
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Application of Texture Analysis to Functional Pulmonary CT Data

Meier, Arndt; Farrow, Catherine; Harris, Benjamin; King, Gregory; Jones, Alan

Published in:
Computerized Medical Imaging and Graphics

DOI:
10.1016/j.compmedimag.2011.01.001

2011

Link to publication

Citation for published version (APA):
Meier, A., Farrow, C., Harris, B., King, G., & Jones, A. (2011). Application of Texture Analysis to Functional
Pulmonary CT Data. Computerized Medical Imaging and Graphics, 35(6), 438-450.
https://doi.org/10.1016/j.compmedimag.2011.01.001

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.compmedimag.2011.01.001
https://portal.research.lu.se/en/publications/6cb14455-bb30-4f15-bcd7-49235062b16c
https://doi.org/10.1016/j.compmedimag.2011.01.001


                             Elsevier Editorial System(tm) for Computerized Medical Imaging and Graphics

                                  Manuscript Draft

Manuscript Number: 

Title: Application of Texture Analysis to Functional Pulmonary CT Data

Article Type: Full Length Article

Section/Category: 

Keywords: texture analysis, computed tomography, asthma, COPD,  lung ventilation

Corresponding Author: Dr Arndt Meier, 

Corresponding Author's Institution: University of Sydney

First Author: Arndt Meier

Order of Authors: Arndt Meier; Catherine Walsh; Benjamin  E Harris; Gregory  G King; Allan Jones, 

Dr

Manuscript Region of Origin: 

Abstract: Abstract

It is demonstrated that textural parameters calculated from functional pulmonary CT data have the 

potential to provide a robust and objective quantitative characterisation of inhomogeneity in lung 

function and classification of lung diseases in routine clinical applications. Clear recommendations 

are made for optimum data preparation and textural parameter selection.

A new set of platform-independent software tools are presented that are implemented as plug-ins 

for ImageJ. The tools allow segmentation and subsequent histogram-based and grey-level co-

occurrence matrix based  analysis of the regions of interest. The work-flow is optimised for use in a 

clinical environment for the analysis of transverse Computed Tomography (CT) scans and lung 



ventilation scans based on SPECT. Consistency tests are made against other texture analysis 

plug-ins and simulated lung CT data. The same methods are then applied to patient data consisting 

of a healthy reference group and one patient group each who suffered from asthma, chronic 

obstructive pulmonary disease (COPD), and COPD plus lung cancer. The potential for disease 

classification based on computer analysis is evaluated.
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Abstract

It is demonstrated that textural parameters calculated from functional pulmonary CT data 

have the potential to provide a robust and objective quantitative characterisation of 

inhomogeneity in lung function and classification of lung diseases in routine clinical 

applications. Clear recommendations are made for optimum data preparation and textural 

parameter selection.

A new set of platform-independent software tools are presented that are implemented as plug-

ins for ImageJ. The tools allow segmentation and subsequent histogram-based and grey-level 

co-occurrence matrix based  analysis of the regions of interest. The work-flow is optimised 

for use in a clinical environment for the analysis of transverse Computed Tomography (CT) 

scans and lung ventilation scans based on SPECT. Consistency tests are made against other 

texture analysis plug-ins and simulated lung CT data. The same methods are then applied to 

patient data consisting of a healthy reference group and one patient group each who suffered 

from asthma, chronic obstructive pulmonary disease (COPD), and COPD plus lung cancer. 

The potential for disease classification based on computer analysis is evaluated.

KEYWORDS:

texture analysis, computed tomography, asthma, COPD,  lung ventilation
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1. Introduction

Close to 10 percent of the world population are suffering from chronic lung diseases. The two 

most common categories, which account for 7.7%, are asthma and chronic obstructive 

pulmonary disease (COPD).

According to World Health Organisation (WHO) estimates, 300 million people suffer from 

asthma and 255 000 people died of asthma in 2005 (WHO, 2008a) and an increase of 20% is 

expected over the next 10 years. Asthma is the most common chronic disease among children. 

It is characteried by episodic airway narrowing that occurs on exposure to stimuli, such as 

exercise, dust, pollens and cold air. Asthmatic lungs are characterised by inhomogeneous 

ventilation when studied by pulmonary function techniques or by imaging methods.  The 

severity of the inhomogeneity, measured by pulmonary function, is strongly related to the 

sensitivity of airways to inhalants, i.e. dust, pollens etc.  Thus characterisation of the 

topographical pattern of ventilation in asthmatic lungs is important 

The WHO estimates (2007), currently 210 million people suffer from chronic obstructive 

pulmonary disease (COPD) with 3 million people dying of COPD in 2005 (WHO, 2008b). 

COPD is a chronic disease that is caused predominantly by tobacco smoking in western 

countries.  COPD causes lung destruction, known as emphysema, and diseases of small and 

large airways, which result in cough, mucous production and airway narrowing with resultant 

breathlessness during exertion. 

Single-photon emission computed tomography (SPECT) ventilation scanning (Petersson et  

al., 2007) using Technetium-99 (TechnegasTM), is a three dimensional imaging technique used 

routinely in clinical nuclear medicine for diagnosis of diseases such as pulmonary embolism, 

when combined with imaging of blood flow (Harris et al., 2007).  Ventilation scans, however, 

have been adapted for studies of ventilation in airways disease  (King et al., 1997 and 1998, 
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Downie et al., 2007). SPECT imaging offers the potential to characterise the topographical 

distribution of ventilation so that inhomogeneity can be quantified at the regional level (Xu et  

al., 2001, Venegas et al., 2005). Combining imaging information with the pulmonary function 

measures of inhomogeneity will provide important information about the ventilatory 

abnormalities in asthma and COPD (Tgavalekos et al., 2007, Berend et al., 2008).  However, 

suitable methods for quantifying the distribution of ventilation from SPECT data have not 

been determined.  

In this study, we investigate several potentially useful methods of quantifying the distribution 

of ventilation from SPECT ventilation data using both simulated SPECT data and data from 

well-described clinical groups. The  new technique is based on texture analysis and  can 

provide an objective indicator of abnormal lung conditions.

2. Methods

We developed new techniques for multiple 3D texture analysis and conventional 3D image 

analysis of clinical SPECT data of volumes representing lung tissue as identified from co-

registered CT scans that were obtained at the time of the SPECT.

The new technique uses the anatomical CT to define the lung outlines, co-registers these with 

the functional SPECT data and performs an image analysis on the voxels of the SPECT thus 

defined as representing lung tissue. The image analysis comprises a traditional direct analysis 

of the grey levels in the SPECT slices and a texture parameters analysis derived from grey-

level co-occurrence matrices (GLCM) (Haralick, et al., 1973, Choi, 2006). 

2.1 Simulation data



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

“Application of texture analysis to functional pulmonary CT data”,  Meier et al.                5

We created a series of SPECT-V data sets based on simulated data to validate the software. 

The lung phantom used in the construction of the model was based upon X-ray computed 

tomography (CT) data from a male of height 178 cm, weighing 70 kg (Zubal et al., 1994) in 

supine position, who was chosen for his similarity to the dosimetry standard mathematical 

phantom. The Monte Carlo simulation package used for this work was the Photon History 

Generator (Lewellen et al., 1988, Haynor et al.,1991), which models the emission, scatter and 

attenuation of photons in a heterogeneous phantom, followed by the photons’ subsequent 

collimation and detection (Chicco et al., 2001).

Simulations were performed for a 23.6-mm-thick parallel-hole collimator, using a 32.5-cm 

radius of rotation. The isotope modelled was Tc99, collected with a symmetric 20% energy 

window centred around 140 keV into a 128×128 matrix with 120 views at equal angular 

spacing around 360°, resulting in 5 million counts total when no defects were present. Pixel 

resolution was 2.5mm/pixel. To test for any dependence on brightness changes we repeated 

two simulations with 9 million counts. These settings were chosen to closely mimic typical 

clinical settings when collecting SPECT-V data (similar contrast, spatial resolution and signal 

to noise). 

A series of studies were performed in four groups, distinguished by the size of individual 

defects, to simulate the effects of non-ventilated lung tissue. Defects in groups 1–4 were 

1x1x1 pixels (15 mm3), 2x2x2 pixels (125 mm3), 3x3x3 pixels (422 mm3) and 4x4x4 pixels 

(1000 mm3) in size, respectively. These were distributed uniformly throughout both lung 

halves in a random manner. Within each group, the amount of lung tissue involved in defects 

varied from 0% (normal) up to 40% in steps of 5%, giving 9 studies in each group.

 These simulated lung data sets were then subjected to normal clinical processing.  Lungs 

were reconstructed at the same resolution as routine SPECT data (128 slices with 128x128 

pixels, voxel size 4.664mm3 ). The lung outlines were known from the original phantom and 
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converted to a binary mask which was then subjected to 2 iterations with the standard ImageJ 

erosion operation using a count of 3 (minimum 3 of the nearest neighbour pixels need to be 

background pixels for the present pixel to be eroded). 

2.2 Clinical data

Three groups of patients were studied to evaluate the applicability of the new methods. Five 

patients had asthma (data set A), and 10 current or ex-smokers that had either diagnosed 

COPD (data set C) or were being evaluated for treatment of lung cancer (PELICAN1 data set) 

who had a wide range of severity of COPD, and scans from 5 patients who underwent lung 

scanning for suspected pulmonary embolism but who were considered to have normal lung 

scans on routine clinical assessment (data set N). 

All subjects inhaled Technegas as the ventilation imaging agent.  Patients had scans according 

to the standard clinical protocol whereby Technegas was inhaled from the Technegas 

generator by 1-2 deep inspirations followed by a breath hold to maximise Technegas particle 

deposition.  

Subjects had a ventilation SPECT scan and a CT scan acquired by a dual-detector variable 

angle hybrid SPECT/CT system (Phillips SKYLight and Picker PQ5000 CT). All SPECT 

studies were acquired using a 128 x 128 matrix, at 15 seconds per stop with 3 degree steps 

over 360 degrees. Low-dose CT was performed using non-contrast (30mA, 10kVp, pitch 1.5, 

slice thickness 4mm). Study was acquired during tidal breathing. CT images are reconstructed 

using a 512 x 512 matrix with a smooth algorithm.

