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Abstract 

Estradiol (E2) is apart from its role as a reproductive hormone also important for cardiac 

function and bone maturation in both genders. It has also been shown to play a role in insulin 

production, energy expenditure and in inducing lipolysis. The aim of the study was to investigate 

if low circulating testosterone or E2 levels in combination with variants in the estrogen receptor 

alpha (ESR1) and estrogen receptor beta (ESR2) genes were of importance for the risk of type-2 

diabetes.  

The single nucleotide polymorphisms rs2207396 and rs1256049, in ESR1 and ESR2, 

respectively, were analysed by allele specific PCR in 172 elderly men from the population based 

Tromsø study. The results were adjusted for age. 

In individuals with low total (≤11 nmol/L) or free testosterone (≤0.18 nmol/L) being carriers of 

the variant A-allele in ESR1 was associated with  7.3 and 15.9 times, respectively increased odds 

ratio of being diagnosed with diabetes mellitus type 2 (p = 0.025 and p = 0.018, respectively). 

Lower concentrations of E2 did not seem to increase the risk of being diagnosed with diabetes. 

In conclusion, in hypogonadal men, the rs2207396 variant in ESR1 predicts the risk of type 2 

diabetes.
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Introduction  

Estrogens are considered as “female sex hormones” but, in both sexes, they have a crucial role in 

regulating not only the reproductive system but also many other of the functions in the human 

body, e.g. the cardiovascular function, bone mineral density and the metabolism [1-3].  

In males estradiol (E2) is primarily produced at extragonadal sites by CYP19 controlled 

aromatization of testosterone [4, 5]. In an alternative pathway, androstenedione is converted to 

estrone (E1), which subsequently is metabolized to E2. Previously, E2 has been shown to inhibit 

insulin gene receptor transcription, promote insulin resistance and also to up-regulate CYP19 

expression in mature adipocytes [6-8]. Estradiol has also been shown to increase insulin 

biosynthesis [9]. 

Low testosterone levels in men has in numerous studies and also in a meta-analysis comprising 

more than 6000 men been associated with increased risk of type 2 diabetes (referred to as 

diabetes hereafter) [6]. It has also been shown that testosterone replacement therapy may 

improve insulin sensitivity [10], whereas androgen deprivation increases insulin resistance in 

men [11]. However, whether this is attributed to testosterone per se or to the parallel changes in 

E2 has been discussed. Estrogen action is mediated through estrogen receptor α (ESR1), estrogen 

receptor β (ESR2) and a G-protein coupled cell surface receptor [12, 13].  

Total estrogen resistance due to a germ line mutation in the ESR1 gene was in 1994 reported in a 

28-years old man with continued linear growth into adulthood. He also presented with 

osteoporosis and early atherosclerosis as well as glucose intolerance and hyperinsulinemia [11]. 

However, testosterone concentration was within normal range and the man had gone through 

normal puberty, suggesting that lack of estrogen action rather than testosterone deficiency was 

the cause of his diabetes. Estrogen resistance due to homozygous germ line mutations in the 



4	
  
	
  

	
  

ESR1 gene is however extremely rare, only one kindred described to date. Nevertheless, one 

cannot exclude inherited differences in estrogen secretion and response, which may have more 

subtle effects on the metabolic system and over time contribute to the etiology of diabetes. 

Animal studies are supporting this theory, since ESR1 knockout mice suffer from increased 

fasting plasma glucose levels and increased insulin insensitivity [14]. In males suffering from 

mutations in the gene coding for aromatase increased insulin resistance, increased concentrations 

of insulin and diabetes have been found [15-18]. However, Carani et. al. found no changes in 

metabolic parameters in a patient with a mutation in the gene coding for aromatase [19].  

Both the ESR1 and ESR2 genes contain several single nucleotide polymorphisms (SNPs). We 

have previously reported that G to A substitution in SNP rs2207396, situated in intron 6, of the 

ESR1 was associated with higher risk of developing azoospermia in childhood cancer survivors 

[20], pointing to a functional role of this polymorphism. With respect to rs1256049 SNP in 

ESR2, a synonymous substitution of GTG to GTA in, exon 5 was first shown to be associated 

with ovulatory dysfunction in women of Chinese origin [21] and later also with male infertility 

in Caucasian patients [22]. 

