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Abstract

The rapidly evolving domain of network systems poses complex challenges, es-
pecially when considering scalability and transient behaviors. This thesis aims to
address these challenges by offering insights into the transient analysis and control
design tailored for large-scale network systems. The thesis consists of three papers,
each of which contributes to the overarching goal of this work.

The first paper, A closed-loop design for scalable high-order consensus, studies
the coordination of 𝑛th-order integrators in a networked setting. The paper introduces
a novel closed-loop dynamic named serial consensus, which is designed to achieve
consensus in a scalable manner and is shown to be implementable through localized
relative feedback. In the paper, it is shown that the serial consensus system will be
stable under a mild condition – that the underlying network contains a spanning
tree – thereby mitigating a previously known scale fragility. Robustness against both
model and feedback uncertainties is also discussed.

The second paper, Closed-loop design for scalable performance of vehicular
formations, expands on the theory on the serial consensus system for the special case
when 𝑛 = 2, which is of special interest in the context of vehicular formations. Here,
it is shown that the serial consensus system can also be used to give guarantees on the
worst-case transient behavior of the closed-loop system. The potential of achieving
string stability through the use of serial consensus is explored.

The third paper, Input-output pseudospectral bounds for transient analysis of
networked and high-order systems, presents a novel approach to transient analysis
of networked systems. Bounds on the matrix exponential, coming from the theory
on pseudospectra, are adapted to an input-output setting. The results are shown to
be useful for high-order matrix differential equations, offering a new perspective on
the transient behavior of high-order networked systems.

3





Acknowledgements

First and foremost, I owe a deep gratitude to Emma. The countless late-night research
sessions, the knack for identifying intriguing problems, and the genuine partnership
we’ve formed in our academic journey have been pivotal. Your support and guidance
have been invaluable to my progress. I’d also like to thank Anders, for always being
open to discussing new ideas and providing insight.

Now, to the Department of Automic Control in Lund. Where to start? Fika at 10?
Coffee at 15? Why not both? Great technical staff, or superb administrative staff?
Why not both? An intense game of floorball, or perhaps a nerve-wracking night with
boardgames – we even have intellectually stimulating study circles! I am blessed to
work in such a great environment.

Some random words: Atlanta, Cancún, Paris, Austria, and the Netherlands. I
eagerly look forward to the coming adventures – guess it’s Singapore next!

Lastly, a huge thanks to Linnéa and my family. Your support and encouragement
have been invaluable to me. All love.

5





Contents

1. Introduction 9
1.1 Aims of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Background 11
2.1 Modelling of networked dynamical systems . . . . . . . . . . . 11
2.2 Controlling networked dynamical systems . . . . . . . . . . . . 11
2.3 Solutions of linear systems . . . . . . . . . . . . . . . . . . . . 13
2.4 The consensus problem . . . . . . . . . . . . . . . . . . . . . . 13
2.5 High-order consensus . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Vehicle formation control . . . . . . . . . . . . . . . . . . . . . 15

3. Contributions 17
3.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Contributions not included in the thesis . . . . . . . . . . . . . . 19

4. Discussion and Directions for Future Work 20
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bibliography 23
Paper I. A closed-loop design for scalable high-order consensus 27

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Network model and definitions . . . . . . . . . . . . . . . 29
2.2 𝑛th order consensus . . . . . . . . . . . . . . . . . . . . . 30
2.3 Control structure . . . . . . . . . . . . . . . . . . . . . . 30
2.4 A Novel Design: Serial Consensus . . . . . . . . . . . . . 31
2.5 Implementing Serial consensus . . . . . . . . . . . . . . 32
2.6 Scalable stability . . . . . . . . . . . . . . . . . . . . . . 34

3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1 Scalable stability . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Robustness of serial consensus . . . . . . . . . . . . . . . 36

7



Contents

4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 2nd order consensus on circular graph . . . . . . . . . . . 39
4.2 3rd order consensus . . . . . . . . . . . . . . . . . . . . . 40
4.3 Robustness of the 2nd order serial Consensus. . . . . . . . 41

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Paper II. Closed-loop design for scalable performance of vehicular
formations 47

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 Definitions and network model . . . . . . . . . . . . . . . 50
2.2 Vehicle formation model . . . . . . . . . . . . . . . . . . 50
2.3 Control structure . . . . . . . . . . . . . . . . . . . . . . 51
2.4 A Novel Design: Serial Consensus . . . . . . . . . . . . . 52
2.5 Performance criterion . . . . . . . . . . . . . . . . . . . 54

3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Message passing . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Extended measurements . . . . . . . . . . . . . . . . . . 57

5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1 Scalable stability . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Scalable performance . . . . . . . . . . . . . . . . . . . . 59
5.3 Different graph Laplacians . . . . . . . . . . . . . . . . . 60

6 Conclusions and directions for future work . . . . . . . . . . . . 61
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Paper III. Input-Output Pseudospectral Bounds for Transient Analysis

of Networked and High-Order Systems 67
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.1 Signal and system norms . . . . . . . . . . . . . . . . . . 70
2.2 Input-output scenarios . . . . . . . . . . . . . . . . . . . 71
2.3 Complex analysis . . . . . . . . . . . . . . . . . . . . . . 71
2.4 Pseudospectra . . . . . . . . . . . . . . . . . . . . . . . . 72
2.5 Kreiss theorem . . . . . . . . . . . . . . . . . . . . . . . 73

3 Input-Output Transient Bounds . . . . . . . . . . . . . . . . . . 73
3.1 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Application to networks: vehicle strings . . . . . . . . . . . . . . 78
4.1 Directed vehicle string . . . . . . . . . . . . . . . . . . . 80
4.2 Bidirectional (symmetric) vehicle string . . . . . . . . . . 82

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8



1
Introduction

All around the world we can see large and complex networked systems emerge. Some
examples are power grids, transportation networks, and flocking of animals. Much
of our understanding of such systems comes from the study of their steady-state
behavior and the stability of this behavior. While this is fundamental – both good
steady-state behavior and stability are necessary for a system to be well-behaved –
in many cases the transient behavior may be of equal importance. For instance, in
the case of a vehicle platoon as illustrated in Fig. 1.1, the transient behavior may
determine weather the vehicles of the platoon will collide or not. To see this, consider
the simple vehicle model

¥𝑥𝑖 (𝑡) = 𝑢𝑖 (𝑥, 𝑡).

That is the vehicles are assumed to be identical point-masses which will accelerate
proportional to their control input 𝑢𝑖 (𝑥, 𝑡). Now, a simple control strategy would be
to let the control input be proportional to the relative distance and relative velocity
to the vehicle in front of it, i.e.

𝑢𝑖 (𝑥, 𝑡) = 𝑟0 (𝑥𝑖−1 (𝑡) − 𝑥𝑖 (𝑡) − 𝑑𝑖) + 𝑟1 ( ¤𝑥𝑖−1 (𝑡) − ¤𝑥𝑖 (𝑡)),

where 𝑑𝑖 is a desired distance that agent 𝑖 should keep to the vehicle in front
of it. These position errors can be mesured through an onboard radar, something
modern commercial vehicles are already equipped with. By analysing the poles of
this system one can conclude that the system will be stable if 𝑟0, 𝑟1 > 0 and this
is independent of the number of vehicles. Thus, all vehicles will eventually settle
at the desired intervehicle distances. However, as illustrated in Fig. 1.2, when the

Figure 1.1 Illustration of a vehicle platoon.
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CHAPTER 1. INTRODUCTION

(a) Simple control of formation with 10 ve-
hicles.

(b) Simple control of formation with 100
vehicles.

Figure 1.2 The lead vehicle in the formation changes its velocity. The deviation from the
desired intervehicle distance throughout the transient phase are shown. When the number
of vehicles increases the largest deviation increases. Clearly, the vehicles in the 100 vehicle
platoon will collide during the transient.

number of vehicles increases, then so will also the local deviations throughout the
transient phase. This behavior is known in the literature as string-instability, see e.g.
[Swaroop and Hedrick, 1996; Stüdli et al., 2017; Abolfazli et al., 2023; Feng et al.,
2019; Seiler et al., 2004], and is a spectacular example of a lack of scalability of the
control deisgn to large formations.

The problem of string-instability is, in fact, not only a theoretical problem. In
a recent test of commercial cruise control systems [Gunter et al., 2021] they found
that all seven tested systems had problems with controlling the transient and could
not be considered string-stable. Like in the example above, this means that small
errors in the speed and relative distances between the vehicles would get amplified
and propagated throughout the platoon. Clearly, this indicates that there is a need
for better understanding of the transient behavior of networked systems. While this
problem is particularly easy to grasp in the scenario of a string of vehicles, the issue
of error propagation or cascading failures is relevant to many engineered network
systems with other topologies, and a generalization of the notion of string stability
to meshed networks has also been proposed in e.g. [Besselink and Knorn, 2018].

1.1 Aims of the thesis

This thesis aims to study the behavior of large-scale networked linear systems when
controlled through relative feedback. In particular, emphasis is put on three aspects:
1) the transient behavior of such systems, 2) the design of scalable controllers that
ensures good performance and robust stability also as networks grow large, and
3) the development of a theoretical framework for the analysis of transient behavior,
for control systems in general and network systems in particular.
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2
Background

2.1 Modelling of networked dynamical systems

In many applications, the dynamics of a networked system can be described by
considering a set of 𝑁 interconnected subsystems. When the subsystems are similar,
such as in the case of a formation of vehicles, swarms of drones, or a network
of power generators, it is often convenient to describe the dynamics of the entire
network using a single dynamical model which captures the essential behavior of
the individual subsystems. For instance, in the case of a formation of vehicles, the
dynamics of each vehicle can be described by a double integrator model which
follows from Newton’s second law. The collective dynamics of the formation can
then be described by the simple model

𝑀 ¥𝑥 = 𝑢(𝑥, 𝑡),
where 𝑥(𝑡) ∈ R𝑁 is the state representing the positions of the vehicles, 𝑀 ∈ R𝑁×𝑁

is a positive definite diagonal mass matrix, and 𝑢(𝑥, 𝑡) ∈ R𝑁 is the control input. Of
course this model is a simplification of the real system, but it captures the essential
behavior of the system. In any case, understanding the behavior of this model is
a good starting point for understanding the behavior of the real system. A slightly
more general model is given by

𝐴𝑛𝑥
(𝑛) (𝑡) + 𝐴𝑛−1𝑥

(𝑛−1) (𝑡) + · · · + 𝐴1 ¤𝑥(𝑡) + 𝐴0𝑥(𝑡) = 𝑢(𝑥, 𝑡), (2.1)

where 𝐴𝑘 ∈ R𝑁×𝑁 for 𝑘 = 0,1, . . . , 𝑛 are constant matrices and 𝑥 (𝑘 ) (𝑡) denotes the
𝑘 th derivative of 𝑥(𝑡). This model is general enough to capture the dyanamics of
many networked systems. Even in the case of nonlinear systems, it is often possible
to approximate the dynamics by a linear model around some desired operating point.

2.2 Controlling networked dynamical systems

A core objective of a control design is to ensure that a system behaves well around
operating points and follow desired trajectories, even when disturbances and un-
certainties are present (which they always are). When controlling large networked

11



CHAPTER 2. BACKGROUND

Figure 2.1 A system consisting of 𝑁 = 6 interconnected subsystems, where the connecting
lines represent communication links.

dynamical systems an additional constraint arrises, namely that the control input is
often required to be distributed. This means that each subsystem can only use infor-
mation from its neighbors to compute its control input. This is due to the fact that
a centralized controller would require very large communication and computation
resources, which may not be possible to implement in practice.

The constraint of distributed control can be formulated as follows. Let G =

(V ,E) be a graph with vertex set V = {1,2, . . . , 𝑁} and edge set E ⊆ V ×V . The
graphG represents the communication topology of the networked system, an example
of which is presented in Fig. 2.1. The edge (𝑖, 𝑗) ∈ E indicates that agent 𝑖 can
communicate with agent 𝑗 . The set of neighbors of agent 𝑖 is denoted N𝑖 . With this
notation, a general linear state feedback controller for system (2.1) can be written as

𝑢𝑖 (𝑥, 𝑡) = 𝑢𝑖,ref (𝑡) −
𝑛∑︁

𝑘=0

∑︁
𝑗∈N𝑖

𝑏
(𝑘 )
𝑖 𝑗
𝑥
(𝑘 )
𝑗

(𝑡), (2.2)

where 𝑢𝑖,ref (𝑡) is the desired control input for agent 𝑖 and 𝑏 (𝑘 )
𝑖 𝑗

∈ R for 𝑘 = 0,1, . . . , 𝑛
and (𝑖, 𝑗) ∈ E are constant gains. Further constraints can then be placed on the 𝑏𝑖 𝑗
to capture the permissible feedback. Throughout this thesis, we will often consider
relative feedback, which implies that

∑
𝑏𝑖 𝑗 = 0. Relative feedback, arising through

diffusive couplings or measurement equipment, like radars, that measure differences
in states, is prevalent in applications and known to be limiting to control of large-
scale systems, see e.g. [Bamieh et al., 2012; Tegling, 2018; Jensen and Bamieh,
2022].

Systems which can be formulated as (2.1) and are controlled with a controller
of the form (2.2) make up a large class of networked dynamical systems. This type
of systems and the solutions thereof will be the focus of this thesis.

12



2.3. SOLUTIONS OF LINEAR SYSTEMS

2.3 Solutions of linear systems

It turns out that the networked dynamical system that was outlined in the previous
section is a special case of a linear time-invariant system. The closed-loop system
can be written as

¤𝜉 (𝑡) =


0 𝐼𝑛 0 . . .
...

. . .
. . . 0

0 . . . 0 𝐼𝑛
−𝐴0 −𝐵0 −𝐴1 −𝐵1 . . . −𝐴𝑛−1 −𝐵𝑛−1

︸                                                       ︷︷                                                       ︸
A

𝜉 (𝑡) +


0
...

0
𝐵

︸︷︷︸
B

𝑢ref (𝑡)

𝑦(𝑡) = C𝜉 (𝑡).

(2.3)

where 𝜉 (𝑡) ∈ R𝑁𝑛 is the state vector, 𝑢ref (𝑡) ∈ R𝑁 is the reference input, 𝑦(𝑡) ∈ R𝑁

is the output, and A, B, and C are constant matrices. The solution of a linear time-
invariant system of the form (2.3) is well known and can simply be written as

𝑦(𝑡) = C𝑒A𝑡𝜉 (0) +
∫ 𝑡

0
C𝑒A(𝑡−𝜏 )B𝑢ref (𝜏)d𝜏.

2.4 The consensus problem

A particular case of a networked dynamical system is the consensus problem The
idea here is that each agent is allowed to observe the relative distances between itself
and its neighbors and then make a control effort which depends on these relative
distances. This can then lead to the agents reaching a common state, i.e., a consensus.
One of the simplest controllers which can be used to achieve consensus is the linear
consensus protocol, which has been studied extensively in the literature, see e.g.
[Young et al., 2010; Patterson and Bamieh, 2014; Siami and Motee, 2016]. The
linear consensus protocol is given by

¤𝑥(𝑡) = −𝐿𝑥(𝑡) +𝑢ref (𝑡), where 𝑥(0) = 𝑥0 (2.4)

where 𝑥0 ∈ R𝑁×𝑁 is the initial condition and 𝐿 is a, potentially weighted, graph
Laplacian matrix. 𝐿 can formally be defined as

𝐿 = 𝐷 −𝑊,

where 𝐷 is a diagonal matrix with 𝐷𝑖𝑖 =
∑𝑁

𝑗=1𝑊𝑖 𝑗 and 𝑊 is a weighted adjacency
matrix of the graph G (V ,E), i.e. 𝑊𝑖, 𝑗 > 0 ⇐⇒ (𝑖, 𝑗) ∈ E . It turns out that the
linear consensus protocol possess some interesting properties. For example, under
the relatively mild constraint that the graph G contains a directed spanning tree, then
this controller will drive the agents to a consensus, i.e., lim𝑡→∞ 𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) = 0 for
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CHAPTER 2. BACKGROUND

all 𝑖, 𝑗 ∈ V [Ren et al., 2007a]. Or in other words, the solution of (2.4) will converge
to a state 𝑥(𝑡) ∈ span(1), where 1 is the consensus vector of all ones. Furthermore,
the solution of (2.4) will be contractive in the ∥ · ∥∞-norm, i.e., ∥𝑥(𝑡)∥∞ ≤ ∥𝑥0∥∞ for
all 𝑡 ≥ 0 [Willems, 1976]. Lastly, since the stability of the linear consensus protocol
only depends on the existence of a directed spanning tree, it follows that additions
of new measurements to an already existing network will not affect the stability of
the system. These properties are very desirable in many applications, and the linear
consensus controller has therefore received ample attention in the literature, see e.g.
[Siami and Motee, 2016; Young et al., 2010].

In the case of formation control, the agents should of course not reach the same
position, but rather a fixed formation with desired inter-agent distances. This can
however be achieved by simply adding a constant offset vector to the controller. To
see this, consider 𝑥 = 𝑥− 𝑝𝑥 , where 𝑝𝑥 is a desired position. Then, the dynamics of
𝑥 is given by

¤̂𝑥 = −𝐿 (𝑥− 𝑝𝑥) − 𝐿𝑝𝑥 +𝑢ref = −𝐿𝑥 + (𝑢ref − 𝐿𝑝𝑥)

which is of the same form as (2.4) with 𝑢ref −𝐿𝑝𝑥 as the new reference input. Hence,
the agents will reach a consensus with the desired offset with this simple controller.

2.5 High-order consensus

The linear consensus protocol can be used to coordinate a group of agents to a
common state. However, the agents will not be able to track a reference trajectory
with this simple controller. Though, there is a generalisation of the linear consensus
protocol which allows the agents to track a reference trajectory. This generalisation is
called the high-order consensus protocol, as considered in [Ren et al., 2007b]. Here,
the control of 𝑁 identical 𝑛th-order integrator systems is considered. The dynamics
can be compactly written as

𝑥 (𝑛) (𝑡) = 𝑢ref (𝑡) −
𝑛−1∑︁
𝑘=0

−𝐿𝑘𝑥
(𝑘 ) (𝑡) where 𝑥 (𝑘 ) (0) = 𝑥 (𝑘 )0 , (2.5)

where 𝑥 (𝑘 )0 ∈ R𝑁 is the initial condition for the 𝑘 th derivative of the state and 𝐿𝑘 is a,
potentially weighted, graph Laplacian matrix.1 This problem has also been studied
in e.g. [Jiang et al., 2009; Rezaee and Abdollahi, 2015; Radmanesh et al., 2017].
In [Tegling et al., 2023] it was shown that the high-order consensus protocol may
lead to an unstable closed-loop system unless the local gains for each agent is tuned

1 For simplicity, a scalar state x is considered, making longitudinal control the problem of interest.
With a higher-dimensional agent state, the control (2.5) can be applied in all coordinate directions,
provided the agents are point masses and the control can be decoupled. For non-holonomic agents, it
is slightly more involved, and outside the scope of this thesis.
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2.6. VEHICLE FORMATION CONTROL

Figure source: U.S. Department of Transportation, 2015

Figure 2.2 Illustration of a vehicle formation.

with respect to the eigenvalues of the graph Laplacian. Thus, the underlying graph
structure in the feedback plays a crucial role, for the stability of the closed-loop
system.

Another property of the high-order consensus protocol is the existence of an 𝑛th-
order integrator, even in the closed-loop system. This makes the system unstable.
Thus if one were to analyze or bound the norm of the associated solution operator
𝑒A𝑡 , one would inevitably find out that sup𝑡≥0 ∥𝑒A𝑡 ∥ =∞. In this scenario, the 𝑛th-
order integrator is designed to be associated with the consensus vector and is there to
allow the formation to track more complex trajectories. It is therefore interesting to
also study the behavior around the consensus vector, and the transient in particular.
This motivates the need for results which can describe the behavior of C𝑒A𝑡B for
𝑡 ≥ 0, where A is the closed-loop system matrix, B is the input matrix, and C is the
output matrix, that makes the output orthogonal to the consensus vector.