Spirometry, including the predicted forced experitory volume during one second (FeV1), was 

obtained in all groups except the normal group, using standard methods in the lung function 

1PELICAN study: Predicting Exercise tolerance and Lung function using Imaging in patients 
undergoing CANcer Surgery, Royal North Shore Hospital,  internal study, 2007.
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laboratory.

2.3 Software

Custom plug-ins were developed for ImageJ (Rasband, 1997-2008) to read and write CT data 

routinely stored in Interfile data format (Cradduck et al., 1989). Segmentation of the lungs in 

the CT datasets is done with a custom written plug-in “Extract_Lungs”, which was more 

efficient than existing segmentation plug-ins (Parker, 2008, Castleman, 2005). Segmentation 

uses an edge-following algorithm that stays between an upper and lower grey-value threshold. 

If the initial seed-point falls outside the thresholds, a new seed-point is automatically 

determined from a search towards the median point of the previous slice and an outward spiral 

from there if that fails. 

Up to 5 regions of interest per slice are supported which are categorised as belonging to either 

the left or right lungs. A custom-built ROI manager allows superimposition of the ROIs onto 

SPECT ventilation data. The identified volumes are analysed for total area, mean, median, 

modal, minimum, and maximum grey values, kurtosis, integrated optical density (IOD), and 

histogram. Weighted means are calculated for left, right and total lung.

Anatomical CT data were registered to corresponding functional data (SPECT) with the 

ImageJ plug-in Align3_TP ( Parker, 2008) with all parameters left to their default values. The 

outlines of the registered lung mask were then auto-detected with our segmentation algorithm 

resulting in ImageJ standard ROIs (regions of interest). Our modified ROI manager limits all 

subsequent analysis to within the defined ROIs.

From these ROIs that represent the total lung volume, GLCMs are calculated for the x, y,  z, 

and invariant orientation for a set of up to 5 chosen distances. These are then subjected to 

standard texture analysis. We verified the correct implementation of the GLCM algorithm by 
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comparing results from an independently written plug-in [Cabrera, 2005], which calculates 4 

of the 12 textural features we determine,  and found both to be consistent.

Our methods are based on software that is easily available, widely used, modular in design, 

open source and not limited to a specific operating system. ImageJ (Rasband, 1997-2008), 

Abramoff et al., 2004, Burger & Burge, 2008) fulfils all these criteria perfectly. And more so, 

there is a very large collection of plug-ins publicly available 

(http://rsb.info.nih.gov/ij/plugins/). The code used in this study is available from the author.

2.4 Analysis

In both the simulated and the clinical data the volumes representing lung tissue were 

identified as described above. All voxels outside the eroded ROIs were excluded from the 

analysis. Note that lung tissue outlines were registered to the reconstructed SPECT data, thus 

avoiding any interpolation in the SPECT data set.  

All SPECT data sets, simulated and clinical, were prepared in two parallel streams:  CS 

(contrast stretched) and HM (histogram matched). The contrast stretched data set was created 

by first stretching the contrast within the 16-bit grey-levels image stack using the stack 

histogram (built-in ImageJ function) and then converting the image stack to an 8-bit grey-

level image stack. The latter step used an improved version of the ImageJ Stack Converter 

that uses the stack histogram as opposed to the histogram of the current slice and allows to 

fold a set percentage of hot pixels into the highest remaining histogram channel. We chose the 

0.02% brightest non-background pixels to be treated as hot pixels.  

The histogram-matched data set used the histogram from the best ventilated simulated lung as 

the reference histogram after smoothing it twice with a Gaussian filter of 5 histogram 

channels width. This histogram compared well with histograms obtained from patients with 
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normal lung function. The histogram matcher  we wrote uses the stack histogram and can 

directly map a 16-bit image stack onto an 8-bit reference histogram thus considerably 

reducing channel pile-up effects commonly encountered when first converting from 16-bit to 

8-bit and then again from 8-bit to 8-bit reference histogram.  

The 'extracted lungs' as defined by sets of ROIs were then analysed in two steps. The normal 

grey value analysis calculated the total lung volume in voxels, the ventilated volume, the 

minimum, mean, modal, median and maximum grey values, IOD, contrast, histogram, and 

Kurtosis on a per-ROI basis. Mean values weighted by ROI area were calculated for left, 

right, and total lung. 

A voxel was considered to represent ventilated lung tissue if it had a grey value larger than 

20% of the histogram maximum. To minimise the impact of any erratic hot pixels, the 

histogram maximum was calculated from the 97% level assuming that the histogram above 

97% drops with a slope of -0.5. In this work we only report the results for total lungs, but it is 

noted that the software reports more details where this may be of interest. 

The second step of the analysis created 8-bit grey-level co-occurrence matrices (GLCMs) 

from all the ROIs of any one lung for 5 distances each: 1, 2, 4, 8, and 12 pixels (4.7, 9.3, 18.7, 

37.3, 56.0mm) and for 4 direction pairs each: X (left->right, right->left), Y (top->bottom, 

bottom->top), Z (up->down, down->up) and I (invariant, combining X, Y, and Z). The 

invariant matrix we chose gives equal weight to each valid voxel pair and may at times differ 

from a mean over the X, Y, and Z matrices as individual matrices may not have the exact 

same number of voxel pairs. From these GLCMs twelve texture features were calculated as 

listed in appendix A (Haralick et al., 1973, Haralick 1979, Choi, 1996). 

3. Results
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3.1 Results from the phantom study

The texture parameters calculated from the simulated lungs show a number of correlations 

with the size of the defects and the total non-ventilated volume (NVV). Figure 1 illustrates 

this for the example of the textural parameter TC18 (coefficient of variation) and simulated 

defect sizes of 3x3x3 pixels. For all GLCM distances and defect sizes the parameter TC18 

increases steadily with increasing NVV and more rapidly so for larger defects. 

No significant differences were found between results obtained from X, Y, and Z GLCMs. 

Hence only the invariant GLCMs have been studied further. For all 12 textural parameters 

studied we found under all conditions that the functions such as in Figure 1 are smooth and 

steady and that different distances in GLCM calculation result in slightly shifted versions of 

the same shape but that in no case does the graph of one distance cross the graph of another 

distance for otherwise identical settings. On the contrary, we often saw that graphs for 

different distances were almost undistinguishable from one another.  Consequently the data 

from all distances were pooled into one; thus reducing the complexity of the results presented. 

Notwithstanding this, it is noted, that TC9 and TC30 were somewhat more sensitive to NVV 

changes at shorter distances and that TC2 showed no dependence on NVV but gave 

significantly different results for different distances.

For clarity only the relative changes in textural parameters between the lowest and highest 

NVV studied are reported, because the functions change smoothly with NVV and in-between 

values do not add much to the discussion.

Table 1 lists the relative changes in the textural parameters calculated in response to a 40% 

drop in ventilated lung volume.  Some textural parameters are more sensitive to the changes 

in ventilated volume than others as can be seen from Table 1 (rows 6 and 11 “mean”). Also, 

they are typically stronger in the contrast-stretched data set (cs, row 6) as compared to the 
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histogram-matched data set (hm, row 11).

The results from a sensitivity test to brightness changes are shown in Table 2. We repeated the 

simulation for the “worst” lung with a higher activity such that after adding the defects it 

resulted in the same IOD as the perfectly ventilated simulated lung. Insensitivity to brightness 

changes would allow the direct comparison of textural parameters derived from studies that 

use different gamma counts. Note that rows 2 and 3 in Table 2 correspond to rows 5 and 10 in 

Table 1 (10 mm), respectively, but the percentage changes are expressed relative  to the values 

in Table 1. It is noted that the sign of all values in Table 2 act in such a way as to reduce the 

sensitivity of the textural parameters.

In the context of our work a good textural parameter is one that is sensitive to changes in 

NVV or defect-size and that is at the same time insensitive to changes in brightness. With this 

in mind we can group the textural parameters investigated into robust, intermediate and poor 

performers:

Robust textural parameters:

TC13/TC31 Variance/Mean ratio: provides a solid signal of 22% change in the parameter 

value for a 40% change in NVV while its dependence on brightness doubling is only small 

(1.5%). The sensitivity is somewhat poorer for smaller defects.

TC30 Local homogeneity: provides still a good signal of 10.5% change for a 40% drop in 

NVV but is more sensitive to brightness changes than the TC13/TC31 ratio (2.9%).

TC18 Coefficient of Variation: provides a very strong signal of 77% for large defects and a 

still strong signal of 22% for small defects. It has a moderate dependence on brightness 

changes (10.8% simulating large defects). However, correlation with clinical data discussed 

below is excellent.
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Textural parameters with intermediate performance:

TC1 Angular second moment: provides high sensitivity (>68%) to changes in NVV, but 

unfortunately it is also very sensitive to brightness changes. 

TC2 and TC2: Difference and inverse difference moment: show a modest sensitivity for short 

distances and small-sized defects but are insensitive at larger pixel distances as well as for 

larger defect sizes. However, they may be used successfully in conjunction with other 

parameters to decide  whether the effective size distribution of the non-ventilated volumes is 

small or large.

TC9 Correlation: The theoretical study shows a reasonable sensitivity of around 20% to 

changes twice that large in NVV but also a relatively high sensitivity to brightness changes. In 

the clinical studies discussed below this parameter did not convince and is outperformed by 

others.

Textural parameters with poor performance:

TC7, TC4, TC13, TC31, TC21, and TC23: These parameters suffer either from a lack of 

sensitivity or high sensitivity to changes in brightness. 

Combination of textural parameters: 

The ratio of TC13/TC31 is a very good performer although neither TC13 nor TC31 are good 

performers. Similarly, the ratio of TC21/TC31 gives a moderately good performance. 

3.2 Results from the clinical studies
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Figure 2 illustrates the estimated ventilated lung volume grouped by patient group. The 

'normal' group shows the highest ventilated volume of about 90% and the smallest variance. 

