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Cold-atom systems offer a great potential for the future design of new mesoscopic quantum systems

with properties that are fundamentally different from semiconductor nanostructures. Here, we investigate

the quantum-gas analogue of a quantum wire and find a new scenario for the quantum transport: Attractive

interactions may lead to a complete suppression of current in the low-bias range, a total current blockade.

We demonstrate this effect for the example of ultracold quantum gases with dipolar interactions.

DOI: 10.1103/PhysRevLett.110.085303 PACS numbers: 67.85.�d, 05.60.Gg

Introduction.—The electronic Coulomb blockade in
mesoscopic quantum dots has been an intensive research
topic the last two decades. The flow of electrons through a
quantum dot between reservoirs is a versatile tool for
addressing a wide range of fundamental effects, ranging
from the structure of electronic many-particle states [1,2]
and Kondo physics [3–5], to quantifying the spin dephas-
ing due to coupling to nuclear degrees of freedom [6–8] or
coherent effects [9].

Ultracold atoms in traps are very similar to quantum
dots—a few quantum particles confined by a (often low-
dimensional and harmonic) potential. What makes these
systems particularly interesting is that one essentially can
freely engineer their properties, and even control the shape
and strength of the interparticle interactions. More recently
this sparked great interest in making (quantum-)logical
devices with ultracold atoms and molecules analogous to
those in electronics and spintronics [10–15].

‘‘Interaction blockade’’ as the cold-atom analog of an
electronic Coulomb blockade [16] was experimentally first
seen in tunneling processes in optical lattices [17] and
analyzed theoretically for one-dimensional triple-well
systems [18]. Atom trapping with numbers down to
single-atom precision was reported in a remarkable recent
experiment by Serwane et al. [19], reaching the few-body
limit with full control over confinement and interparticle
interactions. The experimental realization of quantum
transport of cold atoms through a small quantum few-
body system that is brought in contact with two large
atomic reservoirs, however, has up to now posed a great
experimental challenge. A first experimental breakthrough
was reported recently by Brantut et al. [15], demonstrating
the possibility of engineering both a ballistic and a diffu-
sive channel between two cold-atom reservoirs, opening up
a host of new perspectives in mesoscopic quantum physics.

Inspired by this recent experimental progress, we study
the quantum transport through wirelike confinement of a
few ultracold fermions. In the framework of the experiment
by Brantut et al. [15], such a structure could be realized
by two optical barriers within the channel, created by

focusing two blue-detuned laser beams perpendicularly
onto the channel.
A particularly interesting aspect of studying transport

with cold atoms or molecules is the tunability of the
interactions between the particles—often being of contact
type, and experimentally controlled by Feshbach reso-
nances. Here, we choose to study fermions with electric
dipolar interactions that can be controlled by an external
field [20]. Changing the interactions from repulsive to
attractive, we report the occurrence of total current block-
ade, where the attractive interaction hinders transport for
finite biases independent of the gate potential. While the
total current blockade would also occur with attractive
contact interactions, dipolar interactions also make it
possible to study localization effects due to the long-range
nature of the force, in much analogy to electrons in quan-
tum wires [21].
The setup of the system described above is sketched in

Fig. 1. Similar to the experiment in Ref. [15], two fermi-
onic reservoirs with controllable difference in chemical
potential �� are connected by a quasi-one-dimensional
trap. In this region, the potential energy of the particles can
be varied by the parameter�gate in full analogy to electrons

in gated semiconductor nanostructures. The electric dipole
moment p of the particles can be orientated along an
external field by a tilt angle � with respect to the z axis
along the quasi-one-dimensional channel (see Fig. 1). One
can thereby also minimize the dipolar component of the
particle interactions in the leads and stabilize the dipolar
gas against collapse in the left and right reservoirs,
required to be two dimensional and appropriately oriented
with respect to the external field.
Model.—The interaction between two dipoles with

distance r and angle �rd between the dipole orientation
and particle separation is generally given by [22,23]

Vdd ¼ d2

r3
ð1� 3cos 2�rdÞjr>0 þ 4�

3
Cd2�3ðrÞ: (1)

The coupling strength is d2 ¼ p2=ð4��0Þ, where p is the
dipole moment strength, �0 is the vacuum permittivity, and
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C ¼ 1. (For magnetic dipoles, d2 ¼ �0�
2=ð4�Þ is signifi-

cantly smaller, where�0 is the vacuum permeability,� the
magnetic moment, and C ¼ �2.) Within the quantum
wire, the dipoles are confined in x and y by a two-
dimensional harmonic oscillator of characteristic length
l?, rendering a quasi-one-dimensional system in the z
direction for small l?. Integrating over the lateral x and y
degrees of freedom one arrives at an effective one-
dimensional dipole-dipole interaction

Veff
dd ðz1; z2Þ ¼ Uddð�Þf

�jz1 � z2j
l?

