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Low-Density Parity-Check Codes and Spatial
Coupling for Quantitative Group Testing

Mgeni Makambi Mashauri*, Alexandre Graell i Amat’, and Michael Lentmaier*
*Department of Electrical and Information Technology, Lund University, Lund, Sweden
TDepartment of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

Abstract—A non-adaptive quantitative group testing (GT)
scheme based on sparse codes-on-graphs in combination with
low-complexity peeling decoding was introduced and analyzed
by Karimi et al.. In this work, we propose a variant of this
scheme based on low-density parity-check codes where the BCH
codes at the constraint nodes are replaced by simple single parity-
check codes. Furthermore, we apply spatial coupling to both GT
schemes, perform a density evolution analysis, and compare their
performance with and without coupling. Our analysis shows that
both schemes improve with increasing coupling memory, and for
all considered cases, it is observed that the LDPC code-based
scheme substantially outperforms the original scheme. Simulation
results for finite block length confirm the asymptotic density
evolution thresholds.

I. INTRODUCTION

The general goal of group testing (GT) [1] is to identify
the set of k£ defective items among a population of n items by
efficiently pooling groups of items in order to reduce the total
number of required tests m < n. In the sub-linear regime [2],
where the prevalence v = k/n tends to zero as n increases,
it has been demonstrated that sparse codes-on-graphs [3], can
identify all defective items with high probability with low-
complexity iterative (peeling) decoding [4], [5]. In [6] and [7],
this idea was extended from non-quantitative to quantitative
GT using t-error correcting BCH codes at the constraint nodes
of a generalized low-density parity-check (GLDPC) code with
regular and irregular variable node (VN) degrees, respectively.
It turns out that the strongest codes, with largest VN degree
d, and decoding radius ¢, do not perform best with iterative
decoding. Instead, the minimum number of required tests in
[6], [7] is achieved for t = 2 and the distribution of d, has to
be chosen carefully for every t.

Spatial coupling of regular graphs is an attractive alternative
to the sensitive optimization of irregular graphs, thanks to
the threshold saturation phenomenon that leads to robust
performance with iterative decoding even for large d,. First
observed for low-density parity-check (LDPC) codes [8], [9],
this behavior extends to other graph-based systems such as
GLDPC codes [10] or iterative decoding and detection [11],
[12]. To the best of our knowledge, however, the concept of
spatial coupling has never been applied to GT schemes.

Our main contribution in this paper is two-fold: first, we
propose a novel quantitative GT scheme based on LDPC codes
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as an alternative to the GLDPC code-based GT scheme in
[6], [7]. A corresponding peeling decoder is presented, which
cannot rely on local error correction of the component codes
(since ¢ = 0) but instead takes advantage of the cases where
either all or none of the items within a test are defective.
Second, we apply spatial coupling to both schemes. We further
perform a density evolution analysis of the LDPC code-based
GT scheme and of the coupled schemes to investigate the
effect of increasing coupling memory for various combinations
of d, and t. We consider two scenarios for evaluating the
schemes. In the first scenario, we fix the proportion of defec-
tive items y (prevalence) and compute the minimum required
rate §2, defined as the number of tests per item. This allows for
a comparison with the results presented in [6]. In the second
scenario, in order to study threshold saturation, we consider
a fixed graph structure with rate € and analyze how much ~
can be increased while still maintaining reliable recovery of
the items. For both scenarios, it can be observed that spatial
coupling improves the performance as the coupling memory w
increases. In particular, the best thresholds 7, are achieved for
larger values of d,. Remarkably, the density evolution analysis
also shows that the proposed LDPC code-based GT scheme
significantly outperforms the GLDPC code-based GT scheme
of [6], [7]. This is also true for the coupled schemes. Finally,
we present finite block length simulation results for the LDPC
code-based and GLDPC code-based GT schemes that confirm
the behavior observed in the asymptotic analysis.

II. SYSTEM MODEL

We consider a population of n items, each of which is
defective with probability -y, referred to as the prevalence. We
represent the n items by a binary vector x = (z1,...,z,),
where x; = 1 if item i is defective and x; = 0 if it is not.
Vector x is unknown and the goal of the GT scheme is to
infer it.

The GT consists of m tests and can be represented by an
m x n test matrix A = (a;,;), where row 4 corresponds to
test ¢, column j corresponds to item j, i.e., x;, and a; ; = 1
if item j participates in test ¢ and a; ; = 0 otherwise.

Here, we consider noiseless, non-adaptive quantitative group
testing, where the result of each test correctly gives the number
of defective items in the test. The result of the ¢-th test, denoted
by s;, is therefore given by

n
S; = E xjai,j.
j=1
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Fig. 1. Bipartite graph corresponding to the assignment matrix in (1).

