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ABSTRACT

A network mechanics model for analysis of materials made of dry-shaped cellulose
fibres is proposed. In terms of the model, the network is composed of fibres of
arbitrary distribution in length, curvature, cross-section, stiffness and strength. The
fibres are arranged in a random structure according to an arbitrary orientation
distribution. Where fibres meet there may be fibre-to-fibre interaction, modelled
by a linear or non-linear spring coupling representing stick-slip performance. The
connection is of arbitrary distribution in stiffness and strength.

The network geometry is periodic, any cell under observation being regarded as
one of many identical cells that make up a global structure. A set of cyclic boundary
and loading conditions facilitates obtaining relevant results even in the case of small
network cells.

A two-dimensional implementation of the model was carried out, and several
examples of simulation results are provided. The results concern geometrical prop-
erties of the network, and the effects on network stiffness and fracture behaviour
due to variations of sample size, boundary conditions and the various micro-level
parameters mentioned above.

key words: network mechanics, fibre network, cellulose fibres, fracture, stiffness,
computer simulation
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1. INTRODUCTION

1.1. General remarks

Cellulose fibres are obtained by defibration of wood, by either chemical or mechanical
processing. A major part of the pulp is used for making paper, which is manufac-
tured by forming the wet fibres into sheets. Another important product made from
pulp is dry-shaped cellulose fibre fluff, see Figures 1.1 and 1.2. This kind of material
is produced by blowing the fibres, in a dry condition, into the desired shape. The
result is a material used mainly in diapers and health care products. It is also pos-
sible to blow the fibres together with an adhesive aerosol present. In this case the
bonds between the fibres are stronger, and fields of application include insulation
boards and various moulded products, the latter being of higher density.

Some of the products mentioned have other main functions like absorbing liquid
or preventing heat transfer, but it is of course also necessary that they can withstand
the mechanical impact that they are subjected to when in use. This study deals
with the mechanical properties of dry-shaped cellulose fibre materials, and

Figure 1.1: Cellulose fibre fluff seen in a microscope.
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\A
« Wood is defibered and
, pressed into thick sheets in a
e wet condition... N

...the sheets are then v
defibered again and

blown into a dry
fluff...

...used for making diapers, heat
insulation and moulded products,
products representing different
degrees of compactness and
addition of adhesives.

Figure 1.2: Dry-shaped cellulose fibre fluff is made from wood, and is used for diapers,
insulation and moulded products.
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examines what factors are of importance for mechanical properties such as stiffness,
strength, strain localization and fracture process of a cellulose fibre fluff.

A network model approach is used. Network mechanics can be very useful
in modelling various heterogeneous materials such as concrete, where the network
structure does not have an obvious physical interpretation. In the case of a cellulose
fibre material, however, the material is indeed of a real network character, and the
modelling becomes comparatively straightforward.

It is the increasing capacity of computers that makes it possible to apply this
kind of model, but computer capacity also sets a limit to what can be achieved from
the calculations.

1.2. Aim and limitations of present investigation

Due to strong market competition, the absorbent product industry is very research
intensive. The need within this industry for methods for rationally analysing the
mechanical behaviour of fibre materials has been emphasized. The aim of the present
study is to develop such a model for the rational mechanical and geometrical analysis
of materials made of cellulose fibres.

One established concept within structural mechanics is to make assumptions
as to the properties and behaviour of the components of a material on a lower
structural level, and thereby calculate the expected behaviour of the material on a
higher structural level. In this study, assumptions are made on the network level,
see Figure 1.3, from [28], and the properties on the continuum level are obtained by
computer simulations.

A theoretical model of the fibre material is introduced in terms of fibres, fibre-
to-fibre connections and the structure into which these are assembled. In order to
reduce the computational effort, the numerical implementation of the model is at
present restricted to two dimensions. The implementation involves two separate
steps. First a network structure is generated according to prescribed statistical dis-
tributions of the various properties that define the micro-structure of the material.
The resulting structure is then assumed to be subjected to strain, and the finite ele-
ment method is used to obtain the global stiffness properties. Through introducing
fracture criteria for fibres and fibre-to-fibre connections, a non-linear simulation of
the fracture process can be carried out.

Computer simulations allow relations between parameters on the microlevel and
the global level to be obtained. The pertinent microlevel parameters include those
of the length distribution, the orientation distribution, the geometrical and the con-
stitutive properties of the fibres, the constitutive properties of the fibre-to-fibre
connections, the rate of heterogeneity of the network and also the network density.

The corresponding global characteristics can be divided into purely geometrical
and mechanical properties. Interesting geometrical properties include the number of
fibre-to-fibre connections and the percentage of the network that is active. By non-
active parts are meant parts that are in a state of zero stress regardless of loading
at the boundary of the network. Concerning the mechanics, practical interest is
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Figure 1.3: Modelling and analysis can take place at different structural levels. This
study deals with the transition from network to continuum. [28].
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focused on the initial stiffness properties and on the fracture process, the latter
involving strength, strain localization and softening. From the application point of
view, strain localization is of particular interest, since it may initiate crumbling in
case of cyclic loading.

Particular attention is paid to the network size needed to obtain relevant com-
putational results. The choice of boundary conditions is an important parameter in
this context, and a concept of periodic geometry and boundary conditions is used in
an effort to minimize the required network size, and thereby minimize the number
of degrees of freedom.

Viscous effects and dynamic behaviour of the material are not treated in this
study.

1.3. Organisation of the report

In Chapter 2 some earlier work on cellulose fibre network mechanics is summarized.
This includes both theoretical network modelling and computer simulations.

In Chapter 3 the proposed theoretical model of the fibre network is presented.
The parameters that define a network are listed and discussed.

Chapter 4 describes how a network is generated and prepared for the analysis of
mechanical performance.

Chapter 5 contains results concerning purely geometrical properties of a network,
such as number of fibre-to-fibre connections and the mechanically active part of a
network.

In Chapter 6, methods for obtaining the global initial stiffness properties of a
network are thoroughly discussed. Different boundary conditions are considered.

In Chapter 7, simulation results of global initial stiffness properties are presented,
in terms of Young’s modulus and Poisson’s ratio of networks. These results illustrate
how stiffness properties are affected by boundary conditions, network size, network
density, stiffness properties of fibres and connections, as well as curl and length and
orientation distribution of fibres.

Chapter 8 deals with the fracture process. Output parameters of interest are
defined and discussed, and the methods used for obtaining them are presented.

Chapter 9 presents results from the analysis of the fracture process. It shows
how global parameters such as strength, fracture energy, and localization depend
on sample size, network density, properties of connections and other micro-level
parameters.

Chapter 10 contains a discussion of numerical aspects of the study, what problems
have arisen and how they have been solved.

Conclusions are given and future plans are outlined in Chapter 11.

Finally, in Appendix A to E, some algorithms and calculations are indicated.
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1.4. Notations

Notations are explained in the text when they first occur. In addition, a list of main
notations is given below together with the corresponding SI-units. A barred letter
denotes arithmetic mean value of the parameter in question.

We
wy

5
B

cross-sectional area of fibre

width of rectangular fibre cross-section

curl index, see Figure 3.1

3x3 constitutive matrix

element in row 7, column j of D

network density probability function

Young’s modulus of 2-d isotropic network
Young’s modulus of fibre

(F,, F,, M), spring forces in connection

ultimate resultant force in connection

shear modulus of 2-d isotropic network

fracture energy of network, see Section 8.3
depth of rectangular fibre cross-section

moment of inertia of fibre

element stiffness matrix

system stiffness matrix

stiffness of spring in direction i, i = x, ¥, ¢
side-length of network

characteristic length

length of fibre

free fibre segment length

ultimate moment in connection

degree of utilization for fibre or connection
probability distribution function

number of fibre crossings

number of fibres

number of slips before complete connection failure
approximate active part of network

probability of interaction at a fibre crossing

(us, uy, 0), in-plane displacements and rotations in a
node, element or structure

external work

internal elastic strain energy

(x,y), rectangular Cartesian coordinates

angle of the fibre relative to the x-axis, ccw positive
reduction of connection stiffness at slip
reduction of connection strength at slip

(Au,, Au,, Af) in-plane deformations in element

[N],[Nm]

[N]

[N/m]
[Nm /m]

[m]

[m*]
[Nml,[N],[N/m]
[Nml,[N],[N/m]
[N/m],[Nm/rad]
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(€xs €45 Vay), Strain vector

strain in network at maximum stress

ultimate strain in network

fibre curvature

Poisson’s ratio of 2-d isotropic network

network density in 2-d; total fibre length per unit area
(02, 0y, Tuy), Stress vector

maximum stress in network

ultimate normal stress in fibre

ultimate shear stress in fibre
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2. EARLIER WORK ON CELLULOSE FIBRE
NETWORK MECHANICS

The development of models for understanding the mechanical behaviour of fibre
networks closely reflects the development of computers. The earliest models use
analytical methods and are thus confined to rather simple and uniform networks.
Nevertheless, they produce results of great interest and value. During the 70s and
80s the arrival of computers of considerable computation capacity resulted in the
first computer simulations of network behaviour. This evolution has continued,
and in the 90s several new models have appeared, taking more and more variables
into account. The variables included in the models are naturally those which are
believed to be of importance. Experimental progress, the possibility of measuring
new properties in a network, has also been an important factor in choosing what
parameters to study.

Most references given in this chapter deal with paper, and this reflects the fact
that there is not much literature on the geometry and mechanics of dry-shaped
cellulose fibre materials. There are however obvious similarities between the two
material types, the main differences being the density, the more three-dimensional
character and weaker fibre-to-fibre bonding of a fibre fluff.

2.1. Analytical network models

A very often cited paper treating the geometry of fibre networks was presented
by Kallmes and Corte in 1960, see [15]. They state that the structure of paper
(the geometric arrangement of fibres and inter-fibre spaces) is an effect of the paper-
making process, as well as the cause of the paper’s properties. In the article, relations
are obtained between various geometrical properties of the network such as number
of fibre crossings and average segment length between crossings, and basic properties
of the fibres and the sheet such as mean fibre length and number of fibres.

They are dealing with a two-dimensional sheet, which is defined as a sheet where
the area which is covered by more than two fibres is negligible. Probability theory
is used, and the fibres are assumed to be deposited independently of each other.
Further, it is assumed that the fibres are randomly distributed over the area and
have a random orientation. Among the results, the following equations are cited for
n., average number of fibre crossings in a square of side-length L, occupied by n;
fibres of average length [, and [, average free segment length on a fibre. ¢ denotes
average curl index, that is distance between fibre end points divided by fibre length,
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see Figure 3.1.

(nysls)*e?
L= 72% (2.1)
— l_fnfE
[, = 4° 2.9
2. (2.2)

In addition to average values of geometrical and topological properties of the model
network, distributions of various properties are also given, and the analytical results
are compared to experimental results.

Komori and Makishima presented in 1977, [17], the equations corresponding to
(2.1) and (2.2) for a three-dimensional fibre assembly where the fibres have an arbi-
trary orientation distribution. If the fibres are not straight, however, the orientation
distribution function must be interpreted as the orientation distribution of the in-
finitesimal fibre segments. For the case of a two-dimensional network and uniform
orientation distribution, the equations as expected reduce to those of [15].

[7] is a book presented by Deng and Dodson in 1994, in which various aspects of
the stochastic geometry of paper are compiled.

An early fibre network model dealing with mechanical properties was presented
by Cox in 1952, see [6]. He treats both two- and three-dimensional networks, but
the results cited here apply to the former case. He assumes a perfectly homogeneous
network of long straight thin fibres oriented according to a law of statistical distri-
bution. Each fibre is assumed to extend from one edge of the network to the other,
see Figure 2.1; its bending stiffness is negligible and there is no interaction between
the fibres. This means that the strain field is homogeneous throughout the network,

Figure 2.1: Cox’ homogeneous network.

and if the network is subjected to a strain

€ = (Exa €y, ’Ya:y)a
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the axial strain in a fibre inclined an angle o to the x-axis is
_ 2 .2 :
€ = €, CoS” v + €, 8in”° @ + 7, COS asin a. (2.3)

Cox shows analytically that if the orientation distribution function is of the form

1
f(a) = =(14as cos2a+ ay cos 4o+ az cos 6a+ ...+ by sin 2a+ by sinda +...), (2.4)
7r

where

/07r fla)da =1, (2.5)

the elements of the constitutive matrix D, which relates € and stress o=(0,, 0y, Tuy)
in

o = De (2.6)
are:
K
Dll = E(G + 4CL1 + CLQ)
K
DQQ = E(G — 4a1 + CLQ)
K
D13 = —(2b1 + bg) (27)
16
K
D23 - E(le - bg)
K
Diy = D33 = 1_6(2 — a2)
where
K= AfEfp.

Ay denotes cross-sectional area of the fibres, £y Young’s modulus of the fibres and
p the network density, that is total fibre length per unit area. Note that the higher
order terms in the expansion of f(a) disappear in the integration. For an isotropic
material, where f(a) = 1/7, this reduces to

K
E=— 2.8
3 (2.8)

K
G="— 29
5 (2.9)

1
= _ 2.10
v=1z. (2.10)

E, G and v denoting Young’s modulus, shear modulus and Poisson’s ratio of the
network. The stiffness values predicted by this homogeneous field model are not
reached in real cellulose fibre networks, but they could be viewed as an upper limit.
To approach the homogeneous strain field situation in a network where the fibres do
not extend from edge to edge, an alternative mechanism of transferring forces across
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Figure 2.2: Ezample of base element, [29].

the network must be provided. This could be completely rigid connections between
the fibres and sufficiently high network density to suppress the effect of bending of
the fibres.

Since the mid-seventies, it seems that most of the work carried out in the area
of geometrical and mechanical properties of random fibre networks has been based
on computer simulations.

2.2. Computer simulations

An early example of computer simulation of cellulose fibre structures was presented
by Yang in 1975, see [29]. He models paper by a two-dimensional network of ran-
domly distributed fibres with prescribed distribution of length and orientation. He
generates network geometries and compares e.g. number of fibre crossings and av-
erage free fibre segment length with the values predicted by Kallmes and Corte in
[15]. The fibres are ribbon-like with non-zero width, and the part of the fibre area
which is in contact with other fibres, the relative bonded area, is computed. Among
the geometrical output is also ‘percentage of free fibre ends’, which is closely related
to what in this work is denoted by ‘approximate active part’, see Section 5.3.

The linear elastic stiffness is calculated by means of the finite element method.
The fibres are represented by orthotropic quadrilateral elements, and the areas where
fibres overlap are treated as a composite consisting of two layers of orthotropic ma-
terial. The concept of sub-structuring is used to overcome the problem of poor
computer capacity. That is, several small base elements, see e.g. Figure 2.2, are
analysed. These elements are then condensed into quadrilateral elements with two
degrees of freedom in every corner. The condensed base elements, which have statis-
tical variations in properties, are then used to model the paper sheet. The simulation
results show good agreement with experiments performed on kraft paper.
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(= == f\

fibre length

Figure 2.3: a) Symbolic sketch of network geometry. b) Strain as a function of
position in a fibre, revised from [25].

In 1984 Rigdahl et al., see [25], investigate the axial stress distribution in the
fibres of a network by means of finite element simulations. Figure 2.3a shows a
simplified sketch of the network geometry considered. It consists of parallel fibres of
finite length bonded together through fibres crossing at right angles. The fibres are
modelled by linearly elastic straight beam elements, and the fibre-to-fibre bonds are
rigid. It is observed that the axial strain in the fibres is smaller than the global strain
of the network. The strain in a fibre is zero at the fibre end, rises quite quickly to
a plateau value, and, moreover, where the neighboring fibre ends, there is a peak in
the strain, see Figure 2.3b. This is because the force transmitted in the neighboring
fibre row has to find another way when there is suddenly a discontinuity in the path.
The influence of the stiffness of the fibre-to-fibre bond is also investigated. This is
done by considering two parallel fibres connected by crossing fibres, fibre-to-fibre
bonding not being rigid. One of the fibres is subjected to strain corresponding to
the result of one of the previously mentioned analyses, and the transfer of strain to
the other fibre as a function of bond stiffness is studied. The result is that the bond
stiffness is of small importance unless it is below a certain critical value, in which
case the transfer of strain deteriorates rapidly.

In his 1991 thesis, [12], Hamlen treats mechanical properties as well as per-
meability of paper by means of network modelling. He examines the properties
of several regular (triangular, square, hexagonal) and perturbed regular networks,
and concludes that the regular networks needed to give satisfactory results when
modelling paper are not less computationally expensive than random networks. He
therefore chooses to study random networks, in two and three dimensions. The
two-dimensional model is composed of linearly elastic straight beams of random
distribution and orientation, connected rigidly at crossings. The network geometry
is periodic, but the loading conditions are not. The fibres are assigned a breaking
stress in simple tension, adjusted in size to reflect breaking of bonds. Simulation
results indicate that tensile extension of fibres is the dominant mechanism of force
transfer in a fibre network. He also studies the influence of fibre curl by assign-
ing a non-linear Young’s modulus to the fibres. Young’s modulus is initially set to
zero, and when the network has been strained enough to completely straighten out
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a fibre, its modulus is reset to a value representative of a straight fibre. Hamlen
also proposes a three-dimensional network model for paper, called the sequential
deposition model. A network is generated by letting the projection of a fibre in
the xy-plane fall down on the already deposited fibres. To begin with, it lands on
two points where it first meets previously deposited fibres. Then the fibre contin-
ues to descend between the supports to an extent determined by the fibre stiffness
through a ’limit angle’, possibly making contact with more fibres. In this model
the fibre-to-fibre connections are represented by beam elements. The computations
prove to be extremely numerically demanding, in spite of the use of a CRAY-2/512.
It is concluded that here too the dominant mode of deformation is tension in fibres,
followed by shear in connections. To facilitate further 3-d simulations, it is proposed
that the modes of deformation of less importance be neglected, and that alternative
numerical methods to treat the non-linearity due to the breaking of elements be
considered.

In [1], 1991, and [2], 1993, Astrom and Niskanen report simulations of fracture in
random fibre networks. They examine 2-d random fibre networks of uniform spatial
and orientation distribution; the fibres are straight and the fibre-to-fibre bonds are
rigid. The mechanical properties of the networks are evaluated as functions of width-
to-length ratio of a fibre segment and ratio of network density to percolation network
density. They suggest that the specific modulus of elasticity (E of network relative
to E of fibre) at low densities is a linear function of network density, and that at
high densities it deviates from Cox’s homogeneous field value by an amount inversely
proportional to network density. Fracture calculations are performed by introducing
fracture criteria of fibres and bonds, in terms of axial strain, and performing succes-
sive linear calculations where the fractured elements are removed from the structure.
The simulations indicate that the strength, in the case of bond breaking, is equal
to the product of the elastic modulus of the network and the maximum shear strain
that a bond can carry. The character of the stress-strain-curve is discussed in terms
of comparisons with predictions from the homogeneous field approximation. Niska-
nen also provides a review of the knowledge about strength and fracture of paper in
[21].

Jangmalm and Ostlund in [14], 1995, model paper by a two-dimensional net-
work composed of curled fibres. The circle arc fibres are randomly distributed, and
length, width, curl and orientation are described by statistical distributions. The
fibre-to-fibre bonds, which occur at a prescribed percentage of the crossings, are
rigid. Although the fibres are curled, they are modelled by straight linearly elastic
beam elements, but if the free fibre segments are considered to be too long they
are divided into several straight elements. The main objective is to investigate the
influence of fibre curl on the linear elastic stiffness of a network. This is due to the
recently developed possibilities of measuring fibre curl in a pulp with the instrument
STFI FiberMaster, referred to in [14]. The influence of fibre length and percentage
of bonds in the crossings on the elastic stiffness is also investigated, and some cal-
culations are made using large-strain theory. Those show that the non-linear effect
of large strain is rather small. Comparisons of the simulation results are made with
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experiments performed on laboratory sheets made of commercial pulps. It turns out
that the effect of curl is stronger in the laboratory sheets than is predicted by the
model. Several possible reasons for the discrepancies are discussed, among which
are the two-dimensional character of the model and that out-of-plane curl is not
taken into account.

