the following definition.

Definition 2.6.9 (Jumps of Weyl function). We define

T(\) = ﬁ (M=(A\) = M*(N)), A >0, (2.93)

to be the jumps of the Weyl function M () (see Definition 2.6.3), where

M*E(\) = lim M\ +iz).

z2—0,Re z>0

From Definition 2.93, we can see that T'(\) represents the jumps (discontinuity
points of the first kind) of the Weyl function. Thanks to (2.92) and (2.93) we get the
following expansion for T'(\):

10 g [ (2 v (- o (1))

1 1 [ 1
= — 1—1—/ V(t)sin2ktdt +o( — | ), k — +oo.
mk k Jo k

For a > 0, we consider the points A\ = a 4 70 in IIy. For A = k?, the point A =
a+10 € IIj corresponds to k = v/a + 0 > 0 in the positive real axis of the £ complex
plane, while A = a — 40 € II; corresponds to the point k = v/a — i0 < 0 situated on

the negative real axis for k.

Definition 2.6.10 (Spectral normalizing constant). We define the spectral normalizing
constant oj to be the complex numbers

Qj = ReS)\:)\j M()\), jZ 1,...,N
where {)\j}évzl =A.

In the following proposition we connect the jump 7'(\) of the Weyl function to the
Jost function.
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Proposition 2.6.11. Let T'(\) be the jumps of the Weyl function as in Definition 2.6.9, then

k
T(\) = TREE k> 0. (2.94)

Proof. We follow the argument in [22, page 134]). Identity (2.94) holds if the following
identities are true

W (f(x, k), f(z,k)) = —2ik (2.95)

f(ZU, k) = f(xv _k)v fh(k) = fh<_k) (296)

Those identities hold as the problem (2.2)—(2.3) with domain (2.4) is self-adjoint. In-
deed, k% — iz is a complex number with real part Re(k?) + Im 2 and imaginary part

equal to Im(k?) — Re 2. This complex number in the & complex plane corresponds to
the roots |k, |e= and |k,|e"%=+™) where

k.| = ((Re(k?) + Im 2)2 + (Im(k?) — Rez)2)"/*

Im(k?) — Rez
2(Re(k?) + Im z)>

0, = arctan (

In the limit # — 0 along 2z > 0, these two solutions converge to k and —F respectively.

Hence, we have M~ (\) = f(O( k)) and

2mi \ fu(=k)  fu(k) 2mi \ fu(k)  fa(k)
1 <f(0, k)(f'(0,k) + hf(0,k)) — £(O, k)(f'(0, k) + R f(O, k)))

T(/\>:1<f(0,—k)_f(0,k:)>:1(f((),k:)_f(o,k)>

2mi | fr(K)[?
L (Waay
2mi \ | fn(K)[? 7| fu (k)2
where in the second step we used (2.96) and in the last we used (2.95). O

From the previous proposition, we can see that we can recover the j € jump function

from the Jost function, but not the converse. The eigenvalues {k,, } the spectral

n=1>
norming constants {cv, }_, and the jump function T'(\) are usually considered in the
literature as the data for the inverse spectral problem (see [22, Definition 2.3.1]).

The following results are useful for the inverse result at the end of this section.

Lemma 2.6.12. 7The following holds

=0(1), k—0, Imk>0. (2.97)
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Proof. We follow the proof of [22, Theorem 2.3.5]. Since W (f(z, k), f(z, —k)) =
—2ik and fr(k) = f'(x, k) + hf(z, k), we have that

— 2ik = f(07 k)f/(()? _k) - f/<07 k)f(07 _k) - f(07 k)(fh(_k) - hf(07 k))
- (fh(k) + hf(ov k)f(()? _k) - f(ov k)fh(_k) - fh(k)f(()? _k>'

We set

so, for real k # 0, we have

g9(k) = f(0, =k) + S(k) £(0, k)

where S(k) = —fi(—k)/fn(k) is the scattering function. Because of the property
In(k) = frn(—k), weknow that f5 (k) and fj,(—k) have the same modulus, so |S (k)| =
1forreal k # 0. Let \j = k:jz, k;j =415, 0 <11 < ... < Ty, and denote X7+ as

Yo = {k:Imk > 0,|k] < 7"}

where 7% = 71 /2, considering the values k; corresponding to the eigenvalues \; ordered
from the smallest to the largest. The function g(k) is analytic in 3;+ and continuous in
Y-+ \ {0} and from the estimates on the Jost solution we can say that

lg(k)| < C forreal k #0.

With this last estimate, we see that g(k) has a removable singularity in the origin, and
consequently g(k) is continuous in ¥+ and (2.97) is satisfied. O]

Proposition 2.6.13. The spectral normalizing constants ouj from Definition 2.6.10 are strictly
positive and are given by

DTS 3 A 2.98
R [fh(_kj)fh(kj)] - 2

Proof: We recall the regular solution

1

P, k) = =5 (=) (k) = Falh)f (o, ~P)]

that, when k; is a zero of the Jost function, becomes the eigenfunction

o, ky) = —21k [ (—K3) £, k).

63



We know that p(z, k) satisfies (0, k) = 1 (see (2.21)), hence

— 2ik; = fn(—k;) (0, kj). (2.99)
From the definition of o; we can write

po A= ASO.k) 2k f(0.ky)
A A (k:—kj)%fh(k) d%fh(k)‘hk‘j

aj = Resy=y, M(N) = (2.100)

Plugging in (2.99), we get

2k (—2ik;) B 4ik?

a; = . = —— =4k} [_Z] >0
Jn(=k5) g5 Fn (k) = fn(=Fk;j) fn(kj) fn(=Fkj) fn(kj)

where the last inequality follows from (2.59) in Lemma 2.5.32 and kJQ being negative
(Theorem 2.5.20). O

The following theorem shows a representation formula for the Weyl function M (),
which can be reconstructed from the jumps T'(), the spectral normalizing constants v
and the eigenvalues \;, as in [22, Lemma 2.3.1].

Theorem 2.6.14. The Weyl function is uniquely determined by the specification of the spectral
data (T(N), {\p, ap o)) via the formula

N
OOT(M) Qp /
M)\:/ —>du + , Aell\A. (2.101)
W= [T s g vem

Proof. We follow the proof in [22, Lemma 2.3.1]. We consider the function

L[ M

Ir(A) == —
R(> 27 M:R)\—,u

dp.

Since M(\) = O(k™1) for k — oo, then limp ;o0 Ir(\) = 0. Now, we deform the
contour to avoid the singularity at 4 = A with the little circle ,(\) and to avoid the
cut |0, +oc]. Hence,

107 M
lim Ip(\) = lim — / ,u) + lim — ﬁdu
R—0 r—0 271 (A A — M e—>0 271 +oo—ie A—p
1 [roetie pp 1
+ lim — / (1 )du 27m E Res ,
e—0 27T'L 0+ie )\ IU/
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M(p)

where the last term is the sum of the residues of X

viewed as a function of p. In the
first term we apply the residue theorem noticing that the little circle is run through in
anti-clockwise direction; in the second term we make the substitution n = p + i¢; in
the third term we make the substitution 17 = ;1 — 7€, and in the last term we replace the
residue of the Weyl function with ay, (see Definition 2.6.10):

1 M(p) . 1 [0 M(n—ie)d

= 2mi) 1 A 1
0= 2772( ™) 1m(u ))\ ,u—l_eg%Zm' oo A1) e

+ lim —

1 +°°M77+ze Z
e—02mi Jo A — ’I’]—ZE A—

Since T'(1) = im0 re >0 505 (M (n — iz) — M (n + iz)), we can write:

O:M(/\)—i—/o L) gy 5

which is (2.101). ]

We can write the Weyl function M () in terms of the jump function T'(\) and the

normalizing constants oy, through the formula

M(A):/Ooof(_”)

as we can see in Theorem 2.6.14. In order to reconstruct the Weyl function, we need to
know the jump function, the eigenvalues and the normalizing constants.

Im\A/
:l)\_)\k, A€ 1T\

Remark 2.6.15. As we can see from Proposition 2.6.11 and Proposition 2.6.13, we can re-
trieve uniquely the Weyl function from the Jost function fy, and the eigenvalues {k;},

We state below a theorem from [22, Theorem 2.1.5], which proves the analyticity
of M () in a certain region of the complex plane, which is related through Definition
2.6.3 to the analyticity of the Jost function and the Jost solution (see Theorem 2.5.17)

Theorem 2.6.16. The Weyl function M () is analytic in INA' and continuous in 111\ A.
The set of singularities of M () (as an analytic function) coincides with the set Ao =
{A:A>0}UA

Next, we prove a uniqueness result for the Weyl function (see [22, Theorem 2.2.1]).

Theorem 2.6.17 (Uniqueness). Let V and V be in V1 | with Weyl functions M and M
respectively. If M = M, then V = V.
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Proof. We very closely follow the proof given in [22]. We define the matrix P(z, ) =
[P} k=1,2] by the formula

BN dwm N _ o)) )
PlanA) [@'(zc,» &'@,AJ‘L@'w,A) ¢'<x,x>]' (2102

Multiplying both sides of the equation by the inverse of the matrix of the left-hand
side we get

IR PV CIPVI | ¢ (x,A)  —o(x,N)
Pe =[50 Do o e s

Since the Wronskian W (3, ¢) = 1 because of (2.91), we can multiply the two matrices
and recover the components of the matrix P(z, \)

Pji(z,A) = U (2,0 (z,A) — 6D (2, \)@' (2, A)

Pjo(x,A) = 6™V (2, \)@(z, \) — U= (2, \)p(z, \). (2.103)

Solving (2.102) with respect to ¢ and ¢ we get
(10(337 >\) = P11($, )\)@(IL‘, >‘) =+ P12(33> )‘)85,(1'7 )‘)

¢(x,\) = Pi1(z, \)d(x, \) + Pra(z,\) @' (z, \). (2.104)
From (2.88) and (2.84), for |A\| = 0o we get
C C
|Pii(z,\) — 1] < T |Pra(z, \)| < 2k k| — oo. (2.105)

From (2.103), plugging the definition of the Weyl solution ¢(z, \) and &(w, A), as in
(2.90), we get

Pi1 = ¢(x, M)f' (2, A) = 0(z, )@ (2, A) + (M(A) = M(A))p(z, \)¢' (x, A)
Pra = 0(z, \)@(w, A) — ¢(z, N)8(z, A) + (M(A) = M(N)p(z, A)d(, A).

So, if M()\) = M()), then for each fixed z, the functions Pp1(z, ) and Py (x, \) are
entire in A. The estimates (2.105) yield P11 (z, A) = 1 and P12( A) = 0. Substituting
this into (2.104) we get o(z, A) = @(x, A) and ¢(z, \) = o(x, /\) forall x and A, then
V=V. O

Remark 2.6.18. Theorem 2.6.17 can be found in the literature in the case of Dirichlet bound-
ary condition under the name of Borg-Marchenko uniqueness theorem (see [5]). The converse
of it was proved in a local version by Barry Simon (see [48] but also [2, 23, 4]) employing the
Phragmen-Lindelof theorem and Liouville theorem, under the assumption that if two Weyl
Sfunctions asymprotically agree modulo an exponentially small function, then the two potential
agree in a certain interval.
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2.6.3 The main equation of the inverse spectral problem

In this section we show an alternative way (similar to [3] for the Rayleigh case) to re-
cover the Gelfand-Levitan equation, that is an integral equation from which we can
reconstruct the potential V' and the boundary coeflicient h of a Schrédinger boundary
value problem. The ordinary way to obtain the Gelfand—Levitan equation is from the
spectral measure. Here we obtain it through a function v, that depends on the Weyl
function and is discontinuous on the real line with jumps proportional to the jumps of
the Weyl function. We are motivated by the fact that in the Rayleigh problem we are
not able to recover the Gelfand—Levitan equation through the spectral measure as the
operator is not self-adjoint, even though we will not extend the following to the Rayleigh

problem.
We recall Definition 2.6.2 and Definition 2.6.3. We define ¢+ (x, \) as
f(z, £k)
T,\) = ——F—F, Imk > 0.

Note that for A > 0 we have (see also Definition 2.93)

VAL +

MEQ) = e LOVAEE)FOER) ey
2z—0,Re 2>0 fh(VA =+ zz) fh<:|:k)

We extend the definition of M*()\) to A € C and note that M*()\) = M () for

A ¢ [0,00). In particular, it is easy to check that

+ _ f(o>ik) m
M (A)_ifh(ik) , Imk > 0.

From (2.82) we can find the asymptotics, as |k| — o0, in the upper half plane
Im %k > 0 for the regular solution ¢(x, k)

+ /0 " sin [kb(z — 0] V(1)o(t, k)dt

ik —ikx ik —ikx T
e +e e —e :
_ <2> _h <M> +/0 sin (k(z — t)) cos ktV (t)dt

- h/ox Sin(k(]f_t))vu) sin kt dt

] 1 x eZik’(:c—t) -1 1
_ —ikx | = -
=e <2+/0 — V(t)dt+0<ik:) .

We can do the same for the Jost solution f(x, k) and find its asymptotics as |k| — oo
in the physical sheet, starting from (2.17)

41 k;
o(z, k) = coskx — p I

o0 pik(z—t) _ p—ik(z—t)

f(x, k) = etk — / 57k V(t)ertdt + o (;)
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= ¢the <1 - /:O ‘;;?dt—l—o <]1§>>
f(z,—k) = e ik <1 + /:o ‘;E?dt +0 @)) .

From Lemma 2.6.7, we have the following asymptotic expansion of M ()

and hence

MO\ = =+

) -2
AT [h - V(k)} +o(k™?), k[ = +oo. (2.106)

If V' € L (0, 00), then we can integrate by parts the Fourier transform of V and get

by V0 [TTVIR) g
Vik) = %klA ok ¢t

and (2.106) becomes

M) = % + % [h — V(0)] + o(k™2), |k| = +oo0.

The difference between M + (A) and M~ () is

% = MT(\) — M~ (X\) +o(k™2). (2.107)

Definition 2.6.19. We define the function 1)(x, k) discontinuous in the real line as

—ike™*® (¢4 (2, A) + Zp(2,k)) Imk >0

Vla k) = {—z’keik%(x, ) Imk < 0

and let 4 (x, k) denote the restriction of (x, k) to the upper-half plane, and 1p_(z, k)
the restriction of ) (x, k) to the lower-half plane.

One can compare Definition 2.6.19 with [3, Formula 3.8] for the Rayleigh case. We
can see that the function 9 is bounded on C. We can also write the general solution
o(z, k) in terms of 14 and 1)_ as

230(1;’ k) = e_ikxﬂhr(x? k) + eikxd]* (.Z‘, _k)
Since ¢ is an even function of k, we also have

20(x, k) = e*p (z, —k) + e *y_(z, k) (2.108)
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and adding these last two we get
dp(x, k) = e* (4 (2, —k) — Y (, k) + e * (Y (2, k) — (2, k).
From (2.90), we see that

¢+(m7 )‘) - ¢—(xv /\) - 9(.1?, k) + M+()‘)90($7 k) - 9(%, k) - Mi(/\)(p(xa k)
= o(a, k) (MT(A) = M~ ())) . (2.109)

Using (2.109) and (2.107) we can calculate
. 2
i k) = - 0) = (04 (2.0 = 0 (2 0) = Sp(o b)) (i)

= cpta ) (M) = M) - ) (i)
= —ike™(z, k) (j(k) — j(=k)), (2.110)

where j (k) is of order O(k~2), as is the coefficient of the second leading order of M (),
and it is defined as

1
j(xk) = Mi()\)q:%, A=k, Imk >0,
i
and .
j(£k) == Mi(A):F? A=k k>0
i
The difference j(k) — j(—k) is
] ) _2 Imk >0,
) —j-ky={E
M*TA) —M~(\)— 7 k>0,
and it is of order o(k~2). Now, we want to calculate the asymprotics for 1)_:
o q . ] f(l’, _k) .
V_(z,k) = —ike®p_(x,\) = (—ik)e™* L 2 (A
(@b (5.0 = (itgee Ty
e kT z V — ~
e (i L SR oY) h V(-k)
= (_Zk)e T V t) . 1 7 .
1+f122kdt+ o(k=1)  —ik k ik

+o(k™1)) = (1+/:I ‘;(k dt + o ) ( wl V dt+ o(k™ ))
Vit

(1 - % — V(Z.;k) —i—o(k_l)) —1 +/z k)d % - /Oxl ‘;Z)dt
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V(=k) 1y V() h 1
- ok )_1_/0 i+ o(k ) (2.111)

where we used that

k) o (L7 L7 50 +0t7)
f(0,k) (1 — [Vl o(lrl)) '

0 2k

In the following proposition (see [3, Proposition 4] for the Rayleigh case) we rep-
resent the function ¥ (z, k) in terms of some coefficients of the asymptotcs of the Weyl
function M () and its residues.

Proposition 2.6.20. 7he function 1)(x, k) satisfies

L[ Koo, k) (j(K) — j(—K))

_ . /
U(z, k) =1 = - dk
N . N s
R k. T ke k). 2112

Moreover, the limit value 1+ (x, k) = (z, k £ 10) determines ¢ in (2.90) by
20(z, k) = e (x, —k) + e *Y_(x, k) (2.113)

Proof: We consider

1 /R —¢+(’f/) + 1/}— (k/) dk’

omi | g K —k

which can be written as

1 (R E)—1 1 (B (K)-1
-R

Comi ) 5 K —k k
R-+ie n —R—ie AN
~ lim <_1/ de/_ll/ Qb—(lf)ldk/).
e—0F 211 — Rtie kK —k 21 R—ie K —k

Then we can write the integral over the interval (—R + i€, R + i€) as an integral
over the contour 7T (R, €), which consists of the arc on the upper half plane subtended
by the segment (—R + i€, R + i€) plus the segment itself; an integral over the arc
mentioned before with opposite verse 't (R, €) . We do something similar with the
integral over the interval (R — i€, —R — i€) that we write as integral over the contour
77 (R, €), which consists of the arc on the lower half plane subtended by the segment
(R — ie, —R — i€) plus the segment itself; an integral over the arc mentioned above
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Im k’

—R —ie R—-ie  Rek
V_(R/ 6) k
®
Yo
I'"(R,¢)

Figure 2.2: The closed contour v~ (R, €) is made by the segment from —R — ie to R — ie plus the arc between them in
anti-clockwise way. The arc I'™ (R, €) is an arc from —R — ie to R — ie in a clockwise way. The circle vq is a
contour around the pole k' = k.

with opposite verse I'" (R, €) and an integral over the positive oriented small circle
around the pole &’ = k, that we consider lying in Im k& < 0, see Figure 2.2.
Then

R—+ie n o —R—ie AN

D2 ) g K —k omi Jpie K —k

1 K)—1 1 _(K) -1
274, ’Y+(R7€) ]€ — k 271 'y—(R,e) k — k

1 _ N
271'2 (R,e) k' — k‘ 27TZ I'—(R,e) kK —k

¢ k’ — 1
2 ~o
becomes

N k' k!
_¢_($7k)—{—1—ZReSk/ k; ;i ( k?—{—ZReSk/_k];i} —(I—k?

