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Abstract

Objective: The concordance index (c-index) is the standard way of evalu-

ating the performance of prognostic models in the presence of censored data.

Constructing prognostic models using artificial neural networks (ANNs) is

commonly done by training on error functions which are modified versions

of the c-index. Our objective was to demonstrate the capability of training

directly on the c-index and to evaluate our approach compared to the Cox

proportional hazards model.

Method: We constructed a prognostic model using an ensemble of ANNs

which were trained using a genetic algorithm. The individual networks were

trained on a non-linear artificial data set divided into a training and test set

both of size 2000, where 50% of the data was censored. The ANNs were also

trained on a data set consisting of 4 042 patients treated for breast cancer
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spread over five different medical studies, 2/3 used for training and 1/3 used

as a test set. A Cox model was also constructed on the same data in both

cases. The two models’ c-indices on the test sets were then compared. The

ranking performance of the models are additionally presented visually using

modified scatter plots.

Results: Cross validation on the cancer training set did not indicate any

non-linear effects between the covariates. An ensemble of 30 ANNs with one

hidden neuron was therefore used. The ANN model had almost the same

c-index score as the Cox model (c-index = 0.70 and 0.71 respectively) on the

cancer test set. Both models identified similarly sized low risk groups with at

most 10% false positives, 49 for the ANN model and 60 for the Cox model,

but repeated bootstrap runs indicate that the difference was not significant.

A significant difference could however be seen when applied on the non-linear

synthetic data set. In that case the ANN ensemble managed to achieve a c-

index score of 0.90 whereas the cox model failed to distinguish itself from the

random case (c-index = 0.49).

Conclusions: We have found empirical evidence that ensembles of ANN

models can be optimized directly on the c-index. Comparison with a Cox

model indicates that near identical performance is achieved on a real cancer

data set while on a non-linear data set the ANN model is clearly superior.

Keywords: Survival analysis, genetic algorithms, artificial neural networks,

concordance index, breast cancer recurrence
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1. Introduction

Given a binary classification task and a machine learning model that

provides a score (which together with a threshold value can split the data set

into two classes), the area under the receiver operating characteristic (ROC)

curve is a very common performance measure. It gives the probability that a

randomly chosen case from class 1 has a higher score than a randomly chosen

case from class 0 [1].

In survival analysis, the focus is to analyze or predict the survival time

– the time to occurrence of the event of interest, e.g. death or recurrence of

cancer. A property of survival data is the existence of censored cases, where

the full survival time is unknown, e.g. if an event occurs for a reason other

than the one of interest, or if a patient reaches a pre-defined follow-up time.

Censored data adds the information that the patient was event-free until the

time of censoring. Removing censored data therefore introduces a bias.

To measure the performance of prognostic survival models the concor-

dance index (c-index) [2] is very common and represents a natural extension

of the area under the ROC curve for survival data. The c-index is the frac-

tion of all usable pairs for which the predictions and the outcomes are in

concordance. Usable pairs are either two non-censored entries with different

survival times or one censored and one non-censored entry where the survival

time is shorter than the censored follow-up time. A c-index of 1.0 indicates

a perfect ordering and a value of 0.5 is no better than random ordering.

One of the conventional approaches when dealing with censored survival

data is the Cox proportional hazards model [3]. It is based on the assump-

tion of proportional hazards, meaning that the significance of a covariate

3



is assumed to be a multiplicative of a base hazard. Because the underlying

hazard function is common for all patients, their respective prognoses are con-

strained to be proportional [4] which becomes a greater limitation the more

heterogeneous the data set becomes. The standard Cox model is also unable

to include non-linear relations between covariates. Multiple ideas have been

presented to introduce non-linearity in the Cox model including fractional

polynomials [5, 6] and artificial neural networks (ANNs) [7]. A more flexible

approach can be found in the work of Biganzoli et al. [8] where the hazard

function is expressed as a set of discrete hazard rates, modeled by ordinary

multilayer ANNs. Here the hazard function depends (non-linearly) on both

time and the covariates. This approach has also been extended to include

cause-specific hazards [9] and to use the Bayesian framework when training

the ANNs, which allows for a natural ranking of the covariates [10, 11].