The Division of Structural Mechanics in Lund has a tradition of studying the
fracture of heterogeneous materials. This has led to computer simulation studies in
network mechanics, so far reported in [3], [26], [10] and [13].
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3. MODEL

The definition of the model is divided into three parts; fibres, Section 3.1, fibre-
to-fibre connections, Section 3.2, and network geometry, Section 3.3. The network
geometry parameters describe the way in which the components of the network
are assembled into a structure. Assumptions and modelling regarding boundary
conditions and loading are discussed in Chapter 6.

3.1. Fibre

A cellulose fibre is complex and strongly affected by the defibration process from
wood to single fibre. It is often kinked, curled and with branches of fibrils, and may
also have remains of lignin.

In this work the fibre is modelled as a plane beam of circle-arc shape, that is, a
curved member that possesses stiffness in the axial and in-plane bending deformation
modes. An important special case is zero fibre curvature, that is, straight fibres.

The cross section is arbitrary, although the implementation of the fracture cri-
terion used in the subsequent analyses of network failure is based on a rectangular
cross section.

The fibres are assumed to be made of a homogeneous isotropic linearly elastic
material, the failure of a fibre occurring when

f(a) =o0. (3.1)
f is set to
LA
(o) = max "T"“ , (3.2)
-

where for a rectangular cross section

N M [3;
L= 2 3.3
’ Ay Iy Ay (3:3)
1.5V
= 3.4
T 1, (3.4)

Here |0,| is the maximum absolute value of normal stress in the fibre due to axial
force N and bending moment M, o, is the ultimate normal stress, || is the absolute

17
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value of shear stress in the fibre due to shear force V and 7, is the ultimate shear
stress. Ay and I; denote area and moment of inertia of the beam cross section.
Second order effects are not taken into account; that is, decrease in stiffness due
to compressive normal force in a fibre, and possible buckling, are disregarded.
The following parameters define a fibre:

e length, [y € N,

e curvature, k € N,

e area of cross section, Ay € Ny,

e moment of inertia of cross section, Iy € Ny,
e modulus of elasticity, £y € Ng,

e ultimate normal stress, o, € Ny,

e ultimate shear stress, 7,;; € N, ,,

N represents a distribution of the parameter in question. If the parameter is assumed
to be of constant value, N is the Dirac delta distribution.

A value of kK = 0 corresponds to the case of straight fibres. In experimental
situations fibre curl is often quantified by the curl index, ¢, defined as the distance
between the end-points of a fibre divided by fibre length, see Figure 3.1. On assuming

I

Figure 3.1: Definition of curl index, ¢, and curvature, k.

constant curvature, the relation between curl index and curvature is:

2 /ﬁjlf
c= —sin(— 3.5
s (35)
Since it is not possible to solve analytically for x in this equation, a graphical
representation of (3.5) is given in Figure 3.2.
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Figure 3.2: Curl index, ¢, versus normalized curvature, rls/2.

3.2. Fibre-to-fibre connection

The mechanisms of fibre-to-fibre interaction in fluffed dry-shaped cellulose fibre ma-
terials are not completely known; probably several mechanisms are acting together.
One mechanism is that kinked fibres hook on to each other, another is fibre-to-
fibre friction. Chemical attractions may also play a role. When an adhesive aerosol
is added during the dry-forming process a different type of material is achieved.
The adhesive provides a very strong fibre-to-fibre connection compared to the other
suggested mechanisms.

One way of describing this complex reality is to model the interaction in terms
of an assemblage of springs. In this work a fibre-to-fibre connection is modelled
as three uncoupled springs, one that resists relative motion between the fibres in
the z-direction, one in the perpendicular y-direction and one in a rotational mode,
¢. The springs making up a fibre-to-fibre connection are illustrated symbolically in
Figure 3.3. It should be noted that points A and B, which are shown as separate,
are really coincident in a model network, and also that the interaction between two
fibres occurs where the centroid lines of the two fibres cross. When a fibre-to-fibre
connection fails, it does so either completely and in a brittle manner or according
to some rule for stick-slip performance or fibre-to-fibre friction, when

g(F) =0, (3.6)

where F' is the vector of spring forces. In the present implementation the connections
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A

B

Figure 3.3: A fibre crossing is modelled with an assemblage of springs.

are assumed to fail according to a stick-slip performance, and ¢ is set to

IR, v

F
g( ) Fult Mult

1, (3.7)
where |F| is the absolute value of the vector sum of the forces in the z- and y-springs,
Fi is the ultimate force of the connection, |M]| is the absolute value of the moment
in the ¢-spring and M, is the ultimate moment of the connection.

Figure 3.4 shows the fracture behaviour of a connection, in this case an x-spring,
but the same parameters apply to all springs in a connection. Initially the spring is
defined by stiffness k; and strength F,j;1. When the situation g(F') = 0 occurs the
stiffness is reduced by the factor ; and the strength is reduced by the factor (.
This is repeated ny; — 1 times, and when g(F) = 0 the ng:th time the connection
fails completely. A special case is ny = 1, completely brittle failure.

The following parameters define a fibre-to-fibre connection:

e initial spring stiffness values in the -, y- and ¢-directions, ky = ky; € Ny,
and kd)l S ]qu51

e initial ultimate force in connection, F;u € Np,,,,

e initial ultimate moment in connection, M,;;1 € Np,,,,

e reduction of stiffness at slip, 31 € Ny,
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Figure 3.4: Stick-slip fracture performance of connection.

e reduction of strength at slip, 3> € N3,

e number of slips before complete failure, ny € N,,,

3.3. Network geometry

The network structure is obtained by successively placing fibres in the studied area,
which is a rectangle of side-lengths L, and L,. The fibres are arranged in a random
structure according to a specified orientation distribution and rate of heterogeneity.

The rate of heterogeneity can be controlled either by prescribing density vari-
ations or restrictions directly or by imposing restrictions on how close to existing
fibres a new one is allowed to be placed or must be placed. At least by the latter
method, a fairly uniform network can be obtained, even at low density.

In the present implementation the center of the fibre is positioned according to
a rectangular distribution, that is with equal probability over the entire area. The
heterogeneity parameter d(x) is defined as the part of the entire area for which the
density is prescribed. Since in this study the fibres are positioned at random, with
equal probability over the entire area, d(x)=1. This means that the network density
p is prescribed to a certain value in an area of size L,L,. That is, if the studied
area is divided into smaller parts there is a variation in density between the different
parts. This issue is further discussed in Section 4.2.

Where two fibres cross each other there is a possibility of interaction between the
fibres. At each crossing, the probability of a fibre-to-fibre connection is s. s can be
used to symbolically model a three-dimensional network, in which a fibre crossing
in the xy-plane does not automatically imply a connection.
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Lx

Figure 3.5: Unit cell of periodic network geometry.

The number of fibres in the square is determined by the network density, that is
total fibre length per unit area.

The network geometry is periodic, such that opposite sides of the area or the
volume studied match, as shown in Figure 3.5. This allows the cell under observation
to be regarded as one of many identical cells making up a global structure. It
also allows periodic boundary conditions to be specified. Those are discussed in
Chapter 6.

The following parameters define the network geometry:

side-lengths of the rectangle that is studied, L,, L,

network density, p

orientation of fibre, o € N,

probability of interaction at a fibre crossing, s

rate of heterogeneity, d(x)
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4. GENERATION AND ANALYSIS OF NETWORK
GEOMETRY

The analysis of a fibre network can be divided into two main parts: generation and
analysis of the network geometry, and analysis of the mechanical properties of the
network structure. The first main part, which is described in this chapter, consists
of reading input, generating a network, processing it as is described in the following
and preparing input data for the subsequent analysis of mechanical properties. It
is also desired to have an image of the network, and input data are prepared for a
graphic computer code.

A Fortran 90 code has been developed to deal with these tasks; the main structure
of the program is illustrated by Figure 4.1.

READ INPUT

GENERATE NETWORK
GEOMETRY

ANALY SE NETWORK
GEOMETRY

WRITE OUTPUT

Figure 4.1: Main structure of program.

4.1. Input data

All input parameters related to the network are listed in Chapter 3, and in addition
to those, the global strain to which the network is to be subjected must be given.
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Many of the input parameters are given in terms of a statistical distribution. For
each of those a random seed is given. This means that identical networks are repro-
duced if the same seeds are given in two simulations. This is an almost necessary
feature when debugging a program. The statistical distribution is quantified by a
cumulative distribution function composed of straight line segments. In Figure 4.2
an example is given of a hypothetical experimental distribution and an approxi-
mation of this curve made up of three straight lines. The input to the program
is the two vectors of interval boundaries of probability and value of the variable:
(0,p1, p2,p3) and (0,v1,v2,v3). If the variable were constant at value v, the vectors
would be (0,1) and (v,v). The maximum number of intervals allowed in the pro-
gram is twenty. If the random number p is received from the Fortran rectangular
pseudo-random number function, the variable is given the value v, as indicated by
the dotted line in Figure 4.2.

cum. part cum. part
1+ p3 -+
P2 +
p 1
pl +
vi v w2 v3
variable variable

Figure 4.2: Ezperimental statistical distribution and approximation made of straight
lines.

4.2. Generation of network geometry

A fibre network is generated by sequentially placing fibres in a rectangle of side-
lengths L,, L,, until the desired network density is reached. That is, since the num-
ber of fibres is an integer, the network density will not be exactly as specified. The
steps through which one fibre is added to the network are illustrated in Figure 4.3.
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GENERATE FIBRE

DEPOSIT FIBRE

PART OF FIBRE YES
OUTSIDE SQUARE
NO MODIFY FIBRE

FORALL PREVIOUS
FIBRES

CROSSES CURRENT
FIBRE

YES
NO

GENERATE CONNECTION

/N

Figure 4.3: Steps through which one fibre is added to the network.

A fibre is generated by assigning to it values of all parameters given in Section 3.1
as well as an angle of orientation. This is done according to the principles described
in Section 4.1.

The fibre is deposited by placing its mid-point inside the square; for a curled fibre
the mid-point is (z4,y4) in Figure 4.4. The distribution of fibre mid-points in the
square is controlled by the rate-of-heterogeneity parameter, which in the present
implementation is such that there is equal probability of a fibre mid-point to be
placed everywhere in the square, and the placement of one fibre is independent of the
position of the other fibres. This means that a network becomes more heterogeneous
as the ratio side-length of square relative to fibre length increases, in the sense that
the mass distribution of the network becomes more varied. In a network where
L = Iy, the network density of the square of area lj% is equal to the prescribed p,
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Figure 4.4: Different ways of defining a circle arc.

while if L = 2[;, there is variation in network density between the four squares of
area lfc. The average network density of the squares is however still p. This variation
in density has a weakening effect on the network, as is discussed in Chapters 7 and 9.

The geometry and location of a fibre, in the case of straight fibres is defined
by the coordinates of the end-points of the fibre in a coordinate system with the
origin in the lower left corner of the square. The geometry and location of a curled
fibre could e.g. be defined by center point, radius of curvature and angles between
which the fibre extends, or by end-points of fibre and curvature, including a sign
convention, see Figure 4.4. The two representations of a circle arc mentioned are
optimal in different situations, and in an effort to minimize computer time at the
cost of more stored data all parameters mentioned (except radius of curvature) are
stored.

The numerical implementation requires that

lfI{S T, (41)

implying that the circle arc may at most be a semi-circle.

Since the geometry is supposed to be periodic, the fibre has to be modified if it
extends outside the studied square; this modification is illustrated in Figure 4.5. In
order to limit the complexity of the program it is required that the fibre length does
not exceed twice the side-length of the square.

The modification and detection of crossings for curled fibres and the special case
of straight fibres must be treated in separate program units, since the algorithms
used for curled fibres degenerate when the radius of curvature approaches infinity.
Thus, at the moment, it is not possible to mix curled and entirely straight fibres in
the same network, although this is a straightforward generalization to implement.

When a fibre has been deposited, it is checked for crossings against all previous
fibres. For the case of straight fibres, this is a matter of solving a linear system of
equations in two unknowns. If the fibres are curled, the two fibres might even cross



4.3. ANALYSIS OF NETWORK GEOMETRY 27

twice, and the solution algorithm is given in Appendix A . If a crossing is found, a
connection is created with the probability s. A connection is created by assigning
to it the properties listed in 3.2 and assigning the coordinates of the connection to
the fibres involved. Topological information concerning the connection must also be
stored, that is, a node number is assigned to the crossing points on each of the two
fibres, and it is noted that the connection connects the two nodes.

Figure 4.5: Modification of fibre that extends outside square.

4.3. Analysis of network geometry

In order to analyse the mechanical properties of the network by means of the finite
element method (FEM) the fibres must be divided into beam elements. Each fibre
segment between two connections, between a boundary and a connection or between
two boundaries of the network is made into one beam element. To be able to do this,
the coordinates of the connections on a certain fibre must be sorted in their order
along the fibre, since these points are also the end-points of the beam elements.
The fibre segments which are free ends of fibres with only one, or possibly no, end
being on the boundary or in a connection are not made into beam elements. This is
because they would be zero-stress elements that have no influence on the network’s
behaviour.

Before the network’s structure can be analysed in a FEM code it must be es-
tablished that the network is indeed a connected structure, and not composed of
several separate clusters of fibres, since this results in a degenerate system of equa-
tions. Usually, this is only a real question in the case of network densities close
to the percolation threshold. The algorithm used for this purpose is discussed and
presented in Appendix B.

An interesting geometrical property is the active part of a network. By non-active
parts, those parts are meant which are in a state of zero stress regardless of loading
at the boundary of the network. Most of the zero-stress fibres are removed from the
network by not making free fibre ends into beam elements, but there may still be
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SORT CONNECTIONS
ALONG FIBRE

DIVIDE FIBRES
INTO BEAMS

CHECK IF NETWORK
ISCONNECTED

REMOVE NON-ACTIVE
PARTS

Figure 4.6: Analysis of network geometry.

small clusters of fibres not in contact with the rest of the network. These have to
be removed as well in order to provide a positive definite system stiffness matrix. In
addition to isolated clusters of fibres, there may be clusters of fibres in contact with
the rest of the network by only one fibre. Those are zero-stress elements too, and
could be removed in order to save degrees of freedom, and to yield the percentage
of the fibres that take an active part in the load-carrying structure. If the aim is
to obtain a network’s stiffness, it is however doubtful if it is worthwhile to remove
clusters connected to the rest of the structure by only one fibre, since they are not
common in fairly dense networks and detecting them is an extremely time-consuming
task. Detection of zero-stress fibres is carried out in connection with the verification
of the connectedness of the network, and is also discussed in Appendix B . In Figure
4.7 the non-active parts of a network are shown by dashed lines.

4.4. Output from geometry unit

A number of output parameters are obtained from the analysis of the network geo-
metry. These are

e number of beam elements and total beam length,
e number of connection elements,
e whether the structure is connected or not,

e active part of the network,
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Figure 4.7: Network with non-active parts dashed.

e number of active beam elements,
e number of active connection elements,
e number of degrees of freedom in the FEM model.

When the final network structure has been obtained, all necessary data defining the
FEM model are written on a file, formatted according to the standards of the FEM
code used for the analysis of mechanical properties.

To get an image of the network, data are also written in CAEDOS neutral file
format to a file which is used as input file to the Moviestar pre- and post- processing
package.
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5. RESULTS FROM ANALYSIS OF GEOMETRY

5.1. Basic example network

Figure 5.3 shows an example of a network structure. When not indicated otherwise
the results cited in Chapters 5 and 7 refer to a network having the properties found
in the basic example network of Figure 5.3 and Table 5.1. The values in Table 5.1
correspond roughly to mean values of what is known and believed about dry-shaped
cellulose fibre materials, although some simplifications have been made to facilitate
the simulations.

An example of a fibre length distribution, from [27], of a CTMP fluff (prepared
by a chemic-thermo-mechanical process) is given in Figure 5.1. The two curves are
cumulative population distribution of fibre length (the percentage of the number of
fibres that is shorter than a certain length) and cumulative weighted distribution of
fibre length (the percentage of the total fibre length that consists of fibres shorter
than a certain length). The arithmetic mean fibre length is /4 = 1.34 mm and the
weighted mean fibre length is [% = 2.18 mm, where

7a Z?:f [ i
f
and o
B R
o = izt (5.2)

d Z?:fl lfi.
The mean fibre lengths given above are calculated without taking fibers shorter
than 0.11 mm into account; the extremely short fibers are, however, included in the
graph. The arithmetic mean fibre length of all fibers is approximately 1.0 mm; the
weighted mean fibre length is less affected. For the basic example network we choose
to use the arithmetic mean value for fibre length, which means 1.0 mm.

The cross section of a cellulose fibre varies between different tree species as well
as between early-wood and late-wood fibres. Figure 5.2 shows a typical fibre cross
section and the simplified cross section used in the calculations. When we have
decided upon a suitable cross section, the problem remains of deciding in what
direction the bending occurs. We choose to study a spiral shaped fibre which has
the effective bending stiffness, ¢,

LB

= ooy (5.3)
T 6(b% + n3)

31
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Figure 5.1: Cumulative distributions of fibre length.

by denoting width and h; depth of cross section, see Appendix D. For the basic
example network we thus use a cross-sectional area of

A;=7-10"°-35-10"°=25-10""" m?,

and moment of inertia

7-10°6)3. (3510 )3
Iy = ( ) S 20-10"* m”.
6((7-1076)2 + (35 1076)2)

These values of Ay and I; define a new rectangular effective cross section of

o fiar s

e A —6
b= =255-10" m,

which is used in fracture simulations where the depth of the cross section enters the
calculations.

Young’s modulus for a cellulose fibre also varies between different species and
early-wood and late-wood, but as a typical value, [16], we take 35 GPa.

Straight fibres are used in the basic example network.
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Figure 5.2: Idealization of fibre cross section.

The properties of the fibre-to-fibre connections are less known due to experimen-
tal difficulties. For the basic example network we take the stiffness k, to be EA/L
for a 1 mm fibre, and k, to be 4EI/L for a 1 mm fibre. Those values correspond
to the axial and bending stiffness of a 1 mm fibre. We also assume a connection
in every crossing and uniform orientation distribution. p is set to 60 mm'. This
means that the mean number of crossings per fibre, obtained as total number of
crossings from (2.1) divided by number of fibres and multiplied by two, is 37. This
value is probably rather high for a dry-shaped cellulose fibre fluff. The side-length
of the studied square is 1.2 mm.

The input parameters of the basic example network are listed in Table 5.1. In
Table 5.2 are given some geometry output parameters for the basic example network
as well as the mean values from ten different networks that have the same nominal
properties as the basic example network. For the definition of active part, see
Section 5.3.
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Figure 5.3: a) Basic example network geometry. b) Basic example network with
non-active parts remouved.
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Table 5.1: Input parameters of basic example network.

Parameter

Value and unit

Ly

Ay

1 mm
0 mm~™
2510710 m?
2.0-1072' m*
35-10° Pa
8750 N/m

1

2.8-107" Nm/rad

1.2 mm
60 mm
%, O<a<m
1.0
1.0

1

35

Table 5.2: Geometry output for the basic example network and for ten other nomi-
nally equal networks generated by other random number seeds.

Result for ten nominally

Result for equal networks
Parameter basic example | Average Standard

network value deviation
Number of fibres 86 86 0
Total fibre length 86 mm 86 mm 0 mm
Number of beam elements 3213 3228 25
Number of connection elements 1603 1612 14
Mean no. of connections/fibre 37 37 0.3
Structure connected yes yes, all
Active part 95.3% 94.8% 0.6%
Number of active beam elements 3211 3223 25
Number of active connection elements 1603 1611 13
Number of degrees of freedom in
FEM model 10164 10181 64
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5.2. Number of fibre crossings

According to Kallmes and Corte, [15], the average number of fibre crossings, n.., in
a 2D random assembly of fibres of uniform orientation distribution, as given in (2.1)
is (n)))22
n ¢
e = ﬁ (5.4)
For the basic example network, (5.4) gives 1635 crossings, and this agrees well with
the value of 1612 crossings obtained as the mean value for ten simulated networks,
see Table 5.2. The standard deviation, as obtained by the numerical simulations,
was equal to 14 crossings.