We collect the results of the m tests in the syndrome vector
s =(81,...,8m). It holds

s=xzA".

Based on the syndrome, the goal of GT is to estimate x via
a decoding operation.

The assignment of items to tests can be conveniently rep-
resented by a bipartite graph consisting of n variable nodes
(VNs) corresponding to the n items and m constraint nodes
(CNs) corresponding to the m tests. An edge between VN 7,
v;, and CN 4, ¢;, is drawn if item x; participates in test ¢, i.e.,
if Q4,5 = 1.

Fig. 1 shows the bipartite graph corresponding to a scenario
with 6 items and 3 tests with assignment matrix

11010 1
A=(o0 111 10]. (1)
1010 11

The bipartite graph representation of quantitative GT traces
a connection with codes-on-graphs. Hence, the theory of
codes-on-graphs can be used to design good test matrices A
and analyze their properties.

III. PRELIMINARIES: GROUP TESTING
BASED ON GLDPC CODES

The work [6] introduced a quantitative group testing scheme
based on regular GLDPC codes where the test matrix A
corresponds to the partity-check matrix of a GLDPC code.
Particularly, the construction in [6] is as follows. Consider a
regular (d,d.) bipartite graph with n VNs and mg CNs and
its corresponding mpg X n adjacency matrix B. To construct
the test matrix A, each of the d. non-zero elements in a row
of B is replaced byT a column of an n, X d. signature matrix
U= (11Txdc7HtT> , where 11,4, is a 1 X d. all-ones vector
and H, of dimensions ¢log,(dc + 1) x n, is the parity-check
matrix of a t-error correcting BCH code of length d.. Hence,
n, = tlogy(dc + 1) + 1, and the total number of tests is
given by m = mpn,. (Note that, for a GLDPC code-based
GT scheme, contrary to the bipartite graph in Fig. 1, each of
the CNs corresponds to a bundle of n, tests.)

We denote by (2 the rate of the GT scheme, i.e., the ratio
between the number of tests and the number of items.! For

"Note that, interpreting A as the parity-check matrix of a code, = 1—R,
where R is the code rate.

the construction in [7],

q_m_d

"= 2t logy(de + )] + 1) @)

where the ceiling function [.] takes care of cases where d.+ 1
is not a power of two.

Decoding to recover x is performed via peeling decoding,
where at each iteration, due to the ¢-error correcting capability
of the BCH codes, a CN connected to ¢ or less unresolved
defective items can identify them and their adjacent edges are
peeled off the graph.

The probability that a defective item remains unidentified
over iterations can be tracked via density evolution. Let p(©)
the probability that a defective item remains unidentified at
iteration ¢ and ¢(©) the probability that a CN is resolved
at iteration £. The quantities p(©) and ¢(*) are given by the
following density evolution equations [7],

q(é) :tz_f (dc — 1) (p(é—l))i (1 _p(e—l))dcilii
(3

=0

P =y (1 =g D)+t

IV. QUANTITATIVE GROUP TESTING
BASED ON LDPC CODES

In this section, we propose a novel GT scheme based on
LDPC codes in which the test matrix A is the parity-check
matrix of an LDPC code or, correspondingly is obtained from
the bipartite graph of an LDPC code (as the one in Fig. 1).

A. Proposed GT scheme

We consider a regular (d, d.) bipartite graph, where each
VN is connected to d, CNs and each CN is connected to d.
VNs. The rate of the LDPC code-based GT scheme is 2 = % ,
which can also be obtained from (2) by setting ¢ = 0. ’

Similar to LDPC codes over the binary erasure channel
and GLDPC code-based GT, decoding can be performed via
peeling decoding. Peeling decoding gives rise to a sequence
of residual graphs. Decoding is successful if eventually the
decoder manages to peel off all VNs from the original graph,
resulting in an empty graph.