1 vi(K) -1, 1/ Yv_(K) -1,
+2 ./F-*‘(Re) kK —k dk+2m’ r(re K —k dk. (2.114)
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We have

) —1 1 (K —1
lim lim 1/ velK) =1 L - (K) =1 ) o,
R—ooe—0 \ 271 T+ (R,e) kK —k 271 I (Re) K —k

Indeed, 1)+ — 1 is of order 1/k’, and taking into account the term 1/k’ from the de-
nominator, everything goes to zero by the Jordan Lemma. Thus (2.114) becomes

L (k) o, 1 [ (k)
Comi ) [y e Ay

dk' = —_(z,k) + 1

[e.9]

N N
Y- (k) V()
+ Jz; Respr=—k; B+ k — JZ; Respr—p,; -

k; —

SO

By 1= - L [ )+ o)

N
(K
5 - dk’+ZReSk/:,k,w (K)

j=1 TR+ k
N
Y4 (K) L[> =y (K) +o-(K)
- " =—— dk
J; Resw—, 1 = "am ). K —k

[e.9]

N .
+ Z ﬁ@ kj (,0(1‘, —kj) Resk/:_kj M ()\)
=T

N .
ik g
]{}'7—]/{76”% gp(x, k‘]) Resk/:kj M+()\) (2.115)
j=1"
Since ¢(x, k) is even in k we have p(z, —k) = ¢(x, k). On the left-hand side, we have
a meromorphic function minus its singular terms.
Recalling (2.100), we have that

o = ReS)\/:)\j M()\/) = ij Resk/:kj M+()\) = _2kj Resk/:_kj Mi(A)

Plugging (2.110) in (2.115) we get

L[ KN K) GO — (=)

_ T /
U(z, k) =1 o | T dk'+
N 100 N 100
- ’ e_ikjmso(xak') - ! 6“%9:@(90,]5')-
jz; Q(kij+k) J ]z; Q(k—k'j) J
Formula (2.113) was obtained before in (2.108). O]
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In the next corollary (see [3, Corollary, page 6701]) we show the connection between
the potential V' and the eigenvalues k;, the functions j (k) and the normalizing constants
(6] e

Corollary 2.6.21. 7he potential V' satisfies the identity
v 27
/ Vydt—2h = -2 [ Koo, i) cos('z) (k' )dk!
0 ™

—00

N
—2) (@, kj) cos(kjz) (2.116)
j=1

and the function p(x, k) satisfies

: “+oo : / . /
- o ’ o [ sin(kE — k) sin(k + k)x
2¢(x, k) = 2cos(kx) p. / K o(x, k(K" [ - + T

— 00

sin(kj — k)z  sin(k; + k)
— k‘ . 2.11
Z aj (e, [ kK ik (2117)

Proof: We start first with the proof of equation (2.116) (Szep 1) and then we recover
Q2.117) (Step 2).

* Step 1. We already know the asymptotic expansion of ¢ from (2.111):

1 [* h
zﬁ(m,k‘)—l:—ﬂ ; V()dt+zk+ o(k™1).

Multiplying 1) — 1 by ik and taking the limit as k — 0o, we get

lim ik (db(a, k) — 1) = —% / "Vt + b (2.118)
0

k—o0
In (2.112), we multiply by ¢k and take the limit as k — oo

i

lim ik (Y(a, k) — 1) = — /_ h K e o, K)(j(K) — j(—k'))dk

k—o0 27
1 Y AR i[>
52 lk:): kj)"‘gzaj@lijﬁp(x,kj) _ 27T/ k/ezkx
j=1 j=1 -0
N
(@, K)((K) = j(=K))dE + Y ajo(x, k;) cos(kjz). (2.119)
j=1
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The first term can be written as

| KRG ~ RN = [ (e e 0w

—00

—/Oo Koz, K e j(—k)dk' = /Oo Koz, ke j (k) dk'
. /_oo(—k/)gO(I,k/) —ik'x (k'/)(—dk‘/) — /_Oo k'gp(a:,k/) ik'z (k'/)dk‘/

“+oo

+ / Ko(z, ke (K dk = / 2k p(xx, k') cos (k) 5 (K )dk'.

Plugging this result in (2.119) we get

lim ik ((z, k) — 1) = i / o o, k) cos(k'x) j (K )dk!

k—o0
N
+ Z ajp(, kj) cos(kjx) (2.120)
j=1

and comparing (2.118) and (2.120) we get

@ 2i
/ Vydt—2h = -2 [ Koo, i) cos(k'x) (k) dk
0 T J—c0
N
-2 Z ajp(z, ki) cos(kjz).
j=1

* Step 2. We know that
2p(x, k) = e*p (2, —k) + e Y (x, k).

Both the function ¢4 (, —k) and ¢_(x, k) have poles in the lower half plane,
so we can consider k in the lower half plane and use the formula (2.112) for

eik:pw_‘r(x’ _k>:

1 Rl 1) () — R
o | Wtk

—i( N i eilkitk)T

k)= S p(x, k).

eikx1/1+(x, _k) _ eik’x .
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The first integral can be rewritten as

1 oo e RDT o0 k) (§(K) — 5(—K))

R L =
21 J_o E +k d

B i +oo k/ei(kJrkl)‘TgO(x, k/)](k/) o
o1 | o K+ k

L[ R I ) )
27 oo k— K

where the second integral after the change of variable from &’ to —k’ becomes

1 400 kleii(klik)x@(x, k/)j<k/)

- /
o ) o K —k dk-

So, in the end we have

1 +o0 ]{}lei(k+k,)I§0(ZI), k‘/)](k/)

ikx ikx
ey (x, —k) = ™ — i W1k dk’
I k/eﬂ'(kuk)xgp(x K (k) N e ikj—k)z
il ’ dk’ -z k.
o | K —k * ; 2i(k; — k) ol k)
i(kj+k)x
aje
—_ (k). (2.121)
j; QZ(k + k‘j) J

Similarly, for e=*¥¢)_ (, k) we get

) ) 1 +oo k}lei(kl_k)x@(l‘ k")j(k")
—ikx _ —ikx ) /
e Y _(x, k) =e 27r/ % dk

—0o0

i(kj—k)x

1 [t klefi(kurk)ac(p(:c7 K (k) W i aje

o) Ktk 2i(k; — k) ol k)
N o —i(kjt+k)
CKJ€
_ k). 2.122
+],Z:1 2i(k + k;) ol k) (2122)

Summing (2.122) and (2.121) we get
ek (2, —k) + e F_(z, k) = 2 cos(kz)+

. +m . / . /
i , noo Isin(k —k)z osin(k + k)x
7_‘_/ k‘(p(.il?,k)j(k)[ E — Lk + K+ k +

—00

N . .

sin(kj — k)z  sin(k; + k)x

- ajp(x,kj) { + . O
JZ_; L (y— k; + k
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Equation (2.116) motivates introducing

i +o00 N
K(z,y) = 7r/ Ko(x, k") j(K") cos(K'y)dk" + Z o(x, kj)oj cos(kjy).

o0 ot
(2.123)

Then equation (2.117) can be written as

1 x x
o(z, k) = cos(kx) — 3 K (z,t)cos(kt)dt = cos(kx) — / K (z,t) cos(kt)dt.
. 0
The next proposition shows the Gelfand—Levitan equation and the algorithm one
can use to recover the potential. One can compare the following proposition with [3,
Proposition 5].

Proposition 2.6.22. The potential can be reconstructed from the Weyl function through the
Jformula

d
V(z) = —2%K(a:, x), (2.124)

where K (x,y) satisfies the Gelfand—Levitan equation

1 x
with
g9(z,y) =
_ %fjfoo k' cos(k'z)j(K') cos(k'y)dk' + Zjvzl cos(kjz)ajcos(kjy) x>y
0 T <y
(2.126)

Proof: We consider

xT

K () cos(ry)dy = [ ) [ / " K, KK cos(y) i

™

N e
+ >l ky)ay cos(ky) | cos(ky)dy = ;/ K, k)i (k)
=1 oo

T

- N
/cos(k:'y)cos(ky)dydk:'+Zcp(m,kj)aj/ cos(kjy) cos(ky)dy  (2.127)

- j=1 —x
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and we can calculate

| costen cos(B)dy =2 [ costam) cos(Bndy =2 [ 5 foos ((a + Byu)

teon((a Bl d [sin (aajﬁﬁ)y) | sin (La_—ﬁﬁ)y)]

,_ [sn
sin ((a + B)x)  sin((o — f)x)
a—p

0

= +
a+p

Plugging this in (2.127) we get

x i [T sin ((k x
[ oty == [ wpte ) LD

i — N sin ; x sin — k)x
LLIGEL >] 3ot kj)a,[ (s +89e) , sin(ldy — )

Then, comparing with (2.117), it follows that

2p(x, k) — 2 cos(kx) = — ' K(x,y) cos(ky)dy. (2.128)

—XT
Taking into account (2.126) and (2.123) we can calculate the difference

. +Oo
29(z,y) — 2K (z,y) = 22/ K cos(k'z)j (k") cos(k'y)dk'
T

— 00
21
T

+2 Z cos(k;x)a; cos(kjy) —
J=1

N N
—2) (@, ky)ay cos(kjy) =2 cos(kjy)ay [cos(kjz) — o(x, k))]
j=1 j=1

/ Koz, k)5 (k") cos(k'y)dk'

. oo
I K'j(K') cos(k'y) [cos(k'z) — p(x, k)] dI’
T J—c0

and, using formula (2.128), we get that

x

cos(k'x) — p(x, k') = K (z,s)cos(ks)ds.

2

—x

Plugging this result into the previous calculations, we get

+oo
29(x,y) — 2K (x,y) / / K'j(K') cos(k'y) K (x, s) cos(ks)ds
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T

N x
+ Z cos(kjy)a; K(x,s)cos(ks)ds = K(z,s)
i=1 =

—T

A ol
|: / K cos(k'y)j (k') cos(k's)dk" + Z a; cos(k;y) cos(kjs)] ds

s
— 0 =

= K(z,s)g(s,y)ds for y < s <.

—x

Hence, the kernel K (x, y) satisfies
€T

1
K(z,y) —g(z,y) + B K(z,s)g(s,y)ds = 0. O

Remark 2.6.23 (Uniqueness). Let V' and V be in Vi | with Weyl functions M and M
respectively. If M = M, then V- =V. Indeed, [from equation (2.123) we see that

Kz,z) = - / T (e ) <M()\) _ ;ﬂ) cos(k'z)dk/

LV
N
+ Z QD(QZ, kj) COS(kjl‘)zkj Resk/:kj M(/\)
j=1
and
% i e !~ / Y 1 / /
K(z,z)=— E'o(x, k') | M(N) — oY cos(k'x)dk
s {2

—00

+ Z @(, k) cos(kjw)2k; Resy, M(N).
j=1

IfM(N) = M(\) then o(, K = @(x, k'), which also implies K (z,x) = K(x,x),
which leads to V (z) = V (z).

Remark 2.6.24. Since K (x, s) and g(s,y) are even, namely K (v, —s) = K(x, s) and
9(—s,y) = g(s,y), we can write (2.125) also as

K(z,y) —g(z,y) + /Ow K(x,8)g(s,y)ds = 0.

The next theorem shows for which condition the Gelfand—Levitan equation (2.125)
has a unique solution (see [3, Remark (ii), page 6708]).

78



Theorem 2.6.25. The Gelfand—Levitan equation (2.125) has a unique solution, for fixed
x>0, i

x
/ sup |g(t,s)|dt < oo (2.129)
0 0<s<t

holds.

Proof. 'The equation (2.125) is an inhomogeneous Volterra equation, where the inhomo-
geneous term is —g(x, y). In order to have unique solvability of (2.125), we require that
the homogeneous equation

K(ey) + /0 " K (. 5)g(s,y)ds = 0

only admits the trivial solution K (z, s) = 0. One can find the solution of (2.125) from
the resolvent R(s, t), which is obtained by iterating the kernel g(z,y)

o0

Z ) grs1(s, )

k=0

where gi11(s,t) represents the k + 1 iterate of the Volterra kernel. The solution is then
X
K(ay) = glay) = [ Bl gt )t
0
We consider the second iterate of the kernel g(z, y)
x t
) = [ [ oo 0<y<s<i<e
0 0

Since g(t,s) = 0 for s > t, we have

|92(@,y)| = ‘/x /tg(t,é’)g(s,y)dtds

/ / sup |g(t, s| sup |g(s y)| dtds.
0

0<s<t

We define d(t) := supg<s<; |9(t, 5)|, so we get

meal< [ ] d(s)d(t)drds = & ([ d(s)ds)g.

Similarly,



which implies that the homogeneous equation

— /:v K(x,s)g(s,y)ds
0

admits only the trivial solution K (z,y) = 0 as long as
€T
/ sup |g(t,s)|dt < oo. O
0 0<s<t

Condition (2.129) is required to have unique solvability of the Gelfand-Levitan equa-
tion. We have

/ / k cos(kt) cos(ks)j(k)dk + Zcos kjt) cos(kjs) aj|dt <
7=1

// |k| |cos kt| |cosks| |j(k) — j(—k)| dkdt + c1x

dk:dt
/ / — F+cx < cor, (2.130)

and we see that the condltion is satisfied for the Weyl function of our problem, since
x > 0 is fixed in the Gelfand—Levitan equation.
The resolvent operator for our problem is (see [30, page 215])

p(z, k) f(y, k)
fu(k)

We can recover the density function from it as shown in the next proposition.

R(z,y,\) =

Proposition 2.6.26. The density function for the problem is
Proof. 'The Stieltjes inversion formula tells us that

p@(xvyv A) = lim R(x7y’ A ZE) _ R(377y, A+ ZE).
e—0 2%

We can notice that the resolvent can be rewritten as

W = oz, k)p(y, k) = oz, k) (0(y, k)

+ME(Np(y, k) = o(@,k)0(x, k) + oz, k)M T (\)e(y, k),

R(z,y,\) =

hence
R(z,y, A —ie) — R(z,y, A +i€) = o(x, k)p(y, k) (M (X —ie) — M(X+ ie))
and considering the definition of the jump function 7'(\) (2.93), we get
Pe(@,y, A) = o(z, k)p(y, k)T (A). O
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2.6.4 The inverse problem

In this subsection we present an inverse result starting from a class M, of Weyl functions

to the class V1. . This motivates the following definition.

Definition 2.6.27 (Class of Weyl function). For fixed h € R, we denote by M, the class

of functions M () satisfying the following properties:

1) M(X) is analytic in 11 with finite number N of simple poles \j < O and resicues

aj = Resy=x, M()) > 0.

1) M () is continuous in 111\ {1, ..., AN, 0} satisfying kKM (X) = O(1) ask — 0,

Imk > 0.
IID) Let ME(N\) = lime—0,Ree>0 M (X £ i€). Then

T(\) = = (M~() = M*(\)) > 0,

T 2mi

V) MO\ = & + 55 + YO 4 o(k2), as |k] — +o0.

V) The Gelfand—Levitan equation

oz, y) + K(z,) + /0 " K(x,5)g(s,y)ds

with

g(w,y) =

B {fr fj;o K cos(k'z)j (k') cos(k'y)dk' + Zjvzl cos(kjz)ajcos(kjy), = >y,
Yo,

A> 0.

=0

x <y,

and j(k) = M(X) — &, for any fixed x > 0, has a unique solution K (x,y) with
K (x,x) real, absolutely continuous and %K(x, x) = 0 for v > x1 and non-zero

in a set of non-zero Lebesgue measure (x; — €,x7).

In the following theorem we characterize the class V2 , by the just defined class of

Weyl functions M, .

Theorem 2.6.28. The map Jp, : Vy,, — My, defined by Ty (V') :

and bijective.
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Proof. We shall prove that, for fixed h € R the map J}, is well-defined, thatis, 75, (V) =
M € M, forany V' € Vglc]. In Theorem 2.5.20 and Theorem 2.5.28 we proved that the
Jost function f3,(k) has a finite number of zeros in C and that they are all simple and
pure imaginary. In Theorem 2.5.17 we proved that the Jost solution f(x, k) and the Jost
function f,(k) are entire in k, hence analytic for Im & > 0 and continuous for Im k£ >
0. Then, by definition of the Weyl function M (\), we can conclude that the Weyl
function is analytic in II, continuous in II; except at the points where the denominator
vanishes (see also Theorem 2.6.16), which are the simple and pure imaginary zeros of
the Jost function (see Theorem 2.6.16 and Remark 2.6.5). In Proposition 2.6.13, we
proved that a;; > 0, hence Condition I of the definition of the class of Weyl function is
satisfied.

In Lemma 2.6.12 we showed that th(k) = O(1). Since f(0,k) = 14+ 0O(1/k), then
EM(X) = O(1), which implies Condition II.

Condition IIT is proved by Proposition 2.6.11 since for A > 0 we get T'(\) =

VA

7| fr (k)|
From Proposition 2.6.22, we see that Condition V is satisfied, hence M € M, and

T, is well-defined.

The injectivity of the map J}, is given by Theorem 2.6.17.

To prove surjectivity, we fix M(A) € M, and we want to prove that there exists
aV € V. such that 7;,(V) = M(X). Condition I-IV allow us to define a function
g(z,y)” as in (2.126) and K (z,y) which satisfies the Gelfand—Levitan equation (see
Proposition 2.6.22). From K (z,y), solution of (2.125), we can construct (as in (2.128))

> 0. By Lemma 2.6.7 we can see that Condition IV is satisfied.

o(z, k) = coskx — / K(z,y) cos(ky)dy
0

that is a solution to the boundary value problem (2.2)—(2.3) with V'(z) = —Q%K (z,x)
and h = K(0,0) given.

From Condition V we know that the Gelfand—Levitan equation (2.125) has a unique
solution K (z,y), such that V' = —Q%K(m, a) is in the class V. O]

The reader can compare Definition 2.6.27 and Theorem 2.6.28 with the definition
of the class W and Theorem 2.2.5 in [22], which are obtained for a different class of
potentials and through a different Gelfand—Levitan equation.