According to (5.4) the number of fibre crossings in a network of straight fibres
and uniform orientation distribution depends only on the total fibre length, nfl_f,
and this agrees well with results from simulations, see Figure 5.4. This diagram
shows the number of crossings relative to the number of crossings predicted by (5.4).
The network density is 20 mm !, and the orientation distribution is uniform. The
variable on the z-axis is fibre length [y, that is all networks have the same network
density but the networks to the left are made up of many short fibres and the ones to
the right are made of fewer but longer fibres. The L/l ratio is 1.2, except for fibre
lengths 10 and 12mm where it is only 1.0 and 0.8 respectively. This is to avoid an
unreasonably large number of crossings. Ten simulations were made for each fibre
length considered; the mean value of those is shown as a dashed line. The values
are slightly more scattered for the smallest values of [, and for /[; = 12 mm there is
a drop down to nc/nceq_(5.4) = 0.97.

This is probably because there are so few fibres that the orientation distribution
is not uniform any longer, the latter being an assumption used in the derivation of
(5.4).

The length of the fibres does not affect the number of crossings, but if the
orientation distribution is not uniform, the number of fibre crossings is affected, and
in the extreme case when all fibres are parallel there are no crossings at all.

The average curl index, ¢, appears in (5.4), but this equation is not believed to
be good to use for estimating number of fibre-to-fibre connections in an assembly of
curled fibres, since in the derivation of [15], it is disregarded that two curled fibres
may cross each other twice (or more). For the case of circle-arc shaped fibres of
constant length, a derivation is given here for the number of crossings in a network,
and it turns out that in this case the curvature has no influence.

Consider an area A on which ny circle arcs of constant length /; and radius of
curvature r are placed independently of each other, with equal probability of every
position and orientation. A is large compared to the fibre length, and n; is large.

Firstly, we study two fibres F; and F3, see Figure 5.5. What is the average
number of crossings between those two fibres? If the distance between the center
points of the circle arcs exceeds 27, the average number of crossings is zero. If, on
the other hand, the distance is shorter than 2r the circles of which the fibres are
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Figure 5.4: Normalized n. against fibre length, l;.

parts cross. In this case the average number of crossings between the fibres is

a a?

—— = —. 5.5

2w 2w 2w? (5:5)
Thus, the average number of crossings between two fibres in the area A is the
probability that the center points are within a distance of 27 from each other, times

the average number of crossings when they are within this distance:
_ 7(2r)? o
nC(FlfFQ) = A 2—7‘_2 (56)
Fibre Fy may cross ny — 1 other fibres. This applies to all the n; fibres, but on
multiplying by (n; — 1)n; we have counted every crossing twice. To obtain the
average total number of crossings in A we therefore multiply n.r _r,) by
1 n}
—(ng—1)ny ~ —,
5 =y =
which gives
2
ooyt a?  (ngra)®  (ngly)” (5.7)
2 A 2r? Am Am
As indicated before we have arrived at the result that in this case the degree of curl
of the fibres has no influence on the number of crossings.
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Figure 5.5: a) Circles not intersecting. b) Circles intersecting.

A comparison between the two equations (5.4) and (5.7) as well as results from
numerical simulations are shown in Figure 5.6. The simulations have the basic
example network as starting point, and the curvature and the size of the square, L,
are varied.

Four different values of curvature are simulated, 0, 1000, 2000 and 3000 mm™!,
0 mm~! representing a straight fibre and 3000 mm~! being close to a semi-circle.
The transition from curvature to curl index can be seen in Figure 3.2.

Three different values of L are considered, representing L/l ratios of 0.6, 1.2
and 2.4 respectively. The variation of L means that the assumptions of A and n;
being large are violated to different degrees.

In the diagram the number of crossings relative to the number of crossings pre-
dicted by (5.7) is plotted against curl index. The relative standard deviation of the
simulation results, which are averages from ten simulations, is 4-9% for L/1;=0.6
and 1-2% for L/l;=1.2 and 2.4. (5.4) predicts a pronounced decrease in the num-
ber of crossings as the fibres get more curled, while (5.7) proposes the number of
crossings to be independent of curl index.

The simulations agree well with (5.7), but as the L/l ratio decreases, the results
deviate more from the prediction of (5.7), especially for low curl indices. As for
Figure 5.4, this is probably because a lower L/l; ratio means fewer fibres, and
fewer fibres means that the orientation distribution tends to be more non-uniform.
Another assumption which is not fulfilled when the L/l; ratio decreases is that of A
being large. In the derivation of n., a large A is assumed. We can say that A in the
simulations is also large by considering many cells, but then we have a periodicity
in position and orientation of the fibres which does not agree with the assumptions.
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5.3. Percolation and active part of network

Non-active parts are those parts of a network which are in a state of zero stress
regardless of loading at the boundary of the network. In Figure 5.3a the basic
example network is shown as it appears when first generated, and Figure 5.3b shows
the active part of the network.

As seen in Section 5.2, for a reasonably large network the mean number of fibre
crossings in an area depends on the total fibre length only. The active part of the
network, however, depends on the length distribution of the fibres as well.

Figure 5.7 shows the active percentage of the network as a function of fibre
length for network densities of 2 and 4 mm~!. The values for p = 2 mm~' are
averages from three simulations and the values for p = 4 mm~! represent one single
simulation. The straight fibres have a uniform orientation distribution and interact
at all crossings. In each simulation all fibres are of the same length. As the diagram
shows, for a given network density a small number of long fibres yields a higher
active percentage than does a large number of short fibres.

The marks on the horizontal axis of Figure 5.7 refer to p = 2 mm~!, and represent
non-continuous networks, that is networks that are not connected and hence have
no load-bearing function. The fibre length at which a network of given density
theoretically reaches the percolation threshold, that is, becomes unconnected, is
given in [2] as being

lf = 5.7/p, (5.8)
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Figure 5.7: Active part of network against fibre length, l.

which yields /; = 2.85 mm in the case of p = 2 mm !, Figure 5.7. Despite this the
simulated networks are not connected until /[; = 5 mm. This is probably because
the results are very scattered as the percolation threshold is approached. Figure 5.7
shows both the active part and the part of the network that is left when only the free
fibre ends have been removed. It should be noted that a fibre that is not in contact
with any other fibre, as well as clusters composed of only two fibres, are included in
free fibre ends in this case, although they can also be viewed as ‘isolated clusters’.
Even at this low density there is little difference between the two parameters. This
indicates that an approximate expression for the active part of a network is fibre
length minus length of the two free end segments, divided by fibre length. On using
(2.2), this yields the approximate active part, p

p=——=1-—=1-—. (5.9)
This approximate value is shown as a solid line in Figure 5.7, and is supposed to fit
to the ‘o’-marks, indicating the corresponding numerical results.
When the probability of interaction s # 0 this equation is modified to

In Figure 5.8 the approximate active part, p, as of (5.9) is given for different
network densities. From (5.8), at the percolation threshold fibre length pl; = 5.7,
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Figure 5.8: Approximate active part of network against fibre length, ;.

which gives p = 0.45. That is, at the percolation threshold fibre length, p is the same
for all densities, which can also be seen from the diagram. For the higher network
densities the active part is rapidly increasing towards 1.0, but for p = 1 mm ! the
increase is slower.
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6. FEM MODEL AND ANALYSIS OF STIFFNESS

For describing the pre-fracture global constitutive properties of a network, which
is a heterogeneous structure, the terminology of elasticity of continuous media is
employed. In linear elasticity of continuous materials, the constitutive properties
are contained in the coefficients describing stress as a linear function of strain, i.e.
the matrix D in Hooke’s law, [19]:

o = De (6.1)

D is symmetric when a strain-energy function exists, [19], and this is assumed to
be the case.

The stiffness properties of a fibre network are here characterized by the D-matriz
of a continuous medium which yields the same resultant forces on the boundaries as
the network when subjected to the same boundary displacements.

The finite element method (FEM), see [22], [30], is used to obtain the stiffness
properties. This is done by dividing the network into beam and connection elements
(fibre segments and fibre-to-fibre connections), computing the element stiffness ma-
trix for each element, and assembling all element stiffness matrices into a global
system stiffness matrix. The element stiffness matrices for straight and curved beam
elements and for the connection element are given in the next section. The next
step is to prescribe the load on the structure. In this case the network is loaded by
prescribing a global strain, that is boundary displacements. This is done according
to the principles in Section 6.2. The system of equations is then solved, Section 6.3,
and the resultant forces and D are evaluated as shown in Section 6.4.

D obtained from a simulation contains nine constants, of which only six are
independent due to symmetry of D. To reduce the number of independent con-
stants to that of an isotropic material, that is two, a method of approximation is
given in Section 6.6. The corresponding method for orthotropic material is given in
Section 6.7.

The computer code used for the FEM calculations is CALFEM, [5], which works
in a Matlab, [20], environment, supplemented with some special functions.

6.1. Element stiffness matrices

The element stiffness matrix K, gives the reaction forces f when the element is
subjected to displacements u, that is

K.u=Ff, (6.2)

43
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where u is the vector of displacements in the directions of the degrees of freedom of
the element, see Figures 6.1-6.3, and f is the corresponding force vector.

The stiffness matrix for a plane straight beam element, Figure 6.1, can e.g. be
found in [22]. On assuming small strain, neglecting shear deformation and assuming

u, Us
— U1 —> Uy
L

Figure 6.1: Straight beam element with degrees of freedom wu; ... ug.

that plane sections perpendicular to the beam axis remain plane during deformation,
the stiffness matrix for a straight beam element is

EA . . EA . .
L L
12ET  6FEI 12ET  6FEI
0 L3 L2 0 = L2
6EI  AFEI . 6EI 2FI
JE L S L
K, = 6.3
EA . . EA . . (6.3)
L L
12E1  6EI 12E7T 6L
B R - R -
. 6EI  2FI . 6EI AFEI
12 I 2 I

Here E denotes Young’s modulus of the beam material, A and I denote area and
moment of inertia of the cross section respectively, and L denotes length of the beam
element.

The stiffness matrix for a curved beam element of constant curvature is derived
in [18], from where (6.6) - (6.9) are cited. For a curved beam a modified bending
stiffness, .J, is used instead of moment of inertia, 1.

J= /A %M, (6.4)

where r denotes radius of the circle through an arbitrary point on the cross section
and R is the radius of the centroid line. For the case of rectangular cross section, .J
is, see [8],

2R+ h 3/h\ 3/n\
J = R%b1 —R%h=T|14+=|— | — 6.5
n<2R—h> ( +5<2R> +7<2R> * ) (6.5)
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where [ is moment of inertia of the cross section and b and h denote width and
depth of the cross section. For common values of the ratio h/R, the serial expansion
converges fast, and only the first few terms need to be considered.

To form the stiffness matrix K, matrices G and D are evaluated as follows,
where R, 0 and a are defined in Figure 6.2, and E and A denote Young’s modulus
of material and area of cross section.

-10 01 00O
G = 00 —a O a |, (6.6)
01 a 0 =1 a
H22/H —le/H 0
D = —ng/H HH/H 0 y (67)
0 0 1/Hs;
where R e R
_ T 2 —(h— i
Hyy =2 (EA + EJ) 6 cos*6 + EJ(Q 3sinf cosh)
R R3 .
HQQ =2 (ﬂ—'-E—J) f sin-0
R R? R? 6.8
Hi,=2 (ﬂ + —J) f sinf) cost — 2@ sin’f (6.8)
R3 )
Hsi3 = E—J(G — sinf cosh)
H - H11H22 - H122
This finally gives K., in local coordinates:
K. = G"DG (6.9)

A fibre-to-fibre connection is modelled by three uncoupled springs and with the
spring stiffnesses k,, k,, k, according to Figure 6.3, the stiffness matrix for the con-
nection element is

K, = . (6.10)

00 <k, 00 k|

In Figure 6.3 the connection element has been separated into three figures, to make
the illustration clearer.
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Figure 6.2: Curved beam element.

All the element stiffness matrices given above are referred to a coordinate system
with axes parallel to the element’s degrees of freedom, e.g. (uy,uy). In the fibre
network the beams may have an orientation that differs from the global coordinate
axes. When this is the case, the element stiffness matrix has to be transformed, see
[22]:

K= A"K'A, (6.11)
where superscript ¢ denotes global, superscript [ denotes local,
cos¢ sing 0 0 0 0 W
—sing cos¢ 0 0 0 0
0 0 1 0 0 0
A= 0 0 0 cos¢ sing 0 (6.12)
0 0 0 —sing cos¢ O
0 0 0 0 0 1 J

and ¢ denotes the counter-clockwise angle from the global to the local z-axis.

The stiffness matrix of the connection element always refers to the global coor-
dinate axes, that is, the directions of the k,- and k,-spring are independent of the
directions of the crossing beam elements. When all the beam elements have been
transformed into the global coordinate directions, each element stiffness matrix is
assembled into the global stiffness matrix.

6.2. Methods of applying strain

To obtain the response of a network, it is subjected to deformations corresponding
to various modes of strain, and the resulting forces on the boundaries of the network
are registered.
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Kx

Figure 6.3: Connection element.

A deformation to which the network is subjected, reflects a certain global mean
strain, €, of the cell. There are several different methods of applying such a mean
strain. A natural concept would be to imitate the situation when testing a fibre
material in the laboratory. This could be a strip of material clamped at the ends
and otherwise free, see Figure 6.4. This method would facilitate direct comparison

Figure 6.4: Fibre network in simple tension test.

between the results obtained from tests and simulations respectively. One problem
is, however, that with today’s computer performance it is not feasible to carry out
simulations on a piece of material as large as a test specimen. It is also complicated
to evaluate the stiffness parameters in this deformation mode: for example, how
large is the contraction in this case when contraction is prevented at the edges and
becomes gradually more free towards the centre?

To avoid these problems a concept of cyclic geometry and boundary conditions is
employed. The essence of those is that the network cell under observation is regarded
as one of many identical cells making up a global network structure of infinite size.
This leads to certain continuity requirements, namely that the cells are to match
also in a deformed condition. Two different sets of cyclic boundary conditions are
considered, both of which fulfill the necessary continuity requirements. In the first
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set of boundary conditions, denoted below by S for straight, the boundaries are
forced to remain straight during deformation, and in the second set, denoted below
by C for curved, the boundaries are allowed to deform. In Figure 6.5, a cell subjected
to strain € = (¢, 0,0) is shown for the cases of boundary conditions S and C.

a) b)

Figure 6.5: Cell subjected to e = (€, 0,0) for a) boundary conditions S, b) boundary
conditions C.

For boundary conditions S, strain € = (e, €,, 7,) is applied by prescribing the
following displacements and rotation to every node i at the boundary:

u; z; 0 Yi €
vi|=10 g 0 2 (6.13)
0; 0 0 —sinq Vay

Here (z;,y;) are the coordinates of the boundary node, when the origin is in the lower
left corner of the network and «; is the inclination of the fibre. The considerations
that lead to the factor — sin® ; are presented in Appendix C.

For the case of boundary conditions C, displacements are specified in the manner
given by the following equation:

U9 — Uq W [ Lx 0 0 7
Vo — U1 0 0 0 P
-6, | | 0 0 o0 g
w—w =10 0 1L € (6.14)
Vyq4 — VU3 0 Ly 0 oy
L 6i—05] Lo 0 o]

The subscript 1 denotes nodes at the left boundary of the network and subscripts
2, 3 and 4 denote nodes at the right, lower and upper boundaries of the network
respectively; see also Figure 6.6. L, and L, are side-lengths of the rectangle in the
x- and y-directions.

The consequences of the different kinds of boundary conditions are further dis-
cussed in Section 6.4.
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6.3. Solution of the system of equations

The system of equations for boundary conditions S is straightforward to solve. All
boundary nodes have prescribed values of displacement, and thus there are reaction
forces on all the boundary nodes and no reaction forces occur on any interior node.
For boundary conditions C the prescribed displacements are specified in terms of
relations between different degrees of freedom, that is constraints. The constrained
degrees of freedom are removed from the system of equations, see [26]. The original

system of equations is:
Ku=f (6.15)

The constraints can be formulated as relations between a full and a reduced dis-
placement vector u and u, .4,

u = Bu,., + C. (6.16)

For the nodes located along the boundaries, equation (6.14) rewritten in the form
of (6.16) is

(ul' (100000} 0
v 010000 0
Vs 01000 0]7[u 0
0, 001000 v 0
6| |00 1000 0, 0
sl = looo0o100|lul|T| o (6.17)
Uy 0007100 s Ly Yay
s 000010 {93_ 0
V4 000010 Lye,
04 00000 1 0
0, o000 o0 1] 0
Insertion of (6.16) in (6.15) gives
KBu,..,+ KC = f. (6.18)

In order to obtain a symmetric stiffness matrix, all terms are multiplied by B”:

B"KBu,..,= B"f —- BTKC (6.19)

Defining
K,.,= B"KB (6.20)
frea= BT'f — BTKC, (6.21)

we now have
Kredured = .fred~ (622)
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This system of equations is solved for ©,.q, u is obtained from (6.16) and the reaction
forces are obtained from (6.15).

In (6.22) rigid body translation must be prevented, by e.g. prescribing zero
displacement in x- and y-directions in an interior node. Rigid body rotation is
prevented automatically by the constraints; since e.g. v, and vy must always be the
same, the cell is not able to rotate.

As in the case of boundary conditions S, there are reaction forces on all boundary
nodes, and none on the interior nodes. Moreover, the reaction forces in two opposite
nodes are always equal in magnitude and opposite in direction. Should reaction
forces occur in the interior node prescribed to zero translation, this indicates lack
of equilibrium due to numerical reasons or some other error.

6.4. Evaluation of resultant forces and D-matrix

To obtain the D-matrix of the equivalent continuous material, the network is suc-
cessively subjected to three modes of deformation, corresponding to the three com-
ponents of in-plane strain. First the strain € = (1,0,0) is applied, representing
extension in the x-direction, without either strain in the y-direction or shear strain.
The resultant forces on the network are registered and are divided by side-length
to obtain stress. This means that the unit of stress for a network is N/m. The
procedure is illustrated in Figure 6.6 . Note that moments in the boundary nodes
are omitted in the figure.

y
Boundary conditions S T Boundary conditions C
— " Fxu4
@
2
Fx1+Fx2 P _Fe
Oy = Fij = Sum of forces of Ox= =
2L all nodes on side j in Fy2 L
direction i >
o= Y3 Fya @ @ F, -8 D
y 2L - x YTL T L
Fyl
Fy1+Fy2 + Fx3 +Fxa Fyi Fy2 Fx3 Fxa
Ty = Ty = —=—— = —— = ——
Xy aL @ > X Xy L L L L
-«
Fx3 l
Fy3

Figure 6.6: Fvaluation of stresses.

From (6.1) it follows that

Oz Dy Dy D3 1 Dy
Oy = D12 D22 D23 0 = Dlg . (623)
Tay Di3 Ds3 Dss 0 D3
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Thus, the first column of D is equal to the registered stress vector. The two remain-
ing columns of D are obtained analogously through applying € = (0, 1,0) (extension
in the y-direction) and € = (0,0, 1) (pure shear).

For the case of boundary conditions C the reaction forces in two opposite bound-
ary nodes are equal in magnitude, and opposite in direction. This means that the
sums of normal forces on opposite boundaries are equal, and the resultants are sit-
uated exactly opposite each other. In Figure 6.6 this means that F,; and F,, as
well as Fy3 and Fy4 are collinear. Since the moments in the boundary nodes are
also equal in size and opposite in direction, two by two, the total moment on the
network from moments in boundary nodes is zero. For the global moment equilib-
rium to be satisfied it is then necessary that the forces F;, F, and F,3, F,4 are
of equal magnitude. The D obtained from boundary conditions C is automatically
symmetric.