Asthmatic lungs at baseline show a slightly lower ventilated lung volume although not 

statistically significant from the 'normal' lungs. The remaining patient groups show significant 

reductions in ventilated lung volume that are strongest in COPD patients. There is also a 

higher variability in these groups.

Figures 3 and 4 illustrate one of the best performing textural parameters for the 5 patient 

groups studied. Both the absolute value and the variability between different GLCM distances 

and between patients in the 'normal' lung function group are small (Figure 3, left panel). The 

results from COPD patients which range from a mild case (right panel, c-01) to severe (c-05) 

show increasingly higher values. 

The differences between using different distances in the GLCM calculations are almost within 

the numerical precision, which was also observed in the results from the simulated data. This 

observation holds true for all textural parameters and patient groups studied except for TC2, 

TC9 and TC30. TC9 (Correlation) and TC30 (Local Homogeneity) lose sensitivity with 

increasing distance between voxel pairs and better performance is achieved by only using the 

2 shortest distances (1 and 2 pixels distance corresponding to 4.7 and 9.3mm, respectively). 

TC2 will be discussed separately below. These findings are consistent with observations from 

the simulated data.

Pooling the data from all GLCM distances2 and by patient group allows us to look for disease-

specific differences as shown in Figure 4.While asthmatics at baseline cannot be distinguished 

from normal lungs, they can be clearly identified after a Metacholine challenge. PELICAN 

patients and even more so COPD patients have strongly elevated values in the coefficient of 

variation calculated from the GLCM.

2 Except for TC9 and TC30 which pooled only the 2 shortest distances for higher sensitivity
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Figure 5 presents the ratio of  Local Homogeneity and GLCM Mean (TC30/TC31) calculated 

in the same way as in the previous figure. Again, values for COPD and PELICAN patients are 

significantly higher than those for normal and asthmatic lungs. It is noted, however, that 

asthma patients both at baseline and at Metacholine challenge give almost identical results. 

Hence combining the information from multiple textural parameters allows to distinguish 

between different disease classes such as asthma from COPD.

A very strong correlation (r2=0.955) between the textural parameter Coefficient of Variation 

(TC18) and the estimated ventilated lung volume is illustrated in Figure 6. Similarly high 

correlations of  r2>0.8 exist for textural parameters TC3, TC30, TC31,  and the ratios 

TC13/TC31 and TC21/TC31 as a function of ventilated lung volume (not illustrated). More 

positive correlations (r2>0.49) are observed for textural parameters TC1, TC9, and the ratio 

TC1/TC31.

Independent spirometry data in the form of the predicted forced expiratory volume during 1 

second (FeV1) was available for all but the 'normal' group. Again good correlations are 

observed with several textural parameters (r2 >0.5 for TC18 and TC13/TC31, r2 >0.4 for TC3, 

TC30, TC21/TC31, TC31 and TC1/TC31 and r2 >0.3 for TC1, TC2 and TC9) as illustrated in 

Figure 7 for the example of  TC13/TC31.

The Difference Moment (TC2) behaves differently from all other textural parameters studied. 

It is insensitive to changes in both NVV and FeV1, but it is sensitive to the size distribution of 

patterns in the lung. Hence the TC2 textural parameter results were prepared in a different 

way. Instead of pooling the results from different GLCM distances, the parameter value 

obtained with the shortest distance (1 pixel) were divided by the parameter value for the 

second largest distance for any one lung and that we refer to as TC2d for short. Data prepared 

in this way resulted in a positive correlation of TC2d with NVV ( r2 =0.69) and a somewhat 

weaker correlation with FeV1 ( r2 =0.375). 
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All results in this section were derived from the contrast-stretched data set as it showed an 

overall better performance than compared to results derived from the histogram-matched data. 

It is noted that TC18, TC31 (Mean) and TC13/TC31 were indifferent to both NVV and FeV1 

changes in the histogram-matched data set, but otherwise the same textural parameters 

performed well as in the contrast-stretched data set. The only textural parameter that faired 

significantly better in the histogram-matched data set was TC23 (Difference Entropy).

4 Discussion

Changes in the grey level distribution such as a shift to darker grey values – as can be 

expected with a reduction in ventilated lung volume – is essentially removed in the histogram-

matched data. Hence, changes in the textural parameters that occur in the contrast-stretched 

data set but not in the histogram-matched one are thought to be driven by histogram changes 

while changes that occur in the histogram-matched data set are thought to be dominated by 

changes in pattern (Table 1). Changes in the contrast-stretched data set are often a result of 

both histogram and pattern changes.

In an ideal system a change in brightness should not affect the textural parameters calculated 

because the GLCMs are always normalised to an IOD of unity. However, it is noted that the 

spatial resolution of the observation system is significantly lower than the features that cause 

them. The effective resolution in the SPECT-V data is lower than the pixel resolution of 

4.664mm/pxl which in turn is much coarser than the simulated small defects starting from 

2.5mm cube side length. Due to the nature of  discrete sampling – and in this case significant 

under-sampling – of the object space and the non-linearity of the resulting effective blurring, 

the texture parameters calculated become dependent on the total optical density and contrast 

in the SPECT-V data sets. This effect itself is also dependent on the effective size distribution 
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of the defects we seek to describe. To quantitatively describe the exact relationship is 

mathematically complex and of limited practical use as it will vary from situation to situation. 

Instead we seek to identify textural parameters that depend acceptably little on the variability 

in patient data preparation.

The simulated data allows to fully control the environment, to know the true size distribution 

of the non-ventilated lung volumes, the true ventilated volume, and to vary some of these 

parameters systematically to study its impact. However, there are also some differences and 

limitations compared to clinical data that are undesirable. One is that the IOD of the simulated 

SPECT-V scan drops progressively with increasing NVV due to the simplicity of the model 

available to us. 

A patient with a smaller ventilated lung volume inhales approximately the same amount of 

radioactivity as a patient with a larger ventilated lung volume. As a result the scan from the 

former patient would have a larger information content3 and image contrast; because the same 

amount of activity has to squeeze into a smaller volume, a wider range of different brightness 

values is observed. Hence a poorly ventilated simulated lung has a somewhat lower 

information content in the simulated data in contrast to a patient with a poorly ventilated lung 

that would result in a higher information content than the ideally ventilated lung. We studied 

this behaviour by simulating one data set with a higher gamma count, which resulted in an 

increase of 38% in information content as opposed to a 9% drop in the non-corrected 

simulation case. Although the textural parameters are modified as a result, it does not change 

the overall response to NVV and we were able to identify textural parameters that are little or 

non-susceptible to this change (Table 2). This finding is  also directly relevant to clinical data, 

because any two patients with naturally differently-sized lungs that are administered the same 

amount of Technegas will have differences in contrast and information content of the SPECT 

3 We use the term information content in the strict sense of the number of grey values in an associated 
histogram that are non-zero.
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recorded. Selecting textural parameters that are insensitive to this variability in data collection 

is an advantage in data interpretation.

Reconstructed SPECT data is routinely subjected to a rather strong smoothing filter before 

being presented to a radiographer or other medical professional. Filtering at the RNSH 

consists of a 9th order  Butterworth filter with a cut-off of 1.2 cycles per centimetre. Since 

texture analysis by definition looks at small differences in grey values between pairs of pixels, 

any smoothing operation degrades the capabilities of the method for any given case. We tested 

this  expected behaviour by preparing both simulated and normal patient data with and 

without applying the Butterworth filter and found the smoothed data set to have a poorer 

sensitivity as manifested in smaller relative changes in textural parameters. We will report the 

exact impact in a forthcoming separate study. In this work we only discuss  reconstructed, 

extracted lung data that has not been subjected to any post-filtering. 

A change of distance in the calculation of the GLCMs (within reason) adds little new 

information (Figure 1) with the exception of parameter TC2. In most cases the calculation of 

the GLCM for only one distance seems to be sufficient. For 2 of the textural parameters 

studied there is a better performance seen for shorter distances in the GLCM calculations 

(TC9 and TC30). This is plausible looking at the definitions (Appendix 1). Voxel pairs that are 

far from one another are unlikely to be highly correlated  thus giving low correlation values in 

any lung (TC9)  and uniformity between them will be near the random value (TC30).

From the simulated data it is known that TC2d drops with increasing defect size and in the 

patient data it drops with increasing NVV. This suggests that the average size of individual, 

non-ventilated areas increases with the severity of the diseases studied as opposed to a mere 

increase of number of non-ventilated areas of same size. This result is consistent with the 

perception of the SPECT data to the human eye.

Several well performing textural parameters were identified that by themselves allow to 
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distinguish between a 'normal' lung and a lung that suffers from some significant medical 

condition or disease. Combinations of textural parameters have the potential to further classify 

abnormal lungs. For example, to distinguish between asthmatics on one hand and COPD 

patients on the other hand one can combine the results from TC18 and the ratio TC30/TC31. 

TC18 is elevated in all diseases, but the ratio TC30/TC31 does not rise significantly in 

asthmatics while it does rise significantly in COPD patients (compare Figures 4 and 5). 

Correlation of several key textural parameters with the corresponding ventilated lung volume 

are good to excellent for all patient data (Figures 6 and 7). Note that  the ventilated lung 

volume is a  measure that is calculated from the original imaging data (not the GLCM), while 

the FeV1 is a completely independent measurement. The pooling of data per disease group 

(Figures 4 and 5) combines all patients of one disease into one - independent of the severity of 

disease. Figures 6 and 7 on the other hand illustrate the relationship between reduced lung 

functionality and resulting changes in derived textural parameters. It is pointed out that 

reduced lung functionality goes along with higher heterogeneity in the SPECT data (Berend 

et al., 2008) and textural parameters that measure heterogeneity increase while parameters 

that measure uniformity drop.

The textural parameters discussed are not all linearly independent of one another but some of 

them have substantial correlations amongst them. (Clausi, 2008). For practical matters it is 

desirable to identify a small number of textural parameters that give the overall best 

classification performance. 

TC2, TC3, TC4 and TC30 are all measures of contrast, though with different weights. TC3 

and TC30, which weigh values by the inverse of the contrast (homogeneity), have both shown 

consistently better performance in all patient data and either one of these two parameters are 

recommend for use. As TC3 and TC30 are highly correlated one should choose only one of 

them with TC3 performing marginally better in contrast-stretched data sets and TC30 better in 
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histogram-matched data sets. 

