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DIGITAL SIMULATION OF CONTINUOUS STOCHASTIC SYSTEMS

V.D. Razevig



1. FORMULATION OF THE PROBLEM

A mathematical model of a dynamic system with stochastic
perturbations can be described by the vector differential

equation
dx = a(x,t)dt + b(x,t,)dw(t) (1)

where x is an n—-dimensional state vector,

w(t) a m-dimensional vector whose components are

a(x,t) is a n-vector of coefficients

and b(x,;t) is n x m matrix of coefficient

It is assumed that both a(x,t) and b(x,t) satisfy Lipschitz

conditions [3].

Equation (1) is considered as a stochastic differential

equation in the sense of the stochastic integral [1]

t
I = o(x(1),r)dw(t) =
Voot

0 (2)
N-1
= lAiém'iEO @((l—v)x(ti) + vx(ti+l),ti)[w(ti+l) - w(ti)]
where t0<tl<...<tN=t, A=max(ti+l—ti), ¢ (x,t) 1is an arbitrary

function of x and t, and the parameter v lies within the
interval 0<v<l. The Ito integral corresponds to v=0, the
Stratonovich integral to v=0.5. One physical example which

corresponds to intermediate values of v is mentioned in [11].

The purposes of the report is to develop numerical algo-
rithms of different order for integration of (1). Both
constant and variable steplengths are considered. The inte-

gration interval te[t_. . t ] is divided into N segments
min max

tmin=to<tl<t2<...<tN=tmaX of sizes hr=tr+l—tr.

When integrating equation (1) with constant steplength
hr=h=const, successively finer approximations to the same

sample of noise w(t) were obtained by successive doubling



of N in such that the value of an approximation to the Wiener
process w(t) at any point tr equals the values of finer
approximations at that time. When applying the variable
steplength algorithms, the current step size hr is an

integer multiple of some smallest integration step size

h ., = 7 (3)
o max

The current step size is thus equal to

thax ~ Emin
hr = (4)

i

It is determined by the parameter Kr within the interval

K_. <K <K
n- r

mi max’

The samples of the m-dimensional Wiener process w(t)={wj(t)}

are generated by computer as

— hr/h

j r+1) - wj(tr) * /hmin li

min (5)
z _ ) 5
1 Jr+(l 1) m+3

where j=1,2,...,m, zcl are Gaussian random numbiers with

zero mean and unite variance which are generated with the
., J_ is the number of latest

min r

sample of the random number generator at the previous inte-

smallest sample interval h

gration step tr' See also Fig. 1.

Wi (treq)

r
AW
J

Fig. 1. Wiener process generator



2. SIMULATION ALGORITHMS AT ONE INTEGRATION STEP

Using Picard iterations [3] the following difference schemes

are obtained

1 [ el gy el g
xl4F ](t ) =X 2Et ) + a(x[ (s),s)ds + [ b(x " (s),s)dw(s) (g)
r+1 r N tr
r

where the indices in the square brackets indicates the
number of iterations.

Using the zero approximation x[o](t)=x(tr) and a Taylor
series expansion of the functions aj and bi' near the point
(x(tr),tr) a second approximation is obtained by retaining
only the first-order derivatives of functions ai(x,t) and

bij(x’t)' Hence

il r 2 r 2
3a; h n sa; h
x!z](t +1) = x,(t ) + ai hr g+ 4y ;2L ai S
+ £ tr It 2 k=10x%, 2
n aai mo t}'+1 mo e
+ T —= T b,. [w,(s)-w.(t )1ds + ¢ b,.[w,(t )-w. (t +
k=tox, 3=1 3 t_ 3 = j=q 13773 Ty
r
m 3bt ab?. t
+ f f—=d + 3 —id a; } Ir+1(s_t Yaw. (8) +
j=1 ot k=1 ax, t r’' 3
r
(7)
t
m n Bbi. mo r+1
+ .E E —=x1 E bkl f [wl(s)-wl(tr)]dwj(s) (i=1,2,...,n)
j=1 k=1 axk 1=1 tr

where h_=t -t and the notations
r r r

+1

r_ r _
ai—ai (X(tr) Itr) 7 blj_bij (x(tr) Itr)

has been introduced.



Equation (7) contains three stochastic integrals. The first
two integrals are the same for any value of the parameter v

defined in (2). The Ito lemma [9] gives

(‘9

(9)

t t
r+1 r+1
[wj(tr+1)—wj(tr)](tr+1—tr)=tj (s—tr)dwj(s)+tf [wj(s)—wj(tr)]ds
r r
Introduce the integral
tr+1
.= =
3 tf [wy (s)-w, (£ ) 1ds.,
r

This integral can not be expressed in closed form. It is

therefore approximated by its mean square estimate based on

the assumption that the samples Wj(tr) and wj(tr+l
Hence

6. = E{9 [w.(t_ ), w.(t )} = % h avt

j S s T < o I T o 2 r j
where

r— -—
ij = Wj(tr+1) Wj(tr)'

A

The estimate 6. converges to ej for each realization of w(t)

as hr is refined.