When boundary conditions S are used the forces in opposite nodes are not equal,
and thus F}; and F,y are not collinear, and Fy;, Fy», F,3 and F,4 need not be the
same. Despite this, the global equilibrium of the cell is of course satisfied. When
requiring that the boundaries remain straight, the network is not allowed to deform
in the way that is most natural to it. One could imagine a rigid frame being attached
onto the network, which transfers the forces needed for the prescribed deformation
to be possible. Intuitively this stiffens up the structure. A somewhat absurd con-
sequence of forces in opposite nodes not being equal, is that if one imagines two
nearby cells, the forces are not the same in the two fibre ends that are supposed to
be attached to each other in the global network. D obtained from boundary con-
ditions S is not symmetric. Since we want a symmetric D, the mean values across
the diagonal are taken as D.

6.5. Anisotropic, orthotropic and isotropic materials

A linear elastic continuous material can be classified into different categories with
respect to symmetries in the material. If there are no preferred directions the mate-
rial is isotropic, otherwise it is anisotropic and D contains in the most general case
six independent constants:

Dll D12 D13
D = Dlg DQQ D23 (624)
D13 Dys Dss

In case of symmetry with respect to two perpendicular axes, the material is or-
thotropic and the number of independent constants is reduced to four. On assuming
plane stress this gives

1 E, E,vy, 0
D = T Ewv,, E, 0 , E,vy, = Eyvy,. (6.25)
~ VayVya 0 0 Gay(1 — Vaylys)
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The simplest possible material is isotropic, and has the same properties in every
direction. In this case D contains only two independent constants, namely modulus
of elasticity F and Poisson’s ratio v:

1 v 0
E 1 0
D=7 v . (6.26)
0 0

For an isotropic material, D is the same for every material orientation, while for
anisotropic materials D depends on the orientation of the material. The orthotropic
D given above refers to the case when the coordinate axes coincide with the principal
directions of the material.

For a three-dimensional isotropic material, it is known that certain restrictions
can be imposed on the elastic moduli. Assuming positive definiteness of the strain
energy, [19] leads to the conditions

1
E >0 and —1<1/<§. (6.27)

Even if a two-dimensional network is approximately isotropic in its own plane, there
is no reason to believe that it has the same properties in the out-of-plane direction.
Because of this, the restrictions given above are not generally applicable to the
moduli of two-dimensional networks.

Although a network is in general anisotropic, one would expect nearly trans-
versely isotropic behaviour for fairly dense two-dimensional networks, if the fibres
have a uniform orientation distribution. If the orientation distribution N, is sym-
metric with respect to two perpendicular axes, nearly orthotropic network properties
can be expected.

If the network is to be represented as an anisotropic material, the D obtained
from the simulations needs no further processing, except for symmetrization for
boundary conditions S. For boundary conditions C, the anisotropic representation
describes exactly how the simulated network responds when subjected to strain, but
it has the drawback of an intuitive physical interpretation of the constants being
difficult and requires as many as six constants to characterize the material.

In the cases where the network is nearly isotropic it would be advantageous to
characterize the material with the two well-known parameters £ and v instead.

6.6. Approximation of nearly isotropic D-matrix

It is desired to have a method of finding the parameters that describe an isotropic
material that is, in some sense, as close as possible to the simulated material, and to
quantify the closeness in some way. A least squares procedure is applied to obtain
an isotropic approximation of the anisotropic simulated D.

A material is imagined subjected to simple tensile strain e= (e, 0,0) for every
direction. This results in stresses that are in general functions of material orientation
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angle 6. For an isotropic material, D is however independent of §. From (6.1) and
(6.26) we have, for an exactly isotropic material

E
‘7;(9) 1 v 0 €0 1 — 12 €0
. E v 1 0
os(0) | = s L 0| = 1 vE o | (6.28)
e 0 0 — UV
75, (0) 9 0 0

where superscript e denotes exactly isotropic material. That is, o, and o, are
constant with respect to material orientation angle ¢, and 7, is identically zero for
every value of 6.

For an anisotropic material all stress components vary with 6. Since it is not
practically possible to simulate tension of a network in all directions, o3, o, and 7.,
are obtained by transforming D from one simulation to all material orientations.
Superscript s here denotes simulated material. If the coordinate frame is rotated an
angle #, D is transformed as, see [30]

D'()) =TDT?, (6.29)
where
cos? 6 sin 6 25sinf cos
T = sin” @ cos’f  —2sinfcosf |. (6.30)
—sinfcosf sinfcosf cos?f —sin’b
This gives
o3(0) €0 Di,(0)eo
05(9) =D'(0)| 0 | =| Dy(0)e |- (6.31)
() 0 Dy, (0)eo

On denoting cos# by ¢ and sinf by s this yields:
0'5(9) = (C4D11 + 20282D12 + 4SC3D13 + S4D22 + 483CD23 + 48202D33)60

x

05(0) = (s*¢® Dy + (s* + ¢*) D1y + 25¢(s” — ¢*) D13 + 5°c* Doy +

2sc(c? — 5%)Dy3 — 45*c* D3 )€

75 (0) = (=s®Dyy + sc(c? — s*) Dy + ((¢* — s*)c* — 25*¢*)Dy3 + s3cDayy+

Ty

(¢ = s%)s? + 25%c*) Dag + 2sc(c® — s*) Da3)eg
(6.32)
In Figure 7.23 stresses o° and o° are plotted as functions of §. The components
of &° plotted are those of the basic example network. We are looking for the value
of o¢ that will best approximate o°, and in the figure the components of o° are
plotted in the position that the calculations will finally give.
We choose to minimize the square of the area between the curves for exactly
isotropic and simulated material. Thus, we want to find the values of £ and v that
minimize the functional Q:
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Figure 6.7: Stresses as function of angle 6.

Q= [ (03 =00 + (0} = 0})* + (73, = 75,0 (6.33)
On inserting ( 6.28) we have
T s E 2 s vE 2 52
Q:/o (o8 — 1_1/260) + (0, — 1_1/260) + 7,,d6. (6.34)
C . vE
Minimize () with respect to and :
1—0? 1— 12
oQ m i E
) 7 —/0 —2¢(0s — 1_V2€0)d9—0
1—12
00 . (6.35)
™ s v .
8T = /0 —260(0'y - 1_ 2 Eo)de =0

1— 12
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Integrating the last term and rearranging the equations give

7f E
/ o df = ——¢€m
0

1—12
(6.36)

7 E
/ o,df = 7yeo7r.
0

1— 12

These equations imply that the areas under the curves for exactly isotropic and
simulated material should be the same. Now it remains to evaluate the area under
the stress curves for a simulated material.

Integrating (6.32) gives

/ "0l =
0
| a6 =

| a6 =0.

0

(3D11 + 2D12 + 3D22 + 4D33)

(Dll + 6D12 + DQQ - 4D33) (637)

| ool

From (6.36) and (6.37) we can now calculate the values of v and F that minimize
Q: _
/U Uyda . (D11 + 6D12 + D22 - 4D33)

V= = -
/ O';de (3D11 + 2D12 + 3D22 + 4D33)
0
1—v? ym 1—v?
E-= / o2dd = (3D11 + 2D15 + 3Dy, + 4Ds33)
e Jo 8¢€g

An invariant, with respect to rotation of coordinate frame, of the D-matrix is
taken as a measure of the error caused by classifying the material as isotropic. The
fourth rank constitutive tensor has the following four independent invariants, see
[11], given in terms of the elements of the D-matrix.

Ip = D1y + Dy + 2D33
[ID — D11D22 + 2D33(D11 —|— DQQ) — D%Q — 2D%3 — 2D%3
(6.38)
I[ID — (_Dll + D22)2 —|— 4(D13 + 4D23)2

IVp = Dyy + Dyy + 2Dy
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For an isotropic material this reduces to
E

E? 5
[ID: m(g—QV—V)
(6.39)
Il =0

E
IVp = ——(2+4 2v).
b= V2( )
111 is equal to zero for an isotropic material, but not for the simulated anisotropic
material. 111 is chosen as a measure of the error caused by classifying the material
as isotropic, and to achieve a scale-indifferent measure it is normalized by dividing
with the square of the estimated Young’s modulus:
(=D11 + Da3)? + 4(Dy3 + 4Dy3)?
err = o2 (6.40)
Equations (6.38) and (6.39) provide an alternative possibility to estimate F and v.
For the isotropic material there are three non-trivial equations and two unknowns, F
and v. This implies that there is a dependence between the equations and therefore
the two linear equations can be used to solve for E and v. Thus, if I, and IV} are
calculated from (6.38) for the simulated D, E and v can be solved for in (6.39).
After some calculations it is concluded that this procedure gives exactly the same
E and v as the least-squares approach.

6.7. Approximation of near orthotropic D-matrix

If the orientation distribution of the fibres is not uniform, but still symmetric with
respect to two perpendicular axes, there is no longer any reason to believe that the
material is transversely isotropic, but rather orthotropic. Thus, we want to know
what is the best estimation of orthotropic material parameters.

One problem that arises is that of finding the principal directions of the simulated
material. The simplest solution would be to assume that the principal directions
are coincident with the symmetry axes of the orientation distribution, which they
should be on taking the average of many networks. A second way would be to
transform the D obtained from simulations to different material orientations and
check where a principal direction criterion is best fulfilled. This criterion could be
maximum value of Dy or Dyy and close to zero value of D3; and D3y, We choose
to use the first approach since this seems to be a reasonable approximation in the
cases where it is used, see Section 7.5.

Thus we assume that the principal directions are known to coincide with the
coordinate axes. We use the same approach as for isotropic material, that is minimize

Q= [llos = 00 + (0} = 0 + (5, — 75,10 (6.41)
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with respect to the four independent components of the orthotropic D, see (6.25).
o’ is the same as in the preceding section, that is

/ "0l =
0
| a0 =

/ﬂ )

0

(3Dj, +2D3, + 3D;, + 4D3,)

(Dj, +6D;, + D3, — 4D3,) (6.42)

|l ooy

where superscript s has been added to emphasize that we refer to the components
of D obtained from simulations. € is not as simple as in the isotropic case, super-
script e here denoting exactly orthotropic material, since it is dependent on material
orientation angle #. That is

o1(6) el [Dh®e
o5(0) | =D @O)| 0 | = | D5\(0)eo |- (6.43)
Ty (0) 0 D5, (0)eo

In analogy with o*, this yields

7T m
/0 0:d0 = (3D}, +2Df, + 3Dj, + 4D5)

m m
/0 030 = =(D5; +6Df, + Di, — 4D5,) (6.44)
| 0=

On inserting the expressions for ¢ and o® in (6.41), it appears that the best esti-
mation is to take the coefficients directly from the simulated D, that is

Dy, = Dy,

Dty = Dy, (6.45)
D3y = D3, |
D33 = D3s.

The components D3, and D3, provide a measure of the correctness of the approx-
imation to orthotropic material, since they should be identically zero in a truly
orthotropic material. We could for example take

4(Di; +4D5,)*

err = 7 (6.46)

as an error measure, although this quantity is not invariant under rotation of coor-
dinate frame, as is that of (6.40).
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The step from components of D¢ to the individual physical constants E,, E,,, Gy, Vay
and v, consists of solving the non-linear system of equations

The solution to this is

;

E, .
11— . = Dy,
— VpyVya
E
1 . = D3,
— VpyVya
El’ xr
1 v = Di,
— VpyVya
Eyvg, - D,
1 — vaylya
L Gy = Dis
(D)
E‘:D - De (]_ - ﬁ)
" Di, D3,
(D5,)?
E, = D5,(1 — )
P DiDs
De
ny — l? 3
11
De
Vpy = —22
Ds,
Gy = Dis

(6.47)

(6.48)

providing the parameters used for describing an orthotropic network in the next

chapter.
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7. RESULTS FROM ANALYSIS OF INITIAL
GLOBAL STIFFNESS PROPERTIES

The initial global stiffness properties are given in terms of the parameters defined in
the preceding chapter, in the case of an isotropic network Young’s modulus £ and
Poisson’s ratio v. Those values are obtained from the results of three simulations,
pure tension in the x- and y-directions respectively and pure shear, which are com-
bined by means of a least squares procedure. In Section 7.1, however, stiffness is
given in terms of the reaction force in the x-direction when the sample is subjected
to strain in the z-direction. It is thus based on the result of only one simulation. In
this section change in stiffness due to change in sample size rather than the absolute
value of the stiffness is the primary concern. Because of this the simpler method of
evaluating stiffness is considered to be sufficient. In addition, normalized quantities
are used in Section 7.1. Young’s modulus, which is here F,/Le,, is divided by El;
to obtain a normalized stiffness measure.

7.1. Effect of sample size and boundary conditions

An interesting issue is what size as compared with fibre length a network unit must
have. Since computer resources are limited, it is important to know how small a
square can be analyzed without the relevance of the results being lost.

Numerical simulations were carried out to examine the dependence of stiffness
on sample size and boundary conditions. The networks that were simulated had
material properties like those specified for the basic example network, Section 5.1.
In Figures 7.1-7.3 and 7.6, the relationship between normalized stiffness

Fy
ElefEx

and ratio L/l is plotted. In the normalized stiffness, F} is the resultant force in the
a-direction when the quadratic network of side L is subjected to strain e=(e,,0,0).

Figures 7.1 and 7.2 show the results from simulation of networks in which
ply = 40. For every L/l considered, ten different geometries were simulated, each
geometry being subjected to the two sets of boundary conditions discussed in Sec-
tion 6.2: S in Figure 7.1 and C in Figure 7.2 .



60 CHAPTER 7. RESULTS FROM ANALYSIS OF INITIAL GLOBAL...

~

w x 10

= 3 Boundary conditions S
.

g * . pl ¢ =40

= *

0.5

0.5 1 15 2
L/,

Figure 7.1: Normalized stiffness against L/l;: Boundary conditions S.

’-; -3
‘:’_ x 10
| 3F Boundary conditions C
= p l§=40
E 2.5¢
2 L

0.5 1 1.5 2
L/ 1

Figure 7.2: Normalized stiffness against L/ly: Boundary conditions C.



7.1. EFFECT OF SAMPLE SIZE AND BOUNDARY CONDITIONS 61

By using normalized quantities the stiffness can be extracted for all networks
having the same normalized density pl; and ratio L/l;, provided that the ratios
bf by Eyby

h Eybsh’
C L B e and Jk
ly hy ly ly 7

are also the same.

It can be seen from the diagrams that the scatter of the points is considerable
for low values of L/, and that it gradually decreases as L/l; increases. It is also
noted that the scatter is larger for boundary conditions S. The solid line is the
average from the ten simulations, and the dashed lines denote standard deviation.
For boundary conditions S the average stiffness varies up and down to begin with,
but from L/l; = 1.2 it is steadily decreasing. Boundary conditions C, on the other
hand, show a rather constant stiffness from L/l; = 1.0 and forward. This indicates
that the stiffness is sample size-dependent for boundary conditions S at these values
of L/ly and ply, while boundary conditions C seem to give an almost constant value
of the stiffness already from L/l; = 1.0.

Figure 7.3 shows normalized stiffness, average from ten calculations, against
L/l; for three different densities, pl; = 30, 40 and 50. Both boundary conditions
are shown for each density. The tendency from pl; = 40 is also found for the other
densities.

That is, when using the set of boundary conditions S, one must analyse a much
larger network in order to obtain a correct stiffness value than is the case for bound-
ary conditions C. It is concluded that for boundary conditions C, L/l; > 1 is a
minimum requirement for obtaining relevant stiffness values.

For the conventional boundary conditions S, the corresponding minimum re-
quirement can be estimated as being approximately L/l; > 3.

A larger L/l ratio means more degrees of freedom and requires much more com-
puter time and memory. Thus it is concluded that use of boundary conditions C is
by far the more economic alternative. The gain is not quite as large, however, as
one might at first anticipate. This is because conditions C involve the use of con-
straints, which makes the solution of the system of equations more time-consuming
and requires more memory. If nothing else is said, boundary conditions C are used
in all the simulations cited in the following.

The results from Figure 7.3 are repeated in another form in Figure 7.4. In
Figure 7.4 normalized stiffness for boundary conditions S relative to normalized
stiffness for boundary conditions C is plotted against L/l;. The relative difference
between the two boundary conditions decreases as pl; increases, but for ply = 50
and L/l; = 2 there is still close to 25% overestimation of the stiffness when using
boundary conditions C.

The results above suggest that the initial stiffness is approximately indepen-
dent of sample size for squares of L/l; > 1.2, for boundary conditions C, at the
investigated levels of network densities. This conclusion may, however, not be gen-
eral for all network densities. This is due to the effects of statistical distribution
of stiffness properties in different areas of a heterogeneous material. The case of
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Figure 7.3: Normalized stiffness against L/l;.

a growing square lies somewhere between the extreme cases of coupling more and
more material cells in series or in parallel. In a parallel coupling the total stiffness
is not affected by scatter in properties of the components, while a structure coupled
in series is weakened by scatter. This effect is illustrated by a simple example of
springs coupled in series and parallel in Figure 7.5. The average spring stiffness is
the same in all four cases. As a growing square could be viewed as a combination of
serial and parallel coupling, the weakening effect of scatter on global stiffness may
be of significance if the scatter is large enough. As the scatter in stiffness results
increases for decreasing network density this would be an issue in particular for low
network densities. In Figure 7.6 results are shown from simulations of pl; = 15 and
20, boundary conditions C. The solid lines denote averages of ten calculations and
the dotted lines denote standard deviation. There is a weak tendency of increasing
slope of the curves as pl; decreases, but the large standard deviation makes definite
conclusions difficult. This issue is further discussed in Section 9.1.

In the simulations cited here, all fibres are of the same length. For the case of a
statistical distribution of fibre length, the requirement L/l; > 1.2 must be modified
according to the distribution.

The standard deviation decreases moderately with increasing L /[, which means
that the number of simulations can be decreased for larger L/l;. Since the compu-
tational time increases dramatically, however, as L/l; increases, it is from the
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Figure 7.4: Normalized stiffness of b.c. S relative to b.c. C against L/l;.

ktot =2+2+2=6 ktot =1+2+3=6

k=2 k=2 k=2

k=1 k=2 k=3

Figure 7.5: Example showing effect of scatter in stiffness properties for spring cou-
plings.
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Figure 7.6: Normalized stiffness against L/ly: Boundary conditions C.

computational point of view best to select a minimal value of L/l;.

7.2. Global elastic stiffness vs stiffness of components

The global elastic stiffness of a network depends on the stiffness properties of the
components, and on how these are geometrically arranged. To examine the depen-
dence on the components’ stiffness, simulations were made on the basic example
network geometry. Each stiffness parameter was varied, one at a time, over a wide
range. The parameters considered were stiffness of connections, k, = £, and k4, and
moment of inertia, I, cross-sectional area, Ay, and Young’s modulus, £y, of fibres.
Each point in the diagrams is an average from three calculations, and the relative
standard deviation for £ is < 1%, except for the Ij-curve in Figure 7.8 where it is
1 — 5%. For v the relative standard deviation is 1 — 5% except for a few values in
the lower ranges of I, Figure 7.8, where it rises to at most 11%.