2.6 Vehicle formation control

A particularly interesting case of the high-order consensus protocol is when the
agents are modeled as dobule integrators. The double-integrator system can be seen
as a simple vehicle model which is often used in the literature on vehicle formation
control and in particular vehicle platooning, see e.g. [Barooah et al., 2009; Andreas-
son et al., 2014; Hao and Barooah, 2013; Herman et al., 2017]. An illustrating figure
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CHAPTER 2. BACKGROUND

of a vehicle formation is shown in Figure 2.2. For the vehicle platoon problem, the
goal is to coordinate a group of vehicles to maintain fixed intervehicle distances
while moving at the same velocity. For large vehicle formations, it may not be fea-
sible for all vehicles to keep track of a global reference or properties such as the
number of agents in the formation. Local and relative measurements can however
be used and communicated locally. Thus, an important aspect of the vehicle platoon
problem is to design a distributed controller which adheres to these constraints. As
for the general high-order consensus protocol, there will be an unstable subspace
in the closed-loop system. This subspace corresponds to the consensus equilibrium
where the vehicles are moving at the same velocity and with fixed intervehicle dis-
tances. So in this case it is also interesting to study the behavior of the solution
around this equilbrium. In the case of vehicle platoons, it is especially interesting to
study the transient of the intervehicle distances 𝑒𝑝 (𝑡) = 𝐿𝑥(𝑡), where 𝐿 is a graph
Laplacian matrix which encodes the relative errors. These relative errors must re-
main bounded throughout the transient in order to guarantee that the vehicles do not
collide. Another interesting error to study is the velocity error 𝑒𝑣 (𝑡) = ¤𝑥(𝑡) − 𝑣ref1.
This error must also remain bounded to guarantee that the vehicles do not exceed
the speed limits. This problem is addressed in Paper II.
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3
Contributions

3.1 Paper I

This paper tackles the problem of coordinating a group of 𝑁 identical 𝑛th-order
integrator systems and thus the design of the controller 𝑢(𝑥, 𝑡) ∈ R𝑁 in

d𝑛𝑥(𝑡)
d𝑡𝑛

= 𝑢(𝑥, 𝑡).

The controller is restricted to only use local, linear and relative state measurements.
A new control law is proposed which is called the serial consensus controller. The
controller is chosen to achieve the desired closed-loop dynamics(

𝑛∏
𝑘=1

𝑠𝐼 + 𝐿𝑘

)
𝑋 (𝑠) =𝑈ref (𝑠),

here expressed in the Laplace domain. This system can be proven to be stable around
the consensus equilibrium under the mild constraint that the graphs underlying the
graph Laplacians 𝐿𝑘 each contain a spanning tree. This addresses a previously
observed scalability issue with the high-order consensus protocol, where stability
can not be guaranteed for large networks. The proposed serial consensus controller is
shown to satisfy the requirements on locality and use of relative measurements. In the
case where each Laplacian matrix 𝐿𝑘 only encodes feedback between neighboring
agents, then the relative measurements needed to implement the serial consensus
controller is shown to be confined to an 𝑛-hop neighborhood of each agent.

The control design is further motivated through its robustness properties.
Through the use of the well-known small-gain theorem, it is shown that the closed
loop system is robust to both model and feedback uncertainties. This makes the
stability properties of the closed-loop system also applicable to a real-world im-
plementation where there inevitably is uncertainty, both in agent-model and in the
feedback. The findings are also illustrated through examples.

This paper will appear in the proceedings of the 2023 IEEE Conference on
Decision and Control.
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CHAPTER 3. CONTRIBUTIONS

3.2 Paper II

Paper II expands on the work of Paper I by analyzing the performance of the second
order serial consensus system, which is relevant in the context of vehicle formations.
Given any graph Laplacian 𝐿 which defines a set of relative errors 𝑒𝑝 (𝑡) = 𝐿𝑥(𝑡)
and absolute velocity deviation 𝑒𝑣 (𝑡) = ¤𝑥(𝑡) −1𝑣ref then the serial conensus system

¥𝑥(𝑡) = −(𝑝1 + 𝑝2)𝐿 ¤𝑥(𝑡) − 𝑝1𝑝2𝐿𝑥(𝑡)

can be shown to guarantee that

sup
𝑡≥0





[𝑒𝑝 (𝑡)𝑒𝑣 (𝑡)

]



 ≤ 𝛼(𝑝1, 𝑝2)




[𝑒𝑝 (0)𝑒𝑣 (0)

]




where 𝛼(𝑝1, 𝑝2) <∞ as long as 𝑝1, 𝑝2 > 0 and 𝑝1 ≠ 𝑝2. The result is, remarkably,
independent of the number of agents and the graph structure. Different choices of
graph structures are discussed and illustrated through examples and is contrasted
with the conventional consensus controller.

This paper is in preparation for a journal submission.

3.3 Paper III

In this work bounds on the transient behavior of

sup
𝑡≥0

∥C𝑒𝑡AB∥,

are derived based on the size of the transfer matrix ∥𝐶 (𝑠𝐼 −A)B∥, measured in
the same submultiplicative norm. The proof ideas originate from the pseudospectra
literature and are adapted to an input-output setting. The bounds are shown to be
particular interesting for analyzing high-order systems, in particular those that can
be described by high-order matrix differential equations. One particular example,
which is also illustrated in the paper, is the vehicle platooning problem. In this case,
the closed-loop system can be modeled as the following matrix differential equation

𝑠2𝑋 (𝑠) + 𝑠𝐿1𝑋 (𝑠) + 𝐿0𝑋 (𝑠) = 𝐵𝑈 (𝑠), 𝑌 (𝑠) = 𝐶𝑋 (𝑠).

The new bounds adresses two particular issues of analyzing the transients of this
type of systems through the pseudospectra of A. 1) Due to the existence of a
double integrator in the system, there will be states drifting to infinity, which implies
sup𝑡≥ ∥𝑒𝑡 𝐴∥ = ∞. 2) Since the upper bound of the Kreiss theorem scales linearly
with the number of states associated withA, which makes it impossible to determine
important properties, such as string stability for large-scale systems. The new bounds
are shown to be useful for both these issues.

This paper is published in the proceedings of the 2022 IEEE Conference on
Decision and Control.
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3.4. CONTRIBUTIONS NOT INCLUDED IN THE THESIS

3.4 Contributions not included in the thesis

The following papers by the author are not included in the thesis, but are here briefly
summarized.

• The paper Limitations of time-delayed case isolation in heterogeneous SIR
models [Hansson et al., 2022] studies the effects of including time delays and
heterogeneity, in the contact network, and how these impact the spread of a
disease as predicted by the well-known SIR-model.

• In the paper Next Generation Relay Autotuners – Analysis and Implementation
[Hansson et al., 2021], a short relay experiment is proposed for the identifica-
tion of a low-order model that can be used for tuning of PI and PID controllers.
The experiment was implemented and evaluated in an industrial controller.
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4
Discussion and Directions
for Future Work

In this thesis, the control of linear time-invariant networked systems has been studied.
These make up a large class of systems that are of both theoretical and practical
interest, especially in relation to the existing theory on vehicle formations, power
grids, and multi-robot networks.

The main contributions have been the introduction of the serial consensus system,
a novel control scheme for high-order integrator systems with scalable robustness
and stability guarantees, and the generalization of transient bounds, found in the
pseudospectra literature, to an input-output setting.

This chapter presents a discussion of the significance, and limitations, of the
results and their implications for future research.

4.1 Discussion

Double-integrator networks
In Paper II the problem of coordinating a network of double integrators was consid-
ered. The double integrator serves as a simple vehicle model. Despite its simplicity,
the double integrator is a common model, especially when considering the scala-
bility of vehicle formations. For future work, it would be interesting to investigate
how the serial consensus system scales, for instance when subject to time-delays
like in [Darbha et al., 2019]. Another interesting direction is that of time-varying
networks, which has been studied in e.g. [Hendrickx and Martin, 2017]. Unlike the
conventional consensus, it is possible to use directed graphs in the serial consensus
controller and still guarantee string stability. However, this comes at the cost of the
agents needing to communicate with their neighbors. In the special case where an
ahead-looking string graph is considered, then it will hold that any agent’s movement
is unaffected by their followers’ actions. This property might facilitate the analysis
of time-varying networks.
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4.1. DISCUSSION

High-order integrator networks
Unlike the network of double-integrators, networks, of high-order integrators where
𝑛 ≥ 3 is not as commonly encountered, although they have been used to model coor-
dination of flying objects [Ren et al., 2007a]. They arise, however, when considering
PID control of a network of vehicles or other second-order agents. Combining the
ideas of Paper I and Paper II, it may be possible to describe the transients of such
a system. Besides this, the high-order integrator networks are of theoretical interest
since they are a natural generalization of the consensus problem.

Transient analysis
A great emphasis has been put on the transient analysis of dynamical systems. The
transient of any dynamical system is interesting, especially of linear models. Since
linear models often constitute an idealized version of reality, the transient analysis
can be seen as a tool for testing whether one can expect the linearization point to be
a good approximation of the real system. Another reason to consider the transient is
their importance for keeping systems within a safe operation condition. The bounds
presented in Paper III generalize the well-known Kreiss bounds to an input-output
setting. However, like the Kreiss bounds, the new bounds are limited to describe
impulse and initial-value responses. These can capture the behavior due to some
disturbances, but not all. An avenue for future research is to use the bounds of
Paper III to describe the performance of network systems in terms of L1-norms,
which due to their intractability have not received sufficient attention in the control
community.

Robustness
The robustness results, which are proven in Paper I, deserve some discussion. Firstly,
the strength of them lies in the fact that the bounds are, in some sense, independent
of the formation size. This is due to them being quantified in terms of the H∞-norm
of the perturbation blocks. In the case where the uncertainty can be described by a
diagonal, or sparse matrix, then the permissible uncertainty is independent of the
formation. This is for instance the case for time-delays, but also for vehicle model
uncertainty. Although the serial consensus has a particular algebraic structure, the
robustness results show that the beneficial properties of the serial consensus does
not require a perfect implementation.

For potential future work, it is interesting to consider how the robustness can
be used to design controllers with both performance and robustness guarantess.
Earlier works have considered how small perturbations can drastically change the
algebraic connectivity of the graph Laplacian [Barooah et al., 2009]. If this can be
achieved within the robustness framework of Paper I, i.e. through perturbing a serial
consensus system, which is based on symmetric matrices, additional slack can then
be left to handle other uncertainties.
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CHAPTER 4. DISCUSSION AND DIRECTIONS FOR FUTURE WORK

Scalability
A core theme throughout this thesis is that of scalability. In the setting of network
systems, this is important since a common assumption is that the agents are unaware
of the state of the other agents. For example, the addition of a new solar-panel
on the power-grid, should not be able to destabilize the entire grid and lead to
a power outage, nor should the addition of one vehicle to a platoon noticeably
affect the vehicles already in the platoon. All papers in this thesis have considered
the scalability of the proposed results. In Paper I, scalable stability and robustness
results are proven, concerning the proposed control scheme. In Paper II, scalable
performance is analyzed, and in Paper III, bounds which can be used to describe the
transient of large-scale systems are derived.

4.2 Future Work

There are many interesting directions for future work. Some of these are listed below.

• Since the serial consensus controller manages to stabilize the 𝑛th-order inte-
grator system, it may be possible to consider a Youla-Kucera parametrization
of all stabilizing controllers. This can then be used for optimal control design.

• Two methods for implementing the serial consensus controller has been pro-
posed. However, both rely on the agents having access to extra information,
either through direct measurements or through message passing. Another ap-
proach is to let each agent use a local observer to estimate the relative states.
Further investigations into this approach would be of great interest.

• In Paper II, a transient bound for the serial consensus was proven for the
case when the same graph Laplacian was used in both factors. This is only a
subset of all possible serial consensus systems. It may be possible to utilize the
input-output pseudospectra to derive bounds for more complex combinations
of serial consensus systems, for instance when the graph Laplacians are not
necessarily the same.

• In Paper I and II, the stability, robustness and performance of the serial
consensus have been considered. The steady-state behavior of the system has
not yet been investigated, but is important to consider.

• Robustness towards time-delays and time-varying graphs has been studied for
the conventional consensus. This would also be interesting to study for the
serial consensus.

• As is, the robustness results of Paper I assumes the graph Laplacians to
be symmetric. Further investigations of the robustness properties of non-
symmetric graph Laplacians would be of interest.
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Paper I

A closed-loop design for scalable high-order
consensus

Jonas Hansson Emma Tegling

Abstract

This paper studies the problem of coordinating a group of 𝑛th-order integrator
systems. As for the well-studied conventional consensus problem, we con-
sider linear and distributed control with only local and relative measurements.
We propose a closed-loop dynamic that we call serial consensus and prove it
achieves 𝑛th order consensus regardless of model order and underlying net-
work graph. This alleviates an important scalability limitation in conventional
consensus dynamics of order 𝑛 ≥ 2, whereby they may lose stability if the un-
derlying network grows. The distributed control law which achieves the desired
closed loop dynamics is shown to be localized and obey the limitation to rela-
tive state measurements. Furthermore, through use of the small-gain theorem,
the serial consensus system is shown to be robust to both model and feedback
uncertainties. We illustrate the theoretical results through examples.

©2023 IEEE. To appear in the proceedings of 2023 IEEE Conference on Decision
and Control (CDC), Singapore. Reprinted with permission.
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1. Introduction

Properties of dynamical systems over networks have been a subject of significant
research over the last two decades. A problem of interest the coordination of agents
in a network through localized feedback, leading to the prototypical distributed
consensus dynamics, studied early on by [Fax and Murray, 2004; Olfati-Saber and
Murray, 2004; Jadbabaie et al., 2003]. Over the years, it has become clear that the
structural constrains imposed by the network topology in consensus problems often
lead to fundamentally poor dynamic behaviors in large networks. This concerns
controllability [Pasqualetti et al., 2014], performance [Bamieh et al., 2012; Siami
and Motee, 2016] and disturbance propagation [Swaroop and Hedrick, 1996; Seiler
et al., 2004], but, as recently highlighted in [Tegling et al., 2023], also stability.
The poor stability properties characterized in earlier work [Tegling et al., 2023]
(which motivate the present work) apply to higher-order consensus, where the local
dynamics of each agent is modeled as an 𝑛th order integrator, with 𝑛 ≥ 2, and
the control is a weighted average of neighbors’ relative states. This is a theoretical
generalization of first-order consensus [Jiang et al., 2009], but is also relevant in
practice. For example, a model where 𝑛 = 3 and thus has consensus in position,
velocity and acceleration, can capture flocking behaviors [W. Ren et al., 2006].

More specifically, [Tegling et al., 2023] shows that conventional high-order
consensus (𝑛 ≥ 3) is not scalably stable for many growing graph structures. When
the network grows beyond a certain size, stability is lost. The same holds for second-
order consensus (𝑛 = 2) in, for example, directed ring graphs, as also described
in [Stüdli et al., 2017]. To address this lack of scalable stability we propose an
alternative generalization of the first-order consensus dynamics, which we prove
achieves scalable stability for any model order 𝑛.

To illustrate our proposed controller, consider the conventional second-order
consensus system where the controller 𝑢(𝑡) = −𝐿1 ¤𝑥(𝑡) − 𝐿2𝑥(𝑡) +𝑢ref (𝑡), with 𝐿1,2
being weighted graph Laplacians, is used to achieve the closed loop

¥𝑥(𝑡) = −𝐿2 ¤𝑥(𝑡) − 𝐿1𝑥 +𝑢ref (𝑡). (1)

While for first-order consensus ( ¤𝑥 = 𝐿𝑥 +𝑢ref (𝑡)), a sufficient condition for conver-
gence to consensus is that the graph underlying the graph Laplacian 𝐿 contains a
connected spanning tree. However, this no longer suffices when 𝑛 ≥ 2 as in (1). There-
fore, we instead propose the following controller 𝑢(𝑡) = −(𝐿1+𝐿2) ¤𝑥(𝑡) −𝐿1𝐿2𝑥(𝑡) +
𝑢ref (𝑡). The reason for this choice of controller is best illustrated by considering the
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2. PROBLEM SETUP

resulting closed loop in the Laplace domain:

(𝑠𝐼 + 𝐿1) (𝑠𝐼 + 𝐿2)𝑋 (𝑠) =𝑈ref . (2)

For this system, like for the first-order case, it is sufficient that the graphs underlying
𝐿1 and 𝐿2 contain a connected spanning tree for the system to eventually coordinate
in both 𝑥 and its derivative ¤𝑥 (regardless of network size!). This closed loop system,
which we will call serial consensus, thus mimics one core property of the standard
consensus protocol, and can also be generalized to any order 𝑛.

The main results of this paper are proofs of some key properties of the proposed
𝑛th-order serial consensus. The controller is proven to remain localized (within an
𝑛-hop neighborhood) and implementable through relative measurements. We also
prove that the closed loop will achieve consensus in all 𝑛 states. Furthermore, we
study the robustness of the proposed closed loop and show that the system will still
coordinate when subject to unstructured uncertainty. The beneficial properties of
the form (2) (generalized to any order 𝑛) are thus not contingent on an idealized
implementation.

The remainder of this paper is organized as follows. We first introduce the 𝑛th

order consensus model and define our choice of control structure. Then the serial
consensus system is defined and motivated. In Sec. 3 we provide proofs for the
stability and robustness of the serial consensus system. Our main results are then
illustrated through examples in Sec. 4. Lastly, we provide our Conclusions in Sec. 5.

2. Problem Setup

We start by introducing some graph theory before introducing the general 𝑛th order
consensus problem for which we propose the new serial consensus setup. We discuss
its properties and then end with some useful definitions.

2.1 Network model and definitions
Let G = {V ,E} denote a graph of size 𝑁 = |V |. The set E ⊂ V ×V denotes the set of
edges. The graph can be equivalently represented by the adjacency matrix𝑊 ∈R𝑁×𝑁

where 𝑤𝑖, 𝑗 > 0 ⇐⇒ ( 𝑗 , 𝑖) ∈ E . The graph is called undirected if𝑊 =𝑊𝑇 . The graph
contains a connected spanning tree if for some 𝑖 ∈ V there is a path from 𝑖 to any
other vertex 𝑗 ∈ V .

Associated with a weighted graph we have the weighted graph Laplacian 𝐿

defined as
[𝐿]𝑖, 𝑗 =

{
−𝑤𝑖, 𝑗 , if 𝑖 ≠ 𝑗∑
𝑘≠𝑖 𝑤𝑖,𝑘 , if 𝑖 = 𝑗

Under the condition that that the graph generating the graph Laplacian contains a
connected spanning tree, 𝐿 will have a simple and unique eigenvalue at 0 and the
remaining eigenvalues will lie strictly in the right half plane (RHP).
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We will also consider networks with a growing number of nodes. With G𝑁 we
denote a graph in a family {G𝑁 }, where 𝑁 is the size of the growing network.

We will denote the space of all proper, real rational, and stable transfer matrices
RH∞ and denote theH∞ norm as ∥ · ∥H∞ following the notation in [Zhou and Doyle,
1998].

2.2 𝑛th order consensus
Let the system be modeled as 𝑁 agents with identical 𝑛th order integrator dynamics,
i.e.

d𝑛𝑥𝑖 (𝑡)
d𝑡𝑛

= 𝑢𝑖 (𝑡), (3)

for all 𝑖 ∈ V . We will use the convention 𝑥 (0)
𝑖

(𝑡) = 𝑥𝑖 (𝑡) and 𝑥 (𝑘 )
𝑖

(𝑡) = dk

d𝑡𝑘 𝑥𝑖 (𝑡) to
denote time derivatives. When clear we may omit the time argument for brevity.

In this paper we will consider the problem of synchronizing the agents and thus
achieve a state of consensus.

Definition 1 (𝑛th order consensus) The multi-agent system (3) is said to achieve
(𝑛th order) consensus if lim𝑡→∞ |𝑥 (𝑘 )

𝑖
(𝑡) − 𝑥 (𝑘 )

𝑗
(𝑡) | = 0, for all 𝑖, 𝑗 ∈ V and 𝑘 ∈

{0,1 . . . , 𝑛−1}.

2.3 Control structure
A linear state feedback controller of (3) can be written as

𝑢(𝑡) = 𝑢ref (𝑡) −
𝑛−1∑︁
𝑘=0

𝐴𝑘𝑥
(𝑘 ) (𝑡). (4)

Where 𝑢ref (𝑡) ∈ R𝑁 is a feedforward term and 𝐴𝑘 ∈ R𝑁×𝑁 represent the feedback
of the 𝑘 th derivative. We will restrict this class of controllers in three ways. The
controllers

i) can only use relative feedback;

ii) have a limited gain;

iii) and depend on the local neighborhood of each agent.