Algorithm 2.6.29. Starting from a set of eigenvalues and resonances {k;}{° we can retrieve
the potential V,(x) using the following algorithm:

’Condition IT is needed because T'(\) is the spectral measure and it must be non negative.
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o Construct the Jost function from (2.71) according to
fu(k) = ek Lim. 11 <1 - >
% lkal<R
where [1,(0) is determined so that fr,(k) = ik + O(1) as k — .

o From {k;}]° and f,(k) we construct the jump function T'(X) and the normalizing
constant vy, through formulas (2.94) and (2.98):

k
7l fu (k)

Q= 4k2 [_i. ] .
Sn(—=k;j) fn (k)

o Use the spectral data (T()\), {aj, Aj }jzl N) to construct the Weyl function via
Sformula (2.101)

00 N
M(A)—/ dez Tk Nemn.
0 A=K A=A

() =

k=1
* Then construct g(x,y) in (2.126) as in
g9(z,y) =
B {fr fj;o K cos(k'z)j (k") cos(k'y)dk' + Z;V:l cos(kjz)ajcos(ky), = >y
0, T <y

where j(k) := M(\) — 7.

o Solve the Gelfand—Levitan equation (2.125) with respect to K (., y),

T

K(y) - gy += [ K s)a(s,y)ds = 0.

2

—X

* Obtain the potential from (2.124):

d
Vo(x) = —2d—K(1’, x).

X

Remark 2.6.30. Afier the retrieval of the potential V,,(x), we can apply Theorem 2.5.46

in order to recover the Lamé parameter [i.
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Chapter 3

The Rayleigh problem

3.1 Introduction

In this chapter, we want to study the Rayleigh boundary value problem that we obtained
from decoupling the Hamiltonian in Chapter 1. The idea is to follow the same strategy
as in Chapter 2, for the scalar case, to solve the inverse resonance problem, although
this is not solved in this thesis. In this case, we do not have a Schrédinger-type form
of the boundary value problem and we cannot define the Jost function and follow the
procedure as in the Love case. Instead, we perform a Pekeris-Markushevic transform (see
[40]) that gives us a Schrédinger-type form with eigenvalues —£2 and Robin boundary
condition depending on the spectral parameter .

This transformed problem is no longer self-adjoint, so we lack some of the properties
we had in the Love case. Moreover, the Jost function can no longer be reconstructed by
the resonances because it is not entire in the complex plane. Hence, we need to define
a function F'(§) consisting of the product of the Rayleigh determinants of the four
different sheets of a Riemann surface (see Section 3.4) defined from the quasi-momenta
qp and ¢s. We obtain new results by proving that this function is entire (see Theorem
3.6.12), of exponential-type (see Theorem 3.8.22) and of Cartwright class with indices
p+(F) < 8H (see Theorem 3.9.1). As an application of these results, we also obtain
new direct results on the number of resonances (see Corollary 3.9.3) and the forbidden
domain for the resonances (see Theorem 3.9.4) in Section 3.9. Even though the setting
is made in order to prove the inverse resonance problem, this is not done in this thesis.
One of the biggest challenge in this chapter is to be able to define the Riemann surface,
and the reflection and conjugation on each sheet in a smart way. Once we have achieved
this, we are able to obtain symmetry properties of the Jost solutions and use the mappings
W., with @ = P, S, PS, to pass from one sheet to another one of the Riemann surface
(see [13]). The choice of the Riemann surface is also crucial to obtain the right estimates
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of the determinants of the Jost function in Section 3.8.5, which is consistent with having
divergent exponentials in the unphysical sheets, as it was for the Jost function in Chapter
2.

3.2 Main equations of the Rayleigh problem

In this chapter, we want to study the Rayleigh boundary problem that we obtained after
decoupling the Hamiltonian in Chapter 1 (1.10)—(1.13). Let

H® =H < g; ) 3.1)
(77 az) F O 2P e [z () A (7)) ( o )
—ilel [+ ()]~ (A +2m)y) +ule?) N7

with free boundary conditions
a_(®) = i\Elpr(07) + (A +2)5>(07) =0
b (®) = ilglaps(07) + A2 (07) = 0. 52)
We have ji(Z) = fir, M(Z) = A; constant for Z < Z;. Below, we give the definition

of the Jost solutions and the unperturbed Jost solutions, namely the Jost solution in the
case of the homogeneous medium (fi(Z) and A(Z) constant).

Definition 3.2.1 (Unperturbed Jost solution). Ifji(Z) = fir, XNZ) = Ap are constants,
we define the unperturbed Jost solutions

fﬁ: :< €] >€iz‘qu ap =1/ = w? e
0 +qpr , AT+ 24 ’

+ iqs > +iZqg w? 2
fo, = e , qs = (| = &2, 3.3
S,0 < 7|€| S 7 | ‘ ( )

Jor Z < 0. That is, they are fundamental solutions to HP = WiP

Definition 3.2.2 (Jost solution). We define the Jost solutions flf, fsi Jor Z < 0 as the
Sfundamental solutions to H® = w2 P satisfying the conditions

fg:f]ii07 fé‘t:fg‘lfo f07’Z<ZI7

where f ?50 and f Si o are the solutions in the homogeneous case as in Definition 3.2.1,
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The functions fﬁ, f; , are
T €] : w?
— +iZqp — 2
= = e , (gp = -~ — s Z < Zfa
fr = <s03> < +qp ) \/A1+2m g

+ ) 2
f5= (Zg) = < ifg )eﬂ“qu, gs = ,/% - [¢l2, Z < Zr,

so they coincide with the homogeneous solutions outside the support (Z < Zj). We
make an even extension! of the quantities A and /i to the half-line Z > 0 and we drop all
the subscripts 7 — 7 and denote the differential equation as H f = w? f, where f(Z,¢)

is the even solution in the whole real Z line.

3.3 Unperturbed problem: constant coefhicients.

The Rayleigh problem is easily solvable in the homogeneous isotropic space where i =
fir, A = A1 are constant everywhere. Then the differential operator becomes

A~ 2 ~ R - . A
Ho(z,§) = —~ii15g + A1+ 2ar) € —ilgl(Ar +2“1)a%
=6+ gy a2+ el
and we denote

i3

b (®) = ileliresl07) + s 2 (0)

a_(®) == iAr|éler(07) + (Ar +2011) 7

the boundary values of ®. Then the solutions of the equation Hy(z,&)® = w?® are
f}%o and fgt,o (see Definition 3.2.1) with the following boundary values

2
o) = it (5~ 206P) . b-(Fo) = ~2iful€lar

2
a_(f50) = i2irlélas, b (fsy) = ifi (‘;I - 2|§|2) ,

)

2
-(rho) = itn (5~ 20eP) . 0 (ko) = 2irllar,

a-(f3o) = —i2julélas, b_(fEo) = ifus (M

"Note that this extension does not need to be smooth or continuous at Z = 0.
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The determinant

a-(fpo) a-(f50) ’__q <w2_ ) 2 .
det b—(f;,o) b—(féo) N ﬂl( ﬂ[ 2|£’ +4‘€| qprqs | = MIAR

is proportional to the Rayleigh determinant defined as

w? 2
AR = (( — — 2’§|2> + 4|§’2QPQS> :
I

The Rayleigh operator Hy(z, &) on R_ is a self-adjoint operator with domain

D_={® e H*(R_;C?), a_(®)=b_(®) =0},

and it has continuous spectrum [fi7]£|?, +00) (see [46], [20]): continuous spectrum
with multiplicity 1 in the interval [fi7|€]2, (A1 + 2/ir)|€|?] corresponding to pure reflec-
tion of S waves with a reflection coefficient of modulus 1; continuous spectrum with
multiplicity 2 in the interval [(A; + 2/i7)|€|?, 00) corresponding to incident S or P
waves which are reflected as a linear combination of both kinds of waves. The equation
AR (w?) = 0 for w? < fi|€|? using

w? w?
qp =i\ 1€ — =———, a5 =iy [[¢F - —
\/ A1+ 2y K
2 2 2 2
<2 Q;A) W - 0 1= w2A =0,
ISWOi E12( N1 + 2/ir) 1 — €2

which we can write extending |{| to { € C and in terms of the parameters o :=
e B
and 8 := £4 asin [12]

1 \? 1 \? 3 1 5
(W) _8<\£!2ﬁ> +8<3_2a> <§\25>_16<1—a>=0- (3.4)

We fix & = (A +2/1)/(w?) = 1 and let B = /i/(w?) vary. Since we are in the constant
case, the ratio between the two Lamé parameters, which are constant, is fixed, and by
varying 3, the frequency w of the seismic (incident) wave varies. We show the plot
of the roots of (3.4) in Figure 3.1 for the intervals 0.1 < 8 < 0.32, where we have
one real root and two complex conjugate roots. In Figure 3.2, we consider the interval

reads

Ar+2ig
2

0.5 < 8 < 0.8, where we have three complex roots:
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e for 0.1 < B < 0.32 (which means lower frequencies) we get one real value of
€2 (larger than the branching point at w/v/f1) and two complex conjugate val-
ues of £2 as in Figure 3.1. The real root of €2 corresponds to real quasi-momenta
gp and gg in the physical sheet, hence the solution to the problem (eigenfunc-
tion) corresponds to a wave with wave number £. The two complex conjugate
roots of €2 correspond to complex values of the quasi-momenta ¢p and gg. The
corresponding solutions are resonant waves.

15 T T
#*
1k * 4
*
%
gj
0.5 g .
“%” o I RRRHECRRK KR X £ K % % ¥ * % e * A
05 %%6 -
®
*
1k * o
*
A5 | 1 1 | |
0 2 4 6 8 10 12
2
Re(&")

Figure 3.1: The figure shows the roots of (3.4). For each fixed value of 3 in the range (0.1, 0.32) the corresponding roots
of (3.4) are denoted with a star of the same colour.

e for 0.5 < 3 < 0.8 we get three complex solutions &2 as in Figure 3.2. Hence qp
and gg are imaginary and the corresponding solutions are resonant waves.
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2
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Figure 3.2: The figure shows the roots of (3.4) for each fixed value of 3 in the range (0.5, 0.8) which are denoted with a
star point of the same colour.

3.4 Riemann surface and mappings

We make an analytic continuation of || to the whole complex plane C and denote it by
€. Let the quasi-momenta gp and gg be defined as

2
. w
qp =iy [ — ——, qs ==
A1+ 2y

We introduce the branch cuts for gp along [

w w N
Va2 5\1+2ﬂ1} U iR and for gs
along [—ﬁ, ﬁ] UiR as in Figure 3.3 and we choose the branches of the square root
such that qp(§), gs(§) € iRy when § > 2 is real. Let @ = P, S, then ¢a(£) € C4.
when £ belongs to the first sheet of the Riemann surface of ge(£) and ge (§) € C_ when
€ belongs to the second sheet of the Riemann surface of g¢(§). We then consider gp,
¢s defined on the joint four-sheeted Riemann surface =, defined so that gp and ¢g are
single-valued and holomorphic. The Riemann surface Z is obtained by gluing together
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=T r
+ + X
A\ W\ W\
—r_ r_
Figure 3.3: We show the branch cutsin asingle sheet of =. Inthe figurer_ := —2—andr; = —= . Blue indicates
Vir ST A rear

the branch cuts for the quasi-momentum qp, while red indicates the branch cuts for the quasi-momentum gs.

the following sheets:

Etx={{:+£Imgp(§) > 0,£Imgg({) > 0}.

We denote by —¢ the point in Z belonging to the same sheet as £ obtained by reflecting
& with respect to the origin, as in Figure 3.4. Without loss of generality, we start from a
point £ on the sheet =4 such that ¢ (§) € R4 for @ = P, S. We approach the imagin-
ary line avoiding the points 7_ := ﬁ andry = \/ﬁ, where the quasi-momenta

gp and ¢g are not holomorphic. At points x — i0, x € we

o w w
Viar+2ar \/X1+2m>
have go(z — i0) € Ry. When we pass through the imaginary line we end up on the
sheet Z_ _ (dashed line in Figure3.4) and then we return to the sheet 2  after passing
w w
\/5\I+2/11 ' \/5\1+2/ft1
—r_ and —74, as shown in Figure 3.4.

through the cut | —

} . Finally, we reach the point —¢ avoiding again

Since the rotations around 7+ and —r= are in opposite directions we see that e (—§) =
qe(&), @ = P, S. Hence, it suffices to study gp and gg for { € = such that Re§ > 0.
For large £ with Re £ > 0 we can write

gp(£€) =i+ O(|¢[7h), € €E; 4,Re€ >0,
qp(£€) = —i& + O(l¢| ™), €€E_1,Re€ >0,
qs(£€) =&+ 0(|¢g]™h), €€E 1, Re >0,
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Figure 3.4: Reflection from & to —¢ in the physical sheet 2 . The red lines represent the cuts of the Riemann sheets.

qs(£8) = —iE + O(|¢| ™), €= _,Re€ >0. (3.5)

For example if £ € 2, 4, but Re¢ < 0, then we have gp(££) = —ié + O(|¢]™1)
instead, and equivalently for gg.

We can define the mappings wp, ws, wsp : = — =, where each mapping applied
to & can change the sign of either one or both the imaginary parts of the quasi-momenta,
hence it maps points from one to another fold of the Riemann surface (see [13]). These
mappings operate according to the rules

gs(ws(§)) = —qs(§), qp(ws(§)) =qr(§);  (3.6)
qs(wp(€)) = gs(§), qp(wP(f)) = *qp(f) (3.7)
gs(wsp(§)) = —gs(§), qpr(wsp(§)) = —qp(§). (3.8)

. . W w . .
The function gg(§) maps the horizontal cut { NI \/#—I} onto the horizontal slit
[—ﬁ, ﬁ} and the imaginary line iR onto the complementary part of that slit, for

as —i,%—z‘ = %
(077 -0)) = (o]
S<[0+i0,\/%+i0>>:[—\/%,0>

and equivalently for ¢p after adjusting the branching point accordingly. For any value
of £ it holds that

example

0e(&) = —aa(8), (3.9)

where the conjugation of £ is defined as a normal conjugation in a single sheet of = by
contours not passing through the cuts.
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Lemma 3.4.1. We have
L Im(qp + qs) > 0 andIm (qgp — qs) > 0in =4 4,
2. Im(gp +qs) < 0andIm (gp —qs) < 0inZ_ 4.

Proof: We know that

Im(gp + ¢qs) = Im |:(qP+QS)(QP_QS)] _ (q%—q%)lm( 1 )

qp — 4s ap — gs
2/3 ~
_ WO ( ! ) |
(A +20) qp —qs
Since ;j;(\f;z; > 0andsgn (Im (1/2)) = —sgn (Im(2)), then sgn (Im(gp + gs)) =

sgn (Im(gp — ¢s)). Since Im (¢p +¢s) > 0in =4 4 and Im (gp +¢s) < 0 in
E_ _, whileIm (¢gp —¢s) > 0in =4 _ and Im (¢p — gs) < 0in =_ 4, the lemma
follows. D

3.5 Parity properties

We define the differential operators @ = a(Z, Dz,€) and b = b(Z, Dz, ) such that
if we apply them to the function ®, which belongs in the space of the solutions of
(H — w?)® = 0, it gives

9ps3

a(®)(2.) = N 2)e1(2) + (A(2) +20(2)) 52(2),
H@)(2,€) = i€ 2)s(Z) + 2) 2 (2)

soa_(®) = a(P)(07,&) and b_(P) = b(P)(07, &) with boundary conditions a(P)
and b(®) given by (3.2). Since the differential operator H is invariant under the trans-
formation (Z,€) — (—Z,—€), if f5(Z,€) (or fsi(Z, €)) is a solution of the differ-
ential equation, then also f}t(—Z, —£) (or f;'f(—Z, —&)) is a solution of the equation.
The unperturbed solutions f}t’o(Z, €), f;O(Z, €) defined as

+ €| +iZqp ot w?
= e , =1 — = y
fP,O < :l:QP ) qp § "

*qs ; , w?
f;o = < _|£| )eizqu’ qs =1 52 - =
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coincide with the Jost solutions of the problem f;(Z, £), f;(Z, €) for Z < Zj, by
definition of the Jost solution. For the unperturbed solutions for £ € Z, it holds that

f§0<_Za _f) = _f;iO(Zag)7 fg:,o(_Z7 _§> = _f;’:,[)(Z7 5)7
F(Z,-80) = — 52,6, [5(Z,-8) = ~1%,(2.6)

with w real, then ¢g, gp and

where we used (3.9). When & € [— 7 “-)s—zA A 12‘ ]
I 1223 I 1221
¢ are real, and we have

Foo(=2.) = f5o(Z,6),  [f50(=2.€) = f5,(Z,8).

hile if § € |-, |\ |- e, |, L i
While if £ € NI \[ Tt \//\1+2ﬂ1] € and qg are real, and ¢p is

pure imaginary, so the previous properties hold only for f Si o

[50(=2,8) = [50(2,€).

In the following lemma we show the symmetries of the Jost solution. The idea of looking
for symmetry was inspired by [15], where they find symmetries of the reflection coeffi-
cients instead.

Lemma 3.5.1. On the Riemann surface = the following properties hold:

5(Z,-8) = —f5(2,6),  [5(2,-&=—f5(2.€), forE€Z. (31

Using the projection mappings to the sheets of = we get

f5(Z,wp(€)) = f5(Z,wps(§) = fE(Z.€),

15 (Z,ws(9) = f5(Z,wps(§)) = f3(Z,€)

f5(Z,ws()) = £5(2,)

15 (Z,wp(©)) = [5(Z,€). (3.12)

Proof. We first prove the property (3.10). The operator H is invariant under the trans-
formation Z +— —Z and £ — —¢, that means

H(~Z,D_z,D? ;,—€) = H(Z,Dz, D%,€).
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From now on, we will denote H(Z, Dz, D%, &) as H(Z,&). We know that fp or fg
satisfy the equation H(Z,¢) fps(Z,€) = 0, and

H(ng)fP,S(Za 5) =0 — H(_Z’ _é)fP,S(_Za _g) =0
A H(Z7§>fP,S(_Zv _5) =0,

which means that fps(—Z, —¢) is also a solution of the differential equation. Since
H is an ODE operator and since the solutions fps(Z, ) and fp,g(—Z,—£) coincide
for |—o00, —Z1] U [Z1, 00|, they must coincide for all Z € R. We can also prove the

invariance of H under the transformation H(Z,&) to H(Z,—€) (following from the

property (&) ? = @) and the invariance under all the other transformations:

H(Z,€) = H(~Z,-€) = H(Z,—§) fore € =
H(Z,§) = H(-Z,§) for € =.