In Figure 7.7 the influence of the stiffness of the connections is plotted. The
variable on the z-axis is log(k,/k?), where kY denotes k, for the basic example
network. Analogous notation is used in Figures 7.8 and 7.9. Since it turns out that
the rotational stiffness has very little influence on F, two curves for the variation
of k, and k, are plotted, one with an extremely high and one with an extremely
low value of k;. When k, = k, approaches zero, global stiffness obviously also
approaches zero. When the value of k, = £, increases, a plateau is reached when the
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connections are approximately rigid. One can compare this plateau value with the
value predicted by a homogeneous field approximation. As discussed in Section 2.1,
Cox, in [6], shows that in an isotropic fibre network experiencing a homogeneous
strain field, that is where every fibre is strained exactly to the extent of the global
strain in the network,

E=K/3
G=K/8 (7.1)
v=1/3,

where K = A;Ep. (7.2)

For the basic example network (7.1) gives E = 17.5 - 10* N/m and the plateau
value from the simulations is £ = 13.2 - 10* N/m. Accordingly the homogeneous
field assumption predicts a significantly stiffer network even when assuming the
connections to be rigid. This is probably due to bending of the fibres, as discussed
in Section 2.1.

Poisson’s ratio, in contrast to Young's modulus, is affected by k,, as can be
seen in Figure 7.7. For a weak ¢-spring v is approximately constant, whereas v is
strongly dependent on k, and k, in the case of stiffer ¢-springs. For the stiffer z- and
y-springs v is close to the value of 1/3 predicted by (7.1) for a network experiencing
homogeneous strain.

E and v as a function of log(I;/1}), log(Ay/A%) and log(E;/E}) are shown in
Figure 7.8. It is seen that A is the most important variable and that I; has not so
much influence on E, when varying the parameters around the values of the basic
example network. To change the ratio A;/I; means primarily to distort the cross
section, and this is not very realistic over the wide ranges shown here. However,
second order effects resulting from fibres not being straight can be approximately
taken into account by modifying A;. In Figure 7.8 it is also seen that v shows
moderate variations, except for very small values of A;. Here v suddenly drops, and
even reaches negative values. Negative values of v are also found experimentally in
paper, see [23], which can be regarded as a dense cellulose fibre network.

G, obtained from the above results as E/(2(1 + v)), shows a similar dependence
on k, and £, as F, as is seen in Figure 7.9. One would expect G to depend more on
ke, since v does so, but the variation of v only starts at such low values of k, and
k, that F is already close to zero.

From Figure 7.9 it is seen that also when fibre properties are varied, G shows a
variation similar to that of E.
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Figure 7.7: E and v against log(k,/kL).
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Figure 7.8: E and v against log(I;/17), log(Es/E{), log(As /A% ).
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7.3. Global elastic stiffness vs network density and degree
of fibre-to-fibre interaction

The network density is found to have a strong influence on the elastic stiffness of the
network structure. Simulations were made for six different densities. In Figure 7.10
and 7.11 F and v are plotted against network density p. The five curves represent
different probabilities for interaction at a fibre crossing, s=1.0, s=0.8, s=0.6, s=0.4
and s=0.2. For densities p=30-60 mm~"' ten simulations were made for each value of
p, but for p=70 and 80 mm ! it was sufficient to make seven and three simulations
respectively to reach the same level of standard deviation. Vertical lines indicate
standard deviation for F in Figure 7.10. The lower densities are omitted for s=0.4
and s=0.2, since the simulation results show too much scatter to be relevant. The
lines in Figure 7.10 are almost parallel, indicating s to be of greater importance for
lower values of p. This is further emphasized in Figure 7.12, in which E/FE,_ ¢ is
plotted against p. Here F,_; denotes E for the case when s = 1.

The value of Poisson’s ratio v is rather stable at around 0.34; it is only due to
the scale of the diagram that one can detect any differences, irrespective of changes
in p and s, except for s = 0.2 which yields a somewhat higher value of v.

E [N/m]

30 40 50 60 70 80
P [mm]

Figure 7.10: E against p and s.
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Figure 7.11: v against p and s.
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Figure 7.12: E/FE,_1 o against p and s.
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7.4. Global elastic stiffness vs fibre curl

Fibre curl is found to have a strong influence on the global elastic stiffness of a
network. This is because curled fibres have lower values of axial stiffness, and also
because the geometry structure of the network becomes different. The load-bearing
lines no longer extend as straight lines, but take a curved path.

Simulations have been made, for two different network densities, to evaluate the
dependence of E' and v on the degree of curl of the fibres. The curl indices considered
were 0.7, which is close to a semi-circle, 0.8, 0.9 and 1.0, which is a straight fibre.
The results are shown in Figures 7.13 and 7.14. Each point is the average from
two or three simulations; standard deviations are indicated by vertical lines. It can
be seen that E increases with increasing curl index for both p = 40 mm ! and
p = 60mm !, but ¢ has as expected more influence on the less dense network. Here
the ratio between FE for straight fibres and E for ¢ = 0.7 is equal to 3.6, while the
same ratio for p = 60 mm~! is only 1.9. v does not differ much between the two
densities, but has a clear tendency to increase as the fibres become more curled, as
can be seen in Figure 7.14. It does even increase above 0.5, a fact that is commented
in Section 6.5.

x 10

E [N/ m]

6r p:60mrh1 1

3r p:40mrﬁ1 |

0 1 1 1
0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

Figure 7.13: E against curl index, c.

The effect of fibre curl can be imagined to consist of two interactive separate
effects. One is that the whole fibre does not extend straight across the network,
but describes a curved path. The other is that the fibre segment between two
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Figure 7.14: v against curl index, c.

neighboring connections is curved, and thus is weaker in the axial direction. The
relative importance of those two effects has been investigated. In addition to the
simulations with curled fibres mentioned earlier, simulations have been made in
which the beam elements have been substituted by straight ones in the curled global
geometry. A network of straight fibres has also been generated, with the same
nominal properties as the curled one, but the beam elements have been substituted
by curly ones with the curl indices that were considered before. A symbolical sketch
of the networks and notations used is given in Figure 7.15.

Figure 7.16 shows E against curl index for the different types of networks. £ for
a network of curled fibres, Figure 7.13, is repeated here by solid lines. The dotted
lines marked CS and SC represent networks according to Figure 7.15, and on top
a dash-dotted line indicates the value of F for a network of straight fibres. It is
concluded that the effect of the fibres not extending straight across the network is
more important than that of the axial stiffness being lower. Moreover, in the cases
shown in the diagram the two effects seem to be fairly additive.

Figure 7.17 shows the corresponding curves for v. It can be seen that a network
of type SC gives a value of v that is practically identical to that of a network of
straight fibres. Somewhat surprisingly, a network of type CS gives even higher values
of v than the network made of curled fibres. Obviously, v is not very dependent on
the axial stiffness of the fibres, which is also consistent with the results of Figure 7.8,
in the range close to the basic example network. A geometry structure made up of
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CC CS

SS SC

Figure 7.15: Different combinations of straight and curled properties.

curled fibres, on the other hand, has a rather strong increasing effect on v.

As mentioned earlier, an approximate method of accounting for curled fibres
might be to reduce the axial stiffness of the beam elements. The results presented
here indicate, however, that this approach would not give satisfactory results.
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Figure 7.16: E' against curl index, c.
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7.5. Global elastic stiffness vs orientation distribution

In the preceding sections the results have been presented by giving Young’s modu-
lus and Poisson’s ratio for the isotropic material which most closely resembles the
simulated material in mechanical behaviour. This has been done because when the
fibres have a uniform orientation distribution the network is expected to be close to
isotropic, at least at sufficiently high network densities.

Now, we also want to investigate the influence on the elastic stiffness of non-
uniform orientation distribution of the fibres. Then there is no longer any reason
to believe that the network’s performance will be the same in every direction. If,
however, the orientation distribution is symmetric with respect to two perpendicular
directions, we can expect nearly orthotropic behaviour. Some orientation distribu-
tions satisfying this condition are examined, and the results are given as orthotropic
material parameters according to the principles presented in Section 6.7.

One possible way to define an orientation distribution is, see [29],

fla) = % — acos 2a. (7.3)

This distribution function satisfies the criterion
| fleyda =1, (7.4)
0

for all values of the constant a, but to avoid negative probabilities it should only be
used for 0 < ¢ < 1/m. Simulations have been made for the cases of a = 0, 1/(2m)
and 1/7, which give the distribution functions shown in Figure 7.18. In the diagram
the curves have been approximated by ten straight line segments, and this is also
the input given to the program which generates the network. As a comparison,
Figure 7.19 shows an example of a fibre orientation distribution of a commercial
kraft paper, taken from [29]. The network with a = 0 is the basic example network,
and for the other values of a all properties except the orientation distribution are
the same as for the basic example network. Figure 7.20 shows examples of network
geometries for the three different values of a. For each value of a, 10 simulations
were made of nominally equal networks.

The simulations for a« = 0 are the same as those made for the basic example
network, but they are now evaluated as for an orthotropic material. Ideally, E,
and E, as well as v, and v,, should be identical. That they are not, implies
that the networks which have nominally uniform orientation distribution are not
exactly isotropic, but still they are quite close. As a increases there is a stronger
tendency for the fibres to be oriented vertically, as can be seen from Figures 7.18
and 7.20. This results in an increasing modulus F, and decreasing F,, as can be
seen in Figure 7.21, where the mean values and standard deviation of the E,, E,
and G, obtained are indicated. The shear modulus G, decreases only slightly as a
increases. In Figure 7.22 Poisson’s ratios v,, and v,, are shown against a. At a=0
they are almost the same, but as a increases, v, increases a considerable amount
while v,, decreases moderately.
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Figure 7.18: Fibre orientation distribution.

Finally, Figure 7.23 shows a typical example illustrating the difference between
D from a simulation, denoted D?*, and the corresponding estimated orthotropic D,
denoted D, as a function of §. The diagram is from a simulation where a = 1/(27)
and D’ is
0.6130 0.3340 0.0273
D® = | 0.3340 1.3236 0.0328 | - 10°,
0.0273 0.0328 0.3146

and the estimated orthotropic D¢ is, from Section 6.7,

0.6130 0.3340 0
D¢ = | 0.3340 1.3236 0 -10°.
0 0 0.3146

The difference between the solid lines which represent D* and the dotted lines which
are D¢ is rather small. This indicates that the assumption discussed in Section 6.7,
i.e. assuming the principal directions of the simulated material to be coincident with
the symmetry axes of the orientation distribution, seems to be acceptable.
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Figure 7.19: Fibre orientation distribution of commercial kraft paper, [29].
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Figure 7.21: FElastic moduli against orientation distribution parameter a.
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Figure 7.22: Poisson’s ratios against orientation distribution parameter a.
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7.6. Global elastic stiffness vs length distribution

The length of the fibres has great influence on the stiffness properties of a network.
Extremely short fibres are like dust and do not constitute a connected structure.
As fibres get longer the structure gradually becomes more like a real network and
gets stiffer. This effect can be seen from Figure 7.24, where E is plotted against
fibre length for networks which are all of constant fibre length and network den-
sity 40 mm~!. The solid line in the diagram connects points which show averages
from ten calculations. Vertical lines denote standard deviation. Young’s modulus
increases considerably as the fibre length is increased at constant network density.
Poisson’s ratio, on the other hand, is stable around 0.33-0.34 for all fibre lengths
investigated, which can be seen from Figure 7.25.

When all fibres are of the same length the simulations show quite clearly that
longer fibres give a stiffer network and that Poisson’s ratio is not much affected. In
order to investigate the case when fibre length is given by a statistical distribution,
networks with the same network density, 40 mm !, but length distribution similar
to that of Figure 5.1 are simulated. The population distribution in length, the
weighted length distribution and the cumulative population distribution in length
of the fibres are given in Figure 7.26. It should be noted that in the last column
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Figure 7.24: Young’s modulus against fibre length.

of the population distribution there is an overrepresentation of 4 mm fibres, since
from the cumulative population distribution 2 % of the fibres are exactly 4 mm. The
arithmetic mean fibre length is 0.85 mm and the weighted mean fibre length 1.77 mm.
The mean value of F from ten simulations is 6.48 - 10* N/m; this value is shown by
the dashed line in Figure 7.24. If the network with varying fibre length is going to be
described by some characteristic fibre length with regard to initial Young’s modulus,
the arithmetic mean fibre length does not seem to be the appropriate value. For
the case investigated the constant fibre length which gives the same value of E is
approximately 1.55 mm, which is closer to the weighted mean fibre length. More
simulations are needed to confirm this hypothesis, but it seems probable that this
tendency holds, since longer fibres contribute more to the stiffness of the network.
Average Poisson’s ratio for the networks of varying fibre length is 0.336, that is,
Poisson’s ratio does not seem to be affected by either mean fibre length or length
distribution.
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Figure 7.25: Poisson’s ratio against fibre length.
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Figure 7.26: Population distribution, weighted distribution and cumulative popula-
tion distribution of fibre length.



8. ANALYSIS OF FRACTURE PROCESS

The fracture of a heterogeneous structure is a non-linear process, the properties
of the structure changing as the failure progresses in the material. The non-linear
analysis of fracture can, however, be performed as a series of linear steps, if it is
assumed that the behaviour of each component of the structure is step-wise linear.
This approach is used, and it is further described in Section 8.2. The fracture
criteria and behaviour of the components of the network are defined in Chapter 3,
and the numerical values used are given in the next section. The fracture process
of a material is more complex to quantify than are the initial stiffness properties.
The output parameters used to characterize fracture in this study are discussed in
Section 8.3.

8.1. Input parameters to fracture analysis

The input parameters for the fracture analysis are given in the form of an example
network. In the next chapter different parameters from this basic fracture example
network are varied, and their influence on the fracture behaviour of the network is
obtained.

The input parameters needed for the basic fracture example network are much
the same as those of the basic example network of Section 5.1. The fibre length,
however, is changed, and the parameters relevant for fracture calculations are added.

Since the results from Section 7.6 indicate that the weighted mean fibre length is
more relevant for the mechanical properties of a network than is the arithmetic mean,
the fracture simulations are performed with a fibre length of 2 mm. This means that
the square studied needs to be bigger. If the initial stiffness is considered, it was
concluded in Section 7.1 that a side-length of the square of 1.2 times the fibre length
is sufficient. When fracture localization phenomena are studied, results in the next
chapter indicate that the square needs to be about twice the fibre length. For the
basic fracture example a side-length L=4 mm is thus chosen. Most of the initial
stiffness simulations were made with a value of L=1.2 mm. This means that for the
same density, there is approximately 4?/1.2? = 11 times more degrees of freedom for
the fracture example network. This and the fact that each simulation now consists of
many steps entails numerically very much heavier calculations. On the other hand,
it has been decided to assume a lower network density in the basic fracture example
network; p=8.7 mm~! instead of 60 mm~!. In relation to a typical fluff material of
the kind used in diapers, p=8.7 mm~' is estimated to be more realistic in terms of
the corresponding number of fibre-to-fibre connections per unit fibre length.
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The ultimate tensile stress of softwoods such as spruce or pine, containing no
faults, is about 100 MPa in the direction of the fibres. The cross section of wood,
however, partly consists of pore-space, indicating a higher value of ultimate stress for
the material in a single fibre. Yet the fibre is weakened by the defibration process,
and the ultimate normal stress for a fibre is therefore set to 100 MPa in the basic
fracture example network. The ultimate shear stress is set to a lower value, 50 MPa.

The strength parameters of the fibre-to-fibre bonds can at present be estimated
only in a very rough manner. It is known that in a dry-shaped cellulose fibre material
where no adhesive have been added, it is the bonds that break, and not the fibres.
From this consideration, and the intention that the parts of degree of utilization
originating from translation and rotation respectively be of the same order of size,
the values have been chosen to F,;;=3.5-1073 N and M,;=5.6-10"" Nm. For the basic
fracture example network, completely brittle failure of connections is assumed, and
ng 1s thus set to 1.

The input parameters of the basic fracture example network are summarized
in Table 8.1, which also indicates in which section a certain parameter is varied.
Where nothing else is said, the simulations in Chapter 9 refer to networks having
the properties of Table 8.1.

Table 8.1: Input parameters of the basic fracture example network.

Parameter | Value and unit Varied in Section
Ly 2 mm 9.5
K 0 mm™' 9.5
Ay 2.5-107'0 m?
Iy 0.2-10729 m*
Ey 35-10° Pa
Oult 100 MPa 9.2
Tult 50 MPa 9.2
ky1 = ky1 | 8750 N/m 9.3
kg 2.8 107" Nm/rad | 9.3
Foun 3.5-103 N 9.2,9.3
Mun 5.6-107 Nm 9.2,9.3
Ng 1 9.3, 9.5
I3 1.0 9.3, 9.5
B 1.0
L., L, 4 mm 9.1, 9.5
p 8.7 mm ! 9.4, 9.5
N, %, O<a<m
s 1.0 9.5
d(xz,y) | 1.0
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8.2. Method of analysis

A fracture analysis can be performed as a series of linear steps, on assuming that the
behaviour of each component of the structure is step-wise linear. Using this method
for non-linear analysis, the equilibrium conditions are, apart from effects of round-off
errors, fulfilled exactly during the entire course of loading and fracture. The drift
from the equilibrium path that may occur in conventional incremental analysis is
avoided, and there is no need for iterations as in methods of the Newton-Raphson
kind.

In the present analysis, in each step a unit strain is first applied to the structure.
The degree of utilization, see (8.2) and (8.3), is then calculated for each element, and
the element that is utilized the most is detected. The applied strain is proportioned
so that the degree of utilization is exactly unity in the most severely stressed element.
The reaction forces obtained are proportioned to the same degree, and thus we obtain
corresponding values of stress and strain for the situation when the first element is
about to break, or more general, change its properties into new linear characteristics.
Next, the global stiffness matrix is adjusted according to the new properties of the
partly broken element, and a new linear step is performed. This process can go on
until the structure has collapsed entirely and cannot sustain load any more.

Each linear step is performed according to the principles of Chapter 6, using
cyclic boundary and loading conditions. The procedure of finding and removing
the most severely loaded element between two successive steps is described in the
following.

The element forces are calculated from (6.2), which is repeated here:

Ku=f (8.1)

K, is the element stiffness matrix, referred to global coordinate directions, and u
is the vector of displacements in the directions of the global degrees of freedom of
the element. f is also referred to global directions, and has to be transformed to
the local element directions before it is used in a fracture criterion. This is valid for
the beam elements, since, in the model used in this study, the connection elements
have the same local and global directions.

From the fracture criterion (3.2) we can see that the degree of utilization, m, for
a beam element is

[on]
m=max{ " (8.2)
lul
Tult
where, according to (3.3) and (3.4), for a straight beam of rectangular cross section
LN M [3T
Op = e T Al T4
Ay IV Ay
and
1.5V
T =

Ap
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N, M and V denote normal force, bending moment and shear force in the most
stressed section of the beam. Since there is no load on the beams between the
connection elements, N and V are constant throughout the element, and M varies
linearly and thus reaches its maximum value in one of the element ends.

The degree of utilization for a spring element is, from (3.7),

VE2+F?2 M
v 1M (8.3)

Fult Mult

When an element of the structure reaches a degree of utilization of unity it
breaks, and the properties of the network structure become different. When a beam
element breaks, it does so in a brittle manner. This is taken care of by assembling
into the system stiffness matrix the negative of the broken element’s stiffness matrix,
that is by removing this element from the system. When the fracture criterion for
a connection is fulfilled, the system stiffness matrix is adjusted in a similar way,
except that the spring element is not removed altogether. If we have the reduction
coefficient for spring stiffness, 3, see Figure 3.4, the negative element stiffness matrix
multiplied by (1 — ;) is assembled into the system stiffness matrix, except when
the connection reaches final failure and is removed altogether.

Loading of a network is defined in terms of global straining of the network.
The strain state is described by the strain vector e=(e,, €, 7V.y), which has three
components. A strain state can thus be viewed as a point in a three- dimensional
strain space, and the loading of a structure can be represented by a path in strain
space. When using the method outlined above the path must be composed of piece-
wise straight lines.

