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Popular Summary 

 

Type 2 diabetes (T2D) is the most common form of diabetes, affecting the lives of 
10% of the adult population worldwide. Individuals with T2D have increased blood 
sugar (glucose) for an extensive period of time, which can have serious 
complications in different organs such as the nerves, the eyes, the kidneys, the heart 
and the blood vessels. The two main causes of T2D are the inability of the pancreas 
to produce and release enough insulin or the inefficient use of the produced insulin. 
Insulin is a hormone that makes sure that the glucose in the circulation, which is 
produced after the consumption of a meal, is transferred inside the different organs 
in order to be used as fuel and give them the necessary energy to work properly. The 
reasons behind the development of T2D include lifestyle choices, such as sedentary 
life, obesity and smoking, abnormal genes or the consumption of certain drugs, such 
as glucocorticoids. 

As mentioned, among the causes of diabetes can be the consumption of 
glucocorticoid (GCs) drugs in high doses or for a long time. GCs are substances that 
belong to the corticosteroid family and these drugs are commonly used against 
inflammation and allergies, but they are also responsible for 2% of all new diabetes 
diagnoses. GCs act by entering the cells, which in turn modify several genes by 
turning them on (activate) or off (suppress). For example, GCs have the ability to 
activate genes that boost the immune system. However, we found that GCs can act 
directly on the pancreas, suppressing several genes that participate in the production 
and release of insulin. With the help of publicly available biological data, we 
identified genes that were affected by GCs and were implicated in insulin release. 
Moreover, we also detected one gene, ZBTB16, which acted as a shield protecting 
the pancreatic cells from the harmful effects of GCs. This gene can potentially be 
used to reduce the risk of diabetes development in patients that will need GC 
treatment in the future. 

Our next goal was to discover all the genes that are turned on/off in the pancreas 
during the development of T2D. To do that, we compared pancreatic cells from 
healthy individuals and individuals with T2D and we found differences in 395 
genes. Then, after using an extensive collection of biological data and performing a 
series of experiments, we confirmed that the function of many of these genes was 
connected to T2D. Moreover, we identified PAX5 as an important gene activated in 
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individuals with T2D. This gene can turn on/off many genes in a way that negatively 
affects the function of pancreatic cells and the release of insulin. Thus, new T2D 
therapies targeting the PAX5 gene hold great promise.  

Finally, a big part of this thesis focused on the study of microRNAs (miRNAs). 
MiRNAs are small molecules that can turn off specific genes. Each miRNA can 
have multiple genes as targets and, consequently, miRNAs participate in many 
processes inside the cells. There is evidence that miRNAs contribute to the reduction 
of the produced insulin observed in T2D, but the exact roles of miRNAs are still not 
clearly defined. We managed to discover extensive differences between the 
miRNAs of healthy and T2D individuals with different technological methods. 
Furthermore, by analyzing data from publicly available sources we discovered many 
candidate genes that these miRNAs could target and, at the same time, were related 
to T2D. In that way, we uncovered complex networks consisting of miRNAs and 
target genes that control insulin release from the pancreas and are destabilized 
during T2D development. We suggest that concerted efforts to reveal and “fix” these 
networks will provide new ways to manage and treat T2D.  

Overall, this thesis demonstrates how diverse types of biological data can be 
combined and used as a tool for exploring and revealing new causes of reduced 
insulin production in T2D. In this manner, we determine previously unexplored 
genes and miRNAs that can affect pancreatic function and T2D development, 
demonstrating that they can be ideal therapeutic candidates for this condition. 
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Popular Summary (Greek)-Περίληψη 

Ο διαβήτης τύπου 2 (T2D) είναι ο πιο κοινός τύπος διαβήτη, επηρεάζοντας τη ζωή 
του 10% του ενήλικου πλυθησμού παγκοσμίως. Άτομα με T2D έχουν υψηλό 
σάκχαρο (γλυκόζη) για παρατεταμένο χρονικό διάστημα, το οποίο μπορεί να 
επιφέρει σοβαρές επιπλοκές σε διάφορα όργανα όπως τα νεύρα, τα μάτια, τα νεφρά, 
την καρδιά και τα αιμοφόρα αγγεία. Οι δύο κύριες αιτίες του T2D είναι η αδυναμία 
του παγκρέατος να παράξει αρκετή ινσουλίνη ή η παραγόμενη ινσουλίνη να μη 
χρησιμοποιείται αποτελεσματικά. Η ινσουλίνη είναι η ορμόνη που επιτρέπει στην 
γλυκόζη, που παράγεται μετά την κατανάλωση ενος γεύματος, να μεταφερθεί μέσα 
στα διαφορετικά όργανα για να χρησιμοποιηθεί ως καύσιμο και να τους δώσει την 
απαιτούμενη ενέργεια για τις απαραίτητες διεργασίες τους. Οι αιτίες που οδηγούν 
στην ανάπτυξη του T2D περιλαμβάνουν συνήθειες στην καθημερινή ζωή, όπως π.χ. 
καθιστική ζωή, παχυσαρκία και κάπνισμα, ανωμαλίες σε γονίδια ή πρόσληψη 
φαρμάκων, όπως τα γλυκοκορτικοστεροειδή. 

Όπως αναφέρθηκε, ανάμεσα στις αιτίες ανάπτυξης διαβήτη είναι και η κατανάλωση 
γλυκοκορτικοστεροηδών (GCs), όταν αυτά προσλαμβάνονται σε μεγάλες δόσεις ή 
για παρατεταμένο χρονικό διάστημα. Tα GCs είναι ουσιές που ανήκουν στην 
οικογένεια των κορτικοστερεοειδών και τα φάρμακα αυτά χρησιμοποιούνται 
ευρέως κατά των φλεγμονών και των αλλεργιών, αλλά θεωρούνται και  υπεύθυνα 
για το 2% των νέων περιστατικών T2D. Τα GCs δρουν μόλις μπουν στα κύτταρα 
και έχουν την ικανότητα να τροποποιούν γονίδια με το να τα 
«ανοίγουν»/ενεργοποιούν ή να τα «κλείνουν»/καταστέλλουν. Για παράδειγμα, τα 
GCs ενεργοποιούν γονίδια που ενισχύουν το ανοσοποιητικό σύστημα. Παρ’όλα 
αυτά, τα GCs δρουν απευθείας και στο πάγκρεας, καταστέλλοντας γονίδια που 
συμμετέχουν στην παραγωγή και την απελευθέρωση της ινσουλίνης. Με τη βοήθεια 
διαθέσιμων βιολογικών δεδομένων, ταυτοποιήσαμε τα γονίδια που επηρεάζονται 
από τα GCs και εμπλέκονται στην απελευθέρωση της ινσουλίνης. Επιπλέον, 
εντοπίσαμε ένα γονίδιο που ενεργοποιείται από τα GCs, το ΖΒΤΒ16, το οποίο δρα 
σαν ασπίδα προστατεύοντας τα παγκρεατικά κύτταρα από την βλαβερή επίδραση 
των GCs. Το γονίδιο αυτό θα μπορούσε δυνητικά να χρησιμοποιηθεί για να μειώσει 
το ρίσκο εμφάνισης διαβήτη σε ασθενείς που χρήζουν θεραπείας με GCs στο 
μέλλον. 

Ο επόμενος στόχος μας ήταν να ανακαλύψουμε ποια γονίδια «ανοίγουν» ή 
«κλείνουν» στο πάγκρεας κατά την εξέλιξη του T2D. Για αυτό το λόγο, συγκρίναμε 
παγκρεατικά κύτταρα από υγιή και διαβητικά άτομα και εντοπίσαμε διαφορές σε 
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395 γονίδια. Έπειτα, με τη χρήση ενός μεγάλου όγκου βιολογικών δεδομένων και 
μια σειρά πειραμάτων επιβεβαιώσαμε ότι η λειτουργία πολλών γονιδίων από αυτά 
συνδέεται με τον T2D. Επίσης, αναγνωρίσαμε το PAX5 ως ένα  σημαντικό γονίδιο 
που ενεργοποιείται στα διαβητικά άτομα. Το γονίδο αυτό μπορεί με τη σειρά του 
να «ανοίξει» και να «κλείσει» γονίδια με τρόπο που να επηρεάζει αρνητικά την 
λειτουργία των παγκρεατικών κυττάρων και την απελευθέρωση της ινσουλίνης. 
Συνεπώς, νέες θεραπείες κατά του T2D που στοχεύουν το PAX5 είναι πολλά 
υποσχόμενες. 

Τέλος, μεγάλο μέρος αυτής της διατριβής επικεντρώθηκε στη μελέτη των 
μικροRNA (miRNAs). Τα miRNAs είναι μικρά μόρια που μπορούν να «κλείσουν» 
συγκεκριμένα γονίδια. Το κάθε miRNA μπορεί να στοχεύσει πολλά γονίδια και, ως 
αποτέλεσμα, τα miRNAs συμμετέχουν σε πολλές διεργασίες μέσα στα κύτταρα. 
Έχει αποδειχτέι ότι τα miRNAs συνεισφέρουν στη μείωση της παραγώμενης 
ινσουλίνης που παρατηρείται στον T2D, αλλά οι επακριβείς ρόλοι τους δεν έχουν 
διασαφηνιστεί. Καταφέραμε να ανακαλύψουμε εκτενείς διαφορές μεταξύ των 
miRNA των υγιών και των διαβητικών ατόμων με διάφορες τεχνολογικές μεθόδους. 
Επιπλέον, μέσω της ανάλυσης διαθέσιμων βιολογικών δεδομένων ανακαλύψαμε 
πολλά υπόψια γονίδια που θα μπορούσαν να είναι στόχοι των miRNA και, 
ταυτόχρονα, σχετίζονται με τον T2D. Με αυτόν τον τρόπο ρίξαμε φως σε περίπλοκα 
δίκτυα αποτελούμενα απο miRNA και από γονίδια-στόχους που ελέγχουν την 
απελευθέρωση της ινσουλίνης και αποσταθεροποιούνται κατα την εξέλιξη του 
T2D. Συνεπώς, συντονισμένες προσπάθειες να διασαφηνιστούν και να 
αποκατασταθούν αυτά τα δίκτυα θα προσφέρουν καινούριους τρόπους να 
διαχειστούμε και να θεραπεύσουμε τον T2D. 

Συνολικά, η διατριβή αυτή παρουσιάζει μεθόδους με τις οποίες διάφορα είδη 
βιολογικών δεδομένων μπορούν να ενσωματωθούν και να αποτελέσουν χρήσιμο 
εργαλείο ώστε να εξερευνηθούν και να αποκαλυφθούν νέες αιτίες της μειωμένης 
παραγωγής ινσουλίνης στον T2D. Έτσι, αποκαλύπτουμε ανεξερεύνητα μέχρι τώρα 
γονίδια και miRNA, που μπορούν να επηρεάσουν την παγκρεατική λειτουργία, και 
κατ’επέκταση, την εμφάνιση T2D, αποδεικνύοντας ότι είναι ιδανικοί υποψήφιοι για 
θεραπείες έναντι αυτής της νόσου.   
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Introduction 

Diabetes mellitus 

Overview 
Diabetes mellitus is the most frequent form of diabetes and is related to high blood 
glucose due to a metabolic disorder. Diabetes originates from the Greek word “pass-
through” and mellitus from the Latin word  “honey sweet” and the disease was first 
accurately described during the 2nd century AD by Aretaeus of Cappadocia as a 
chronic disease with excessive urination as a prominent symptom, affecting only a 
few people [1]. Today things have changed drastically since diabetes is a well-
known chronic metabolic disorder with diverse complications attributed to elevated 
blood glucose levels (hyperglycaemia) [2]. According to the International Diabetes 
Federation (IDF) as of 2021 almost 10% of the adult population are living with 
diabetes worldwide with the number only expected to rise further by 2047 (12.2%) 
[3]. Diabetes mellitus and its complications cause one of the top 10 highest 
percentages of deaths from all causes globally with 6.7 adult million deaths in 2021 
[4, 5]. This imposes a tremendous socioeconomic impact on a global scale including 
Sweden, where billions of Swedish kronor are provided in the healthcare system 
annually for direct or indirect costs related to diabetes treatment [6]. 

This high prevalence of diabetes is mainly the result of rapid economic development 
and a global nutritional and lifestyle transition. High-caloric diet and obesity, 
reduced physical activity, smoking, and increased psychological stress have all been 
described as key determinants in the development of diabetes [7]. However, equally 
important traits that can lead to the onset of the disorder are connected to genetic 
factors that characterize specific ethnic groups, particular families, or individuals 
with genetic predisposition [7, 8]. The vulnerability of a large proportion of the 
population to diabetes can be explained by the evolutionary history of our species 
and two main hypotheses have been suggested. The “thrifty genotype hypothesis” 
proposes that natural selection favoured individuals or groups that displayed 
superior metabolic efficiency and increased capability of energy storage in periods 
of food scarcity [9]. The “thrifty phenotype hypothesis”, on the other hand, assumes 
that nutrition in early developmental stages defines structural and metabolic changes 
that affect glucose metabolism during adulthood [10]. For instance, foetal and infant 
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undernutrition can result in slower systemic glucose clearance, a trait that can be 
useful for survival early in life, but can lead to diabetes development in the future 
[10, 11]. The crosstalk between environmental conditions and developmental 
changes seems to be mediated by epigenetic changes, which can impact both insulin 
secretion and insulin action [12]. 

A regulatory feedback loop between insulin secretion by pancreatic β-cells and 
insulin action in target tissues such as liver, adipose, and muscle tissues tightly 
regulates blood glucose levels [13]. The combination of dysfunctional β-cells and 
suboptimal insulin sensitivity of target tissues is what causes hyperglycaemia with 
severe long-term complications. Chronic exposure to elevated blood glucose levels 
has been found to provoke microvascular and macrovascular structural alterations 
which disrupt the normal function of multiple organs including the kidneys, the 
nerves, the eyes, and the heart [14].  

Despite its high prevalence and severity, in many cases, diabetes is often diagnosed 
long time after onset due to the absence of acute symptoms. According to the most 
recent IDF statistics, the majority of people with diabetes globally (55.3%) are 
undiagnosed [15]. This is important since lack of diagnosis and thus treatment poses 
a greater risk of suffering from diabetes-related complications [7]. Diagnosis takes 
place after intravenous measurement of blood glucose levels either in a fasting state 
(fasting plasma glucose), after an oral glucose tolerance test or after measurement 
of glycated haemoglobin A1C (HbA1c) levels in the blood. HbA1c is an indicator 
of the average blood glucose over a span of 2-3 months [13, 16]. In addition to 
diabetes, these tests can also demonstrate if an individual is prediabetic with a high 
risk of developing diabetes and its complications. Prediabetes and diabetes are both 
characterized by impaired fasting glucose, impaired glucose tolerance, and HbA1c 
over 6% (42 mmol/mol) [16]. In most cases lifestyle interventions are sufficient to 
prevent long-term complications or revert the prediabetes/diabetes status, however, 
other cases require temporary or life-long medication [17]. In most cases, this 
depends on the type of diabetes an individual is diagnosed with. 