The limitation to relative feedback translates to the condition 𝐴𝑘1𝑁 = 0 for all 𝑘 ,
while a limited gain can be encoded by demanding that ∥𝐴𝑘 ∥∞ ≤ 𝑐. To capture the
notion of locality, consider the adjacency matrix𝑊 representing the communication
and measurement structure, which we here assume to be the same. That is, if𝑊𝑖, 𝑗 = 1,
then agent 𝑖 can directly receive or measure the relative distance to agent 𝑗 . Next,
consider the non-negative matrix𝑊𝑞 . This matrix has the property that [𝑊𝑞]𝑖, 𝑗 ≠ 0
if and only if there is a path of length 𝑞 from agent 𝑗 to agent 𝑖. Thus, if we want
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the controller to only depend on information that is at most 𝑞 steps away from each
agent the following implication should hold:

∑𝑞

𝑘=0𝑊
𝑘
𝑖, 𝑗

= 0 =⇒ [𝐴𝑘]𝑖, 𝑗 = 0. Putting
all the conditions together gives us a family of controllers that we will consider in
this paper:

Definition 2 (𝑞-step implementable relative feedback) A relative feedback con-
troller of the form (4) is 𝑞-step implementable with respect to the adjacency matrix
𝑊 and gain 𝑐 > 0 if 𝐴𝑘 ∈ A𝑞 (𝑊,𝑐) for all 𝑘 , where

A𝑞 (𝑊,𝑐) =
{
𝐴

���� [∑𝑞

𝑘=0𝑊
𝑘
]
𝑖, 𝑗

= 0 =⇒ 𝐴𝑖, 𝑗 = 0,
𝐴1𝑁 = 0, ∥𝐴∥∞ ≤ 𝑐

}
.

The conventional controller for achieving 𝑛th order consensus can be realized as
(4) where each 𝐴𝑘 is given by a graph Laplacian, e.g. 𝐴𝑘 = 𝐿𝑘 ∈A1 (𝑊,𝑐). In many
cases these are also assumed to be the same such that 𝐿𝑘 = 𝑝𝑘𝐿 for some graph
Laplacian 𝐿 and constants 𝑝𝑘 > 0.

2.4 A Novel Design: Serial Consensus
We propose the following controller of (3), expressed in the Laplace domain, to
achieve 𝑛th order consensus

𝑈 (𝑠) =𝑈ref (𝑠) +
(
𝑠𝑛𝐼 −

𝑛∏
𝑘=1

(𝑠𝐼 + 𝐿𝑘)
)
𝑋 (𝑠), (5)

where 𝐿𝑘 are graph Laplacians and 𝑈ref is the transformed reference signal. In this
case, it is more instructive to consider the closed-loop dynamics, which take the
following form:

Definition 3 (𝑛th order serial consensus system) For all 𝑘 ∈ {1,2 . . . , 𝑛}, let 𝐿𝑘

be a weighted and directed graph Laplacian. The 𝑛th-order serial consensus system
is then (

𝑛∏
𝑘=1

(𝑠𝐼 + 𝐿𝑘)
)
𝑋 (𝑠) =𝑈ref (𝑠). (6)

We call this form serial consensus because the same closed loop dynamics can also be
achieved by interconnecting 𝑛 first-order consensus systems in a series. The closed-
loop dynamics in (6) can also be transformed to state-space form by introducing the
alternative variables Ξ𝑘 with the corresponding states 𝜉𝑘 . These relate to 𝑋 through
Ξ1 = 𝑋 (𝑠), Ξ𝑘 = (𝑠𝐼 + 𝐿𝑘−1)Ξ𝑘−1 for 𝑘 ∈ {2, . . . , 𝑛 − 1}, and 𝑠Ξ𝑛 = −𝐿𝑛Ξ𝑛 +𝑈ref .
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This leads to the following continuous-time state-space representation

¤𝜉1
¤𝜉2
...

¤𝜉𝑛−1
¤𝜉𝑛


=


−𝐿1 𝐼

−𝐿2
. . .

. . . 𝐼

−𝐿𝑛

︸                           ︷︷                           ︸
𝐴



𝜉1
𝜉2
...

𝜉𝑛−1
𝜉𝑛


+



0
0
...

0
𝑢ref


(7)

The serial consensus form has several advantages, which will be the focus of the
paper. First, however, we show that it satisfies the constraints we impose on the
controller, as given by Definition 2. In other words, we will discuss how the closed-
loop structure in (6) can be implemented on a network.

When analysing the serial consensus controller of (5) we will make use of the
following assumption on the graph structure.

Assumption A1 (Connected spanning tree) All graphs underlying the graph Lapla-
cians 𝐿𝑘 contain a connected spanning tree.

2.5 Implementing Serial consensus
The following proposition ensures that the serial consensus system can be achieved
by controlling the 𝑛th order integrator system (3) with an 𝑛-step implementable
relative feedback controller as defined in Definition 2.

Proposition 1 Consider the 𝑛th-order serial consensus as defined in (6). If each
𝐿𝑘 ∈ A1 (𝑊,𝑐) for some constant 𝑐 and adjacency matrix 𝑊 , then the controller in
(5) is an 𝑛-step implementable relative feedback controller with respect to𝑊 and a
finite gain 𝑐′.

To prove this proposition we first need the following two lemmas whose proofs are
provided in Appendix A.

Lemma 2 If 𝐴1 ∈ A𝑞1 (𝑊,𝑐1) and 𝐴2 ∈ A𝑞2 (𝑊,𝑐2) then the sum (𝐴1 + 𝐴2) ∈
Amax(𝑞1 ,𝑞2 ) (𝑊,𝑐1 + 𝑐2)

Lemma 3 Let 𝐴1 ∈ A𝑞1 (𝑊,𝑐1) and 𝐴2 ∈ A𝑞2 (𝑊,𝑐2) then the product (𝐴1𝐴2) ∈
A𝑞1+𝑞2 (𝑊,𝑐1𝑐2)

Now we can prove Proposition 1.
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Proof. The serial consensus controller can be expanded to the matrix polynomial

𝑈 (𝑠) =𝑈ref (𝑠) +
(
𝑠𝑛𝐼 −

𝑛∏
𝑘=1

(𝑠𝐼 + 𝐿𝑘)
)
𝑋 (𝑠)

=𝑈ref (𝑠) +
(
(𝑠𝑛 − 𝑠𝑛)𝐼 −

𝑛−1∑︁
𝑘=0

𝑠𝑘𝐴𝑘

)
𝑋 (𝑠),

for some matrices 𝐴𝑘 . To show the proposition, we need to show that 𝐴𝑘 ∈A𝑞 (𝑊,𝑐′)
for all 𝑘 = 0, . . . , 𝑛−1, with 𝑞 ≤ 𝑛 and 𝑐′ <∞. Let

I𝑘 =
{
𝛼

�� |𝛼 | = 𝑛− 𝑘, 𝛼 ⊂ {1,2, . . . , 𝑛},
𝑖 < 𝑗 =⇒ 𝛼(𝑖) < 𝛼( 𝑗)}

denote all the ordered subsets of the range [1, 𝑛] with size 𝑛− 𝑘 . Then

𝐴𝑘 =
∑︁
𝛼∈I𝑘

∏
𝑗∈𝛼

𝐿 𝑗 , for all 𝑘 ∈ [0, 𝑛−1] .

Since all 𝛼 ∈ I𝑘 has 𝑛 − 𝑘 elements we can show that
∏

𝑗∈𝛼 𝐿 𝑗 = 𝐵𝛼 ∈
A𝑛−𝑘 (𝑊,𝑐𝑛−𝑘) by applying Lemma 3 recursively. Now we have a sum

𝐴𝑘 =
∑︁
𝛼∈I𝑘

𝐵𝛼

The number of ordered subsets of the range [1, 𝑛] with size 𝑛− 𝑘 is given by the
binomial coefficients and therefore the size of |I𝑘 | =

( 𝑛
𝑛−𝑘

)
. Applying Lemma 2

recursively shows that 𝐴𝑘 ∈ A𝑛−𝑘 (𝑊,
( 𝑛
𝑛−𝑘

)
𝑐𝑛−𝑘). Clearly, we have that 𝑛− 𝑘 ≤ 𝑛

and
( 𝑛
𝑛−𝑘

)
𝑐𝑛−𝑘 ≤

( 𝑛
⌈𝑛/2⌉

)
max(𝑐, 𝑐𝑛) <∞ for all 𝑘 . Let 𝑐′ =

( 𝑛
⌈𝑛/2⌉

)
max(𝑐, 𝑐𝑛) and then

we have that 𝐴𝑘 ∈ A𝑛 (𝑊,𝑐′) for all 𝑘 . □

Example 1 For clarity let us consider the controller for the case 𝑛 = 3. Then the
controller is

𝑈 (𝑠) =𝑈ref (𝑠) +
(
𝑠3𝐼 −

3∏
𝑘=1

(𝑠𝐼 + 𝐿𝑘)
)
𝑋 (𝑠)

=𝑈ref (𝑠) −
(
𝑠2 (𝐿1 + 𝐿2 + 𝐿3) + 𝑠(𝐿1𝐿2 + 𝐿1𝐿3 + 𝐿2𝐿3) + 𝐿1𝐿2𝐿3

)
𝑋 (𝑠)

Here, 𝐴0 = 𝐿1𝐿2𝐿3, 𝐴1 = 𝐿1𝐿2 + 𝐿1𝐿3 + 𝐿2𝐿3, and 𝐴2 = 𝐿1𝐿2𝐿3. The proposition
asserts that if 𝐿1, 𝐿2, and 𝐿3 share a sparsity pattern and have bounded gains, then
the resulting controller gains 𝐴0, 𝐴1, and 𝐴2 will be sparse and have bounded gains.
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2.6 Scalable stability
Coordinating a multi-agent system is inherently a decentralized problem where the
goal for each agent is to coordinate with its nearest neighbors. However when the
controllers only depend on local measurements there is a possibility that controllers
that manage to coordinate𝑁 agents stop stabilizing as the number of agents increases.
In [Tegling et al., 2023] it was shown that for the 3rd and higher order consensus
problem with controller 𝐴𝑘 = 𝑎𝑘𝐿𝑁 in (4), the closed loop system will become
unstable if the algebraic connectivity 𝜆2 (𝐿𝑁 ) → 0 as 𝑁 →∞. This motivates the
notion of Scalable stability

Definition 4 (Scalable stability [Tegling et al., 2023, Def. 2.1]) A consensus
control design is scalably stable if the resulting closed-loop system achieves con-
sensus over any graph in the family {G𝑁 }.

3. Main Results

Our main contribution is two-fold. First we show the serial consensus achieves
scalable stability and then we show that the implementation is robust to two classes
of perturbations

3.1 Scalable stability
Theorem 4
Consider the 𝑛th order serial consensus system as defined in Definition 3 under
Assumption A1 and with 𝑈ref ∈ RH∞. Then the closed loop dynamics have the
following properties:

(i) The poles of (6) are given by the union of the eigenvalues of −𝐿𝑘 .

(ii) The solution achieves 𝑛th order consensus.

Proof. i Any square matrix can be unitarily transformed to upper triangular form by
the Schur traingularization theorem. Let 𝑈𝑘𝐿𝑘𝑈

𝐻
𝑘

= 𝑇𝑘 be upper triangular. Then
the block diagonal matrix 𝑈 = diag(𝑈1,𝑈2, . . .𝑈𝑛) is a unitary matrix that upper
triangularizes 𝐴 in (7). For any triangular matrix the eigenvalues lie on the diagonal
and this will be the eigenvalues of each −𝐿𝑘 .

(ii) First, consider the closed loop dynamics of (6) which will be

𝑋 (𝑠) =
(

1∏
𝑘=𝑛

(𝑠𝐼 + 𝐿𝑘)−1

)
𝑈ref (𝑠).

Since,𝑈ref is stable, we know that the limit lim𝑠→0𝑈ref (𝑠) =𝑈ref (0) exists. To prove
that the system achieves 𝑛th order consensus we want to show that

lim
𝑡→∞

𝑦(𝑡) = lim
𝑠→0

𝐶 (𝑠)𝑋 (𝑠) = 0
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for some transfer matrix 𝐶 (𝑠), which encodes the consensus states. But since the
reference dependence is only related to𝑈ref (0), we can simplify the problem to only
consider impulse responses. But the impulse response has the same transfer function
as the initial value response where 𝜉𝑛 (0) =𝑈ref (0). Therefore, WLOG, assume that
𝑈ref (𝑠) = 0 and an arbitrary initial condition

𝜉 (0) = [𝜉1 (0)𝑇 , 𝜉𝑇2 , . . . , 𝜉𝑛 (0)
𝑇 ]𝑇 .

The solution of (7) is given by exp(𝐴𝑡)𝜉 (0) = 𝑆 exp(𝐽 (𝐴)𝑡)𝑆−1𝜉 (0) where 𝐽 (𝐴) is
the Jordan normal form of 𝐴 and 𝑆 is an invertible matrix. From i and the diagonal
dominance of the graph Laplacians we know that all eigenvalues of 𝐴 lie in the
left half plane. By Assumption A1 it follows that the zero eigenvalue for each 𝐿𝑘

is simple. Now we prove that these 𝑛 zero eigenvalues form a Jordan block of
size 𝑛. Let 𝑒𝑘 denote the 𝑘 th 1-block vector, e.g. e1 =

[
1𝑇
𝑁

0𝑁 . . . 0𝑁

]𝑇 and
𝑒2 =

[
0𝑁 1𝑇

𝑁
0𝑁 . . . 0𝑁

]𝑇 . Then 𝑒1 is an eigenvector since 𝐴e1 = 0. For
𝑘 ∈ {2,3 . . . , 𝑛} we have 𝐴𝑒𝑘 = 𝑒𝑘−1 which implies that 𝐴𝑘𝑒𝑘 = 0. This shows that
there is a Jordan block of size 𝑛 with an invariant subspace spanned by the vectors
𝑒𝑘 . Since all other eigenvectors make up an asymptotically stable invariant subspace,
it follows that 𝜉 (𝑡) will converge towards a solution in span(𝑒1, 𝑒2 . . . , 𝑒𝑛) and thus
lim𝑡→∞ 𝜉𝑘 (𝑡) = 𝛼𝑘 (𝑡)1𝑁 . Now, since 𝑥(𝑡) = 𝜉1 (𝑡), it follows that lim𝑡→∞ 𝑥(𝑡) =
𝛼1 (𝑡)1𝑁 , and furthermore, since

¤𝜉𝑘 = −𝐿𝑘𝜉𝑘 + 𝜉𝑘+1 → 𝜉𝑘+1 as 𝑡→∞

for 𝑘 ∈ {1, . . . , 𝑛−1}, it follows that lim𝑡→∞ 𝑥 (𝑘 ) (𝑡) = 𝛼𝑘+1 (𝑡)1𝑁 which shows that
the system achieves 𝑛th order consensus. □

This proposition shows that the stability of the consensus for the 𝑛th order serial
consensus can be reduced to verifying that the 𝑛 first-order consensus systems
¤𝑥 = −𝐿𝑘𝑥 achieve consensus. This is equivalent to determining whether the graphs
underlying each 𝐿𝑘 contains a connected spanning tree. This result together with
Proposition 1 shows that 𝑛th order consensus can be achieved with a local relative
feedback controller with finite gain and thus achieve scalable stability. This result
can be compared with [Tegling et al., 2023] where it is shown that the conventional
consensus is not scalably stable for any order larger than 𝑛 = 3 if a graph Laplacian
with vanishing algebraic connectivity is used. We can summarize this fact in the
following corollary:

Corollary 5 For any 𝑛, the controller (5) is scalably stable over any graph fam-
ily {G𝑁 } that underlies 𝐿𝑘 , provided each G𝑁 satisfies Assumption A1.

Remark 1 Note that, by Theorem 4, scalable stability is achieved also with different
graph families underlying each 𝐿𝑘 , and | |𝐿𝑘 | |∞ are allowed to be arbitrarily small.
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3.2 Robustness of serial consensus
The proposed controller in (5) is a relative state-feedback controller which is designed
to ensure that the closed loop system achieves 𝑛th order consensus as guaranteed
through Theorem 4. However, the 𝑛th order integrator system may be an idealization
of the system and the relative state feedback may need observers to be fully realized,
and there could be unmodeled dynamics. These potential sources of errors call for
a robust controller. We will now present two theorems, which prove that the serial
consensus is robust towards two different types of uncertainties.

Additive perturbation The following theorem asserts that the 𝑛th order serial con-
sensus controller can handle additive uncertainties.

Theorem 6
Consider the 𝑛th order serial consensus system as defined in Definition 3, under
Assumption A1, with 𝐿𝑘 = 𝐿 for all 𝑘 , and 𝐿 = 𝐿𝑇 . Then the perturbed system

(𝑠𝐼 + 𝐿)𝑛𝑋 =𝑈ref +
(

𝑛∑︁
𝑘=0

Δ𝑘𝑠
𝑘𝐿𝑛−𝑘

)
𝑋,

where𝑈ref ,Δ𝑘 ∈RH∞, achieves 𝑛th order consensus if

∥Δ0∥H∞ + ∥Δ𝑛∥H∞ +
𝑛−1∑︁
𝑘=1

∥Δ𝑘 ∥H∞

√︄
𝑘 𝑘

𝑛𝑛
(𝑛− 𝑘)𝑛−𝑘 < 1.

Proof. First, note that the closed-loop system can be represented by the block
diagram in Fig. 1, which in turn can be simplified to Fig. 2. Since 𝑈ref is stable we
can apply the small-gain theorem which asserts that𝑈 (𝑠) (as defined in the figures)
will be stable if

∥
𝑛∑︁

𝑘=0
Δ𝑘𝑠

𝑘𝐿𝑛−𝑘 (𝑠𝐼 + 𝐿)−𝑛∥H∞ < 1.

Applying the triangle inequality and submultiplicativity on the left-hand side (𝐿𝐻)
yields

𝐿𝐻 ≤
𝑛∑︁

𝑘=0
∥Δ𝑘 ∥H∞ ∥𝑠𝑘𝐿𝑛−𝑘 (𝑠𝐼 + 𝐿)−𝑛∥H∞ (8)

Since 𝐿 is symmetric, it is possible to unitarily diagonalize it. Let 𝑈 =𝑈𝐻 denote
one such unitary matrix. Then 𝐿 =𝑈Λ𝑈𝐻 where Λ is a non-negative real diagonal
matrix.

∥𝑠𝑘𝐿𝑛−𝑘 (𝑠𝐼 + 𝐿)−𝑛∥H∞ = ∥𝑠𝑘Λ𝑛−𝑘 (𝑠𝐼 +Λ)−𝑛∥H∞ .
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For a diagonal matrix the singular values are given by the absolute value of the
diagonal. Let, 𝜆 > 0 be an arbitrary positive constant. The maximum gain for each
diagonal can then be calculated through

max
𝜔

���� 𝜔𝑘𝜆𝑛−𝑘

( 𝑗𝜔+𝜆)𝑛

���� =
√︄

max
𝜔

𝜔2𝑘𝜆2𝑛−2𝑘

(𝜔2 +𝜆2)𝑛
.

The latter optimization problem is given by a continuous function and thus the
derivative must be 0 at the maximum. Simple calculus shows that the optimum is
found at 𝜔2 = 𝜆2𝑘/(𝑛− 𝑘) for 𝑘 = 0,1, . . . 𝑛− 1 and at 𝜔 = ∞ for 𝑘 = 𝑛. Inserting
yields

max
𝜔

���� 𝜔𝑘𝜆𝑛−𝑘

( 𝑗𝜔+𝜆)𝑛

���� = {√︃
𝑘𝑘

𝑛𝑛
(𝑛− 𝑘)𝑛−𝑘 if 0 < 𝑘 < 𝑛

1 else

Now for the case where 𝜆 = 0. Then we have for 𝑘 = 0, . . . , 𝑛−1

max
𝜔

���� 𝜔𝑘0𝑛−𝑘

( 𝑗𝜔+0)𝑛

���� = 0

and for 𝑘 = 𝑛

max
𝜔

���� 𝜔𝑛

( 𝑗𝜔+0)𝑛

���� = 1.

This is less restrictive than for 𝜆 > 0 and thus we can use the result for 𝜆 > 0.
Plugging this into the upper bound of the 𝐿𝐻 (8) results in the sought inequality.

Finally, we must ensure that stability of the closed loop in Fig. 2 implies 𝑛th order
consensus. Since the transfer matrix from 𝑢 to 𝑦 in Fig. 1 is stable it follows that𝑌 (𝑠)
will be stable. This means that we have shown the following lim𝑡→∞ 𝐿𝑛−𝑘𝑥 (𝑘 ) (𝑡) = 0.
By Assumption A1 the 0 eigenvalue of 𝐿 is unique and therefore 0 is a unique
eigenvalue of 𝐿𝑛−𝑘 too. Subsequently, lim𝑡→∞ 𝑥 (𝑘 ) (𝑡) ∈ ker(𝐿𝑛−𝑘). Since 𝐿𝑛−𝑘1𝑁 =

0 it follows that lim𝑡→∞ 𝑥 (𝑘 ) (𝑡) ∈ span(1𝑁 ) and that the agents will reach consensus
in all the 𝑛−1 first time derivatives and thus achieve 𝑛th order consensus. □

It is worth noting that the norm bound on the uncertainty blocks Δ is independent of
the number of agents in the system. Therefore, the serial consensus implementation
is scalably robust in the sense that it allows equally sized perturbations regardless
of network size. This is not the case for localized conventional consensus, following
the results in [Tegling et al., 2023].