The diagonal elements (1=3j) in the third stochastic integral
at expression (7) can be calculated analytically, others

(1#j) are estimated using the procedure outlived above.

Hence
~ tr+1 -_ \))hr’ l=j ,
r = _
Y14 tf Awl(s)dwj(s) |
- r 1#3.

Introducing (8), (10) and (12) into the approximation (7)
retaining terms of different orders of magnitude, a set of
algorithms for digital simulation of the stochastic differen-

*
tial equation (1) are obtained.

) are known.

(10)

(11)

(12)



2.1 First Order Algorithms

A first order algorithm is obtained from the general expression

(7) by neglecting terms order hrij, hi etc. The algorithm is

given by

“r+1 “r r o r m n obi, m r °r

X, = x; + aihr + z bi.Aw. + I z 5% b} bklwl' (E3)
j=1 3 321 k=1%x  1=1 J

(i=1,2,+..,10)
where @ij is defined in (12), x§=xi(tr), the x(tr) marks the

approximative value of exact solution x(tr).

The sample path convergence of the scheme (10) to the exact
solution of equation (1) follows from [8] if the Ito stochastic
integral is replaced by the general definition (2) and the

new rules of stochastic integral calculations are considered.

If we neglect the last term of the right side of algorithm
(13) the Euler scheme

“r+1_ ’r r ,
X; =X AW (i=1,2,...,n) (14)

+ath_ +
iy & 1 13773

.
I ™3
o

N

is obtained. This converges to the Ito solution of equation

(1). It has an accuracy of order vVh. Therefore, if v>0, algo-
rithm (13) is the simplest algorithm for obtaining the numerical
solution of the stochastic differential equation (1) in the

sense of the general stochastic integral (2).

*
We do not use higher than second order iterations (7),

since we can not estimate more complicated stochastic inte-
grals. If we replace higher order integrals by equivalent
random values as is done in [5, 9], we get only statistical

convergence, not the sample path.



2.2 Higher Order Algorithms
3/2

The algorithm order h
(7):

is obtained from the full expression

~ " nm m n 3b,. m
x§+1 = x; + a; ho+ % bi. aws o+ 3 oz —2d 3 by q Vs
g=1 *1J j=1 k=1 ox, 1=1 J
(15)
: m bt n eai . n obt,
+3h 1 + I ———-bkj + 3y —xJ ai} AW +
j=1 3t k=1 axk k=1 axk
+ > h {—— + 1 —= ak}.
' st k=13%,

As mentioned above, we can not estimate more complicated
stochastic integrals, than these given by (9) and (12),
I(Aw(s))zds, for example. It is still possible to partly
improve the accuracy of algorithm (15) retaining the higher
derivatives of the functions ai(x,t) at the second iteration
x[z](t). Thus algorithms analogous to the forth-order Runge-
Kutta (RK) scheme for deterministic equations [4] can be

obtained as follows

n m ab?

“r+1 “r 1 1 ik . r
= i 4+ K, L) - (= - I § —==Ht h
B x; tg (Kyy + 2Ky, + 2Kg, + Kyu) - (5 V)j=1 1 o ik
(i=1,2,...,n) (16)
where
e m <1 r
K1i = ai(x ’tr) hr + ji1bij(x ,tr)Aw ,
"r 1 f o, ] r
K2i = ai(x +7K1’tr+§hr)hr + ji1b13(x + 2K1’tr + 5 hr)ij,
(17)
K., =a,.(xf + X% ,t +Xhn)n + 7 b xF + X x t + X n oyt
31 - %% T 7 R R N S R A 2 e
~“r m 2y r
K4i = a,(x + K3’tr+1)hr + ji1 bij(x + K3,t +1)ij.



When the coefficients bij of equation (1) are small the
scheme (16) has advantages compared with scheme (15) and
(13) from a convergence-rate accuracy criterion. But for
large bij the two schemes have approximately the same
accuracy. A similar phenomenon was first mentioned in [2]
and then in [4, p.190].