TC1, TC21 and TC23 are all measures of orderliness. The ratio TC21/TC31 performed best in 

the clinical data. The GLCM Mean (TC31) reflects brightness changes between patients that 

the contrast-stretched data set is susceptible to. Thus using textural parameter combinations 

that involve the GLCM Mean improves correlation in several textural parameters studied. The 

histogram-matched data set shows no correlation with TC31 and combining textural 

parameters with TC31 carries no advantage and TC23 by itself gives the best performance in 

the group of textural parameters that measure orderliness. The value of Entropy (TC21, TC23) 

increases with increasing heterogeneity. 

TC9 (Correlation), TC13 (Variance), TC18 (Coefficient of Variation) and TC31 (Mean) are 

descriptive statistics of the GLCMs and the frequency at which certain voxel pairs occur. The 

combination of Variance and Mean in the Coefficient of Variation (TC18) and the Variance 

over Mean ratio (TC13/TC31) gave excellent performance in the contrast-stretched data set 

and is another recommended parameter for use. TC18 and the TC13/TC31 ratio are highly 

correlated parameters. TC18 shows better correlation with ventilated lung volume and TC13/

TC31 shows better correlation with FeV1 but either one being a very good choice for 

characterising the clinical data. 

GLCM Correlation (TC9) Is largely independent of the other texture measures and has the 

potential for giving additional insight. TC9 can be calculated for increasingly larger voxel 

distances and the size at which the value suddenly decreases is a measure for the size of 

definable objects in the original image data. However, we could not identify any 'sharp' drops 

but only gradual changes with the clinical data, suggesting that there is a broad size 

distribution of objects which makes this approach less powerful. Simply comparing the 

differences in Correlation values between the shortest and longest distance studied with 

ventilated lung volume resulted in a modest correlation (r2=0.41).
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It is noted that the best correlations between textural parameters and ventilated lung volume 

were achieved with a linear regression while correlation with FeV1 gave consistently better 

results using a logarithmic correlation function. 

Summed up the following 3 recommendations can be made for the analysis of pulmonary 

SPECT-V data. 

1) Texture analysis sensitivity is maximised by preparing SPECT data in an unfiltered, 

contrast-stretched way, as opposed to filtered or histogram-matched.

2) The choice of voxel pair distance in the GLCM calculation is non-critical. With 

present spatial resolution in SPECT data 1, 2, or 3 pixel distances are good choices 

that can also be pooled to improve statistics. 

3) Amongst the many textural parameters studied one each should be chosen from 3 

different groups of parameters to balance the capability to characterise with the 

computational effort involved. These are the textural parameters TC18 or the ratio 

TC13/TC31 from the descriptive statistics group, the parameter TC3 or TC30 from the 

contrast group and the parameter ratio TC21/TC31 in the orderliness group.

Application of the new software package is not limited to pulmonary studies – in fact it may 

also be applied to other organs or to  completely different fields such as material sciences or 

mineralogy. However, in its present form the software package is optimized to the work-flow 

of  studying lungs in a clinical scenario.

Summary

It has been demonstrated that a textural parameter analysis of functional pulmonary CT data 

has the potential to provide a robust and objective quantitative characterisation of 
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inhomogeneity in lung function and classification of lung diseases with application in routine 

clinical applications and national screening programmes. The new methods applied to SPECT 

lung ventilation scans are capable of distinguishing between different types of diseases. 

Strong correlations between key textural parameters and independent lung function data such 

as the FeV1 suggest that a quantitative description of the severity of diseases such as asthma 

or COPD by means of derived texture parameters is viable. Clear recommendations have been 

made for optimum data preparation and textural parameter selection. In a forthcoming study 

we plan to use data from larger numbers of patients and additional spirometry data to further 

refine the methods.
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Appendix A: Definition of textural features from the co-occurrence matrix

A co-occurrence matrix P(i,j|d,θ) (PM for short) contains the probability that the grey level i 

occurs at a distance d in direction θ from a pixel with grey value j. N is the size of the co-

occurrence matrix (N=256 in this study). Integrated sums are calculated from the matrix 

variance. We further define the vertical (px(i)), horizontal (py(i)), minor diagonal (px-y(k)) 

sums, the vertical (μx) and horizontal (μy) mean, and the variance of the vertical (Vx) and 

horizontal (Vy) directions (Choi, 1996). Note that the GLCM mean is distinct from the mean 

grey value of the original image because it is weighted by the frequency of occurrence in  

combination with a certain neighbour pixel value. 

Px i  =Σ j=0
N−1 PM , Py i  =Σi=0

N−0PM , Px−y k =Σi=0, i− j  =k
N−1 Σ j= 0

N−1 PM , μx =Σi i P x i  , 

μy =Σ j j P y  j  , V x =Σi  i−μ x 
2

Px  i  , V y =Σ j  j−μy 
2
P y  j 

TC_1 Angular Second Moment Σi=0
N−1Σ j=0

N−1 PM 2

TC_2 Difference Moment or GLCM Contrast Σi=0
N−1Σ j=0

N−1  i− j 
2
PM

TC_3 Inverse Difference Moment, Σi=0
N−1Σ j=0

N−1 1 i− j 2 
−1

PM

TC_4 Diagonal Moment, Σ i=0
N−1 Σ j=0

N−1 0 .5  i− j  PM

TC_7 Inertia, Σn=0
N−1n2 Σ i=0,  i− j  =n

N−1 Σ j=0
N−1  i− j 

2
PM 

TC_9 GLCM Correlation, Σi= 0
N−1 Σ j=0

N−1 ij  PM−μx μy /V x V y

TC13 GLCM Variance, V x

TC18 Coefficient of Variation, V xV y /μx μ y  

TC21 Entropy, Σ i=0
N−1 Σ j=0

N−1  PM  -ln  PM  

TC23 Difference Entropy, Σi=0
N−1Px−y  i  loge Px−y  i  

TC30 Local Homogeneity. Σn=0
N−1 Px−y n  / 1+n2 

TC31 GLCM Mean 0.5⋅ μxμ y 
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histo
gram

cube 
side 

length 
in 

[mm]

TC_1 
Angular 
Second 
Moment

TC_3 
Inverse 

Different 
Moment

TC_4 
Diagonal 
Moment

TC_9 
Correl
ation

TC18 
Coefficie

nt of 
Variation

TC21 
Entro

py

TC30 
Local 

Homog
eneity

TC13 
Sum of 

squares /
Variance

TC31 
Mean

TC13/ 
TC31 

Variance
/Mean 
ratio

cs 2.5 111.9 4.2 -27.1 -15.2 22.5 -8.4 4.2 -2.2 -10.6 9.5

cs 5.0 106.4 7.5 -27.3 -20.0 28.9 -8.0 7.5 -16.8 -19.6 3.5

cs 7.5 85.8 9.0 -23.3 -22.3 46.6 -6.7 9.0 -17.7 -25.1 9.8

cs 10.0 68.6 10.5 -20.2 -19.2 77.0 -5.6 10.5 -15.6 -30.9 22.2

cs mean 93.2 7.8 -24.5 -19.2 43.7 -7.2 7.8 -13.1 -21.6 11.3

hm 2.5 111.9 2.3 -27.2 -11.7 -0.7 -8.4 2.3 -0.4 0.1 -0.6

hm 5.0 106.4 -0.4 -24.9 -15.6 -0.1 -8.0 -0.4 -0.3 -0.1 -0.2

hm 7.5 85.8 0.4 -21.5 -16.1 -1.0 -6.8 0.4 -1.3 -0.2 -1.1

hm 10.0 68.6 2.1 -18.7 -13.8 0.1 -5.6 2.1 -1.1 -0.6 -0.5

hm mean 93.2 1.1 -23.1 -14.3 -0.4 -7.2 1.1 -0.8 -0.2 -0.6

Table 1: Sensitivity of textural parameters to a 40% reduction in ventilated lung volume. The 

latter was achieved by  randomly inserting black cubes of side length 2.5, 5, 7.5 and 10mm 

into the simulated lung. Results are shown as relative changes in the textural parameter for 

either preparing the data in a histogram-matched (hm) or a contrast-stretched (cs) way and as 

a mean over 5 distances used in the GLCM calculation.
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Histo
gram

TC 1 
Angular 
Second 

Moment

TC 3 
Inverse 

Different 
Moment

TC 4 
Diagonal 
Moment

TC 9 
Corre
lation

TC18 
Coefficient 

of 
Variation

TC21 
Entro

py

TC30 
Local 

Homog
eneity

TC13 
Sum of 
squares 

(Variance)

TC31 
Mean

TC13/ 
TC31 

Variance
/Mean 
ratio

cs -62.6 -2.9 53.4 10.8 -10.8 11.5 -2.9 8.7 10.4 -1.5

hm -62.3 -3.9 48.5 9.0 0.5 11.3 -3.9 -0.1 -0.3 0.2

Table 2: Sensitivity of textural parameters to a 40% increase in gamma counts. The simulated 

defects have a cube side length of 10mm. Listed are the differences in the values of the 

textural parameters derived from either the standard simulation with 40% NVV and 

associated drop in average brightness and an alternative simulation with a higher gamma 

count such that after knocking out 40% of the ventilated volume the IOD matched the IOD of 

the perfectly ventilated lung simulation.
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Figure captions

Figure 1: Illustration of textural parameter TC18, Coefficient of Variation, from the 

simulation study for cube-shaped defects of size 7.5mm cube side length as a function of non-

ventilated lung volume in percent. The GLCMs were created for 5 pixel distances each (1, 2,  

4, 8, 12 pixels) corresponding to distances in the lung of 4.7, 9.3, 18.7, 37.3 and 56.0mm, 

respectively. The coefficient of variation is larger for small pixel distances and increases with 

NVV and more rapidly so for larger defects (not illustrated).

Figure 2: Relative ventilated lung volume (solid black) and standard variation (hashed)  per  

patient group.