�
þ 2Cd2

3l2?
�ðz1 � z2Þ

(2)

with fðuÞ ¼ �2uþ ffiffiffiffiffiffiffi
2�

p ð1þ u2Þeu2=2erfcðu= ffiffiffi
2

p Þ where
erfc is the complementary error function [24]. The inter-
action coefficient

Udd ¼ �d2½1þ 3 cos ð2�Þ�=ð8l3?Þ (3)

can be either positive or negative depending on the dipole
tilt angle �. If the dipoles are aligned in the z direction
(� ¼ 0�) they attract each other,Udd < 0, while they repel
one another, Udd > 0, if they are orientated perpendicular
to the z direction (� ¼ 90�). For an intermediate angle
(�crit ’ 54:7�) this long-range part of the dipole interac-
tion vanishes.

In the z direction the wire is modeled as a finite
square well (see Fig. 1) of width 2a and barrier height
V0. Applying the single-particle basis of eigenstates for
this potential well, the configuration interaction method
(exact diagonalization) is used to find the lowest energy
states of N ¼ 1 to N ¼ 6 dipoles in the quantum wire.

Here the dipolar particles are assumed to be spin-half
fermions. In the following we use d2 ¼ @

2a=m, l? ¼
0:14a, and V0 ¼ 300@2=ma2. (For RbK molecules with
p ¼ 0:57 D [25] this corresponds to a � 0:6 �m and an
energy unit of @2=ma2 � kB10 nK.)
Transitions between states of different N occur due to

particle exchange with the reservoirs, as described by rates
�a!b evaluated by Fermi’s golden rule. The corresponding
matrix elements between the many-particle states are eval-
uated following the work of Refs. [26,27]. Assuming that
the occupations of the single-particle states in the particle
reservoirs are given by Fermi-functions with kBT ¼
0:02@2=ma2, this provides a Pauli master equation for the
probabilities of the different many-particle states in the
confinement region. For the stationary state we obtain
the (particle) current _N between the reservoirs and the
(differential) conductance G ¼ d _N=d��.
Main results.—First we neglect the contact term of the

dipolar interaction, which can be eliminated by Feshbach
resonances [28], and obtain the conductance diagrams
displayed in Fig. 2. For repulsive interactions between
the dipoles, see Figs. 2(a) and 2(b); they resemble those
of a Coulomb blockade in electron transport through nano-
structures. In the diamond-shaped regions of vanishing
conductance, the particle number N in the wire is fixed,
and the current is strongly suppressed. At the borders
between the N- and (N þ 1)-particle region, conductance
is possible due to single-particle transitions. This scenario
does not depend on the specific form of the (repulsive)
interaction [16,17]. For attractive interactions, see
Fig. 2(e); we find a total current blockade at low detuning
�� independent of the gate potential �gate.

The total current blockade is associated with the vanish-
ing of the diamonds for odd N. This can be understood by
the twofold degeneracy of the single particle levels due
to the particle spin: The first particle enters the system at
the level energy, while the second particle experiences
an additional interaction energy U between the spin-
degenerate particles in a level. The single occupancy of
the level, i.e., a state with odd N, is stable if the reservoirs
allow for adding the first particle, but due to U > 0 not the
second. Thus, the blockade diamonds with an odd number
of particles N and lines of finite conductance at the sepa-
ration to the blockade diamonds with even N appear in
Figs. 2(a) and 2(b). With decreasing interaction the width
of all diamonds shrinks and the width of the odd-N dia-
monds vanishes at U ¼ 0 as can be seen in Fig. 2(d). Now,
for negative U the situation of a single fermion in a level is
unstable as it attracts a particle with the opposite spin. This
instability does not allow for configurations with odd N for
low ��. Therefore, single-particle transitions between the
reservoir and the wire are excluded, resulting in the
absence of current flow in the region of total current block-
ade; see the magenta shaded area in Fig. 2(e). (The case of
two-particle transitions is addressed below.)