Multiplicative perturbation It is also possible to see the closed-loop serial con-
sensus system as a series of interconnected first-order systems. Therefore it is also
interesting to consider the robustness with respect to the individual factors. The
following theorem gives a sufficient condition for the unforced closed loop system
to achieve 𝑛th order consensus.
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Figure 1. Block diagram illustrating the perturbation model in proof of Theorem 6.

Figure 2. Block diagram illustrating the perturbation model in proof of Theorem 6.

Theorem 7
The following perturbed 𝑛th order serial consensus system

(𝑠𝐼 + 𝑠Δ0 + (𝐼 +Δ𝑛)𝐿𝑛)
𝑛−1∏
𝑘=1

(𝑠𝐼 + (𝐼 +Δ𝑘)𝐿𝑘) 𝑋 =𝑈ref

where 𝑈ref ,Δ𝑘 ∈ RH∞ and 𝐿𝑘 = 𝐿
𝑇
𝑘

for 𝑘 = 1, . . . , 𝑛, achieves 𝑛th order consensus
if

∥Δ𝑘 ∥H∞ < 1, for all 𝑘

and
∥Δ0∥H∞ + ∥Δ𝑛∥H∞ < 1.

Proof. First, note that we can construct 𝑋 (𝑠) = Ξ1 (𝑠) and 𝑠Ξ𝑘 = −(𝐼 +Δ𝑘)𝐿𝑘Ξ𝑘 +
Ξ𝑘+1 for 𝑘 = 1, . . . , 𝑛− 1 and 𝑠(𝐼 +Δ0)Ξ𝑛 = −(𝐼 +Δ𝑛)𝐿𝑛Ξ𝑛 +𝑈ref . For Ξ𝑛 we have
exactly the 1st order case of Theorem 6 and thus lim𝑡→∞ 𝜉𝑛 (𝑡) = 𝛼𝑛 (𝑡)1𝑁 if ∥Δ0∥H∞ +
∥Δ𝑛∥H∞ < 1. Consider the following induction hypothesis: ifΞ𝑘+1 (𝑠) = 1𝑁𝐺𝑘+1 (𝑠) +
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4. EXAMPLES

Figure 3. Block diagram illustrating the perturbation model of a general first-order consen-
sus block which is used in the proof of Theorem 7.

𝐻𝑘+1 (𝑠) where 𝐻𝑘+1 (𝑠) ∈ RH∞ then Ξ𝑘 = 1𝑁𝐺𝑘 (𝑠) +𝐻𝑘 (𝑠) for some 𝐻𝑘 (𝑠) ∈
RH∞. We have

𝑠Ξ𝑘 = −(𝐼 +Δ𝑘)𝐿𝑘Ξ𝑘 +Ξ𝑘+1

which can be represented by the block diagram Fig. 3. Here, note that

𝐿𝑘 (𝑠𝐼 + 𝐿𝑘)−1Ξ𝑘+1 = (𝑠𝐼 + 𝐿𝑘)−1𝐿𝑘 (𝐻𝑘+1 (𝑠))

and the potentially unstable term of Ξ𝑘+1 can be ignored. Reusing a result from
the previous proof we have ∥𝐿𝑘 (𝑠𝐼 + 𝐿𝑘)−1∥H∞ = 1 and therefore 𝐿𝑘Ξ𝑘 ∈ RH∞
if ∥Δ𝑘 ∥H∞ < 1. Since the 0 eigenvalue of 𝐿𝑘 is unique, it follows that Ξ𝑘 (𝑠) =
1𝑁𝐺𝑘 (𝑠) +𝐻𝑘 (𝑠) with 𝐻𝑘 ∈RH∞ which proves the induction hypothesis since we
have already shown the base case Ξ𝑛 (𝑠) = 1𝑁𝐺𝑛 (𝑠) +𝐻𝑛 (𝑠). Left is to prove that
the system will reach 𝑛th order consensus. Note that 𝐿1𝑋 (𝑠) = 𝐿1Ξ1 (𝑠) is stable and
therefore we get through the final value theorem

lim
𝑡→∞

𝐿1𝑥(𝑡) = lim
𝑠→0

𝑠𝐿1Ξ1 (𝑠) = 0.

Furthermore, we have for all 𝑘: lim𝑠→0 𝑠𝐿𝑘Ξ𝑘 (𝑠) = 0. This, combined with 𝑠2Ξ𝑘 (𝑠) =
−(𝐼 +Δ𝑘)𝑠𝐿𝑘Ξ𝑘 (𝑠) + 𝑠Ξ𝑘+1 (𝑠) shows that

lim
𝑡→∞

𝐿𝑘+1𝑥
(𝑘 ) (𝑡) = lim

𝑠→0
𝑠(𝑠𝑘𝐿𝑘+1𝑋 (𝑠))

= lim
𝑠→0

𝑠𝐿𝑘+1Ξ𝑘+1 (𝑠) = 0

Finally, since the 0 eigenvalues for each 𝐿𝑘 are unique with corresponding eigen-
vector 1𝑁 we see that 𝑛th order consensus will be achieved. □

This theorem shows that the 𝑛th order serial consensus is robust in its construction.

4. Examples

4.1 2nd order consensus on circular graph
Consider the directed cycle graph, which is represented by the adjacecncy matrix

[𝑊]𝑖, 𝑗 = 1 iff 𝑖− 𝑗 = 1 mod 𝑁.
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The corresponding graph Laplacian 𝐿𝑐 is a circulant matrix and therefore, the
eigenvalues are known analytically. In particular, the eigenvalue with the second
smallest real part is 𝜆2 (𝐿𝑐) = 1− exp(2𝜋/𝑁) = 1− cos (2𝜋/𝑁) − isin (2𝜋/𝑁). For
large 𝑁 , this eigenvalue can be approximated with a 1st order Taylor approximation,
which yields𝜆2 (𝐿𝑐) ≈ −i2𝜋/𝑁 . This eigenvalue will cause problems when designing
a controller using the conventional consensus. To see this, consider the closed loop
dynamics

𝑠2𝐼 +2𝑝1𝑠𝐿𝑐 + 𝑝0𝐿𝑐 =𝑈ref .

The system can be diagonalized and, in particular, two of the poles are given by the
equation

𝑠2 +2𝑝1𝜆2 (𝐿𝑐) + 𝑝0𝜆(𝐿𝑐) = 0.

In the case that 𝑝0 and 𝑝1 are designed independently of the network size 𝑁 , then
for sufficiently large 𝑁 the roots can be approximated as

𝑠𝑝 = −𝑝1𝜆2 ±
√︃
𝑝2

1𝜆
2
2 − 𝑝0𝜆 ≈ ±(1+ i)

√︂
𝜋𝑝0

𝑁

Since one of these poles will eventually lie in the RHP, it follows that the closed loop
system will become unstable when 𝑁 is sufficiently large, regardless of the choice
of 𝑝0 and 𝑝1.

For the serial consensus it suffices to check that all eigenvalues but the unique 0
eigenvalue of 𝐿𝑐 lie in the RHP or equivalently if 0 < Re(𝜆2 (𝐿𝐶 )) = 1−cos(2𝜋/𝑁)
which is clearly true for any finite 𝑁 . Alternatively, it is also sufficient that the
underlying graph contains a connected spanning tree.

4.2 3rd order consensus
It has been shown that for 𝑛 ≥ 3 it is not possible to achieve scalable stability for any
graph family {𝐺𝑁 } where the corresponding graph Laplacian 𝐿𝑁 has an eigenvalue
with vanishing real part as the graph is growing, i.e. if lim𝑁→∞Re(𝜆2 (𝐿𝑁 )) = 0.
At least, this is not possible with the conventional consensus control. On the serial
consensus form this is no longer a problem. The controller

𝑈 (𝑠) =𝑈ref +
(
𝑠3𝐼 −

3∏
𝑘=1

(𝑠𝐼 + 𝐿𝑁 )
)
𝑋 (𝑠)

will achieve consensus as long as the underlying graphs {𝐺𝑁 } all contains a
connected spanning tree. To illustrate this, consider the graph defined by𝑊 ∈ R𝑁×𝑁 ,
the adjacency matrix

𝑊𝑖, 𝑗 =

{
1 if |𝑖− 𝑗 | = 1 and 𝑖 ≠ 1
0 else .
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(a) Conventional with 𝑁 = 12. (b) Conventional with 𝑁 = 13.

(c) Serial with 𝑁 = 12. (d) Serial with 𝑁 = 13

Figure 4. 3rd order consensus in a chain of vehicles is considered. The plots show the
intervehicle relative errors over time when the lead vehicle moves at constant acceleration.
Panels (a) and (b) show that the addition of one agent destabilizes the closed loop for the
conventional consensus. Panels (c) and (d) illustrate the fact that the serial consensus will
remain stable under such agent additions.

This corresponds to a bidirectional string with a leader (Agent 1). Let 𝐿 be the
associated graph Laplacian. It is true that lim𝑁→∞𝜆2 (𝐿) = 0 and thus any conven-
tional control design with 𝐿 will eventually lead to an unstable closed loop. For this
example, let the conventional control law be 𝑢(𝑡) = 𝑢ref (𝑡) −6𝐿 ¥𝑥−4𝐿 ¤𝑥−2𝐿𝑥 and the
serial consensus controller (5) be defined with the same graph Laplacians 𝐿𝑘 = 2𝑘𝐿.
The response to a constant acceleration of the leader is shown in Fig. 4. Here we see
that the addition of a 13th agent to the system destabilizes the closed loop for the
conventional consensus while the serial consensus only loses some performance.

4.3 Robustness of the 2nd order serial Consensus.
Theorems 6 and 7 show that the serial consensus can be perturbed and still achieve
𝑛th order consensus. Now we want to illustrate what the block Δ𝑘 can be. Consider
the perturbed 2nd order consensus system in Theorem 6. Writing out all terms we
get

𝑠2 (𝐼 +Δ2)𝑋 =𝑈ref − (𝑠(2𝐼 +Δ1)𝐿𝑋 + (𝐼 +Δ0)𝐿2𝑋).
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In this form, the Δ2 block can be thought of as representing model errors; we may
control a system which we model as being 𝑁 identical double integrator systems but
in reality they may differ. This is obviously the case for vehicle platoons, which are
often modeled as chains of identical double integrators. Through our theorem we can
for instance allow Δ2 to be a diagonal transfer matrix with elements [Δ2]𝑖,𝑖 = 𝑘𝑖

𝑇𝑖𝑠+1
where |𝑘𝑖 | < 1 and 𝑇𝑖 > 0 for all 𝑖. Then, the closed loop system would remain stable
despite the heterogeneous agents. The blocks Δ1 and Δ0 are also important. For
instance the signals 𝐿2𝑥(𝑡) and 𝐿 ¤𝑥(𝑡) may not be directly measured but estimated
through linear filters. This could be thought of as unmodeled dynamics which these
blocks can capture.

If we focus on Theorem 7, then the perturbed model is

(𝑠(Δ0 + 𝐼) + (Δ1 + 𝐼)𝐿1) (𝑠𝐼 + (Δ2 + 𝐼)𝐿2)𝑋 =𝑈ref

The theorem only asserts robustness for symmetrical graph Laplacians 𝐿𝑘 . How-
ever, since Δ𝑘 can also be constant matrices, it is also possible to construct new
(asymmetric) graph Laplacians 𝐿′

𝑘
= (𝐼 +Δ𝑘)𝐿𝑘 by designing the Δ𝑘 blocks.

5. Conclusion

This work has introduced the 𝑛th order serial consensus system which can be seen
as a natural generalization of the well-known consensus protocols. The stability of
the introduced system can be analysed by considering 𝑛 regular first order con-
sensus protocol. The proposed controller to achieve 𝑛th order serial consensus has
been shown to be implementable using relative measurements confined to a local
neighborhood of each agent and can therefore be considered a decentralized control
scheme. Robustness of the proposed system has also been analyzed. This has been
addressed in terms of additive and model perturbations. The analysis showed that
the size, measured in the H∞ norm, of the allowable uncertainties were independent
of the number of agents.

Future and ongoing work includes looking into the performance of the serial
consensus and how this relates to string stability. It would also be interesting to look
into an implementation where each agent implements an observer to compute their
control action.

Appendix A

Here we prove Lemmas 2, 3 which describe how the sparsity pattern of two matrices
changes through addition and multiplication.

Proof of Lemma 2
Proof. First, we have ∥𝐴1 + 𝐴2∥∞ ≤ ∥𝐴1∥∞ + ∥𝐴2∥∞ ≤ 𝑐1 + 𝑐2 which follows from
the triangle inequality.
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For the second part we have (𝐴1 + 𝐴2)1𝑁 = 0+0 = 0.
For the last part, WLOG, suppose that 𝑞1 ≤ 𝑞2 = max(𝑞1, 𝑞2). Since 𝑊 is a

positive matrix, we get

0 ≤
(
𝑞1∑︁
𝑘=0
𝑊 𝑘

)
𝑖, 𝑗

≤
(
𝑞2∑︁
𝑘=0
𝑊 𝑘

)
𝑖, 𝑗

.

In particular, the following implication follows(
𝑞2∑︁
𝑘=0
𝑊 𝑘

)
𝑖, 𝑗

= 0 =⇒
(
𝑞1∑︁
𝑘=0
𝑊 𝑘

)
𝑖, 𝑗

=⇒ [𝐴1 + 𝐴2]𝑖, 𝑗 = 0

□

Proof of Lemma 3
To prove the result on the product of two matrices, Lemma 3, we need the following
three lemmas:

Lemma 8 Let 𝐴, 𝐵 ∈ C𝑁×𝑁 and define 𝐴̂𝑖, 𝑗 = |𝐴|𝑖, 𝑗 and 𝐵̂𝑖, 𝑗 = |𝐵 |𝑖, 𝑗 . If (𝐴𝐵)𝑖, 𝑗 ≠ 0
then ( 𝐴̂𝐵̂)𝑖, 𝑗 ≠ 0.

Proof. Suppose the statement is false, i.e. ( 𝐴̂𝐵̂)𝑖, 𝑗 = 0 but (𝐴𝐵)𝑖, 𝑗 ≠ 0. Then we
know that

( 𝐴̂𝐵̂)𝑖, 𝑗 =
𝑁∑︁
𝑘=1

|𝐴𝑖,𝑘 | |𝐵𝑘, 𝑗 | = 0,

but this implies that at least one of 𝐴𝑖,𝑘 and 𝐵𝑘, 𝑗 is equal to 0 for all 𝑘 . But from
this it follows that

(𝐴𝐵)𝑖, 𝑗 =
𝑁∑︁
𝑘=1

𝐴𝑖,𝑘𝐵𝑘, 𝑗 =

𝑁∑︁
𝑘=1

0 = 0.

This is a contradiction and concludes the proof. □

Lemma 9 Let 𝐴, 𝐴1, 𝐵, 𝐵1 ∈ R𝑁×𝑁
+ . If (𝐴𝐵)𝑖, 𝑗 ≠ 0 then ((𝐴+ 𝐴1) (𝐵+𝐵1))𝑖, 𝑗 ≠ 0.

Proof. Expand the product to get

((𝐴+ 𝐴1) (𝐵+𝐵1))𝑖, 𝑗 = (𝐴𝐵)𝑖, 𝑗 + (𝐴𝐵1)𝑖, 𝑗
+ (𝐴1𝐵)𝑖, 𝑗 + (𝐴1𝐵1)𝑖, 𝑗 ≥ (𝐴𝐵)𝑖, 𝑗

which followed from the fact that the product of 2 nonnegative matrices is also
nonnegative. □
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Lemma 10 Let 𝐴, 𝐴1, 𝐵, 𝐵1 ∈ R𝑁×𝑁
+ be such that 𝐴𝑖, 𝑗 = 0 if and only if 𝐴1𝑖, 𝑗 = 0,

and 𝐵𝑖, 𝑗 = 0 if and only if 𝐵1𝑖, 𝑗 = 0. Then, (𝐴𝐵)𝑖, 𝑗 = 0 if and only if (𝐴1𝐵1)𝑖, 𝑗 = 0.

Proof. The statement is clearly symmetrical and it is enough to prove sufficiency.
Now, if (𝐴𝐵)𝑖, 𝑗 = 0 then we know that∑︁

𝑘

𝐴𝑖,𝑘𝐵𝑘, 𝑗 = 0, =⇒ 𝐴𝑖,𝑘𝐵𝑘, 𝑗 = 0, ∀𝑘

But this implies that either 𝐴𝑖,𝑘 = 0 or 𝐵𝑘, 𝑗 = 0. In turn, this implies that either
(𝐴1)𝑖,𝑘 = 0 or (𝐵1)𝑘, 𝑗 = 0. And this leads to

(𝐴1𝐵1)𝑖, 𝑗 =
∑︁
𝑘

(𝐴1)𝑖,𝑘 (𝐵1)𝑘, 𝑗 = 0

□

Now we can prove Lemma 3:

Proof. First, the gain can be bounded as ∥𝐴1𝐴2∥∞ ≤ ∥𝐴1∥∞∥𝐴2∥∞ ≤ 𝑐1𝑐2 which
followed from submultiplicity of the induced norm and from the definition of the
sets.

For the second part we have 𝐴1𝐴21𝑁 = 𝐴10 = 0.
For the last part we have to do slightly more. First replace each element in

𝐴1 and 𝐴2 with its absolute value and denote these 𝐵1 and 𝐵2. Now introduce
two non-negative matrices 𝐶1 and 𝐶2 such that 𝐵1 +𝐶1 = 0 ⇐⇒ ∑𝑞1

𝑘=0𝑊
𝑘 and

𝐵2 +𝐶2 = 0 ⇐⇒ ∑𝑞2
𝑘=0𝑊

𝑘 . Finally note that

(
𝑞1∑︁
𝑘

𝑊 𝑘) (
𝑞2∑︁
𝑗

𝑊 𝑗 ) =
𝑞1+𝑞2∑︁

𝑘

𝑤𝑘𝑊
𝑘

for some 𝑤𝑘 > 0. By applying Lemma 10 two times we get that[
𝑞1+𝑞2∑︁

𝑘

𝑊 𝑘

]
𝑖, 𝑗

= 0 =⇒ [(𝐵1 +𝐶1) (𝐵2 +𝐶2)]𝑖, 𝑗 = 0

Through Lemma 9 we get

[(𝐵1 +𝐶1) (𝐵2 +𝐶2)]𝑖, 𝑗 = 0 =⇒ [𝐵1𝐵2]𝑖, 𝑗 = 0

And finally applying Lemma 8 results in

[𝐵1𝐵2]𝑖, 𝑗 = 0 =⇒ [𝐴1𝐴2]𝑖, 𝑗 = 0

□
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Paper II

Closed-loop design for scalable performance
of vehicular formations

Jonas Hansson Emma Tegling

Abstract

This paper presents a novel control design for vehicular formations, which is
an alternative to the conventional second-order consensus protocol. The design
is motivated by the closed-loop system, which we construct as first-order sys-
tems connected in series, and is therefore called serial consensus. The serial
consensus design will guarantee stability of the closed-loop system under the
minimum requirement of the underlying communication graph containing a
connected spanning tree – which is not true in general for conventional consen-
sus protocol over directed networks. Here, we show that the serial consensus
design also gives guarantees on the worst-case transient behavior of the for-
mation, which are independent of the number of vehicles and the underlying
graph structure. In particular this shows that the serial consensus design can
be used to guarantee string stability of the formation, and is therefore suitable
for directed formations. We show that it can be implemented through message
passing or measurements to neighbors at most two hops away. The results are
illustrated through numerical examples.

In preparation for journal submission.
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1. Introduction

Network systems emerge in a wide range of applications and engineered networks
are, in many cases, becoming increasingly large-scale and complex. Examples in-
clude smart power grids, sensor networks, traffic and multi-robot networks, where
the coordination of a multitude of interconnected subsystems or agents is a key
control problem. The prototypical coordination problem that leads to distributed
consensus dynamics was studied early on by [Fax and Murray, 2004; Olfati-Saber
and Murray, 2004; Jadbabaie et al., 2003], and the dynamic behaviors of this and
related problems has since been the subject of much research. This has made clear
that on large scales, consensus-type networks often exhibit poor dynamic behaviors,
for example in terms of controllability [Pasqualetti et al., 2014], performance and
coherence [Bamieh et al., 2012; Siami and Motee, 2016; Tegling et al., 2019], dis-
turbance propagation [Swaroop and Hedrick, 1996; Seiler et al., 2004; Besselink
and Knorn, 2018] and even instability [Tegling et al., 2023]. Motivated by these is-
sues, our work proposes an alternative consensus control design with fundamentally
improved scalability properties.