In this study the focus will be on the c-index itself, specifically models

providing a prognostic index which directly maximizes the c-index. The

purpose of such a prognostic index is not to predict survival times, but rather

to order patients according to survival. In many clinical applications it is

common to divide patients into high- and low-risk groups as a basis for

therapy or triage. One can also find clinical settings where it is important

to be able to predict whether an event will eventually occur or not (e.g.

recurrence of breast cancer). Both these situations can be accomplished

using a prognostic index, thereby avoiding modeling of actual survival times.

To allow for non-linear interactions the models will be based on ANNs

and deployed in ensembles to increase generalization. Many machine learn-

ing techniques use gradients during training, and are therefore ill suited to
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maximize the rank-based c-index. Yan et al. [12] overcame this by intro-

ducing a smooth approximation to the step function. Van Belle et al. have

developed support vector machines for survival analysis including c-index op-

timization [13]. Another approach can be found by Raykar et al. [14] where

bounds were derived for the c-index and used in the optimization. Our ap-

proach for optimizing on the c-index is based on choosing an optimization

algorithm, more specifically a genetic algorithm, that does not require the

computation of any gradients.

The application used in this paper is a study on the recurrence of breast

cancer. We aimed at investigating if biomarkers such as age, tumor size and

the amount of oestrogen receptors, can be used to construct a prognostic

index for distant recurrence of cancer. The patient population used is large

and heterogeneous. A simulated data set was also used to demonstrate the

non-linear capabilities of the proposed model.

2. Materials and methods

2.1. Study population

The real cancer data set used is a compilation of data from five breast

cancer studies, four Swedish and one Danish [15–19]. Time from diagnosis

of primary breast cancer to first distant recurrence or last follow-up without

distant recurrence was available for all patients. The inclusion criteria for

the different sub-studies varied with regard to age, lymph node status and

treatment. Common criteria were: no adjuvant chemotherapy and complete

data on follow-up, number of positive lymph nodes in the axilla, tumor size

and age at diagnosis. This resulted in a cohort of 4 042 patients, with 73%
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censored cases with a maximum follow-up time of 10 years.

2.2. Covariates

In the study, data was provided for age, oestrogen and progesterone re-

ceptor, lymph node status, tumor size, histological grade and HER2 status.

However, there were many missing values. Covariates with more than 50%

missing were excluded (see Table 1), leaving a final list of five unique co-

variates (see Table 2). For the included covariates, the simplest possible

imputation of missing values was used: the mean value of known values. In

an analysis where the relative importance of different covariates is assessed,

this sub-optimal imputation penalizes covariates with many missing values,

which we considered a desired feature. Furthermore, we also included a set of

computed covariates to possibly aid the modeling. Although non-linear ma-

chine learning models should be able to find needed transformations during

training, simple transformations such as the logarithm and commonly used

dichotomisations were added to the list of covariates. The dichotomisations

were part of the individual studies. One such dichotomisation, ErPos, which

was a binarization of the Er covariate, actually had less missing data than

Er. Using both Er and ErPos can therefore add information. The reason

for the mismatch between the number of Er and ErPos data is explained by

the fact that they entered in the patient records as separate variables. In

summary 12 covariates were used in the breast cancer data set (Table 2).