Figure 3: Illustration of  textural parameter TC18, the Coefficient of Variation, for a set of 5 

'normal' lungs (left) and a set of 5 lungs of patients suffering from COPD (right). The severity  

of COPD increases from top to bottom.

Figure 4: Textural parameter 18 (solid black) and standard deviation (hashed) from the 

invariant GLCM and for all 5 distances for the 5 patient groups studied

Figure 5: Ratio of textural parameter 30/31 (solid black) and standard deviation (hashed) 

from the invariant GLCM and mean over 5 distances for the 5 patient groups studied

Figure 6: High correlation between ventilated lung volume in percent and textural parameter  

18 (coefficient of variation)  (r2=0.955).

Figure 7: Correlation between textural parameter TC13/TC31 (Variance over Mean ratio)  
and independent spirometry data (FeV1) for 4 of the 5 patient groups. No spirometry data 
was available for the 'normal' group. The quality of the linear regression is  r2=0.66.
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FIGURE 1  

FIGURE 2
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FIGURE 3 (left and right panel, reproduction in black-and-white)

FIGURE 4
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FIGURE 5

FIGURE 6  (colour reproduction for web-publishing, black-and-white for print)
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FIGURE 7   (colour reproduction for web-publishing, black-and-white for print)
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Abstract

It is demonstrated that textural parameters calculated from functional pulmonary CT data 

have the potential to provide a robust and objective quantitative characterisation of 

inhomogeneity in lung function and classification of lung diseases in routine clinical 

applications. Clear recommendations are made for optimum data preparation and textural 

parameter selection.

A new set of platform-independent software tools are presented that are implemented as plug-

ins for ImageJ. The tools allow segmentation and subsequent histogram-based and grey-level 

co-occurrence matrix based  analysis of the regions of interest. The work-flow is optimised 

for use in a clinical environment for the analysis of transverse Computed Tomography (CT) 

scans and lung ventilation scans based on SPECT. Consistency tests are made against other 

texture analysis plug-ins and simulated lung CT data. The same methods are then applied to 

patient data consisting of a healthy reference group and one patient group each who suffered 

from asthma, chronic obstructive pulmonary disease (COPD), and COPD plus lung cancer. 

The potential for disease classification based on computer analysis is evaluated.

KEYWORDS:

texture analysis, computed tomography, asthma, COPD,  lung ventilation
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1. Introduction

Close to 10 percent of the world population are suffering from chronic lung diseases. The two 

most common categories, which account for 7.7%, are asthma and chronic obstructive 

pulmonary disease (COPD).

According to World Health Organisation (WHO) estimates, 300 million people suffer from 

asthma and 255 000 people died of asthma in 2005 (WHO, 2008a) and an increase of 20% is 

expected over the next 10 years. Asthma is the most common chronic disease among children. 

It is characteried by episodic airway narrowing that occurs on exposure to stimuli, such as 

exercise, dust, pollens and cold air. Asthmatic lungs are characterised by inhomogeneous 

ventilation when studied by pulmonary function techniques or by imaging methods.  The 

severity of the inhomogeneity, measured by pulmonary function, is strongly related to the 

sensitivity of airways to inhalants, i.e. dust, pollens etc.  Thus characterisation of the 

topographical pattern of ventilation in asthmatic lungs is important 

The WHO estimates (2007), currently 210 million people suffer from chronic obstructive 

pulmonary disease (COPD) with 3 million people dying of COPD in 2005 (WHO, 2008b). 

COPD is a chronic disease that is caused predominantly by tobacco smoking in western 

countries.  COPD causes lung destruction, known as emphysema, and diseases of small and 

large airways, which result in cough, mucous production and airway narrowing with resultant 

breathlessness during exertion. 

Single-photon emission computed tomography (SPECT) ventilation scanning (Petersson et 

al., 2007) using Technetium-99 (TechnegasTM), is a three dimensional imaging technique used 

routinely in clinical nuclear medicine for diagnosis of diseases such as pulmonary embolism, 

when combined with imaging of blood flow (Harris et al., 2007).  Ventilation scans, however, 

have been adapted for studies of ventilation in airways disease  (King et al., 1997 and 1998, 
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Downie et al., 2007). SPECT imaging offers the potential to characterise the topographical 

distribution of ventilation so that inhomogeneity can be quantified at the regional level (Xu et 

al., 2001, Venegas et al., 2005). Combining imaging information with the pulmonary function 

measures of inhomogeneity will provide important information about the ventilatory 

abnormalities in asthma and COPD (Tgavalekos et al., 2007, Berend et al., 2008).  However, 

suitable methods for quantifying the distribution of ventilation from SPECT data have not 

been determined.  

In this study, we investigate several potentially useful methods of quantifying the distribution 

of ventilation from SPECT ventilation data using both simulated SPECT data and data from 

well-described clinical groups. The  new technique is based on texture analysis and  can 

provide an objective indicator of abnormal lung conditions.

2. Methods

We developed new techniques for multiple 3D texture analysis and conventional 3D image 

analysis of clinical SPECT data of volumes representing lung tissue as identified from co-

registered CT scans that were obtained at the time of the SPECT.

The new technique uses the anatomical CT to define the lung outlines, co-registers these with 

the functional SPECT data and performs an image analysis on the voxels of the SPECT thus 

defined as representing lung tissue. The image analysis comprises a traditional direct analysis 

of the grey levels in the SPECT slices and a texture parameters analysis derived from grey-

level co-occurrence matrices (GLCM) (Haralick, et al., 1973, Choi, 2006). 

2.1 Simulation data
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We created a series of SPECT-V data sets based on simulated data to validate the software. 

The lung phantom used in the construction of the model was based upon X-ray computed 

tomography (CT) data from a male of height 178 cm, weighing 70 kg (Zubal et al., 1994) in 

supine position, who was chosen for his similarity to the dosimetry standard mathematical 

phantom. The Monte Carlo simulation package used for this work was the Photon History 

Generator (Lewellen et al., 1988, Haynor et al.,1991), which models the emission, scatter and 

attenuation of photons in a heterogeneous phantom, followed by the photons’ subsequent 

collimation and detection (Chicco et al., 2001).

Simulations were performed for a 23.6-mm-thick parallel-hole collimator, using a 32.5-cm 

radius of rotation. The isotope modelled was Tc99, collected with a symmetric 20% energy 

window centred around 140 keV into a 128×128 matrix with 120 views at equal angular 

spacing around 360°, resulting in 5 million counts total when no defects were present. Pixel 

resolution was 2.5mm/pixel. To test for any dependence on brightness changes we repeated 

two simulations with 9 million counts. These settings were chosen to closely mimic typical 

clinical settings when collecting SPECT-V data (similar contrast, spatial resolution and signal 

to noise). 

A series of studies were performed in four groups, distinguished by the size of individual 

defects, to simulate the effects of non-ventilated lung tissue. Defects in groups 1–4 were 

1x1x1 pixels (15 mm3), 2x2x2 pixels (125 mm3), 3x3x3 pixels (422 mm3) and 4x4x4 pixels 

(1000 mm3) in size, respectively. These were distributed uniformly throughout both lung 

halves in a random manner. Within each group, the amount of lung tissue involved in defects 

varied from 0% (normal) up to 40% in steps of 5%, giving 9 studies in each group.

These simulated lung data sets were then subjected to normal clinical processing.  Lungs 

were reconstructed at the same resolution as routine SPECT data (128 slices with 128x128 

pixels, voxel size 4.664mm3 ). The lung outlines were known from the original phantom and 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

“Application of texture analysis to functional pulmonary CT data”,  Meier et al.               6

converted to a binary mask which was then subjected to 2 iterations with the standard ImageJ 

erosion operation using a count of 3 (minimum 3 of the nearest neighbour pixels need to be 

background pixels for the present pixel to be eroded). 

2.2 Clinical data

Three groups of patients were studied to evaluate the applicability of the new methods. Five 

patients had asthma (data set A), and 10 current or ex-smokers that had either diagnosed 

COPD (data set C) or were being evaluated for treatment of lung cancer (PELICAN1 data set) 

who had a wide range of severity of COPD, and scans from 5 patients who underwent lung 

scanning for suspected pulmonary embolism but who were considered to have normal lung 

scans on routine clinical assessment (data set N). 

All subjects inhaled Technegas as the ventilation imaging agent.  Patients had scans according 

to the standard clinical protocol whereby Technegas was inhaled from the Technegas 

generator by 1-2 deep inspirations followed by a breath hold to maximise Technegas particle 

deposition.  

Subjects had a ventilation SPECT scan and a CT scan acquired by a dual-detector variable 

angle hybrid SPECT/CT system (Phillips SKYLight and Picker PQ5000 CT). All SPECT 

studies were acquired using a 128 x 128 matrix, at 15 seconds per stop with 3 degree steps 

over 360 degrees. Low-dose CT was performed using non-contrast (30mA, 10kVp, pitch 1.5, 

slice thickness 4mm). Study was acquired during tidal breathing. CT images are reconstructed 

using a 512 x 512 matrix with a smooth algorithm.

Spirometry, including the predicted forced experitory volume during one second (FeV1), was 

                                                
1 PELICAN study: Predicting Exercise tolerance and Lung function using Imaging in 
patients undergoing CANcer Surgery, Royal North Shore Hospital,  internal study, 2007.
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obtained in all groups except the normal group, using standard methods in the lung function 

laboratory.

2.3 Software

Custom plug-ins were developed for ImageJ (Rasband, 1997-2008) to read and write CT data 

routinely stored in Interfile data format (Cradduck et al., 1989). Segmentation of the lungs in 

the CT datasets is done with a custom written plug-in “Extract_Lungs”, which was more 

efficient than existing segmentation plug-ins (Parker, 2008, Castleman, 2005). Segmentation 

uses an edge-following algorithm that stays between an upper and lower grey-value threshold. 

If the initial seed-point falls outside the thresholds, a new seed-point is automatically 

determined from a search towards the median point of the previous slice and an outward 

spiral from there if that fails. 

Up to 5 regions of interest per slice are supported which are categorised as belonging to either 

the left or right lungs. A custom-built ROI manager allows superimposition of the ROIs onto 

SPECT ventilation data. The identified volumes are analysed for total area, mean, median, 

modal, minimum, and maximum grey values, kurtosis, integrated optical density (IOD), and  

histogram. Weighted means are calculated for left, right and total lung.