FIG. 1 (color online). Upper panel: Schematic figure of the
system. Lower panel: Sketch of the setup in analogy to the case
of mesoscopic conductors. Two reservoirs with a degenerate
gas of ultracold spin-half dipolar particles are connected via a
quasi-one-dimensional structure, a ‘‘wire’’ of length 2a. The
difference in chemical potential between the reservoirs, ��,
creates a particle current if the dipoles can be added and removed
from the wire. Levels in the wire may be tuned by a gate
potential, �gate. The interaction between the particles in the

wire can be varied by the tilt angle of the dipoles, �, and allows
us to observe significantly different current patterns.
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For weak interactions, this can be quantified by a
quasi-independent-particle model: The single-particle
level energies of the quantum well are approximated by
n2E1 where n ¼ 1; 2; . . . and E1 is the single-particle
ground state energy. Using the analytic eigenfunctions of
the infinite well, we approximate the interaction energy by
first order perturbation theory. Then the energy difference

between the N þ 1- and the N-particle ground state is
given by �Nþ1 ¼ �gate þ ðnþ 1Þ2E1 þ ð23nþ �ÞU,

where U � 3l?Udd=a and �gate is the gate potential rela-

tive to the bottom of the well. Here, n ¼ N=2 and � ¼ 0
for evenN while n ¼ ðN � 1Þ=2 and � ¼ 1 for oddN. The
lines of the diamonds are given by the crossing points of
�Nþ1 with the chemical potential ���=2 in the left or
right reservoir, respectively. The corresponding dashed
(yellow) lines shown in Figs. 2(c) and 2(e) agree well
with the main conductance lines obtained from the full
many-particle calculation. Thus, correlations do not play
any essential role here.
In contrast, such an approach does not hold for stronger

interaction strengths. Here the many-particle states show
strong localization effects as shown in Fig. 3 for the two-
particle states. For � ¼ 90� and to a smaller extent for
� ¼ 60�, one observes two peaks in the particle density
(left panel), and the pair-correlation function (right panel)
shows that the probability of finding the two particles
within the same peak is strongly reduced. This is the
scenario of Wigner localization as very recently studied
theoretically for cold polar molecules in Ref. [29]. In full
analogy to mesoscopic electron conduction [21], signa-
tures of this localization can be clearly detected in the
conductance plots Figs. 2(a) and 2(b) where several, almost
degenerate, lines are observed on the top of the diamonds,
resulting from spin excitations of the localized particles.
(We note that this scenario of Wigner localization could
not arise in transport processes with atomic species that
only interact through a contact interaction potential.)
Improved interaction model.—For attractive interaction

(� ¼ 54:2�), the pair-correlation function is shifted to the
right; see the right panel of Fig. 3; i.e., the probability to
find both fermions on the same spot is enhanced for the
ground state. In this case the contact interaction in Eq. (2)

FIG. 3 (color online). Particle density (left) and pair-
correlation function (right) for N ¼ 2 particles at the tilt angles
� used in Figs. 2(a)–2(e). For the pair-correlation function one
particle is fixed at the position marked with the symbol �. As the
interaction goes from strongly repulsive (� ¼ 90�) to weakly
attractive (� ¼ 54:2�) the two particles evolve from a localized
state to a delocalized state with a slight tendency to clustering.

FIG. 2 (color online). Conductance between the particle reser-
voirs as a function of reservoir potential difference �� and gate
potential �gate. Here the contact part of the dipolar interaction is

neglected and the long-range part, which can be tuned by the angle
� of the external field, changes from (a) strongly repulsive, via
(d) noninteracting, to (e) the weakly attractive case. The region of
total current blockade for attractive interaction is marked by the
vertical strip (colored in magenta) in (e). The dashed (yellow)
lines in (c) and (e) indicate the results of a simplified quasi-
independent-particle model. The calculations were performed
for d2 ¼ 1:0@2a=m and l? ¼ 0:14a. The � scale is in units of
@
2=ma2. Note the different scales in panels (a) and (e).
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becomes relevant. Taking this term into account provides
some modifications of the scenario depicted in Fig. 2,
while the main features remain. For the case of electric
dipoles, the contact interaction is repulsive and compen-
sates a part of the long-range attraction, so that smaller
angles � are required to observe the vanishing of the
diamonds with odd N. Furthermore, because the particle
density increases with the number of particles N, the con-
tact interaction becomes more relevant for higher N, and
thus smaller angles are required for the vanishing of dia-
monds with higher N [30].