The invariance of the differential operator under these transformations allows us, fol-
lowing the previous reasoning, to extend those properties of the Jost solution from
|—00, —Z1] U [Z], 0] to the whole real line.

We can prove (3.12) in the same way, because H(Z, ) is invariant under the pro-
jection mappings wg, wp and wp g as it is independent on the quasi-momenta gs and
gp, while the unperturbed solutions fo 9, ® = P, S, satisfy those properties. O

Looking at the boundary conditions (3.2), we define

3 Y0n) 0
MZ@:BMJLO=C§ O*?Q%) (.13)
Loz 1A

Then (3.2) is equivalent to

w20 ( 028)

Thanks to the fact that the Lamé parameters are even, we can obtain the following prop-

erties of B(Z,€):

=0.
Z=0

B(_Zv _5): _B(ng)a for 5657
B(Z,—E)ZB(Z,E), for 565

In the next proposition we show that if the operators H(Z, £) and B(Z, ) have a certain
symmetry, then the solutions to the boundary value problem 3.1-(3.2) also have the same
symmetry.
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Proposition 3.5.2. Suppose ©(Z,€) is a solution of (H(Z, &) — w?)p(Z,€) = 0 that
satisfies the boundary conditions (3.2). Then ¢(Z, &) must be a linear combination of the
Jost solutions fp s(Z, &) and if there exists a transformation T' of the variable Z and & such
that

B(T(2,6)) = +B(Z,¢)
H(T(Zag)) - w2 == (H(Zaé) _w2) )
then o(T'(Z,£)) is also a solution to the boundary value problem.
Proof. Let o(Z,§) be a solution to
(H(Z,6) - w’)p(Z,€) = 0,
B(Zv 5)90(27 5)‘Z:0 =0.
Then
0=+(H(Z,&) - *)p(T(2,8)) = (H(T(Z,€)) — w)p(T(Z,€)),
0=+ B(Z,8)¢(T(2,8))l =0 = B(T(Z,8)p(T(Z,6))| 7=
so @(T'(Z,€)) is also a solution to the boundary value problem. O

The previous proposition and Lemma 3.5.1 motivates the following lemma, that
shows the symmetries of the boundary conditions applied to the Jost solutions.

Lemma 3.5.3. For & € =, we have

a(f5) (=€) = a(F)E),  bFE)(=E) = b(fE)(©), (3.14)
a(f$) (=€) = a(fE)€),  bf5) (=€) =b(fI)(©),
and
a(f) (=€) = —a(fp)€),  bUp)(=) = ~b(Jp)(),
a(f)(=8) = —a(f5)(€),  b(f5)(=&) = =b(f5)(€) (3.15)
Using the projection mappings to the sheets of = we get
a(f5)(ws(§) = a(f3)(wrs(€)) = a(FF)(©),
b(f3)(ws(€)) = b(f5)(wps(€)) = b(FT)(€),
a(fp)(wp(€)) = a(fp)(wps(€)) = a(fF)(€),
b(f5)(wp(€)) = b(£7) (wrs(€)) = b(fF)(E). (3.16)
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Proof: We divide the proof of the lemma into the individual proofs of each parity prop-

erty as follows.

* In order to prove (3.14) consider £ € = and calculate
a(fE )2, —€) =N~ 5" (=2, &) + (A + 20) [ 57178 (~2,-€)
. 0
=i\ fE(Z.6) + (A +20) [82@2)(2, 5)] = a(f£5)(Z.€)

using (3.10) and where f;’él) and f;’s(m are respectively the first and the second

component of the vector f7 . Hence

a(fE) (€)= alfE)(-Z,~8)| _ = alfE)Z,0)| _ = al(fEs)(©).

Z=0 Z=0

In order to prove the other two properties of (3.14), we start from
MFE) (2.~ = - OS2~ + i |5 54 (-2,
—eIEP (2.9 + i | I FV2.0)] - UE)2.
and again using (3.10) we arrive at
b(fis) (=€) = WIF)(=2.-9)| _ = bIEN(Z.0)| _ =b(fFs)(E).
« In order to prove (3.15) we consider
o f5)(Z,—8) = —iA-0 158 (2.~ + (A +21)
—-idef502.) - (\-20) | o 52.0)| = a2

where we have used (3.11). Hence

a(f£5)(=6) = a(fF6)(Z,~F)|

— a(fEs)(2.9)|

Z=0 7=0

For the other boundary condition we have

— I T— 0 T ———
b(f55)(Z,~€) = —ii(~E) [p s (2, ~E) + b { 2z, _g)]
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— it f50(2.9 - | 5 1380(2.8] = -2,
and hence

W([7s)(-0) = WEZ.-0)|_ = ~bUIE)(Z.9)|

—b(f5)(€)-

ZO

* The proof of (3.10) is straightforward from (3.12) as the coefficients in the bound-
ary conditions do not depend on the quasi-momenta ¢p and ¢s. O]

3.6 Representation of the Jost solution

In the homogeneous case A(Z) = A7, i(Z) = ji1, we define:
L., _ | _
Opo = i(fpyo + fpp): Yro = 2qip<fp,0 - fp7o),

1 1
_ + — _ + —
50 = 5(]0570 + f5,0)> $s,0 = %(fsp - f370)7

and in particular we get

Opo = <.§CO.S(qPZ))> ; opo = (‘“’ Mn(qu)) ; (3.17)

iqgpsin(qpZ cos(qpZ)
and
iqs Sin(qSZ)> cos(qs”Z)
050 = , = 3.18
50 (—f cos(qsZ) ¥5,0 f sm(qSZ) (3.18)
which satisfy the following boundary conditions
a(9p70) ZIUI < ) b(eP,O) =0,
fL1
A w? 2
a(fs0) =0, b(0s0) = ifr (| — — 287 ),
I
a(epo) =0, b(ero) = 2ifurg,
a(ps,0) = —2if&, b(¢s,0) = 0.

By expanding sin(gs,pZ) and cos(gs,pZ) in series, we see that the functions 03 0> 9?0,
90%0, and 90§0 are entire for £ € C as

)Qn Z2n+1

EZ #Z) Z{Zn 0 2TL 1!
Opo = (z‘Zoo Ciyrap) 2z |5 po = o0 M

n=0 (2n+1)! Zn:O 2n!
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and
. 00 —1)" 2n+2 VA 2n-+41 00
050 = <Z Zn 0 ( ) (qé)n"'l)(z) ) , SDSO = ( . 2230 (( ))n2(( )Q)nz2n+1> .
—£3 00 27579) —i§ ) om0 2nt1)!

Indeed, we see that £ never appears inside a square root, but only as powers with natural

exponents. Since we can expand those auxiliary functions as a uniformly convergent
power series on compact sets, they are analytic in € and even? in qP and gs. We can
express the Jost solution f3 PO and fso in terms of the functions 65 Po> 950, goligo, and

905,0-
f;j{o =0po £ qrypo, féfo =050 £ qs¥s,0- (3.19)

Similarly we can extend (3.19) to the inhomogeneous case, by uniqueness of the solutions
0p0, 050, ¢Po> PP0> as

fE=0p+tqpop,  fi =0s=+qsps,

and

1 _ 1 _
Op = 5(fE+1p)  wp =5 (= fp) (3.20)
ap
1 _ 1 _
Os =5(f5 +1s),  ws= %(fg—fs), (3.21)
where the function 0p 5 and ¢p g satisfy the conditions

0p =0pp, ©p = ppo, Z < 7
0s = 05,0, Ps = ¥5,0, Z < 7. (3.22)

This motivates the following definition.

Definition 3.6.1 (Auxiliary functions). We define the auxiliary functions 04 and pe, with
o = P, S, the unique solutions of (1.10)—(1.11) satisfying the conditions

Op = 0py, ©pP = ¥Po; Z < Zp
s = 05,0, vS = 8,05 Z < Zr. (3.23)

with Oe o and pe o, ® = P, S, given by (3.17) and (3.18).

This implies that the Jost solutions f]jgz and fg are uniquely determined by those
auxiliary functions 0p, 050, P, ¢po. For those auxiliary functions we have the
following results.

They are even in ¢p and ¢s as there appear only even powers of ¢p and ¢s in the expansion.
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Lemma 3.6.2. 7he function Op, O, op and @g are entire and invariant under the map-
pings wp(§), ws(§), wps(8):

Op(§) = Op(wp(§)) = Op(ws(§)) = Gp(wps(f)),
0s(§) = 0s(wp(€)) = Os(ws(§)) = Os(wps(§)),

ep(§) = pp(wp(§)) = pr(ws(§)) = r(wps(§)),
ps(§) = ps(wp(§)) = ps(ws(§)) = ps(wps(§)).

Proof- 'The functions Op, fg, ¢ p and g are the unique solutions of an ordinary differ-
ential equation (1.10)—(1.11) with analytic dependence on the parameter { and satisfying
the boundary conditions (3.23), where 0p, 050, ¢po and g are entire in €. Then
Op,0s, pp and g are also entire (see [52, Theorem 2.5.1] or [14, Theorem 8.4, Chapter
1]).

The invariance under the mapping w., with @ = P, S, PS, is a consequence of the
fact that we can express those auxiliary functions as even powers of the quasi-momenta
gp and gs, knowing that the mapping wp, wg and wpg only change the sign of the
quasi-momenta. U

Since the auxiliary functions are written in terms of the Jost solutions (see Defini-
tion 3.6.1), we can translate Lemma 3.5.3 in terms of the auxiliary functions as in the
following lemmas.

Lemma 3.6.3. The functions a(0p),b(0p),a(0s),b(0s) are entire and even in & in the
sense that

a(0p,s) (=€) = a(0ps)(E),
b(0p,5) (=€) = b(0p,s)(E),

while the functions a(pp),b(pp),a(ps), b(ps) are entire but odd in &, namely

a(eps)(=§) = —aleps)(§)

b(eps) (=€) = —bleps)(E)-
Proof. By Lemma 3.6.2 and since the boundary conditions (1.12)—(1.13) have analytic
dependence on the parameter &, then a (), b(0s), a(ps), b(pe), with ¢ = P, S, are
also entire.

The oddness and evenness respectively are obtained by the Jost solutions fg and f gf
satisfying the following properties

a(f5.5)(Z,—8)|z=0 = a(fE5)(Z,€)| 2=0
b(f.5)(Z, =€) z=0 = b(fF )(Z, €)| z=0
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and since gp(—&) = qp(&) and gs(—&) = ¢qs(&). The claim follows from the definition
(3.21) of the auxiliary functions fp 5 and ppg. ]

Lemma 3.6.4. The functions a(0s)(€), b(0e)(§), with @ = P, S, satisfy the conjugation
properties

a(0p,s)(§) = —a(Ops)(=£)
b(0p,s)(§) = —b(0ps)(=£);

while the functions a(pe)(§), b(pe)(§), with @ = P, S, satisfy the conjugation properties

a(eps)(€) = alpps)(—€)
b(pps)(E) = bleps)(—E).

Proof- This follows from (3.20) and the parity properties for the Jost solution f; g U

a(9ps)(©)
b(0p,s)(€)

The matrix B(Z, §) applied to a matrix, whose columns are respectively f,, and fg,

Gon U\ _ (alf7) alfs)
Bz.0 ((fi» <f§>z> oo (b<f§ ) Mt >> |

this motivates the definition of the boundary matrix B(§) as it follows.

is

Definition 3.6.5 (Boundary matrix). We define the boundary matrix B(§) as the quantity

a(fp) alfs)
B(¢) = : (3.24)
b(fp) bfs)

Aswe have seen in Section 3.3, the eigenvalues and resonances correspond to the zeros
of the determinant of the boundary matrix, which we call the Rayleigh determinant.

Definition 3.6.6. We define the Rayleigh determinant as the determinant of the boundary

matrix

a(fp) a(fs)
o(fp) b(fs)

As in Chapter 2 for the Love problem, we can distinguish between eigenvalues and

A(E) = det ( ) = a(fp)b(fs) —alfs)b(fp)-

resonances whether they are zeros of the Rayleigh determinant located in the physical
or unphysical sheet. The physical sheet and the unphysical sheets are determined by
imaginary part of the quasi-momenta gg and ¢p being positive or negative and leading
to L? or not L? solutions respectively.
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Definition 3.6.7. We introduce the following discrete sets on the Riemann surface =

A+,+ ={{€E A =0, Imgp(§) >0 Im gs(§) > 0},
—={{€E  A()=0, Imgp(§) >0 Im gs(§) < 0},
—+={£€5 A =0, TImgp() <0, TImgs(§) >0},

Ao —={fe= A =0, TImgp()<0 Imgs(§) < 0},

and the union of them denoted as A
= U Aap
a,b==+

It follows from Definition 3.6.7 that the eigenvalues correspond to the set Ay 4,
zeros of A(€) in the physical sheet, and the resonances correspond to the union of the
three remaining sets, which are the zeros of A(§) in the unphysical sheet.

The Rayleigh determinant can be written in terms of the auxiliary functions 6 and ¢
in the following way:

A(E) =[a(0p) — gralep)] [b(0s) — asb(ps)] — [a(fs) — gsalps)]
- [b(0p) — gpb(ep)] = di + qpda + qsds + qsqpda (3.25)

where the coefficients dy, do, ds, d4 are entire in £ and are defined as

dy == a(0p)b(0s) — a(05)b(0p)

dy := —[a(pp)b (93) —a(fs)b(pp)]
ds := —la(0p)b(ps) — a(ps)b(0p)]
dy = a(ep)b(ps) — a(@s) (¢p). (3.26)

The definition of the functions d;(§), for i = 1,...,4, is made purely to describe
A(&) in terms of entire functions in a simpler form. The formula (3.25) shows where
dependence from the quasi-momenta ¢gp and gg is located and make it easier to apply
the mappings w,, with ¢ = P, S.

In the following we present the symmetries of the functions d;(§), fori = 1,...,4,
which are inherited from the symmetries of the auxiliary functions.

Lemma 3.6.8. 7he functions di (&) and d4(), defined in (3.26), are entire and satisfy

(=€) = du(§),
(=€) = da(§),

d1(§)
da(§)

dy
dy
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while the functions dy(§) and d4(§), defined in (3.26), are entire and satisfy

do(€) = —da(—€) = da(¢),
d3(€) = —d3(—€) = d3(£).
Proof- 'The functions d;, with i = 1, ..., 4, are entire as product of entire functions (see

Lemma 3.6.3).

From the definition of d; (&), da2(§), d3(&), d4(§) in (3.26) and Lemma 3.6.3 the
evenness of d; and d4 and the oddness of d3 and dj easily follows.

The conjugation properties follow from Lemma 3.6.4. O

Remark 3.6.9. From Lemma 3.6.8 we can see that di and dy are even in &, while dy and
ds are odd in £.

Applying the projection maps wp, wg and wpg to the Rayleigh determinant we get

A(&) = di + qpda + qsd3 + qsqpda,

A(wp(§)) = d1 — qpda + qsd3 — qsqpda,

A(ws(§)) = d1 + qpdz — qsds — qsqpda,

A(wps(€)) = di — qpda — qsds + qsqpda. (3.27)

From these, we can recover the following identity
At Afwp) + Adws) + Awps) = 4dy,

hence the sum of the projections of the Rayleigh determinant onto the four different
sheets is an entire function.

Lemma 3.6.10. 7he Rayleigh determinant satisfies

A(=€) = A(wps(§)),
A(wp(=§)) = A(ws(§))-

Proof. From Lemma 3.6.8 and since gp and gg are even function of £, we have

A(=8) = di(=¢) + qp(=&)da(—E) + qs(=&)d3 (=) + qs(—&)qp(—&)da(—E)
= d1(&) + qp(€)(—d2(§)) + qs(§)(—d3(£)) + qs(§)qp(£)da(§) = A(wps(£))

and

A(wp(—=§)) = di(=&) — qpda(=&) + qsd3(—&) — qsqpds(—=§) =
=di + qpdy — qsds — qsqpds = A(ws(§)). O
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Lemma 3.6.11. For the Rayleigh determinant the following properties hold:
A(=€) = A(6),
A(wp(=£€)) = A(wp(£)).
Proof. Those properties follow from Lemma 3.6.8. O]

3.6.1 'The entire function F'()

We want to consider a function F'(§) that is entire on the complex plane and whose
zeros correspond to the eigenvalues and the resonances of the operator associated to
(3.1). From estimates of this function we can obtain estimates of the resonances, which
tells us in which areas they are localized.

Theorem 3.6.12. The function
(&) = A A(wp(§))A(ws(§)) Alwrs(£)), (3.28)

is entire.

Proof. Using the definitions of the Rayleigh determinants as in (3.27) we can evaluate
the function F'(§)

F(&) = (d1 + qpda + qsds + qsqpdas) (di — qpda — qsds + qsqpda)
- (d1 — qpda + qsd3 — qsqpds) (d1 + qpdz — qsd3 — qsqpda)
= [(d1 + qrqsds)® — (qpd2 + qsds)?] [(d1 — qsqrds)® — (qpd2 — qsds)?]
=(d} — ¢2qpd})? + (qpds — q3d3)? — (di + qpgsda)*(gpds — qsds)?
— (di — gsqpds)*(gpds + qsds)®.
The first two terms are equal to
(d — q3qpd)” + (gpdy — q3d3)* =di + qsqpds — 2q3qpdid; + qpds
+ q4ds — 2qpqedds,
and the last two terms are equal to

— (di + qpgsda)*(gpds — gsds)? — (di — gsqpds)?(gpds + gsds)?
= —2¢pdid; — 2q3d3d3 — 2qpaedsd] — 2qsqpdid; + 8qpqididadsdy.