We consider a classical vehicular formation control problem, in which each
vehicle in the formation is modeled as a double integrator, whose controller relies on
relative state measurements between neighboring vehicles. In the one-dimensional
case, this approach can be compactly written on the conventional second-order
consensus form

¥𝑥(𝑡) = 𝑢(𝑥, 𝑡) = −𝐿1 ¤𝑥(𝑡) − 𝐿0𝑥(𝑡) +𝑢ref (𝑡). (1)

Here, 𝑥 is a vector which represents the position of each vehicle, 𝑢 is a vector of
the control inputs, 𝐿1 and 𝐿0 are graph Laplacians, and 𝑢ref is a reference control
signal. Various assumptions on the feedback structure, here captured by the two
graph Laplacians, have been considered over the years. They were assumed to be
proportional to each other in the early work [Ren and Atkins, 2007], as well as in
more recent analyses [Patterson and Bamieh, 2014; Tegling et al., 2023]. In this
case, when the Laplacians capture relative and localized feedback, there are at least
three problems with the design (1). First, stability is not guaranteed for all graph
Laplacians. For example, the system may be unstable if the Laplacian corresponds
to a directed cycle graph. Second, in directed vehicle strings, small errors may
amplify throughout the formation and lead to so-called string instability – a topic
thoroughly surveyed in [Stüdli et al., 2017b; Feng et al., 2019]. Third, in the case
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of undirected vehicle formations, the convergence rate of the formation may scale
poorly (as 𝑂 (1/𝑁2)) [Barooah et al., 2009].

A systematic study of the feedback law (1) [Herman et al., 2017] noted that
using different Laplacians for the position and velocity dynamics in (1) may dras-
tically improve the performance of the formation. Specifically, symmetric position
feedback, i.e. 𝐿𝑇0 = 𝐿0, and asymmetric velocity feedback was proposed. However,
the stability proof relies on 𝐿0 being perfectly symmetric. In general, these systems
are not straightforward to analyze in terms of the underlying topological properties,
especially when one factors in scalability, that is, a growth of the network. Several
analytic results can, however, be derived under assumptions of spatial invariance,
that is, identical agents using the same control and interacation laws.

In this paper we propose a new controller of the vehicle formation: 𝑢(𝑥, 𝑡) =
−(𝐿1 + 𝐿2) ¤𝑥(𝑡) − 𝐿2𝐿1𝑥(𝑡) + 𝑢ref (𝑡), where 𝐿1 and 𝐿2 are graph Laplacians. The
controller is designed to give a particular closed-loop system that we call the second-
order serial consensus system. The name, as well as the reason for choosing this
particular control structure, is easiest seen by considering the closed-loop system in
the Laplace domain:

(𝑠𝐼 + 𝐿2) (𝑠𝐼 + 𝐿1)𝑋 (𝑠) =𝑈ref (𝑠).

Clearly, the closed-loop system has the same dynamics as two conventional first-
order consensus systems put in a series. As for the classical first-order consensus
protocol it is true that the consensus equilibrium will be stable as long as the graphs
underlying 𝐿1 and 𝐿2 each contain a connected spanning tree. This directly addresses
the above mentioned problem of instability in classical second-order consensus. Our
main results, however, pertain to the performance of the serial consensus.

It turns out that the serial consensus controller can guarantee a strong notion of
(generalized) string stability of the formation. Specifically, given any combination
of relative errors 𝑒𝑝 (𝑡) = 𝐿𝑥(𝑡), that are defined through a graph Laplacian 𝐿, and
velocity deviations 𝑒𝑣 (𝑡) = ¤𝑥(𝑡) −1𝑣ref , we are able to give bounds on the following
form:

sup
𝑡≥0





[𝑒𝑝 (𝑡)𝑒𝑣 (𝑡)

]




∞
≤ 𝛼





[𝑒𝑝 (0)𝑒𝑣 (0)

]




∞
.

Here 𝛼 is a constant independent of the number of vehicles and the underlying
graph structure (that is, it need not be a string). The importance of this result stems
from the fact that the bound is in terms of the ℓ∞-norm. Results of this type has been
suggested to be more suitable for large vehicle formations [Feintuch and Francis,
2012; Stüdli et al., 2017a], especially to ensure scalability [Besselink and Knorn,
2018], however typically hard to derive. The result implies that our design addresses
the earlier mentioned problems of conventional consensus. Under mild conditions
the closed loop will be stable, it can be designed to achieve string stability, and since
directed graphs are allowed, the convergence rate can be improved. The cost of this
advantage is, in some cases, a requirement for one additional communication step,
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either through physical measurement or signaling. Such additional signaling has been
proposed in a vehicular platooning context in e.g. [Darbha et al., 2019]. We argue,
however, that our structure gives greater benefits with a smaller communications
overhead.

The remainder of the paper is organized as follows. In Section 2 we introduce the
problem setup and the notation used throughout the paper. Here, the serial consensus
system is also defined together with some key properties. In Section 3 we present our
performance results in the form of a theorem. The results are illustrated in Section 5
through numerical examples. Finally, we conclude the paper in Section 6.

2. Problem Setup

2.1 Definitions and network model
Let G = {V ,E} denote a graph of size 𝑁 = |V | with the edge set E ⊂ V ×V . The
graph can be equivalently represented by the weighted adjacency matrix𝑊 ∈ R𝑁×𝑁

where 𝑤𝑖, 𝑗 > 0 ⇐⇒ (𝑖, 𝑗) ∈ E . The graph is called undirected if 𝑊 =𝑊𝑇 . The
graph contains a connected spanning tree if for some 𝑖 ∈ V there is a path from 𝑖 to
any other vertex 𝑗 ∈ V .

The weighted graph Laplacian 𝐿 associated to the graph is defined as

[𝐿]𝑖, 𝑗 =
{

−𝑤𝑖, 𝑗 , if 𝑖 ≠ 𝑗∑
𝑘≠𝑖 𝑤𝑖,𝑘 , if 𝑖 = 𝑗 . (2)

Under the condition that that the graph generating the graph Laplacian contains a
connected spanning tree, 𝐿 will have a simple and unique eigenvalue at 0 and the
remaining eigenvalues will lie strictly in the right half plane (RHP). We will refer to
any 𝑁 ×𝑁 matrix that satisfies (2) for some set of weights 𝑤𝑖, 𝑗 as a graph Laplacian.

We will denote the space of all proper, real rational, and stable transfer matri-
ces RH∞ and denote the H∞-norm as ∥ · ∥H∞ following the notation in [Zhou
and Doyle, 1998]. By ∥ · ∥∞, we denote the standard vector norm and its cor-
responding induced matrix norm i.e. ∥𝑧∥∞ = max𝑘 |𝑧𝑘 |, where 𝑧 ∈ C𝑁 and with
∥𝑀 ∥∞ = sup∥𝑥 ∥∞=1 ∥𝑀𝑥∥∞, for 𝑀 ∈ C𝑁×𝑁 .

2.2 Vehicle formation model
Consider a simple vehicle formation which consists of 𝑁 identical double integrator
systems, i.e.

d2𝑥𝑖 (𝑡)
d𝑡2

= 𝑢𝑖 (𝑥, 𝑡), 𝑖 = 1, . . . , 𝑁, (3)

where 𝑥𝑖 (𝑡) ∈ R The aim is to coordinate the vehicles to keep a fixed spacing and
common velocity. This goal is related to the problem of achieving second order
consensus as defined below.
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Definition 5 (Second order consensus) The vehicle formation (3) is said to
achieve second order consensus if

lim
𝑡→∞

����d𝑥𝑖 (𝑡)d𝑡
−

d𝑥 𝑗 (𝑡)
d𝑡

���� = 0 and lim
𝑡→∞

|𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡) | = 0

for all 𝑖, 𝑗 ∈ V .

With our control structure, the desired, fixed intervehicle distances can without loss
of generality be set to zero for analysis purposes. This will be clarified in Remark 3.

Remark 2 In this work we only consider a scalar state, that is, longitudinal control.
The results can be extended to higher spatial dimensions (see e.g. [Oh et al., 2015]
for a survey of approaches), but we omit it here to keep notation simple.

2.3 Control structure
In this work, we will consider linear state feedback controllers of the system (3).
Such controllers can be written as

𝑢(𝑡) = 𝑢ref (𝑡) − 𝐴1 ¤𝑥(𝑡) − 𝐴0𝑥(𝑡), (4)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 )𝑇 ∈ R𝑁 , 𝑢ref (𝑡) ∈ R𝑁 is a feedforward term, and 𝐴0, 𝐴1 ∈
R𝑁×𝑁 are constant feedback matrices for the position and velocity respectively. In
the distributed coordination problem, the controller is further restricted to

i) only use relative feedback;

ii) have a bounded gain;

iii) only depend on the local neighborhood of each agent.

These restrictions are captured by considering controllers which are part of the
following class.

Definition 6 (𝑞-step implementable relative feedback) The relative state feed-
back 𝑢 = 𝐴𝑥 is 𝑞-step implementable with respect to the adjacency matrix 𝑊 and
gain 𝑐 > 0 if 𝐴 ∈ A𝑞 (𝑊,𝑐), where

A𝑞 (𝑊,𝑐) =
{
𝐴

���� [∑𝑞

𝑘=0𝑊
𝑘
]
𝑖, 𝑗

= 0 =⇒ 𝐴𝑖, 𝑗 = 0,
𝐴1 = 0, ∥𝐴∥∞ ≤ 𝑐

}
.

Clearly, the sum of two 𝑞-step implementable controllers is also 𝑞-step imple-
mentable so if both 𝐴0, 𝐴1 ∈A𝑞 (𝑊,𝑐) then the combined controller in (4) will also
be 𝑞-step implementable. To clarify the concept of 𝑞-step implementability, consider
the following example.
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Example 2 Consider a vehicle string where each agent can measure the distance
to its two neighboring vehicles. This structure can be represented by the adjacency
matrix 𝑊 such that [𝑊]𝑖, 𝑗 = 1 ⇐⇒ |𝑖 − 𝑗 | = 1. and 𝑊𝑖, 𝑗 = 0 otherwise. Then the
sparsity constraint of 𝐴 ∈ A𝑞 (𝑊,𝑐) corresponds to the requirement that

|𝑖− 𝑗 | > 𝑞 =⇒ [𝐴]𝑖, 𝑗 = 0,

i.e., that only relative measurements up to the 𝑞 nearest neighbors are used. One
choice of a 1-step implementable matrix (𝐴 ∈ A1 (𝑊,𝑐)) is the graph Laplacian
𝐴 = 𝐿 while an example of a 2-step implementable matrix is 𝐴 = 𝐿2.

In general, if the adjacency matrix 𝑊 captures a physical network, then a con-
troller 𝑢 = 𝐴𝑥 with 𝐴 ∈ 𝐴𝑞 (𝑊,𝑐) means 𝑢𝑖 requires signals from Agent 𝑖’s 𝑞-hop
neighborhood. This is readily proven; we refer the reader to [Hansson and Tegling,
2023].

A controller that has been widely applied for vehicle formations in the literature
is what we will call the conventional consensus controller. In this case both 𝐴0 = 𝐿0
and 𝐴1 = 𝐿1 are chosen to be graph Laplacians and this results in the controller being
a 1-step implementable relative-feedback controller. The closed-loop dynamics with
this controller are

¥𝑥 = −𝐿1 ¤𝑥− 𝐿0𝑥 +𝑢ref . (5)

This is, however, not the only way to implement a controller satisfying the desired
structure. We next propose our alternative approach.

Remark 3 The analysis of a formation with position offsets can be made on the
translated states 𝑥 = 𝑥 − 𝑝 − 𝑡𝑣ref1 where 𝑝 ∈ R𝑁 is a vector of desired offsets and
𝑣ref a desired velocity. If the reference control signal is chosen to be 𝑢ref = 𝑢̃ref + 𝐴0𝑝

then the closed-loop dynamics in the new states becomes

¥̃𝑥 = 𝑢̃ref − 𝐴1 ¤̃𝑥− 𝐴0𝑥

where the property 𝐴01= 𝐴11= 0 was used. Thus, the dynamics around any potential
offset will be equivalent to the dynamics of 𝑥 when 𝑝 = 0 and 𝑣ref = 0.

2.4 A Novel Design: Serial Consensus
To address the problems of stability, performance, and robustness of interconnected
double-integrator systems we propose a controller design which achieves a desired
closed loop. Due to its structure, we term it the second order serial consensus system.

Definition 7 (Second order serial consensus system) Let 𝐿1 and 𝐿2 be weighted
and directed graph Laplacians. The second-order serial consensus system is then

(𝑠𝐼 + 𝐿2) (𝑠𝐼 + 𝐿1)𝑋 (𝑠) =𝑈ref (𝑠). (6)
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The system (3) achieves the serial consensus system through the control design

𝑢(𝑥, 𝑡) = 𝑢ref (𝑡) − (𝐿2 + 𝐿1) ¤𝑥(𝑡) − 𝐿2𝐿1𝑥(𝑡). (7)

When analyzing the serial consensus controller of (6) we will make use of the
following assumption on the graph structure.

Assumption A2 (Connected spanning tree) The graphs underlying the graph
Laplacians 𝐿1 and 𝐿2 contain a connected spanning tree.

A convenient state-space representation of the serial consensus system is[ ¤𝜉1
¤𝜉2

]
=

[
−𝐿1 𝐼

0 −𝐿2

]
︸          ︷︷          ︸

𝐴

[
𝜉1
𝜉2

]
+

[
0
𝑢ref

]
. (8)

This can be transformed back to 𝑥 and ¤𝑥 through the linear transformations[
𝑥

¤𝑥

]
=

[
𝐼 0

−𝐿1 𝐼

] [
𝜉1
𝜉2

]
and

[
𝜉1
𝜉2

]
=

[
𝐼 0
𝐿1 𝐼

] [
𝑥

¤𝑥

]
One benefit of considering the serial consensus can be understood through the
following theorem
Theorem 11
Consider the second order serial consensus system as defined in Definition 7 under
Assumption A2 and with 𝑈ref ∈ RH∞. Then the closed loop dynamics have the
following properties:

i) The poles of (6) are given by the union of the eigenvalues of −𝐿1 and −𝐿2.

ii) The solution achieves second order consensus.

The proof, a version of which appeared in [Hansson and Tegling, 2023], is
presented in Appendix 6. For the conventional consensus a theorem like this does
not exist, since using, e.g., a Laplacian corresponding to a directed cycle can result in
an unstable closed loop as noted in [Stüdli et al., 2017b; Tegling et al., 2023]. Serial
consensus, on the other hand, can be shown to be robustly stable, see [Hansson and
Tegling, 2023] for the robustness criteria.

The serial consensus controller is at worst 2-step implementable as per the
following result.

Proposition 12 Consider the second-order serial consensus controller (7). If
𝐿1, 𝐿2 ∈A1 (𝑊,𝑐) for a constant 𝑐 and adjacency matrix 𝑊 , then the controller
is a 2-step implementable relative feedback controller with respect to 𝑊 and gain
𝑐′= max{2𝑐, 𝑐2}.

The proof is found in the Appendix B, which is a version of what appeared in
[Hansson and Tegling, 2023]. The actual implementation of the serial consensus
will be discussed in further detail after our main results.
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2.5 Performance criterion
Motivated by the setting of vehicle formations we introduce the following two errors.
First, let the relative position be defined by

𝑒𝑝 (𝑡) := 𝑑 + 𝐿𝑥(𝑡),

where the graph G𝑁 underlying the graph Laplacian 𝐿 has size 𝑁 and 𝑑 ∈ R𝑁 is a
vector of desired offsets. Second, denote the velocity deviation as

𝑒𝑣 (𝑡) := ¤𝑥(𝑡) − 𝑣ref1,

with 𝑣ref ∈ R being the desired vehicle velocity.
The error 𝑒𝑝 represents the local relative position errors. This needs to remain

small to prevent vehicle collisions. Meanwhile, 𝑒𝑣 represents the deviation from the
desired velocity. In a vehicle formation this error needs to be small to ensure that
speed limits are respected. This should remain true also as the network grows, that
is, the errors should be independent of the number of agents 𝑁 .

Definition 8 (Scalable performance) A formation controller defined over a grow-
ing family of graphs that ensures

sup
𝑡≥0





[𝑒𝑝 (𝑡)𝑒𝑣 (𝑡)

]




∞
≤ 𝛼





[𝑒𝑝 (0)𝑒𝑣 (0)

]




∞
, (9)

where 𝛼 is fixed and independent of 𝑁 , is said to achieve scalable performance.

Here, the choice of norm is important since the worst-case behavior gets bounded
by the initial maximum deviation. We remark that we only consider the initial-value
response. While the disturbance amplification scenario also requires careful analysis
as discussed in [Besselink and Knorn, 2018], we leave it outside the scope of the
present study.

3. Main Results

Here we show that position and velocity errors can be kept small throughout the
transient phase. This is achieved through the use of a serial consensus controller
which uses measurements based on the underlying network graph. The result is
summarized in the following theorem.

Theorem 13
Let 𝑒𝑝 = 𝐿𝑥 where 𝐿 is a graph Laplacian. If the system ¥𝑥(𝑡) = 𝑢(𝑡) is controlled
with

𝑢(𝑡) = −(𝑝1 + 𝑝2)𝐿 ¤𝑥(𝑡) − 𝑝1𝑝2𝐿
2𝑥(𝑡),
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where 𝑝1, 𝑝2 > 0 and 𝑝1 ≠ 𝑝2, then the resulting serial consensus system achieves
scalable performance with

𝛼 =
1

|𝑝1 − 𝑝2 |
(𝑝1 + 𝑝2 +max{2,2𝑝1𝑝2}) .

Proof. The serial consensus system can be rewritten as[ ¤𝜉1
¤𝜉2

]
=

[
−𝑝1𝐿 𝐼

0 −𝑝2𝐿

] [
𝜉1
𝜉2

]
+

[
0
𝑢ref

]
.

Here 𝜉1 = 𝑥 and 𝜉2 = ¤𝑥+ 𝑝1𝐿𝑥. Since 𝑢ref = 0, the initial value problem can be solved
directly. This evaluates to

𝜉1 (𝑡) = 𝑒−𝑝1𝐿𝑡𝜉1 (0) + 𝑒−𝑝1𝐿𝑡

∫ 𝑡

0
𝑒𝑝1𝐿𝜏𝑒−𝑝2𝐿𝜏d𝜏𝜉2 (0)

𝜉2 (𝑡) = 𝑒−𝑝2𝐿𝑡𝜉2 (0).

Since 𝑝1𝐿 and 𝑝2𝐿 obviously commute, it follows that 𝑒𝑝1𝐿𝜏𝑒−𝑝2𝐿𝜏 = 𝑒 (𝑝1−𝑝2 )𝐿𝜏 .
By pre-multiplying the first equation with (𝑝1 − 𝑝2)𝐿 and using the property that
𝐿 commutes with 𝑒−𝑝1𝐿𝑡 we finally get the integrand (𝑝1 − 𝑝2)𝐿𝑒 (𝑝1−𝑝2 )𝐿𝜏 =
d
d𝑡 (𝑒

(𝑝1−𝑝2 )𝐿𝜏). Finally, by applying the Fundamental Theorem of Calculus the
equation can be simplified to

𝐿𝜉1(𝑡) =𝑒−𝑝1𝐿𝑡𝐿𝜉1(0) +
(𝑒−𝑝2𝐿𝑡 − 𝑒−𝑝1𝐿𝑡 )

𝑝1 − 𝑝2
𝜉2 (0).

Now, inserting that 𝑒𝑝 (𝑡) = 𝐿𝜉1 (𝑡), ¤𝑥(𝑡) = 𝜉2 (𝑡) − 𝑝1𝑒𝑝 (𝑡), and 𝑒𝑣 (𝑡) = ¤𝑥 − 𝑣ref1
yields

𝑒𝑝 (𝑡)=𝑒−𝑝1𝐿𝑡𝑒𝑝 (0) +
𝑒−𝑝2𝐿𝑡−𝑒−𝑝1𝐿𝑡

𝑝1 − 𝑝2
(𝑒𝑣 (𝑡) + 𝑣ref1+ 𝑝1𝑒𝑝 (0)).