Pair-tunneling.—Single-particle transitions between
the reservoir and the wire are excluded for sufficiently
low values of temperature and bias �� when U < 0.
Two-particle transitions may occur due to higher-order
processes in the coupling between the reservoirs and the
wire [31,32]: Normal cotunneling results in a weak back-
ground conductance for any bias. Pair-tunneling, neglect-
ing the effects of temperature and lifetime broadening, is
only allowed for jE2nþ2 � E2nj< ��, where EN is the
ground state energy of the N-particle state and n is
an integer. When present, pair-tunneling gives a more
pronounced contribution than cotunneling [31]. Being of
second order, these processes scale as �2, where � is the
single particle transition rate. Thus, for sufficiently weak
couplings they can be neglected compared to sequential
single-particle tunneling.

Figure 4 shows the differential conductance of a single
spin-degenerate level withU < 0, calculated by the second
order von Neumann formalism [26,33]. For weak contact
coupling, Fig. 4(a) displays only a small conductance at
low values of ��. This can be attributed to a weak pair-
tunneling background and to the temperature broadening
�3kBT of the direct tunneling peaks at "d ¼ �U=2�
ð��þUÞ=2 for��>�U, which correspond to the inner
(red) lines in Fig. 4. This demonstrates that the total block-
ade of conductance is verified for � 	 kBT 	 jUj, as is
the case in Fig. 2(e).

On the other hand, as � approaches U, pair-tunneling
becomes energetically allowed. Hence, we observe
the onset of conduction along the outer (blue) lines
jE2 � E0j ¼ �� in Fig. 4(b). (In our case E2 ¼ 2"d þU
and E0 ¼ 0.) Normal cotunneling can also be observed as a
weak background present at all �� and "d. Thus, the total
blockade of conductance does not persist at strong cou-
plings between the wire and the reservoirs. For even higher
couplings, our model fails and Kondo-like effects become
important [34]. This shows that the energy barriers confin-
ing the wire cannot be arbitrarily weak for the observation
of the total current blockade, as otherwise pair-tunneling
masks the scenario.
Experimental challenges.—From the experimental point

of view, measuring a weak atomic current in a mesoscopic
transport process appears challenging. In the experimental
studies of quantum transport through atom traps by Brantut
et al. [15], the integrated current is measured by a sensitive
detection of population differences in the reservoirs. This
opens up a new field of mesoscopic physics research.
Complementary experimental information on the atomic
current could, for instance, be inferred from a time-
of-flight absorption image that renders the momentum
distribution of the transported atoms. As an alternative, a
stimulated Raman adiabatic passage of the atoms could be
induced by irradiating the transport region with two spa-
tially displaced laser beams (see, e.g., Ref. [35]). An atom
that propagates through this irradiated region would then
necessarily transfer a photon from one of the laser beams to
the other, while an atom that propagates in the opposite
direction would revert this photon transfer. Carefully
measuring the net photon transfer between the beams after
a suitable evolution time would then give rise to the
integrated atomic net current across the atom-photon
interaction region. We remark that standard techniques to
detect individual atoms using fluorescence imaging [36,37]
or electron beams [38] would not work in this context as
they do not distinguish between left-moving and right-
moving atoms.
Conclusions.—We have shown that dipolar quantum

gases allow for the observation of a total current blockade
for small differences in chemical potentials between the
reservoirs. In this context the often neglected contact
interaction part of the dipole-dipole interaction turns out
to repress the onset of total current blockade.
From the experimental side, studies of quantum trans-

port with ultracold atoms and the many-body effects of an
interaction blockade are still in their infancy. Here, we
highlighted the prospects for the specific example of a
few-body system with dipolar interactions between the
confined atoms. We demonstrated the possibilities offered
by the tunability of the dipole-dipole interaction in a
quasi-one-dimensional geometry by an external field.
We thank the Swedish Research Council and the

nmC@LU for financial support.

FIG. 4 (color online). Conductance through a single spin-
degenerate level at energy "d for the case of negative charging
energy U < 0. The temperature is kBT ¼ jUj=10, and the cou-
plings are �L ¼ �R ¼ jUj=50 for (a), and �L ¼ �R ¼ jUj=4 for
(b). The solid inner (red) lines and outer (blue) lines show the
onset of sequential tunneling and pair-tunneling, respectively.
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