2.3. Simulated data

The simulated data is generated to specifically demonstrate a case where

non-linear modeling is needed to obtain a good c-index. Any monotonically
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Table 1: Covariates that were excluded due to more than 50% missing data, where

HistGrad = histological grade (in 3 steps), MitoticGrade = subjective estimate of

cell proliferation, TubularGrade = subjective estimate of amount of tubular formations,

NuclearGrade = subjective estimate of irregularity of cell nuclei, HER2Pos = HER2 status

measured by the Fluorescence In Situ Hybridization (FISH) test and Ki67 = Ki-67 reac-

tivity measured by immunohistochemical (IHC) staining. The type of variable, the mean

and the standard deviation (SD) are also presented.

Covariate Type Mean SD Missing data

HistGrad Real 2.10 (0.69) 56%

MitoticGrade Real 1.80 (0.80) 72%

TubularGrade Real 2.57 (0.62) 72%

NuclearGrade Real 2.40 (0.59) 72%

Ki67 Real 18.21 (20.00) 73%

Covariate Type Ones Zeros Missing data

Her2Pos Binary 120 755 78%

increasing function can be modeled perfectly using a linear model like the

Cox model, when evaluated using the c-index. The simulated data model is

therefore highly non-monotonic, to make sure that any linear model will fail

to produce accurate results.

For the simulated data we used 10 covariates, similar to the number for

the breast cancer data, and the survival time t was generated according to

the following model

t = (x0+x1+x2−15)2+(x3+x4−10)2+(x5+x6+x7−15)2+(x8+x9−10)2 (1)

where all covariates xi were drawn from a continuous uniform distribution

between 0 and 10. Random noise was added to both the survival time and
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Table 2: Summary of the covariates used in the modeling, where Age = Age in years

at diagnosis of primary cancer, TumorSize = tumor size in mm, NumLymph = number of

positive lymph nodes in the axilla, ER = oestrogen receptor (fmol/mg protein), PgR =

progesterone receptor (fmol/mg protein), Apart from the logarithm transformations the

following dichotomisations were also used: Size20 = 1 if TumorSize > 20, LymphPos = 1

if NumLymph > 0, ERPos = 1 if Er > 25, PgRPos = 1 if PgR > 25.

Covariate Type Mean SD Missing data

Age Real 60.04 (10.72) 0%

TumorSize Real 23.57 (10.95) 0%

NumLymph Real 2.08 (3.65) 0%

log(1+NumLymph) Real 0.72 (0.82) 0%

Er Real 197.71 (291.58) 41%

log(1+ER) Real 4.03 (2.01) 41%

PgR Real 180.96 (350.96) 44%

log(1+PgR) Real 3.31 (2.40) 44%

Covariate Type Ones Zeros Missing data

Size20 Binary 2220 1822 0%

LymphPos Binary 2191 1851 0%

ERPos Binary 2049 858 28%

PgRPos Binary 1277 1010 43%

the covariates with an exponential probability distribution,

p(ε) =
1

2β
exp

(
−|ε|
β

)
(2)

where p(ε) denotes the probability of adding noise with a value of ε. β was

0.3 for covariate noise and 1.0 for survival time noise. Survival times were

kept positive by ignoring cases where the noise would make them negative.
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Furthermore, 50% of the data was censored, where follow-up times were

determined by uniformly random numbers between 0 and the corresponding

survival time.

Using the above model for the simulated data, we generated a training

data set and an independent test data set, both of size 2000, where all survival

times were positive.

2.4. The concordance index

To define the c-index we introduce the survival time tj for patient j.

In the case of a censored patient, tj is the follow-up time. Let pj be the

prognostic index for patient j, with the aim of sorting patients according to

actual survival times. A pair (pi, pj) is said to be in concordance if pi > pj

and ti < tj, assuming non-censored events, meaning that a higher prognostic

index corresponds to a shorter survival time. If patient j was censored, a

comparison with patient i can only be made if the follow-up time tj was

larger than the event time ti. Again, such a pair is in concordance if pi > pj.

No comparison can be made if both patients were censored. The c-index is

simply the fraction of comparable pairs in concordance.