Next we note that the relation 𝑒−𝐿𝑡1 = 1 holds for any graph Laplacian 𝐿. In
particular, this implies that (𝑒−𝑝2𝐿𝑡 − 𝑒−𝑝1𝐿𝑡 )1 = 0. After some simplifications this
leads to

𝑒𝑝 (𝑡) =
𝑝1𝑒

−𝑝2𝐿𝑡 − 𝑝2𝑒
−𝑝1𝐿𝑡

𝑝1 − 𝑝2
𝑒𝑝 (0) +

𝑒−𝑝2𝐿𝑡 − 𝑒−𝑝1𝐿𝑡

𝑝1 − 𝑝2
𝑒𝑣 (0)

𝑒𝑣 (𝑡) = −𝑝1𝑒𝑝 (𝑡) + 𝑒−𝐿2𝑡 (𝑒𝑣 (0) + 𝑝1𝑒𝑝 (0))

=
𝑝1𝑝2

(
𝑒−𝑝1𝐿𝑡− 𝑒−𝑝2𝐿𝑡

)
𝑝1 − 𝑝2

𝑒𝑝 (0)+
𝑝1𝑒

−𝑝1𝐿𝑡− 𝑝2𝑒
−𝑝2𝐿𝑡

𝑝1 − 𝑝2
𝑒𝑣 (0).
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Taking the induced norm ∥ · ∥∞ and then applying the triangle inequality yields the
following two bounds:

∥𝑒𝑝 (𝑡)∥∞ ≤ 𝑝1 + 𝑝2

|𝑝1 − 𝑝2 |
∥𝑒𝑝 (0)∥∞ + 2

|𝑝1 − 𝑝2 |
∥𝑒𝑣 (0)∥∞

and
∥𝑒𝑣 (𝑡)∥∞ ≤ 2𝑝1𝑝2

|𝑝1 − 𝑝2 |
∥𝑒𝑝 (0)∥∞ + 𝑝1 + 𝑝2

|𝑝1 − 𝑝2 |
∥𝑒𝑣 (0)∥∞.

Finally, we have that

∥𝑒𝑝 ∥∞, ∥𝑒𝑣 ∥∞ ≤




[𝑒𝑝𝑒𝑣 ]



∞ = max{∥𝑒𝑝 ∥∞, ∥𝑒𝑣 ∥∞}

Combining these facts yields



[𝑒𝑝 (𝑡)𝑒𝑣 (𝑡)

]




∞
≤ 𝑝1 + 𝑝2 +2max{1, 𝑝1𝑝2}

|𝑝1 − 𝑝2 |





[𝑒𝑝 (0)𝑒𝑣 (0)

]




∞
,

which is the definition of scalable performance with 𝛼 as in the theorem statement.□

Remark 4 In the limit when 𝑝1 approaches infinity and 𝑝2 approaches 0 (or vice
versa) then the theoretically optimal bound of 𝛼 = 1 is retrieved. For instance, let
𝑝1 = 𝑥 and 𝑝2 = 1/𝑥. Then, for 𝑥 > 1 we get

lim
𝑥→∞

𝛼(𝑥) = lim
𝑥→∞

𝑥 +1/𝑥 +2
𝑥−1/𝑥 = 1.

In this case the dynamics are essentially reduced to a first order consensus system,
which may be desirable. This would however require an unbounded gain.

4. Implementation

The serial consensus protocol has now been shown to have both scalable stability
and performance. It turns out that this also holds true for the implementation. In the
vehicle formation setting we desire a controller which has a finite gain, uses few
measurements, and has a decentralized implementation.

The graphs underlying 𝐿1+𝐿2 and 𝐿2𝐿1 must be implemented by the controller.
While this requires carefully designed signaling, it is still easy to implement as a
controller with finite gain and localized measurements.

4.1 Message passing
One way to implement serial consensus is through message passing. The reason can
be explained through the control law which is

𝑢 = −(𝐿2 + 𝐿1) ¤𝑥− 𝐿2𝐿1𝑥 +𝑢ref .
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Figure 1. Vehicle platoon with directed measurements and message passing to implement
serial consensus.

The velocity feedback will be implementable using only relative measurements from
each agent, provided that both 𝐿1 and 𝐿2 are localized graph Laplacians. Message
passing is instead needed for the positional feedback. This can be implemented if
each agent stores their relative error 𝑒𝑖 = [𝐿1𝑥]𝑖 . Then if each agent can access their
out-neighbor’s error, then the control signal can be calculated through 𝐿2𝐿1𝑥 = 𝐿2𝑒.
In the case of a vehicle platoon, the relative distance to the first neighbor can be
measured through the use of radar. However, the relative distance to the second
neighbor requires an additional signaling layer. That is, if such signaling can be
had with the nearest neighbor, then it is implementable in a platoon. This idea of
signaling is illustrated in Fig. 1.

4.2 Extended measurements
Using a step of communication is not the only way to implement the serial consensus.
Instead, 𝐿2𝐿1 can be implemented through direct measurements. Indeed, with careful
design, it is possible to choose 𝐿2, 𝐿1 so that their product (𝐿2𝐿1) ∈ A1 (𝑊,𝑐) and
is thus implementable using only relative measurements with immediate neighbors.
The following example illustrates this case.

Example 3 Let𝑊undir−path correspond to the undirected path graph, i.e.

(𝑊undir−path)𝑖, 𝑗 = 1 ⇐⇒ |𝑖− 𝑗 | = 1.

Furthermore, let 𝐿ahead−path and 𝐿behind−path correspond to the look-ahead and
look-behind path graphs, respectively:

𝐿ahead−path =


0 0
−1 1

. . .
. . .

−1 1


∈ A1 (𝑊undir−path,2) (10)

and

𝐿behind−path=


1 −1

. . .
. . .

1 −1
0 0


∈A1 (𝑊undir−path,2). (11)
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Then, the product of these two matrices will be

𝐿behind−path𝐿ahead−path =



1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 0


.

Since the product only requires information from the neighboring states it holds
that

𝐿behind−path𝐿ahead−path ∈ A1 (𝑊undir−path,4),

and the same holds true for (𝐿behind−path + 𝐿ahead−path). This shows that the serial
consensus controller with 𝐿2 = 𝐿behind−path and 𝐿1 = 𝐿ahead−path would be 1-step
implementable, and thus only requires local relative feedback.

On the other hand, if 𝐿2𝐿1 ∉A1 (𝑊,𝑐), then another alternative is to extend the local
measurements. It is then sufficient to add measurements to neighbors’ neighbors.
That is, given 𝐿1, 𝐿2 ∈A1 (𝑊,𝑐), then it holds that the product (𝐿2𝐿1) ∈A2 (𝑊,𝑐′),
as guaranteed by Proposition 12. The sum will clearly satisfy (𝐿2+𝐿1) ∈A1 (𝑊,2𝑐).

5. Examples

In this section we will provide three examples which will illustrate our main results
and how serial consensus compares to the conventional consensus protocol.

5.1 Scalable stability
Example 4 Consider the uni-directional circular graph structure with the graph
Laplacian defined as

(𝐿ahead−cycle)𝑖 𝑗 =
{

1 if 𝑖 = 𝑗
−1 if 𝑖 = 𝑗 +1 (mod 𝑁)

.

The conventional consensus protocol is then

¥𝑥 = −𝑟1𝐿ahead−cycle ¤𝑥− 𝑟0𝐿ahead−cycle𝑥 +𝑢ref

This system is known to be troublesome, since unless 𝑞1 and 𝑞0 are chosen to depend
on the number of vehicles 𝑁 , the closed-loop system will be unstable for large 𝑁 .
Algebraically, this is a consequence of the smallest in magnitude eigenvalues of
𝐿ahead−cycle approaching the origin at an angle to the real axis as 𝑁 grows [Tegling
et al., 2023].
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On the other hand, the serial consensus protocol

¥𝑥 = −(𝑝1 + 𝑝2)𝐿ahead−cycle ¤𝑥− 𝑝1𝑝2𝐿
2
ahead−cycle𝑥 +𝑢ref

is stable for any 𝑁 as long as 𝑝1 and 𝑝2 are chosen to be positive, which follows
from Theorem 11. Provided 𝑝1 ≠ 𝑝2, Theorem 13 also predicts that it has scalable
performance with respect to the graph Laplacian 𝐿ahead−cycle.

A comparison of the transient behavior for the two formations is shown in Fig. 2.
The figure shows how the formation that is controlled through the serial consensus
protocol is stable and has similar behavior independent of the number of vehicles.
Meanwhile, the one controlled with conventional consensus has similar performance
for small 𝑁 but eventually loses stability for large 𝑁 .

(a) Directed cycle,
conventional consen-
sus with 𝑁 = 10.

(b) Directed cycle,
conventional consen-
sus with 𝑁 = 100.

(c) Directed path, con-
ventional consensus
with 𝑁 = 10

(d) Directed path,
conventional consen-
sus with 𝑁 = 100

(e) Directed cycle, se-
rial consensus with
𝑁 = 10.

(f) Directed cycle, se-
rial consensus with
𝑁 = 100.

(g) Directed path, se-
rial consensus with
𝑁 = 10.

(h) Directed path, se-
rial consensus with
𝑁 = 100.

Figure 2. Simulation of the initial value response to 𝑥 = 0, ¤𝑥𝑖≠1 (0) = 0, and ¤𝑥1 (0) = 1.
For the serial consensus, 𝑝1 = 2 and 𝑝2 = 0.5 was used and for the conventional 𝑟1 = 2.5
and 𝑟0 = 1 was used. Different graph structures and number of vehicles 𝑁 was tested. For
each plot the inter-vehicle distances 𝑒𝑝 (𝑡) = 𝐿ahead−path𝑥(𝑡) are shown. The conventional
consensus system can be seen to degrade with increasing number of vehicles 𝑁 , while the
serial consensus displays scalable stability and performance.

5.2 Scalable performance
Example 5 Here we will illustrate the significant difference in performance between
conventional and serial consensus in the case of a directed vehicle string. For this
purpose, consider the directed path topology whose graph Laplacian is given by (10).
In this case it is easy to verify that the conventional consensus protocol

¥𝑥 = −𝑟1𝐿ahead−path ¤𝑥− 𝑟0𝐿ahead−path𝑥 +𝑢ref
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will stabilize the vehicle formation for any choice of positive 𝑟1 and 𝑟0. However,
the transient behavior will scale poorly independent of the choice of 𝑟1 and 𝑟0 as is
illustrated in Fig. 2. The formation under this control is well known to lack string
stability [Seiler et al., 2004], that is, disturbances propagate and grow along the
string. On the other hand, the serial consensus protocol with

¥𝑥 = −(𝑝1 + 𝑝2)𝐿ahead−path ¤𝑥− 𝑝1𝑝2𝐿
2
ahead−path𝑥 +𝑢ref

will have scalable performance with respect to the position error 𝑒𝑝 = 𝑑 +
𝐿ahead−path𝑥 and velocity error 𝑒𝑣 as long as 𝑝1 ≠ 𝑝2. This is illustrated in Fig. 2g
and Fig. 2h, where the same initial conditions and parameters are used for both
consensus protocols. From the figures it is clear that both formations are stable.
However, the conventional consensus protocol has a much larger transient than the
serial consensus protocol, which will get worse as the number of vehicles increases.

5.3 Different graph Laplacians
Example 6 The conventional consensus design has been shown to have acceptable
performance in a vehicle string when different Laplacians are used in the position
and velocity feedback [Herman et al., 2017]. In particular, the use of the directed
path graph Laplacian for the velocity term (look-ahead) and an undirected path
graph Laplacian for the positional term (look-ahead and look-behind), defined as

(𝐿undir−path)𝑖 𝑗 =


2 if 𝑖 = 𝑗 and 2 ≤ 𝑖 ≤ 𝑁 −1
1 if 𝑖 = 𝑗 for 𝑖 = 1, 𝑁
−1 if |𝑖− 𝑗 | = 1.

The resulting closed-loop system is then

¥𝑥 =−𝑟1𝐿ahead−path ¤𝑥− 𝑟0𝐿undir−path𝑥 +𝑢ref (𝑡). (12)

The step responses for 𝑁 = 10,100 can be seen in Fig. 3a and 3b.
This can be compared to the serial consensus utilizing bidirectional information.

For instance, if the forward-looking graph Laplacian 𝐿ahead−path is used together with
the corresponding backward-looking graph Laplacian

(𝐿behind−path)𝑖 𝑗 =
{

1 if 𝑖 = 𝑗 and 𝑖 ≤ 𝑁 −1
−1 if 𝑖 = 𝑗 −1

.

The resulting closed-loop system is then

¥𝑥(𝑡) = −(𝑝1𝐿ahead−path + 𝑝2𝐿behind−path) ¤𝑥(𝑡)
− 𝑝1𝑝2𝐿ahead−path𝐿behind−path𝑥(𝑡) +𝑢ref (𝑡). (13)
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(a) Conventional consensus with symmetric
position, asymmetric velocity feedback and
𝑁 = 10.

(b) Conventional consensus with symmetric
position, asymmetric velocity feedback and
𝑁 = 100.

(c) Serial consensus with bidirectional feed-
back and 𝑁 = 10.

(d) Serial consensus with bidirectional feed-
back and 𝑁 = 100.

Figure 3. Simulation of the initial value response to 𝑥 = 0, ¤𝑥𝑖≠1 (0) = 0, and ¤𝑥1 (0) = 1. The
conventional consensus system (12) is considered with 𝑟1 = 2.5 and 𝑟0 = 1, while for the serial
consensus system (13), 𝑝1 = 2 and 𝑝2 = 0.5 is used. The results illustrate that for some choices
of graph Laplacians the serial and conventional consensus can have comparable performance.

The step responses can be seen in Fig. 3. From the figure we can observe that
the serial consensus and conventional consensus can have similar transient perfor-
mance. We find it is, however, easier to predict that the serial consensus will perform
well, than various versions of the conventional protocol. Indeed, the protocol pro-
posed by [Herman et al., 2017] is very similar to the serial consensus controller in
Example 4.

6. Conclusions and directions for future work

In this paper we have introduced the serial consensus controller which is a distributed
formation controller that achieves scalable stability, performance, and robustness.
Here, scalability refers to the fact that these properties are independent of the forma-
tion size. The performance result is particularly important since it linearly bounds
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the ∥ · ∥∞-gain from the initial local errors and reference velocity deviation to the
transient local errors and reference velocity deviations, measured in the same norm.
This quantity, rather than, for example an 𝐿2 gain, is directly related to the con-
trol and performance objectives. It is also worth noting that all of these results are
achieved with only local relative measurements and linear feedback. The results are
particularly interesting for large vehicle platoons where short inter-vehicle distances
are desired and the transient behavior of the platoon is of great importance, though
there are strict topological constraints (typically, those of a directed string). But, by
virtue of the generality of the presented results they could also be of interest for other
networked systems, such as power grids, sensor networks or multi-robot networks.

There are several interesting directions for future work. First, since the serial
consensus may require an additional step of communication, an interesting question
is whether this can be avoided, for instance through the use of local estimators. A
second direction is to further investigate the robustness of the serial consensus, for
instance with respect to time delays. Finally, implementation of serial consensus on
a physical system is an interesting next step.

Appendix B

Here we will prove Theorem 11 and Proposition 12. The results are restated for
convenience.

Proof of Theorem 11
Proof. i) Any square matrix can be unitarily transformed to upper triangular form
by the Schur traingularization theorem. Let𝑈𝑘𝐿𝑘𝑈

𝐻
𝑘
=𝑇𝑘 be upper triangular. Then

the block diagonal matrix 𝑈 = diag(𝑈1,𝑈2, . . .𝑈𝑛) is a unitary matrix that upper
triangularizes 𝐴 in (8). For any triangular matrix the eigenvalues lie on the diagonal
and this will be the eigenvalues of each −𝐿𝑘 . The result follows.

ii) First, consider the closed-loop dynamics of (6)

𝑋 (𝑠) = (𝑠𝐼 + 𝐿1)−1 (𝑠𝐼 + 𝐿2)−1𝑈ref (𝑠).

Since,𝑈ref is stable, we know that the limit lim𝑠→0𝑈ref (𝑠) =𝑈ref (0) exists. To prove
that the system achieves second order consensus we want to show that

lim
𝑡→∞

𝑦(𝑡) = lim
𝑠→0

𝐶 (𝑠)𝑋 (𝑠) = 0

for some transfer matrix 𝐶 (𝑠), which encodes the consensus states. But since the
reference dependence is only related to 𝑈ref (0), we can simplify the problem to
only consider impulse responses, which has the same transfer function as the initial
value response where 𝜉𝑛 (0) =𝑈ref (0). Therefore, WLOG, assume that 𝑈ref (𝑠) = 0
and an arbitrary initial condition 𝜉 (0) = [𝜉1 (0)𝑇 , 𝜉𝑇2 (0)]

𝑇 . The solution of (8) is
given by exp(𝐴𝑡)𝜉 (0) = 𝑆 exp(𝐽 (𝐴)𝑡)𝑆−1𝜉 (0) where 𝐽 (𝐴) is the Jordan normal
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form of 𝐴 and 𝑆 is an invertible matrix. From i) and the diagonal dominance of
the graph Laplacians we know that all eigenvalues of 𝐴 lie in the left half plane.
By Assumption A2 it follows that the zero eigenvalue for each 𝐿𝑘 is simple. Now
we prove that these two zero eigenvalues correspond to a Jordan block of size 2.
Let e1 =

[
1𝑇 0

]𝑇 and e2 =
[
0 1𝑇

]𝑇 . Then 𝑒1 is an eigenvector since 𝐴e1 = 0.
Now, since 𝑒1 = 𝐴𝑒2 combined with 𝑒1 and 𝑒2 being linearly independent it follows
that they form a Jordan block of size 2 with an invariant subspace spanned by the
vectors 𝑒1 and 𝑒2. All other eigenvectors make up an asymptotically stable invariant
subspace, it follows that 𝜉 (𝑡) will converge towards a solution in span(𝑒1, 𝑒2) and
thus lim𝑡→∞ 𝜉𝑘 (𝑡) = 𝛼𝑘 (𝑡)1𝑁 . From 𝑥(𝑡) = 𝜉1 (𝑡) we get lim𝑡→∞ 𝑥(𝑡) = 𝛼1 (𝑡)1𝑁 , and
furthermore, since

¤𝑥 = ¤𝜉1 = −𝐿1𝜉1 + 𝜉2 → 𝜉2 as 𝑡→∞,

it follows that lim𝑡→∞ ¤𝑥(𝑡) = 𝛼2 (𝑡)1𝑁 which shows that the system achieves second
order consensus. □

Proof of Proposition 2.
Proof. To prove this we must show that both 𝐴0, 𝐴1 ∈A2 (𝑊,𝑐′) where 𝐴0 = −𝐿2𝐿1
and 𝐴1 = −(𝐿2 + 𝐿1). First, 𝐴1 and 𝐴2 are shown to represent relative feedback.
Since 𝐿1, 𝐿2 ∈ A1 (𝑊,𝑐), it holds that 𝐴01 = −𝐿2𝐿11 = −𝐿20 = 0 and similarly
𝐴11 = −(𝐿2 + 𝐿1)1 = 0.

Second, we show that the gain is bounded. For the positional feedback we have

∥𝐴0∥∞ = ∥ − 𝐿2𝐿1∥∞ ≤ ∥𝐿2∥∞∥𝐿1∥∞ ≤ 𝑐2,

which followed from the submultiplicativity of the induced norm. For the velocity
feedback

∥𝐴1∥∞ = ∥ − (𝐿2 + 𝐿1)∥∞ ≤ ∥𝐿2∥∞ + ∥𝐿1∥∞ ≤ 2𝑐,

where the triangle inequality was utilized. Let 𝑐′ =max{2𝑐, 𝑐2}, then clearly it holds
true that both ∥𝐴0∥∞, ∥𝐴1∥∞ ≤ 𝑐′.

Finally, we consider the sparsity pattern. Since 𝑊 is non-negative, it follows
that 𝑊2 is also non-negative. Next, since adding non-negative elements to a matrix
cannot remove any positive elements we get the following implications[

𝐼+𝑊+𝑊2]
𝑖, 𝑗
=0 =⇒[𝐼+𝑊]𝑖, 𝑗=0 =⇒[−𝐿1−𝐿2]𝑖, 𝑗=0,

which follows from the definition of 𝐿1, 𝐿2 ∈ A1 (𝑊,𝑐).
To show that 𝐴0 = −𝐿2𝐿1 will be sparse, we note that any graph Laplacian can

be written as 𝐿 = 𝐷−𝑊 , where 𝐷 is a diagonal matrix and𝑊 is non-negative. Thus
we will consider the sparsity of

−(𝐷2 −𝑊2) (𝐷1 −𝑊1) = −𝐷2𝐷1 +𝐷2𝑊1 +𝑊2𝐷1 −𝑊2𝑊1.
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Since multiplication with a diagonal matrix preserves sparsity, it clearly holds true
that the first three terms satisfy

[𝐼+𝑊]𝑖, 𝑗=0 =⇒[−𝐷2𝐷1 +𝐷2𝑊1 +𝑊2𝐷1]𝑖, 𝑗=0.

