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Numerical Investigations of The
Laminating Effect in Laminated Beams

Erik Serrano1 and Hans Jørgen Larsen2

Abstract: The paper presents numerical results concerning the so-called lam-
inating effect of laminated beams. Using the finite element method it is shown
that the stress redistribution often asssumed to take place around weak zones is
not necessarily true. A fracture mechanics approach to a possible explanation
for the laminating effect is also presented. Here a nonlinear fracture mechanics
model is used to verify a hand calculation formula based on linear elastic frac-
ture mechanics. An important outcome is that for an initially cracked laminated
beam, the failure mode tends to be dominated by shear failure in the outermost
lamination, as the lamination thickness decreases.
Keywords: laminated beams, stress distribution, fracture mechanics, laminating
effect

INTRODUCTION

In order to predict the behaviour of glued-laminated timber (glulam), it is essential
to understand the effect of strength increase of laminations as a result of bonding
them into a glulam beam, the so-called laminating effect. This effect, is often
expressed as a laminating factor, klam, given by:

klam =
fm,beam

ft,lam
(1)

where ft,lam is the tensile strength of the lamination and fm,beam is the bending
strength of the beam, evaluated using ordinary beam theory.
The laminating effect has been explained by Foschi and Barrett (1980) and Larsen
(1982) as an effect of the following:

1. In a glulam beam the defects are smeared out resulting in a more homo-
geneous material than solid wood. The probability of a defect’s having a
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serious influence on the strength of the beam is less than it is in a single
lamination.

2. A single lamination tested in pure tension, will bend due to knots and other
anomalies. This is due to the stiffness not being constant over the cross-
section of the lamination. If the same lamination was contained in a glulam
beam, the rest of the beam would prevent such bending.

3. If a lamination that is tested contains knots or other zones of low stiffness,
a pure tensile test does not represent the true stress distribution found in a
beam that is subjected to pure bending. The adjacent stiffer and stronger
laminations would then take up a larger part of the tensile stresses.

The above three explanations are related to the beam being built up of lami-
nations. In addition to this, klam ̸= 1.0 can be due to a nonlinear stress-strain
performance of the material or due to different strength in compression than in
tension. These causes for klam ̸= 1.0 are however not related to the number and
thickness of the laminations.
An effort to explain and quantify the different contributions to the laminating
effect has been presented by Falk and Colling (1995). Experimental data showing
such laminating factors are found in the works of Larsen (1982), and Falk et al.
(1994). Larsen found that for different beam compositions the laminating factor
varied from 1.06 to 1.68. The investigation of Falk et al. yielded laminating factors
in the range of 1.35 to 1.65.
In the present study emphasis is put on the third item above, and on the possibility
of introducing new explanations to the laminating effect based on fracture me-
chanics. The study presented here is a part of a research project dealing with the
mechanical behaviour of finger-joints and laminated beams presented in Serrano
(1997).

PRESENT STUDIES

Two types of simulations of laminated beam behaviour are presented here. The
first is a linear elastic analysis of a beam subjected to a pure bending moment,
using varying stiffness parameters. These analyses were carried out in order to
study the influence of stiffness variation on the stress distribution in a beam. The
second type of laminated beam simulations concerns the nonlinear behaviour of
the bond line of the outermost lamination. These simulations were performed
in order to study the possibility of predicting the laminating effect by use of a
fracture mechanical approach.
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INFLUENCE OF STIFFNESS VARIATION ON STRESS DISTRIBU-
TION

Background

In analysing a beam of non-homogeneous cross-section, an assumption commonly
made is that plane sections perpendicular to the beam axis remain plane and per-
pendicular when the beam is deformed. This assumption leads to the well-known
result of a piecewise linear stress distribution over the cross-section of a glulam
beam consisting of laminations differing in their modulus of elasticity. According
to these assumptions, a zone of lower stiffness would be subjected to stresses of
lesser magnitude, in line with the reduction in stiffness. It is often claimed that
such a “weak” zone (e.g. a knot or a finger-joint) of lower stiffness, and probably
thus of lower strength too than adjacent material, would be subjected to stresses
of smaller magnitude and would therefore not have so strong effect on global beam
strength. The present analyses shows that a low stiffness zone is not necessarily
relaxed in the way described above.