Formally, let Ω be the set of usable pairs of patients. A pair (i, j) is

usable if both patients had an event with the condition ti < tj, or patient j

was censored with a follow-up time larger than the event time of patient i.

Given Ω the c-index is computed as

c-index =
1

|Ω|
∑

(i,j)∈Ω

I(pi, pj) (3)

where |Ω| is the number of patient pairs in Ω and the indication function I
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is defined as

I(pi, pj) =

1 if pi > pj,

0 otherwise.

The interpretation of the c-index follows naturally from its definition as

the estimate that a patient with a higher prognostic index will have an event

within a shorter time than a patient with a smaller prognostic index.

2.5. The prognostic index model

Given a set of K covariates xi = (xi1, xi2, . . . , xiK) for each patient i, the

task is then to compute a prognostic index p(xi) such that a large index will

indicate a high risk of an event. We will model p(x) using ANNs, specifically

multilayer perceptrons with one hidden layer. Such a model is given by

p(x) =
J∑

j=1

ωj · ϕ

(
K∑
k=1

ω̃jkxk + ω̃j0

)
+ ω0 (4)

where ωj, ω̃jk are called weights and are parameters in the model. The

integer J is the number of hidden neurons and ϕ() a non-linear function, here

set to the hyperbolic tangent function tanh(). This ANN provides means

of modeling complex relations between the covariates by increasing the J

parameter (number of hidden neurons). It can also easily be turned into a

linear model by setting J = 1 and ϕ(x) = x.

The weights (ωj, ω̃jk) are determined by minimizing an objective function.

Usually this objective function is differentiable with respect to the weights,

which allows for gradient-based optimization methods. However, in our case

our objective function is the c-index, which cannot be differentiated with

respect to the weights. This limits the number of minimization methods one

can use.
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2.6. Training using genetic algorithms

To treat survival analysis as a ranking problem, we have chosen to utilize

a genetic algorithm which allows us to train directly on the c-index without

requiring gradient information. A genetic algorithm optimizes a solution by

mimicking evolution: simulating mutation and sexual reproduction.

Many possible implementations of genetic algorithms exist. Montana

and Davis [20] experimented with many different variations and evaluated

their relative effectiveness for some cases. Our implementation is based on

what they determined were the most effective procedures, which we found

performed well also in our case. The procedure is as follows:

Initialize the population

To begin with, 50 ANNs are initialized with random weights from the

exponential distribution

p(ε) = 2.5 exp (−5|ε|) , (5)

thus favoring smaller weights while allowing for larger weights in some cases.

Smaller weights generally make training faster but sometimes larger weights

are required to achieve better results. To keep the procedure as simple as

possible, the actual architecture of the ANNs is fixed. As a last step in the

initialization, the ANNs are evaluated and sorted according to their perfor-

mance. This sorting is maintained throughout the entire training.

Create a new generation

New ANNs are created by crossover where the child ANN inherits each

weight from one of its two parents. An ANN with rank k, when sorted by
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performance, is selected as parent with the probability p(k),

p(k) ∝ (0.95)k−1. (6)

This results in a 90% probability to select a rank of 35 or less. Once a new

ANN is created it is subject to mutation. Each weight ω is modified with

probability 1
4

according to ω = ω + ε where ε is a random number from the

same distribution as for the initial weights (see equation 5).

This ”new-born” ANN is now evaluated and inserted in the population.

Then, the ANN with the worst rank is deleted. This keeps the population

size constant and weeds out poor performing ANNs. A generation is elapsed

when the number of generated children equals the population size. The

genetic algorithm runs for a fixed number of generations.

2.7. Ensembles of prognostic models

A common approach to counter over-fitting, and also to increase the per-

formance, is to use an ensemble of ANNs instead of a single one. Often,

an ensemble result is merely the average output of its members. Averaging

clearly only works if the members are different, then the ensemble result

will often perform better than any of the individual ANNs. To promote this

needed diversity we trained ANNs on different parts of the training data

by dividing it into three random parts of equal size. From this partition,

three new smaller training data sets were created by combining two of the

three parts, thus resulting in three member ANNs. This procedure was then

repeated a number of times to obtain the desired ensemble size.