Let d@ the degree of a generic CN c at iteration ¢ and
s the corresponding syndrome (after the contribution of the
resolved items in previous iterations has been removed). The
proposed peeling decoding algorithm is based on the following
observation: If s(¥) = 0, then all VNs connected to ¢ are non-
defective and can be resolved. Furthermore, if () = dg), then
all VNs connected to c are defective and can also be resolved.
Otherwise, none of the connected VNs can be resolved by
considering c. This observation yields to the following peeling

decoding algorithm:

1) Initialization: Set sf) = s, and all items as unresolved

2) For ¢ > 1: For each CN c; in the residual graph at
iteration ¢,
o If S’E[) = 0 declare all connected VNs as non-
defective items and peel off their adjacent edges



o If sgz) = dgf) declare all connected VNs as defec-
tive items, subtract 1 from the syndrome of their
neighboring CNs, and peel off their adjacent edges

3) If the resulting residual graph is empty or no edges have
been peeled off in Step 2 (i.e., decoding stalls), stop the
decoding. Otherwise, increase ¢ and return to 2)

B. Density Evolution

In this section, we derive the density evolution equations of
the peeling decoding algorithm introduced in this section. For
convenience, we group the VNs into two classes, the class of
VN corresponding to defective items, which we call defective
VNs, and the class of VNs corresponding to non-defective
items, which we call non-defective VNs.

Let péz) be the probability that a message from a non-
defective VN to a CN at iteration £ is an unresolved message,
and p@ the probability that a message from a defective VN
to a CN at iteration ¢ is unresolved. Also let q((f) be the
probability that a message from a CN to a non-defective VN is
a resolved message, and qy) be the probability that a message
from a CN to a defective VN is resolved.

Proposition 1: The quantities pée), pge)’ q(()z), and q%e) are
given by the following density evolution equations:

dc.—1 .
=3 (TN () e
i=0 ‘ '
dc—1 .
< de —1 ; 1 - de—1—1
=3 ( g )v’(l—w)* -l Y)
=0
“4)
d,—1
) = (1 - qéé_1)> )
dy—1
i = (1 - q%“”) : (©)

Proof: The probability that ¢ out of the d. — 1 VNs
connected to CN through its adjacent edges except the one
on which the outgoing message is sent are defective, is given
by a binomial distribution with parameters d. — 1 and ~,
Bino(d. — 1,7).

A message from a CN c to a non-defective VN is resolved
if all incoming messages from defective VNs are resolved or
all VNs connected to ¢ are non-defective. If the number of
defective items connected to c is %, then, this occurs with
probability (1 — pge_l))i. Considering that 7 is binomially
distributed and summing over all ¢, we obtain (3).

Similarly, a message from a CN c to a defective VN is
resolved if all incoming messages from non-defective VNs
are resolved or all VNs connected to c are defective (i.e, 1 =
d. — 1), yielding (4). Finally, a message from a non-defective
or defective VN to a CN is unresolved if all its incoming d.—1
messages are unresolved, yielding (5) and (6). [ |

V. GROUP TESTING WITH SPATIAL COUPLING

In this section, we apply the concept of spatial coupling to
the LDPC code-based GT scheme introduced in the previous
section and the GLDPC code-based GT proposed in [6].

A. Group Testing based on Spatially-Coupled LDPC Codes

Similar to SC-LDPC codes, the Tanner graph of a fermi-
nated SC-LDPC code-based GT is constructed by placing L
copies of the bipartite graph of a (dy, d.)-regular LDPC code-
based GT in L spatial positions, each consisting of n, VNs
and m CNs. We refer to L as the coupling length and to ny
as the component code block length. The L copies are then
coupled as follows: each VN at spatial position 7 € [L] is
connected to d, CNs at positions in the range |7, 7+w], where
w is referred to as the coupling memory. For each connection,
the position of the CN is uniformly and independently chosen
from that range. Further, each CN at spatial position 7 € [L]
is connected to d. CNs at positions in the range [7,7 — w].

As for SC-LDPC codes, the lower degree of the CNs at the
boundaries of the coupled chain yield to a wave-like decoding
effect where a decoding wave propagates from the boundaries
of the chain inward.

The rate of the SC-LDPC code-based GT scheme is

Qsc:(1+%>9, %

with Q = g—z. Note that coupling implies an increase in the
number of tests by a factor of 7 compared to the uncoupled
case—akin to the rate loss of SC-LDPC codes—that vanishes
as L becomes large.

The density evolution equations for SC-LDPC code-based
GT are given in the following proposition.

Proposition 2: The quantities p((f)T, pgg, q((fl, and q% are
given by the following density evolution equations:

o . , e-1\?
q077— _r—,_l Z Z Blno(dc - 13277) (1 - plﬂ'*]’)
b

j=0 i=0
, w de—1 ¢ de—1—1
. N _1 ‘
qgﬂ)_ = Z Z Blno(dc - 1aZ7fY) (1 - p(();T*})
w+ 14—~ &
7=0 =0
o __1 ¥ (-1 )%~
Po.r 7w7+1 Z (1 — QO,T+j>
7=0
o 1Y (e-1)\ ™!
pir ol jz:% (1 — (I1,T+j> )

B. Group Testing based on Spatially-Coupled GLDPC Codes

The coupling of GLDPC code-based GT is performed in
a similar way as for SC-LDPC code-based GT. However,
contrary to SC-LDPC code-based GT, which is obtained by
coupling the bipartite graph corresponding to the test matrix
A, the coupling of GLDPC code-based GT is performed over
the bipartite graph corresponding to the adjacency matrix B.