Since subnormal testosterone levels, either due to the male sex hormone action per se or due to 

parallel decrease in E2, were found to be associated with increased risk of metabolic 

derangements [23] we wished to investigate whether this association is modified by 

polymorphisms in the above mentioned SNPs in the ESR1 and ESR2 genes.
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Materials and methods 

Subjects 

The study population and the methods have been presented previously [23]. Shortly,	
  the Tromsø 

Study is an on-going populations based health survey of the inhabitants from the municipally of 

Tromsø, mainly focusing on lifestyle related diseases. A subgroup consisting of 68 men with 

consistent total testosterone ≤11.0 nmol/L and 104 men with consistent total testosterone >11.0 

nmol/L were recruited from the fifth Tromsø study. When they were invited to participate in this 

study in 2005 they were between 60 and 80 years old.  

 

Blood samples for analysis of levels of testosterone and E2, glucose, insulin and for genetic 

analyses were drawn 08.00 am. An oral glucose tolerance test (OGTT) with ingestion of 75 g 

glucose was performed. Diabetes was defined as having either non-fasting glucose >11.1 

mmol/L, fasting glucose >7.0 mmol/L or 2-hour glucose load >11.1 mmol/l Height and weight 

were measured in subjects wearing light clothing without shoes. Body mass index (BMI) was 

calculated (kg/m2).  All participants were genotyped for rs2207396 in ESR1 and rs1256049 in 

ESR2. Free testosterone was calculated according to Vermeulen’s formula [24].  

All participants signed an informed consent form and the study was approved by the Regional 

Research Ethics Committee, North-Norway. 

 

Sex hormone analyses and biochemistry 

Serum total testosterone was analysed by electrochemical luminescence immunoassay using an 

automated clinical chemistry analyser (Modular E, Roche Diagnostics GmbH, Mannheim, 

Germany). The total analytical precision expressed as the sum of intra and interassay coefficients 
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of variation (CVa) were 5.6 and 4.7 and the reference values were 10-28 nmol/L and < 0.20 

nmol/L, respectively. Serum E2 levels were measured using DELFIA® Estradiol-kit (Perkin 

Elmer, Turku, Finland). The total analytical precision expressed as the sum of interassay 

coefficients of variations (CV) 20% at 30 pmol/L and 10% at 280 pmol/L. Measuring range was 

8-1500 pmol/L. For the E2 analysis, serum samples from 5 participants were lacking thus 

limiting the study population to 167 males for all calculations involving E2. 

 Serum SHBG and insulin were analysed by immunometry based on chemiluminescence using 

an automated clinical chemistry analyser (Immunulite 2000, Diagnostic Product Corp., Los 

Angeles, USA). The CVas were 5.2 and 8.8, respectively.  

 

Allele specific PCR 

To identify the different SNPs, allele specific PCR was used and PCR conditions established to 

generate both a short allele-specific and a longer control band in the presence of the variant, and 

only the longer control band in its absence. For the ESR1 variant rs2207396, the PCR 

amplification volume was 25 µl containing 25 ng genomic DNA, 45 mM KCL, 10 mM Tris-

HCL, 0.2 mM dNTP (Fermentas GmbH, St. Leon-Rot, Germany), 0.1% Tween 20 (Scharlau 

Chemie S.A, Barcelona, Spain), 1.5 mM MgCl2, 0.5 µM forward primer (Invitrogen, Edinburgh, 

Scotland) (Table I), 0.5µM reverse primer, 0.45 µM of either one of the allele specific primers, 

0.5 U DNA Polymerase (DyNAzyme II, Finnzymes, Espoo, Finland). Amplifications were 

carried out for 42 cycles (Eppendorf, Hamburg, Germany); each cycle including denaturation for 

1min at 96oC, primer annealing at 53.5oC for 30 sec, and primer extension at 72oC for 3 min, 

with an initial denaturation step for 3 min at 96oC and a final extension at 72oC for 5 min. 
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For rs1256049 in ESR2 gene, the PCR amplification volume was 25 µl containing 25 ng 

genomic DNA, 45 mM KCL, 10 mM Tris-HCL, 0.2 mM dNTP 0.25 µM forward primer, 0.25 

µM reverse primer and 0.3 µM of either one of the allele specific primers [22] and 0.5 U DNA 

Polymerase. Amplifications were carried out for 40 cycles; and primer annealing at 57oC for 30 

sec, whereas all other procedures were the same as for ESR1.  