For𝑊2𝑊1 we can introduce a non-negative matrix 𝐸 such that [𝑊1,2+𝐸]𝑖, 𝑗 = 0 ⇐⇒
𝑊𝑖, 𝑗 = 0 and in particular this construction ensures that [(𝑊1 + 𝐸) (𝑊2 + 𝐸)]𝑖, 𝑗 =
0 ⇐⇒ [𝑊2]𝑖, 𝑗 . Consider the following expanded product

(𝑊2 +𝐸) (𝑊1 +𝐸) =𝑊2𝑊1 +𝑊2𝐸 +𝐸𝑊1 +𝐸2,

where all terms are products of non-negative matrices and are therefore also non-
negative. It thus holds that [𝑊2]𝑖, 𝑗 =⇒ [𝑊2𝑊1]𝑖, 𝑗 = 0. Combining the results for
𝐴0 shows that [

𝐼+𝑊+𝑊2]
𝑖, 𝑗
=0 =⇒ [𝐿2𝐿1]𝑖, 𝑗 = 0.

This concludes the proof. □
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Paper III

Input-Output Pseudospectral Bounds for
Transient Analysis of Networked and

High-Order Systems

Jonas Hansson Emma Tegling

Abstract

Motivated by a need to characterize transient behaviors in large network systems
in terms of relevant signal norms and worst-case input scenarios, we propose a
novel approach based on existing theory for matrix pseudospectra. We extend
pseudospectral theorems, pertaining to matrix exponentials, to an input-output
setting, where matrix exponentials are pre- and post-multiplied by input and
output matrices. Analyzing the resulting transfer functions in the complex plane
allows us to state new upper and lower bounds on system transients. These are
useful for higher-order matrix differential equations, and specifically control of
double-integrator networks such as vehicle formation problems. Therefore, we
illustrate the theory’s applicability to the problem of vehicle platooning and the
question of string stability, and show how unfavorable transient behaviors can
be discerned and quantified directly from the input-output pseudospectra.

©2022 IEEE. Published in the proceedings of 2023 IEEE Conference on Decision
and Control (CDC), Cancún. Reprinted with permission.
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1. Introduction

Characterizing dynamic properties of systems with structure, in particular, network
structure, is a long-standing problem in the field. While questions of stability and
convergence have dominated the literature since the early works [Fax and Murray,
2004; Olfati-Saber and Murray, 2004], important questions pertaining to the per-
formance and robustness of network systems are increasingly gaining attention. For
example, [Bamieh et al., 2012] and later [Siami and Motee, 2016; Tegling et al.,
2019] have described fundamental limitations to the performance of large networks
subject to structural (sparsity) constraints, stated in terms of system norms.

A particular area where dynamic behaviors have received more attention is that of
vehicle platooning, that is, the control of strings of vehicles, see [Levine and Athans,
1966; Chu, 1974] for early works. Here, it is fundamentally important to prevent
disturbance propagation through the string (to avoid collisions!), and therefore, to
have uniform bounds on error amplifications during transients. This has motivated
the notion of string stability, see e.g., [Swaroop and Hedrick, 1996; Seiler et al., 2004]
or [Stüdli et al., 2017; Feng et al., 2019] for more recent surveys. Conditions for string
stability fall, roughly speaking, into two categories: 1) bounding the amplification of
a disturbance from vehicle 𝑖 to vehicle 𝑗 , or 2) requiring that bounded initial errors
lead to bounded output errors, independently of the string length. The choice of signal
norms, however, is central for the bounds in this literature, and the interpretations
they allow for. Many works have done analyses based on L2 to L2 string stability,
see [Herman et al., 2017; Seiler et al., 2004; Ploeg et al., 2014] while the, as argued
e.g. in [Feintuch and Francis, 2012], possibly more important L∞ to L∞ disturbance
amplification has received significantly less attention even if considered in [Swaroop
and Hedrick, 1996; Chu, 1974]. In this work, we shed light on a new approach to
analyzing such bounds for input-output systems in general, and networks and vehicle
strings in particular.

This approach takes off from the literature on pseudospectra. Pseudospectra,
which complement spectral analysis of linear systems, especially for those with
non-normal operators, have seen usage in describing the transient behavior of both
differential and difference equations. The works are too numerous to mention, but
we refer to [Trefethen and Embree, 2005] for an excellent textbook on the subject.
Through pseudospectra one can state lower and upper bounds on the transient
of the exponential matrix, i.e., on sup𝑡≥0 ∥𝑒𝑡A∥, and thereby on the solution to a
linear differential equation. In other words, on the transient response of the internal
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states of a linear system. The most famous such bounds are given by the Kreiss
theorem [Kreiss, 1962]. However, in control, and in particular, network applications
including vehicle platooning, we are not necessarily interested in the transients
of the internal states. For instance, vehicular formation dynamics tend to have a
double integrator rendering certain internal states unbounded, while inter-vehicular
distances may be well-behaved. To cope with this one can incorporate measurement
and input matrices C,B and then bound sup𝑡≥0 ∥C𝑒𝑡AB∥ instead.

The extension of pseudospectral bounds to such an input-output setting is the
main focus of the present work. For this purpose we will define a notion of input-
output pseudospectra. These will, in the case of higher-order systems (by which we
mean systems with more than one integrator), become closely related to structured
pseudospectra, which have been studied in [Tisseur and Higham, 2001; Lancaster
and Psarrakos, 2005] and applied to mechanical systems in [Green et al., 2006]. In
these works the main focus has been on the robustness of solutions to matrix poly-
nomial equations including the quadratic eigenvalue problem. The related analysis
of transient behavior of ∥C𝑒𝑡 𝐴B∥ has, to the best of our knowledge, barely received
attention, though some structured Kreiss-like theorems were proven in [Matsuo,
1994; Plischke, 2005].

This paper aims to highlight the potential usefulness of the pseudospectral frame-
work for networked systems and systems with higher-order dynamics. Platooning,
where vehicles are modeled as double integrators (the acceleration is actuated), and
which have a string network topology, is a prototypical example. We first generalize
certain key results from [Trefethen and Embree, 2005] to an input-output setting.
Furthermore, we use complex analysis to derive new upper bounds on the transients
of state space realizations, which are especially useful for systems that have high-
order dynamics. The generalizations lead to lower and upper bounds on the transient
sup𝑡≥0 ∥C𝑒𝑡AB∥, which under given input scenarios imply bounds on the output
sup𝑡≥0 ∥𝑦(𝑡)∥ (in any 𝑝-norm). Through examples we show how the new bounds
can be applied. For a large-scale platooning problem, we compute bounds on the
deviations from equilibrium for a worst-case bounded initial condition.

The remainder of this paper is organized as follows. In Sec. 2 we introduce the
preliminaries of this work. Lower and upper bounds on the transient of sup𝑡 ∥𝑦(𝑡)∥
and simple examples illustrating how to apply the bounds are presented in Sec. 3.
Then we illustrate an application of our results in the form of vehicle strings in
Sec. 4. Lastly our conlusions are presented in Sec. 5.

2. Preliminaries

Consider the linear time-invariant system

¤𝜉 (𝑡) =A𝜉 (𝑡) +B𝑢(𝑡)
𝑦(𝑡) = C𝜉 (𝑡),

(1)
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where the state 𝜉 ∈ R𝑁 , A ∈ R𝑁×𝑁 , B ∈ R𝑁×𝑃 , C ∈ R𝑄×𝑁 , and output 𝑦 ∈ R𝑄. The
initial condition is 𝜉 (0) = 𝜉0. We will interpret C (𝑠𝐼 −A)−1B as a transfer matrix
and call the system (1) input-output stable if all poles of this transfer matrix lie in
the open left half plane. Denote by 𝜎(A) the spectrum, i.e., the set of eigenvalues
of A.

We will often let the system in (1) model matrix differential equations of the
form

𝑥 (𝑙) (𝑡) + 𝐴𝑙−1𝑥
(𝑙−1) (𝑡) + · · · + 𝐴0𝑥(𝑡) = 𝐵𝑢(𝑡)

𝑦(𝑡) = C𝜉 (𝑡),
(2)

where 𝑥(𝑡) ∈ R𝑛 and 𝑥 (𝑘 ) denotes the 𝑘 th time derivative of 𝑥: 𝑥 (𝑘 ) (𝑡) = d𝑘 𝑥 (𝑡 )
d𝑡𝑘 . In this

case, 𝜉 (𝑡) = [𝑥, ¤𝑥, . . . , 𝑥 (𝑙−1) ]⊤ ∈ R𝑛𝑙 , with 𝑛𝑙 = 𝑁 . This system can be equivalently
stated on block-companion form as

¤𝜉 (𝑡) =


0 𝐼𝑛 0 . . .
...

. . .
. . . 0

0 . . . 0 𝐼𝑛
−𝐴0 −𝐴1 . . . −𝐴𝑙−1

︸                              ︷︷                              ︸
A

𝜉 (𝑡) +


0
...

0
𝐵

︸︷︷︸
B

𝑢(𝑡)

𝑦(𝑡) = C𝜉 (𝑡).

(3)

2.1 Signal and system norms
Norms are central to this work. Here we will consider the standard vector 𝑝-norms:

∥𝑥∥ 𝑝 =


(∑𝑁

𝑘=1 |𝑥𝑘 |𝑝
) 1

𝑝 if 1 ≤ 𝑝 <∞
max𝑘 |𝑥𝑘 | if 𝑝 =∞,

where 𝑥 ∈ C𝑁 . For matrices we consider the corresponding induced norms, i.e.

∥A∥ = sup
∥𝑥 ∥=1

∥A𝑥∥,

where A ∈ C𝑀×𝑁 .
In general, our results can be interpreted in any of these norms and we will often

omit the subscript to indicate that the results are valid for all of them. What we need
for our theorems is, more specifically, that the matrix norms are submultiplicative,
which means that the following inequality is valid for any two compatible matrices
𝐴1, 𝐴2

∥𝐴1𝐴2∥ ≤ ∥𝐴1∥∥𝐴2∥.

It is well known that this is true for all the 𝑝-norms.
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2.2 Input-output scenarios
We will present bounds in terms of the scaled exponential matrix C𝑒A𝑡B. Its norm
can be seen as bounds on the transient response of the system (1) in the following
scenarios:

Impulse response Consider the input signal {𝑢(𝑡) = 𝛿(𝑡)𝑢0} with 𝑢0 ∈ R𝑃 and let
| |𝑢0 | | = 1 in some norm. The solution of (1) is given by

𝑦(𝑡) = C𝑒𝑡AB𝑢0 (4)

and the worst possible transient of 𝑦(𝑡) is given by

sup
𝑡

∥𝑦(𝑡)∥ = sup
𝑡

sup
∥𝑢0 ∥=1

∥C𝑒𝑡AB𝑢0∥ = sup
𝑡

∥C𝑒𝑡AB∥.

Response to an initial condition An initial condition response is given by

𝑦(𝑡) = C𝑒𝑡A𝜉 (0).

To study the worst possible initial condition with respect to resulting deviations in
the output 𝑦(𝑡) we may consider

sup
𝑡

∥𝑦(𝑡)∥ = sup
𝑡

sup
∥ 𝜉0 ∥=1

∥C𝑒𝑡A𝜉0∥ = sup
𝑡

∥C𝑒𝑡A∥.

The corresponding analysis for the worst-case structured initial condition is done
by multiplying 𝜉0 by B. In this case,

sup
𝑡

∥𝑦(𝑡)∥ = sup
𝑡

sup
∥ 𝜉0 ∥=1

∥C𝑒𝑡AB𝜉0∥ = sup
𝑡

∥C𝑒𝑡AB∥.

For example, B = (𝐼,0, . . . ,0)𝑇 in (3) corresponds to all initial derivatives being
zero.

2.3 Complex analysis
The basis for our upcoming theorems is three Laplace transform results, which were
also used to derive key results in [Trefethen and Embree, 2005]. For completeness
they are also presented.

Lemma 14 ( [Trefethen and Embree, 2005, Theorem 15.1] ) Let A be a matrix.
There exist 𝜔 ∈ R and 𝑀 ≥ 1 such that

∥𝑒𝑡A∥ ≤ 𝑀𝑒𝜔𝑡 ∀𝑡 ≥ 0. (5)

Any 𝑠 ∈ C with Re𝑠 > 𝜔 is in the resolvent set of A, with

(𝑠𝐼 −A)−1 =

∫ ∞

0
𝑒−𝑠𝑡𝑒𝑡Ad𝑡. (6)
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If A is a matrix or bounded operator, then

𝑒𝑡A =
1

2𝜋𝑖

∫
Γ

𝑒𝑠𝑡 (𝑠𝐼 −A)−1d𝑠, (7)

where Γ is any closed and positively oriented contour that encloses 𝜎(A) once in
its interior.

2.4 Pseudospectra
Pseudospectra have proven themselves to be a useful tool for analysing the transient
behavior and robustness of differential equations, see e.g. [Green et al., 2006]. There
are several equivalent definitions of the pseudospectra of a matrix A ∈ C𝑁×𝑁 . Two
equivalent and well known are:

Definition 9 (𝜖-pseudospectra)

𝜎𝜖 (A) = {𝑠 ∈ C | ∥ (𝑠𝐼 −A)−1∥ > 𝜖−1} (8)

and

Definition 10 (𝜖-pseudospectra)

𝜎𝜖 (A) = {𝑠 ∈ C | 𝑠 ∈ 𝜎(A+𝐸) . . .
. . . for some 𝐸 ∈ C𝑁×𝑁 with ∥𝐸 ∥ < 𝜖}, (9)

where 𝜎(A) denotes the (usual) spectrum of a matrix A. We will also make use of
the 𝜖-pseudospectral abscissa, defined as 𝛼𝜖 = sup𝑠∈𝜎𝜖

Re𝑠.
From the two definitions of 𝜎𝜖 we can get an idea of what they are used for. The

first relates to the size of the resolvent and enables complex analysis in line with
Lemma 14. The latter relates to the robustness of the matrix under perturbations. By
considering level curves of pseudospectra for various 𝜖-levels it is possible to get an
understanding of the solutions of the linear differential equation ¤𝑥(𝑡) =A𝑥(𝑡) and of
how sensitive the system is to perturbations.

When one is concerned with the transient behaviour of an input-output system
as defined in (1) it will be proven useful to generalize Definition 9 in the following
way:

Definition 11 (Input-output 𝜖-pseudospectra)

𝜎𝜖 (A,B,C) = {𝑠 ∈ C | ∥C (𝑠𝐼 −A)−1B∥ > 𝜖−1}. (10)

The corresponding input-output pseudospectral abscissa we define as

𝛼𝜖 (A,B,C) = sup
𝑠∈𝜎𝜖 (A,B,C)

Re(𝑠).

We also define the input-output spectrum 𝜎(A,B,C) as the set of poles of the
transfer matrix C (𝑠𝐼 −A)−1B.
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2.5 Kreiss theorem
The transient behavior of a matrix exponential for a stable matrix A ∈ R𝑁×𝑁 can be
bounded through the so called Kreiss bounds [Trefethen and Embree, 2005, Thrm.
18.5]:

K(A) ≤ sup
𝑡≥0

∥𝑒𝑡A∥ ≤ 𝑒𝑁K(A). (11)

Here the Kreiss constant is defined as

K(A) = sup
Re𝑠>0

Re𝑠∥(𝑠𝐼 −A)−1∥. (12)

Comparing (12) to Definition 1, the relation between the Kreiss bound and
pseudospectra becomes evident. In fact, it holds that K(A) = sup𝜖 >0𝛼𝜖 /𝜖 . In a
controls context, it is natural to not only consider the matrix exponential, but rather
an input-output setting. We therefore define the input-output Kreiss constant

K(A,B,C) = sup
Re𝑠>0

Re𝑠∥C (𝑠𝐼 −A)−1B∥ = sup
𝜖 >0

𝛼𝜖 (A,B,C)
𝜖

. (13)

3. Input-Output Transient Bounds

We now make use of the theory in the previous section to derive bounds on the
transient performance of the system (1), under the input-output scenarios introduced
earlier. We will give both lower and upper bounds. As a starting point, consider the
following proposition, which is a simple but important extension to Lemma 14:

Proposition 15 Let A, B and C be matrices and let ∥ · ∥ denote a submultiplicative
norm. There exist 𝑤 ∈ R and 𝑀 ≥ ∥CB∥ such that

∥C𝑒𝑡AB∥ ≤ 𝑀𝑒𝜔𝑡 ∀𝑡 ≥ 0. (14)

Any 𝑠 ∈ C with Re𝑠 > 𝜔 is in the resolvent set of A, with

C (𝑠𝐼 −A)−1B =

∫ ∞

0
𝑒−𝑠𝑡C𝑒𝑡ABd𝑡, (15)

C𝑒𝑡AB =
1

2𝜋𝑖

∫
Γ

𝑒𝑠𝑡C (𝑠𝐼 −A)−1Bd𝑠, (16)

and where Γ is any closed and positively oriented contour that encloses 𝜎(A,B,C)
once in its interior.

Proof. First, (14) follows from the norm’s submultiplicativity and (5) as

∥C𝑒𝑡AB∥ ≤ ∥C∥∥B∥∥𝑒𝑡A∥ ≤ ∥C∥∥B∥𝑀̂𝑒𝑤𝑡 ,
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with 𝑀 = ∥C∥∥B∥𝑀̂ . Letting 𝑡 = 0 yields ∥CB∥ ≤ 𝑀 .

Next, (15) follows from linearity of the integral, i.e., the fact that for any com-
patible matrices 𝐵, 𝐶, and 𝑓 (𝑥) we have 𝐵

∫
( 𝑓 (𝑥)d𝑥)𝐶 =

∫
𝐵 𝑓 (𝑥)𝐶d𝑥.

Last, consider (16). Through linearity and (7), we get

C𝑒𝑡AB =
1

2𝜋𝑖

∫
Γ′
𝑒𝑠𝑡C (𝑠𝐼 −A)−1Bd𝑠,

where Γ′ encircles 𝜎(𝐴). If 𝜎(A,B,C) = 𝜎(A) we are done. If not, suppose that
there are 𝑛𝑝 distinct poles 𝑠𝑝 ∈ 𝜎(𝐴) such that 𝑠𝑝 ∉ 𝜎(A,B,C). Let Γ′ be the
union of Γ and 𝑛𝑝 disjoint circles with radius 𝜖 with the poles 𝑠𝑝 at the center. Let
𝜖 be sufficiently small such that the 𝜖-circles are disjoint from 𝜎(A,B,C). Now,
since the transfer matrix C (𝑠𝐼 −A)−1B does not contain any poles in the interior
of the 𝜖-discs, each of the transfer functions is holomorphic in each disc enclosed
by the 𝜖-circles. By the maximum modulus principle they cannot have any strict
local maximum in the interior of each 𝜖-disc. This implies that there is an 𝑀𝜖 ≥ 0
such that each transfer function | (C (𝑠𝐼 −A)−1B)𝑖, 𝑗 | ≤ 𝑀𝜖 . In turn, this implies that
∥𝑒𝑠𝑡 (C (𝑠𝐼 −A)−1B)∥∞ ≤ 𝑒𝑅𝑒 (𝑠𝑝+𝜖 )𝑡𝑀𝜖 𝑃 on any circle 𝛾, where 𝑃 is the number
of columns of B. The curve integral is thus bounded by

∫
𝛾
∥C (𝑠𝐼 −A)−1B∥∞d𝑠 ≤

𝑃𝑒𝑅𝑒 (𝑠𝑝+𝜖 )𝑡𝑀𝜖 𝜖2𝜋, which then converges to 0 as 𝜖→ 0. This is true for all 𝑛𝑝 circles
and so we can ignore the part encircling the non-observable poles. By equivalence
of norms, this is true for any 𝑝-norm. □

We will now make use of Proposition 15 to state upper and lower bounds on the
quantity sup𝑡≥0 ∥C𝑒𝑡AB∥.

3.1 Lower bound
We begin by stating a lower bound analogous to the lower bound in the Kreiss
theorem (11). Despite its relevance to control systems, this extension of the Kreiss
theorem has, to our knowledge, not been observed in the literature apart from [Mat-
suo, 1994] and [Plischke, 2005]. The short proof we present here, however, is new.