Finally, F'(£) assumes the following form:

F(&) =di + qpd; + qsds + qsqpds — 2qpdids — 2q3did3 — 2q2qpdid]
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— 2¢hqEdads — 2qbqidads — 2qqhdads + 8qbqbdidadsdy.  (3.29)

Since di, da, d3, dy are entire functions in & and since ¢ is present inside the quasi-
momenta, which always have even power, F'() is an entire function for £ € C, whose
zeros correspond to the set A. O

3.7 'The Reflection matrix

The two general solutions of (3.1) are

wp = fp + Rafp — qpR1fg,
ws = f& +qsRifp + Rafg, (3.30)

for fsi and f; that are the Jost solutions (see Definition 3.2.2) and for some coefhi-
cients I2;, Ej, j = 1,2. Those solutions must satisfy the boundary conditions, that
is, a(wp) = b(wp) = 0 and a(wg) = b(wg) = 0, which correspond to the linear
systems of equations

{Rza(f P) —arRia(fs) = —alf}), (331
i .
Rob(fp) —qrRib(fg) = —b(fp),
and _ -
{qulaUP) + Roa(f3) = —a(f§). 332
1alp ) 20l b .
qskab(fp) + RQb(fs )= _b(fs )-

We can solve these systems of equations and we find the reflection coeflicients

_ 1 —a(fy) a(f5)> 1 ( a(fy) )
ma= g e (T 505) o= mg e (57D ;
5oL g (eUp) —a(f§)> 5o_ 1 ( fs s_))
R=xg e (e o)) ash= s o () o
(3.33)
where A(€) is as in Definition 3.6.6.
Definition 3.7.1. We define the reflection matrix R as the quantity
_ Ry q§*ﬁ1 4
R <—QPRl 2 > (3.34)

with Rj, R; as in (3.33).
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By Definition 3.7.1 and (3.33) it is clear that the poles of the reflection matrix corres-
pond to the zeros of the Rayleigh determinant A(¢), hence eigenvalues and resonances.

Remark 3.7.2. The reflection matrix (3.34) is the counterpart on the half-line of the scat-
tering matrix of the whole line case.

From the systems of equations (3.31)—3.32, we can also represent the reflection matrix

R as
(a(fp> a(fs)) - (a(f;> a(fsﬂ)
R=-— . (3.35)
b(fp) b(fs) b(f5) b(fd)

The next proposition shows that we can recover the reflection matrix from the bound-
ary matrix. This is interesting for the inverse problem because we can also retrieve the
reflection matrix by recovering the boundary matrix.

Proposition 3.7.3. Let R be the reflection matrix defined in Definition 3.7.1 and B(§) be
the boundary matrix as in Definition 3.13, then the following identity holds

R=—[BE)] " [B(-4)].

Proof: We have seen that the reflection matrix can be expressed as in (3.35), then using
(3.14) we get

(a(fﬁ)(f) a(fs*)(f))

o(fp)(€) b(f5)(E)
We know that

= B(~¢). O

(a(fp)(ﬁ) a(fs)(€)>
b(fp)(=€) b(f5)(=¢)

a(fp) alf§)

Aws(§)) = det (
b(fp) b(fs)

) = a(fp)b(fg) —a(fHb(fp)  (3.30)

and

a(ff) a(fg)
b(f5) b(fy)

From the definitions of the reflection coefficients (3.33) and using (3.37) we see that

_a(f)b(UE) — alfEIb(f5) _ Alwp(©))

A(E) Al

A(wp(§)) = det ( ) =a(fP(fs) —alfgb(fp)  (3.37)

Ry
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and it follows that

Ry(wp(§)) = _A(if()é))’ Rofws(€) = = Aws(€))
(

Ry(wps(§)) = — AA(ZU;S ff)))) '

From these we get the two identities

Ry(§) Re(wp(§)) =1,
Ra(ws(&))Ra(wps(§)) = 1.

Using (3.36) we get

7. _ alp)b(f) —alfHb(fp) __ Aws(©)
? A(€) NG

and after using the projection maps

~ __Awes®) g ___AQ)
Rawp(€) =~ ofus(e) = - 5o,
~ __ Awp(9))
Ro(wps(§)) = ~Awps(©)’
we infer that
Ro(&) Ra(ws(€)) =1,
Ro(wp(§))Ra(wps(€)) = 1.
For the other reflection coefficients, we have
R - a(fp)b(f7) —a(fH)o(fp) _ _ 2ap (a(0p)blyr) — a(ep)b(fp))
! qrA(§) qrA(§)
_ detP(§)
NG
B - a(f(fg) —a(f)0(f) _ 245 (al9s)b(ws) — alps)b(fs))
qsA(§) qsA(§)
det S(¢)
A(¢)
where
_ (i _
det P(€) := 2 (a(0p)blp) — alopb(0p)) = 221U P)qp SaLE
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det S(€) = 2 (a(05)b(ws) — alps)b(0s)) = a(f§)b(f5) — a(f5)b(f5)

qs
and
o] (a(fp) a(f;>) .
VIP \b(fp) bUf)
50 ] <a<f§> a(fs)) .
= — . 3.39
VIS \b(f8) b(fs)

Lemma 3.7.4. The functions det P (&) and det S(&) are entire and odd functions in €.

Proof. By Lemma 3.6.3, det P(§) and det S(€) are entire because the product of en-
tire functions. The oddness and evenness of the functions a(6p,s), a(vp.s), b(0p.s),
b(¢p,s), formulated in Lemma 3.6.3, implies the oddness of det P(£) and det S(&).

O

Proposition 3.7.5. The zeros of det P (£) correspond to the zeros of Ry (§) and the zeros of
det S(&) correspond to the zeros of Ry (€).

Proof. We know that the reflection coefficients R; () and Ry (€) are defined as

_ det P(&) ~ _ detS(€)
= Tap MO=3E

Moreover, the general solutions to the boundary value problems are

wE(Z,€) = [5(Z,€) + Ra(€) fE(Z,€) — ap(€)R1(€) 3 (Z.€
w5 (Z,€) = f5(Z,€) + Ro(O) f3(Z.6) + as(O) R () fE (Z,

R1(§)

)
£)-

If we consider the solution w}; and multiply it by A(£), we get

AOWH(Z.E) = AE)TE(Z,€) — Mwp(€)) 5 (Z.€) — gp(€) det P(E) [ (Z.6).

(3.40)
Suppose that there exists a £ which is a zero of both det P(§) and A(&). Substituting
it in (3.40) will bring to the contradiction A(wp(&)) = 0. Hence, if &; are such that
det P(&;) = 0, then necessarily A(€;) # 0, so the zeros of det P(€) correspond to the
zeros of Ry (€). Repeating the same procedure for w we get that the zeros of det S(¢)

correspond to the zeros of R1(&). O
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Remark 3.7.6. Since det S(§) and det P (&) are entire functions, they can be retrieved
from their zeros, which correspond to the zeros of Ry (&) (see Proposition 3.7.5) and Ry (§)

and are the wave numbers & such that mode conversion® does not occur.

3.8 'The Pekeris-Markushevich transform

In this section we recall some known facts of [40] and we use the same notation as in [19,
1]. We make some substitutions in the differential equations such that we can pass from
a self-adjoint differential operator to a not self-adjoint Sturm-Liouville problem where
the spectral parameter £ is also present in the boundary condition and the frequency w
is present in the potential and in the boundary condition.

Basically, we lose self-adjointness of the problem but we gain a Schrodinger-type dif-
ferential equation which can help us in computing the Jost solution through a Volterra-
type integral equation. The adjoint problem has transposed potential and boundary
condition. As we saw from (3.1)—(3.2) the Rayleigh system of equations is
- a% < %?) — i€ <;Z(ﬂsos) + /\682%) + (A +20)%01 = Wi
aaZ <()\+2 )%?) —Z§< (Ap )+N8824P1> + €03 = wes,

with boundary conditions

4 . 3 N -
a-(®) = iAp1(07) + (A +20) 5 2(07) = 0,
_en -y 40 9P -y
b-(®) = i€fp3(07) + i (07) =0
Then, as in [40], we define wy := —ip1, we := @3 and%&z) = —%(ZZ) withe = -7
that yields
d Adw Adw2 2 2/ ~ o
e (u T Suwz) A + (w* =€ (A +20)) w1 =0, (3.41)
d /.« dws dwy 2 .24
il 20 —=2 - — = 42
(A +20) 2+ hun ) + €+ (P - Pun =0, (3.42)
with the boundary conditions
N d
(A + 27 )% +hwn| = () = a-(w) (3.43)

*Mode conversion refers to when a P (or S) incident wave after hitting the boundary gets reflected as a

converted S-wave (or P-wave). When R1(€) = 0 or Ry (£) = 0 there is no mode conversion, as we can

see from (3.30).
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dw1

— — = = b_(w). 44

i =€) = b_(w) .44

After some change of variables the boundary value problem (3.41)—(3.44) with ¢; =
19 = 0 can be reduced to two matrix Sturm-Liouville problems with mutually trans-

posed potentials and boundary conditions (see [44]), as also shown by Markushevich in

[39, 40, 41]. Let G be the solution of the Cauchy problem

§flwa
e

1
G'= LG, GO) =1, (3.45)

where I is the identity matrix, and
_ ]_ Iy 5\ Iy d2 1
L= < 0 ) c— LAATH) d:—2ﬂ12<A). (3.46)
c 0 (A +2f1) da? \ fi

Following the notation in [41] and in [19], by the substitution

=

ar
d BL g
( ol > =M (F) := ( dTg ! > s (GTY'E, (347)
—€ 0 0

A+ 20
the problem (3.41)—(3.44) reduces to the matrix Sturm-Liouville form

F' - &F =QF, x¢c(0,400), (3.48)

F'+OF = (DY) 'W, z=0.

Here, U = (11, 2) 7 is the vector-column of the right-hand sides of (3.43) and (3.44),
T is transpose operation, © = (D) ~'C® with D@ and C* being the matrices

2 A1 A

i m(zg?-"iﬂﬂ) LT

pre=| e M e = ! L
_2MI€ 0 2/1155 _55\+2A

with D*(€) having inverse:

Therefore
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_A(0) RS
_ ) f1(0) P 2011 (A(0) + 2/1(0))
fir 2 w4 l
i (28— 10 g (5) o) 0
—04 05
_. ( A ) (3.49)
2%52 -6, 0

Moreover, the matrix-valued potential ) is defined by

Q=(G7'BG)", B=B+wB,, (3.50)

B, =
142 (1)al+p) | g ~ v @2 (1 &é (1
_2d12<> +5 M(%M(g) +d:p3(ﬂ)>

A (N2 AQ+H) 1 d [ pGtR) 1d> (1) (A-h)
r (A 2/1)2 2dz \ N+2u 2dx? \ v | N2p
(3.51)
1 P d (1)
-~ I 5\ =5
By=| M deli? (3.52)
0 —=
A+ 2
We rewrite (3.45) in the form
d d c c
= —§G21, 1o = —§G22, o1 = —§G11, 92 = —§G127

where det G(z) = 1 (see [39]) and by (3.46) the coefficient d vanishes if /i is constant.
We adopt the notation

Gil.=Gu(H),  j k=12

Then, the matrix function G(z) in the homogeneous region * > x; =: H solves

0 0 G gH
G’:—CI< ) GH:( 4 12), 3.53
2 \ G11 Gio (H) GY G (3:53)
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where .
ATt
Cr=w—"__-
A+ 201
By integrating (3.53), we obtain
G11($) = Gﬁ, Glg(x) = Gg,
c c
Gm@%:—§Gﬁ@—fﬂ+Gi,Gm@%:—éGﬁ@—fﬂ+G$.65@

Further, since det G(x) = 1, the inverse matrix is equal to

1 [ G2 —Gi2
¢ _<—G21 G ) (3:5)

Then plugging (3.51), (3.52), (3.54) and (3.55) into (3.50) we obtain the potential Q(z).
We denote the restriction of Q(z) to the region © > H by Qo(z). Then we can write

1

—a 0 AL+ [ (—GHG (r) G (:B)GH>
2 ar 2 ITHr 12G21 21 11

(;) Xr) = w 4w H H
o) < 0 5\1+12ﬂ1> fr(Ar+ 2fr) —G15Gaa(z) G1pGai(x)

(3.56)

Qo(z) extended to [0, 00) is called background potential. We introduce the perturbed
potential V'(z) := Q(x) — Qo(z) which satisfies V(z) = 0 for z > H.

3.8.1 Jost solutions and Jost function

In this subsection, we define the Jost solution and the Jost function following the nota-
tion of [19]. The Sturm-Liouville boundary value problem is written in the form

—F" 4+ QoF +VF = —¢%F, (3.57)

F'+0F =0, =0, (3.58)

where O is given by (3.49). We construct solutions to the equation

—F//+Q0F:—£2F

of the form
Fi )1 ; w2
o (D) o, e
Fo (Fpo)2 A1+ 207
(Pd‘)l) : w?
Fi _ S,0 e:l:mcqs’ — - — 2
5,0 <( Fio) qs Y £
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Let w = (w1, w2)T be the solution to the original Rayleigh system,

N I
wP70 = ﬂlﬁ :FEqP e Z:qu’ (359)
3
2 i
X ¥ :
U)gt,o = ,UI% %qs e:l:zxqs. (360)

Then the Jost solutions after the Pekeris-Markushevich transform are (see [19])

Gon(2) £ igps 2 GH
M) = -

GQQ( ) :EZQP 2G

c
(—EIGﬁ(x —H)+ G21) :tqu'uIG

— etizar, (3.61)
c
(—éG{IZ(x—H)—i—Gg) +igp 2G
s e (G L
m(ws 0) Fso = ﬂlﬁ . e s (3.62)
Gz

where we have used that
Gaiw) = =F Gl (e — H) + G, Goala) = — T Glie — H) + Gl
The Jost solutions of (3.57) are given by the conditions
Fy=Fp, Fy=Fg, for x>H.
We define the matrix Jost solution
(F7), (F5),

]:(x>£) = )
(Fp)y (Fs),

and the unperturbed matrix Jost solution

(7o), (),
(F;’r»0>2 (F;O)z
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(G21( )—i—quMGH) —igpT uzéGH —iqsT

(G22( ) +igpts By GH) —iqpT —%G{ée_iqsx

where (F; )Z denotes the i component of the vector F}; and similarly for . The
matrix Jost solution satisfies the Volterra-type integral equation

Fw.6) = Fow§) — [ Gw)V (0. )d,

G(x,y) is the Green function, which is obtained such that each column of G (-, t) satisfies
the unperturbed equation

P QuF = €,
and the conditions
0
G(z,z) =0, %g(x, Y)y=z = 1. (3.63)
Explicitly the Green function is given by (see [19])
g(x’ y) _ .A(Q?) sm((a: — y)QP) + B(y) sm((x - y)QS)

qp gs

+ CCOS((J: - y)qS)ujZCOS((:U - y)qP) (364)
where

Gl [$Gli(z — H) - Gl Gl [-4Gli(z — H) + GJ]
Ax): =

Gl [FGH (e — H) - GE] GI [-9GHh(x — H) + G

—G{éGgl(x) G G21( ))

—G1hGan(z) GIlGa(x)

GH [4(—y+ H)GI, + G5 Gﬁ[¥<y+H>Gﬁ+G5{])
B(y) : =

GO [4(—y+H)GL+GY) —GH [4(—y+ H)GH + G4

G11G22( ) _G11G21( ))

GihGa(y) —G1hGau(y)

arGHGY —ar(GH)?

fr(Gh)?* —prGGH
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The term A(x) is a first order matrix-valued polynomial in x, B(y) is a first order matrix-
valued polynomial in y and C is a constant matrix. We define the Jost function as

Fol(&) == F'(0,€) + ©F(0,9), (3.66)

with © as in (3.49).

3.8.2 Relation between boundary matrix and Jost function

After performing the Pekeris-Markushevich transform, it is easy to obtain analytical
properties of the Jost function. However, all the results obtained in this framework need
eventually to be converted back into the original framework. In the following Lemma,
we show the relation between those quantities in the two frameworks before and after
the Pekeris-Markushevich transform (see [19]).

Lemma 3.8.1. Let Fo (&) be as above and B(&) as in (3.24). Then

1 Oy 0\ falfp) alf)\ L, (i 0
Fol8) = 50—y ] 2 |
&frii(0) 21&12((8)) 2ifr€ ) \b(fp) b(fs)) “ \0 -1

B(§) = A1(§)Fe(§)A2(E) (3.67)
where
28fig 0 Zgjl 0
Ai(§) = y s A = . (3.68)
2ifurs 5 —i(0) 0 -&

Proof: We saw in (3.24) that

a(fp) a(fs)
B(§) = -
b(fp) b(fs)

Then after passing from f to w we get
b(wp) b(ws) ib(fp)  ib(fs) i ¢ 0
B(w) = = 5@
a(wp) a(ws)) \-a(fp) —a(fs) 0 -1
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- (0 2) (a(fp) a(fs)) (it (l 0)
- 2
~1.0/) \b(fp) b(f5)) ¥ \o -1
which is the Neumann operator associated to the matrix-valued solution

wp1 W1
w = .
wp2 Ws2

(Da)—lB(w)ymzo = F + OF]|

We have
M(w) = F.

z=0"

Then, Fo (&) = (Da)_lB(w)}l:O, so

1 0 _ﬂ(”)() 0 i\ falfp) al(fs)
70 = g | 2me 2l Iy o) Gy ey

70
3= ( ) = ATH(OB(©)AT(€) (3.69)
1

1 . f1(0) 0 1 a (P00
AT =— A =¢— .

Then we obtain also the inverse relation between B(&) and Fg(€)

B(§) = A1(§)Fe(§)A2(8),

~ wQ
281y 0 iy 0
mo=| | - |«
2ifir Gy — i (0) 0 —&

where
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3.8.3 The Faddeev solution

In this subsection we introduce the Faddeev solutions as it is simpler to work with them
rather than with the Jost solution because we get rid of some of the exponential factors
that are present in the latter. We define the Faddeev solution to be

Hp(x) = eT™PFy, Hg(z) =T Fy,
Hpo(x) = e PFL Hgy(z) = eT*PFg,,
and define H = H ', where

[Hp(z)]; [Hs(z)l
H(z) =
[Hp(z)ly [Hs(2)]y

We consider the matrix composed of all the Faddeev solutions with + sign®. Then

Hp(z) = Hpo(x / Gz, y)V (y)Hp(y)dy,

Gor(z) +igp b G N ‘
Hipolr) = ) Gl = g y),
Gaa(z) + iQP%Gg

Hs(a) = Hso(o) ~ | Glo.p)V ) Hs(wi.
GH
Hgo(x) = /”§ i(gs—qp)x H ’
G
so the unperturbed Faddeev solution is
Go1(x) +iqplh Gl —LEGH emilar—as)z
H (x) = A . (3.70)
Gao(x) +igqpt Lrgi —‘;—’fG{ée*"@P*qS)x
The Volterra-type equation
=Fo —/ G(z,y)V(y)F(y)dy, (3.71)

#We can always swap to the other cases by applying the mappings (3.6) defined in the Riemann surface
section.
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after multiplying both sides by e ~**97 becomes

Fl)e = Foe e — [T Gl V) F ey,
and in terms of the Faddeev solution

Hiw) = Hola) — [ Glasp)e V() F)e vy

= Ho(r) — /OO G(x,y)e VP Y ()1 (y)dy. (3.72)
We get a Volterra-type equation for the Faddeev solution H which we will use to derive

the analytical properties of the Jost solution F. The first terms of this Volterra-type
equation are

H(z) / G2, y)V (y)Ho(y)dy

/ Gz, y)V / Gy, 1)V (t)H(t)dydt (3.73)
= Ho(x, &) + Z HU (2, ), (3.74)
=1
where for [ > 1
HO (2 / t g (z,t1) - G(ti_1, ;)
SV (t) - V(tl)lHlo(t &)dty - - dty (3.75)

3.8.4 Analytical properties of Jost solutions and Jost function

In this subsection, the goal is to obtain an asymptotic expansion of the entire function
F (&), as in Theorem 3.8.21, and an exponential type estimate as in Theorem 3.8.22. In
order to achieve this, we need to find the asymptotic expansion of the determinants of
the Jost function, as in (3.66), in the four different sheets and then convert the results
into the framework before the Pekeris-Markushevich transform. This translates into
asymptotics of the Rayleigh determinant A(§) in the four different sheets and eventually
into asymptotics of F'(£) (see (3.28)).
First, we define a class of potentials for which all the following results will hold.