The rate of the SC-GLDPC code-based GT scheme is also
given by (7), with  given in (2).

The density evolution equations for SC-GLDPC code-based
GT are given in the following proposition.



TABLE I
Qin FOR v = 0.15% WITH GLDPC CODE-BASED GROUP TESTING

coupling memory

t dy w=0 w=1 w=2 w=5 w=10
2 3.3588 3.3574 3.3564  3.3564 3.3564
1 3 22374 19968  1.9956  1.9956 1.9956
4 2.3715  2.0432  2.0328 2.0320 2.0320
2 22472 2.1286 2.1277 2.1268  2.1268
2 3 24574 19506 1.9310 19310 1.9310
4 2.8612 21726  2.1268  2.0650 2.0650
2 2.1926 19655 1.9639  1.9629 1.9623
3 3 27106  2.1056  2.0443  2.0415 2.0408
4 33713 22504 2.0637 2.0369 2.0364
2 24079 2.0580 2.0367 2.0364 2.0364
5 3 3.0622 23407 2.1884  2.1686 2.1686
4 37795 22653 2.2655  2.1691 2.1691
Proposition 3: The quantities qg), and p(f) are given by the

following density evolution equations:

t—1

1 & d.—1 i iy de—1—i
0 -~ < ( C ;)) (1_ (¢ ;))
O 2 () 6I) (0t

j=0i=
dy—1
=)\ ™
Y (1 - ‘I£+j )) .

VI. NUMERICAL RESULTS
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A. Density Evolution Thresholds

The density evolution equations derived in Sections IV-B,
V-A, and V-B can be used to analyze the behavior of GT
in the limit of large n, and more precisely to compute the
GT threshold. In particular, for a fixed prevalence v, the GT
threshold €, is defined as the minimum rate—the minimum
number of tests per item—required for perfect detection of
the defective items. Conversely, for a fixed rate €2, the GT
threshold ~y, is defined as the maximum prevalence that allows
perfect detection of the defective items.?

Here, we give density evolution results for the proposed
LDPC code-based and spatially-coupled GT schemes and
compare them with the GLDPC code-based scheme in [6].

In Table I, we give €, for a prevalence v = 100/2'¢
for GLDPC code-based GT.> The uncoupled case, w = 0,
corresponds to the scheme in [6]. We can see that coupling
improves the threshold 2 (except for ¢t = 1 and d, = 2),
and the improvement increases with increasing ¢ and d,. For
both the uncoupled and coupled cases, the best threshold is
obtained for t = 3 and d, = 2.

In Fig. 2, we plot threshold €, as a function of the
prevalence v (both in percentage) for the proposed LDPC
code-based GT scheme with d, = 5, the GLDPC code-based
GT scheme of [6] with ¢ = 2 and d, = 2, and the coupled
versions of both. We observe that the LDPC code-based GT

2We consider the threshold Q,, as this is the quantity considered in [6].
However, from a coding perspective, it is interesting to fix the rate of the
scheme and compute 7,, which is akin to the belief propagation threshold
for codes-on-graphs.

3We use this prevalence as it is the one considered in [6, Fig. 2]

3
—o—LDPC, d, = 5 ‘ .o
—o0—GLDPC, t = 2, d, = 2

251

O (in %)

i 1

0.18 0.2

0.5 : :

!
0.16
v (in %)

Fig. 2. Q4 as a function of « for LDPC code-based and GLDPC code-based
schemes. Dashed lines are for the uncoupled schemes, while solid lines are
for the coupled schemes.

0.1 0.12 0.14 0.22

TABLE II
~Yth FOR © = 5% WITH GLDPC CODE-BASED GROUP TESTING

coupling memory

t d w=0 w=1 w=2 w=5 w=10
2 02487 0.2502 0.2502 0.2502  0.2502
1 3 03708 04166 04166 04166  0.4166
4 03510 04395 04425 04425 04425
2 03983 04257 04257 04257 04257
2 3 0.3372 0.4242  0.4288  0.4288 0.4288
4 02884 04120 04318 04333  0.4333
2 0.3784  0.4211 0.4227 04227 0.4227
3 3 03189 04257 04379 0.4379  0.4395
4 02441 03662 0.3983 0.4028  0.4028
2 03418 0.3998 0.4044 0.4044  0.4044
5 3 0.2686 0.3784 0.4044  0.4089 0.4089
4 02014 03159 03616 0.3769  0.3769

scheme significantly outperforms the scheme in [6]. Spatial
coupling improves )y, for both schemes, with the largest
improvement for the proposed LDPC code-based GT scheme.