Theorem 16—Lower bound

sup
𝑡≥0

∥C𝑒𝑡AB∥ ≥ sup
Re𝑠>0

Re𝑠∥C (𝑠𝐼 −A)−1B∥ (17)

Proof. Let 𝑀 = sup𝑡≥0 ∥C𝑒𝑡AB∥ and Re𝑠 > 0. From (15) we have

∥C (𝑠𝐼 −A)−1B∥ = ∥
∫ ∞

0
𝑒−𝑠𝑡C𝑒𝑡ABd𝑡∥

=⇒ ∥C (𝑠𝐼 −A)−1B∥ ≤ 𝑀
∫ ∞

0
𝑒−𝑡Re𝑠d𝑡 =

𝑀

Re𝑠
,

multiplying both sides by Re𝑠 proves the inequality. □
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The theorem reveals that the input-output Kreiss constant K(A,B,C) defined
in (13) can lower bound the transient of the system (1) under the input scenarios in
Sec. 2.2.

3.2 Upper bounds
Now we present three ways to bound the transient from above, again, using Propo-
sition 15 as a basis for the proofs.

Theorem 17—First upper bound
If A, B, C are matrices and 𝐿 𝜖 is the arc length of the boundary of 𝜎𝜖 (A,B,C) or
of its convex hull for some 𝜖 > 0, then

∥C𝑒𝑡AB∥ ≤ 𝐿 𝜖 𝑒
𝑡 𝛼𝜖 (A,B,C)

2𝜋𝜖
, (18)

where 𝛼𝜖 (A,B,C) = sup{Re𝑠 | ∥C (𝑠−A)−1B∥ > 𝜖−1}.

Proof. For any closed contour Γ enclosing 𝜎𝜖 (A,B,C) we have (16). Taking the
norm on both sides gives

∥C𝑒𝑡AB∥ =




 1
2𝜋𝑖

∫
Γ

𝑒𝑠𝑡C (𝑠𝐼 −A)−1Bd𝑠






≤ 1
2𝜋

∫
Γ

∥𝑒𝑠𝑡C (𝑠𝐼 −A)−1B∥d𝑠 ≤ 𝐿 𝜖 𝑒
𝑡 𝛼𝜖 (A,B,C)

2𝜋𝜖
.

The second inequality follows since ∥C (𝑠𝐼−A)−1B∥ ≤ 𝜖−1 along Γ. The convex hull
can be used to reduce the length 𝐿 𝜖 of Γ. This is possible as ∥C (𝑠𝐼 −A)−1B∥ ≤ 𝜖−1

on the boundary of the convex hull. □

Theorem 17 is a fairly straightforward extension of [Trefethen and Embree,
2005, Theorem 15.2]. However, we next present a novel alternative characterization
which will prove useful, in particular for classes of higher-order matrix differential
equations.

Theorem 18—Second upper bound
Let the system (1) with (A,B,C) be input-output stable and let 𝑅 = 𝑎∥A∥ for some
𝑎 > 1. Then

∥C𝑒𝑡AB∥ ≤ 1
2𝜋

∫ 𝑅

−𝑅
∥C (𝑖𝜔−A)−1B∥𝑑𝜔+ ∥C∥∥B∥

2−2𝑎−1
(19)
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Proof. By definition of input-output stability all poles of the transfer matrix C (𝑠𝐼 −
A)−1B lie in the left half plane. Furthermore, the spectrum 𝜎(A) is contained
in the disc |𝑠 | ≤ ∥A∥ since for any eigenvector 𝑥 of A with ∥𝑥∥ = 1 we have
∥A∥ ≥ ∥A𝑥∥ = |𝜆 |. Now take Γ to be the semicircle with radius 𝑅 > ∥𝐴∥ that goes
up the imaginary axis and then extends into the left half plane. Then this Γ encloses
the input-output spectrum 𝜎(A,B,C) and (16) yields

∥C𝑒𝑡AB∥ ≤ 1
2𝜋

∫
Γ

𝑒𝑡Re(𝑠) ∥C (𝑠−A)−1B∥d𝑠

≤ 1
2𝜋

∫ 𝑅

−𝑅
∥C (𝑖𝜔−A)−1B∥d𝜔

+ 1
2𝜋

∫ 3𝜋/2

𝜋/2
∥C (𝑅𝑒𝑖 𝜃 −A)−1B∥𝑅d𝜃.

If |𝑠 | = ∥A∥𝑎 and 𝑎 > 1, then, the integral in the second term can be bounded using
the following series expansion of the inverse:

∥(𝑠𝐼 −A)−1∥ =





1
𝑠

∞∑︁
𝑘=0

(
A
𝑠

) 𝑘




 ≤ 1
∥A∥

1
𝑎−1

This, together with submultiplicativity yield ∥C (𝑅𝑒𝑖 𝜃 −A)−1B∥𝑅 ≤ ∥C∥B∥∥A∥𝑎 1
∥A∥

1
𝑎−1

which can be used to upper bound the second integral to ∥C ∥ ∥B∥
2−2𝑎−1 . □

Now we will look into another bound, similar in its nature.

Theorem 19—Third Upper bound
Let the system (1) with (A,B,C) be input-output stable. If ∥C (𝑠𝐼−A)−1B∥ ≤ 𝑀 |𝑠 |−𝛽
for all |𝑠 | ≥ 𝐾 for some 𝛽 > 1, 𝑀 > 0, and 𝐾 > 0. Then

∥C𝑒𝑡AB∥ ≤ 1
2𝜋

∫ ∞

−∞
∥C (𝑖𝜔−A)−1B∥d𝜔 <∞. (20)

Proof. Taking the norm of (16), we get

∥C𝑒𝑡AB∥ ≤ 1
2𝜋

∫
Γ

∥𝑒𝑠𝑡C (𝑠𝐼 −A)−1B∥d𝑠.

Now, use the same semicircle Γ as in the proof of Theorem 18 with radius 𝑅 > ∥A∥.
This Γ encloses the input-output spectra 𝜎(A,B,C). Furthermore if 𝑅 > 𝐾 we have

∥C𝑒𝑡AB∥ ≤ 1
2𝜋

lim
𝑅→∞

(∫ 𝑅

−𝑅
∥𝑒𝑖𝜔𝑡C (𝑖𝜔−A)−1B∥𝑑𝜔+ 𝜋𝑅𝑀𝑅−𝛽

)
=

1
2𝜋

∫ ∞

−∞
∥C (𝑖𝜔−A)−1B∥𝑑𝜔,

where the last equality follows from the condition 𝛽 > 1. □
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The condition on 𝛽 in Theorem 19 can be related to the relative degree of the
system. For instance, if C (𝑠𝐼−A)−1B = (𝑠2𝐼 + 𝑠𝐴1+𝐴0)−1 and is input-output stable,
then 𝛽 = 2 and it is possible to apply the theorem.

The usefulness of the three upper bounds boils down to the fact that the spectrum
is usually difficult to characterize. For the first bound (18), a good description of
the pseudospectra is needed, while in the second and third bounds (19)–(20) good
knowledge of the resolvent along the imaginary axis is needed. We will clarify
through two simple examples.

Example 7 Consider the dynamical system

¤𝜉 =
[

0 1
−1 −2

]
𝜉 +

[
0
1

]
𝑢

𝑦 =
[
1 0

]
𝜉.

(21)

Suppose we are interested in the impulse response of the system. Then we have

C (𝑠𝐼 −A)−1B =
1

(𝑠+1)2 .

In this case we can see that the 𝜖-level curves of ∥C (𝑠𝐼 −A)−1B∥ = 1/𝜖 are given by
the circles |𝑠+1| =

√
𝜖 . From (18) we see that the upper bound for each 𝜖 is

∥C𝑒𝑡 𝐴B∥ ≤ 2𝜋
√
𝜖𝑒𝑡 (−1+

√
𝜖 )

2𝜋𝜖
=
𝑒𝑡 (−1+

√
𝜖 )

√
𝜖

.

The lowest upper bound is achieved for 𝜖 = 1 and is simply ∥𝐶𝑒𝑡AB∥ ≤ 1.
The third upper bound (Theorem 19) requires input-output stability, which is

clearly satisfied. The relative degree is 2 which implies 𝛽 = 2 > 1. To calculate the
bound (20) we need to calculate the integral along the imaginary axis. In this case

∥C𝑒𝑡AB∥ ≤ 1
2𝜋

∫ ∞

−∞
∥C (𝜔𝑖𝐼 −A)−1B∥d𝜔

=
1
𝜋

∫ ∞

0

1
𝜔2 +1

d𝜔 =
1
2

A lower bound of this system can be calculated by only considering the real axis
(and in this case this is also optimal). This leads to optimizing

sup
𝑡≥0

∥C𝑒𝑡AB∥ ≥ sup
𝑥>0





 𝑥

(𝑥 +1)2





 = 1
4
.

Since this system is very simple it is also possible to calculate the actual maximum
which is sup𝑡≥0 ∥C𝑒𝑡AB∥ = 1/𝑒.
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As demonstrated above, Theorem 19 is useful if the relative degree of the system
transfer function is greater than 1. Now we show a case where where we cannot use
this theorem.

Example 8 Consider the same system (21) as before, but now the response to a
non-zero initial value 𝜉 (0) = [𝑥0,0]⊤. This can be represented by B = [1,0]𝑇 . Then
we have

C (𝑠𝐼 −A)−1B =
𝑠+2

(𝑠+1)2 .

To calculate our first upper bound in (18) we need to encircle the spectrum. The
shape here is non-trivial but at least we know that for any circle centered around −1
with radius smaller than 1 we have���� 𝑠+2

(𝑠+1)2

���� ≤ ���� 2
(𝑠+1)2

���� .
The previous calculations give us the upper bound ∥C𝑒𝑡AB∥ ≤ 2. In this case we

cannot use Theorem 19 since the relative degree is 1 and therefore 𝛽 ≤ 1. However,
we can use the very similar Theorem 18 to give an upper bound. ∥A∥∞ = 3 and so
for any 𝑅 > 3 we can use the theorem. It remains to calculate the curve integral
along the imaginary axis. Doing this with numerical integration for 𝑅 = 9 yields the
upper bound ∥C𝑒𝑡 𝐴B∥ ⪅ 2.025 (Through optimization this bound can be lowered to
∥C𝑒𝑡 𝐴B∥ ⪅ 2.023)

Through these examples we have shown that the best upper bound depends
on the situation. The upside of using Theorems 18 and 19 is that they are quite
easy to compute numerically. Theorems 16 and 17 relate to the level curves of the
input-output pseudospectra and can be qualitatively seen through inspection of these
curves, as we will demonstrate in the next section.

4. Application to networks: vehicle strings

To illustrate our bounds, we consider the problem of controlling a string of vehicles
– the platooning problem. While performance bounds on platoons and their relation
to the network or interaction structure has received ample attention, as we stated in
the introduction, the problem calls for bounds relating to the quantity sup𝑡 ∥𝑦(𝑡)∥∞,
where 𝑦 captures a displacement error. Bounds of this type are important, especially
in platooning, since they directly relate to the allowable spacing between consecutive
vehicles. However, they tend to be difficult to derive analytically. Here we illustrate
how our pseudospectra-inspired approach can be used to evaluate string stability
properties for various platoon structures in terms of this quantity.
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For this purpose, consider a platoon of size 𝑛 where each unit is modelled as a
double integrator in one spatial dimension, i.e.

¥𝑥𝑘 = 𝑢𝑘

where 𝑥𝑘 is the position of the 𝑘th vehicle with respect to a fix reference and 𝑢𝑘 is
the input force at vehicle 𝑘 .

To control the platoon we consider a control law that depends on relative distances
to neighboring vehicles and relative to a speed reference. For 𝑘 ∈ {2, . . . , 𝑛−1} we
get:

𝑢𝑘 = (1+ 𝛽𝑑) ( ¤𝑥𝑘−1 − ¤𝑥𝑘) − (1− 𝛽𝑑) ( ¤𝑥𝑘 − ¤𝑥𝑘+1) +𝛼(𝑣ref − ¤𝑥𝑘)
+(1+𝛽𝑝) (𝑥𝑘−1−𝑥𝑘−𝑑)−(1− 𝛽𝑝) (𝑥𝑘−𝑥𝑘+1−𝑑), (22)

where 𝛽𝑑 and 𝛽𝑝 are parameters capturing the degree of symmetry in the control
law (i.e., look-ahead vs. look-behind control), 𝑑 a desired intervehicle spacing, 𝑣ref
is a velocity reference, and 𝛼 ≥ 0 is a weight. For the first and last vehicles, we
simply define ¥𝑥1 = −(1− 𝛽𝑑) ( ¤𝑥1− ¤𝑥2) +𝛼(𝑣ref− ¤𝑥1) − (1− 𝛽𝑝) (𝑥1−𝑥2−𝑑), ¥𝑥𝑛 = (1+
𝛽𝑑) ( ¤𝑥𝑛−1− ¤𝑥𝑛) +𝛼(𝑣ref− ¤𝑥𝑛) + (1+ 𝛽𝑝) (𝑥𝑛−1−𝑥𝑛−𝑑). By considering the translated
dynamics 𝑥𝑘 = 𝑥𝑘 + 𝑘𝑑 we get the same dynamics as if we assume 𝑑 = 0, so for
simplicity we set 𝑑 = 0 and consider the dynamics around this equilibrium.

The closed-loop system can be written:[
¤𝑥
¥𝑥

]
=

[
0 𝐼

−𝐿𝑝 −𝐿𝑑 −𝛼𝐼

] [
𝑥

¤𝑥

]
+

[
0
𝛼1

]
𝑣ref =A𝜉 +B𝑣ref.

𝑦 =
[
𝐶 0

] [
𝑥

¤𝑥

]
= C𝜉, (23)

where 𝐿𝑝 , 𝐿𝑑 ∈ R𝑛×𝑛 are graph Laplacians capturing the vehicle interactions
(see further down for definitions). This and similar systems are well studied, see
e.g. [Stüdli et al., 2017].

A way to ensure the platoon is well-behaved (e.g. string stable) is to make 𝛼 large
in comparison to 𝐿𝑑 and 𝐿𝑝 . This, however, essentially transforms the problem to
an open-loop system, which is obviously problematic in a real-world setting with
disturbances and measurement noise or bias. This motivates the use of a fairly small
𝛼, allowing the inter-vehicle adjustments to dominate. In this example, we will
use 𝛼 = 0.1.

We use the framework from Section 3 to analyze this system for two cases, one
where both Laplacians are asymmetric (a directed string) and one where both are
symmetric (bidirectional string). For each system we consider the output

𝑦 =


𝑥1 − 𝑥2

𝑥⌊𝑁/2⌋ − 𝑥⌊𝑁/2⌋+1
𝑥𝑛−1 − 𝑥𝑛

 ,
79



Paper III. Input-Output Pseudospectral Bounds for Transient Analysis of
Networked and High-Order Systems
which samples three inter-vehicle distances: at the start, middle, and end of the

platoon. We will consider the initial condition response, i.e. B = 𝐼2𝑛. We expect a
string unstable system to perform poorly for at least one of these outputs.

One merit of our proposed method is the possibility to analyze very large systems.
In both cases considered here, we therefore model a platoon of 𝑛 = 400 vehicles.
We remark that it would of course be possible to simulate the systems for many
different inputs and through simulation bound the possible outputs. But as 𝑛 grows,
this quickly becomes very computationally heavy. Using our theorems generates
bounds on the worst case input without any additional effort.

4.1 Directed vehicle string
Consider the control law (22) with 𝛽𝑝 = 𝛽𝑑 = 1, which renders it fully asymmetric.
In this case, we obtain in (23) 𝐿𝑝 = 𝐿𝑑 = 𝐿asym, with

𝐿asym =


0
−2 2

. . .
. . .

−2 2


. (24)

In Fig. 1 we show the shape of the input-output pseudospectra corresponding to an
initial condition response, that is, the level curves of the quantity ∥C (𝑠𝐼−A)−1𝐼2𝑛∥∞
of (23) with 𝑛 = 400 vehicles. We can see that the level curves extend far into the right
half plane with magnitudes of order 1030 where Re(𝑠) is of order 10−1. Through
the lower bound in Theorem 16 we can immediately see that there will be a large
transient of ∥𝑦(𝑡)∥∞ in at least the orders of 1029. Through a line search, starting at
the maximum along the imaginary axis and going into the right half plane we learn
that the lower bound in amplification from the worst-case initial conditions to the
output (see Section 2.2) is at least

sup
𝑡≥0

∥𝑦(𝑡)∥∞ ⪆ 4.3 ·1031,

for some 𝜉0 such that ∥𝜉0∥∞ ≤ 1.
Fig. 2 displays a Bode plot of the system for various platoon sizes 𝑛. That is,

we plot the amplitude ∥C (𝑠𝐼 −A)−1𝐼2𝑛∥∞ for 𝑠 = 𝑖𝜔, 𝜔 ∈ (0,∞). Here, we can see
the extreme amplification of the frequency response close to the frequency 𝜔 = 1.
According to our Theorem 18, we can use this frequency response to calculate an
upper bound on the transient through integration. By numerical integration we can
estimate the upper bound to be

sup
𝑡≥0

|𝑦(𝑡)∥∞ ⪅ 1.4 ·1033.

From these two bounds we can already conclude that this topology is not suitable
for a string of vehicles.
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Figure 1. The input-output pseudospectra of (23) for a directed vehicle string with 𝑛 = 400
vehicles. The black dots are the eigenvalues of A. The large values of the input-output
pseudospectra even for small 𝑠 in the right half plane indicate an unfavorable lower bound in
Theorem 16.
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Figure 2. Bode plot displaying the worst-case frequency response of (23) for a directed
vehicle string. The amplitude is measured in ∥ · ∥∞ and the response is shown for various
platoon lengths 𝑛.

Remark 5 The bounds were possible to compute, since the inversion C (𝑠𝐼 −A)−1

can be reduced to the sparse problem 𝐶 (𝑠2𝐼 + 𝑠𝐿𝑑 + 𝐿𝑝)−1, where 𝐶 ∈ R3,𝑛. As 𝐿𝑑

and 𝐿𝑝 are tridiagonal this can be computed in O(𝑛) operations.
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4.2 Bidirectional (symmetric) vehicle string
Now, let 𝛽𝑑 = 𝛽𝑝 = 0 in (22), leading to the symmetric Laplacians 𝐿𝑝 = 𝐿𝑑 = 𝐿sym,
with

𝐿sym =



1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1


. (25)

This corresponds to a bidirectional string of vehicles. In Fig. 3 we show the shape of
the input-output pseudospectra corresponding to an initial condition response of (23)
with 𝑛 = 400 vehicles. We can see that the input-output spectra is quite well-behaved
and do not extend far into the right half plane, indicating transients will be modest.
By Theorem 16 and a line search along the real axis, we learn that the lower bound
in amplification from initial conditions to output is

sup
𝑡≥0

∥𝑦(𝑡)∥∞ ⪆ 2.2,

for some 𝜉0 such that ∥𝜉0∥∞ ≤ 1.
In Fig. 4 we can see the frequency response calculated for various 𝑛. Interestingly,

the common slope among the curves seems to only behave like a square root which
would mean that there is an upper bound independent of the platoon length which
bounds the transients due to arbitrary non-zero initial conditions. The numerical
upper bound when 𝑛 = 400 was calculated to

sup
𝑡≥0

|C𝑒𝑡A𝜉0∥∞ ⪅ 9.3.

This can be compared with the upper bound calculated for 𝑛 = 106 which evaluated
at 9.4.

5. Conclusions

In this work we have proposed a pseudospectra-based approach to analyze tran-
sient performance of input-output systems, and generalized existing bounds for this
purpose. Through our bounds it is possible to quantify sup𝑡≥0 ∥C𝑒𝑡AB∥ in terms
of lower and upper bounds. These can be seen as bounding the performance from
a worst-case input disturbance to an output 𝑦(𝑡) in any p-norm – otherwise often
intractable to study. Regarding the problem of controlling vehicle strings in Sec. 4,
we illustrated one application where we believe our bounds can be useful, opening
the door to future analysis. For instance, deriving analytical bounds for special net-
work structures. The theorems can also be used to numerically calculate bounds for
network structures where the worst inputs are non-obvious, for instance when the
agents are non-homogeneous or interaction matrices non-normal.
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Figure 3. The input-output pseudospectra of (23) for a bidirectional vehicle string with
𝑛 = 400 vehicles. The black dots are the eigenvalues of A. The level curve corresponding
to ∥C (𝑠𝐼 −A)−1∥ = 101.5 can be roughly inscribed in a 1 radius circle, which hints through
Theorem 17 that the transients of ∥𝑦(𝑡)∥∞ will be small.

10−310−610−910−12

100

103

106

Frequency

A
m

pl
itu

de

𝑛 = 106

𝑛 = 105

𝑛 = 104

𝑛 = 103

𝑛 = 102

Figure 4. Bode plot displaying the worst-case frequency response of (23) for a bidirectional
vehicle string. The amplitude is measured in ∥ · ∥∞ and the response is shown for various
platoon lengths 𝑛.
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