Diabetes classification 
Diabetes mellitus is a heterogeneous disorder with different causes and phenotypic 
outcomes. The first World Health Organization (WHO) report in 1965 classified 
diabetes cases using the age of diagnosis and the amount of insulin necessary for 
survival as the main criteria, alongside gestational diabetes, described as 
hyperglycaemia during pregnancy and hyperglycaemia related to specific diseases 
or drugs [18]. Figure 1 shows the current widely accepted classification that divides 
diabetes into four categories: 1) type 1 diabetes (T1D) with severe insulin deficiency 
due to immunological destruction of β-cells, 2) type 2 diabetes (T2D) with 
progressive loss of β-cell insulin secretory capability usually combined with insulin 
resistance, 3) gestational diabetes mellitus and 4) diabetes due to other causes 
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including i) monogenic diabetes syndromes, ii) diabetes caused by diseases or iii) 
drug/chemically-induced diabetes [19], which includes, for instance, 
glucocorticoid-induced diabetes. Among the different categories, the most common 
is type 2 diabetes, accounting for 90% of all diabetes cases [20]. Given the 
substantial variability of susceptibility, progression, related complications, and 
response to therapeutic remedies of people with T2D, there have been recent 
attempts to further stratify T2D into specific subgroups.  

Figure 1. Classification and prevalence of Diabetes Mellitus.  

T2D subgroups 
By using high-dimensional clinical phenotypic data, Li and colleagues identified 
three subgroups of T2D patients based on their diabetes-related complications [21]. 
On the other hand, by performing cluster analysis on six anthropometric and clinical 
variables Ahlqvist et al. reported five distinct diabetes subgroups in the ANDiS (All 
New Diabetics in Scania) cohort, namely severe autoimmune diabetes (SAID), 
severe insulin-deficient diabetes (SIDD), insulin-resistant diabetes (SIRD), mild 
obesity-related diabetes (MOD) and mild age-related diabetes (MARD) [22]. The 
five subgroups have been robustly replicated in cohorts from different ethnic groups 
[23-26]. Interestingly, by using the same clustering method in an Asian Indian 
population two novel subgroups have emerged: Insulin Resistant Obese Diabetes 
(IROD) and Combined Insulin Resistant and Deficient Diabetes (CIRDD) [27], 
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while the inclusion of socioeconomic variables led to the identification of three low-
risk clusters (very low-risk (VLR), low-risk low β-cell function (LRLB), low-risk 
high β-cell function (LRHB)) and three genome-wide clusters (high-risk high blood 
pressure (HRHBP), high-risk β-cell failure (HRBF), and high-risk insulin-resistant) 
in a combined set of Swedish and Mexican cohorts [28]. Contrary to the hard 
clustering methods applied above, a recent study performed soft clustering in T2D 
patients using 32 anthropometric, clinical, and biochemical variables to detect the 
baseline T2D aetiology and classify people into a phenotypic spectrum, rather than 
clearly defined subgroups, with four phenotype archetypes on the “extremes” [29]. 
Furthermore, other studies have focused on classifying individuals depending on 
how susceptible they were to T2D and their risk for developing serious related 
complications [28, 30, 31]. A robust and accurate clustering may be the key to 
personalized treatment of T2D in the future. However, there are still concerns about 
how this heterogeneous disease can be classified and how this knowledge can be 
transitioned into the clinic. In this regard, there are studies that are unable to 
replicate the aforementioned findings in other cohorts [32] or are skeptical towards 
the clinical applicability of these methods since they require hard-to-obtain clinical 
and biochemical data [25].  

Glucocorticoid-induced diabetes 
Glucocorticoids are steroid hormones naturally produced by the adrenal glands and 
are involved in diverse physiological processes including metabolism, immune 
response, growth, development, and behaviour [33, 34]. The therapeutic action of 
exogenous glucocorticoid supplementation was first discovered in patients with 
rheumatoid arthritis in 1949 [35]. Further research led to the development of 
synthetic glucocorticoids that were structurally similar to the endogenous 
hydrocortisone (cortisol) but more stable and potent [36].  

Due to their anti-inflammatory, anti-allergic, and immunosuppressive properties 
glucocorticoid use is now essential in the clinical setting against a wide array of 
diseases [37-39], with oral glucocorticoids being prescribed to almost 1% of the 
global population [40, 41]. However, it is the same diversity in their mechanisms of 
action that can cause a wide range of adverse effects that are associated with the 
dose and duration of the glucocorticoid treatment [42, 43]. Hyperglycemia is a well-
documented complication of high-dose or prolonged glucocorticoid treatment and 
can be attributed to various metabolic side effects including increased insulin 
resistance, dysregulated lipid metabolism, and overproduction of endogenous 
glucose from the liver [39, 44]. This can gradually lead to the development of 
glucocorticoid-induced (or steroid-induced) diabetes mellitus. On a global scale, 2% 
of newly diagnosed diabetes is a direct consequence of oral glucocorticoid use [45, 
46]. As shown by a meta-analysis, long-term glucocorticoid treatment (>1 month) 
of non-diabetic individuals preceded glucocorticoid-induced hyperglycemia in 32% 
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of the cases and progressed into diabetes in 19% of them [47]. Glucocorticoid-
induced hyperglycemia has more severe consequences in individuals with pre-
existing insulin resistance [48] or impaired glucose-stimulated insulin secretion 
[49], as well as in obese females [50], first-degree relatives of individuals with T2D 
[51], those at a higher age [52, 53] or of specific races [54].  

β-cell contribution to glucocorticoid-related diabetes 
The mechanisms behind the induction of peripheral insulin resistance by 
glucocorticoids that contribute to hyperglycemia are well-described in the literature 
[39, 44]. In that context, glucocorticoid-induced diabetes can be mainly triggered 
by the inability of β-cells to sustain an increased insulin secretion rate to compensate 
for the elevated glucose levels [39]. However, evidence also suggests a direct 
negative effect of glucocorticoids in the β-cells. Administration of a single oral dose 
of prednisolone [55] or dexamethasone [56] in healthy volunteers results in impaired 
insulin secretion and/or a reduced insulinogenic index after a meal or oral glucose 
tolerance test. In a similar fashion, a single dose of glucocorticoid treatment in mice 
inhibits glucose-stimulated insulin secretion [57]. These findings are confirmed in 
vitro in rodent islets [58-60], in human islets, and in the human β-cell line EndoC-
βH1 [61]. Nevertheless, the full set of genes affected by glucocorticoids in the β-
cell is not disclosed, and neither are the mechanisms by which they act on insulin 
secretion.  

Glucose homeostasis and human pancreatic islets 
Glucose homeostasis is crucial for the survival of mammals. Therefore glucose 
levels need to be tightly regulated to avoid disease pathogenesis and should remain 
within a range of 4–6 mM [62]. Increased blood glucose levels after feeding 
stimulate the pancreatic islets to release insulin into the bloodstream (Figure 2). 
Insulin binds to receptors on the skeletal muscles, liver, and adipose tissue to 
promote glucose uptake, utilization, and storage in those tissues and inhibits 
endogenous glucose production by the liver at the same time [63]. This leads to the 
reduction of blood glucose levels, which also removes the stimulus for insulin 
release. Conversely, during prolonged fasting in between meals or during sleep 
when glucose levels are decreased, islets secrete glucagon, which targets receptors 
in the liver that induce endogenous glucose production and release into the 
bloodstream [64]. This fine-tuned system is controlled by the counter-acting 
hormones insulin and glucagon secreted by the endocrine pancreas.   
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Figure 2. Regulation of glucose homeostasis by the pancreas and peripheral tissues. 

Pancreas is both an exocrine and endocrine organ. The exocrine part of the pancreas 
is dominant and mainly consists of acinar cells responsible for the production and 
secretion of digestive enzymes such as amylase, pancreatic lipase, and trypsinogen, 
into the ducts and straight to the duodenum [65]. The endocrine part consists of 
groups of clustered cells scattered across the pancreas called pancreatic islets, or 
islets of Langerhans, and comprise only 1-2% of the entire pancreas [66]. Each islet 
consists of an intermixed population of five distinct cell types: α-cells that secrete 
glucagon (15-46% of the total islet), β-cells that secrete insulin (48–80% of the total 
islet), PP- or γ-cells that secrete pancreatic polypeptide (PP) (3-12% of the total 
islet), δ-cells that secrete somatostatin (3-10% of the total islet) and ε-cells that 
secrete ghrelin (<1% of the total islet) [62, 67]. Insulin reduces blood glucose and 
glucagon induces blood glucose increase. However, glucose homeostasis is also 
affected by the other endocrine cell types as well, as both PP [68] and somatostatin 
[69] have been shown to exert inhibitory effects on insulin and glucagon secretion.
Due to the central role of insulin in the modulation of metabolism, the insulin-
secreting β-cells have been extensively studied.
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β-cell stimulus-secretion coupling and exocytosis 
Stimulus-secretion coupling refers to the molecular mechanisms involved in the 
transition from a stimulus to the eventual hormonal release. In the case of β-cells, 
the term glucose-stimulated insulin secretion (GSIS) is used since elevated blood 
glucose levels are the main stimulus for insulin release [70]. This molecular pathway 
which has been described several times before [71-73] starts when circulating 
glucose is taken up by β-cells through the glucose transporter GLUT2 (SLC2A2) 
and undergoes glycolysis generating pyruvate. Pyruvate is then used by the 
mitochondria as a substrate for the tricarboxylic acid (TCA) cycle that leads to the 
generation of ATP and the subsequent increase of the cellular ATP/ADP ratio. This 
causes the closure of ATP-sensitive potassium (KATP) channels, which inhibits the 
flow of positively charged K+ ions out of the cell. Under low glucose conditions, the 
open KATP channel and the outward flow of K+ ions maintain the resting membrane 
potential under non-stimulatory conditions. The closure of the KATP channel at high 
glucose causes the generation of β-cell action potentials and depolarization of the 
cell membrane [73]. Nevertheless, a recent study suggested that the closure of the 
KATP channel is not enough for generating action potentials and that a depolarizing 
current through the mechanosensitive ion channel PIEZO1 is also required [74]. The 
depolarization of the membrane causes voltage-gated Ca2+ channels (VGCCs) to be 
activated and results in the consequent transportation of Ca2+ ions into the cell. This 
sharp rise of intracellular Ca2+ concentration triggers the exocytosis of insulin 
granules.  

Insulin exocytosis requires the prior microtubule-based transportation of insulin 
granules from the Golgi apparatus towards the plasma membrane, followed by the 
docking, priming and fusion of the granules with the membrane. Priming is the 
process that prepares the granules for fusion with the plasma membrane and the 
subsequent release of insulin. This process is ATP- and cAMP-dependent [75-77]. 
The primed insulin granules form the readily releasable pool of granules that 
comprise only 1% of the total granules in the β-cell [78]. The final fusion requires 
the formation of a SNARE-complex consisting of the vesicular VAMP2 and the 
membrane-bound SNAP25 and syntaxin-1A (Stx1A) proteins. The docking, 
priming and fusion of the insulin granules are also modulated by other proteins such 
as STXBP1 (MUNC18), RAB3A and/or RAB27 [75]. The SNARE complex 
undergoes several conformational changes before the granules are fused with the 
membrane and, subsequently, release their content. The Ca2+-sensing 
synaptotagmin (SYT) proteins transfer the Ca2+ signal, which is necessary to trigger 
insulin secretion, to the SNARE complex [73].  

A constant increase in blood glucose results in the release of insulin in two phases, 
a first rapid phase lasting 5-15 minutes followed by a second slower phase. The first 
phase can be stimulated in the absence of glucose, e.g., through membrane 
depolarization using an extracellular solution with a high concentration of K+. On a 
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cellular level, the pool of readily release granules can also be released in an ATP‐
independent way [77], which is why it has been suggested that this pool of granules 
is released during the first phase of insulin secretion, whereas the second phase 
requires glucose for the mobilization of new granules to the membrane [75, 78].  

The process mentioned above, which describes the β-cell stimulus-secretion, is 
summarized in Figure 3 and defines the “triggering pathway” of insulin release [72, 
73]. However, sustained glucose stimulation after a meal can lead the β-cells to 
eventually secrete a higher amount of insulin through exposure to other stimuli such 
as incretin hormones (e.g. GLP-1, GIP) through a pathway that is independent of 
the KATP channel closure, but requires the depolarization of the plasma membrane 
and an increase in Ca2+ levels. This characterizes the “amplifying” pathway [71]. 
The amplifying pathway of insulin secretion cannot substitute, but has an additive 
effect, on the triggering pathway and is mediated by other intracellular signals such 
as cAMP, glutamate, NADPH, long-chain acyl-CoA derivatives, and superoxides 
[79].  

Figure 3. Schematic representation of the stimulus-secretion coupling and secretory granule 
exocytosis  in the pancreatic β-cell 
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β-cell dysfunction in type 2 diabetes 
As described above, insulin deficiency is a major driver of T2D development, which 
is the result of both the reduction of β-cell mass and the deterioration of β-cell 
function [80]. Considering the substantial reduction of β-cell function [81, 82], but 
the limited decrease of β-cell mass at T2D onset [83], we could assume that the two 
processes are independent and β-cell function impairment comes at an earlier stage 
during T2D pathogenesis.    

Recent studies suggest that the loss of β-cell mass and functionality is the result of 
a de-differentiation process in which mature β-cells revert to endocrine progenitor-
like cells [84, 85]. This mechanism was first demonstrated in a β-cell specific 
FoxO1-knockout mouse model with reduced pancreatic insulin content, whose β-
cells were found to be expressing progenitor markers such as Neurog3, 
Pou5f1(Oct4), Nanog, and Mycl [86]. This has been later supported by findings in 
the β-cells from diabetic mouse models or individuals with T2D, in which lineage-
defining transcription factors, such as PDX-1 and MAFA, were suppressed [87]. 
Some studies also demonstrated the transition of β-cells to other endocrine cell 
types, a process referred to as trans-differentiation. For instance, β-cell-specific 
removal of FoxO1 and Pdx-1 in mice led to the transition of a proportion of β-cells 
into cells that strongly resemble glucagon-secreting α-cells [86, 88]. The β-cell loss 
of identity can be induced under conditions of prolonged hyperglycemia [89]. 
Several studies have also described increased de-differentiation in T2D, as defined 
by the existence of endocrine cells with a lack of hormone expression. While some 
studies report a smaller proportion of de-differentiated cells compared to the total 
islet cell number [90, 91], others have calculated a ≈3-4 fold increase of de-
differentiated cells in islets from T2D individuals [92, 93]. However, the relevance 
of de-differentiation on the reduction of functional β-cell mass that leads to T2D is 
still unclear. 

T2D and the associated β-cell dysfunction have been also tightly linked to chronic 
exposure to excess lipids (lipotoxicity), usually in the presence of elevated glucose 
levels (glucolipotoxicity) [94]. This can explain why individuals with high BMI 
display increased fat accumulation in their islets [95]. Glucolipotoxicity was shown 
to impair GSIS, an effect partly attributed to the increased physical distance of Ca2+ 
channels and insulin granules [96, 97]. Glucolipotoxicity was shown to diminish 
insulin transcription through the reduction of MafA expression and the impairment 
of the Pdx-1 translocation into the nucleus in isolated rat islets [98]. The same effect 
has been also observed after the suppression of NeuroD [99] and the induction of 
C/EBPB expression [100] under glucolipotoxicity conditions.  