With a rank-based objective function, the ensemble result cannot be gen-

erated by direct averaging of individual member outputs, since these outputs
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need not lie within any defined range or conform to any joint scale. Thus,

outputs can be expected to differ wildly between ANNs even if they are equiv-

alent in terms of the c-index. To be able to average outputs, they will first

be transformed into ranks by comparing with training data outputs for each

ANN. Let Ni be the number of training data that was used to train ensemble

Figure 1: A new patient x obtains a rank number Ri(x) for each ANN i by comparing

with the training data output list for each ANN. The rank numbers are transformed into

a normalized relative rank by normalizing with the size of the training data set. The final

ensemble output is the average of these relative ranks.

member i. The output yi(x) for ANN i and patient x will give rise to a rank

Ri(x). This rank is determined by inserting the output yi(x) into the sorted

list of training data outputs for ANN i. The rank Ri(x) is now simply the

position of yi(x) in the sorted list (see Figure 1). To allow for ANNs trained

with different sizes of training sets, the rank is divided by Ni + 1, yielding

a number between 0 and 1 called the normalized relative rank R̃i(x).

From a c-index point of view, ANN output yi(x) and R̃i(x) are completely

equivalent. Computing an ensemble output yc(x) is now straightforward and
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is the average of normalized relative ranks,

yc(x) =
1

M

M∑
i=1

R̃i(x) (7)

where M is the size of the ensemble. In summary the prognostic index of

each ANN has now been combined into an ensemble prognostic index.

2.8. Model selection and performance evaluation

For both simulated and clinical data, the performance was measured on

a separate test data set. For the breast cancer data, a test set of one third

of the data (1347 patients) was used. This was stratified with respect to

censoring and individual studies. It was kept out of reach during the de-

velopment phase and only used once during evaluation. For the simulated

data, an independent test data set of size 2000 was generated with the same

parameters as for the training data.

As with any modeling we must consider the possibility of over-fitting.

One can formally argue that a rank-based objective function reduces the

risk of over-fitting, since it only measures how well the network can sort

the data. Once an ANN has been optimized to produce a perfect sorting

(c-index = 1) there will be no further weight updates. This is different

from the classification case where the training continues after perfect sorting,

until the error function is zero. It is of course still possible to over-fit on

the noise and in order to prevent that we limited the number of hidden

neurons (model size). The best model size was selected using the K-fold

cross validation scheme where a number of different model sizes were tested

and the one with the best cross validation performance was selected. The
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combined performance evaluation and model selection procedure, including

the ensemble learning, is illustrated in Figure 2.

Figure 2: The performance of the models are evaluated using a separate test set, while

the model selection is carried out using K-fold cross validation. For each model validated,

called a design, 15 networks were trained using a 5x3-fold cross validation loop, in turn

removing the validation part from the data set when training. By this scheme each data

point will be part of the validation set 5 times, thus producing an ensemble validation

result for the given design. This procedure was repeated 30 times with different random

5x3-fold divisions to average out random effects. Once the optimal model was selected, a

final 10x3 ensemble was trained using the full training set.

2.9. Visualizing results

The results of the prognostic index model could be visualized using scatter

plots, using the survival time on the x-axis and the prognostic index on the

y-axis. If we assume non-censored data, a high c-index would imply all points

to follow a monotonic curve with few “off-diagonal” points. A simple model

would be to fit a straight line in the scatter plot and identify points above

15



this line as cases with overestimated risk and points below the line as cases

with underestimated risk.

However, the presence of censored data makes it difficult to interpret such

scatter plots, since there may be a very low correlation between a censored

patients follow-up time and the prognostic index, still resulting in a good

c-index. Put in other words, it is the very definition of (right) censored

data that there are no valid comparisons to make regarding any potential

overestimation.