Ancother way to get RK type approximations of equation (1)

is to apply the standard RK scheme [4] which converges to

the Stratonovich solution of stochastic differential equation
(1) (see [2]1, [6]1, [71, [81, [13]). Hence the solution of
equation (1) in the sense of the general stochastic integral
(2) can be obtained by applying the standard RK scheme to the

Stratonovich equation, equivalent to equation (1) which is

given by
Str -

dx =a,.(x,t)dt + © b,.(x,t)dw. (t) (i=1,2,...,n) (18
i 11 5=1 i3 J

where

1 n m ab.k
a; (x,t) =a (x,8) = (3= v) I 3 =
i i 2 .
3=1 k=1 axj

b

s (X E) . (19)

The standard RK scheme to solve equation (18) is given by

N A f — 0.
o S B % (R, , + 2K, + 2K, + K, )  (i=1,2,...,7) (20)

where the coefficients X R are defined in (17)

1i’ 43
replacing the functions ai(x,t) by ali(X’t) (19).

Our experiments show that the two RK type schemes (16) and
(20) have approximately the same rate of convergence but
scheme (16) demands less computations at each integration

step.
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3. VARIABLE STEP SIZE

The integration step size control and estimation of local
truncation error are well developed, for ordinary differen-
tial equations without stochastic disturbances [4]. It would
be desirable to have analogous techniques for the stochastic
differential equations also. An empirical development is given

below.

The main idea for the variable integration step size method
is the following. Each basic step of size hr is done twice,
once as two steps of size hr/z and once as one step of size
hr' See Fig. 2.

If the result of one step of size h_ is x(l)(tr+l), and the
result of two steps of size hr/2 is x(z)(tr+l). The local
truncation error is given by
- (1) _ o, (2) .
8 ppq = mix |xi (£ 4q) X (tr+1)|' (21)
(1)
| X (tF+1)
2
|
|
1
X(tr) | [
| | |
I ] |
| ! | ¢
t, hr/ 4+— hr/, e
hr

Fig.2. Variable step size
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Compare 6r 1 with some limit error e and modify steplength

+
as follows:

1. If ¢ >e restart from point tr using the integration

Ly new old
step length hr e hr /2.

Wiener process the state of the random number generator

To get the same samples of

and the value of the Wiener process W(tr) at each initial
point tr are stored. For a more detailed description, see
[10].

2. If 8/10<6r+l

step length hr+l=hr

3. If 6r+l<€/10 calculate the next step using step length

hr+l=2hr'

<e the next step is calculated using the

This technique has been implemented for the RK method (20).

See example in section 4.

4. EXAMPLES

4.1 A Simple First Order System

Consider the equation
dx = axdt + gxdw(t) (22)

which has the Itd solution

x(t) = x(0) expl(a - 3 g°) (t = ty) + glw(t) - wity) 1}, (23)

Fig.3a shows the Ita solution of equatioh (22) at the point t=1 with
initial condition x(0)=1 as a function of integration step size
h=1/2K for various integration procedures with constant integration
step length (parameters a= -1, g=1). Fig.3b shows the Ita solution

of the equation



x(1)
0.1-
0.05- x(1)=
0.0434
/
0 l T l I T I | I l | T I l
2 b 6 8 10 12
~-0.05+ . k
Integration step size h=1/2

(a)

Fig. 3. - Simulation at the Ito equation (22) using
different algorithms

12



x(0.5)

Fig.

(b)

3 Simulation of the Itd equation (24) using different
methods.

1 - Euler method (14)

2 - first-order method (13)

3- second approximation (15)
4 - standard Euler-Cauchy method (second-order Runge-Kutta method)

applied to the equivalent Stratonovich equation (18)

5 - Euler-Cauchy method analogues to (16)

6 - Standard Runge-Kutta method (20) applied to the equivalent
Stratonovich equation (18)

7 - Runge-Kutta method (16)
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dx = a sin(x)dt + g V|x| dw(t) (24)
where a = -1, g = 1, x(0) = 1.

The relative rates of convergence were as follows:

quickest - Runge-Kutta methods (16), (20),
- second approximation (15),
intermediate - Euler-Cauchy methods,
- first-order method (13},
slowest - Euler method (14).

4.2 Algorithms with variable Step Length

The accuracies of the integration methods with constant and
variable step length applied to the Itg equation (22) are
illustrated in Fig. 4. The picture shows how the accuracy
defined as

x(t) - x(t) &2
x(t)

§(t) =

depends on the number of steps integration. Note that x(t)

in expression (25) is the exact solution (23) of equation (22),
and that ;(t) is the numerical solution. Fig. 4 shows that

RK method (20) with variable integration step length provides
about 100 times higher accuracy with the same number of steps
than RK method with constant step length. The variable step

RK method is of course much more accurate than the Euler
method (14) with constant step size. The advantage of the

variable step size method increases with increasing accuracy.