Metabolic cellular alterations can also have a significant impact on β-cell 
impairment. Pancreatic β-cells can gradually lose their “metabolic flexibility” which 
under normal conditions allows mitochondria to utilize efficiently different 
substrates for energy production other than pyruvate, such as fatty acids and amino 
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acids [101]. Evidence suggests that glucolipotoxicity can cause mitochondria to 
“overwork” to the point that substantial accumulation of oxidation byproducts, such 
as NADH and reactive oxygen species (ROS), contributes to β-cell dysfunction 
related to T2D [102, 103]. Interestingly, changes in mitochondrial morphology 
(fragmentation) and number (reduction) are also observable in T2D [103, 104]. 
Elevated nutrient levels also lead to increased demand for insulin biosynthesis and 
processing, a process which is undertaken by ER. ER stress can be the result of 
sustained overnutrition, which activates the unfolded protein response (UPR) and 
the consequent inhibition of protein translation through regulation of the PKR-like 
ER-associated kinase (PERK). Absence of PERK has been associated with impaired 
β-cell function and severe diabetes in both humans and mice [105]. Consistent with 
these findings, individuals with T2D were found to have both altered expression of 
several ER stress-sensing markers [106] and enlarged ERs [107]. However, the 
mechanism seems to be much more complex, since mitochondrial dysfunction and 
ER stress can be mutually sustained through a feedback loop where increased 
mitochondrial oxidation induces Ca2+ release from the ER though activation of pro-
apoptotic regulators of the Bcl-2 family [108].   

Furthermore, defects in the exocytotic process are apparent in T2D. Individuals with 
T2D display reduced or absence of first-phase GSIS [109, 110], which has been 
associated with a reduced number of readily releasable insulin granules [111]. 
Exocytotic proteins related to the SNARE complex, namely STX1A, SNAP25 and 
VAMP2, have been shown to have reduced expression in human and rodent T2D β-
cells [112-115]. Moreover, the expression of several members of the Ca2+-sensing 
SYT protein family are decreased in T2D individuals [95, 112]. 

Regulation of islet/β-cell gene expression and type 2 
diabetes  

Genetics 
Even though T2D is generally considered a multi-factorial and polygenic disease, 
in some cases, diabetes can be attributed to defects in a single gene. So far almost 
40 genes have been linked to cases of monogenic diabetes, which can be mainly 
categorized into maturity-onset diabetes of the young (MODY), neonatal diabetes 
mellitus (NDM), and syndromic diabetes [116]. Contrary to the well-defined genetic 
background of monogenic diabetes, in the polygenic T2D cases genome-wide 
association studies (GWAS) are necessary for the discovery of genes that are related 
to the disease. A recent large-scale, multi-ancestry meta-analysis has revealed 
almost 700 genetic risk loci that are related to T2D, which can collectively explain 
19% of the heritability of T2D [117]. This shows that single nucleotide 
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polymorphisms (SNPs) that comprise these loci have moderate, but cumulative, 
effects on disease risk [118].  

As the aim of GWAS is to identify and validate specific genes and molecular 
pathways that may contribute to T2D pathogenesis, the fact that the majority of the 
risk alleles reside in non-protein coding genomic regions introduces more 
complexity to the analysis [119]. In such cases, risk variants are linked to the most 
proximal gene. Alternatively, the casual risk variant can be located within a certain 
gene. One such case is the transcription factor TCF7L2, which harbours an intronic 
variant (rs7903146) that has been displaying the strongest and most consistent signal 
of association with T2D in multiple studies [120-122]. Further investigation showed 
that TCF7L2, which is involved in Wnt signalling, is a regulator of several pathways 
involved in the regulation of β-cell mass and development, as well as the regulation 
of insulin synthesis and processing [123, 124]. Similarly, T2D risk variants have 
been associated with more genes that regulate β-cell function and development, as 
well as insulin transcription, secretion and exocytosis across different studies [95, 
125-127]. Notably, when T2D-risk loci were classified according to their 
association with other phenotypes relevant to T2D pathophysiology, the majority of 
them were found to be related to insulin secretion rather than insulin resistance traits 
[128]. As the systematic functional validation of the high number of T2D-risk 
variants and the potential casual genes remains a technical challenge, high-
throughput β-cell dysfunction screens in human β-cell lines could be an effective 
way forward [129].  

Intriguingly, recent research on islet 3D chromatin structure suggests that the linear 
proximity approach applied to GWAS analyses may not always be optimal [130]. 
That is why SNPs that can explain part of the expression variation of specific genes, 
or expression quantitative trait loci (eQTLs), are usually used to complement the 
outcomes of GWAS studies. If a specific genetic variation is correlated with the 
expression levels of a gene and at the same time it is detected as a disease risk locus, 
while the gene itself displays altered expression in the disease state, then a strong 
causal relationship can be established between this allele and the disease 
pathogenesis [131]. Large-scale studies have managed to reveal the colocalisation 
of around 50 variants that are identified as both islet-specific eQTLs and GWAS 
T2D risk loci, which are expected to play crucial roles in the pathogenesis of the 
disease [132, 133]. 

Genetic variant composition is only one component of a complex network of 
molecular interactions that can lead to T2D pathogenesis.  

Transcriptomics 
Gene transcription is a highly dynamic and tissue-specific process that is dependent 
on a genetic and an environmental component. In that way, certain conditions can 
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trigger distinct expression patterns that can affect the phenotype. However, there are 
several genes whose expression needs to be tightly controlled for the establishment 
and maintenance of the mature β-cell identity such as NEUROD1, NKX6.1, PAX4, 
PAX6, FOXA2, PDX-1, NKX2.2, MAFA and ISL1 [134, 135]. Equally important to 
the expression of β-cell specific master regulators is the constant repression of genes 
whose action is not consistent with the requirements of β-cell function, but are 
highly abundant in most tissues [136, 137]. The list of nearly 70 “disallowed” genes 
includes genes that are involved in the transportation or metabolism of alternative 
glycolysis products that would result in suboptimal ATP production compared to 
glucose [138, 139]. Dysfunctional β-cells are characterized by either decreased 
expression of β-cell markers or abrupt expression of disallowed genes [140, 141]. 

Although β-cells are considered a group of cells with high functional similarity, 
multiple studies investigating single-cell transcriptomic differences between human 
islet cell types have suggested that β-cells display diverse properties and are 
clustered into different functional groups with various methods [142]. This is in line 
with observations that show important β-cell markers to be only expressed in a 
fraction of β-cells [143]. The transcriptome heterogeneity also confirms previous 
findings regarding functional heterogeneity related to glucose response and insulin 
secretory capacity [144-146]. A pioneering study managed to prove β-cell 
heterogeneity related to ion channel activity and exocytosis by combining 
electrophysiological measurements with single-cell RNA sequencing data, a 
technique referred to as patch-seq [147]. However, the use of single-cell RNA 
sequencing methods comes with drawbacks, as the probability of inflated false-
negative values due to the systematic bias towards highly abundant transcripts is 
high [148]. This is why it is important to also consider studies investigating the 
transcriptome in the whole islet using bulk RNA sequencing techniques.  

In the pursuit of discovering genes important for the pathogenesis of T2D, several 
studies have compared the transcriptomic profiles of human islets from donors with 
and without T2D and are included in Table 1. A recent review that compared β-cell 
T2D DE genes between several single-cell sequencing studies found only FXYD2, 
a gene encoding a regulatory subunit of the Na+,K+-ATPase, to be replicated across 
studies [142]. Moreover, although reduced insulin biosynthesis is widely observed 
under T2D conditions, only three studies have reported decreased insulin 
transcription in islets from T2D donors [149, 153, 154]. This can be explained by 
the fact that insulin content is not dependent on the number of insulin transcripts, 
but rather the mechanisms underlying the translation and processing of pro-insulin 
into insulin [72]. However, the fact that other well-defined T2D genes have not been 
identified with high-throughput sequencing approaches raises concerns about the 
reliability and reproducibility of the methods. The low number of samples and cells 
that result in low statistical power, the individual donor variability and the islet 
heterogeneity, as well as the variety of statistical methods used, can be potential 
reasons for the divergent outcomes. In any case, large-scale studies that combine 
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multiple levels of genetic, epigenetic, and transcriptome data in order to capture the 
T2D pathophysiology are missing. 

Table 1. Summary of published studies in which comparisons between the human islet transcriptomes 
of control and individuals with T2D were performed. 

Transcriptomic 
type 

Detection method Control/ 
T2D cases 

Reference 

Bulk 
(Microarray) 
sequencing 

Affymetrix HG U133A 7/6 Bugliani et. al [149] 
Affymetrix HG U133A and B 7/5 Gunton et. al  [150] 
Affymetrix HG U133Plus2.0 116/55 Solimena et. al [151] 

GeneChip Human Gene 1.0 ST 54/9 Taneera et. al [152] 

Single-cell 
sequencing 

Smart-seq2 
Fluidigm C1 
Fluidigm C1 
Fluidigm C1 
Smart-seq2 
Drop-seq 

Fluidigm C1 

6/4 
5/3 
12/6 
3/2 
18/7 
6/3 
4/10 

Segerstople et. al [153] 
Lawlor et. al [154] 

Xin et. al [155] 
Wang et. al [156] 

Camunas-Soler et. al [147] 
Fang et. al [157] 

Avrahami et. al [158] 

Epigenetics 
An important layer of gene expression regulation depends on heritable changes in 
gene function or activity without alteration of the DNA sequence. Contrary to the 
genome, the epigenome is dynamic and highly variable between tissues and cell 
types, across different environmental conditions and over time [159]. DNA 
methylation and histone modifications are the two widely accepted epigenetic 
mechanisms. Despite the lack of evidence regarding their heritability, miRNAs can 
also be considered epigenetic regulators. The fact that miRNAs are able to both 
orchestrate and be regulated by epigenetic modifications [160] and that they are 
largely affected by environmental stimuli [161], validates their substantial 
epigenetic role. This is further supported by findings demonstrating the heritability 
of miRNA abundance in mice [162]. 

Molecular tags 
Epigenetic modifications include the methylation of specific DNA nucleotides 
(DNA methylation) and the methylation, acetylation, phosphorylation, and 
ubiquitination of specific histone residues (histone modifications) [163]. Both these 
changes affect the accessibility of gene regulatory elements on the DNA, which can 
be facilitated or hindered by the local chromatin formation [164]. Depending on the 
pattern of these alterations, transcription factors (TFs) can bind on certain DNA 
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sequences by relocating or removing nucleosomes generating, in that way, ”open 
chromatin” [165].  

Open chromatin regions are widely used to determine regulatory active loci across 
different species and cell types [166]. In the human pancreatic islet, thousands of 
conserved and islet-specific open chromatin sites have been identified [167]. 
Integration of histone modification pattern data showed that these regions overlap 
with promoters and distal enhancer clusters (active or quiescent) which are targeted 
by transcription factors in order to activate the expression of genes responsible for 
maintaining the islet identity [168]. The distal enhancers and promoters can interact 
in 3D space and form regulatory hubs, which control the activation of genes 
implicated in islet differentiation and function [130]. Thus, it is no surprise that T2D 
risk variants have been consistently shown to reside in open chromatin/enhancer 
regions [130, 167-170]. Findings from single-cell islet chromatin accessibility 
analysis revealed lineage (between cell types) and state-specific (within the same 
cell type) differences between the endocrine islet cells [171]. For instance, β-cells 
were clustered into high and low insulin producers based on their open chromatin 
profile and, interestingly, genetic variants linked with fasting glucose were 
associated only with the high insulin producers, while T2D-related variants were 
linked to β-cells in both states [171]. The same pattern was observed in a recent 
study where two β-cells groups were identified based on the dosage of a specific 
epigenetic histone modification, in which higher levels were accompanied by 
increased metabolic activity and insulin secretion capability [172]. Furthermore, the 
comparison of the human islet genome-wide methylome in human islets from T2D 
and non-diabetic donors revealed almost 26,000 differentially methylated regions in 
T2D islets, which overlapped with genes with altered expression in T2D that are 
involved in important islet functions [173]. Interestingly, changes in methylation 
levels were observed together with altered histone markers, suggesting that they 
might be part of a common epigenetic mechanism of gene expression regulation that 
drives β-cell dysfunction in T2D [173]. However, further studies are required to 
conclude if these changes can lead to the development of T2D or are just a 
consequence of the disease. 

miRNAs 
MicroRNAs (miRNAs) are a group of short non-coding RNAs (≈19–23nt), 
responsible for post-transcriptional control of gene expression. Their main function 
is to mediate gene silencing by triggering poly(A)-deadenylation or translational 
inhibition followed by degradation of their target mRNAs [174, 175]. However, 
under certain conditions, miRNAs can induce mRNA translation [176, 177].  

The canonical miRNA biogenesis pathway, as illustrated in Figure 4, starts with the 
transcription, splicing, and poly-adenylation of primary miRNAs (pri-miRNAs, 
≈1000nt) from the corresponding genes, which form a characteristic hairpin 
structure [178]. The duplex at the hairpin base is then cleaved by Drosha in the 
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nucleus, generating the precursor miRNA (pre-miRNA, ≈70nt), which is then 
exported to the cytoplasm by Exportin-5 (XPO5) [179, 180]. The pre-miRNA is
further cleaved by Dicer in its terminal loop to produce a mature ≈22nt double-
stranded miRNA [181]. The mature miRNA is then loaded to members of the AGO 
family of proteins, forming the RNA-induced silencing complex (RISC), where it 
is unwound, one strand is discarded (“passenger” strand), while the other (“guide” 
strand) establishes an active RISC that can bind on target mRNAs [182]. The 
binding involves complementary base pairing of the miRNA sequence at positions
2–8, which are referred to as the seed sequence, to nucleotides within the 3′ UTRs 
of the target mRNAs [183].

Figure 4. The canonical pathway of miRNA biogenesis.

Members of the same miRNA family are defined by the similarity of their seed 
sequences and, even though they are evolutionary related, they may differ in their 
primary or secondary structure [184]. Moreover, members of the same miRNA 
family display heterogeneity between their mRNA targets due to pairing involving 
sites beyond the seed sequence [185]. The small size of the seed sequence is the 
reason that one miRNA can have multiple targets and why a single gene can be
targeted by different miRNAs. In reality, the impact of miRNA action is even larger
considering that non-canonical binding, which involves sites outside the miRNA 
seed sequence or the mRNA 3’ UTR, is an extensive phenomenon [183]. Moreover, 
miRNA action can be affected by genetic polymorphisms or epigenetic 
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modifications, such as RNA editing, as well as by interactions with RNA binding 
proteins (RBPs) or other non-coding RNAs. Overall it is estimated that ≈60% of all 
human protein-coding genes are conserved targets of miRNAs [186].  

The importance of the global miRNA impact on β-cell identity and function has 
been shown in β-cell specific Dicer1 knockout mouse models. These mice displayed 
diminished insulin transcription, reduced granule docking, and impaired insulin 
secretion [187]. The first miRNA that was described in the pancreatic islets is the 
highly abundant miR-375 [188]. Further investigation of this miRNA revealed its 
implication in multiple key mechanisms in the β-cells including insulin 
biosynthesis, β-cell development and differentiation, and insulin exocytosis [189]. 
Since then many miRNAs have been associated with the regulation of all aspects of 
GSIS such as glucose transport and metabolism, insulin biosynthesis and 
transcription of important β-cell transcription factors, electrical activity and Ca2+ 
influx, as well as exocytosis [190, 191].  

Although most of the findings were reported in rodent islets/cell lines, due to the 
difficulty in obtaining human islets or the limited number of functional human β-
cell lines, some miRNAs have been replicated in human islets/cell lines. For 
instance, suppression of miR-7, miR-125b, or miR-335 improved GSIS, while 
overexpression of miR-200 and miR-375 decreased GSIS [192-196]. Furthermore, 
two studies that independently investigated the effects of miRNAs on insulin 
transcription in human islets showed that miR-204 and a group of 8 miRNAs, 
including miR-375 and miR-7, can regulate the levels of insulin abundance in the 
β-cell [197, 198]. While a higher number of β-cell-specific miRNAs have been 
identified with microarrays or small RNA sequencing in sorted β-cells from human 
islets [199-201], their significance in β-cell function is still not known. 