Definition 3.8.2 (Class of potentials). We denote by Vi the class of V' such that V&
LY(Ry; C**2), continuous and supp V' C [0, H| for some H > 0 and for each € > 0
the set (H — e, H) N supp Vi, for i, j = 1,2, has positive Lebesgue measure.

120



For such class of potentials, we have the following results.

Theorem 3.8.3 (Jost solutions). For V' € Vg and any fixed x > 0, the Jost solution
F(x, &) is analytic in & on each sheet =4 +, of exponential type, and for & € E satisfying

H [es)
Fa) = FH @8 = @6 - [ 0w n)VOR 0Ody+ Y File.o).

k=2
_ S
1Pz, 8] < C',f,’e“f““)ef’cpg 2 (%) (), (3.76)
where
Cp—s = 1Im(qp — qs) + [Im(gp — gqs)[,  (p:=Imgp + |[Imgp|,
(o) i dz VOl
max{1, |}’
0 €=
1e) = Jor& € Ze (6.77)
—2Imgp Jor§ € 25 4

Proof. Using trigonometric formulas we can write

cos((x — y)gs) — cos((z — y)gp)

~ 20 (3o w)(as + ar) ) sin (50— a5 — ar))

hence the third term of the Green kernel (3.64) becomes

2 (;(x —y)las + qp)> sin (;(x —y)(gs — QP)> :

w?

We want to calculate the term G (z, y) := G(z,y)e"®~¥)47 and looking at (3.64) we
see that its sine and cosine terms can be written as

sin[gp(@ = )] _i(gyyqp _ L€ 2TV 1 e2ar)

qp 2ZQP N 27,qP
. [ der o Zap
sin[gs(z = 9)] —ia—ygp _ €TI0 — emtelartas)
qs 2iqg

ety—z)(ap—aqs) _ ily—z)(ap+as)

)

21qs
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and

i [(x - y)(;[p + QS)} “in [(l‘ - y)(qu — QP)} o—ile—y)ap

~ s [(y - a:)(;zp + qs)} “in {(y - l’)(gp - qs)} o—ie—y)ap

<6é<y—x>(qp+qs> _ e;(y—x><qp+qs>>

27

| <62(y$)(qpqs) . eQ(y-'E)(qPqS)> efi(w*y)qp
21

_ (el(y—x)qp — ely=2)as _ g—ily—2)as | B—Z(y—x)qp> Sily—o)ar
—4
e2ily—z)ap _ gily—2)(ap+as) _ gily—2)(ap—gs) 4 |
4 Y

SO

. ) _ p2igp(y—z)
G(z,y) = G(z,y)e "7 = A(z) lle]

2igp

+ B(y)

—etly—z)(ar+as) 4 oily—=)(ap—as) ]

21qs

C
+ 22

—e2ily—z)ap 4 oily—2)(ap+as) 4 oi(y—=)(ap—gs) _ 1]

We take the maximum norm of G(z, y, &), which is the maximum® for fixed , y and
€ of the absolute value of the components of G(z,y, £). Taking into account that 0 <
x <y < H, which implies y — z > 0, we get

~ C
(=)
196901l < e

where C' > 0 is a constant which does not depend on £, = and y, and where (&) is
defined as

| Im(qp — gqs)| — Im(qp — q5)
2 b

7(§) ZmaX{IImQP! —Imgp,

>Note that the & dependence is implicit inside the quasi momenta gs(¢) and gp (&)
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| Tm(gp + gs)| — Im(gp + gs) } . (3.78)

2

From (3.78), we can see that y(§) = 0in 24 4, because Im gp > 0, Im(¢gp +¢s) > 0
and Im(gp — ¢s) > 0 (see Lemma 3.4.1). While in the sheets =_ 4, v(§) = —2Imgp
asImgp > 0,Im(gp+¢s) < 0and Im(gp —gs) < O (see Lemma 3.4.1) which imply

Im(gp —qs) <0 <= Imgp <Imgs <= 2Imgp < Imgp + Imgg
< —2Imgp > —Im(qp + qs), (3.79)

and

Im(gp 4+ qs) <0 <= Imgp < —Imgg
< —Imgp >Imqgs < —2Imgp > —Im(gp — qs)

leading to formula (3.77). From (3.70) we can calculate the norm of the unperturbed
Faddeev solution Ho(x), which is

Cp_
IHo(2)|| < Cl¢le 5>

‘Then, the norm of (3.72) after one iteration can be estimated as follows:

©
\|H(a:)|\§||%oll+/ max{1, [¢[}

Starting from (3.72) and iterating the equation we get the series

= HO(,9),
1=0

VIOV ()] ([ H(y)]|dy.

where

(O)(ZE7£) = ,H()(i',g)

and any [-term is uniformly bounded by

Oltr—a+(ta—t1) 4+ (ti—t1-1)]
Wix§H</ / / l
no Jun (max{L, |¢[})
AV @I IV I ([Holtr, &) ldty -~ dits

—clgen s [T A’Imﬂféwn(ﬂwwwmmw~dn
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V(&) (H—x) !
7l€le

<o
(max{1, |£[})

= (i)
eV(OH

HCP51
<O “(A|W@WQ

l

with the convention tg = z and since V(¢) = 0 for t > H. Hence the series is
absolutely and uniformly convergent on every compact set. Then the Faddeev solution
HW (2, €) is analytic in each sheet Z4 4. O

For £ in the physical sheet, the Faddeev solution is complex analytic, hence continu-
ous. We can see that

¢pog JENV@Id

() = Ho(@)[| < D |IHO (@, ]| < [gle” DT e maxtiielr,

Then, if we want to obtain those estimates in terms of the Jost solution F (), we have

(@) — Hol@)| = |IF@)e1% — Fofa)e 17| = || F () — Fo(a) e F)

which leads to

s 6—1’(%) L Iv@lide

Cp—
1F(2) = Fo(@)| < [gler @5 ¢ T

as in (3.76).
A theorem similar to Theorem 3.8.3 can also be found in [19] but for £ only in the
physical sheet, with a different Riemann surface and without proof.

Remark 3.8.4. From equation (3.76), we see that if we want to get an estimate on the Jost
solution minus the zeroth and the first order expansion of the Volterra-type equation, we have

H
Hﬂao—%@@—/'mawwm%@@@u

ilf vt () o(F) (a(z))"
k=2

‘§|ev )(H—z) H(CP;S)e_m(%P) <6a(x) _1_ a(a:))

< \erV(@(H—x)eH(CP?_S )e=(%) (a(x))* pal@)
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Similarly, we can get an estimate on the Jost solution minus the first two orders of the Volterra-
type equation

H
17,9 - Falw&) ~ [ Gla)V ) Foly. )y
[T [T a0V o Rl ]

< ‘£|€’Y(§)(H7x)6H(CPT_S>e_x<%> (a(x))geu(z)'

Remark 3.8.5. We ger different estimates on the Jost solution depending on the sheet, in
particular

o Sheets 54+, =4 . We have that Im(qp + qs) > 0, Im(gp — qs) > 0 and
Imgp > 0 which imply that v(§) = 0 and

JEv)a

|F(x) = Fo(w)|| < [¢letH—)tmaretTimas tumgifel, (3.80)
o Sheets =_ _, E_ 1. We have that Im(qp + qs) < 0, Im(qp — qs) < 0 and
Imgp < 0 which imply that v(§) = —21Im gqp, hence

H|v)||at

Sz
|F(z) — Fo(a)]| < [€]e2H - mar e Smaqiiely, (3.81)

In the next lemma we show a similar result to Theorem 3.8.3 for the derivative of
the Jost solution.

Lemma 3.8.6. For any fixed x > 0, the derivative of the Jost solution F'(x,§) :=
%F(x, €) is analytic in & in each sheet =4  and satisfies

Fl(,€) =F(0,)Q(€) + P(0,€) — / Gl y) V(W) Ff )y (3.82)

k=2

where

F5(0,£)Q(8) + P(0,¢) =
(4G H + igpGan(a) — B EIGH) isor e Gl s

<CIG LH +iqpGas(x) — q%%(;{é) civar  _19sii€ GH izas
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and terms Q(x), P(x,§) are defined as

qgp 0 o GH 0
Q(‘T;) = ) P(IE, g) = iquHelqu 3
0 gs GH 0

/\1 Artir

with ¢y = YR

Proof. To find an estimate for the derivative of the Jost solution, we differentiate (3.71)
with respect to = and we get

Fl(x,8) = iFo(z,€)Q(E) + P(x, &) + G(x,2)V () F(x)
/mey F(y)dy

— iFo(2,6)Q(E) + Plx,€) - / TG )V F)dy, (384

where in the first passage we used the property (3.63) of the Green kernel which made
the second term zero. The x derivative of the Green kernel is

Gu(,y) = A E =) | () cos(( — y)ap) + Bly) cos((z — v)as)

qp
Lol sin((z — y)qp) - gs sin((x — y)qs)’
w
where )
‘o GiGgH, — [G{{l]
AO == 5

cii]” —chiat

As for the Jost solution, if we want to calculate gx (,y) := Gu(z, y)ei(xfy)qp, we need
to look at all the sine and cosine terms:

sin [qp(x — y)] e—i(x—y)qp _ 1 - €2iqp(yfz).

qp 2iqp
, 1 4+ e2igr(y—2)
cos((z — y)gp)e eV =~
eily—=z)(gp—as)  eily—z)(ap+as)

cos(( — y)gg)e TP = 5 :

[qpsin((z — y)qp) — g sin((z — y)qs)] e~ i(—y)ar

21 [qp (1 _ 62iqp(y—a:)> — g <6i(y—m)(qp—qs) _ 6i(y—w)(qp+qs))] .
]
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These expressions imply the following estimate on the g} (z,9)
| ‘gz(x, y) H < C‘qs‘e’Y(f)(y—x),

multiplying both sides of (3.84) by e~*(*~%)97 _jterating the Faddeev solution H and
taking the norm we find

17 (2, €)= || < || (iFo(,€) Q) + Pz, €)) e[| + Y [IMD(z, &)l
=1

67(5)(1{_33) CP;S _x <p
\IM(l)(x,§)|]§C(maX{1 m})z_l\QSHfleH o ()
1/ (2 ! V(O (H—) tp_s
z'</ |V<’f>|df) = Oy sl

SO ([ o).

so we recover (3.82). M(z,§) is bounded by a uniformly convergent series, then
F'(x,€) is analytic in each sheet =4 . O

From Theorem 3.8.3 and Lemma 3.8.6 we can obtain estimates of the Jost function
and of the entire function F'(§), defined in Section 3.6.1, which shows that F'(§) is of
exponential type. We present this result in the following lemma.

Corollary 3.8.7. The function F'(§) is of exponential type with order one and type at most
12H. In particular, it satisfies the inequality

|F(€)] < O¢[*0et2HIReel, (3.85)

Proof. From Theorem 3.8.3 we see that the Jost solution at = 0 is of exponential type

17(0,8)|| < Cl¢e** (3.86)
where
0 EeE
b(¢) := Tt
Reg EEENEL+
The inequality (3.86) is obtained from (3.5), Theorem 3.8.3 and Lemma 3.4.1 that imply
0 for{ € Z4 4
V() = -
—2Imgp for§ € E_ 4,
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and

2Im(gp — gs) for € =4 1
(p-s = —
0 for{ € - 4

From Lemma 3.8.6, we can see that it holds
|7 (0)]| < CJ&[>e* ),
and since Fg := F'(0) + OF(0) with
L 2ir 0 0 —03 09
= (0) + R
K 10 —6, 0

0=¢

we have
|Fa (&) < ClefPee©,
We know that A(§) = det (A1(§)Fo(£))A2(£)) and from (3.68) we get

1A < Clef® £es,,
and
IA(we(€))|| < CEPe RS o =P, S, PS.

Since F'(&) := A()A(wp(&))A(ws(§))A(wps(§)), we have an estimate on the
entire function F'(§):

IF(E))] < Ce[0e2H Ree, £eC. O
Remark 3.8.8. n Corollary 3.8.7 the term £%° and the power of the exponential 12H Re &

are not sharp estimates as we could have cancellations in the computation of the determinant.
For example, from the definition of © we can see that the second row is of order €% while the
[first row is of lower order, so the determinant of F (€) can never be, say, of polynomial order
&4, At the end of the section, we will obtain a sharp estimate on the type of the exponential,

3.8.5 Estimates of the Jost solution and Jost function

The goal is to obtain an asymptotic expansion of the terms in the formula (3.73). There-
fore, we compute the asymptotic expansion of Ho(x,&) in Lemma 3.8.9, then the
asymprotics of the term [ G(z,y)V (y)Ho(y)dy in Lemma 3.8.10 and the asymp-
totics of the second iterate of the Volterra equation in (3.73) in Lemma 3.8.11. From the
result of these three lemmas we obtain the asymptotic expansion of the Jost solution in
Lemma 3.8.12 and of the Jost function in Proposition 3.8.13.
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Lemma 3.8.9. The unperturbed Faddeev solution Ho(x, ) for || — 00 and & on the
physical sheet = | admits the asymptotic expansion

N Gﬁ Gﬁ Goi(x) CIxG
K
HO(xa 5) = - gﬁ +
G{é G{é Gaa(x) CIxG
ﬂ H w202x2 H
2(5\1-:2111)6111 8“11 G
+¢7! +o(l¢]7h). (3.87)
_Ar _oH ‘*’2‘3%5”26;

2(Ar+2a7) 12

Proof. 'The unperturbed Faddeev solution can be written as

Goi(x) £igp 2G —%Gﬁe*i(qpqu)m
H(T ([L‘, 5) = X A '
Goo(x) £ iqp%Gg —%Gge*l(@*qs)m
When [£] — oo and 5 € E4 4, we can expand the quasi momenta in powers of &,

namely qg = i€ — ZZME + O(|¢]73) and ¢p = i€ — i5 + O(|€]73) which
imply

20 +20rE

iw?er

28
e—ilap—as)z — 1 4

qp —qs = +0(I¢7?)

werx w4c%:v2

2418 8#[52

Hence, plugging the asymptotic expansions into the definition of the unperturbed Fad-

+0(£73).

deev solution we get an asymptotic expansion in powers of £

HO($7 g) =
1 G G 2
G () — BGE (6 - 22 + 0(67%) —ESRS (14 ez 4 g5 4 0(¢7)
1rGH 2 — G 2
Gan() — PG (¢ — 22 + O(™%) —B1Gpb(1 4 Sarz 4 “;,jgz +0(67%)
GH NIGU %an
fir Gﬁ G{{l G () _y 2(Ar+2iir) 8fr
=2 + €
G G Gaa() _aGie G wcjGiha?
2 2 2(Ar+241) Bitr
o(|¢]™h)
with o7 := ;\]+2ﬂ[. O

129




We can simplify the notation by defining

Gl G
G .=
Gy Gf
and
Ga(y) —<LLGH
Gu(y) =

Galy) —LLGY,

which appear very often in the following.

The goal is to obtain an asymptotic expansion of the Jost solution and the Jost func-
tion. We compute this from the asymptotic expansion of the Faddeev solution. In the
previous lemma we obtained the asymptotic expansion of the first term Hg in (3.73).
In the next lemma we compute the asymptotic expansion of the first Volterra iterate

M (z,€) in (3.73).

Lemma 3.8.10. For V' € Vi, the first Volterra iterate HY (x,€) of (3.73) for |€] — oo
and Re & > 0 in the physical sheet = admits the asymprotic expansion

/ G(z, )V (y)Holy, £)dy :/x

V(y
1 fis w?er(y — x) iy — x)?
- 4€WQ/$ <B(y) i +cZ 412 )V(Q)Gde

)G dy

H
- 53¢ [ VOIGay - 1 V@6 o),

Proof We know that G () is the transformed kernel defined as

G(z.y) = Alx) [1 - ;qp() L B(y) [‘e“y‘”“%;; euy—x)(qp—qs)]
+C —etilmar 62.@_“5)(‘1123;5) et - 1] = Gi(z,y) + Ga(z, ),
with
Gi(z,y) == J;z(qaj B(y) ei(y—;z;q;—qs) +C€i(y_z)f2p_q5) - %
and
Golz,y) = — Memqp(y—m) B eilv—o)lartas)

2igp Y 24gs
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N Cei(y—fﬂ)(qp-&-qs) B LeQiqP(y—r)_
2w2 2w2
We can divide the proof into three steps: in the first step we compute the contribution
to the integral fo G(z,y)V (y)Ho(y, )dy given by Gy (z,y); in the second step we
calculate the whole contribution coming from the term Q~2 (x,); and in the third step
we sum up the results.

o Step 1. When |£| — 0o and Re £ > 0 on the physical sheet 2 1, we can use the
expansion of the quasi-momenta in terms of powers of £ and we get the following

form of Gy (z, )

Gi(z,y) = A(%) (1+0(7?) B(zyg) (1+0(?) <1 - W
SGRAE-1C “Qiiug S o)
= =g (A0 + 0 + 5700 4 g < S

)L (ol o

where we can simplify

erly — o) bo
A(x)+B(y)+TC (G1i Gy — GG )(0 1)

10 10
=detG = (3.88)
0 1 0 1

using (3.65). Then the integral term can be written as

H~
/ G (2, 9)V () Ho(y, €)dy = / By () GHdy

. 2w?