4.3 A phase-locked loop

In the article [12] is discovered by practice that "the Euler
integration is greatly superior to Runge-Kutta methods from

a convergence-rate accuracy criterion". It is difficult to
comment this statement since there was neither mathematical
expression for Runge-Kutta method used (it is not obvious for

stochastic equations) nor exact references. The simulation



10-2 \
10 \
1
7S
510
O
o
3 2
< 10°
3
-6
10
10O 10‘I 102 103 'IOL 105
Number of steps
Fig. 4. - Accuracies of methods with constant and variable

step size.,

1 - Euler method (14) with constant step size

2 - Runge-Kutta method (16) with constant step size
3 - Runge-Kutta method (16) with variable step size

15
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of same phase-locked loop used in [12] has therefore been

repeated. The equations are

2’

dt
‘% (26)

— = - sin(x1) - cos(x1)g1(t) - sin(x1)£2(t)

where El(t) and Ez(t) are uncorrelated white random processes
with unite spectral density. The Ito and Stratonovich solutions

of equation (26) are the same since the term

d b,
oL §§i£ bjk=0‘ The Euler and Runge-Kutta methods (14) and
(20) with constant step size where therefore used. The simu-
lation results over the time interval t€[0.1] with initial

conditions xl(0)=x2(0)=l/4 and with different integration

steb size h=l/2K, K=1,2...,14 are shown at Fig. 5. Our results
shows that the RK method (20) has a higher rate of convergence
than the Euler method (14).
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@30 ~
085 -
f—Runge - Kutta
[
080 - /
/
| K
) 5 T T T T J I ! I
AR L 6 8 0 12
(a)
01 = XZ (1)
/%—Runge -Kutta
0 —_———T——T—7— K
8 10 12 14
-0.1- {b)
Fig. 5. - Simulation of the phase-locked loop.
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CONCLUSION

A set of integration algorithms with different rate of
convergence were developed for numeric solution of multi-
dimensional stochastic differential equations (1) using
both constant and variable integration step size. It was
empirically shown by examples that the variable integration
step size technique can be implemented for stochastic
differential equations and taht it has advantages both with
respect to accuracy and computation time. FORTRAN routines
integrating equation (1) by Euler (14) and Runge-Kutta (20)
methods with constant and variable integration step size
were given in [10]. The programs used in this report are
listed in the Appendix. In practice we recommend that the
variable step size technique is used only with Runge-Kutta
methods because of the slow convergence rate of the Euler

method.
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Appendix

The FORTRAN program package for simulating the n-dimen-
sional stochastic differential equation (1) contains three
standard subroutines STOCH, STH, STEP, the main program,
and at least two user subroutines SIDE and OUTP which are
called on by standard subroutines, Tables 1-3. This package

was tested on the computer PDP-15.

4.1 Main Program

The main program calls on the standard subroutine

CALL STOCH(XI,TMIN,TMAX,NX,NR,EPS,K,KMAX,KMIN, ISTEP,
METHOD, TP1,DP,NU,IS,W)

where the input arguments are:

XI ~ vector of initial conditions of state variables
TMIN - initial time of integration

TMAX - upper limit of integration time

NX - number of first-order equation n in (1)

NR - number of input Wiener processes m. in (1)

EPS - local truncation error in the variable integration

step length method, ¢
K - defines the value of the integration step h (4) if
ISTEP=0, otherwise K indicates the initial value of h

KMAX - indicates the minimum value of the integration step
length h . = (.3)
KMIN - indicates the maximum value hmax

ISTEP - if ISTEP=0, the integration interval [tpj,,t. .1 is
divided into 2K equal segments of length h (4.,
otherwise the variable integration step method is used

METHOD - if METHOD=0, the subroutine obtains Itd solution by
the Euler method, otherwise Stratonovich solution by
the fourth-order Runge-Kutta method

TP1 - first point of time to output the solution by means of
the user subroutine OUTP

DP - increment of time to output the solution

NU - initial state of the random number generator (odd
number) .
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The argument IS is the output one which equals the number

of integration steps. Vector W is the allocation vector.

In the main program the user has to define the input
arguments and declare the real dimensions of vectors
XTI (NX) and W(7*NX+4°*NR).

A.2 Standard Subroutines

Subroutine STOCH (Table 1) is the auxiliary subroutine for
dynamic allocation of vectors in FORTRAN programs (see
report [14]). This subroutine calls the basic subroutine

STH (Table 2) which organizes the numerical integration with
a constant, if ISTEP=0, or with variable step length other-
wise. The subroutine STH also contains the Wiener process

generator (5) which calls the library subroutine MCREDI.
Subroutine STH calls the standard subroutine STEP (Table

3) to integrate one step by the Euler method (14), if
METHOD=0, or by the RK method (20) otherwise.