As an element of epigenetic regulation miRNAs are mediators between 
environmental stimuli and protein expression. In the context of β-cell function, the 
expression of miRNAs has been shown to be modified by glucose or fatty acids 
usually in the form of palmitate. Specifically in human islets, glucose or palmitate 
treatment can induce the expression of miR-25, miR-455, miR-24, and miR-125b, 
which exert negative downstream effects on insulin secretion or β-cell 
proliferation/apoptosis [193, 202-204]. This is a type of condition-specific miRNA 
regulation where alterations of miRNA expression levels under certain conditions 
disrupt the standard gene expression motifs [205, 206]. MiRNAs can also act as 
constitutive gene expression suppressors that are essential in preserving the 
functionality of specific cell types by constantly repressing gene targets that could 
hinder their function, referred to as “disallowed” genes. In other cases, miRNAs are 
responsible for maintaining the protein output within an optimal range to ensure an 
ideal cellular phenotype through a feedback mechanism [205]. For example, both 
increased or decreased expression of miR-375 can have a deleterious effect on the 
β-cells [189]. This miRNA mode of action can be mediated by positive and negative 
regulatory feedback loops with specific transcription factors [207]. Lastly, changes 
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in the miRNA expression levels can have a neutral impact on the phenotypic output
of a cell as its targeting may lack biological function, or may be tolerated via 
compensation by other cellular processes and molecular programs [208].

Based on the above, it is not surprising that islets derived from individuals with T2D 
display distinct global miRNA profiles compared to controls [191]. However, such 
data are not available for the different islet cell types due to the low availability of 
human islets and the technical challenges of islet cell sorting and high-throughput 
small RNA sequencing [209]. Interestingly, on the islet level, miRNA differential 
regulation in T2D and abundance do not seem to coincide.

The expression of highly abundant miRNAs, such as miR-375, seems to be 
unaffected in T2D, possibly because of its implication in islet “housekeeping” 
processes and the need for its expression to be maintained at an optimal level, as 
mentioned before. On the other hand, significant changes in low-abundant miRNAs 
may be the result of small changes in the absolute copy number of the miRNAs that 
have insignificant biological relevance [190, 191]. This is why functional validation
of the findings suggested by large-scale studies is necessary. As seen in Figure 5, 
several studies that experimentally validated differentially expressed miRNAs in 
T2D found that these miRNAs can either compensate for the adverse effects of the 
disease by increasing the proliferation or insulin secretion of the β-cells or 
contribute to T2D pathogenesis by promoting the functional impairment or 
apoptosis of the β-cells [209].

Figure 5. The dual role of experimentally validated differentially expressed (DE) miRNAs in T2D.
Adapted from [209]. GSIS; glucose-stimulated insulin secretion.
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Epitranscriptomics 
Another field of epigenetic control studies epitranscriptomics, which encompasses 
the investigation of reversible chemical modifications in diverse positions on the 
RNA (tRNA, mRNA, rRNA, miRNA, and other non-coding RNAs) [210]. These 
changes can affect the transcript splicing, translation, and RNA-protein interactions 
leading to functional and metabolic RNA alterations [211]. N6-methyladenosine 
(m6A), which is the most abundant modification of the mRNA, was found to be a 
mediator between glucose sensing and β-cell function [212]. High glucose caused a 
reduction of m6A methylation in human islets, which subsequently affected the 
expression of genes important for β-cell identity and insulin secretion [212]. In 
agreement with these findings, human islets from T2D donors displayed reduced 
levels of m6A methylation on the mRNA of key genes involved in cell cycle 
regulation, β-cell identity, and function [213]. Although this is still an emerging 
topic in the context of T2D pathogenesis, it holds great promise for potential 
therapies for the disease. 
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Aims  

This thesis aims to investigate the molecular mechanisms underlying the 
pathogenesis of glucocorticoid-induced and type 2 diabetes in human islets and β-
cells by utilizing different bioinformatics methods and types of data.  

Glucocorticoid-induced diabetes is a type of diabetes with high prevalence due to 
the wide usage of glucocorticoids. The effect of glucocorticoids on the induction of 
peripheral insulin resistance is well-described, however many studies also suggest 
a direct deleterious effect on the β-cell function. While glucocorticoid gene targets 
important for the β-cell action have been detected, the molecular pathways behind 
the glucocorticoid-mediated human β-cell dysfunction remain largely uncovered. 

Type 2 diabetes is a multi-factorial disease whose aetiology should be sought among 
both genetic and environmental factors. The recent advancement of high-throughput 
molecular methods has led to an explosive increase of available data covering 
multiple biological layers including genetics, epigenetics, and transcriptomics. 
Despite impressive efforts to integrate data from various sources, the high 
complexity behind the mechanisms involved in type 2 diabetes pathogenesis makes 
the investigation of additional regulatory networks in a higher number of individuals 
necessary.    

Specific aims of the thesis 
I. Investigate the mode of action and impact of glucocorticoids on human islets and
β-cells and determine genes implicated in the glucocorticoid-mediated β-cell
dysfunction

II. Identify and associate human islet genes with multiple signals of association with
T2D that could contribute to the disease pathophysiology

III. Discover genomic sites and molecular pathways associated with islet miRNAs
with altered expression due to glycaemic status that could play a role in T2D onset

IV. Uncover differentially expressed miRNAs in T2D human islets that are
implicated in the insulin secretory mechanism and promote the development of T2D 



38 

Materials and Methods 

Various functional laboratory methods, bioinformatics workflows, and types of data 
have been employed during this thesis. This section will provide an overview of the 
biological data types used in the different projects and will focus on the methods 
used for transcriptome analysis of human islets and cell lines, which have been 
extensively applied in this thesis. Last, a brief description of the laboratory methods 
utilized in the projects will be presented. 

Overview of biological data types 
Table 2 presents an overview of the different types of large-scale biological data 
sets used in this thesis. It should be noted that this list is not exhaustive and 
additional information from various databases, e.g., miRNA-mRNA target, gene 
function and miRNA-disease data, were also utilised. 
Table 2. Overview of biological data types used in each project included in the thesis. Abbreviations: 
SNP; single nucleotide polymorphism, eQTL; expression quantitative trait loci, mQTL; methylation 
quantitative trait loci, TF; transcription factor, OCR; open chromatin region, DMR; differentially 
methylated region, ChIP; chromatin immunoprecipitation 

Data category Data type Paper I Paper II Paper III Paper IV 

Transcriptomics 

Total RNA sequencing X X X X 
Total RNA microarrays 

 
X 

  

Single-cell sequencing X X 
  

small RNA sequencing 
   

X 
small RNA microarray 

  
X 

 

Genetics 

SNPs 
 

X X 
 

eQTL 
 

X X 
 

mQTL  X   
TF binding motifs X X 

  

Epigenetics 

OCRs X X 
  

DMRs 
 

X 
  

ChIP sequencing X 
   

Enhancer-Gene 
interaction scores X    

 miRNA-mRNA targets   X X 
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Methods of transcriptome analysis 
The methods of transcriptome characterization that were applied in this thesis 
include microarrays, quantitative real-time polymerase chain reaction (qPCR), and 
next-generation sequencing (NGS). These methods were applied to identify both 
mRNA and miRNA expression levels.  

All procedures were initiated by extracting the RNA of the samples of interest. By 
using the miRNeasy isolation kit (Qiagen) the isolation of both mRNAs and small 
RNAs was ensured. Controlling the quality of the extracted RNA is essential for the 
accuracy and reproducibility of the experimental outputs. Moreover, since 
downstream assays require very small amounts of RNA, the accurate determination 
of the RNA quantity is also important.  

Quantitative real-time polymerase chain reaction (qPCR) 
qPCR is considered the gold standard for assessing nucleic acid levels in biological 
samples due to its high specificity and sensitivity [214]. Recently, the efficacy of 
qPCR was demonstrated to the general public when it was used as the most accurate 
diagnostic test against SARS-CoV-2 [215].  

Throughout the projects in this thesis, TaqMan® reagents (ThermoFisher) were 
utilized for qPCR. The procedure starts when RNA molecules are reverse-
transcribed to cDNA through a transcriptase polymerase chain reaction (RT-PCR). 
While RT-PCR is a one-step procedure, a different set of primers are suitable for 
cDNA synthesis when either mRNA or miRNA molecules are used as substrate. In 
the case of mRNAs, a set of random primers consisting of 
oligodeoxyribonucleotides (mostly hexamers) is used. This facilitates the initiation 
of the reverse transcription in potentially every mRNA in the sample, including the 
mRNA(s) under study. On the other hand, the problem of the small size of miRNAs 
(≈19-23nt) is addressed with a stem-loop reverse transcription (RT) primer [216]. 
This primer is specific for the reverse transcription of the mature miRNA under 
study, ensuring the extension of the miRNA 3’ end which leads up to the formation 
of an RT primer/mature miRNA chimaera. In both cases, both the pool of 
transcribed cDNAs and the RT/miRNA chimeric cDNA can be used as input for 
real-time PCR.  

Taqman® qPCR technology is based on a set of primers and a labelled probe, which 
binds specifically to the target sequence. The primers are then extended by the 
polymerase until they reach the labelled probe, which is degraded, and a fluorescent 
signal is emitted [217]. The sample undergoes multiple cycles of PCR, with more 
dye molecules being released in each cycle, which results in an increase in 
fluorescence intensity in proportion to the amount of synthesized amplicon. In the 
end, a Ct (cycle threshold) value is given to the target cDNA, representing the 
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number of cycles for the fluorescent signal to be detectable by exceeding the 
background threshold. The method is quantitative and as such only the relative 
expression of the target molecule compared to an appropriate control is of interest.  

To analyze the data first a ΔCt value is calculated, which represents the difference 
between the Ct values of the target gene/miRNA and those of appropriate 
housekeeping genes/miRNAs in each sample. Next, the difference of ΔCt values 
between samples of interest and control samples is calculated (ΔΔCt). Finally, the 
relative fold change of gene/miRNA expression compared to the control condition 
is determined by the 2-ΔΔCt value [218].  

Despite the robustness of qPCR, a labelled probe is required for every region of 
interest, thus raising the cost in case multiple targets need to be assessed. Another 
limitation is the fact that the sequence of the targets needs to be known, limiting the 
possibility of identifying novel targets under certain experimental 
conditions/treatments. 

Microarrays 
Microarray-based mRNA and miRNA expression detection has been one of the 
most widely used methodologies of large-scale nucleic acid screening in a large 
number of samples simultaneously. Although different microarray technologies 
have been developed, they are all based on the hybridization of specific probes on 
the surface of a microarray plate [219]. The RNA undergoes a reverse transcription 
and an amplification step, in which cDNA is generated. The cDNA is subsequently 
stained with fluorescent dyes. The labelled cDNA is then hybridized with the 
available probes and, after a washing step to remove unbound molecules, the plate 
is stained. Finally, scanning and image analysis takes place using specialised 
software. Downstream analysis usually includes background correction, 
normalization, probe-specific background correction, and probe-level information 
summarization [220]. In that way, raw image data are translated into RNA 
expression data.  

As seen in Table 1, in the context of T2D investigation, distinct versions of 
GeneChip® Human Genome (HG) Assays (former Affymetrix, currently 
ThermoFisher) were used to identify the mRNA expression profile of human islets 
from non-diabetic and T2D donors. Despite utilizing the same technology, these 
assays were different in the number and composition of their probes, with newer 
versions consisting of denser probe sets and, consequently, providing coverage of a 
higher number of transcripts with increased sensitivity and specificity. According 
to ThermoFisher, these assays cover ≈18,000-38,000 genes, which is enough to 
cover a substantial proportion of the currently identified protein-coding genes (total: 
≈20,000, GENCODE v43, 2023), as well as a proportion of long non-coding RNAs 
(lncRNAs) (total: ≈20,000 GENCODE v43, 2023) [221]. However, recent advances 
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in the discovery of lncRNA and small non-coding RNA genes set the total number 
of genes even higher (total: ≈62,000, GENCODE v43, 2023).  

The identification of miRNAs is technically more challenging than that of mRNAs 
and lncRNAs due to their smaller size. To overcome this limitation, technologies 
such as locked nucleic acid (LNA)-based microarrays have been developed. LNAs 
are RNA analogues with a “locked” ribose ring, which optimises the stability of 
base pairing. These high-affinity LNA-modified capture probes can be hybridized 
with the short-sized miRNAs with high specificity and sensitivity [222]. The LNA-
based microarray used in Paper III (former Exiqon, currently Qiagen) allowed the 
identification of 840 miRNAs (total: ≈2,880, miRBase v22, 2023). 

Microarrays are a well-established and cost-effective method to reveal the level of 
thousands of genes and RNA molecules in multiple samples. However, their use 
comes with certain disadvantages such as the inability to identify novel transcripts, 
the lack of reproducibility across platforms, and the complicated data processing 
and normalization protocols [223, 224].  

Next-generation sequencing (NGS) 
NGS is also a method for large-scale identification of transcript levels in multiple 
samples in a parallel fashion. However, it does not require prior knowledge of 
specific targets of interest, but it captures a screenshot of the whole transcriptome 
profile in a given sample [225]. NGS methods differ in the principles of library 
preparation depending on whether total RNA or small RNA sequencing is used as 
substrate.  

The aim of total RNA sequencing is to detect protein-coding mRNAs and specific 
categories of large non-coding RNAs. In the projects of this thesis, the TruSeq 
Stranded Total RNA Library Prep with Ribo-Zero kit (Illumina) for library 
preparation was used. The first step of library preparation is to fragment the RNA 
molecules and remove rRNA fragments which may introduce noise due to their high 
abundance when sequencing is performed. Next, strand-specific cDNA is created 
through reverse transcription. Strand specificity is important for correctly 
identifying overlapping or partly overlapping genes located in opposite strands. 
After 3’end adenylation, adapters are ligated in both the 3’ and 5’ ends of cDNA 
fragments, allowing their hybridization to the flow cell during the sequencing step. 
These adapters are specific to the sequencing system and act as both sample- and 
molecule-specificity molecular barcodes. They are also targeted by amplification 
primers used in the sequencing step.  

The aim of small RNA sequencing is to retain and detect only the short non-coding 
proportion of the total isolated RNA. In the projects of this thesis, the QIAseq 
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miRNA Library Kit (Qiagen) was used. The first step includes the ligation of a pre-
adenylated 3’ and a 5’ adapter to the corresponding ends of the small RNA. This 
procedure requires a T4 RNA ligase that recognizes the hydroxyl group on the 3′-
end and the phosphate group on the 5′-end of RNAs and, thus, it leads to selective 
profiling of RNAs with these properties such as miRNAs and excludes other RNA 
classes such as protein-coding mRNAs. Similarly to RNA sequencing, the ligands 
indicate sample specificity and facilitate the hybridization of the miRNAs on the 
flow cell. During the subsequent reverse transcription step, Unique Molecular 
Identifiers (UMIs) are incorporated in the primers and are attached to each small 
RNA molecule. This step allows the detection and elimination of sequencing errors 
introduced during the amplification and sequencing processes, providing a more 
accurate representation of the initial miRNA number in the sample [226]. The 
generated cDNA is then cleaned up with a bead-based method that filters out sources 
of background noise, such as adapter dimers and other RNA species, leading to 
miRNA enrichment. In both mRNA and miRNA sequencing processes, the final 
cDNA product is enriched through a polymerase reaction and is subsequently 
sequenced, after a quality control step. Throughout this thesis, the sequencing was 
performed in an Illumina NextSeq 500 Sequencing System.  