We therefore introduced a modified scatter plot where the predicted prog-

nostic index of a censored patient cannot be plotted above the straight line,

which we defined by a least-squares linear fit to non-censored data. All cen-

sored data points above this line were instead plotted on the line.

2.10. Implementation details

The ANNs and genetic training procedures were implemented in Python

with some computationally expensive procedures implemented in C. The

running time scales as O(n2) with respect to the size of the training data

set. The procedure was parallelized and training an ensemble of 30 networks

using 30 CPU cores took some 20 minutes.

2.11. Comparing with the Cox model

For comparison, a Cox proportional hazards model was trained on the

same data sets as the ANN models. We used the standard Cox model without

any extensions (e.g. non-linear effects or time-varying covariates). Training

and testing of this model was accomplished using the survival package in the

R environment.
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3. Results

Cancer data

The cross validation results for the breast cancer data can be found in

Figure (3). This figure shows the cross validation c-index as a function of the

number of hidden neurons (top graph). The best validation c-index obtained

was 0.72, corresponding to models with one non-linear hidden neuron (lower

graph). There were only small differences in cross validation performance

when changing the model size, indicating limited non-linear interactions be-

tween the covariates. A final ensemble of 30 ANNs with one non-linear hidden

neuron was trained on the full training data set. This model was then tested

on the separate test set, resulting in a c-index of 0.70. The corresponding

results for the Cox model, trained on the full training set, was 0.71.

To see if any difference between low risk groups from the ANN model and

the Cox model existed, we first identified the largest group of patients in the

test data with at least 90% survival after 10 years using the prognostic index

from both models. The group identified by the Cox model had 60 patients

(Figure 5), while the ANN model identified a group of 49 patients (Figure 4).

The 10 year survival within the high risk group was 68% for both models.

The groups are quite small and are probably not relevant for clinical use, but

it should be noted that histological grade was not used in our modeling and

this is a powerful prognostic marker.

To verify if there was any significance to the difference in group sizes,

the models were tasked with identifying risk groups in the same fashion but

with data that was bootstrapped from the test data. The results showed no

significant difference between group sizes.
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Figure 3: The c-index (cross validation results) as a function of the number of (non-

linear) hidden neurons in the ANNs (top graph) where the left marker indicates average

ANN training result, the middle marker represents average ANN validation result and the

right marker indicates the average validation result for the ensemble. The plot also shows

maximum and minimum deviations from the averages but the deviations are very small.

The lower graph shows the number of times a given model complexity obtained the largest

ensemble validation c-index. The winning complexity was 1 non-linear hidden neuron.

To visualize the correlation between the prognostic indices provided by

the ANN model and the actual survival times, scatter plots were used. Figure

6 (left graph) shows the unmodified scatter plot for the test data, correspond-

ing to a c-index of 0.70. The modified scatter plot, where overestimation of

censored data is removed (see section 2.9) is shown in Figure 6 (right graph).

To assess the importance of the different covariates for the trained model,

a similar idea to that of Nord et al. [21] was used. The c-index value for
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Figure 4: Kaplan-Meier plots for two groups of patients, based on the ANN prognostic

index (test data).

the test set was used as a reference value. The importance of a covariate

was then measured as the drop in c-index, compared to the reference, when

the covariate was replaced by its mean value for the whole test set. This

procedure was sequentially repeated for all covariates. The result can be

seen in Table 3. The three most important covariates were the number of

positive lymph nodes in the axilla, the logarithm of progesterone receptor

measurements and age.

Simulated data

The cross validation results for the simulated data suggested a model size

of 12 hidden neurons. An ensemble of 30 ANNs was used. The cross valida-
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Figure 5: Kaplan-Meier plots for two groups of patients, based on the Cox model (test

data).

tion c-index for this model was 0.89. For the simulated data an independent

test set was generated using the same parameters as for the training data.