A.3 User Subroutines

A.3.1 Subroutine SIDE. Subroutine STEP calls on the user

subroutine
SIDE (T+H,H,XH, R, DX)

where the input arguments are

T = current time, tr

H - current integration step length, hr’ when using constant
step technique, hr/2 otherwise

X -initial vector Q(tr) on elementary integration interval

(tr’tr+1)
R - vector of Wiener process increments Aﬁr.
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The user has to write the program to calculate the output

vector argument DX of dimension NX in such a way.

For the Euler method (14) DX is the vector state variables
increments, for the R-K method (20) it is the vector
coefficient ¥,(£=1,2,3,4).

The vector-DX centains coefficients of the stochastic differential

equation (1l). Let the nx1l vector A(I) = “i(z(tr)'tr)' Note
that in many practical cases matrix ||bij || in equation (1)
contains many. - zero elements. Therefore the user has to

: . _ -»
write down the nxm matrix Ilbij || as a vector B(J)-—bij(xr,tr)

for non-zero elements bij‘ The dimension of B is equal to

data of non-zero elements in matrix ||bij

In the FORTRAN notation the i:th component of vector DX is
equal to

DX (I) =A&I)*H+B(...)*R(l)+...+B(...)*R(NR),
(A.1)
r=1,2,...,NX.
Thus, in subroutine SIDE, the user has to define the vector
coefficients A(I) and B(J) and write the expression (A.l)
where H and R(J) are input arguments defined into basic sub-
routine STEP.

Due to allocation vector techniques the dimension of the

vectors X, R, and DX can be described like this:
DIMENSION X (1) ,DX(1),R(1)

For vectors A and B the user has to point out their real

dimensions.

A .3.2 Subroutine OUTP. Basic subroutine STH calls on the
subroutine

OUTP (T, X,WIENER)

to output the current time T, the vector state variables X
and the Wiener process WIENER.



All the arguments of subroutine OUTP are the input
arguments defined into the basic subroutine STH.

Dimensions of the vector X and WIENER are described in
such a manner:

DIMENSION X(1) ,WIENER(1l),

24
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Table 1

NAME: STOCH

—— -

SUBTITLE: SOLUTION OF TrE NONLINEAR |TO OR STRATONOVICH STOUHASTIC
DIFFERENTIAL EQUATIUNS

KEYWQRDS

SOLUTION, SYSTEM OF NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIORNS,
IT0 EQUATION, STRATONQOVICH EQUATI|ON

IMPLEMENTOR: VSEVOLON D,RAZEVIG DATES 1977-05-19

DEPARTMENT OF AUTOMAT|C CONTROL
LUND INSTITUTE OF TECHNOLOGY, SWEDEN

ACCERPTED VERSIONS 1

- - - ———
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[ IR

170 OR STRATONOVICH SOLUTION OF THE SYSTEM OF N FIRST~0RDER NUNLINEA
STOCHASTIC DIFFERENTIAL EQUATIONS X'sA(X,T) + B(X,T)*W' W|TH
CONSTANT OR VARIABLE LENGTH STEPS

USAGE

—— ma
—R=a—a——

PROGRAM TYPE: SUBROUT|INE

STOCHEX 1 » TMIN, TMAX,NX,NR,EPS,K, KMAX ,KMIN, | STEP,METHOD,

ITP1,DP,NU, 1S, W)

X1 = VECIOR OF INITIAL CONDITIONMS QF STATE VAR|ABLES

TMIN = INITIAL TIME OF INTEGRATION

TMAX = UPPER LIMIT OF INTEGRATION TIME

NX = NUMBFER OF EQUATIONS

NR = NUMBER UF [INPUT WHITE NOISES

EPS - LOCAL TRUNCAT|ON ERROR

K ~ INDICATE THE IMNITIAL VALUE OF THE INTEGRATION STEP
H= (TMAX=TMIN) /2% %K

KMAX = INDICATE THE MINIMUM VALUE OF THE INTEGRATION STEP
HMINE(TMAX=TMIN) /2##KMAX

KMIN = INDICATE THE MAXIMUM VALUE OF THE INTEGRATION STEP
HUMAX= (TMAX=TMIN) /2% %KM IN

ISTEP = |F ISTEP=0, INTEGRATION INTERVAL DIVIDED |NTO 2#%K EGUAL

SEGMENTS OF LENGTH #, OTHERWISE ARE USED THE VARIABLE
INTEGRATION STEP

METHOD= IF METHOD=0, SUBROUTINE OBTAINS |1TO SOLUTION BY EULER METHOU
OTHERWISE STRATONOVICH SOLUTION BY THE FOURTH-ORDER
RUNGE=-KUTTA METHOD