In the end, bioinformatics analysis is performed on the generated sequence reads. 
This includes another round of quality control with several pre-processing steps 
[227]. Reads from mRNA and miRNA samples are similar except the latter 
encompass the short UMI sequences that need to be stored before they are 
eventually filtered out. After removing the adapter sequences, mRNAs and miRNAs 
can be mapped to a reference transcriptome (e.g., GENCODE) or miRNAome (e.g., 
miRBase) respectively, before they are quantified and analysed further. It should be 
mentioned that more established pipelines and sophisticated software are available 
for total RNA-seq read mapping and quantification compared to the most recently 
introduced small RNA-seq.  

Similarly to microarrays, NGS can reveal novel transcripts and miRNAs and, 
importantly, is ideal for high-resolution transcriptomic analyses, such as the 
identification of alternative splicing isoforms or the detection of canonical miRNAs 
and their isomiRs, both shown to play important roles in various diseases [228, 229]. 
However, the high cost per sequencing run and the labour-intensive processes of 
generating sequencing libraries, performing the sequencing and analysing the 
sequencing data, still make microarray-based sequencing attractive in certain 
circumstances. 

More details on the bioinformatics workflows and tools applied in this thesis can be 
found in the original papers. 
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Laboratory methods 

Experimental models 

Human pancreatic islets 
Human islets derived from deceased donors were obtained from the Human Tissue 
Lab EXODIAB/LUDC via the Nordic Network for Islet Transplantation 
(http://www.nordicislets.org). Ethical permits issued by the Uppsala and Lund 
University Ethics committees defined the frame for the processing of human islets. 
Preparation of human islets involved enzymatic digestion and density gradient 
separation before they were handpicked in cold Hank’s buffer and transferred to 
appropriately supplemented RPMI 1640 medium under a stereomicroscope. Islets 
were incubated in a humidified atmosphere with 5% CO2 at 37°C. 

EndoC-βH1 cells 
EndoC-βH1 cells are one of the most widely used human β-cell lines. They originate 
from human fetal pancreatic tissue that was subjected to targeted oncogenesis. 
EndoC-βH1 cells have been validated as human pancreatic β cell models with 
glucose-stimulated insulin secretion and gene marker assays [230-232]. The cells 
were grown in Matrigel fibronectin-coated culture vessels in appropriately 
supplemented DMEM medium and were preserved in a humidified atmosphere with 
5% CO2 at 37°C. 

INS1 832/13 
INS1 832/13 cells derive from INS1 cells, a rat insulinoma cell line, and display 
robust expression of both human and rat insulin [233, 234]. INS1 cells were 
preserved in appropriately supplemented RPMI 1640 medium in a humidified 
atmosphere with 5% CO2 at 37°C. 

Functional assays 

Transfection 
In order to overexpress or suppress the expression of specific genes in the cells, 
delivery of siRNAs and DNA plasmids was performed via lipid-based transfection, 
respectively. For that, Lipofectamine® RNAiMAX (siRNA delivery) and 
Lipofectamine® LTX (plasmid DNA delivery) were used (Thermo Fisher). These 
reagents are broadly compatible with different cell lines and display low toxicity. 
Cells were transfected for 72h with the corresponding siRNAs and plasmids and 
were previously seeded in antibiotic-free medium until they reached 100% 
confluence.  
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Insulin secretion 
Insulin secretion assay was performed in both EndoC and INS1 cells. Before the 
assay, the cells were seeded in appropriate plates until they reached 100% 
confluence. A 2h pre-incubation step in freshly prepared Secretion Assay Buffer 
(SAB) followed by a 1h stimulation step with high glucose concentration was 
applied before collection of the secreted insulin. EndoC and INS1 cells were pre-
incubated in 1- and 2.8-mM glucose and were stimulated with 16.7- and 20-mM 
glucose, respectively.   

Mitochondrial function 
Mitochondrial function, as evaluated by measurement of the mitochondrial oxygen 
consumption rate (OCR), was assessed in EndoC and INS1 cells with the Seahorse 
XF analyser system (Agilent Technologies). Starvation of the cells in SAB buffer 
with 1- or 2.8-mM glucose, respectively, was followed by OCR measurements 
every 3 minutes over the span of 90 minutes. OCR was measured at basal glucose 
and after the addition of 10 mM pyruvate, 5μM oligomycin, 4μM carbonyl cyanide 
p-trifluoromethoxy-phenylhydrazone (FCCP) and 1 μM rotenone. The specified 
online tool for the Analyzer system (URL: seahorseanalytics.agilent.com) was used 
to analyse OCR, after normalising to total protein content quantified with BCA 
assay. 

More details on the aforementioned techniques, as well as other laboratory 
techniques employed in this thesis such as Western blot, Chromatin 
Immunoprecipitation followed by PCR (ChIP-PCR), and cell viability 
measurements, can be found in the original papers. 
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Results and Discussion 

Paper I  

Glucocorticoid treatment induces transcriptomic changes important 
for the β-cell function in human islets and EndoC-βH1 cells  
To explore the direct effects of glucocorticoids in human islets and β-cells, islets 
and human insulin-secreting EndoC-βH1 (EndoC) cells were treated with or without 
dexamethasone, a synthetic glucocorticoid. EndoC cells display extensive similarity 
with human β-cells in regards to their transcriptomes, proteomes, and secretomes 
and, therefore, they can be used as a translational model of human β-cells [235]. 
Global transcriptome analysis revealed 1473 and 3147 differentially expressed (DE) 
genes in human islets and EndoC cells, respectively (q < 0.05). Interestingly, the 
DE genes included key genes involved in β-cell development and function such as 
PDX-1, NKX1-1, and MAFA [61, 236]. Of note, 581 DE genes overlapped between 
human islets and EndoC cells with the same directionality of expression change 
(309 upregulated and 272 downregulated genes), indicating robust transcriptomic 
changes in the human β-cells.  

Functional annotation showed the involvement of DE genes in β-cell specific 
processes, for instance, insulin processing and secretion, glucose homeostasis, 
regulation of β-cell gene expression, and β-cell proliferation and differentiation. 
Several of these pathways have been shown to be dysregulated in rodent islets and 
cell lines with glucocorticoid-induced insulin secretion impairment. These include 
glucose metabolism [237], potassium channel activity [60], calcium transport and 
insulin secretion [58, 59, 237], β-cell proliferation, and differentiation [238, 239]. 

Glucocorticoid action is exerted in a distal manner and is dependent on 
auxiliary transcription factors in human islets and EndoC-βH1 cells 
The properties of Glucocorticoid Receptor (GR) action were further investigated in 
human islets and EndoC cells, as glucocorticoids exert their effects by binding and 
activating the GR, which translocates into the nucleus and acts as a transcription 
factor. To do this, first a comprehensive list of GR binding regions derived from 
many ChIP-seq experiments (GR-ChIP sites) was obtained from the GTRD 
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database [240]. GR-ChIP sites were then associated with genomic sites close to the 
DE genes after dexamethasone treatment in order to yield Glucocorticoid Receptor 
Elements (GREs). GREs were located closer to DE genes compared to non-DE 
genes and were equally distributed around upregulated and downregulated genes. 
This validates the role of GR as both an activator and a repressor of gene expression 
in the β-cell, similar to what has been described in other cell types [241, 242]. 
Furthermore, ≈95% of GREs resided more than 3 kb of the transcription start site of 
their associated DE genes in both human islets and EndoC-βH1 cells, suggesting 
that glucocorticoids affect their target genes in a distal manner. This also 
corroborates previous findings about the non-typical promoter-proximal binding 
pattern of GR [243, 244].  

De novo motif discovery on the DNA sequences of the GREs led to the discovery 
of over-represented binding motifs belonging to the AP-1, ETS/TEAD, and FOX 
transcription factor families, other than the GR binding motif. Analysis of the GR 
Binding motif Sequence (GBS) showed that only 77% of GREs encompass a 
canonical 15-bp GBS [245], consistent with a similar proportion (≈60-80%) in other 
human cell types [243, 246, 247]. Strikingly, the vast majority of GREs (≈95%) 
were composite elements consisting of at least one alternative AP-1, ETS/TEAD, 
or FOX motif sequence besides a GBS. Indeed, a study from Starick et al. 
demonstrated co-occupation of FOX factors with GR on GREs possibly to preserve 
an open chromatin conformation allowing GR to bind to the target DNA sequence. 
In the same study, AP-1 was shown to facilitate GR DNA binding without directly 
interacting with the DNA sequence, while members of the ETS/TEAD family 
appeared to directly interact with GR to promote tethering to the DNA [248]. The 
enrichment of the motif binding sequences of these transcription factors in GREs 
has been replicated in other cell types [247-250], highlighting their regulatory 
significance on the effects mediated by GR. Taken together, GR binding on GREs 
and, consequently, the regulation of GR action seems to be heavily relying on the 
binding of auxiliary transcription factors [251].  

ZBTB16 demonstrates the strongest signal of direct glucocorticoid 
targeting in human islets and EndoC-βH1 cells 
A bioinformatics workflow was established to explore which of the DE genes after 
dexamethasone treatment were direct targets of glucocorticoids and GR. The 
overlap of the gene-associated GREs, as defined in the previous section, with 
human/EndoC-specific open chromatin regions, enhancer-gene association scores 
and GR binding sequence motifs led to the generation of a Normalized Annotation 
Score. Subsequently, the combination of the Normalized Annotation Score and the 
gene expression fold-change resulted in a gene Rank Product, which indicated the 
probability of the DE gene being directly targeted by glucocorticoids. Among the 
most highly ranked genes are well-characterized direct glucocorticoid targets such 
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as FKBP5 [252] and VIPR1 [253, 254], which supports the robustness of the 
analysis. ZBTB16 was the top-ranked gene in both human islets and EndoC cells 
and was strongly induced after dexamethasone treatment both at the RNA and 
protein level. ZBTB16 is an established glucocorticoid target in non-pancreatic cells 
[255-257] and is involved in various molecular pathways including stem cell self-
renewal and differentiation [258], maintenance of spermatogenesis [259], limb 
development [260], and hematopoietic development [261]. Recently, ZBTB16 was 
found to be displaying substantial methylation changes after dexamethasone 
treatment in insulin-secreting cells [236]. ZBTB16 has also been associated with 
systemic glucose homeostasis in the skeletal muscle and liver, as it negatively 
regulates adipogenesis [262] and insulin sensitivity [263, 264].  

ZBTB16 displays intronic and conserved Glucocorticoid Responsive 
Elements in EndoC-βH1 cells 
Even though DE genes were linked to GREs within a 150 kb window of their 
transcription start site (TSS), ZBTB16-associated GREs were located exclusively in 
intronic regions of the gene. Despite the fact that regulatory elements typically 
reside in proximal upstream or downstream sites of their target genes, a significant 
proportion of GREs (25-30%) has been recorded in introns [243, 250]. Luciferase 
assays also suggested a functional role of the sequences comprising intronic GREs 
[265, 266]. Interestingly, out of the 10 GREs linked to ZBTB16, only 4 
encompassed a GBS. This highlights the important role of other factors and 
auxiliary TFs in the glucocorticoid-GR signalling pathway. Moreover, 5 out of 10 
GREs were located in highly evolutionary conserved regions and contained at least 
one GBS. A piece of evidence that supports the significance of these sites in GR-
mediated regulation is the significant induction of open chromatin signal in these 
regions in human islet samples after dexamethasone treatment [253]. ChIP followed 
by PCR confirmed the GR binding in all ZBTB16 GREs after dexamethasone 
treatment in EndoC cells. GR binding signal seemed to be consistently stronger in 
dexamethasone-treated cells, however, there were big fluctuations between the 
replicates, similar to those demonstrated in the islet open chromatin profiles of 
dexamethasone-treated islets [253]. Taken together, GR seems to dynamically 
regulate the expression of ZBTB16 via intronic binding, which is mediated by 
additional transcription factors.  

Dexamethasone activates ZBTB16 in a dose- and time-dependent 
manner and decreases insulin secretion in EndoC-βH1 cells 
The expression of ZBTB16 was assessed after dexamethasone treatment with 
different dosages and times under treatment. Two known glucocorticoid targets, the 
activated SGK1, and the repressed GR, were used as positive and negative controls, 
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respectively. EndoC cells were treated with different doses of dexamethasone (0.1–
2000 nM) which led to a dose-dependent induction of ZBTB16 expression. ZBTB16 
activation was stronger than that of SGK1 in all conditions and it reached a plateau 
after 1 μM. Increasing dexamethasone concentrations also led to an increased 
proliferation rate in EndoC cells. The duration of the treatment was also important 
as ZBTB16 demonstrated its highest upregulation after 48h of treatment, which was, 
once more, higher than the expression of SGK1.  

Dexamethasone treatment was found to significantly reduce insulin secretion after 
48h. However, insulin content measurements also displayed an apparent and 
consistent reduction 8h post-treatment, which can partly account for the inhibitory 
effect on insulin secretion. Insulin secretion decrease, together with the observed 
increase in cell proliferation rate under the same conditions, may indicate that cells 
undergo a gradual de-differentiation process as shown in c-Myc-expressing INS1 
cells [267]. This is supported by the fact that the β-cell pancreatic cell differentiation 
pathway was significantly enriched during functional annotation of the DE genes 
after dexamethasone treatment. Strikingly, since ER stress is the highest over-
represented term in the EndoC-exclusive subset of DE genes, it is rational to propose 
that insulin content reduction may form part of a compensatory mechanism against 
elevated ER stress levels in EndoC cells [268]. 

ZBTB16 activation is protective against glucocorticoid-induced β-cell 
dysfunction  
Since ZBTB16 is highly induced after dexamethasone treatment, an insulin secretion 
assay was performed in dexamethasone-treated control and ZBTB16-overexpressing 
EndoC cells. Insulin secretion under stimulating glucose concentration and insulin 
content, both of which were impaired upon dexamethasone treatment, were 
moderately rescued after ZBTB16 overexpression. In addition, partial repression of 
the dexamethasone-induced ZBTB16 expression led to elevated insulin secretion 
under basal glucose conditions, a phenotype that resembles T2D [269]. The partial 
suppression of ZBTB16 also resulted in reduced transcription of the insulin (INS) 
gene. Moreover, the reduction of ZBTB16 expression inhibited the dexamethasone-
induced SGK1 activation, which has been linked to insulin release and T2D [60, 
270]. Overall, ZBTB16 expression induction triggered by dexamethasone seems to 
exert a protective effect by partially rescuing β-cells from the negative consequences 
of glucocorticoid exposure. 

To further assess the function of ZBTB16, the bioinformatics workflow described 
earlier was utilized to identify potential direct gene targets of ZBTB16. The analysis 
led to the discovery of 1093 predicted targets. Integration of single-cell islet 
transcriptome data showed that 751 (68%) of the targets are expressed in the human 
β-cells. Functional annotation of the ZBTB16 gene targets in islet and β-cell 
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uncovered similar enriched pathways belonging to processes related to the 
regulation of translation, ER protein targeting, cell cycle/division, and 
mitochondrial membrane/biogenesis.  