The test set performance for the above model was 0.90 and the resulting

scatter plots are shown in Figure 7. The left graph shows the raw scatter

plot where the issue with censored data occurs again. Using the modified

scatter plot the agreement is much better (right graph).

An advantage of using simulated data is that we know the correct survival

times before any censoring was performed. This allows us to compare the

predicted prognostic index with the true survival times (no censoring), for

a model that was trained on censored data. This comparison can never be

performed with real data sets. Figure 8 (left graph) shows the scatter plot
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Figure 6: (Left graph) Scatter plot between the prognostic index and the actual survival

times for the test data (c-index = 0.70). The colors indicate the amount of patients

according to the scale on the right. (Right graph) Scatter plot of the same data with the

added rule that a prognostic index for a censored patient can not be plotted above the red

line. This is because as far as the c-index is concerned such an index would be considered

(approximately) correct.
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Figure 7: Scatter plots for the simulated data with a c-index of 0.90. The left graph

demonstrates the impracticability of doing scatter plots with censored data. The right

graph compensates for this by only plotting censored points below the diagonal which is

also shown. A much more pleasing and visually accurate result is achieved.

between the prognostic index and the true survival times for the ANN model.

The corresponding c-index was 0.87 in this case.

The result for the Cox proportional hazards model on the simulated data

is, as expected, not good: c-index = 0.49. For random values, repeated com-
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Table 3: Covariate importance as measured by the effect a given covariate has on the

model when being replaced by its mean value. The drop in c-index was used to measure

this effect and is presented in this table for all covariates in the model. The top most

important ones were: number of positive lymph nodes in the axilla and the logarithm of

progesterone receptor measurements.

Covariate(s) Drop in c-index Change relative to NumLymph

NumLymph 5.88 1.000

log(1+PgR) 1.97 0.336

Age 0.93 0.158

TumorSize 0.78 0.133

PgRPos 0.56 0.096

log(1+NumLymph) 0.22 0.038

LymphPos 0.20 0.033

Size20 0.14 0.023

log(1+ER -0.05 -0.009

ER 0.04 0.007

ERPos -0.03 -0.005

PgR 0.00 0.001

puter simulations of 2000 values (the size of the synthetic test set) indicate

that the mean c-index is 0.50 and the standard deviation is 0.01. So it per-

forms no better than random on the synthetic data set. This model cannot

handle the square covariate dependency that is used to define the survival

time for the simulated data (see equation 1)

Figure 8 (right graph) shows the corresponding scatter plot for the sim-

ulated data (test set), again using the true uncensored survival times.
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Figure 8: True scatter plots can only be generated when the uncensored information is

available. The left graph shows the ANN model which achieves a c-index of 0.87 on the

uncensored data. The right graph demonstrates the inability of the Cox model to perform

better than random: c-index is 0.49.

4. Discussion

We have developed a prognostic index model for survival data based on

an ensemble of ANNs that optimizes directly on the concordance index used

for survival data.

Previous work concerning c-index optimization in survival analysis has

largely been dominated by different approaches to approximate the c-index

with a differentiable objective function, in order to utilize gradient tech-

niques. We have avoided this step since optimization techniques such as

genetic algorithms are very much able to achieve good results with the ad-

vantage of training directly on the metric of interest. Genetic algorithms are

computationally more expensive than gradient techniques and this can be

seen as a disadvantage. However, it is practically not a problem since com-

putational resources available today are more than adequate even in a single

machine and the resources are only required during the training procedure.

A computational problem may arise for for very large data sets as calculating
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the c-index is a O(n2) operation and must be calculated for each generation

of networks in the genetic training.