TP = FIRST POINT UF TIME TO OGUTPUT THE SOLUTINDN BY MEANS USER
SUBROUTINE QUTP
DpP =~ INCREMENT OF TIME TO OUTPUT THE SOLUTION

Ny = INITIAL STATE OF RANDOM NUMBER GENERATOR



Table 1 (continued)

064 C IS - NUMBER UOF THE INTEGRATION STEPS

065 C W - ALLOCATION VECTOR HAVING DIMENSION 7#NX+4#NR

066 C

067 C NOTES:

068 E @ #e=as

o9 C 1) USER COMPOSES THE MAIN PROGRAM WH|CH CALLS ON SUBROUTINE STOUCH
070 C 2) USER COMPOSES SUBROUTINE SIDE(T,H,X,»R,DX)

071 c

072 C INPUT ARGUMENTS:

073 G e i e

074 C T - CURRENT TIME

07% C H - CURRENT |INTEGRATION STEP LENGTH

076 C X - CURRENT STATE VARIABLES VECTOR

0s7 C R - WIENER PROCESS [NCREMENT VECTOR

0/8 C

079 C QUTPUT ARGUMENT

080 0 mmeemmmmmmee—ee

081 C DX = UNIT INCREMENT VECTOR EQUALS TO DXCI)=ACX, TI®H+B(X,T)#R(J)
082 C (12152r 00 0sNXy  J2L1)2s¢essNR), NONLINEAR VECTOR COEFEJCIENT:
083 9 ACX,T) AND B(X,T) ARE DESCRIBEU BY USER, DIMENSION

084 C OF A(X,T) EWUALG TO NX, MAXIMUM DIMENSION OF B(X,T)

08b C EQUALS TO NXx#NR,

VR-13} C 3) USER COMPOSES SUBROQUTINE OUTP(T,X,WIENER) TO OUTPUT

0a7 C THE SOLUT{ON X(I) AND WIENER PROCESS WIENFR(J),

Ued C 4) SUBROUTINE STOCH CALLS ON JNNER SUBROUTINES STH AND STEP

089 C 5) SUBROUTINE STH CALLS ON L IBRARY SUBROUTINE MCRED| (RECTANGULAR
090 C RANDOM NUMBER GENERATOR)

091 c

92 C METHOD

093 G =sz===s

094 C

095 C IN STH |8 USED EULER OR FORTH=-0RDER RUNGE-KUYTTA METHOL BOTH WITH
096 C CONSTANT AND VARIABLE INTEGRATION STEP LENGTH , THE CURRENT STEP
097 C IS HALFING AND DOUBING IN SUCH A MANNER TO GET THE SAME SAMPLES
V98 C OF NOISE WHILE SOLVING THE EQUATION WITH DIFFERENT VALUES OF

099 C EPS OR K.

100 C

101 C REFERENCES:

102 ¢  mreesseess

103 C 1. D.J.WRIGHT, IEEE TRANS, ON AUTOMATIC CONTROL, V.,AC=19, N 1, 19/4
104 C 2. NyNIKITIN, S.PERVACHEV, V,RAZEVIG, AUTOMATION AND

105 C REMOGTE CONTROL, N 4, 1975,

1ué C 3, C.W.,GEAR. NUMERICAL INITIAL VALUE PRUBLEMS IN ORDINARY

107 C DIFFERENT AL EQUATIONS, 1971,

108 c

109 c CHARACTERISIICS

110 C IS ClEimsisl=l SlElsl== =

111 c

112 C REVISIONS:

113 C. = eseesaee-

114 C

115 O s e e e o e e o e e e e 8 L
116 C

117 SUBROUTINE STOCH(X |, TMIN, TMAX,NX)NR,EPS,K,KMAX,KM|N, | STEP,METHOU,
118 ITPL,OPHNU, 1S, W)

119 c

120 DIMENSTON X1(1),4 (1)

121 G

1e2 c

123 KWil=1

124 KWZ2=KW1+NX

125 KWSsKW2+NX

126 KWazKWS+NX

127 KWDo=KW4+NR



128
129
130
141
182
153
154
165
1356
187
138
189
140
1414

202

Table 1 (continued)