The simplest case is to follow a straight line from the origin. This means that the
ratios between the single strain components are fixed, and only one calculation needs
to be performed during each step. All simulations reported on in the next chapter
are of this type, and the line followed from the origin is the ¢,-axis. Typically,
the path from original structure to complete failure consists of a ‘two-steps-forward
one-step-back’ walk on the ¢,-axis. It is equally simple to follow one line from the
origin to a certain extent and thereafter change into another one. An example of
this is to strain the material in the a-direction until it is partly broken, unload
the structure and then subject it to pure tension in the y-direction until complete
failure. A more complex situation arises if one wants to study a strain path that does
not pass the origin, for example constant strain in the x-direction under increasing
strain in the y-direction. Under these circumstances three calculations have to be
performed in each step, corresponding to pure tension in the x-direction, in the
y-direction and pure shear. This is because, since the strain components do not
increase proportionally, the effect of each strain component on each element of the
structure must be obtained.

It should be noted that all simulations in this study are based on small-strain-
theory. Most of the results in the next chapter are within the small-strain range,
the few which are not might be unreliable.
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8.3. Output parameters from fracture analysis

One important output from a fracture analysis is the set of points in the 0,¢,-plane,
representing global force in the direction of straining versus global straining. By

definition
o, =F,/L,, (8.4)

€z = Au,/L,. (8.5)

Each o ¢,-point corresponds to the fracture, partial or complete, of one component
of the structure. Each linear step performed can be represented by a line extending
from the origin to the point where the first element fails in that step. Since the
stiffness of a structure decreases as more components fail, the chronological order
of the failure points is defined by a successively smaller inclination of the lines from
the origin to the point.

A lot of information can be extracted from the points. The inclination of the
line from the origin to the first point is the initial stiffness of the network, denoted
(02/€x)0. The highest value of the global mean stress reached is denoted maximum
stress, 0maz, and the corresponding value of strain is denoted limit strain, €;,,. The
ultimate strain, €,;;, that is the strain at which the last component fails and leaves
the network completely separated, is not used to characterize the material in this
study, since there is a considerable scatter in this value between different nominally
equal networks. The very last point may also be dubious due to numerical problems
arising when the structure approaches zero stiffness. An integrated measure of
the straining capacity which is not so sensitive to the variations in single points
is preferred. Fracture energy is such a measure. The different output parameters,
except fracture energy, obtained from the global o,¢,-response are summarized in
Figure 8.1, where the points have been joined by straight lines. Fracture energy and
its coupling to internal elastic energy is discussed in more detail in the following.

Ox

@iey

| -
€lim Eult

Figure 8.1: Illustration of some fracture output parameters.
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The amount of energy that has to be supplied to a network to cause its complete
failure is an important parameter. Other parameters kept constant, a low fracture
energy implies a sudden, brittle mode of failure, while a higher value means fracture
in a more ductile manner.

In each linear step, the external energy that has been supplied to the system is
equal to the internal energy stored in the structure. Since the work w of a force F
is

w = / Fd(Au), (8.6)
the internal elastic strain energy stored in a linear spring, w?, is
E(Au)?
w! = / E(Aw)d(Au) = 2 2“) . (8.7)

Here k denotes spring stiffness and Au extension of spring. For a connection element
of the type used in this study, made up of three springs, this gives the total elastic
strain energy, wy

ko(Auy)® | ky(Auy)® | ky(6)?
¢ — ) 8.8
w; 5 + 5 + = (8.8)
Awu, denotes extension in a-direction of the x-spring, and Awu, and Af are the
corresponding quantities for the other two springs.

Fracture has in (3.6) been defined to occur in a connection element when

g(F) =0,

where ¢ is defined in (3.7). The path from the point where the fracture criterion is
reached, down to zero force in the spring, has been defined to be a vertical line in
Figure 3.4. This means that the fracture of a single connection is assumed to be a
stable process, without any dynamic effects. An alternative assumption could be a
fracture curve as in Figure 8.2, where the difference between the strain energy in the
spring at start of fracture and the fracture energy consumed by the spring material,
goes into kinetic energy during an unstable fracture resulting in dynamic effects.

For a fibre segment, which is modelled as a Bernoulli beam, axial extension and
bending contributes to the internal elastic strain energy, w!, cf. [24].

N? M
f= [ 4 /—d 8.9
i /2EfAf ' e (8.9)

where N and M denote axial force and bending moment in the fibre segment, and
the integration is performed along the axis of the beam.

The external energy w! supplied to a network is the integral of force times
displacement in the boundary nodes. When cyclic boundary and loading conditions
are used, the reaction forces in two opposite nodes are always equal in magnitude and
opposite in direction. This means that if a network is subjected to strain e= (e, 0, 0)
the external energy supplied to the network in a linear step, w?, is simply

n era:Lx
w, = s
¢ 2

(8.10)
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F

X

Figure 8.2: Force-extension diagram for a spring. Alternative where part of the
elastic enerqy gives dynamic effects at failure.

F, denoting resultant force in the ax-direction on the faces of the network that are
perpendicular to the x-axis, L, being length of studied square in the x-direction.
In a linear step, w?, which is equal to the area under the F, — Au,-graph for the
network is equal to the sum of the internal strain energies of all the elements of the
network, see Figure 8.3,
w? = Swe + Sw). (8.11)

y contribution of €. nr n to total strain energy
‘ -

OO contribution of el. nr 2 to total strain energy
SO ,// contribution of €. nr 1 to total strain energy

AUy

Figure 8.3: The external enerqy is equal to the sum of the internal elastic strain
energies of the components of the network.

Within each linear step there is thus equality between external and internal
energy. Now, we want to compare the internal elastic energy stored in the structure
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in two successive steps. A network is assumed to be loaded to the extent of failure of
the most severely stressed element; this element fails and the new structure obtained
when the failed element is removed is loaded to the same strain. The value of F,
will now be lower for the same value of Au, since the structure has lost in stiffness
due to the removal of the fractured element. Thus the internal strain energy is now
smaller, and the difference between the total internal strain energies before and after
the element failure consists of the fracture energy of the failed element plus energy
lost because of load redistribution within the network; see Figure 8.4 for a simple
symbolic example. The fracture energy of a network, w", is thus larger than the

k1:k ) :k3 =k
FUIt 2kA FUIt kA FUIt 0.5k A
= =kAu =0. u

‘L Au 1 4y K Y 3 1

Before failure of spring 3:

strain energy=0.5k(A u 22+0.125k( Au)%0.125k( Au )’
ko k3
k

After failure of spring 3:

strain energy=0.5k( Au,) 2
Ko

2Au
N
W M After failure of spring 1:

jAN\_\N M strain energy=0

F
Globa F- Au curve Wn:2_25k(A u1)2
2k Au +
au L w'S2.125k(A )
n
W

Figure 8.4: Strain energy at different stages of failure.

sum of the fracture energies of the failed components, Yw/°.

w" > Yw!e, (8.12)
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strain energy at first failure

F e F
X /first failure X fracture energy of failed element
‘ / plus additional energy
strain energy when structure is
| reloaded to A Uy 1
AUy1 AUy AUy1 AUy

Figure 8.5: Strain energy in system before and after element failure.

€ult

w" = F,L,de,. (8.13)
0

The total fracture energy of a network is the area under a curve joining the points
in some way. Figure 8.6 shows two different ways of joining the points, representing
different fracture mechanisms, the second of which is used when fracture energy is
evaluated in the next chapter.

=
A Uy A Uy

Figure 8.6: Different ways of calculating the fracture energy.

The total fracture energy, w"”, is divided into two parts, the part before maxi-
mum load is reached, w{, and the part after maximum load, w}, see Figure 8.7. w}
represents the loss of energy, the dissipation, when a structure is loaded to maximum
load and then unloaded. This energy is related to the more or less evenly distributed
damage of the material when the global load is increasing. If the network is reason-
ably homogeneous one may, as a first approximation, assume w? to be proportional
to the size of the network, L,L,.

wy represents the dissipation when the global load F), is decreasing, as Au, is
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increasing. When F} is decreasing the parts of the structure outside a localized
fracturing region are unloaded and contract elastically without any dissipation. The
dissipation w? is instead due to the increasing strain and fracture taking place in
the localized fracture process region. Since the fracture events after peak global load
can be assumed to be localized to one section, one may, as a first approximation,
assume w4 to be proportional to L,. The ratio wj /L, corresponds directly to the
material parameter ‘critical energy release rate, GG.', used in linear elastic fracture
mechanics, and to the fracture energy, G, used in non-linear fracture mechanics.
Here the notation

will be used.
From the fracture energy Gy, the strength 0,,,, and the stiffness (0,/€,), an
absolute length scale characteristic for the material can be defined as

Lo = (92/6)0G 1/ TP (8.15)

Dealing with analysis of fracture, such an intrinsic length is needed due to the size
effects during fracture, even for homogeneous materials. I, is also a measure of the
brittleness of the material, a low value indicating a brittle material, and correspond-
ing directly to the ratio (K./04,)* used in linear elastic fracture mechanics, K.
being the fracture toughness of the material. Empirically it has been found that .,
is usually related to the geometrical size of the particles and pores etc. in a mate-
rial. In the present calculation of I, (0,/€,)o is used as the measure of the elastic
stiffness of the material. For some applications F or 0,4 /€im can be more relevant
alternative measures of the elastic stiffness. Values of [., for various materials are
reported in [9].

The o,¢€,-curves obtained from simulations show a strong saw-tooth behaviour.
This kind of fracture behaviour is usually not seen in experimental curves. This
is because a very fast unloading of the material would be required to be able to
follow a curve that exposes snap-back performance, faster than is possible to obtain
in practice. In deformation-controlled experiments the strain is not allowed to de-
crease at all, making it impossible to record the snap-back behaviour of the sample,
see Figure 8.8. Although difficult to record experimentally, the saw-tooth kind of
behaviour may not be unrealistic: if testing a sample as small as those studied by
numerical simulations, each individual fracture event within the micro-structure of
the material might very well give a noticeable saw-tooth in the global o,¢,-curve.

In addition to the stress-strain relationship of the network it is also interesting
to study localization of the fracture. This is done by plotting the failed connections,
the zero-stress beams or the remaining active structure of the network as fracture
progresses.
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A Uy

Figure 8.7: Definition of w} and wy.

| "Real" behaviour

'~ "Recorded" behaviour

A Uy

Figure 8.8: Snap-back behaviour.
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9. RESULTS FROM ANALYSIS OF FRACTURE
PROCESS

9.1. Effect of sample size

The results obtained from a fracture test or simulation of a heterogeneous material
are dependent on the sample size. This effect can be seen in a series of simulations
where the shape and size of the sample have been varied. The cells shown in Fig-
ure 9.1 have been subjected to uniaxial tension in the x-direction, € = (e,,0,0),
and maximum stress, initial stiffness, fracture energy and localization have been
evaluated. Apart from the cell size, all properties of the networks are according
to Table 8.1. Only fracture of connections is considered. For each cell size five
simulations were made, and the averages of those results are given in the following
figures.

12 15 24 15 48l¢ SERIES 1

7.2 15 96 I¢

e
f 24 1¢
SERIES 2
481¢

121

f SERIES 3
24 |¢

481¢

Figure 9.1: Shape and size of investigated cells.

If we regard the square with side-length L = 1.2[; as a basic unit cell, the

95
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following samples in series 1 are 2, 4, 6 and 8 times as long as the basic cell. These
longer samples should, however, not be regarded as a number of statistically equal
unit cells coupled in series. In general the weakest link will determine the strength
of a serial system. This phenomenon is described by Weibull theory for certain serial
systems, cf. [4]. As the number of cells coupled in series increases, the probability
of a really weak cell increases, and therefore it is expected that the strength will
decrease as the length of the sample in the loading direction increases. That this is
also the case for the computational results; see Figure 9.2, where maximum stress
is plotted against L/l for series 1.

1.8
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Omax [N/ m]
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0.4r

L/I]c

Figure 9.2: Mazimum stress against L/l for series 1.

The dashed line connects the average of the simulation results with vertical
lines denoting standard deviation. The solid line shows the size effect prediction of
Weibull theory, which is
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where (% and [® are lengths of two samples a and b, and m is a function of the
coefficient of variation, cf. [9]. In Figure 9.2, m, which is 1.88, is based on the
average coefficient of variation of the different cell sizes, 0.56. The simulation results
show a stronger decrease in strength than is predicted by Weibull theory. This is
because a basic assumption of Weibull theory is not fulfilled in the present case. In
Weibull theory the cells coupled in series are assumed to have the same strength
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distribution as the sample made up of a single cell. This condition would have been
fulfilled if the network had been generated in such a way that the density in each of
the square cells coupled in series had been the same. In the present case, however,
the network is generated with a prescribed average network density for the whole
sample, and due to the random positioning of the fibres there are variations in the
average network density from one region of the basic cell to another. Since the
weakest link determines the strength, fracture will in general occur in a region of
low density. The average of the network density in the fracture zone, taken as a
strip of width equal to the fibre length across the sample, is shown in Figure 9.3,
vertical lines denoting standard deviation.

101

p [mm-1]

0 2 4 6 8 10
L/If

Figure 9.3: Awerage network density in fracture zone against L/l; for series 1.

While the strength of a sample of length 9.6/; is determined by a zone of density
5.7 mm™', the strength of a sample of length 1.2{; is determined by a fracture zone
which is almost the whole sample and hence of density 8.7 mm'. Figure 9.4 shows
examples of the networks of series 1, with fracture zones indicated. Also from this
figure it is obvious that the density in the fracture area decreases as sample length
increases.

Series 2 can be compared to, though not being, unit cells coupled parallel. In this
case fracture in the weakest cell does not imply global failure, since the forces can
redistribute to new paths where the material is stronger. Because of this, Weibull
theory is no longer applicable. Instead, one may as a first approximation expect
that the maximum stress remains at an almost constant level as the sample height
increases. The computational result is shown in Figure 9.5 and Table 9.1.
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Series 3 is a combination of the former two, and the results should be somewhere
between the extreme cases of series 1 and series 2.
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Figure 9.4: Ezamples of networks and fracture zones from series 1.
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Figure 9.5: Mazimum stress against L/l; for series 1, 2 and 3.
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Figure 9.6: Normalized initial stiffness against L]l;.

The maximum stress against the characteristic L/[-ratios of the different series
are shown in Figure 9.5. In series 2 the maximum stress remains rather constant,
and in series 3 it decreases, but not as strongly as in series 1. In Table 9.1, mean
values and coefficients of variation for the calculated strengths as well as the other
parameters studied with respect to sample size are given.

In Figure 9.6 the initial stiffness is plotted against L/l; for the three series. The
heavy lines are estimations made within the 90% confidence interval, the limits of
which are also indicated in the figure. As far as strength is concerned, the weakest
part of the material is decisive, and it is then obvious to expect a dependence on het-
erogeneity and sample size. The initial stiffness, on the other hand, is an integrated
measure of the properties of the whole sample. As discussed in Section 7.1, the
resulting global stiffness in a serial coupling is, despite this, dependent on variations
in stiffness in a sample, since a weak part weakens the structure more than a stiff
part stiffens it. As expected from this, the serial coupling of Series 1 shows a pro-
nounced decrease in initial stiffness as the sample length increases. For series 2 the
initial stiffness keeps constant, as is expected in a parallel coupling. Series 3 shows
a moderate decrease, though much more obvious than that of Figure 7.6. It seems
that the density is here low enough to make the effect of heterogeneity significant.

Another interesting property of a network is the fracture energy, see Section 8.3
for definition. The fracture energies Gy for the different series are plotted against
L/l; in Figure 9.7. The heavy lines are estimations made within the 90% confidence
interval, as in Figure 9.6. For series 1, G is decreasing as L/l increases, although
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not as strongly as is the case of the maximum stress. This means that the elon-
gation of the fracture zone before complete fracture increases as L/l; increases, as
could be expected when the network density is decreasing. For series 2 both the
maximum stress and G are approximately constant, which means that the elon-
gation of the fracture zone is also approximately constant. The curve of series 3 is
as usual situated between the two extreme cases. The fracture energy Gy shown in
Figure 9.7 corresponds to the localized fracture dissipation. The part of the fracture
energy corresponding to the pre-fracture distributed dissipation is almost negligible
in this case. This result, though, is not estimated to be general. Instead a very
different result might be obtained if a network with, for instance, other properties
of connections is analysed.

g 25X
zZ
z
Gt 2_
@)
1.5¢
1 L
0.5¢
Series 1
% 10
L/ 1¢

Figure 9.7: Fracture energy against L/l;.

Figure 9.8 shows examples of networks and locations of the fractured connections
for the three sample sizes of series 3. As indicated before, it is seen from the figure
that the fracture process zone is of the same order of size as the fibre length. Hence,
in the smallest network in which L/l; = 1.2, one cannot distinguish a localized
fracture zone since the entire area under observation represents a fracture zone. If
one wishes to study localization phenomena, the dimension of the square studied
should therefore be well over one fibre length; twice the fibre length will be used in
the following.

The final conclusion is that the results of a fracture simulation of a heterogeneous
material must always be considered in connection with the size and shape of the
sample. The phenomenon of sample-size dependence cannot be avoided in either
experiments or simulations.
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Figure 9.8: Networks and locations of fractured connections.
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Table 9.1: Average and coefficient of variation, (c.o.v.), of Fy/(EfLylses), Omar and
Gy versus sample size.

LyLy /15 | (0u/€2)o IN/m] | O [N/m] Gy [Nm/m]

average | €.0.vV. | average | C.0.V. | average C.0.V.

series 1
1.2x1.2] 1300 | 0.50 1.70 0.34 10.99-107° ] 0.46
2.4 x 1.2 630 0.61 0.84 0.58 | 0.91-107° | 0.74
48 x1.2| 640 0.72 0.56 0.55 | 0.63-107° | 0.76
72x 12| 480 0.66 0.30 0.71 | 0.56-107° | 1.55
9.6 x 1.2 | 340 0.73 0.20 0.64 |0.33-107° | 0.69
series 2
1.2x 1.2 1300 0.5 1.70 0.34 0.99-107° | 0.46
1.2x 24| 1500 | 0.52 1.72 0.19 | 1.30-107% | 0.17
1.2x 4.8 | 1400 | 0.23 1.55 0.30 | 1.49-107° | 0.23
series 3
1.2x 1.2 1300 0.5 1.70 0.34 0.99-107° | 0.46
24x24| 1100 | 0.47 1.06 0.13 | 1.20-107° | 0.24
48 x 48| 970 0.47 0.67 0.25 | 0.72-107° | 0.24
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9.2. Fracture of an example network

The basic fracture example network of Section 8.1, shown in Figure 9.9, will be used
to show the character of different kinds of network failure: only failure of connections
allowed, only failure of fibre segments, and simultaneous failure of connections and
fibres.

Figure 9.10 shows the progression of network failure for the case of failure allowed
only in connections. This mode of failure is accomplished either by giving the beam
elements a much higher strength, or by only evaluating degree of utilization in the
connection elements. The three columns show active structure, zero-stress fibre
segments and fractured connections respectively, initially and after 12, 50, 75 and
96 connections have failed. Final failure occurs after the 97th connection has failed,
and after this step the entire structure is stress-less. The corresponding o,¢,-curve
is given in Figure 9.11, with indications of which points on the curve correspond to
the states shown in Figure 9.10.

The corresponding results from the case of beam failure only are shown in Fig-
ures 9.12 and 9.13.

Finally, Figure 9.14 shows the o,¢,-curve for the case when both strength of
beams and connections are according to Section 8.1, and both degrees of utilization
are evaluated. For the strength parameters chosen here, almost only connections
fail; of the 88 failed elements at complete fracture only 5 are beam elements. The
domination of connection failure reflects the performance of a dry-shaped material.
If the strength parameters for the connections were adjusted to reflect the strength
of connections of a wet-shaped material like paper, occurrence of beam failure, i.e.
fibre failure, would become more frequent.

With respect to strength, Figures 9.11 and 9.14 show that prevention of beam
failure does not give any increase at all for the present network. Comparing Fig-
ures 9.14 and 9.13, it can be seen that prevention of connection failure gave approx-
imately 60 % increase in strength. For a real network, connection failures can be
avoided by use of an adhesive aerosol, as discussed in Chapter 1.