The potential effects of ZBTB16 on the cell cycle were examined in EndoC cells, as 
ZBTB16 has been described as both a positive and negative regulator of cell cycle 
in other cell types [271-275]. ZBTB16 overexpression did not demonstrate any 
additive effects in the increased proliferation rate of EndoC cells caused by 
dexamethasone. Next, the association of ZBTB16 with mitochondrial function was 
studied as ZBTB16 has been shown to affect mitochondrial number and function in 
brown adipocytes [276]. To do that, mitochondrial oxygen consumption rate (OCR) 
measurements were performed in control and ZBTB16-overexpressing EndoC cells 
after dexamethasone treatment. Dexamethasone had a significantly negative impact 
on mitochondrial metabolism, as assessed by measurements of basal, acute, and 
maximal respiration, as well as ATP production. The deleterious impact of 
glucocorticoids on mitochondrial function has been described in insulin-secreting, 
as well as other cell lines [277, 278]. Strikingly, induction of ZBTB16 expression 
could compensate for these negative effects and restore mitochondrial function. As 
mitochondrial respiration is tightly connected to insulin secretion, this can also 
explain the mechanism behind the restoration of the glucocorticoid-mediated 
impairment of insulin secretion after ZBTB16 overexpression, demonstrating the 
protective action of ZBTB16 in the β-cell.    

Key findings 
 Dexamethasone treatment triggers extensive transcriptomic changes in human 

islets and EndoC cells that are related to β-cell development and function 

 Glucocorticoid action is mediated by auxiliary transcription factors 

 ZBTB16 is a direct dexamethasone target in human islets and EndoC cells   

 Dexamethasone perturbs insulin secretion and is a potent activator of ZBTB16 
expression in EndoC cells 

 ZBTB16 has a protective role against glucocorticoid-induced β-cell dysfunction 
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Paper II  

Large-scale human islet transcriptome analysis reveals genes with 
altered expression in T2D 
Total RNA sequencing (RNA-seq) was performed in human islets to identify genes 
with distinct profiles in islets derived from non-diabetic (ND) donors compared to 
donors with T2D. For that, the Lund University Diabetes Centre (LUDC) pancreatic 
islet cohort was used, consisting of islets from 309 donors of which 283 have 
available sequenced transcriptomes. After RNA-seq data quality control and 
application of specific donor filtering criteria, the gene expression profiles between 
138 ND and 33 T2D individuals were compared. Differential expression analysis, 
after taking into account donor sex, age, as well as islet purity and days in culture 
(DIC), showed 395 genes to be differentially expressed (DE) (q-value < 0.05) with 
228 and 167 being upregulated and downregulated in T2D, respectively. Functional 
annotation as performed with Gene Ontology (GO) term enrichment analysis 
revealed that DE genes are involved in several pathways that have been associated 
with islet function, development, and T2D such as growth factor binding [279], 
regulation of lipid transport [280], negative regulation of Wnt signalling [281, 282], 
regulation of inflammatory response [283], inorganic cation homeostasis [284] and 
hormone secretion [72]. To evaluate the gene expression of DE genes separately for 
α and β cells, the LUDC sorted α/β cell cohort consisting of fluorescence-activated 
cell-sorted (FACS) islets from 13 ND individuals, 2 individuals with T2D and 3 
individuals with prediabetes was utilized. Out of 395 DE genes, 366 and 368 were 
expressed in α and β cells, respectively. However, 174 genes displayed higher 
expression in β cells, as opposed to 90 genes with higher expression in α cells.  

Identifying the shift in the islet transcriptomic profile in T2D is not indicative of 
whether these changes lead to T2D progression or are induced after disease onset. 
For that reason, gene expression was studied in a subset of the LUDC islet HbA1c 
cohort, comprising individuals not previously diagnosed with T2D. Strikingly, the 
expression of 142 out of the 395 DE genes was linearly correlated with HbA1c 
levels with the same directionality (positive/negative) as the expression changes in 
T2D (induction/repression). This shows that a proportion of gene expression 
alterations may be present before T2D onset and may contribute to the disease 
predisposition.  

Overlap of differentially expressed genes in T2D between studies 
To check the reproducibility of the RNA-seq results of the present study, data from 
studies that also investigated the human islet transcriptomic changes in T2D using 
bulk (whole islet) [149-152] or single-cell sequencing [153-155] methods were 
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compiled. Out of 395 total DE genes, 75 were also present in at least one of the 
previous bulk sequencing studies and 28 in at least one of the previous single-cell 
sequencing studies. In total, 94 DE genes were previously detected, including 
known T2D-associated genes such as SLC2A2 (GLUT2) [285], IAPP [286], 
PPP1R1A [287], and SYT13 [112, 288], demonstrating the robustness of the 
analysis. Notably, the majority of DE genes in the current study (301/395), including 
PAX5, OPRD1, or PCOLCE2, were not previously detected. 

Interestingly, there were only minor overlaps in the DE genes identified between 
different bulk- or single-cell studies, while no gene was found to be commonly DE 
among all studies. This divergence may be the result of inconsistencies regarding 
experimental methods, donor characteristics, or statistical power/approaches. 
Specifically, differences in islet isolation and culture protocols, library preparation, 
and sequencing systems (see also Table 1), as well as the distinct pathophysiological 
and demographic backgrounds of the donors under study can greatly affect the 
analysis outcome. Nevertheless, an even greater limitation, particularly among 
single-cell studies, is the low sample size which results in poor statistical power and 
does not allow correction for the aforementioned batch effects. Moreover, variables 
that are taken into account during DE analysis greatly differ between studies as there 
are studies that do not account for any variable [149, 150], account only for sex 
[153, 154], account for sex and age or ethnicity [151, 155] or account only for islet 
purity [152]. 

DE genes are associated with genetic signals related to T2D 
To investigate the relationship between the expression of DE genes and genetic 
variability, DE genes were first associated with expression quantitative trait loci 
(eQTL) using data from the INSPIRE (Integrated Network for Systematic analysis 
of Pancreatic Islet RNA Expression) study [132] and the T2D Knowledge Portal 
(https://t2d.hugeamp.org/). In this way, the expression of 120 DE genes was linked 
to 148 eQTLs. Interestingly, some of these eQTLs have also been correlated with 
phenotypic traits relevant to T2D. Specifically, 2 eQTLs associated with islet 
expression of FXYD2 and RPL39L have been linked to T2D risk, 2 eQTLs 
associated with islet expression of FOXE1 and ENTR1 to glucose measurements, 4 
eQTLs associated with islet expression of ARPC1B, COMP, DIXDC1, and HSD3B7 
to BMI or waist/hip ratio and 6 eQTLs associated with islet expression of ACP2, 
CBLC, CD5, HSD3B7, PCOLCE2, and TMED6 to triglyceride or LDL levels [289-
295]. 

To define the broader spectrum of genetic influence on T2D DE genes, associations 
between SNPs related to T2D phenotypic traits and the 395 DE genes were 
performed based on close proximity. For that, a list of SNPs linked to T2D and/or 
glycemic traits in GWAS, including fasting glucose, fasting insulin, HbA1c, 
homeostatic model assessment of β cell function [HOMA-B], disposition index 
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[DI], and corrected insulin response [118], was acquired from the Common 
Metabolic Diseases Knowledge Portal (hugeamp.org). In total, 106 DE genes were 
associated with 149 SNPs that satisfied the criteria. Out of the 149 unique SNPs, 
131 were associated with T2D, 38 with HbA1c, 10 with fasting glucose, 4 with DI, 
and 1 with fasting insulin and CIR. It is worth mentioning that several genes were 
associated with both eQTL and SNPs of interest such as FXYD2, RPL39L, ENTR1, 
COMP, ACP2, CBLC, and TMED6. The fact that these genes were also significantly 
correlated with HbA1c levels suggests their potential contribution to T2D 
pathogenesis.  

DE genes are associated with T2D epigenetic signals related to T2D 
To investigate regions with potential epigenetic activity in the vicinity of DE genes, 
publicly available human islet open chromatin sites, as determined by ATAC-seq, 
were obtained and were associated with the DE genes [296]. The vast majority of 
DE genes (346/395) were assigned to at least one open chromatin site. Interestingly, 
a subset of islet open chromatin regions that additionally displays altered 
conformation in T2D was assigned to 24 DE genes, of which 23 showed increased 
expression in islets from T2D donors. On the whole, the expression changes of a 
subset of DE genes seem to be driven by changes in the open chromatin state 
observed under T2D conditions.  

Moreover, publicly available differentially methylated regions (DMRs) in T2D 
were assigned to DE genes as an additional factor of epigenetic control [173]. In 
total, 262 DE genes were marked with 732 DMRs. Taking a step further, SNPs 
associated with methylation around DE genes, known as methylation quantitative 
trait loci (mQTLs), were also investigated [297]. Overall, 90 DEGs were annotated 
to 490 SNPs associated with DNA methylation of 176 unique sites. Taking 
everything into account, there is enough evidence to suggest a degree of epigenetic 
influence on the differential expression of genes related to T2D.  

Changes in DE gene expression impair β cell function 
In order to functionally validate a subgroup of the 395 identified DE genes, a series 
of filtering steps were applied. First, genes with fold-change higher than 2 (80 
genes), which were associated with HbA1c (31 genes) were retained. Subsequently, 
genes that were expressed in endocrine cells were assessed based on the lowest DE 
q-values, generating a final list of 9 genes, including BARX1, ELFN1, FAIM2, 
HHATL, NEFL, OPRD1, PAX5, PCOLCE2, and SFRP1. Two additional genes were 
selectively added to the list. CHL1 served as a positive control, as β-cell silencing 
of this gene results in impaired insulin secretion [298] and SLC2A2 was selected 
due to its debated role in β-cell function [299, 300]. Notably, 10 of 11 genes were 
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associated with at least 1 genetic or epigenetic signal including islet eQTLs, GWAS 
SNPs, T2D DMRs, or mQTLs.  

To appropriately imitate the directionality of the DE gene expression changes in 
T2D, expression suppression of T2D downregulated genes, e.g., CHL1, HHATL, 
OPRD1, and SLC2A2, was performed in insulin-secreting rat insulinoma 832/13 
INS1 (INS1) cells. Insulin secretion measurements showed a tendency towards 
reduced secretion under basal glucose conditions (2.8 mM) upon CHL1 and SLC2A2 
knockdown and displayed reduced insulin secretion after glucose stimulation (16.7 
mM) upon OPRD1 knockdown.  

In the same way, overexpression of T2D upregulated genes, e.g., BARX1, ELFN1, 
FAIM2, NEFL, PAX5, PCOLCE2, and SFRP1 was performed using lentiviral 
vectors. Pax5 overexpression was found to increase insulin secretion under basal 
glucose concentration and reduce insulin secretion under stimulated glucose 
concentration, with no change in insulin content. This resulted in a substantial 
decrease in the induction of insulin secretion between basal and stimulatory glucose 
conditions. Nefl and Pcolce2 overexpression led to reduced insulin secretion under 
basal glucose concentration and increased insulin content, while Pcolce2 
overexpression also reduced secretion under stimulatory glucose concentration.  

Overall, these analyses revealed previously unidentified genes in an islet or β-cell 
context that can modulate β-cell function by acting on insulin secretion, namely 
OPRD1, NEFL, PCOLCE2, and PAX5. OPRD1 is a G-protein-coupled receptor for 
endogenous enkephalins, which have been shown to both trigger and suppress 
insulin secretion [301-303]. NEFL, which encodes for the light chain of 
neurofilament, was shown to be expressed in higher levels in the serum of T2D 
individuals and has been correlated with fasting glucose [304]. PCOLCE2 is a 
collagen-binding protein that has been found to be downregulated in the skin of T2D 
individuals. PAX5, a member of the paired box (PAX) family of transcription 
factors, is important for the differentiation and development of B lymphocytes, 
acting as both an activator and repressor of gene expression [305]. Hence, loss of 
PAX5 has been implicated in the development of human B cell malignancies such 
as acute lymphoblastic leukaemia [306]. It should be mentioned that other members 
of the PAX family including PAX2, PAX4, and PAX6 are considered crucial 
regulators of human islet development, differentiation, and function [307].  

Pax5 impairs insulin secretion through mitochondrial impairment and 
induces β-cell apoptosis 
Manipulation of Pax5 caused the most severe effects on β-cell function and this is 
the reason this gene was further investigated. First, immunohistochemical staining 
of human pancreas sections confirmed the RNA-seq findings regarding the low 
expression of PAX5 in islets from ND donors compared to the increased expression 
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in islets from T2D donors. Single-cell transcriptome data from β-cells derived from 
ND donors also demonstrated that PAX5 is expressed in low levels in adult β-cells 
[308]. 

Next, insulin secretion was performed in INS1 cells under stimulation with both 
glucose and a depolarizing K+ concentration after Pax5 overexpression. Once again, 
insulin secretion was significantly impaired after incubation in basal and stimulatory 
glucose concentrations, whereas K+-stimulated cells displayed increased levels of 
insulin secretion. This indicated that defective processes in the insulin secretory 
pathway upon Pax5 overexpression may concern mechanisms prior to 
depolarization of the KATP channels, such as mitochondrial metabolism. Indeed, 
measurements of oxygen consumption rate (OCR) with a Seahorse XF analyzer 
showed a reduction in mitochondrial respiration, as outlined by a decrease in both 
acute respiration after glucose stimulation and in maximal respiration after the 
addition of an uncoupler of the inner mitochondrial membrane (FCCP). 
Mitochondrial dysfunction was also validated by a significant reduction of 
intracellular ATP/ADP ratio of Pax5-overexpressing cells after glucose stimulation, 
as measured by the fluorescent biosensor PercevalHR.  

Pax5 overexpression induces large-scale transcriptomic changes in β-
cells  
As PAX5 is a transcription factor, global transcriptomic changes were investigated 
after Pax5-overexpression in INS1 β cells. Interestingly, 3069 genes were found to 
be differentially expressed (q < 0.05), including 75 of the 395 T2D DE genes in 
human islets. Functional annotation through GO term enrichment analysis revealed 
that these genes are involved in several pathways, with the top enriched ones 
including insulin secretion, glucose homeostasis, regulation of lipid transport, and 
cell death. These findings are in line with the experimental results observed in this 
study. 

Furthermore, to identify putative gene targets of PAX5 in human islets, a PAX5-
binding motif analysis was performed across the DE genes. Interestingly, 196 out 
of 395 DE genes displayed a PAX5 binding motif in their promoter region and 
literature review showed that 25% of them have been previously related to β-cell 
function or mass, as well as T2D-related genetic variants. Finally, weighted 
correlation network analysis (WGCNA) showed PAX5 to demonstrate a similar 
expression pattern with 86 other DEGs, forming a co-expression network. Overall, 
PAX5 overexpression seems to be capable of inducing transcriptome-wide changes 
that lead to β-cell dysfunction. 
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Key findings 
 Transcriptome analysis of human islets from T2D and ND donors revealed 395 

differentially expressed (DE) genes 

 Transcriptomic changes related to T2D can impair β-cell function 

 PAX5 is overexpressed in T2D islets 

 Elevated Pax5 expression induces β-cell dysfunction by perturbing 
mitochondrial function and insulin secretion  

 PAX5 overexpression triggers transcriptome-wide alterations in the β-cell, 
contributing to the dysregulation of several T2D DE genes 

 

Paper III  

Microarray-based profile of human pancreatic islet miRNAs 
The expression profile of 840 miRNAs in human islets derived from 18 donors was 
evaluated with an LNA (locked nucleic acid)-based array platform from Exiqon. 
Analysis showed that 470 miRNAs were expressed in the human islet samples. A 
filtering step including the removal of probes that corresponded to more than 1 
miRNA and of probes that were not captured by all samples, led to the inclusion of 
269 miRNAs for downstream analysis.  