 To verify the results of the allele-specific PCR, 3 selected PCR samples representing each 

genotype, were purified using a JETquick-kit according to the manufacturer’s recommendation 

(Genomed, Löhne, Germany) and directly sequenced. The sequencing reaction was performed 

using ABI Prism® BigDye® Terminator v3.1 Cycle Sequencing Kit according to the 

manufacturer’s recommendation (Applied Biosystems, Austin, USA) and the results were 

obtained using a 3130x/Genetic Analyzer (Applied Biosystems, Hitatchi, Austin, USA).  

 

Statistics 

The subjects were categorised into groups with subnormal and normal testosterone level. For 

total testosterone the cut off level was set to 11 nmol/L, as has been used for previous studies on 

these subjects, whereas it was 0.18 nmol/L for the calculated level of free testosterone [25, 26]. 

Using binary regression analysis, the odds ratio (OR) for diabetes in men with low testosterone 

levels, with the group having normal concentration of this sex hormone as reference, was 

assessed.  

In order to explore whether fluctuations in testosterone levels mirror corresponding changes in 

E2 concentration, we tested correlation between these two parameters using Spearman’s test.  
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The association between E2 and the OR for diabetes in the entire study population was assessed 

using binary regression analysis with median E2 (74.0 pmol/L) as a cut-off point for categorising 

E2.  

For the combination of total/free testosterone and the genotype four different groups were 

defined: a) Normal (total/free) testosterone + GG; b) Normal (total/free) testosterone + AA/AG; 

c) Subnormal (total/free) testosterone + GG; d) Subnormal (total/free) testosterone + AA/AG. For 

each genotype we primary performed an interaction analysis (testosterone subnormal/normal * 

genotype) in order to explore whether there was a statistically significant interaction between sex 

hormone levels and genotype in relation to risk of developing diabetes.  

The interaction analysis was also done for E2*genotype with median E2 levels as cut off for 

dichotomising the hormone concentrations. Since there are no well-defined subnormal E2 levels 

for men, we even performed the interaction analysis with E2 as continuous variable 

 

Similar strategy was applied for the ESR2 genotypes with the exception that the analysis of 

differences in ESR2 genotype distribution among males with normal levels of testosterone 

Fisher’s exact test was used since one of the subgroups contained 0 subjects. 

Calculations were adjusted for age. 

Statistical significance was defined as p < 0.05.  

For statistical analysis, IBM SPSS Statistics 20 (version 20, IBM Corp., New York, USA) was 

used.
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Results  

Total and free testosterone 

The measured levels of total and free testosterone are shown in figure 1. Subnormal levels of 

total testosterone, irrespective of allele, did not increase the OR of having been diagnosed with 

diabetes (95% CI: 0.7-6.0; p = 0.196). Subnormal levels of free testosterone, irrespectively of 

allele, increased the OR of having been diagnosed with diabetes (OR= 4.3, 95% CI: 1.2-11.0; p = 

0.019,) compared to individuals with normal levels of free testosterone.  

 

Estradiol 

The distribution of E2 in the study population is shown in figure 2. There was a statistically 

significant although weak positive correlation between testosterone and E2 (p < 0.0005, β: 

0.327). 

The OR of having diabetes in those with E2 below median did not differ from those with E2 

above this value (OR=1.4; 95% CI: 0.460-4.184; p = 0.571,). 

 

ESR1 

The frequency of the variants of rs2207396 SNP in ESR1 was GG n=98 (57.0%), AG n=61 

(35.5%) and AA n=13 (7.6%), which is in Hardy Weinberg equilibrium.  

In the cohort, in total 15% of the men were diagnosed with diabetes. Of these, 53% had the AA or 

the AG-variant. No statistical significant difference in the OR between the different allele groups 

was observed (OR = 1.6; 95% CI: 0.569-4.901; p = 0.350). 
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Interaction between ESR1 and testosterone 

There was a statistically significant  interaction between both total and free testosterone groups 

(subnormal and normal) and allele groups in relation to the OR of  having been diagnosed with 

diabetes (p = 0.026 and p = 0.013, respectively).  

In carriers of an A-allele and subnormal levels of total testosterone, the OR of having diabetes 

was 7.3 (95% CI: 1.3-41.7; p = 0.025) as compared to men homozygous for the G-allele (Table 

II). For those with low free testosterone, men with the A-variant had 15.9 times increased OR 

(95% CI: 1.6-166.7; p = 0.018) for diabetes compared to counterparts with the G-variant (Table 

III). In men with normal levels of total or free testosterone,  carriers of an A-allele, as compared 

to men homozygous for the G-allele did not differ significantly with respect to the diabetes risk 

(p = 0.354 and p = 0.323, respectively) (Table II). 