Analyses

The load-case analysed is that of a glulam beam subjected to pure bending. The
linear elastic analyses are performed using plane stress, 4-node, finite elements.
At the boundaries where the bending moments are applied, plane sections of the
beam are assumed to remain plane during loading. The beam is 315 mm in height,
(7 laminations, each 45 mm thick) 600 mm in length and 100 mm in width. There
is assumed to be a zone of lower stiffness in the outer tension lamination. The
weak zone is 45 mm in height, its length varying from 7.5 mm to 600 mm in
the different analyses. The finite element mesh used in the analyses is shown in
Figure 1. In the weak zone, all the stiffness parameters are reduced by the same
percentage, the surrounding material being assigned the engineering constants of
Ex=12000 MPa, Ey=400 MPa, Gxy=600 MPa, and νxy=0.53.
Two types of analyses were performed. In the first series of analyses, the length
of the weak zone was varied from the same length as the beam (600 mm) to
the length of two finite elements in the fine-meshed area (7.5 mm), see Figure 1.
In these cases, the stiffness parameters Ex, Ey and Gxy in the weak zone were
assumed to be reduced by 25%. In the second series of analyses, the influence of
varying the stiffness reduction was investigated. The weak zone, 30 mm in length,
was reduced in stiffness by 25, 50, 75 and 100%, respectively. In both types of
analyses, the height of the weak zone was taken to be the same as the lamination
thickness, i.e. 45 mm.

Results

The results of the finite element analyses are shown in Figures 2–5. The stress
distributions shown in these figures all correspond to the same bending moment.
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The normalized stress shown is the stress divided by the maximum stress as cal-
culated by the conventional flexure formula for a homogeneous beam. Figure 2
shows the influence of the length of the weak zone on the stress distribution in
the mid-section. As expected, when the weak zone is as long as the beam, the
stress distribution is indeed piecewise linear, in accordance with beam theory. A
reduction in the extension of the weak zone results in a redistribution of the axial
stresses. In the limiting case, as the length of the weak zone approaches zero, the
stress distribution is found to approach the linear one expected in a homogeneous
cross-section. According to beam theory, the length of the weak zone should not
affect the stress distribution at all. Figure 3 shows the stress distribution in the
mid-section of the beam for a length of the weak zone of 30 mm. In this figure is
also shown the stress distribution as predicted by beam theory. The reduction of
the stresses in the weak zone is very local. In Figure 4 the influence on the axial
tensile force (i.e. the mean stress in the outermost lamination) in the weak zone
is shown. In the case of a weak zone 30 mm in length, the axial force is reduced
by only about 3% for a stiffness reduction of 25%. According to beam theory the
reduction would be 15.3%, which coincides with the FE-result obtained when the
weak zone is extended all along the beam.
In Figure 5 the influence of the stiffness reduction on the stress distribution in the
mid-section is shown. The four curves represent a 25, 50, 75 and 100% reduction in
stiffness, respectively. As expected, for a 100% reduction in stiffness, the stresses
in the weak zone are zero, since the weak zone then represents a hole or a notch.
The analyses suggest that the simple assumption that a local and proportional
reduction in stiffness and strength has only minor influence on beam strength is
not valid for small zones such as knots and finger-joints. Since the stress reduction
in a small zone is far from proportional to the stiffness reduction, the stress is closer
to the strength of the material in a small weak zone than one would expect by
intuition.
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Figure 1: Finite element mesh. The dark area is the weak zone, having in the
figure a length of 30 mm.
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Figure 2: Influence of the length of the weak zone on the stress distribution in the
mid-section in the case of a stiffness reduction of 25% in the weak zone.
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Figure 3: Stress distribution in the mid-section of the beam for a length of the
weak zone of 30 mm as calculated with plane stress finite elemnts (solid line) and
according to beam theory (dashed line). The stiffness reduction is 25%.
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Figure 4: Influence of the length of the weak zone on the axial tensile force in the
outermost lamination. The stiffness reduction is 25%.