L (2 w?er(y — x) whct(y — x)? H
450‘)2/ (B(Z/) ¥ +C 412 V(y)GTdy

/ V()G ly )dy+0<|£|2> (3.89)
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Step 2. In Go(z,y), the two exponentials for |£] — oo and Re{ > 0 on the
physical sheet 2 | become

2igp(y—=z) _ ,—2(y—)¢§ (y—z)w? (y—2)%w L
’ ‘ <1 N (Ar+2i1)é + 2(A+2/17)2€2 +O(l¢]™ ))

eil=a)(aptas) — o—2y—)¢ (1 + Grae? | (- z>2§2 +0(|§\*3)),

because qp + g5 = 2i§ — i —|— O(£73) and where p = i‘fiig’: Then
I I

expanding the terms of Go(z, y) we get

;(qu 2igr(y—2) _ _, 2<y—w>ff(2? (L+0(E™) (1+06E™):
—B@nQ’;z:ﬂ”)=—f—“%%ﬁ?§2(1+CXé*»(1+cxe*»;
e ek C (14 WP )
_;;amwﬂu:%ﬁwﬂKQQG+X%;gg;+omr%>.

Summing up those terms we obtain

~ B 6_2(y_$)£ C](y — I) _1

Gutay) = g |A) + B + LT o )|
6_2(y_$)£

e (o) (3.90)

using (3.88). Plugging (3.90) into fo Go(z,y)V (y)Ho(y, €)dy and recalling
Lemma 3.8.9 we get

u e el
672(y71)£ ,&‘I 11 H
/ Ga(, y)V (y)Ho(y, §)dy =/ —— V() <—52>
" 2¢ w GH
12

G
= 0(¢g™) G20

for Re£ > 0 by the dominated convergence theorem. The symbol O(|¢|™°)
means that the quantity is O(|¢| ™) for any N € N.

Step 3. Summing up (3.89) and (3.91) we obtain

/ Gz, y)V Ho(y,§)dy=/ 2‘:)1 V(y)G"dy

T
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L [ wer(y —x) wci(y —x)? i
o / <B(y) e VG

H
- 215 / V()G (y)dy + o(€ ™). 0

In the next lemma we compute the asymptotic expansion of the first Volterra iterate

@) (z,€) in (3.73).

Lemma 3.8.11. The second Volterra iterate H'\?) (1, €) in (3.73) given by (3.75) for |€| —
00 and Re § > 0 in the physical sheet 2 | admits the following asymprotic expansion

H (H _ B
HO(2,€) = / / G, y)V ()G (y, )V () Ho(t, €)dydt

-/ / & AV@VOE dydt + o€ )

Proof. From Lemma 3.8.10 we have that

Gly. OV (Ho(t.€) = S5V (G + 067

while G(z,y) = —i + 0(|¢]71) by Lemma 3.8.10 for £ € = 4 and Re¢ > 0. So

G(a,y)V(y) :—EV( y) +o(€7h),

hence

H (H _ B
[ [ GVt ovim. o

_ —/H /H LBy v ()GH dydt + o€ 7). 0

In the next lemma we use the results of Lemma 3.8.9, Lemma 3.8.10 and Lemma
3.8.11 in order to obtain the asymptotic expansion of the Jost solution in the physical
sheet Z4 4.

Lemma 3.8.12. Let V' € Vy, then the Jost solution F (0, &) has the following asymptotic
expansion for || — 0o and Re & > 0in =y 4 :

_ fir H 0
R N H 2(Ar+2/1)
F0,6) = —eHG" + Guy) - 2/”2/ V(y)GTdy+ ¢
w w 0 _ ir H 0
2(Ar+24r)
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I Yy H
+£ cIB<)yV Gdy+/ V(y)Gruly

// )G dydt + o(¢71).

Proof. From the three previous lemmas we have that

Fla, )0 = H(r,€) = ~£1267 1 Gy()

~ 2.2 2
ju GH _ wiciw GH
(2()\1+2ﬂ1) 11 8fir 11 H
I

Hr

- / 5V ()G dy
- w282m2 T w

235 H G

- G
2(Ar+207) 12 8#1

14 /H< w?cr(y — x) WQC%(?J—:U)Q) I
+ == B - +C - V(y)G™d

H H H ~
X e dy - & / My )V () GH dydt + o6,
2& y

(3.92)

Hence evaluating the Jost solution at 2 = 0 we get

~ ~ H
fi fi
F(0.9 = H0.6) = ~€246" 4 Guln) - 2% [ VincTay
i H

Q(S\IJrIZ/fL[)Gll 1 H 1?/ =

+ &1 + — <CIB( )y +C > V(y)G™dy
i qu o) 4o Afur
2(Ar+24ar) 12
1 rH 1 fH O H gy, " »
+ % J, V(y)Gu(y) dy — 1€ ), SV ()V ()G dydt +o(§7),
Yy

and using (3.65), we infer that

Thus, we can write

~ ~ H
F0.9) = =546+ Ga0) — 3% [ V6T
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_ fir GH 0
. 2(Ar+207) 1 1 H y "
e + | B (§> yV (y)GHdy
_ fr GH 0 g 0
2(Ar+24ar) 12
42 HV( \Grr(y) dy — — H/H ALy V() GHdydt + o(eY). O
— - — — 0 .
% VG dy—g¢ | | 2Vl y

In the first proposition we use Lemma 3.8.12 and (3.92) to get an asymptotic expan-

sion on the Jost function Fg(&) defined in (3.66).

Proposition 3.8.13. For V' € Vy, the Jost function in the physical sheet for || — 00 and

Re & > 0 admits the asymptotic expansion

o(¢I™h) o)t
Fo(&) = Exa + x2 + &1+ x0 + ( g§(|1) | g§(|1) )>
where
i 2 0 0
X3 w2 ﬂ(o) 11 L1 P
fir s 0 0
=29 )
G21(0) 0O
B NG
T 0)? /o (V@G + V@) | | do
oy (05GH = 0:Glh 0sGH - 0.6}
- Gu(0 / Viy GHd + Lt
0:G13

0,G1

LB (0 0) L
A0 +2ar) T\ o) O
o (0 O) /H/HV(y)V(t)Gdedt
20(0)w® \{ o) Jo Sy

/0 0\
24
200y (1 0) /o (cryB(y/2)) V (y)G dy,
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and

H
XOIGHW(G“ 0)
2 2(A1+201) \GH o
I I
——2/‘vw>GH<>@r—4[;<qy8@ﬂnﬂ4yxﬁwy

1 H

+ 4w2/ / )G dydt
—03 03 il —03 03 H

+ Gu(0) - 142 / V() GHdy.
—61 0 —01 0 0

F(x,€) = H(z, e,

Proof. Since

we have
F'(x,6) = (igp)H(w, €)™ + H'(x, €)™ r
and

We want to compute the derivative of the Jost solution up to the £” order. Differentiating

(3.92) we get that
G5 () _%Gﬁ
Ho(x, &) = +0(¢7

Giy() _%Gg
where G} (z) := =4 G (x — H) + G and Goz(z) = —4 G (z — H) + G, s0

Hy0,€) = =5 G + 0.

w?

We know that qp = f + m

+0(Ig]7%), s0

2

. _ w o(e~1) =
(igp)H(0,8) = 57'1(0,5)+72(5\I+2ﬂ[)§’ﬂ(075)+ (€)

gﬁGHng 0) 4+ e M HV GHa
w2 ( )+§2w2 0 (y) Y
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A/ALI GH 0
2(Ar+2fr) 1 1 H "
- 1 Bl vy
AﬂI GH 0 0
2(Ar+24ar) 12
1 (H I H
2/‘V@Gmw@+4/ /QV@VWGth
0 0 Jy W
w?

—_—(— At 1.
2M1+%hﬁ(§) +o(§7)

w2

Finally, we have

~ ~ H
F0.6) =261 — Gu(0) + 5% [ VaGhay

1 w, 17
-1 CnBwvweta -5 [T vaGawi
f H
1 rH Hﬂ] 2(&1;2;1,)(;11 0
+/ / V)V ()G dydt —
o Jy w i qH
2(Ar+20r) 12

for H_ Cl g | o 1
-G - =G+ SV ()G Fo0(E).
G = Y6 BV a ot
Adding together the last two matrices we get

A'[‘iIAGH _ MGH _ _EGH
2(Ar +24r) 2(A1 +24r) 2

and thus

A ~ H
F(0.6) =261 — Gul0) + 5% [ ViGHay

H
L g fir Gh 0\ 4o H
- ~1 [ B Ve
2(Ar +24r) GIL 0 0

H H H
-1 /O V)Gn(y) dy + /O /y By () (G ayd + ofe™).

~

(3.93)

Now we are able to calculate the expansion of Fg(§) = F'(0,&) + OF(0,&), but we
should reflect on the fact that we calculated F(0, ¢) up to ¢! order and F(0, €) up to
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€9 order. Since

= 0 - (00 —03 ¢

@;( ’ 2)522‘“( )+( 3 2)
(0 !

24562~ 61 0 O \1 o ~0 0

Fo(§) assumes the form

E2x211 +Exi1 + x011 +o(1)  Ex212 + Ex1,12 + X012 + o(1)
Fo(§) =

Exz01 + 221 + Exa,21 +0(€)  E3x322 + Ex2,22 + Exa,22 + 0(€)

where X; ji is the jk component of the matrix ;. Then, to know the terms of order £0
in the second row, we should have calculated the Jost solution F (0, &) up to the order
¢72. The matrix © can be decomposed into © = £2M! + M?. Multiplying M by
any matrix leads to a matrix whose only non-zero terms are in the second row. Hence,
we multiply €2 M1 by terms of F (0, &) of order up to €1, whereas we multiply M? by
terms of F (0, &) of order up to £°. Then we have

3ﬂ[ Qﬂl 00 H
F(0,8) = ¢ 2% 7(0) Lo G
(00 Y
9 2[i1 G (0) — €2 §oa 2,uI V(y)GHd

iir —03 02 0
_éﬁ -0 +§ﬁ)\1+2,u1 0
/ y

e B i H rH .
52@(0)& . o)/o /y V(y)V(t)G" dydt

. 00 H
+§25(fo)( ) /O (cryB(y/2) V (y)G" dy

—03 0O . —6;5 65 i
il H o) o)
+<91 o)GH(O) w22(91 0)/0 Vs ar+ (5 o))

(3.94)
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Adding (3.94) and (3.93) yields the statement of the proposition. O

A similar result to Proposition 3.8.13 can be found in [19] but with only two orders
of expansion and without proof.

In the following, we will compute the asymptotic expansion of the determinant of the
Jost function for & in the physical sheet =, | (Lemma 3.8.14) and then we do the same
for the sheet Z_ _ (Lemma 3.8.15) and the other sheets (Lemma 3.8.18 and Lemma
3.8.19). The goal is to find an asymptotic expansion for the entire function F'(§) as the
product of all the Rayleigh determinants (see Theorem 3.8.21) and an exponential type
estimate for F'(&) (see Theorem 3.8.22).

Lemma 3.8.14. Let V' € Vy, then the determinant of the Jost function for || — oo and
Re & > 0 on the physical sheet = | satisfies

det Fo (&) = §*E50(0) + O(l¢]?)

— MO)+a(0)
where C(O) = W
Proof. We can write det Fg (&) = a&® + b&* + c£3 + 0(£2) and we can see that

Br (B 200 o fir 2y

o= ot (-G et + Gt (G aget) —o
The coefficient b is obtained by multiplication of the first row of the terms of order &>
with the second row of the terms of order £2 and by the second row of the term of

order £3 multiplied by the first row of the term of order £&. Hence, only the first three
terms play a role in the computation of b, as the other three terms have zero 11— and

12—components. Thus,

Br o 200 g fir 2fi1
b=—-—5G1—=G5(0 - G G 0 0.
wQ 11”(0) 21( ) 2 M(O) [ ( )]

Calculating the determinant it is important to know that

H H H H H H

a]_ (IQ Gll Gll alGll + a2G12 a]_Gll + a2G12
= Y

H H H H H H

as a4 G12 G12 (IgGH + a4G12 agGH + a4G12

which means that multiplying a matrix with the same row to any matrix, the result is
a matrix with the same rows. Moreover, matrix with the same rows have zero determ-
inant. Keeping this in mind, we can calculate the coefficient c. First, we calculate the
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contribution to ¢ given by the elements in the first row of order £ multiplied by the
elements of the second row of order &3

09 2 M gy 2P G g Gl o) - 6,GH(0)]
w?u(0) 2(A; + 2juy) w?fu(0)
~D H
+ Gl /0 [Vir () GLL (y) + Vaa () GLL(v)] dy
[ﬁ Tery H H
+ ol /0 Vi ()G + Via(y) GL] dy
where GI (y) == =4 Gl (y — H) + G and Gaa(y) = —4Gih(y — H) + GL,.

Then we calculate the determinant considering the elements in the first row of order &>
multiplied by the elements of the second row of order ¢!

N 2
f o f
) =5 GRGE(0) — (G’
w? 0(0)(Ar + 27r)

a2 H o oy . )
w2M<O)G 0 2 [Vll(y)Gll + V12(y)G12] dy

2 H
- Gl [ et + VsG]

+

Finally, we calculate the determinant considering the elements in the first row of order
¢! multiplied by the elements of the second row of order £2:

~(12) fi H —/ﬁ " H H
=(—G3} (0)) G12+( G21(0))w2ﬂ(0)/0 (Vi1 (y)G11 + Vi (y)G1a] dy

fir " H H 200 ~q
+ |- [V11(y)G11+V12(y)G12] dy| —G21(0)

2w? f1(0)
- [8:G1h — 02G18] L =E G 0) = (<G 0) 256
[ NelimrNely Ijég)c;ﬂ(o).

Hence, summing c(03) 4 (21) 4 c(12), we get c(3)

_ 2/1% H H H MI ,u[
C*W(O)Gn [62G21(0) = 62G5(0)] + = = GHGHE0) - G LG (0)

2/1
w2ii(0)

o H o iy B 20247
G31(0) [03G11 — 02G15) = o T(0)”
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Now we recall that 0y = ﬁ%, so c = %(1 — %). Then, the

determinant of the Jost function det Fg (&) for £ in the physical sheet and |{| — o0,
Re & > 0 satisfies

| pO) 2
da}b@y_§<w2k.‘nm+2mm >+0(ﬂ)
_ ¢ (’ﬁcm)) L o(ep). 0

We define
- (Gﬁ Gﬁ)
GH =
G, —Gij

_ Ga(y) “GH
Gu(y) = ;

Gaa(y) “EGH

where, G is obtained from G by inverting the sign in the second column, while
Gr(y) is obtained from G (y) by inverting the sign in the second column.

In the following lemma we compute the asymptotics of det Fo(wps(£)) in the
sheet Z; 4 of the Riemann surface Z, that is equal to det Fg (&) in the sheet = _.

Lemma 3.8.15. Let V' € Vy, then the determinant of the Jost function Fo(wps(§)) for
Re& > 0andasRe& — oo in 24 4 is

det Fo(wps(€)) = E¥25e(0) + €/(€) + 28(6) + A(6),

where

o 27 " 2
(€)= s [ e Wialay

and B(&) can be written as

() = ( /0 ’ f1<y>e2y€dy> ( /0 ! fg(t)e2t5dt>

with f1 and fo being in L. The term R (€) is a remainder term containing all the terms
polynomially smaller than 3.7 (€) and all the other terms dominated by 2B (€).
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For simplicity Z () denotes a remainder as in the statement that will be allowed to
change between occurrences.

Proof: Tt is clear that Fo(wps(§)) for & € Z4 4 is equal to Fg(§) for & € =_ _.
When we consider the Jost solution in the unphysical sheet =_ _, what changes is the
expansion of ¢p and gg, which, for Re{ = +ooand { € E_ _, is

2
w
2(A1 +205)€
as=¢— 2 o3l
1qs = § — ;
qs 2[&[&'
critir-as) = (1T G o)
2urE | B3¢ '

From the expansions above and the definition of Ho(z,§), it is clear that the unper-
turbed Faddeev solution in the sheet Z_ _ is the same as in the physical sheet but with
the first column with an opposite sign for odd powers of £ and with the second column
with an opposite sign for even powers of £ as below

H H H
fir Gin —Gn Go1() %Gn
Hﬂ(xag) :gﬁ +
Gy, —Gt Goo(z) <EGH,
I TR R T
) 2(3+24r) M 8fi1 )
+& +o([§]7).
i on S
20 r+247) 12 8y 12

For the Green function G; (x, y) instead there is invariance under change of sign on gs

and gp (even function with respect to ¢p and gg). Then, fo Gi(x,y)V (y)Holy, €)dy
has the same property as F(0, £) and assumes the following form

H y ~
/ Gi (2, y)V (y)Ho(y, €)dy —/ %V(y)Gde

T

1 i wer(y —x) W4C§(y —x)? i
- d
1 H

~ 3¢ [ V@Gutidy+0 (K,Q)

We know also that in Z_ _ the following asymptotic expansions hold

2 2,4
eiarlv—s) — 2voe (- WZD” W0 ) )
(A1 +2a0)€  2(\r + 2fu7)2€2
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2 2.2 .4
iy—a)aptas) _ 2o (1 _ W=D (Y- 2) P’ —3)
¢ e (1 (L2 e ol ™).

because gp + qs = 2i§ — 22# e T O 3) and where p := iligzl Then Go(z, y)

has the same asymptotic expansion as in the physical sheet after replacing & with —¢&,
namely
€2E(y_$) + 625(31—96) (y — :I:)WQ

gZ(x7y) = - 25 252 2'&]0_1

(2, y) + O(¢[™)

where

Az, y) = (A +50) (A(z) + Bly)) + (y2;f)c (&2 + 502 + 65\;1) .