Anatomical CT data were registered to corresponding functional data (SPECT) with the 

ImageJ plug-in Align3_TP ( Parker, 2008) with all parameters left to their default values. The 

outlines of the registered lung mask were then auto-detected with our segmentation algorithm 

resulting in ImageJ standard ROIs (regions of interest). Our modified ROI manager limits all 

subsequent analysis to within the defined ROIs.

From these ROIs that represent the total lung volume, GLCMs are calculated for the x, y,  z, 

and invariant orientation for a set of up to 5 chosen distances. These are then subjected to 
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standard texture analysis. We verified the correct implementation of the GLCM algorithm by 

comparing results from an independently written plug-in [Cabrera, 2005], which calculates 4 

of the 12 textural features we determine,  and found both to be consistent.

Our methods are based on software that is easily available, widely used, modular in design, 

open source and not limited to a specific operating system. ImageJ (Rasband, 1997-2008), 

Abramoff et al., 2004, Burger & Burge, 2008) fulfils all these criteria perfectly. And more so, 

there is a very large collection of plug-ins publicly available 

(http://rsb.info.nih.gov/ij/plugins/). The code used in this study is available from the author.

2.4 Analysis

In both the simulated and the clinical data the volumes representing lung tissue were 

identified as described above. All voxels outside the eroded ROIs were excluded from the 

analysis. Note that lung tissue outlines were registered to the reconstructed SPECT data, thus 

avoiding any interpolation in the SPECT data set.  

All SPECT data sets, simulated and clinical, were prepared in two parallel streams:  CS

(contrast stretched) and HM (histogram matched). The contrast stretched data set was created 

by first stretching the contrast within the 16-bit grey-levels image stack using the stack 

histogram (built-in ImageJ function) and then converting the image stack to an 8-bit grey-

level image stack. The latter step used an improved version of the ImageJ Stack Converter 

that uses the stack histogram as opposed to the histogram of the current slice and allows to 

fold a set percentage of hot pixels into the highest remaining histogram channel. We chose the 

0.02% brightest non-background pixels to be treated as hot pixels.  

The histogram-matched data set used the histogram from the best ventilated simulated lung as 

the reference histogram after smoothing it twice with a Gaussian filter of 5 histogram 
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channels width. This histogram compared well with histograms obtained from patients with 

normal lung function. The histogram matcher  we wrote uses the stack histogram and can 

directly map a 16-bit image stack onto an 8-bit reference histogram thus considerably 

reducing channel pile-up effects commonly encountered when first converting from 16-bit to 

8-bit and then again from 8-bit to 8-bit reference histogram.  

The 'extracted lungs' as defined by sets of ROIs were then analysed in two steps. The normal 

grey value analysis calculated the total lung volume in voxels, the ventilated volume, the 

minimum, mean, modal, median and maximum grey values, IOD, contrast, histogram, and 

Kurtosis on a per-ROI basis. Mean values weighted by ROI area were calculated for left, 

right, and total lung. 

A voxel was considered to represent ventilated lung tissue if it had a grey value larger than 

20% of the histogram maximum. To minimise the impact of any erratic hot pixels, the 

histogram maximum was calculated from the 97% level assuming that the histogram above 

97% drops with a slope of -0.5. In this work we only report the results for total lungs, but it is 

noted that the software reports more details where this may be of interest. 

The second step of the analysis created 8-bit grey-level co-occurrence matrices (GLCMs) 

from all the ROIs of any one lung for 5 distances each: 1, 2, 4, 8, and 12 pixels (4.7, 9.3, 18.7, 

37.3, 56.0mm) and for 4 direction pairs each: X (left->right, right->left), Y (top->bottom, 

bottom->top), Z (up->down, down->up) and I (invariant, combining X, Y, and Z). The 

invariant matrix we chose gives equal weight to each valid voxel pair and may at times differ 

from a mean over the X, Y, and Z matrices as individual matrices may not have the exact 

same number of voxel pairs. From these GLCMs twelve texture features were calculated as

listed in appendix A (Haralick et al., 1973, Haralick 1979, Choi, 1996). 
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3. Results

3.1 Results from the phantom study

The texture parameters calculated from the simulated lungs show a number of correlations 

with the size of the defects and the total non-ventilated volume (NVV). Figure 1 illustrates 

this for the example of the textural parameter TC18 (coefficient of variation) and simulated 

defect sizes of 3x3x3 pixels. For all GLCM distances and defect sizes the parameter TC18 

increases steadily with increasing NVV and more rapidly so for larger defects. 

No significant differences were found between results obtained from X, Y, and Z GLCMs. 

Hence only the invariant GLCMs have been studied further. For all 12 textural parameters 

studied we found under all conditions that the functions such as in Figure 1 are smooth and 

steady and that different distances in GLCM calculation result in slightly shifted versions of 

the same shape but that in no case does the graph of one distance cross the graph of another  

distance for otherwise identical settings. On the contrary, we often saw that graphs for 

different distances were almost undistinguishable from one another.  Consequently the data 

from all distances were pooled into one; thus reducing the complexity of the results presented. 

Notwithstanding this, it is noted, that TC9 and TC30 were somewhat more sensitive to NVV 

changes at shorter distances and that TC2 showed no dependence on NVV but gave 

significantly different results for different distances.

For clarity only the relative changes in textural parameters between the lowest and highest 

NVV studied are reported, because the functions change smoothly with NVV and in-between 

values do not add much to the discussion.

Table 1 lists the relative changes in the textural parameters calculated in response to a 40% 

drop in ventilated lung volume.  Some textural parameters are more sensitive to the changes 

in ventilated volume than others as can be seen from Table 1 (rows 6 and 11 “mean”). Also, 
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they are typically stronger in the contrast-stretched data set (cs, row 6) as compared to the 

histogram-matched data set (hm, row 11).

The results from a sensitivity test to brightness changes are shown in Table 2. We repeated the 

simulation for the “worst” lung with a higher activity such that after adding the defects it 

resulted in the same IOD as the perfectly ventilated simulated lung. Insensitivity to brightness 

changes would allow the direct comparison of textural parameters derived from studies that 

use different gamma counts. Note that rows 2 and 3 in Table 2 correspond to rows 5 and 10 in 

Table 1 (10 mm), respectively, but the percentage changes are expressed relative  to the values 

in Table 1. It is noted that the sign of all values in Table 2 act in such a way as to reduce the 

sensitivity of the textural parameters.

In the context of our work a good textural parameter is one that is sensitive to changes in 

NVV or defect-size and that is at the same time insensitive to changes in brightness. With this 

in mind we can group the textural parameters investigated into robust, intermediate and poor 

performers:

Robust textural parameters:

TC13/TC31 Variance/Mean ratio: provides a solid signal of 22% change in the parameter 

value for a 40% change in NVV while its dependence on brightness doubling is only small 

(1.5%). The sensitivity is somewhat poorer for smaller defects.

TC30 Local homogeneity: provides still a good signal of 10.5% change for a 40% drop in 

NVV but is more sensitive to brightness changes than the TC13/TC31 ratio (2.9%).

TC18 Coefficient of Variation: provides a very strong signal of 77% for large defects and a 

still strong signal of 22% for small defects. It has a moderate dependence on brightness 

changes (10.8% simulating large defects). However, correlation with clinical data discussed 
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below is excellent.

Textural parameters with intermediate performance:

TC1 Angular second moment: provides high sensitivity (>68%) to changes in NVV, but 

unfortunately it is also very sensitive to brightness changes. 

TC2 and TC2: Difference and inverse difference moment: show a modest sensitivity for short 

distances and small-sized defects but are insensitive at larger pixel distances as well as for 

larger defect sizes. However, they may be used successfully in conjunction with other 

parameters to decide  whether the effective size distribution of the non-ventilated volumes is 

small or large.

TC9 Correlation: The theoretical study shows a reasonable sensitivity of around 20% to 

changes twice that large in NVV but also a relatively high sensitivity to brightness changes. In 

the clinical studies discussed below this parameter did not convince and is outperformed by 

others.

Textural parameters with poor performance:

TC7, TC4, TC13, TC31, TC21, and TC23: These parameters suffer either from a lack of 

sensitivity or high sensitivity to changes in brightness. 

Combination of textural parameters: 

The ratio of TC13/TC31 is a very good performer although neither TC13 nor TC31 are good 

performers. Similarly, the ratio of TC21/TC31 gives a moderately good performance. 
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3.2 Results from the clinical studies

Figure 2 illustrates the estimated ventilated lung volume grouped by patient group. The 

'normal' group shows the highest ventilated volume of about 90% and the smallest variance. 

Asthmatic lungs at baseline show a slightly lower ventilated lung volume although not 

statistically significant from the 'normal' lungs. The remaining patient groups show significant 

reductions in ventilated lung volume that are strongest in COPD patients. There is also a 

higher variability in these groups.

Figures 3 and 4 illustrate one of the best performing textural parameters for the 5 patient 

groups studied. Both the absolute value and the variability between different GLCM distances 

and between patients in the 'normal' lung function group are small (Figure 3, left panel). The 

results from COPD patients which range from a mild case (right panel, c-01) to severe (c-05) 

show increasingly higher values. 

The differences between using different distances in the GLCM calculations are almost within 

the numerical precision, which was also observed in the results from the simulated data. This 

observation holds true for all textural parameters and patient groups studied except for TC2, 

TC9 and TC30. TC9 (Correlation) and TC30 (Local Homogeneity) lose sensitivity with 

increasing distance between voxel pairs and better performance is achieved by only using the 

2 shortest distances (1 and 2 pixels distance corresponding to 4.7 and 9.3mm, respectively). 

TC2 will be discussed separately below. These findings are consistent with observations from 

the simulated data.

Pooling the data from all GLCM distances2 and by patient group allows us to look for disease-

specific differences as shown in Figure 4.While asthmatics at baseline cannot be distinguished 

from normal lungs, they can be clearly identified after a Metacholine challenge. PELICAN 

patients and even more so COPD patients have strongly elevated values in the coefficient of 
                                                
2 Except for TC9 and TC30 which pooled only the 2 shortest distances for higher sensitivity
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variation calculated from the GLCM.