8



-2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
la

ti
v
e
 h

e
ig

h
t

Axial stress

 

From left to right:
25, 50, 75 and 100%
stiffness reduction.

Figure 5: Influence of the magnitude of stiffness reduction on the stress distri-
bution in the mid-section. The curves represent 25, 50, 75 and 100% stiffness
reduction, respectively. The weak zone has a length of 30 mm.
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LAMINATING EFFECT AS PREDICTED BY FRACTURE MECHAN-
ICS

General Remarks

Consider a glulam beam consisting of several layers of laminations, each having the
same thickness ∆h, Figure 6. The load case studied is that of a beam subjected
to a pure bending moment. In the outer tension lamination, the beam contains
a weak zone representing e.g. a knot or a finger-joint. When the weak zone has
failed, the load-bearing capacity of the beam and its subsequent behaviour, may be
governed by crack propagation in the direction of the beam. The grain direction is
assumed to coincide with the length axis of the beam. This situation is illustrated
in Figure 6

l

Initial crack (zero width)

MM

h∆

h

Crack path

Figure 6: A laminated beam with an initial crack of a length equal to the lamina-
tion thickness. The dashed line represents the crack path at crack propagation.

A Hand Calculation Formula

Based on the assumptions of linear elastic fracture mechanics (LEFM), Petersson
(1994) derived an expression for the critical bending moment, Mc, at which a
crack will propagate:

Mc =

√
2 ·Gc · b · Ex · I

1/α3 − 1
(2)

where Ex denotes the modulus of elasticity in the fibre direction, Gc the fracture
energy at crack propagation (the energy required to extend the crack a unit area),
I the moment of inertia of the beam (bh3/12, b is the beam width and h its
height) and α the ratio (h − ∆h)/h. To use Equation (2), the fracture energy
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must be known. Since the fracture energy for wood varies from approximately
200–400 J/m2 for pure mode I to about three times this value for pure mode II,
the current mixed mode state must be known for an accurate choice of the value
of Gc to be made. However, if the mode I value of Gc is used with (2) what is
obtained is a lower bound and often a fairly accurate approximation.
If a more sophisticated analysis is desired, one needs not only to calculate the
current degree of mixed mode at crack propagation, but also to take account of
the effect of the gradual development of the fracture zone and its non-zero size.
A nonlinear fracture mechanics approach such as that used in the present work
allows this to be solved. To verify Equation (2), a series of finite element analyses
were performed using a bond line model based on nonlinear fracture mechanics
described in Wernersson (1994). In this model gradual fracture softening and
mixed mode are considered.