Then, the integral term fo G, y)V (y)Ho(y, €)dy becomes

N H _
/szy D Ho(y, E)dy = — ML [ 208y ()G ay

5.2 ).
_ 2(y—=x)€
2€ ’ e V(y)Gr(y)dy
L LY e = E 0 ()G (14 0(EY) dy
28 . 20 ’

Adding all the terms, the Faddeev solution becomes

H(x, &) = g%é’f + Gp(z)

2.2..2

I T ﬁ wsclx {{1
2(Ar+2711) fir H g -
e _ / LV ()G dy
N 22 2 x w
—#GH _ wicw H
2(t2ar) 12 B 12
1 [H cr(y 97)) ~H
_ = —2) (By) + L") vy)GHa
), cr(y — x) ( (y) 1 (v) Y
1 [H ~ 2
~ % V(y)Guly) dy +O(l¢]72)
A o N 1 [H -
+og [ STV Ty + o / VIV ()G (y)dy
2w T 25 T
_ LT 0 =T v )@ (14 0 Y) d
25 ; & 20_ Zz,Y Yy Y
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which is the same as in the physical sheet inverting the first column of the terms with
odd powers of £ (G¥ and G (y) to —GH and —Gp(y)) and the second column of
the terms with even powers of € (G and G (y) to G and G (1)), plus the last two
terms, which are exponentially large and that, instead, were vanishing in the physical

sheet. Let D1 (x,&), Dao(x, &) and D3(x, &) be
N A
’ 2w? J,
1 ~
Da(e§) = 3¢ | V) Gulu)idy

H — ~
2L o )V ()G

D3(z,§) == To ). 2

then the Jost function Fo(wpg(§)) is the same as in the physical sheet, after the sign
replacement explained above, plus all the contributions coming from the exponentially
large terms D1 (x, &), D2(x, &) and D3(x,&). These D;(x, ) terms are exponentially
large since V' is continuous and non-zero in the set (H — €, H ) and thus it has a definite
sign in (H — €, H). Then the part of the integral close to H has no cancellation effects
and dominate the rest. For the Jost function, we need to calculate

3
> (igp)Di(0,€) + Dj(0,€) + OD;i(0, ).
i=1
On the one hand
’ pr [T ~
> (iar)Di(0.9) +Di(0.6) = ¢ 1% [ eV ()6
=1
1 H 2y& ~ 1 " 2y& Yy ~H
5 [ v @Gutdy+ [ o0V ()G
0 0 g
while on the other hand
& 2 iy (0 0\ [7
> epi0.9) = ¢ S (1 0) [ evimata
fu_ (00 . 2y¢ e
vl (10) [ e vGntay
§201 (0 0\ [T oy ~
4 fa (=05 0 /He%ﬁV( )GHay L (70 0 /HerEV( VG (y)d
22 \ =0, 0) ), Y ytae\ce o) ) y)Gr(y)dy
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L (6 0\ [T ey SH
26 <_91 0)/0 € QUD(O,y)V(y)G.

Then Fo(wps(€)) admits the following form

Folwps(€)) = EXET+ x5 + &+ x{ + E(©) + 2 ()

with xF'9, for i = 0, ..., 3, being the same as in the physical sheet after inverting the
sign, according to the rules mentioned above. The term E/(§) contains the exponentially
large terms and the remainder % () contains the polynomially lower order terms and

the polynomially lower order terms of the terms containing the exponential €2¢¥. In

particular
fir 2/ 00
PS H
_ A A :
X3 w2 £1(0) 11 —

fir 21y 00
PS ~H
==G" + Go1(0

N2

fi H 0O O
- /0 (Vi1 (y)G1L + Via(y)G15) dy,
1

f1(0)w? 1 —

PS _~ pr [ ~H HI
5 =Gul0) ~ 3% [ viweay -

. (03Gﬁ — 0:GL, 0,G1L — 03Gﬁ)

0,G1 -0.GH

2 B (R R
—mGn . 0 . /0 V(y)Gu(y)dy

R 0 0 H -
_ I ( )/ cryB(y/2)V (y)GY dy,
0

20 |

Ps fir G 0\ s 17 ~
X0 =T 7% - - §G - 2/ V(y)Gu(y)dy
2(A1 + 24y) GH 0 0

H ~
1| enBwvEGtay
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—(93 92 _ ,aI 1 _03 92 H .
+ Gu(0) — 2232 / V(y)G"dy,
—0; 0 -6, 0/ 70

2 H B ~ H B
p© = ¢t (Vo) [ emvcta -l [T vty
N H _
2 (00) [ e cnmay
1

(0) (? 8) /OH e (0, V (y) G

I 1 (—65 0
vy [ e Lo0avd v o (T8 %) [ e veGuta

_ 1 (=063 6 /H we Y ~H

The determinant of Fg(wpg(§)) is then equal to

det Fo(wps(€) = € ( 24et0) + (©)) + €510 + 26

where 7 (€) is

N7 B
) 1= i ], Vo

The part of the determinant obtained from the multiplication of the exponentially large
terms with each other is included in the term %(€) and they are zero up to order &3,
In the case that also the term of order £2%(€) is zero, we get a worse estimate than the
previous one. The term (&) can be written as

#(&) = Ch (/OH fl(y)e2ygdy) </0H f2<t)€2t€dt>

where f1(y) and f2(y) are functions of the form >, ; Ci;yVi;(y) which are in Lt as
V € Vy; hence

|B(€)| < Cettldl (3.95)
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The remainder (&) contains also all the terms coming from the iterates H()(z, )
defined in (3.75), which are all dominated by the term £2%(&) as G(x, y) is of polyno-

mial order €71, hence, by iteration, it keeps decreasing. O

In the following lemma we collect the asymptotic expansions of det Fg () and
det Fo(wps(€)) of Lemma 3.8.14 and 3.8.15 and we turn them into asymptotic expan-
sions of the Rayleigh determinants A(£) and A(wps(&)) using the relations of Lemma
3.8.1.

Lemma 3.8.16. LetV € Vy, then the product of the Rayleigh determinants A(wpg(€))A(€)
JorRe& > 0 and as Re § — 00 in E4 | admits the form

A(wps(€))A(E) =¢* [4/%(0)c?(0)w?]
+&(%%%m@)w@+é%@+%@.
I

Proof. We know that det Fg (&) = €3 (%C(O)) + O(|¢|?) and using Lemma 3.8.1 we

have

A(§) = det A1 () det Fo () det Az(&)
1 iw?
- (2iine) (€ (Lo ) + 006 (72
= £ (21(0)c(0)w?) + o([€[*) (3.96)

and
A(wps(§)) = det A1 (§) det Fo(wps(€)) det A2(§)
~ 7;LU4
= —2i(0) € <g3 <Z§c(o)> + 8 () +EB(E) +5£’(£)> ( 2>
I
B X 2w*1(0) 2w 1(0)
=& (2a0)e0)) + & (2 LD ) ) ¢ (220 9

Then

A(wps(€)A(E) =€* [4/1%(0)c*(0)w?]
e (mw) A€+ EBE) + A(E). O

Knr
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Remark 3.8.17. In Lemma 3.6.10 we showed that A(—§&) = —A(wps(§)). This is
confirmed by the formulas (3.96) and (3.97), where the polynomial term is identical, while
in (3.97) a term arises which comes from all the exponentials which are no longer decaying
in the limit |£] — oo.

In the following lemma we compute the asymprotic expansion of the Rayleigh de-
terminant A(wp(&)), from the asymptotic expansion of det Fg (wp(§)).

Lemma 3.8.18. Let V' € Vy, then the Rayleigh determinant A(wp(§)) for Re§ > 0
and as Re § — 00 in E4 | satisfies

Awp(€) = € (847 (G1)") + ¢ (2“;0[)“’4> dT(E)+ A7), (398
where
A" (€) = ﬂfggiﬁﬁ /O ’ *Va(y)dy (3.99)
and

a(y) == Vi1 (y)G{ + Via(y)G1h.

The remainder B (€) contains the terms which are polynomially or exponentially smaller

than ¥ (€).

Proof. By Lemma 3.8.1 we get
A(wp(§)) = det A1(§) det Fo(wp(§)) det A2(§)
iwt
— (-207(0)iu) det Fa(wr(€)) (575

&2
- 4
:(M@w)@maw@» (3100)
g

As before, Fo(wp(§)) for & € =4 4 is equal to Fo(&) for & € =_ 1. After some

lengthy and tedious computation, as in the previous lemma, we obtain

det Fo(wps(€)) = g5< wi( 5 (GH) )+£4M(5)+%P(£)
with

Pooy 207 . 2%y [~H H
A(§) = M(O)w‘lG ; eV [G11 Vi1 (y) + GiaVia(y) ] dy
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and the remainder Z (€) containing all the other terms which are dominated by the
term {4@7 P (€). In the determinant, in contrast to the previous case, there are no terms
containing the product of two integrals containing exponentials, as all the exponentially
large terms only appear in the first column. Substituting the result into (3.100) we obtain

X 2 21(0)w*
Awp(€)) =¢* (—8i3 (GH)") + € <“(M)> AP©+RP(¢. O
In the following lemma we compute the asymptotic expansion of the Rayleigh de-
terminant A(wg(§)), from the asymptotic expansion of det Fg(wg(§)).

Lemma 3.8.19. Let V' € Vy, then the Rayleigh determinant A(wg(§)) for Re& > 0
and as Re § — 00 in E4 1 admits the form

S A
Aws() =€ (872 [611)%) +.¢ (P22 ) s 4 250 o
where
~3 H 2
2@ = B [7 (060 - £6u(0) ) ) - 02650)|
(3.102)
and
a(y) == Vi (y)G1i + Viz(y) G
b(y) == Va1 (y)GTi + Vaa(y)G1h.
Proof: By Lemma 3.8.1 we get
A(wg(§)) = det A1 (§) det Fo(ws(€)) det A2(§)
-4
— (20a(0)1) det Faws(©) (52
3 Ky
- 4
- (2“@‘*’ )det Folws(£)). (3.103)
fr§

As before, Fo(ws(§)) for £ € 24 4 is equal to Fg(§) for § € Z4 . After some long

computations, we obtain

3
det Fo(ws(¢)) = € (—Uﬁ%) (Gﬁf) +88%(8) + %°(6)
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and

a(y) == Vi (y)G1i + Via(y)G1h
b(y) == Va1 (y)G1i + Vaa(y)G1h.

The remainder % (€) contains all the rest of the terms, which are dominated by 3.7 (€).
In the determinant, as opposed to the case of the sheet Z_ _, there are no terms con-
taining the product of two integrals containing exponentials, as all the exponential terms
are present only in the second column. Substituting the result in (3.103) we obtain

~ w4
Aws(©)) = € (-8 [GH1]") + ¢ (2“(;[)> 7€) +#%(¢). O

Remark 3.8.20. n Lemma 3.6.10, we showed that A(wp(—§)) = A(ws(§)). This is
confirmed by the formulas (3.98) and (3.101), where the polynomial term, that is of even
power, is identical, whereas the next order is different because in the limit || — oo different
terms are decaying in the two sheets.

Now, we use the results of Lemma 3.8.16, Lemma 3.8.18 and Lemma 3.8.19, in
order to obtain an asymptotic expansion of the entire function F'(§) defined in (3.28)
in Section 3.6.1, as shown in the following theorem.

Theorem 3.8.21. Let V' € Vy, then the entire function F(E), product of all Rayleigh
determinants, admits the following form in the complex plane for Re § > 0 and as Re § —
00!

F(&) = A(ws(§)A(wp(§))A(wps(§))A(E)
= 2 (12822(0)e(0) 3] [G11] ") (&) — ECB(&) () 5() + 2 (¢).
Proof. From Lemma 3.8.18 and Lemma 3.8.19 we get

4® u *(0)

/~‘I

Aws(@)A(wr(e) =€ (641t [6H] ) - €| | @)+ a0

where we included all the other terms of A(wpg(§))A(&) in the remainder Z(€) as
they are dominated by &° [%} P (€).e7(€). Using Lemma 3.8.16 we have
I

Alwps()A(E) =¢* [472(0)¢* (0)w']
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g (TR0

3
. )ms) L EBE) + RE).

Then, the entire function F', for Re { — +o0, is

(&) = A(ws(€)A(wp(€) Alwps (€)A(E)
= 612 (12872(0)c(0)w%i} [G11]") o/ (€) — €802 P (€) 75 (€) + 2(¢).
(3.104)

In (3.104) we kept the largest polynomial order in € and the largest term, which is the one
obtained by the product of four exponentials. All the other terms of the remainder have
smaller exponential order than the term containing ¢8%(€)a/ T (€)o7 (€), or smaller
polynomial order than this term, hence they are dominated by it. O

In Corollary 3.8.7 we found a first exponential type estimate of F'(£). In the next
theorem we show an improved exponential type estimate of F'() after having computed
the determinants of the Jost function in the different sheets. This make sense because in
the computation of the determinants there has been several cancellations and the type of
the exponentially large terms arising in the unphysical sheets is different from one sheet
to another, as we have seen previously.

Theorem 3.8.22. Let V' € Vi, then the entire function F(§) is of exponential type and
JorRe& > 0 and as Re § — 00 in the complex plane

|F(£)] < OeBeBHIReS] (3.105)

Proof. 'The proof follows from Theorem 3.8.21 as the second term dominates the first
one and all the terms inside the remainder % (). Moreover, we have seen in (3.95) that

|B(€)] < Ol
and from (3.99) and (3.102), it holds

7" (©)] < Ce*e
[79(&)] < Ce el

as V € Vi C L. Thus there exists a constant C' > 0 so that (3.105) is satisfied. O]

3.9 Direct results

In this section, we present the direct results on the number of resonances and the resonance-
free regions, which are implied by the asymptotic expansion of F'({) (see Theorem
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3.8.21) and by the exponential type estimate of F'(§) (see Theorem 3.8.22). In Theorem
3.6.12 we proved that F'(§) is entire and together with the result of Theorem 3.8.21,
we show in Theorem 3.9.1 that F'(£) is in the Cartwright class (Definition 2.4.6) with
indices p+ (F) < 8H.

Theorem 3.9.1. The function F(z) is in the Cartwright class with
po(F) < 8H.

Remark 3.9.2. The exact value of the indices py of the function F' might be obtained in
the same way as in Chapter 2 in Theorem 2.5.44. However, this would require solving the
inverse resonance problem, which is beyond the scope of this work.

Proof. In order to prove that F'(z) is in the Cartwright class, we define z := i{ = z+1y,
sox = —Im¢& and y = Re . We need to prove that

log™ |F(z)|dx
e F)<8H, p_(F)<8H
/]R 1 +.’IJ2 < 00, ,0+( ) = y P ( ) = )

%;ﬂy)‘. In Theorem 3.8.21 we have seen that

where p (F') = limsup,,_,
F(§) = - CB(&) " () a°(€) + #(¢)
OB ()5 (©) (1 n

#(E) >
ECBE)AT(E))’

where the last fraction that tends to zero as Re £ — +00. Then, we have

[ g < [ e (C o)
R a R

d .
a2 (e T < 00

For the index p we have that £ = i(+iy) = —y, so Re{ = —y and | Re{| = y, and
thus

81 8H

y—00 y

8H.

While for the index p_ we have that, { = i(—iy) = y, so, Re{ = y and |Re | = v,

whence 001 -
p—(F) < lim sup og |y| + 8Hy =

Yy—>00 y

S8H. U

The following result is an application of the Levinson theorem (see Theorem 2.4.7),
once we determined, in Theorem 3.9.1, F'(§) to be in the Cartwright class.
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Corollary 3.9.3. Let V € Vg, then
N_(r,F) < —(1+0(1), r— o0,

and S
Ni(r,F) < T’“a +o(1), - o0

Moreover, for each 6 > O the number of complex resonances with real part with modulus
< 1 lying outside both of the two sectors | arg{ — % - 37”] < diso(r) for
large r.

As explained in Chapter 2, the previous result tells us how many resonances we are
expected to have in a ball of radius 7 in the complex plane, for large values of .

In the following theorem, we obtain some estimates of the resonances, which tell us
where they are localized on the complex plane and vice-versa the forbidden domain for
them. These are obtained from the asymptotics of F'(£) in Theorem 3.8.21 and from
the fact that the resonances are the zeros of F'(§).

Theorem 3.9.4. Let V' € Vy, then for any zero &, of the function F (&) the following
estimate is fulfilled:

|£n| < C€2H|Re§n|_
Proof. From Theorem 3.8.21 we know that the asymptotic expansion of F'(§) is
[F(&) - €2 (12872(0)e(0 ) 50t G ) ©)| <
<|-&oB&)T" (&) < R(&)] < O|¢3[e3HIReel,

Evaluating this at a resonance { = &, as &, is a zero of F', we get

H
£2) / e%yvu(y)dy‘§0|£Z|e8H'Reﬁn', (3.106)
0

since, we recall

JZ{(&) T ,&(O)W2 /0' € yV12(y)dy

The term

fOH 62§y1/12(y)dy‘ is bounded from below, because Vi2 is continuous and
non zero in (H — €, H) for € > 0, hence with definite sign. Then the part of the
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integral in (H — €, H) has no cancellation effects and dominate the rest. Thus (3.106)
becomes

‘gn‘4 < CeSH|Re§n|

and hence
|£n| §C€2H|Re£n|. ]

Remark 3.9.5. We notice that the constant C' in Theorem 3.9.4 is not made explicit, because
it is not so important. Indeed, C would give a bound on the Im &, for small values of Re &,
but since the estimate is obtained for large values of Re &, the constant C' is not important.
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Appendix A

A1l Semiclassical pseudodifferential operators

The following theorems and corollary refer to [36].
Definition A.L1. Leta € S (R*") andu € S (R™), then the integral

O (@)ule) = o [ et alo utsayds A

converges and defines Opc(a)u € S (R™). The quantity Opc(a) is called semi-classical
differential operator and ifis a € S (R®"), then it is a mapping from S' (R™) to S (R™).
Theorem A.1.2. Assume that a,b € C° (R*™). Then

Ope(a)Opc(b) = Opc(a#d)
where a#b(x,E;€) € S (RZ”) uniformly in € and satisfies the expansion in S (RQ”) as
e—0

o0

b, € 6)~ S (—ie) Y O alw, (. 6),

=0 olal=j

where a#b is called Moyal product of a and b and we used the multi-index notation where
a = (ai,...,an) and for example o! = aq!, ..., a,\.

Corollary A.1.3. It holds that
a#b = ab + O(€) g(r2n)
that can also be written more informally as

Opc(a)Ope(b) = Opc(ab) + O(e)
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Theorem A.1.4. Let Ao (z,€) be an eigenvalue of Ho(w, €), and assume U C T*R?\{0}
to be open. Assume that N (x,§) has constant multiplicity me, for all (x,€) € U. There
exist Pop(1,€) € L (D, L* (R7)) and agm(x,£) € L (L* (R™), D) which admit

asymptrotic expansions

ae$f Z(I)aml'g

a()é€a?§ Zaamxf

and satisfy
Ho (I)a,e(x7§) = (I)a,e o ame(:t,f) + O(eoo)

where o denotes the composition of symbols. Moreover, aq o(x, )N (2, )T and Py o(x, )
is the projection onto the eigenspace associated with Ao (x, §).
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