Finally, in Tables II and III, we give v, for Q@ = 5%
for GLDPC code-based and LDPC code-based GT, respec-
tively. For LDPC code-based GT (Table III), we observe
that with coupling the threshold improves with increasing d,
(similarly to LDPC codes). Compared to GLDPC code-based
GT (Table II), LDPC code-based GT achieves significantly
higher thresholds. Furthermore, we generally observe that the
thresholds tend to converge to a constant value for a large
enough coupling memory w.

B. Simulation Results

In this section, we give simulation results for finite block
length. In Fig. 3, we plot the misdetection rate, i.e., the
fraction of defective items not identified, as a function of the
prevalence y for the proposed LDPC code-based GT scheme
with no coupling (dashed lines) and coupling (solid lines) for
dy = 3, 5, and 10, and rate {2 = 0.05. The block length



TABLE III
~Yth FOR © = 5% WITH LDPC CODE-BASED GROUP TESTING

coupling memory

dd w=0 w=1 w=2 w=5 w=10
3 04555 0.5544  0.5508 0.5559  0.5559
4 05982 0.8423 0.8532 0.8540  0.8540
5 06416 09682 1.0270 1.0274 1.025
6  0.6464 1.0044 1.1196 1.1325 1.1327
7  0.6353 0.9999 1.1585 1.1978 1.1980
10  0.5773 09188 1.1272 1.2814 1.2816
100 £ ]
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Fig. 3. Misdetection rate for uncoupled (dashed) and coupled (solid) LDPC
code-based GT.

of the uncoupled scheme is n = 153000. For the coupled
scheme, we consider w = 5, L = 200, and component code
block length n, = 102000. Further, the coupled scheme is
decoded by iterating on the entire chain (not using a window
decoder). We observe that coupling significantly improves
performance, particularly for large d,, in agreement with the
density evolution results (cf. Table III). The density evolution
thresholds are given by the vertical lines. We remark that the
latency (defined as the number of items that need to be tested
before delivering test results) of the coupled scheme is much
larger than that of the uncoupled scheme. The former is nyL,
while the latter is n. Note, however, that increasing n for
the uncoupled scheme marginally improves its performance
(the limit is given by the density evolution threshold), hence
the figure highlights how much one can gain with coupling if
latency is not a problem.

In Fig. 4, we plot the misdetection rate for uncoupled
(dashed lines) and coupled (solid lines) GLDPC code-based
GT with t = 3, d, = 3, and © = 0.05. Further, we
consider two component code block lengths, n, = 153000
and np = 10200. For np, = 153000, we assume full decoding,
while for n, = 10200 we assume a sliding window (SW)
decoding [13] with window size W = 15. The latency of the
coupled scheme is therefore n,W, i.e., the latencies of the
uncoupled scheme and coupled scheme with SW decoding
are identical. Notably, for SW decoding and the same latency,
coupling still outperforms the uncoupled scheme. As for the
LDPC code-based GT scheme, coupling with full decoding
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Fig. 4. Misdetection rate for uncoupled (dashed) and coupled (solid) GLDPC
code-based GT with t = 3 and d, = 3.
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Fig. 5. Misdetection rate as a function of the number of tests per defective
item for GLDPC code-based GT with ¢ = 2 and dy = 2, and v = 0.15%.

106

significantly improves performance.

In Fig. 5, we consider the scenario with fixed prevalence
~ and varying rate (), corresponding to [6, Fig. 2]. For
GLDPC code-based GT with ¢t = 2 and d, = 2, we plot
the misdetection rate as a function of the number of tests
per defective item. Each point in this plot corresponds to
a different rate (2. We observe for the uncoupled scheme
(dashed) that the curve flattens as the number of tests increases,
while it decays very steeply for the coupled scheme (solid).

VII. CONCLUSION

Our analysis demonstrates that spatial coupling improves
the performance of GLDPC code-based and LDPC code-based
GT schemes in terms of both the asymptotic performance
and the error floor. Our numerical results indicate that the
thresholds tend to converge to a constant value as w increases.
We plan to investigate threshold saturation in an extended
version of this paper. Further, both the thresholds and the finite
length simulations show that our proposed LDPC code-based
scheme performs significantly better than the GLDPC code-
based schemes from the literature, based on t-error correcting
BCH codes, both with and without spatial coupling.
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