Figure 5 presents the ratio of  Local Homogeneity and GLCM Mean (TC30/TC31) calculated 

in the same way as in the previous figure. Again, values for COPD and PELICAN patients are 

significantly higher than those for normal and asthmatic lungs. It is noted, however, that 

asthma patients both at baseline and at Metacholine challenge give almost identical results. 

Hence combining the information from multiple textural parameters allows to distinguish 

between different disease classes such as asthma from COPD.

A very strong correlation (r2=0.955) between the textural parameter Coefficient of Variation 

(TC18) and the estimated ventilated lung volume is illustrated in Figure 6. Similarly high 

correlations of  r2>0.8 exist for textural parameters TC3, TC30, TC31,  and the ratios 

TC13/TC31 and TC21/TC31 as a function of ventilated lung volume (not illustrated). More 

positive correlations (r2>0.49) are observed for textural parameters TC1, TC9, and the ratio 

TC1/TC31.

Independent spirometry data in the form of the predicted forced expiratory volume during 1 

second (FeV1) was available for all but the 'normal' group. Again good correlations are 

observed with several textural parameters (r2 >0.5 for TC18 and TC13/TC31, r2 >0.4 for TC3, 

TC30, TC21/TC31, TC31 and TC1/TC31 and r2 >0.3 for TC1, TC2 and TC9) as illustrated in 

Figure 7 for the example of  TC13/TC31.

The Difference Moment (TC2) behaves differently from all other textural parameters studied. 

It is insensitive to changes in both NVV and FeV1, but it is sensitive to the size distribution of 

patterns in the lung. Hence the TC2 textural parameter results were prepared in a different 

way. Instead of pooling the results from different GLCM distances, the parameter value 

obtained with the shortest distance (1 pixel) were divided by the parameter value for the 

second largest distance for any one lung and that we refer to as TC2d for short. Data prepared 

in this way resulted in a positive correlation of TC2d with NVV ( r2 =0.69) and a somewhat 
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weaker correlation with FeV1 ( r2 =0.375). 

All results in this section were derived from the contrast-stretched data set as it showed an 

overall better performance than compared to results derived from the histogram-matched data. 

It is noted that TC18, TC31 (Mean) and TC13/TC31 were indifferent to both NVV and FeV1 

changes in the histogram-matched data set, but otherwise the same textural parameters 

performed well as in the contrast-stretched data set. The only textural parameter that faired 

significantly better in the histogram-matched data set was TC23 (Difference Entropy).

4 Discussion

Changes in the grey level distribution such as a shift to darker grey values – as can be 

expected with a reduction in ventilated lung volume – is essentially removed in the histogram-

matched data. Hence, changes in the textural parameters that occur in the contrast-stretched 

data set but not in the histogram-matched one are thought to be driven by histogram changes 

while changes that occur in the histogram-matched data set are thought to be dominated by 

changes in pattern (Table 1). Changes in the contrast-stretched data set are often a result of 

both histogram and pattern changes.

In an ideal system a change in brightness should not affect the textural parameters calculated 

because the GLCMs are always normalised to an IOD of unity. However, it is noted that the 

spatial resolution of the observation system is significantly lower than the features that cause 

them. The effective resolution in the SPECT-V data is lower than the pixel resolution of  

4.664mm/pxl which in turn is much coarser than the simulated small defects starting from 

2.5mm cube side length. Due to the nature of  discrete sampling – and in this case significant 

under-sampling – of the object space and the non-linearity of the resulting effective blurring, 

the texture parameters calculated become dependent on the total optical density and contrast 
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in the SPECT-V data sets. This effect itself is also dependent on the effective size distribution 

of the defects we seek to describe. To quantitatively describe the exact relationship is 

mathematically complex and of limited practical use as it will vary from situation to situation. 

Instead we seek to identify textural parameters that depend acceptably little on the variability 

in patient data preparation.

The simulated data allows to fully control the environment, to know the true size distribution 

of the non-ventilated lung volumes, the true ventilated volume, and to vary some of these 

parameters systematically to study its impact. However, there are also some differences and 

limitations compared to clinical data that are undesirable. One is that the IOD of the simulated 

SPECT-V scan drops progressively with increasing NVV due to the simplicity of the model 

available to us. 

A patient with a smaller ventilated lung volume inhales approximately the same amount of  

radioactivity as a patient with a larger ventilated lung volume. As a result the scan from the 

former patient would have a larger information content3 and image contrast; because the same 

amount of activity has to squeeze into a smaller volume, a wider range of different brightness 

values is observed. Hence a poorly ventilated simulated lung has a somewhat lower

information content in the simulated data in contrast to a patient with a poorly ventilated lung 

that would result in a higher information content than the ideally ventilated lung. We studied 

this behaviour by simulating one data set with a higher gamma count, which resulted in an 

increase of 38% in information content as opposed to a 9% drop in the non-corrected 

simulation case. Although the textural parameters are modified as a result, it does not change 

the overall response to NVV and we were able to identify textural parameters that are little or 

non-susceptible to this change (Table 2). This finding is also directly relevant to clinical data, 

because any two patients with naturally differently-sized lungs that are administered the same 
                                                
3 We use the term information content in the strict sense of the number of grey values in an associated 

histogram that are non-zero.
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amount of Technegas will have differences in contrast and information content of the SPECT 

recorded. Selecting textural parameters that are insensitive to this variability in data collection 

is an advantage in data interpretation.

Reconstructed SPECT data is routinely subjected to a rather strong smoothing filter before 

being presented to a radiographer or other medical professional. Filtering at the RNSH 

consists of a 9th order  Butterworth filter with a cut-off of 1.2 cycles per centimetre. Since 

texture analysis by definition looks at small differences in grey values between pairs of pixels, 

any smoothing operation degrades the capabilities of the method for any given case. We tested 

this  expected behaviour by preparing both simulated and normal patient data with and 

without applying the Butterworth filter and found the smoothed data set to have a poorer 

sensitivity as manifested in smaller relative changes in textural parameters. We will report the 

exact impact in a forthcoming separate study. In this work we only discuss  reconstructed, 

extracted lung data that has not been subjected to any post-filtering. 

A change of distance in the calculation of the GLCMs (within reason) adds little new 

information (Figure 1) with the exception of parameter TC2. In most cases the calculation of 

the GLCM for only one distance seems to be sufficient. For 2 of the textural parameters 

studied there is a better performance seen for shorter distances in the GLCM calculations 

(TC9 and TC30). This is plausible looking at the definitions (Appendix 1). Voxel pairs that are 

far from one another are unlikely to be highly correlated  thus giving low correlation values in 

any lung (TC9)  and uniformity between them will be near the random value (TC30).

From the simulated data it is known that TC2d drops with increasing defect size and in the 

patient data it drops with increasing NVV. This suggests that the average size of individual, 

non-ventilated areas increases with the severity of the diseases studied as opposed to a mere 

increase of number of non-ventilated areas of same size. This result is consistent with the 

perception of the SPECT data to the human eye.
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Several well performing textural parameters were identified that by themselves allow to 

distinguish between a 'normal' lung and a lung that suffers from some significant medical 

condition or disease. Combinations of textural parameters have the potential to further 

classify abnormal lungs. For example, to distinguish between asthmatics on one hand and 

COPD patients on the other hand one can combine the results from TC18 and the ratio 

TC30/TC31. TC18 is elevated in all diseases, but the ratio TC30/TC31 does not rise 

significantly in asthmatics while it does rise significantly in COPD patients (compare Figures 

4 and 5). 

Correlation of several key textural parameters with the corresponding ventilated lung volume 

are good to excellent for all patient data (Figures 6 and 7). Note that  the ventilated lung 

volume is a  measure that is calculated from the original imaging data (not the GLCM), while 

the FeV1 is a completely independent measurement. The pooling of data per disease group 

(Figures 4 and 5) combines all patients of one disease into one - independent of the severity of 

disease. Figures 6 and 7 on the other hand illustrate the relationship between reduced lung 

functionality and resulting changes in derived textural parameters. It is pointed out that 

reduced lung functionality goes along with higher heterogeneity in the SPECT data (Berend et 

al., 2008) and textural parameters that measure heterogeneity increase while parameters that 

measure uniformity drop.

The textural parameters discussed are not all linearly independent of one another but some of 

them have substantial correlations amongst them. (Clausi, 2008). For practical matters it is 

desirable to identify a small number of textural parameters that give the overall best 

classification performance. 

TC2, TC3, TC4 and TC30 are all measures of contrast, though with different weights. TC3

and TC30, which weigh values by the inverse of the contrast (homogeneity), have both shown 

consistently better performance in all patient data and either one of these two parameters are
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recommend for use. As TC3 and TC30 are highly correlated one should choose only one of 

them with TC3 performing marginally better in contrast-stretched data sets and TC30 better in 

histogram-matched data sets.

TC1, TC21 and TC23 are all measures of orderliness. The ratio TC21/TC31 performed best in 

the clinical data. The GLCM Mean (TC31) reflects brightness changes between patients that 

the contrast-stretched data set is susceptible to. Thus using textural parameter combinations 

that involve the GLCM Mean improves correlation in several textural parameters studied. The 

histogram-matched data set shows no correlation with TC31 and combining textural 

parameters with TC31 carries no advantage and TC23 by itself gives the best performance in 

the group of textural parameters that measure orderliness. The value of Entropy (TC21, TC23) 

increases with increasing heterogeneity. 

TC9 (Correlation), TC13 (Variance), TC18 (Coefficient of Variation) and TC31 (Mean) are 

descriptive statistics of the GLCMs and the frequency at which certain voxel pairs occur. The 

combination of Variance and Mean in the Coefficient of Variation (TC18) and the Variance 

over Mean ratio (TC13/TC31) gave excellent performance in the contrast-stretched data set 

and is another recommended parameter for use. TC18 and the TC13/TC31 ratio are highly 

correlated parameters. TC18 shows better correlation with ventilated lung volume and 

TC13/TC31 shows better correlation with FeV1 but either one being a very good choice for 

characterising the clinical data. 