Abundance analysis showed that miRNAs display a wide range of expression levels, 
with only a few miRNAs being highly expressed. Investigation of the 15 miRNAs 
with the highest expression levels revealed several miRNAs previously defined as 
highly abundant in islets and/or β-cells, including miR-375-3p, miR-7-5p, and 
members of miR-200 (miR-200c/miR-141) and miR-29 (miR-29a/b/c) families 
[199], validating the robustness of the analysis. The high expression of these 
miRNAs has facilitated their functional characterization in β-cells. For instance, 
suboptimal expression levels of miR-375 have been found to have a negative impact 
on β-cell physiology, as they affect insulin biosynthesis, processing, secretion, and 
cell proliferation [189]. Different studies have also demonstrated that miRNAs 
belonging to the miR-200 and miR-29 families have important roles in insulin 
secretion and β-cell apoptosis, and miR-7 function has been linked to insulin 
secretion and β-cell development [191, 309]. The list of highly expressed miRNAs 
also included miRNAs not described as abundant before such as miR-1246, miR-
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1290, and miR-1908-5p. Of interest, miR-1246 was the miRNA with the highest 
expression, even though its function is unknown in the islets. However, miR-1246 
has been identified as a serum biomarker for diabetes [310] and a prognostic 
biomarker for pancreatic cancer [311]. 

To check if there are differences in the highly abundant miRNAs between donors 
with distinct glycaemic status, human islet samples were stratified into three groups 
depending on their glucose tolerance status, as defined by their HbA1c levels. Out 
of 18 donors, seven had normal glucose tolerance (NGT) with HbA1c<6% (42 
mmol/mol), six had impaired glucose tolerance (IGT) with an HbA1c range of 
6.0%–6.4% (42 to 47 mmol/mol), and five of them were diagnosed with T2D with 
an HbA1c range of 6.2%–7.0% (44–53 mmol/mol). Interestingly, NGT, IGT, and 
T2D donors shared 11 out of the 15 top-expressed miRNAs, suggesting that 
glycaemic status does not influence the order of expression of abundant miRNAs. 

The miRNA profile is changed in islets from donors with different 
glycaemic status 
Differential miRNA expression analysis between normoglycemic (NGT) and 
donors with elevated blood glucose levels (IGT & T2D) was performed with the 
Significance Analysis of Microarrays (SAM) method, after ensuring donors were 
matched for age, gender, and BMI. In total, 63 miRNAs were differentially 
expressed (DE), 37 up- and 26 downregulated (FDR < 0.1). Interestingly, a higher 
number of upregulated miRNAs was also shown to characterize diabetic/obese 
human, mouse, and rat models [312-314]. To further assess which miRNAs were 
affected by long-term exposure to high glucose and can potentially contribute to 
T2D predisposition, miRNA expression was correlated with HbA1c levels using a 
linear regression model adjusted for sex, age, BMI, and diabetic status of the donors, 
as well as days of in vitro islet culture. The analysis showed a significant correlation 
of HbA1c with 93 miRNAs. These included miR-7, miR-23b, and miR-484, whose 
expression has been shown to be regulated by glucose [315]. 

To produce a set of miRNAs that are both associated with HbA1c and display altered 
expression due to glycaemic status, DE miRNAs were overlapped with HbA1c-
correlated miRNAs depending on the directionality of the change/correlation. In that 
way, a set of 9 miRNAs that were upregulated in IGT/T2D islets and positively 
correlated with HbA1c levels comprised the Up-Pos set and a set of 22 miRNAs 
that were downregulated in IGT/T2D islets and negatively correlated with HbA1c 
levels comprised the Down-Neg set. The Up-Pos consisted of miR-1275, miR-513a-
5p, miR-32-3p, miR-1827, miR-509-5p, miR-1236-3p, miR-130b-3p, miR-629-5p, 
and miR-130b-5p, while the Down-Neg set included miRNAs such as miR-7-5p, 
miR-23b-3p, miR-29b-3p, miR-200a-3p, miR-200b-3p, miR-19b-3p, and miR-126-
3p. Of note, only 5 out of the 31 DE miRNAs in the two sets are among the most 
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abundant islet miRNAs, including miR-7-5p, miR-29b-3p, miR-141-3p, miR-21-
5p, and miR-24-3p, all of which were downregulated. This suggests that regulation 
and abundance in a miRNA context do not necessarily coincide. 

miRNAs associated with changes in glycaemic status are linked to islet 
gene targets related to T2D 
To discover mRNA targets of the DE miRNAs, experimentally validated miRNA 
gene target data from Tarbase [316] and miRTarBase [317] were identified, 
compiled, and associated with the miRNAs belonging to the Up-Pos and Down-Neg 
sets. The 9 Up-Pos miRNAs were linked to 4,046 mRNAs generating 5,232 
miRNA-mRNA interactions, while the 22 Down-Neg miRNAs were associated with 
12,289 mRNAs forming 41,950 miRNA-mRNA interactions. The discrepancy 
between the low number of miRNAs and the high number of their targets is 
reasonable considering that one miRNA can target several mRNAs and one mRNA 
can be targeted by multiple miRNAs [309]. Interestingly miR-23b-3p, miR-7-5p, 
and miR-26a-5p were associated with more than 3,000 mRNAs. This is a nice 
illustration of how a few thousand miRNAs can control over 60% of protein-coding 
genes [186]. 

Nevertheless, the publicly available validated miRNA-mRNA target data used in 
this analysis was derived from experiments in non-pancreatic cell types. To improve 
the accuracy of the results, only targets expressed in human islets were used for 
downstream analysis. Integration of islet transcriptomic data from 188 donors, 
which showed confident expression of 11,689 genes, demonstrated that a large 
proportion of miRNA gene targets were expressed in the islets (68% - 89% of the 
total number of targets per miRNA). To explore if targets have been associated with 
T2D, a comprehensive set of differentially expressed genes in T2D was obtained 
and compiled from several bulk- and single-cell RNA-seq studies [149-155, 318]. 
Overlaps between the 3365 identified DE T2D genes and the miRNA mRNA targets 
expressed in islets showed that nearly 30% of the targets were related to T2D in at 
least one study. Of note, miR-130b-3p in the Up-Pos set and miR-23b-3p in the 
Down-Neg set displayed the highest number of validated targets and demonstrated 
the most extensive overlap with genes expressed in the islet and T2D-related genes. 

Targets of differentially regulated miRNAs are clustered in islet-
specific networks associated with β-cell function 
As the focus of this study was not to investigate the role of individual miRNAs, but 
the impact of miRNA-mRNA networks on β-cell function, mRNA targets of 
miRNAs associated with changes in glycaemic status were grouped based on their 
expression pattern in highly-correlated clusters. In that way, 39 and 43 co-
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expression clusters consisting of targets of the Up-Pos and Down-Neg miRNA sets, 
respectively, were generated by performing weighted gene correlation network 
analysis (WGCNA). Next, by summarizing the properties of each cluster into a 
single eigenvalue, the clusters could be correlated with specific variables of interest 
including HbA1c, islet purity, and mRNA expression of insulin and glucagon. The 
analysis was combined with functional annotation of the clusters to identify 
enriched biological pathways associated with the genes of each cluster.  

Two clusters, one in the Up-Pos set (Up-Pos_Cluster 3) and one in the Down-Neg 
set (Down-Neg_Cluster 1) were of interest. The two clusters appeared to be islet-
specific as both of them were positively correlated with islet purity, as well as with 
the expression levels of insulin and glucagon. Furthermore, the two clusters seemed 
to be involved in key β-cell functions, as demonstrated by the enrichment of 
pathways related to insulin processing and secretion, exocytosis, β-cell 
development, and gene expression regulation. Up-Pos_Cluster 3 and Down-
Neg_Cluster 1 consisted of 301 and 1019 miRNA gene targets, respectively. Among 
those genes, several have been shown to have a pivotal role in β-cell identity and 
function, e.g., NKX2-2 [319], NEUROD1 [320], FOXO1 [321], and insulin 
exocytosis, e.g., SNAP25 [322] and SYT11 [288]. Lastly, overlaps between the T2D-
related genes, as defined in the previous section, and the genes that comprised the 
clusters in each set showed that the two clusters, Up-Pos_Cluster 3 and Down-
Neg_Cluster 1, displayed the highest proportion of genes associated with T2D 
(≈40%) when compared with the rest of the clusters in the Up-Pos sets and Down-
Neg sets, respectively. 

The expression of abundant and DE miRNAs can be affected by genetic 
elements 
To determine how genetic variation affects the expression of miRNAs of interest, 
cis-eQTLs were mapped to the DE miRNAs belonging to the Up-Pos and Down-
Neg sets, as well as the 15 most abundant miRNAs, in a 1 Mb window of the starting 
position of each miRNA. Nevertheless, no eQTL-miRNA correlation reached 
statistical significance when subjected to multiple testing correction, possibly due 
to low statistical power (n=18). This was also observed in studies with a higher 
number of subjects and, thus, superior statistical power [323, 324]. This can be 
attributed to the fact that compared to cis-mRNA eQTLs, which were found to 
account for 33%–53% of the variance in the expression levels of their related 
mRNAs in a large-scale study, cis-miRNA eQTLs could only explain a small 
percentage (1.3%) of the expression variability of their associated miRNAs [325]. 
However, as multiple nominal eQTL signals around a miRNA may imply a 
relationship between genetic variability and the expression of this miRNA, 
nominally correlated eQTLs (p < 0.05) were considered for downstream analysis.  
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The next step was to infer a causal relationship between the DE miRNAs and T2D, 
by taking into account SNPs that are related to glycaemic control, insulin secretion, 
and T2D from various GWAS [326-328]. If genetic variants were associated with 
the expression of dysregulated miRNAs under hyperglycaemic conditions and these 
variants were also linked to T2D-related traits, then multiple pieces of evidence 
would support the implication of these miRNAs in T2D pathogenesis. Indeed miR-
7-5p, miR-126-3p, and miR-1236 demonstrated suggestive signals of association 
with T2D, miR-1275 and 130b-5p suggestive signals of association with traits 
related to insulin secretion and miR-194-5p was associated with both T2D and 
insulin secretion traits. Some of these miRNAs have been linked to diabetes before. 
For example, miR-126-3p was shown to be a confident prognostic biomarker for 
diabetes mellitus [329] and protective against the vascular complications of diabetes 
[330]. Interestingly, miR-1236, which has been described as a prognostic biomarker 
of latent autoimmune diabetes in adults (LADA) [331], was associated with 15 
distinct variants related to “insulin-dependent diabetes” [327]. Moreover, the 
function of miR-130b was related to insulin secretion through the regulation of 
intracellular ATP levels in β cells [332]. Last but not least, miR-194 has been 
suggested as a circulating biomarker of diabetes mellitus incidence [333] and has 
been associated with the regulation of glucose metabolism in skeletal muscle [334]. 
Further validation of the functional roles of these miRNAs in human islets and β-
cells could be necessary in order to better comprehend T2D aetiology. 

Key findings 
 The miRNA profile of human islets is altered in donors with poor glycaemic 

control  

 Differentially expressed (DE) miRNAs can potentially target many T2D-
related genes in the human islets 

 mRNA targets of DE miRNAs are clustered in islet-specific co-expression 
networks that control islet function 

 eQTLs associated with miRNAs coincide with genetic variants related to 
T2D and insulin secretion traits 

 Analysis of dysregulated human islet miRNA-mRNA networks could 
elucidate underlying causes of T2D development 
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Paper IV 

Global sequencing-based miRNA profiling of human pancreatic islets 
Small RNA sequencing was performed in order to characterize the miRNA profile 
of human islets from 51 non-diabetic controls (ND) and 9 individuals with T2D. 
Overall, 715 miRNAs were found to be expressed in the islets, almost double the 
amount of the miRNAs identified by the microarray-based study in Paper III.  

i) Abundant miRNAs 
Among the most highly expressed miRNAs, several miRNAs such as members of 
the let-7 family, miR-375-3p, miR-200c-3p and miR-30d-5p have been replicated 
in several studies comparing human ND and T2D islets using microarray [335, 336] 
or small RNA-sequencing [199, 337] approaches. Moreover, similarly to the 
microarray-based study in Paper III, there were no major differences between the 
order of the top abundant miRNAs in islets from ND and T2D donors. Specifically, 
miR-30d-5p and miR-103a-3p were among the top 15 most abundant miRNAs in 
ND, but not T2D, donors which, conversely, showed high expression of miR-141-
3p and miR-200a-3p.  

ii) Endocrine and exocrine miRNAs 
Uncovering the place of action of miRNAs can lead to better comprehension of their 
exact modes of action in the pancreas. By comparing the islet miRNA profile with 
the previously characterized whole pancreas miRNA profile in miRNATissueAtlas2 
(n=6 donors) [338], miRNAs enriched in the endocrine and exocrine parts of the 
pancreas were identified. The whole pancreas profile was considered mainly of 
exocrine origin since it constitutes 98%–99% of the total pancreas mass [66]. The 
miRNA expression pattern between the two sets was significantly correlated as 
demonstrated by a regression model (r2 = 0.43, p<2.2x10-16). Focusing on the most 
highly expressed miRNAs, the analysis revealed several commonly abundant 
miRNAs in the islet and whole pancreas samples, e.g., miR-375-3p and members of 
the let-7 family, as previously demonstrated in a previous study performing a similar 
comparison [200]. Highly expressed, islet-enriched miRNAs included miR-16-5p, 
miR-7-5p, miR-30d-5p, miR-103a-3p, let-7e-5p, miR-125b-5p, miR-125a-5p. 
Notably, some of these miRNAs, including miR-16, miR-7, miR-30d, and miR-
125b were found to be essential for β-cell function and development [192, 193, 339, 
340].  

iii) A-to-I modifications on miRNAs 
Furthermore, miRNAs were scanned for A-to-I modifications, an additional 
epigenetic layer of miRNA biogenesis and function control in diverse tissues and 
organisms [341]. Overall, 34 miRNAs encompassed A-to-I modifications, with 20 
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of them being distributed uniformly across all donors and 14 of them being 
exclusive to either the ND or the T2D donors. Of interest, modifications in five of 
these miRNAs (miR-376c, miR-379, miR-381, miR-411, miR-497) were associated 
with ageing in a previous study describing six ageing-related miRNAs in total [342]. 
This can be explained by the increased age of the donors included in this study 
(median age: 65). The role of the detected modifications on the miR-381 and miR-
497 sequences has been investigated in the brain, where the authors demonstrated 
that the modified miRNAs can affect brain development and function [343, 344]. 
Moreover, modifications on miR-27a-5p and miR-200b-3p have been linked to 
hypoxia [345]. It is worth mentioning that three different A-to-I modifications were 
identified on miR-335 only in the islets of T2D donors, a miRNA that is a modulator 
of insulin secretion [196]. 

miRNA expression is correlated with HbA1c, BMI and sex 
To reveal associations of miRNA expression with specific donor characteristics, 
correlations of islet miRNA expression with HbA1c, BMI and sex were performed 
after accounting for batch effects and islet purity. The results showed that the 
expression of 113, 55, and 5 miRNAs was significantly correlated with HbA1c, 
BMI, and sex, respectively. Notably, around 30% of the HbA1c-related miRNAs 
were also DE in T2D, potentially preceding the onset of the disease. Although most 
of these miRNAs have no known function in islets, miR-21 was found to be 
regulated by glucose [346] and miR-30d was described as a mediator of insulin 
transcription in response to glucose [340]. Among the five sex-enriched miRNAs, 
four belong to the miR-181 family. Recently, a study demonstrated that elevated 
levels of miR-181a were only detectable in the plasma of older male individuals, 
and not females, indicating expression differentiation of this miRNA in a sex-
specific manner [347]. Moreover, miR-122, which was associated with BMI both in 
the current and a recent study [337], was identified in higher levels in the serum of 
obese individuals and was shown to be implicated in T2D development [348, 349]. 