In this study the prognostic index model was tested on a real world can-

cer data set of 4 042 patients comprised of five individual studies. The re-

sults show a negligible difference between our genetically trained ensemble of

ANNs compared to the traditional Cox model. A direct difference between

Cox modeling and our prognostic index is the fact that the Cox model is

based on optimizing the partial likelihood and not the c-index. However,

Raykar et al. [14] show a close connection between partial likelihood and

c-index optimization. Furthermore, to analyze the ANN model with respect

to the used covariates (cancer data only), a variable ranking procedure was

employed. This showed that only a few covariates are important for the pre-

diction, where the number of positive lymph nodes in the axilla came out as

the most important one. Interestingly, training a model with the five most

important covariates (according to Table 3) resulted in only a marginal re-

duction of the test c-index, indicating that for the purpose of maximizing

the c-index only a subset of the covariates are needed. Feature selection us-

ing rank based measurements, such as the c-index, may have limitations, as

pointed out by Cook et al. [22]. In light of such discussions the above rank-

ing results may differ from other feature selection methods. Our ranking

results should only be interpreted in terms of optimizing the c-index using

the proposed ANN model.

In addition to comparing the c-index of the ANN and Cox models, we

used the models to identify a low risk group defined as the largest possible

group with the highest predicted survival chance with at most 10 percent
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false positives. For both models the group sizes were less than 5 percent

of the test set. By repeatably identifying groups with bootstrapped data,

we determined that no significant difference between identified groups of the

ANN and Cox models could be observed. It should be noted that one of

the strongest factors for predicting recurrence, the histological grade, was

not used in the modeling due to missing data. Histological grade is used

in prognostic tools for breast cancer, such as the Nottingham Prognostic

Index [23] and Adjuvant! Online [24]. Using histological grade in the current

models would probably have improved the result for both models, as well as

their ability to find low risk groups.

To challenge the proposed model on non-linear data, a simulated data

set was used where the generated survival times depended non-linearly and

non-monotonically on the covariates. The simulated data was designed to be

impossible to handle using a Cox model, resulting in a c-index no better than

random (see Figure 8, right graph). The ANN model could easily produce

a prediction with the required non-linear relations between the covariates,

resulting in a c-index of 0.90. 50% of the data was censored, but since

the data was generated we had access to the uncensored data. The c-index

between the model output and the uncensored simulated survival times was

0.87 indicating that our ANN model was able to approximate the underlying

function despite the large fraction of censoring used during training (see

Figure 8, left graph). The decrease from 0.90 in the censored case, to 0.87

in the uncensored case, also illustrates the inherent bias of the c-index itself

to overestimate the performance of a prognostic model on censored data.

Further improvements could be made to the ANN training procedure.
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The genetic algorithm itself is a rather standard approach and we have not

endeavored to tweak the training parameters to their absolute best. The

performance on non-linear data could be improved by finding the optimum

parameters but it is unlikely that it would result in any significant benefit on

the real cancer data which seems to be predominately linear. One idea for

improvement would be to evolve the structure (e.g. complexity) of the ANNs

together with the weights as in the NEAT algorithm [25].

5. Conclusion

In this paper we have proposed a prognostic index model for survival data

that maximizes the concordance index. The model is based on ANN ensem-

bles and is trained using a genetic algorithm. A normalized relative rank was

developed to allow for an ensemble of individually c-index optimized models.

We have explored ways of visualizing the correlation between prognostic in-

dices and survival times in presence of censored data, using modified scatter

plots. The model was tested on a breast cancer data set originating from

five different studies and one simulated data set. Cox modeling was used

for comparison and the results for the cancer data set shows near identical

performance between the ANN and Cox models. The ANN was however able

to correctly model a synthetic non-linear data where the Cox model could

not perform better than random.
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Jirström, K., et al. Two years of adjuvant tamoxifen in premenopausal

patients with breast cancer: a randomised, controlled trial with long-

term follow-up. European journal of cancer 2005;41(2):256–64.

[16] Chebil, G., Bendahl, P.O., Idvall, I., Fernö, M.. Comparison of
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