KWozKWSH +NR
KW/=KW6+MNR
KWB=KW7+8R
KWO=KW8+NX
KWL0=KW9+NX
KWlii=KWiU+NX

CALL ON THE BASIC SUBROUTINE STH

CALL STH(XT»TMIN, THAX,NX,NR,EPS,K,KMAX,KMIN, |STEP,METHOU,
ITPL,DPINU, IS, WIKWL)Y yWw(KW2) , WIKKS) yW(KWE) , WIKWHD) , W(KWE) , W(KW/),
2HCKWB) ) WIKHWD) y WC(KWLIU) ,W(KWL11))

RETURN

END
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Table 2

THIS IS HBASIC SUBROUTINE TO SOLVE STOCHASTIC DIFFERENTIAL EWUAT|ON

SUBROUTINE STH(X,TM|N, TMAX,NX,NR,EPS,K,KMAX, KM|N, ISTEP,METHUD,

ITPL,OP»NU, 1S, X2, X2, XH2, W IENER,WIENEL,R»R1,51,52,55,84)

DIMENSION X(1)»X1(1),X2¢1),XH2(1) WIENER(L) ,WIENEL(L),R(1)H,RI(L),

181¢1),52(1),83(1),54(1)

DATA P12/6,288185307/
DETERMINE ZERO IN|THAL CONDITIONS FOR WIENER PROCESSES

PO 1 JF1,NR
WIENER(J)=0,0

veo FOR TIME T, SWITCH IS AND VARIABLE TPR RUNNIG
THE QUTPUTING SUBROUTINE DUTP

T=TMIN

1S=0

TPR=TP1
EPS1=ERS/10.0

DETERMINE THE MIN|IMUM AND MAX|MUME VALUES OF INTEGRATION
STEP LENGTH

HMIN= (TMAX=THMIN) /2#%#KMAX
HMAXS (TMAX=TM|N) /2%%#KM | N
SHM=S5QART(HMIN)

CALL ON USER SUBROUTINE QUTP T0 OUTPUT THE INITIAL CONDITIONS
CALL OUTP(T,X,WIENER)

THE BEGINING OF THE INTEGRATION,
DETERMINE THE CURRENT INTEGRATION LENGTH STEP

H= (TMAX=TM|N)/2%#K
HZ2=H+H

STORAGE THE PRECEDING VALUE OF STATE NU OF RANDOM NUMBER GENERATOR
AND WIENER PRQOCESS FOR A RESTART

Ni=nU

DO 3 J=1,NR
WIENELC(J)=WIENER(J)
R(JI=0,0

CALCULATE THE NUMBER OF CONSECUTIVE SAMPLINGS KR
KR=INT(H/HMIN+0,1)

GENERATE GAUSS|AN INCREMENTS R(J) OF WIENER PROCESS AND
THE WIENER PROCESS AT THE POINT T#H

DO 4 I=1,KR

DO 4 J=1,NR

CALL MCREDI(NU,REC1)

CALL MCREU/|(NU,RECZ)
IF(REC1.EQ,0,0)G0TO o1
GS=SURT(=2,UxALOG(RECL))#COS(PI2*REC2)
R({JI=R(JI+GS
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Table 2 (continued)

DO 5 J=1,NR
R{JI=R(J)#SHM
WIENER(JI=WIENER(J)+R(J)

CALL ON SUBROUTINE STEP TQ CALCULATE THE STATE VARIABLES
X1C§) ON THE FIRST STEP LENGTH H

CALL STEP(T,H,X,R,X1,NX,NR,METHOD,S1,82,53,54)

IF ISTEP=0, PUT THE VALUES X1(Il) TO THE CURRENT STATE VARIABLES
VECTOR X({) AND GO TOU THE BOTTOM OF SUBROUTINE

JFCISTEP.NE.0O)GUTO 7
T=T+H

DD 6 I1=1,NX
XC)y=X1(1)

IS={S5+]1

GOTO 16

IF ISTEP NOT EWUALS TO ZERQ, COMPUTE THE NEXT STEP
OF THE LENGTH H AND THE LARGER STEP OF THE LENGTH 2#H

GENERATE GAUSSIAN INCREMENTS OF WIENER PROCESS ON THE NEXT STEP R1(J)
AND CALCULATE WIENER PROCESS AT THE POINT T+2#H

DO 8 J=1,NR

R1(J)=0,0

DO 10 I1=1,KR

DO 10 J=1,NR

CALL MCREDI(NU,REC1)

CALL MCREDI(NU,RECZ)
IF(REC1,EQ,0,0)GOTO v
GS=S0RT(=2,0#ALOG(RECL))#COS(PI2%*REC2)
R1(J)=R1(J)+GS

DO 11 J=1,NR
RLCJI=RLCJ)#SHM
WIENERCJ)=WIENER(J)+R1L ()
R(JISROJI+RL(J)