Differentially expressed miRNAs in T2D  
By using a generalized linear model, islet miRNA expression was compared 
between T2D and ND donors. The analysis showed 70 miRNAs to be DE (q < 0.05) 
after correcting for batch effects, islet purity and donor sex, of which 34 displayed 
higher expression and 36 lower expression in T2D donors. Of these, nine and seven 
miRNAs, respectively, have been investigated in relation to β-cell function and T2D 
in the last ten years [209], supporting the validity of the analysis and the potential 
importance of the novel findings. Examples of downregulated miRNAs include 
miR-183-3p and miR-185-5p, knockdown of which leads to inhibition of insulin 
transcription [198], miR-299-5p, whose reduced expression causes increased β-cell 
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apoptosis and viability [350], as well as miR-132 and miR-212, both of which 
improve GSIS upon overexpression [351]. Regarding upregulated miRNAs, 
overexpression of miR-200 and miR-130a reduces GSIS [332, 352], increased 
expression of miR-21 causes both decreased GSIS and loss of β-cell identity [353], 
while overexpression of miR-199a results in reduced insulin content and increased 
islet apoptosis [314]. Nevertheless, the majority of these functional validation 
assays were performed in rat/mouse islets and cell lines, thus the consequences of 
miRNA action may differ in human islets. It is worth mentioning that DE miRNAs 
do not coincide with highly abundant miRNAs, supporting a clear separation 
between miRNA expression levels and regulation [191]. Furthermore, miRNA-
disease enrichment analysis using public data from two databases revealed a strong 
association of only the upregulated miRNAs with T2D, which in most cases have 
been reported as T2D circulatory biomarkers [354, 355]. 

To examine the reproducibility of the results of the current analysis, differentially 
regulated miRNAs in T2D human islets were compared with those reported in four 
previous studies with similar experimental design [198, 199, 337, 356]. The studies 
showed high heterogeneity probably due to differences in sample sizes, islet 
isolation and culture protocols, large-scale miRNA identification technologies and 
bioinformatics workflows. Nonetheless, one upregulated miRNA, miR-187-3p, was 
common among all studies and two upregulated miRNAs, miR-30a-5p and miR-9-
5p were shared between the current and two other studies [198, 199]. 

miRNA-mRNA targets of dysregulated miRNAs in T2D human islets 
To identify miRNA targets, correlations between miRNA and mRNA expression 
levels available for a subset of the 61 donors subjected to miRNA-seq (n=24) were 
performed. Only negatively correlated miRNA-mRNA pairs were considered 
(nominal p < 0.05) since miRNAs mainly act by repressing the expression of their 
targets. To provide further support to the analysis, only miRNA-mRNA targets that 
were shown to be either validated or predicted in public databases were retained 
[316, 317, 357, 358]. In that way, the 70 DE miRNAs were associated with 4951 
mRNA targets. The upregulated miRNAs displayed a significantly higher number 
of targets (3159 genes) compared to the downregulated miRNAs (1800 genes) with 
minimum overlap between them, suggesting distinct regulatory roles and 
involvement in diverse cellular processes. Notably, genes with consistently high 
expression, such as those transcribing the key endocrine hormones insulin, 
glucagon, and somatostatin, or the gene GAPDH, which is one of the most 
commonly used housekeeping genes, are subjected to no or limited direct miRNA 
control. The miRNA with the highest number of mRNA targets was miR-101-3p, 
which was associated with 766 targets. On the other hand, the mRNA targeted by 
the highest number of miRNAs belongs to the CHD9 gene, a chromatin remodeler 
that is involved in cell cycle regulation [359]. Interestingly, the key miRNA 
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biogenesis enzyme DICER1 was also among the most targeted genes by miRNAs, 
supporting the existence of an intricate miRNA regulatory network modulated by 
feedback loops. Furthermore, by integrating a comprehensive list of DE genes in 
T2D from multiple sources [149-155, 360], ≈25% of miRNA targets, on average, 
were found to be related to T2D. 

A co-expression miRNA-mRNA network is associated with insulin 
secretion 
In order to connect miRNAs with specific molecular pathways, their mRNA targets 
were assigned to co-expression clusters based on a weighted correlation network 
analysis (WGCNA). The analysis resulted in 12 mRNA clusters, which were 
functionally annotated with Gene Ontology term enrichment analysis. Interestingly, 
only Cluster 6 displayed enrichment for insulin secretion-related terms, namely 
“insulin secretion”, “vesicle-mediated transport”, “synapse organization”, and 
“regulation of membrane potential”. These pathways were also among the top 5 
enriched terms in this cluster regarding their statistical significance (FDR < 0.01). 
Cluster 6 included 238 genes with 67 of them being dysregulated in T2D according 
to the comprehensive list used in the previous section. Examples of Cluster 6 genes 
associated with insulin secretion are CLOCK [361], RFX3 [362], and KCNB1 [363]. 
Strikingly, the mRNAs in Cluster 6 were targeted exclusively by the 34 upregulated 
miRNAs, several of which have been reported as insulin secretion regulators, e.g., 
miR-29, miR-9, miR-141, miR-30d, miR-200c, miR-130a, and miR-497 [332, 352, 
364]. This again highlights the potentially crucial role of the upregulated miRNAs 
in islet function and T2D pathogenesis. 

Association of dysregulated miRNAs with insulin secretion 
In order to establish associations of miRNAs with insulin secretion, miRNA 
expression was correlated with first- and second-phase insulin secretion. For that 
purpose, insulin release curves of islets from ND and T2D donors were generated 
in response to dynamic (low; 1.76 mmol/L, high; 20 mmol/L) glucose perfusion. As 
expected, both first- and second-phase insulin release were decreased in T2D islets. 
Correlations between miRNA expression and AUC values extracted from the first-
and second-phase insulin secretion curves were performed using two methods: 1) a 
likelihood ratio test and 2) a linear regression analysis with robust standard errors. 
Significant correlations were considered those indicated by both methods (nominal 
p < 0.05). Overall, 41 miRNAs were correlated with first-phase secretion and 53 
with second-phase secretion. Of interest, out of the 16 miRNAs associated with both 
phases, 8 displayed differential regulation in T2D (5 up- and 3 downregulated). The 
five upregulated miRNAs, including miR-141-3p, miR-101-3p, miR-29c-3p, miR-
9-5p and miR-153-3p, have well-described roles in the regulation of insulin 
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secretion [364-366], indicating that dysfunction of the insulin secretory mechanism 
in T2D may be the result of downregulation of gene targets that would normally 
support and promote insulin production and secretion.  

Three of these miRNAs were studied further; miR-9-5p which had a known 
association with insulin secretion [367, 368], miR-187-3p, which showed universal 
dysregulation in T2D across all studies and miR-101-3p, which had the highest 
number of mRNA targets. Subsequently, the mRNA targets of these miRNAs were 
collected and those that were significantly correlated with first- and/or second-phase 
insulin secretion were considered. In total 84, 33, and 2 mRNA targets were 
associated with miR-101, miR-9 and miR-187, respectively. Almost all of these 
targets are expressed in human β-cells based on public single-cell transcriptome data 
(GEO: GSE153855). Of interest, nine mRNA targets were shared between miR-101 
and miR-9, including STARD13, which affects GSIS through regulation of the 
cytoskeletal organization [369], PDE7B, which is differentially methylated and 
expressed in T2D and is shown to modulate GSIS [360, 370], and ANK3, which 
impacts GSIS via direct interaction with several voltage-dependent channels and 
vesicle trafficking proteins important for insulin secretion, e.g., SYT13 [288, 371]. 

Key findings 
 Small RNA sequencing in human islets from T2D and ND donors 

uncovered 70 DE miRNAs  

 Donor BMI, HbA1c and sex are linked to changes in global miRNA 
expression   

 Upregulated miRNAs form a miRNA-mRNA network that could contribute 
to insulin secretion defects in T2D  

 Several dysregulated miRNAs and their target mRNAs are associated with 
first- and second-phase insulin secretion 

 Increased expression of miR-101-3p and miR-9-5p could contribute to T2D 
pathogenesis by silencing target genes that promote insulin secretion  
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Concluding Remarks 
This thesis displays different cases in which various types of biological data were 
combined and harmonized in order to further explore and uncover the mechanisms 
behind the impairment of β-cell function and insulin secretion in glucocorticoid-
induced/type 2 diabetes. From the data presented, the following conclusions can be 
made: 

In Paper I, the genes and the molecular mechanisms behind β-cell dysfunction 
caused by glucocorticoids were disclosed by integrating large-scale transcriptomic, 
genetic and epigenetic data. The transcription factor ZBTB16 was discovered as a 
novel direct glucocorticoid target in β-cells and functional assays demonstrated its 
protective role against glucocorticoid-induced insulin secretion impairment via 
mitochondrial action. 

In Paper II, the comparison of the transcriptome profiles of a large cohort of ND and 
T2D human islets revealed known and novel dysregulated genes in T2D. Multiple 
signals of association with high-throughput transcriptomic, genetic and epigenetic 
markers, as well as functional validation assays, coupled these changes to β-cell 
dysfunction and T2D. For the first time, it was shown that overexpression of the 
transcription factor PAX5 in T2D triggers extensive transcriptomic changes that can 
hinder mitochondrial function and insulin secretion.   

In Paper III, human islet microarray-based miRNA profiling revealed changes in the 
miRNome of donors with altered glycaemic status. DE miRNAs were associated 
with several genes associated with T2D after analysing publicly available data on 
miRNA-mRNA targets and T2D-related genes. An mRNA co-expression network 
targeted by DE miRNAs revealed two islet-specific networks associated with islet 
function. Integration of public SNP data indicated eQTLs that are correlated with 
both dysregulated miRNA expression and T2D/insulin secretion traits, thus 
associating specific miRNAs with the genetic predisposition to β-cell dysfunction 
and T2D.  

In Paper IV, changes in the miRNA profile of T2D islets were detected using small 
RNA-sequencing, hence using a more sensitive technology and also a larger cohort 
compared to Paper III. The mRNA targets of miRNAs were identified by making 
use of RNA-sequencing data of a subset of donors and were supported by publicly 
available data, increasing the robustness of the results. This led to the identification 
of a co-expression mRNA network associated with insulin secretion, which was 
targeted exclusively by upregulated miRNAs in T2D. Subsequent association of 
miRNAs and their targets with first- and/or second-phase insulin release provided 
miRNA candidates that could play a key role in insulin secretion deficiency during 
T2D onset.  
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Future Perspectives 

T2D is a huge socioeconomic burden in most parts of the world due to its high and 
increasing prevalence. GC-induced diabetes also poses a serious threat since 2% of 
newly diagnosed diabetes is connected to the wide use of glucocorticoid medication. 
In both cases, defective insulin secretion from the pancreatic β-cells or diminished 
response to insulin from its target tissues leads to prolonged elevated blood glucose 
levels, which can cause severe health consequences. The findings of this thesis focus 
on deciphering the molecular mechanisms behind insulin secretion impairment in 
GC-induced/type 2 diabetes and suggest new therapeutic targets using a data-driven 
approach.   

With the help of in-house and publicly available large-scale data, we identified 
direct GC gene targets in the β-cell and the molecular pathways associated with 
them. ZBTB16 was the most confident direct target and functional validation 
demonstrated its strong induction upon GC treatment, as well as its protective 
effects on β-cell mitochondrial function and insulin secretion. Indisputably, further 
studies on in vivo systems are necessary to determine if this gene can be used to 
reverse the negative effects of GC treatment. Moreover, other direct GC targets 
reported in this thesis should be followed up in the same way to extract more 
meaningful conclusions about the overall GC impact on β-cells. It is also worth 
mentioning that the bioinformatics workflow suggested here, which allows the 
integration of big data to identify direct transcription factor gene targets, is a useful 
tool that can be utilized in different contexts and diseases.  

The availability of a large in-house cohort of human islets from normal controls and 
T2D donors allowed the identification of dysregulated genes and miRNAs in T2D. 
While the big list of differentially expressed genes and miRNAs is by itself 
invaluable for a more complete comprehension of T2D aetiology, a series of further 
analyses that involved the integration of different types of high-throughput data 
highlighted the extensive impact of some genes and miRNAs on β-cell function, 
which could be among the main drivers of the development of the disease. A special 
focus was given to dissecting the relationship between miRNAs and their gene 
targets and trying to infer networks that could be affected in T2D. Once again, a 
series of in vitro and in vivo experiments are necessary to validate the importance 
of these findings. Since miRNAs can affect many pathways and genes at the same 
time, they hold great promise for future therapies. However, there are still concerns 
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regarding the specificity of their target cells, the efficiency of their delivery and 
uptake, and potential off-target effects.  

During this thesis, a high degree of heterogeneity between studies investigating 
changes in control and T2D human islets was observed. Undoubtedly, a proportion 
of these differences can be attributed to different demographic and 
pathophysiological characteristics between individual donors, as well as innate 
cellular diversity, even between cells of the same type. However, there are also 
external factors responsible for these discrepancies such as differences in sample 
size and experimental protocols of islet handling, use of distinct high-throughput 
technologies, and diverse statistical and bioinformatics workflows. This leads to 
non-reproducible and, sometimes, contradictory results that hinder the discovery of 
new therapeutic targets. This is why there is an urgent need for universal and 
optimised protocols for processing and generation of study outputs. Fortunately, the 
promotion of “open science” and its benefits by the research society, including 
universities and funding bodies, is also a big step forward in this direction. 
Moreover, the problem of limited availability of human islets can be tackled if 
clinical centres and institutes all around the world combine their resources and 
increase the islet sample sizes, thus generating more robust studies.  

This thesis focused on the dysfunction of β-cells. However, the regulation of glucose 
levels is also dependent both on the insulin sensitivity and action of other tissues, 
including the liver, muscle, and adipose tissue. In the future, attempts to compare 
data derived from all tissues involved in glucose homeostasis should be prioritized 
in order to discover similar patterns of molecular alterations in T2D. Furthermore, 
most studies that investigate transcriptomic changes in islets capture mere snapshots 
of gene expression. This is why such information should be complemented with 
spatial and temporal gene expression data, which would unravel how truly dynamic 
these molecular processes are.  

The projects presented here, as well as an increasing number of recent studies, are 
currently trying to integrate additional layers of omics data in a harmonized manner 
to provide a more complete understanding of how cellular systems are modulated 
and, thus, which cellular pathways are affected in T2D. The generation of a high 
number of large-scale datasets, more sophisticated algorithms and increased 
computer power are going to support this endeavour.  

T2D is manifested differently in every individual, potentially affecting multiple and 
diverse cellular mechanisms. To comprehend all aspects of the disease, a plethora 
of individuals with T2D need to be properly investigated and common disease 
patterns need to be identified. Only then we will be able to fill the gaps and gain a 
deeper insight into how the disease is progressing, how the disease can be 
successfully predicted and diagnosed or how to effectively treat the disease. This is 
the only path to personalised management of T2D. We need to see the forest for the 
trees. 
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