 

Interaction between ESR1 and E2 

No statistically significant interaction between E2, as dichotomized or continuous variable and 

ESR1 genotype in relation to the OR of having been diagnosed with diabetes (p = 0.425 and p= 

0.477, respectively) was observed. 

 

ESR2 

In ESR2, the frequency of the variants of rs1256049 was GG n=159 (92.1%), AG n=12 (7.3%) 

and AA n=1 (0.6%) which is in Hardy Weinberg equilibrium. 

No statistical significant difference in the OR between the different allele groups was observed 

(OR = 1.1; 95% CI: 0.124-8.929; p = 0.962). 
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Interaction between ESR2 and testosterone 

There was no interaction between total, nor free, testosterone (subnormal or normal) and 

genotype in relation to the OR of having been diagnosed with diabetes (p = 0.999 and p = 0.678, 

respectively). 

Neither for subnormal levels of total nor free testosterone was there any statistically significant 

change in the OR of having been diagnosed with diabetes when carriers of an A-allele were 

compared with those homozygous for the G-allele (Table IV and table V).  

  

Interaction between ESR2 and E2 

There was no interaction between E2, as dichotomized or continuous variable, and genotype in 

relation to the OR of having been diagnosed with diabetes (p = 0.668 and p=0.163 respectively). 
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Discussion 

The main finding of current study was significant interaction between the ESR1 genotype of the 

SNP rs2207396 and testosterone levels in relation to the risk of having been diagnosed with 

diabetes. In men with subnormal testosterone levels, carriers of the less frequent A variant 

presented with increased OR for diabetes as compared to those homozygous for G. However, in 

men with normal testosterone levels, the genotype did not matter. This effect does not seem to be 

mediated through the conversion of testosterone to E2, since there was only a weak correlation 

between the serum levels of this two hormones and E2 concentration did not affect the OR for 

having diabetes, regardless of the ESR1 or ESR2 genotype.  

The finding that men with low androgen concentrations were at higher risk for diabetes has been 

reported before and is consistent with a recent meta- analysis comprising more than 6000 men 

[6]. Earlier studies have also found an association between variants in ESR1 (rs3020314 and 

rs2234693, which are not in linkage disequilibrium with rs2207396), and increased risk of 

developing diabetes [27, 28]. However, the interaction between low androgen levels and variants 

of the ESR1 gene in relation to diabetes risk is a novel finding. Moreover, in current study, E2 

was not associated with diabetes risk, neither as an independent factor nor in combination with 

any genotype tested. However, care should be taken when interpreting this result due to the 20% 

CV for the method used for analysis of E2. 

The G to A change in rs2207396 does not lead to a change of amino acid in the protein but might 

be in linkage disequilibrium with other genetic variations that could affect gene expression or 

function. However, another option is that polymorphisms in the SNP rs2207396 , changes the 

secondary structure of the ESR1 mRNA, possibly leading to changes in mRNA synthesis, 

splicing, maturation, transport, translation, or degradation [29]. The importance of this SNP is 
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stressed by the fact that same variation in the ESR1 was previously reported to determine the risk 

of azoospermia in men who during childhood underwent cancer treatment [20].  

The most obvious limitation to this study is the relatively small population size. However, since 

there were no obvious reasons to believe any selection bias related to the SNPs, we believe that 

our findings mirror a true biological association. The strength of the study is the genetic 

homogeneity of the subjects, which minimized noise due to ethnic origin. 

In this study we have not corrected for body mass index (BMI). The reason for this was that as 

testosterone is inversely correlated to BMI [30]. Thus, inclusion of BMI in the analysis would 

lead to an over-adjustment of the effect of low testosterone levels. Furthermore, the genetic 

variant had most impact in men with low free testosterone, which is regarded as a parameter that 

is rather robust to the variation in BMI.  

Our finding has biological and clinical implications. Further investigation of the role of ESR1 in 

the pathogenesis of diabetes may help in understanding the biology of this frequent disease and 

in this context genetic and endocrine risk markers can be used in defining high risk subjects and 

in prevention trials.   

In summary, this study shows that older men with low free testosterone levels have markedly 

increased risk of diabetes if they in addition are carriers of the rs2207396 A allele in the ESR1 

gene. A larger study on this topic is warranted. 
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