CALL ON SUBROUTINE STEP TO CALCULATE XH2(|) ON THE LARGE STEP 2%H
CALL STEP(T,H2,X,R,XH2,NX,NR,METHOD,S1,582,5%,54)

CALL ON SUBROUTINE STEP TO CALCULATE X2(1) ON THE SECOND STEP H
CALL STEP(T#H,H,X1,R1,X2,NX,NR,METHOD,S1,52,53,54)

CALCULATE THE LARGEST ERROR DM

DM=0.0

DO 12 |=1,NX

DE=ABS(XH2(1)=X2(())

XA=ABS(X2(1))

|F (XA.GT.1,0)DE=DE/XA

|F (DE.GT,DM)DM=DE

CONT I NUE

IS DM LARGER EPS?

|F (DM-EPS$)13,13,20

[F DM<EPS, DETERM|NE CURRENT TIME T=T+H AND CURRENT STATE VARIABLES
XCl)=X2¢1), IF IN ADU|ITION DM<KEPS/10 DOUBL THE LENGTH STEP
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Table 2 (continued)

IFCDM.LTEPSL)KZK~1
[F (K LT KMIN)K=KM|N
TaT+H2

|85 |85+2

DD 15 I=1,NX
XCh)y=sxai)

CHECK THE NECESSERITY TO CALL ON SUBROUTINE QUTP

lF(T?TPR)Z:lQalg

TPR=TPR+DP

CALL OUTP(T,X,WIENER)

IS T LARGER THAN TMAX?

IF(T+HMIN/2,0,LT,TMAX)GOTO 2

GOTO 25

IF DM>EPS, REPEAT THE CALCULATIONS HALFING THE LENGTH STEP
KaKel

IS K LARGER THAN KMAX?

IF(KMAX=K)2L1,22,22

IF K>KMAX, ELIMINATE K AND GO TO THE NEXT STEP

K=KMAX

GOTO 14

IFf K LESS DR EGUAL KMAX RENEW THE STATE OF THE RANDOM NUMBER
GENERATOR AND WIENER PROCESSES AND REPEAT THE CALCULAT|ONS
NUBNY

DO 23 Js1,NR

WIENER(J)=WIENEL(J)

GOTD 2

RETURN

END



Table 3

001 C

002 C THIS IS INNER SUBROUT|NE TO PERFORM INTEGRATION ON ONE STEP,
003 c IF METHOD=0, SUBROUTINE STEP OBTAINS ITO SOLUTION BY EULER
Do4 c METHOD, OTHERWISE STRATONOVICH SOLUTION BY THE FORTH-ORWDER
005 C RUNGE~-KUTTA METHOD,

006 c

007 SUBROUT INE STEP(T,H,X,R,XH,NX,NR,METH0OD,S1,52,53,54)

008 C

go9 c DIMENSION X(1),R(1),XH(1),S1(1),82(1),S3(1),54(1)

010

011 C CALL ON USER SUBROUTINE SIDE TO DETERMINE THE |INCREMENT OF
012 c STATE VARIABLES ON THE STEP LENGTH H WITH INITIAL

013 C CONDITIONS X(I1) AT THE TIME T,

014 C

015 CALL SIDECT,H,X,R,51)

D16 ¢

017 C IS METHOD=07?

018 C

019 IF(METHOD ,NE,0)GOTO 2

020 C

021 C [F METHOD=0 CALCULATE THE NEXT SAMPLE XH(I) OF EULER SOLUTIQN
022 C AT THE POIN T+H AND GO TO THE BOTTOM OF THE SUBROUTINE

D23 c

024 DO 1 I=1,NX

025 1 XHCI)=SLOC1)+X (1)

026 GOoTO 7

027 C

028 c IF METHOD NOT EQUAL TO ZERO CALCULATE THE NEXT RUNGE=-KUTTA
029 C COEFFICIENTS

030 C

031 2 DO 3 |=1,NX

032 3 XHCI)sX(1)+«S1(1)%0,5

033 CALL SIDE(CT+H#0D,5,H,XH,R,S2)

0354 DO 4 |1=1,NX

D35 4 XHOI)=X(1)+S2(1)*(0,5

0356 CALL SIPE(T+H®#0,5,H,XH,R,S53)

087 DO 5 1=1,NX

0S8 5 XHCI)=X(1)+83(¢1)

0359 CALL SIDE(T+H,H,XH,R,S54)

040 ¢

041 C DETERMINE THE NEXT SAMPLE XH(1) OF STRATONQVICH SOLUTION
042 C

043 DO 6 I=1,NX

044 6 XHCI)=(S1()+2,0#82¢|)+2,0#S3(()+54(|))/6,0+X( 1)

045 7 RETURN

046 END