The character of the fracture process is somewhat different if connection or beam
failure is considered. When a beam has failed a load-bearing path has been com-
pletely destroyed, whereas when a connection fails load may still be transmitted.
There is more of a pull-out fracture phenomenon when connections fail; only when
a fibre end has been completely pulled out of the structure is the load-bearing path
entirely destroyed. This explains why it takes fewer element failures to reach com-
plete failure when only beam failure is considered. The curves of Figures 9.11 and
9.14 are similar, since both show fracture when connection failures are dominant.

To give a numerical example and an illustration to (8.12), which states that the
fracture energy w"” of a network is larger than the sum of the fracture energies of the
failed components, w/¢, the network with only connection failures is considered. For
this network w™ is 7.2 - 10~% Nm, while the sum of the fracture energies of the failed
connections is only 0.6 - 107 Nm. The difference between the fracture energy of a
material and the sum of the fracture energies of the failing micro-components of the
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material, even when there is no plastic dissipation, is in principle quite important
and can also be of significant magnitude. In the present example less than 10%
of the total energy corresponds to fracture energy of the failing components. The
other part, more than 90%, can be referred to heterogeneity of the material. This
major part of the fracture energy can be regarded as a result of instabilities within
the micro-structure of the material.

Figure 9.9: Basic fracture example network.
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Active structure Zero-stress fibres Fractured connections
Inital
12 steps
w 50 steps
1 r: . 96 steps

Figure 9.10: Fracture process of example network, only fracture of connections con-
sidered, i.e. fracture of fibres prevented.
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Figure 9.11: Stress-strain relationship of example network, only fracture of connec-
tions considered, i.e. fracture of fibres prevented.
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Figure 9.12: Fracture process of example network, only fracture of fibres considered,
i.e. fracture of connections prevented.
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Figure 9.13: Stress-strain relationship of example network, only fracture of fibres
considered, 1.e. fracture of connections prevented.

8l Fracture in both fibres and connections |
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Figure 9.14: Stress-strain relationship of example network, both fracture of connec-
tions and of fibres considered.
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9.3. Influence of properties of connections

In this section it is assumed that only connections fail, that is, the fibres are as-
sumed to be strong enough to avoid fibre failure. Under these circumstances the
influence of the properties of the connections on the fracture behaviour is studied.
The connection properties taken into consideration are stiffness, strength and degree
of ductility, the last property being quantified by n,, number of slips before complete
failure, and by (; and [3;, see Figure 3.4.

Starting out by considering one single linear elastic spring, the effect of changing
spring properties can be seen from Figure 9.15. In a) two springs of equal stiffness
but different strength are compared, and in b) the springs are equal in strength but
differ in stiffness. From the F' — Awu-relationships it can be seen that if the spring
strength F' is doubled and the stiffness £ is kept constant, both the ultimate force
and ultimate extension Au are doubled, while the fracture energy, w, increases four
times. If instead the spring stiffness is doubled and the strength is kept constant, as
in b), the ultimate force does not change but both ultimate extension and fracture
energy reach only half their original values.

a) c Increase of spring strength
‘. | Ky
| AN— ——
1 F1=nFo
Fo k |
0 0 l Auq=n Ay, Ko, Fy =nFky
 any | W
Aug Au; Au
b) - Increase of spring stiffness
Ko, Fo
F1:FO
Fo.Fp+
ot K Aui=Ay/n k,=nkg, 5
¥k AN e
v W=/ n
Au;  Aug Au

Figure 9.15: a) Effect of modified spring strength. b) Effect of modified spring stiff-
ness.

When a network is considered instead of a single spring, the conclusions from



110 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESS

the spring case are directly applicable to the case of change of strength, provided
that only connections fail. This is illustrated by Figure 9.16, where the stress-strain
relationship of the example network of the previous section is given, together with
the corresponding curve for the same network when the strength of the connections
has been doubled, dashed in the diagram. Doubling the strength of the connections
here means doubling of both ultimate force and ultimate moment. As is expected
from the spring case, the ultimate stress as well as the ultimate strain are twice
the value of the example network, and the fracture energy is hence increased by a
factor of four. When only fracture of connections is considered, and the strength of
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Figure 9.16: Change of stress-strain relationship for fracture example network when
connection strength is doubled.

the connections is modified, the fracture behaviour of the new network can thus be
obtained from the simple relations of Figure 9.15a. From these relations it is also
found that the intrinsic or characteristic length parameter of the material, [.,, see
(8.15), is not affected by the connection strength.

If on the other hand we choose to modify the spring stiffness, the situation is more
complicated. This is because the relation between connection and beam stiffnesses
influences the fracture behaviour. To get an implication of what effects to expect,
simple spring systems are studied once again, see Figure 9.17, which shows couplings
of springs, spring 1 symbolizing connections and spring 2 symbolizing beams. The
ultimate force of spring 1 is kAu, where £ and Au are constants. The effect of
decreasing the stiffness of spring 1 while keeping its ultimate force constant at kAu
is studied. Serial and parallel couplings are compared. The following equations
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are obtained for resultant stiffness k., ultimate force, Fj,; and ultimate extension
Ay, by analysing the situation when spring 1 reaches its ultimate force:

&y ©

ki=k k=K ki=k/2  kp=k
FAAMAMASRa FAAAAAN A Rt
k]_:k k1:k/2

SR W

Figure 9.17: Spring couplings showing effect of decrease in stiffness in one of the

Springs.
Spring coupling 1:
1 k
ktat = 1 1 = 5
Pk
Ftot = Fl = kAU,
Ftot kAu
Ay = — = —— = 2A
Y e k)2 !
Spring coupling 2:
1 k
ktot = 2 1 = g
E ok
Ftot = F1 = kAu
Ftot kAU
JAN T = 3Au
T ke K/3

Spring coupling 3:
ktot = k + k - 2k

F1 kAu

AutotzAulzk—l— ; = Au

Ftot = F1 + FQ = ]{JAU, + kAU = QkAU

Spring coupling 4:
k 3k
kg = ~ 4+ k= —
tot = 5 + 5
F1 kAu

Ay = Auqg = k_1 = i = 2Au

Ftot = F1 + F2 = kAu + 2kAu = 3kAu
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A weaker spring 1, as expected, implies a lower value of k;,; for both serial
and parallel couplings. In a serial coupling a weaker spring 1 implies the same
ultimate load and increased ultimate extension, and in a parallel coupling it implies
an increase in both ultimate load and extension. If we think of a network as an
intermediate between connections and beams coupled in series and parallel, we thus
expect a reduction of the connection stiffness to give a decrease in initial stiffness
and increase in ultimate stress, ultimate strain and fracture energy. This is also
what simulations show.

Simulations have been made on the basic fracture example network geometry
of Section 8.1, with spring stiffnesses multiplied by 0.01, 0.1, 1, 10 and 100. All
other parameters, including the spring strength parameters, are kept at constant
values according to Table 8.1. The studied variation in spring stiffness is about
the same as that which gives strong influence on the initial stiffness of the network
according to Figure 7.7. Spring stiffness k£ here includes all three stiffness values k.,
k, and kg, which are all multiplied by the same constant. Due to big differences
in magnitudes it is not possible to show all the five curves in the same diagram.
Figure 9.18 shows the stress-strain relationship of the example network, and the
two networks with reduced spring stiffnesses. It is clear that the initial stiffness
decreases and ultimate stress and strain increases as the spring stiffness decreases.
Figure 9.19 shows the corresponding relationships for the example network and the
two networks with higher stiffness values. The curves for 10k and 100k are partly
interfering and difficult to distinguish. Figures 9.20 and 9.21 show the maximum
stress and fracture energies against k/k°, k denoting stiffness of connections in the
network studied and £° being connection stiffness of the fracture example network.

In Table 9.2 the results are given numerically, also for the initial stiffness, (0, /¢.)o,
and the characteristic length, [.,. It should be noted that the computational results
for the various k/kq are obtained from one single network geometry.

Table 9.2: Material property parameters against stiffness of connections.

k/ko (J$/€$)0 Omax Gf lch

[N/m] | [N/m] | [Nm/m] [m]
0.0 | 110 | 6.56 | 210-107° | 5.4-1077
0.1 | 430 | 328 | 30-107°| 12-10°%
1 | 1100 | 1.22 | 1.8-107°| 13-10°°
10 | 1600 | 0.61 |0.36-107°| 16-1073
100 | 1800 | 0.42 |0.30-1075 | 31-1073

Even though the effect of changing the spring stiffness seems very big from the
diagrams it is not as strong as the effect of changing the strength. In the stiffness
case we get a factor of increase in ultimate stress of approximately 16 when stiffness
is decreased with a factor 10000; in the case of change of strength there is direct
proportionality between the increase in spring strength and network ultimate stress.
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Figure 9.18: Stress-strain relationship of example network when connection stiffness
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Figure 9.19: Stress-strain relationship of example network when connection stiffness
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Figure 9.21: Fracture energy against k/k°.
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Simulations have also been made in order to investigate the influence of ductility
of connections on global fracture behaviour. The stick-slip behaviour of the con-
nections is defined in Figure 3.4. The parameters used were reduction in stiffness
between two slips ; = 0.5, and reduction in strength between two slips 3, = 1.0.
The number of slips before complete failure, n, investigated were 1, 2 and 5. The
network density is 20 mm~! and the rest of the input parameters are according to
Table 8.1. As many as five slips before final failure of a connection may seem a
lot, but the relative displacement of two fibres in a connection is here still at the
microscopic level. The effect of fibres slipping and forming new connections in a
new geometric configuration remains to be accounted for.

Two simulations were made for each value of n,. In order to speed up the
calculations, more than one connection was modified in each step for the cases of
n, = 2 and 5. Figure 9.22 illustrates the effect of this approximation, the first
diagram showing the result for ny, = 2 when only one connection is modified in
every step, and the second the result when five connections are modified in each
step. The details of the curve are changed, but the overall impression is much the
same. For ny, = 5, ten connections were modified in each step.

If the results from all the simulations are plotted in the same diagram the curves
interfere and make interpretation of the results difficult. In order to avoid this
problem the average of the two curves in the different simulations was substituted
by a hand-drawn simplified approximation. Figure 9.23 shows the two original curves
as well as the approximated one in the same diagram, for the case of n, = 5.

The result of the simulations is shown in Figure 9.24. It is clear that an increase
in connection ductility has a remarkable effect on the global strength and fracture
energy. This is because the greater ductility allows the degree of utlisation to be-
come more evenly distributed over the network. The stiffness of a connection that
is severely stressed is reduced, allowing other less stressed connections to take over
part of the loading. Ideally, one could imagine a situation where every connection in
the network reaches final failure at the same time, although this would cause a very
abrupt failure. The ultimate stress and fracture energy against n, are shown in Fig-
ures 9.25 and 9.26. In Table 9.3 also the results for initial stiffness and characteristic
length are indicated.

Table 9.3: Material property parameters against ductility of connections.

Ur (O-ZD/EZE)O Omax Gf lch
[N/m] | [N/m] | [Nm/m] [m]
1 25000 22 6.8-107° | 3.5-1073

25000 30 14-107° 1 3.9-1073
5 25000 56 120-107° | 9.6 - 1073
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Figure 9.22: Stress-strain relationship for the same network when 1 and 5 connec-

tions respectively have been removed in each step.
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Figure 9.23: Two stress-strain curves obtained from simulations together with the
corresponding hand-drawn approzimation.



9.3. INFLUENCE OF PROPERTIES OF CONNECTIONS 117

50

40

30

20

10

0 0.002 0.004 0.006 0.008 0.01 0.012

Figure 9.24: Stress-strain relationships for ng = 1,2 and 5.
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Figure 9.25: Mazimum stress against n.
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Figure 9.26: Fracture energy against n,.

9.4. Influence of network density

The influence of network density on the fracture behaviour of a network has been
examined by simulating a series of networks of density p= 8.7, 15 and 20 mm™".
Connection failure is assumed, and the rest of the properties of the networks cor-
respond to those of the fracture example network. Five simulations were made for
each value of network density, and the average of the results is given in the following
figures. The stress-strain relationships for the different densities are all given in
Figure 9.27, despite big differences in both maximum stress and strain. To facilitate
interpretation of the figure, hand-drawn approximations have been made, according
to the principle given in the preceding section. As p increases, the networks be-
come remarkably stronger, and also more brittle. The maximum stress and fracture
energy, average and standard deviation, against p are given in Figures 9.28 and 9.29.

In [1], where the connections were assumed to be rigid, it was concluded that the
strength of a network is proportional to Young’s modulus of the network times the
ultimate shear strain in a connection. From Figure 9.30 it is clear that the results
of the present simulations agree with [1] in that the maximum stress of a network
divided by the initial stiffness is almost exactly constant. If the connections are
linear elastic, the ratio between fibre and connection stiffness is kept constant and
failure is allowed to occur only in the connections, it is obvious that the strength will
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be proportional also to the ultimate strain of the connections, see Figure 9.16. If the
ultimate strain of the connections is increased by increasing n, from 1 to 2 and 5
respectively, an increase in network strength is found again, though not proportional
to the ultimate strain, see Figure 9.20.

In Table 9.4 the computational results for initial stiffness, strength, fracture
energy and characteristic length are indicated numerically. It is interesting to note
that the fairly moderate increase in density from 15 mm~! to 20 mm™" gives more
than a two-fold increase in both stiffness, strength and fracture energy. In the region
from 8.7 mm ! to 15 mm ! the effect on stiffness and strength is even stronger.
The theoretical percolation density of the network is 5.7/2.0=2.9 mm~'. Since the
strength is low already at p = 8.7 mm™!, the sensitivity in strength to density is
probably very small in the region from the percolation point up to about 8 mm~1.

From Table 9.4 it is also interesting to note that the coefficient of variation for
the various properties is greater at low density. This is in agreement with the more
heterogeneous character of the geometry of networks with low density. Also, the
variation of the intrinsic material length parameter, [.,, with density is consistent.
The lowest value, 2.9 mm, at the highest density, p = 20 mm~!, may correspond
to the more brittle character of more homogeneous materials. The variation of [,
with density seems to reflect also the general absolute size of the micro-structure of
the material. Although the fibre length is the same for the different networks, the
free fibre segment length as well as the size of the open areas, the ‘pores’, is much

smaller at density p = 20 mm~! than at p = 8.7 mm™".

Table 9.4: Average and coefficient of variation, (c.o.v.), of material properties at
different densities.

p | (oa/ex)o IN/m] | Opap [N/m] Gy [Nm/m] Le
[mm~'] | average | c.o.v. | average | c.0.v. average | C.0.v. [m)]
8.7 1271 | 0.45 1.2 041{1.35-10° | 0.35]11.9-1073
15 9126 | 0.19 84| 019 |261-1075| 0.18| 3.4-107°
20 23018 | 0.09 21.7| 0.15|6.01-107°| 0.27| 2.9-1073
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Figure 9.27: Stress-strain relationships for different network densities.
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Figure 9.30: Mazximum stress divided by initial stiffness against p.
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9.5. Simulation of complex example network

This section shows an example of a simulation of a network of curled fibres of
varying length. The length distribution of the fibres is the same as in Figure 7.26
in Section 7.6, approximately representing the length distribution of a CTMP pulp.
The radius of curvature of the fibres is 1.4 mm. At a fibre crossing the probability of
a connection is 0.4, and each connection shows a stick-slip peformance. The number
of slips before complete failure is five, and at each slip the stiffness is reduced by
a factor of 0.5, while the strength is unaffected. The orientation distribution is
uniform. The network density is 22.1 mm™!, giving an average free fibre segment
length of 0.18 mm. This corresponds to a three-dimensional fibre fluff of density
80 kg/m?, if it is assumed that the fibres are randomly distributed in space, see
Appendix E. Only failure of connections is considered and ten connections are
modified in each step.
The input parameters of the network are summarized in Table 9.5.

Table 9.5: Input parameters of complex example network.

Parameter | Value and unit

Ly see Figure 7.26
K 714 mm !

Ag 2.5-10710 m?
I; 0.2-1072 m*
Ey 35-10° Pa

Oult 100 MPa
Tult 50 MPa
krl = kyl 8750 N/m
kg1 2.8-10"" Nm/rad
Fu 3.5-103 N
Min 5.6-107? Nm

N 5
Ioh 0.5
(2 1.0
L 4.2 mm
o) 22.1 mm~!
N, %, O<a<m
S 0.4
d(z,y) 1.0

Figure 9.31 shows an image of the network, which consists of 1800 active beam
elements and 1005 connections, and the approximate active part is 70%. The number
of degrees of freedom in the finite element model is 6366.

Figure 9.32 shows the stress-strain relationship of the network. There are 39
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steps before maximum stress is reached, and after 95 steps the network has failed
completely. (0,/€,)o = 1.29-10° N/m, 0,0, = 5.81 N/m, G; = 20-107° Nm/m and
ley =7.6-1073 m.

Figure 9.33 shows the locations of the failed connections after 16, 39 70 and
95 steps. The first column indicates connections that have slipped at least once,
the second indicates at least three slips and the third indicates five slips, which
correspond to completely failed connections. It can be seen that connections slip
all over the network, but the completely failed connections tend to be concentrated
along a localized fracture zone. Maximum load is reached after 39 steps. At this
point 210 connections have been modified and one has reached final failure. This
first final failure corresponds to maximum load, and reveals that the stress-strain
relationship begins to show a ‘saw-tooth’ behaviour. After 95 steps, 380 connections
have been modified, and 53 have failed entirely.

Figure 9.34 shows in the first row the connections that fail during the part of the
fracture where the stress is increasing, and in the second row the connections that
fail while the stress decreases. Even though the side-length of the square, 4.2 mm,
is only 1.5 times the distance between the end-points of the longest fibres, 2.8 mm,
there is a weak tendency of localization.
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Figure 9.31: Complex example network geometry.
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Figure 9.32: Stress-strain relationship of complex example network.



9.5. SIMULATION OF COMPLEX EXAMPLE NETWORK
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Figure 9.33:

Location of failed connections after 16, 39, 70 and 95 steps.
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Figure 9.34: Location of failed connections on the rising and descending part of the

stress-strain curve.



10. NUMERICAL CONSIDERATIONS

Some numerical problems have arisen and been dealt with during the study. Basic-
ally these problems are all estimated to originate in round-off errors in combination
with coefficients of extremely varying magnitude in the global stiffness matrix. This
kind of error can be detected by lack of equilibrium, and seems to arise in particular
when the solution of the global system of equations is numerically extensive.

When the difference in magnitude of the coefficients is caused by differences
between normal and bending stiffness of the beam elements, and between beam and
connection stiffness, it has proved to be effective to rescale the matrix as discussed
in Section 10.1.

If there happens to be an extremely short beam element in the structure, this
causes extremely big coefficients in the stiffness matrix. This is due to the fibre
length occurring to the power of three in the denominator of the beam stiffness
matrix. This is taken care of by slightly modifying the element, see Section 10.2.

Even with the above measures, in some cases there have been difficulties in
achieving accurate global moment equilibrium in the solution when analysing large
networks with curled fibres. In those cases moment equilibrium has been explicitely
required by constraints in order to stabilize the solution process. This is discussed
in Section 10.3.

10.1. Scaling of the stiffness matrix

The character of a dry-shaped cellulose fibre material is such that the fibre-to-fibre
connections are much weaker than the fibres, and the fibres themselves are weaker
in bending than in axial deformation. The differences in stiffness are, however,
not so great that we want to disregard the deformation of the stiffer components
by, for example, considering the fibres to be rigid, or possibly rigid in the axial
direction. This means that we have a system of equations in which the coefficients
are of varying order of magnitude, which implies numerical problems in the solution
procedure. This problem is further emphasized by the fact that we want to perform
parameter studies over wide ranges of variation of the different material properties.
To suppress the effect of these phenomena the coefficients of the stiffness matrix are
rescaled. By rescaling the dimension of length, a better conditioned system matrix
can often be achieved. Table 10.1 provides some input and output parameters with
the corresponding units and scale factors if the length dimension is multiplied by n
(equivalent of using another unit for the dimension length).