GLCM Correlation (TC9) Is largely independent of the other texture measures and has the 

potential for giving additional insight. TC9 can be calculated for increasingly larger voxel 

distances and the size at which the value suddenly decreases is a measure for the size of 

definable objects in the original image data. However, we could not identify any 'sharp' drops 

but only gradual changes with the clinical data, suggesting that there is a broad size 

distribution of objects which makes this approach less powerful. Simply comparing the 
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differences in Correlation values between the shortest and longest distance studied with 

ventilated lung volume resulted in a modest correlation (r2=0.41).

It is noted that the best correlations between textural parameters and ventilated lung volume 

were achieved with a linear regression while correlation with FeV1 gave consistently better 

results using a logarithmic correlation function.

Summed up the following 3 recommendations can be made for the analysis of pulmonary 

SPECT-V data. 

1) Texture analysis sensitivity is maximised by preparing SPECT data in an unfiltered, 

contrast-stretched way, as opposed to filtered or histogram-matched.

2) The choice of voxel pair distance in the GLCM calculation is non-critical. With 

present spatial resolution in SPECT data 1, 2, or 3 pixel distances are good choices 

that can also be pooled to improve statistics. 

3) Amongst the many textural parameters studied one each should be chosen from 3 

different groups of parameters to balance the capability to characterise with the 

computational effort involved. These are the textural parameters TC18 or the ratio 

TC13/TC31 from the descriptive statistics group, the parameter TC3 or TC30 from the 

contrast group and the parameter ratio TC21/TC31 in the orderliness group.

Application of the new software package is not limited to pulmonary studies – in fact it may 

also be applied to other organs or to  completely different fields such as material sciences or 

mineralogy. However, in its present form the software package is optimized to the work-flow 

of  studying lungs in a clinical scenario.

Summary
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It has been demonstrated that a textural parameter analysis of functional pulmonary CT data 

has the potential to provide a robust and objective quantitative characterisation of 

inhomogeneity in lung function and classification of lung diseases with application in routine 

clinical applications and national screening programmes. The new methods applied to SPECT 

lung ventilation scans are capable of distinguishing between different types of diseases. 

Strong correlations between key textural parameters and independent lung function data such 

as the FeV1 suggest that a quantitative description of the severity of diseases such as asthma 

or COPD by means of derived texture parameters is viable. Clear recommendations have been 

made for optimum data preparation and textural parameter selection. In a forthcoming study 

we plan to use data from larger numbers of patients and additional spirometry data to further 

refine the methods.
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Appendix A: Definition of textural features from the co-occurrence matrix

A co-occurrence matrix P(i,j|d,θ) (PM for short) contains the probability that the grey level i

occurs at a distance d in direction θ from a pixel with grey value j. N is the size of the co-

occurrence matrix (N=256 in this study). Integrated sums are calculated from the matrix 

variance. We further define the vertical (px(i)), horizontal (py(i)), minor diagonal (px-y(k)) 

sums, the vertical (μx) and horizontal (μy) mean, and the variance of the vertical (Vx) and 

horizontal (Vy) directions (Choi, 1996). Note that the GLCM mean is distinct from the mean 

grey value of the original image because it is weighted by the frequency of occurrence in 

combination with a certain neighbour pixel value.

Px�i�=Σ j=0
N−1 PM , Py�i�=Σi=0

N− 1 PM , Px− y�k�=Σi=0,�i− j�=k
N− 1 Σ j= 0

N−1 PM , μx=Σi i P x�i�, 
μy=Σ j j P y�j�, V x=Σi�i− μ x�

2
Px�i�, V y=Σ j�j− μy�

2
P y�j�

TC_1 Angular Second Moment Σi=0
N− 1Σ j=0

N− 1 PM 2

TC_2 Difference Moment or GLCM Contrast Σi=0
N− 1Σ j=0

N− 1�i− j�2PM

TC_3 Inverse Difference Moment, Σi=0
N− 1Σ j=0

N− 1�1��i− j�2�
− 1

PM

TC_4 Diagonal Moment, Σ i=0
N− 1Σ j=0

N− 1�0 . 5�i− j�PM

TC_7 Inertia, Σn=0
N− 1n2�Σ i=0,�i− j�=n

N−1 Σ j=0
N− 1�i− j�2PM�

TC_9 GLCM Correlation, �Σi= 0
N− 1Σ j=0

N−1�ij�PM− μx μy�/�V x V y

TC13 GLCM Variance, V x

TC18 Coefficient of Variation, �V xV y /μx μ y

TC21 Entropy, Σ i=0
N− 1Σ j=0

N− 1�PM ��-ln�PM ��

TC23 Difference Entropy, Σi=0
N− 1Px− y�i�loge�Px− y�i��

TC30 Local Homogeneity. Σn=0
N− 1�Px− y�n�/�1+n2��

TC31 GLCM Mean 0.5��μx�μ y�
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histo
gram

cube 
side 

length 
in 

[mm]

TC_1
Angular 
Second 
Moment

TC_3
Inverse 

Different 
Moment

TC_4
Diagonal 
Moment

TC_9 
Correl
ation

TC18 
Coefficie

nt of 
Variation

TC21 
Entro

py

TC30 
Local 

Homog
eneity

TC13 
Sum of 
squares 
/Varianc

e

TC31 
Mean

TC13/ 
TC31 

Variance
/Mean 
ratio

cs 2.5 111.9 4.2 -27.1 -15.2 22.5 -8.4 4.2 -2.2 -10.6 9.5

cs 5.0 106.4 7.5 -27.3 -20.0 28.9 -8.0 7.5 -16.8 -19.6 3.5

cs 7.5 85.8 9.0 -23.3 -22.3 46.6 -6.7 9.0 -17.7 -25.1 9.8

cs 10.0 68.6 10.5 -20.2 -19.2 77.0 -5.6 10.5 -15.6 -30.9 22.2

cs mean 93.2 7.8 -24.5 -19.2 43.7 -7.2 7.8 -13.1 -21.6 11.3

hm 2.5 111.9 2.3 -27.2 -11.7 -0.7 -8.4 2.3 -0.4 0.1 -0.6

hm 5.0 106.4 -0.4 -24.9 -15.6 -0.1 -8.0 -0.4 -0.3 -0.1 -0.2

hm 7.5 85.8 0.4 -21.5 -16.1 -1.0 -6.8 0.4 -1.3 -0.2 -1.1

hm 10.0 68.6 2.1 -18.7 -13.8 0.1 -5.6 2.1 -1.1 -0.6 -0.5

hm mean 93.2 1.1 -23.1 -14.3 -0.4 -7.2 1.1 -0.8 -0.2 -0.6

Table 1: Sensitivity of textural parameters to a 40% reduction in ventilated lung volume. The 

latter was achieved by  randomly inserting black cubes of side length 2.5, 5, 7.5 and 10mm 

into the simulated lung. Results are shown as relative changes in the textural parameter for 

either preparing the data in a histogram-matched (hm) or a contrast-stretched (cs) way and as 

a mean over 5 distances used in the GLCM calculation.
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Histo
gram

TC 1 
Angular 
Second 

Moment

TC 3 
Inverse 

Different 
Moment

TC 4 
Diagonal 
Moment

TC 9 
Corre
lation

TC18 
Coefficient 

of 
Variation

TC21 
Entro

py

TC30 
Local 

Homog
eneity

TC13 
Sum of 
squares 

(Variance)

TC31 
Mean

TC13/ 
TC31

Variance
/Mean 
ratio

cs -62.6 -2.9 53.4 10.8 -10.8 11.5 -2.9 8.7 10.4 -1.5

hm -62.3 -3.9 48.5 9.0 0.5 11.3 -3.9 -0.1 -0.3 0.2

Table 2: Sensitivity of textural parameters to a 40% increase in gamma counts. The simulated 

defects have a cube side length of 10mm. Listed are the differences in the values of the 

textural parameters derived from either the standard simulation with 40% NVV and 

associated drop in average brightness and an alternative simulation with a higher gamma 

count such that after knocking out 40% of the ventilated volume the IOD matched the IOD of 

the perfectly ventilated lung simulation.
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Figure captions

Figure 1: Illustration of textural parameter TC18, Coefficient of Variation, from the 

simulation study for cube-shaped defects of size 7.5mm cube side length as a function of non-

ventilated lung volume in percent. The GLCMs were created for 5 pixel distances each (1, 2, 

4, 8, 12 pixels) corresponding to distances in the lung of 4.7, 9.3, 18.7, 37.3 and 56.0mm, 

respectively. The coefficient of variation is larger for small pixel distances and increases with 

NVV and more rapidly so for larger defects (not illustrated).

Figure 2: Relative ventilated lung volume (solid black) and standard variation (hashed)  per 

patient group.

Figure 3: Illustration of  textural parameter TC18, the Coefficient of Variation, for a set of 5 

'normal' lungs (left) and a set of 5 lungs of patients suffering from COPD (right). The severity 

of COPD increases from top to bottom.

Figure 4: Textural parameter 18 (solid black) and standard deviation (hashed) from the 

invariant GLCM and for all 5 distances for the 5 patient groups studied

Figure 5: Ratio of textural parameter 30/31 (solid black) and standard deviation (hashed) 

from the invariant GLCM and mean over 5 distances for the 5 patient groups studied

Figure 6: High correlation between ventilated lung volume in percent and textural parameter 

18 (coefficient of variation)  (r2=0.955).

Figure 7: Correlation between textural parameter TC13/TC31 (Variance over Mean ratio) 
and independent spirometry data (FeV1) for 4 of the 5 patient groups. No spirometry data was 
available for the 'normal' group. The quality of the linear regression is  r2=0.66.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

“Application of texture analysis to functional pulmonary CT data”,  Meier et al.               28

FIGURE 1  

FIGURE 2
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FIGURE 3 (left and right panel, reproduction in black-and-white)
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FIGURE 5

FIGURE 6  (colour reproduction for web-publishing, black-and-white for print)
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FIGURE 7   (colour reproduction for web-publishing, black-and-white for print)
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