A Finite Element Analysis

The case studied is that of a beam of height h = 450 mm and length l = 1600 mm,
cf. Figure 6, subjected to a pure bending moment, assuming the plane end-sections
to remain plane during deformation. To investigate the laminating effect, five
different lamination thicknesses ∆h were studied, namely 50, 25, 12.5, 6.25 and
3.125 mm. In each case the length of the initial crack was assumed to be equal
to the lamination thickness, as indicated in Figure 6. The elements representing
the bond line and located along the crack path are 0.8 mm long. The bondline
data needed to define its behaviour includes the strengths in pure mode I and
II and the corresponding fracture energies. The values of these quantities were
chosen in accordance with those reported by Wernersson (1994) i.e. 6.5 and 10
MPa strength in modes I and II, respectively, the corresponding fracture energies
being 360 and 980 J/m2.
The wood was modelled as being a linear elastic orthotropic material with the
engineering constants of Ex=16800 MPa, Ey=560 MPa, Gxy=1050 MPa, and
νxy=0.45. The elements representing the wood are 4-node isoparametric plane
stress elements or triangular constant strain elements for mesh refining. The
deformed beam at maximum load is shown in Figure 7.
The results of the five different lamination thickness simulations are shown in
Figure 8. The five simulations are represented by circles, whereas the dashed
lines represent results based on Equation (2) with Gc = GIc = 360 J/m2 and
Gc = GIIc =980 J/m2. A major outcome of the simulations is that, as the
lamination thickness decreases, the crack propagation is increasingly governed by
mode II.
Another way of presenting the results of the finite element analyses is shown in
Figure 9, displaying the strongly nonlinear behaviour of the beam. This figure
presents the formal bending stress in the outer lamination as a function of the
position of the tip of the fracture process zone (as measured from the symmetry
line). For all the analyses, the load reached a plateau-value. Since this corresponds
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800 mm

x

Figure 7: The deformed beam at maximum load. The crack has extended 50–60
mm. The displacements are magnified by a factor of 30.

to the propagation of a fully developed fracture process zone, constant in shape,
LEFM can be expected to provide an accurate estimate of the peak load, provided
the proper mixed-mode value of Gc is employed.
Figure 10 shows the stress distribution along the bond line of the outermost lam-
ination at peak load for the cases of ∆h being 12.5 and 3.125 mm, respectively.
The 3.125 mm lamination gives a stress distribution that differs considerably
from the distributions obtained for the thicker laminations. The thicker lamina-
tions have stress distributions very similar to that obtained for the case of ∆h
being 12.5 mm. The main difference is the size of the fracture process zone, which
for the 3.125 mm lamination is approximately 48 mm long. For all the thicker
laminations, the fracture process zone is approximately 25 mm long.
It turns out that the mixed mode state varies during crack propagation. The
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current mixed mode state is defined by:

φ = arctan (
δs
δn

) (3)

where δs and δn are the relative displacements between two points on either side of
the bondline. Indices s and n denote shear and normal deformation respectively.
A failure in pure opening mode (mode I) corresponds to δs = 0 ⇒ φ = 0◦ and
a pure shear crack propagation corresponds to δn = 0 ⇒ φ = 90◦. The curves
of Figure 11 are given in terms of the mixed mode angle φ, as defined by (3)
versus the crack tip position. The value of φ is calculated at the peak shear stress
position.
Finally, Figure 12 shows how the different contributions of mode I and mode II
fracture depend on the lamination thickness. Again, it can be seen that a thin
lamination yields almost pure mode II fracture.

0 10 20 30 40 50
0

20

40

60

80

100

120

Lamination thickness (mm)

B
e

n
d

in
g

 s
tr

e
n

g
th

 (
M

P
a

)

104.5

56.6

37.9

16.7

24.8

Figure 8: Formal bending strength, 6M/( bh2), versus lamination thickness for a
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CONCLUSIONS

The following conclusions can be drawn from the work presented in this paper:

• For a laminated beam with a weak zone of small dimensions in comparison
to the dimensions of the beam, the stress redistribution around this weak
zone is negligible.

• For initially cracked laminated beams in bending the failure mode along the
outermost lamination tends to be more dominated by shear failure as the
lamination thicknesses decrease.
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APPENDIX II. NOTATION

The following symbols are used in this paper:
b = beam width;

Ex, Ey = moduli of elasticity in grain and across grain direction;
fm,beam = beam bending strength;
ft,lam = tensile strength of lamination;

Gc = fracture energy, critical energy release rate;
Gxy = shear modulus;

h = beam depth;
∆h = lamination thickness;
I = cross-sectional moment of inertia;

klam = laminating factor;
l = beam length;

Mc = critical bending moment;
α = beam depth ratio;

δn, δs = relative displacements across bondline;
ν = Poisson’s ratio; and
φ = mixed mode angle at cracktip.
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