If we look at the upper left part of the stiffness matrix for a straight beam
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Table 10.1:
Parameter | Unit Scaled parameter
lf [m] nlf
Ay [m?] | n?A;
Iy m* | n'ly
kgm .
Ey a2l | By
K m='] | n7'k
kgm
]{Jx 5 ka:
[SQmi
kgm
ko 1| n*ke
L [m] nL
p m=] | 7ty
0 [ 0
kgm
2
M [kgzn || n2M
S
element, (6.3), this means that
L L
12ET 6FI . 0 12ET n6EI 7 (10.1)
L3 L? L3 L?
6FET AEI 6ET ,4EI
0 = T 0T L

the rotation spring stiffness is multiplied by n? and the transversal springs are not
affected at all. As an example of the effects of scaling, we study the stiffness matrix

of a beam element of 0.5 mm length with properties of the basic example network,
Table 5.1. From (6.3) this is

0
0

0
0

1.75 - 10*

—1.75-10*

0 0 —1.75-10*
6.72 1.68-1073 0
1.68-107% 5.6-107" 0
0 0 1.75- 10
—-6.72 —1.68-107° 0
1.68-107% 5.6-10°7 0

Lo |

—6.72 1.68-1073
—1.68-10"% 5.6-1077
0
6.72 —1.68-10°°
—1.68-107% 5.6-10°7 J
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If we use a scaling factor n = 10° the stiffness matrix becomes

1.75- 10 0 0 ~1.75 - 10* 0 0 1
0 6.72  1.68-102 0 —6.72  1.68- 10?2
o _ 0 1.68-102  5.6-103 0 ~1.68-102  5.6- 10
¢~ | —1.75- 10 0 0 1.75 - 10° 0 0
0 —6.72  —1.68- 102 0 6.72  —1.68-102
i 0 1.68-102  5.6-103 0 _1.68-10°  5.6-10° |

In order to obtain the condition number (the ratio of the largest singular value of K,
to the smallest) for those single element matrices, three degrees of freedom must be
prescribed in order to avoid rigid body motion. This is equivalent to removing three
degrees of freedom (rows and columns) from the system. The condition number
of the upper left 3 x 3 matrix without scaling is 1.25 - 10'!, and with scaling it is
1.04 - 10*. This example does not precisely tell how the global stiffness matrix is
affected by scaling, but practical experience shows that scaling is very efficient and
it is used in most of the simulations.

10.2. Modification of extremely short fibres

Since the fibres are independently positioned when the network is generated, there is
the possibility that the distance between two crossings on a fibre becomes arbitrarily
short. This means that the beam element between the crossings becomes very short.
Since beam length occurs to the power of three in the denominator of the beam
stiffness matrix, those coefficients become extremely big. In studies where the fibre-
to-fibre connections are assumed to be rigid, c.f. [2], [14], this problem has been
overcome by merging the two close connections into one. This method is, however,
not straightforward to use when the connection is modelled by springs. Instead
the beam is slightly modified by moving one of its nodes a short distance. This is
also physically reasonable, since the centres of two fibres cannot be closer to each
other than one fibre width. In the present implementation, all beams which are
shorter than 1/100 of the mean beam element length are modified by moving one
end a distance equal to 1/10 of the mean beam element length. This causes a slight
distorsion of this fibre, as well as of the fibre connected in the displaced node. The
short fibre segments relatively often occur in pairs or triplets, in the form of triangles,
in which case the local distorsion of the network becomes somewhat bigger. This is,
however, not believed to have an appreciable effect on the final solution since the
distorsion is very local and occurs quite rarely.

10.3. Explicit requirement of moment equilibrium

When boundary conditions C are used, only two degrees of freedom, one in the
x-direction and one in the y-direction, are prescribed to prevent rigid body motion.
This is because global rotation is in theory automatically prevented by the cyclic
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boundary conditions. In some cases though, for curled fibres, this has proved to
be troublesome numerically. If there is a slight numerical instability in the system,
this does not appear as lack of force equilibrium in the z- and y-directions, since
the fact that the reaction forces are equal in magnitude and opposite in direction
is closely related to the cyclic boundary conditions. Instead it appears as lack of
moment equilibrium, that is, the sum of the resultant shear forces on sides 1 and
2 are unequal to that of sides 3 and 4. This has been taken care of by explicitly
requiring global moment equilibrium by applying constraints implying that ¥}, on
side 2 be equal to X F, on side 1. This method is believed to give a globally correct
solution since the three independent simulations made to obtain D, describing initial
stiffness, give a symmetric D.



11. CONCLUDING REMARKS

11.1. Summary and conclusions

A network mechanics model for describing materials made of dry-shaped cellulose
fibres has been proposed. A two-dimensional implementation of the model has been
carried out, and various parameter studies have been performed. Through a pa-
rameter which controls whether or not two crossing fibres are bonded to each other,
a three-dimensional network can be symbolically represented in a two-dimensional
simulation.

The network is composed of fibres, which are modelled as beams of constant in-
plane curvature made of linear elastic material. Length, cross-sectional properties,
curvature, Young’s modulus and ultimate stress for the fibres constituting a network
are given in terms of arbitrary statistical distributions.

Where fibres cross there may be fibre-to-fibre interaction. The fibre-to-fibre
bonds are modelled as an assemblage of springs. Stiffness and strength properties of
the bonds are given in terms of arbitrary statistical distributions, and the probability
of a bond at a fibre crossing is another input parameter. The connection springs
can be assigned a linear or non-linear behaviour. The non-linear model corresponds
to stick-slip performance in the fibre-to-fibre connection.

The fibres are positioned at random in the studied area, with orientation accord-
ing to a statistical distribution. Network density is another parameter concerning
the geometry of the network. The geometry is periodic, that is, the square under
consideration is regarded as one of many identical cells making up a global structure
of infinite size. Loading is applied by a set of cyclic boundary conditions such that
each point on the boundary of a cell is in equilibrium with the corresponding point
of the neighbouring cell. At the same time geometric compatibility is achieved at
each boundary point. In addition to this method of loading, the more conventional
method where straight boundaries are assumed to remain straight is implemented.

Geometry output parameters considered were number of fibre crossings and me-
chanically active part of the network. It has been verified that the number of cross-
ings obtained from simulations agrees with the number predicted by a theoretical
formula from the literature, except for the case of curled fibres where the formula
fails, and a new one has been given for the special case of circle arc shape of the
curled fibres. The mechanically active part has, for densities above the percolation
point, been found to be well approximated by the part of the network that is not
free fibre ends. This quantity is easily calculated by use of well-known equations.

A general concept for subjecting a cell of cyclic geometry to load and thereby
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obtaining the homogenized elastic parameters of the material has been provided.
The method is independent of what kind of heterogeneous material is inside the
cell, as long as it is of periodic structure, and was used for obtaining the isotropic
stiffness parameters F and v, as well as the corresponding orthotropic parameters.

Simulations have been performed in order to obtain the global elastic stiffness
properties of a network. A basic example network of representative properties has
been used, and the different input parameters have been varied in order to yield
their respective influence on global elastic stiffness.

Simulations show that the use of cyclic boundary conditions allows simulating
smaller cells than does the use of conventional boundary conditions. For the case
of constant fibre length, a side-length of the cell of 1.2 times fibre length seems to
be enough to avoid a false, simulation-induced, size dependence of the initial stiff-
ness, except for extremely low densities. The conventional conditions with straight
boundaries seem to give too high network stiffness even when the side-length of the
cell is several times the length of a fibre.

The influence of the individual stiffness components on the global initial stiffness
has been examined, and it was concluded that the transversal springs are of greater
importance than are the rotational springs of the connections, and that the axial
stiffness of straight fibres is more important than the bending stiffness.

Simulations show that curled fibres give a less stiff network, and that this is,
in the first place, due to the fibres not extending along a straight path with the
connection points along a straight line, and only secondarily because of the smaller
axial stiffness of curled beam segments.

For constant network density, long fibres give a stiffer network than short ones
do, and for a statistical distribution in length the weighted mean fibre length seems
to be a more relevant parameter than the arithmetic mean fibre length.

The influence of network density, degree of fibre-to-fibre interaction and orienta-
tion distribution of the fibres on the homogenized stiffness properties have also been
investigated.

Fracture criteria have been introduced and the non-linear fracture process of net-
works analysed. The fracture process has been quantified in terms of initial stiffness,
maximum stress, fracture energy, intrinsic length and localization of fracture.

Several results on sample size dependence of fracture properties are indicated
and a comparison is made with Weibull theory. The conclusion is that the result
from a fracture simulation is always size-dependent, and that Weibull theory is not
applicable due to assumptions concerning heterogeneity and material properties not
being fulfilled.

The different characters of fibre and connection failure have been indicated by
simulating an example network. The failure of a fibre segment has a greater influence
on the fracture process than the failure of a connection, since when connection
failures are considered the fibres must be pulled out of the network. For dry-shaped
materials with no adhesive added though, connection failure is dominant.

For the case of connection failure, simulations have shown that increased strength,
decreased stiffness and increased ductility of the connections result in a stronger and
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more ductile network.
As for network density, a higher density gives a stronger but more brittle network.
Finally, an example is given of a fracture simulation of a network of curled fibres
of varying length, with connections showing stick-slip behaviour.

11.2. Future developments

Possible future work on network mechanics models for cellulose fibre materials in-
cludes both further simulations within the present model and development of new
or completed models.

Further simulations within the present model include both the many variations
of input data which have not been studied yet, and simulations for verification of
the model and comparisons with experimental results. A parameter which has not
been given the attention it deserves in the present study is the rate of heterogeneity,
and its influence on the mechanical properties of a network. One reason for this
is that it is not quite straightforward to quantify heterogeneity. Experimentally,
heterogeneity is described by variance of local grammage, given a certain cell size.
This could also be a useful concept for simulations. It would also be worthwhile to
work somewhat with the visualization of the fracture process by means of computer
graphics. Although it would not add anything fundamentally new, it would facilitate
interpretation of the results.

As for further development of the model there are several possibilities. The
two-dimensional model could be refined by including large-strain theory and time
dependent effects. The modelling of the fibre-to-fibre interaction also calls for further
refinement, preferably coupled to experimental work on the function of fibre-to-fibre
bonds. The modelling of the fibres can be improved by consideration of kinks, which
affect the fibre geometry and have low or zero bending stiffness. Network geome-
try, presently generated theoretically, might be taken directly from experimental
observation if available. An as yet unexplored area is the effect of initial stresses
in the network, originating from the manufacturing process. Another way to go is
to, if necessary, simplify the model and go into three-dimensional modelling. In this
context the need for developing efficient computational techniques is pronounced.
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A. DETECTION OF CROSSINGS OF TWO
CIRCLE ARCS

Circle arc shaped fibres A and B are defined by their center points, C, radii of
curvature, r, and angles between which the fibres extend counter-clockwise, ay, as,
see Figure A.1 a). In order to detect possible crossings between fibres A and B, the
following path is pursued.

1) Check if circles cross, if so, calculate coordinates of crossings.
Distance d, see Figure A.1 b) between center points C4 and Cp, (Cp, > Ca,) is

d=1/(Cpy — Cay)* + (Cpo — O™

If r4 + rp < d then circles do not cross.

If r4o + rg > d then circles cross twice, and the coordinates of the two crossings k,
and k., are calculated as follows, with notations according to Figure A.1 c).

From the cosine theorem

i+ d*—ry

<a<

a = arccos(

and we have

Cpy — Cay T T
= t — 7 —— < g < =),
pmctan(G2 ) (-Z<p<l

This gives
kip = Cap +1acos(a+ 3)

/Cly = CAy =+ TA sin(oz + ﬂ)
k?a: = CAa: +7a COS(Oé - ﬂ)
koy = Cay — rasin(a — f3).

2) If circles cross, check if crossings are on the arcs.

Point k, is a circlular arc crossing if it is on both circle arcs. With notations
according to Figure A.1 d), and 7 denoting A or B, we have
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Figure A.1: Notation used when calculating fibre crossings.

kiy = Cip + 108 @
kly = Ciy +r; sin d)

Introducing
(1 = arccos ———
i

kiy — Ciy

[

(9 = arcsin

we have
¢: ¢1a d)Q > 0
2T — ¢1; 92 <0

Now, obviously, k, is on arc i if a;1 < ¢ < a;9, or, for the case of a;; > a;o, k,
is on arc ¢ if a;9 < ¢ or ¢ < a;;. The same procedure is followed for point k,.



B. ANALYSIS OF CONNECTEDNESS OF
NETWORK

The first thing that has to be established is what is meant by a connected network.
When studying a global network, made up of many cells, it is considered to be a
connected network if it is of such geometry that it can sustain load in an arbitrary
direction.

For the individual square this implies that there has to be a locally connected
structure within the square, which is connected with itself across both the left-right
and up-down borders. Figure B.1 shows some schematic examples of connected and
non-connected networks.

The criterion given above is a sufficient condition for connectedness of a network,
but it is not necessary. This can be seen in Figure B.2, which shows a network that
is connected, but still does not satisfy the criterion stated above. The computer
program applies the criterion above, and should a network of the type shown in
Figure B.2 occur, it is thus falsely classified as not connected.

The following procedure is applied to determine whether a network satisfies the
criterion stated above or not.

A network can be viewed as a graph, with beam elements as edges which con-
nect nodes (fibre-to-fibre connections or points on the boundary). A graph can be
described by an incidence matrix, in which a 1 in position (i, j) means ‘connection
between nodes ¢ and j’, that is ‘a beam element between fibre-to-fibre connections
¢t and 7, and a 0 means no connection.

The first thing to do is to sort the graph into connected graphs. (A connected
graph is a graph in which there is a path between every pair of nodes.) This is done
as follows: Choose an arbitrary node. Incorporate in this node all nodes that it has
paths to. Choose a new starting node, which has not previously been classified as a
member of a connected graph, and incorporate all nodes that it has paths to. Keep
on doing this until every node is part of a connected graph. In the computer code
this is done by means of manipulations in the incidence matrix.

Now we have a number of connected graphs. The next step is to go through those
and check if any of them satisfies the conditions stated in the beginning. If there
is a fibre-to-fibre connection in every fibre crossing there can only be one connected
graph that satisfies the conditions, but if there are not connections in every crossing
there is a theoretical possibility that there may be more than one. This possibility
is not taken into account in the code.

If we have found a connected graph which is also connected with itself across the
borders, we must complete it with possible parts that it is connected with across
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1 cdll 9cdls

a )
Not connected Q Q Q
a )

/J Not connected

Not connected

‘\/} k L k_# L]
\ / Connected NV

Figure B.1: Examples of connected and not connected networks.

borders, but not inside the square.

The rest of the connected graphs, if any, are ‘islands’, clusters of fibres with
no contact with the rest of the global network. Those are removed and can be
disregarded in the following.

Clusters of fibres that are attached to the rest of the network by only one fibre
are detected as follows. For every beam element: Take away the beam element and
go through the procedure above. If there are now two connected graphs, the one
that does not satisfy the conditions in the beginning is a ‘semi-island’, or ‘peninsula’.
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Figure B.2: A connected network which is difficult to detect.
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C. ANGLE CHANGE OF LINE SEGMENT IN
PURE SHEAR

The deformation in pure shear is described by

r=X+7Y
(C.1)
y=1Y,

where capital letters denote coordinates of a point in the undeformed configuration,
lower-case letters denote coordinates of a point in the deformed configuration and
v is the angle of shear, see Figure C.1.

X X

Figure C.1: Definition of angle of shear, v, of unit cell.

The gradient of this deformation is

ox 1
A line segment of unit length making an angle o with the z-axis can be described
as a vector

X | | cosa (C.3)

Y | | sina '
Under pure shear this deforms as

x| |1 v cosa | | cosa+ysina
[y]_[OI][sina]_l sin o ] (C4)
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The angle o/ relative to the x-axis in the deformed configuration is

, sin «v
o' = arctan - = arctan .
cos a + ysin o X+7Y

(C.5)

To simplify the expression we make a first order approximation in v by taking
the Taylor expansion
f'(0)

f(x) = f(0)+ T +r(x). (C.6)
Since
— arcta (Lﬂ = L ( i )| —i——s’ 2
&y T Yy T | (e (XY’ T Xy T T
X +7Y
(C.7)
we have
o/ (7) = a — (sin® a)y. (C.8)

That is, the angle change of a line segment with initial angle « relative to x-axis is
(sin? @)y, with sign according to the sign convention used.



D. EFFECTIVE BENDING STIFFNESS OF
SPIRAL BEAM

We have a spiral beam with moments of inertia /,» and I, around its principal axes,
which completes one revolution in a distance [. We want to know the moments of
inertia of the non-spiral beam which yields the same angle change A¢, = u'(1)—u'(0)
when subjected to moment m, as in Figure D.1.

The bending stiffness of a spiral beam varies along the z-axis. Therefore we start by
computing change in ¢, per unit length as a function of z for a spiral beam segment
of length [ subjected to moment m,. We begin by considering the angle change per

Figure D.1: Spiral beam segment and cross section.

unit length around the principal axes of the beam cross-section, 2’,v’, which are
rotated an angle a relative to the nominal x- and y-axes.

dgy  mgcosa do,  mgsina
dz  FEIy dz  Ely

(D.1)

From this we can calculate the angle change per unit length around the x-axis.

dg, my, cos’a sin’a

5 E( T + T, ). (D.2)

To obtain the total angle change we integrate over the revolution length, [.
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Ldg, m, [l cos?a  sin®a
Ao, = dz = == d D.3
¢ odzon(Jr,Jrly,)z (D-3)
Since
a =27 (D.4)
and l
dz = —da, (D.5)
2T
D.3 gives
mel 27 cos’a  sin’a myl i mal, 1 1
Ap, = — dao=—"(—+4+ —)=—"2(—+—). (D6
=5eph Ut =5 g L ) T Ty (PO

For a non-spiral cross section with moment of inertia I, around the z-axis, the angle
change on length [ when subjected to moment m, is

Myl
- FEIL°

Ay (D.7)

On setting A¢, for spiral and non-spiral beam equal and solving for I, we obtain

21 211,
I = o = v (D.8)
mxl(i i i) Ly + 1y
°F ‘I, ' I,

For a rectangular cross section of width b and depth A this yields

bR® b*h
[ 1212 _ b
T Bh (B 40P
12 12
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E. RELATION BETWEEN NETWORK DENSITIES
IN 2 AND 3 DIMENSIONS

When a three-dimensional network structure is analysed by a two-dimensional model,
an interesting issue is the relation between the mass density in 3D, p3p [kg/m?], and
the network density in 2D, pyp [m™']. One possible approach is to compare the
mean free fibre segment length, I, in the two cases.

If it is assumed that [, is the same in the three-dimensional real material and
the two-dimensional model network, a relation between the two densities can be
obtained. In this calculation the equations for I, from [17] are used. In those
equations it is assumed that the fibres are uniformly distributed in position and
orientation. The fibres are assumed to be straight, and in the case of 3D, they are
assumed to be of circular cross section.

I, in three dimensions is

_ 2V
ly = —, (E.1)
Wanlf
where D denotes diameter of fibres and V is the volume studied. Since
n [A ibre
pop = LI (E.2)

where pg. denotes the density of a cellulose fibre, we have

7 D ibre
[, = =Lt (E.3)
2p3p

The corresponding equation in two dimensions is, from (2.1) and (2.2),

L=-tf_ T (E.4)

Combining (E.3) and (E.4) gives

7r
p2p = Psb (E.5)

On assuming pyipre to be 1600 kg/m?’, and D to correspond to the cross-sectional
area of a fibre used in this study, 2.5 - 107 m?, that is,

[1A
D=1/—L=178.10"m, (E.6)
™
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we have
p2p =~ 110p3p. (E.7)

If the probability of a connection in a fibre crossing is s, the equation is modified to

P2DsS ~ 110p3D (ES)
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