

Digital Simulation of Continuous Stochastic Systems

Razevig, Vsevolod D

1977

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Razevig, V. D. (1977). Digital Simulation of Continuous Stochastic Systems. (Technical Reports TFRT-7121).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CODEN: LUTFD2/(TFRT-7121)/1-032/(1978)

DIGITAL SIMULATION OF CONTINUOUS STOCHASTIC SYSTEMS

VSEVOLOD D. RAZEVIG

Department of Automatic Control Lund Institute of Technology May 1977 Dokumentutgivare
Liund Institute of Technology
Handläggere Dept of Automatic Control
06T0

Dokumenthernn

REPORT LUTFD2/(TFRT-7121)/1-032(1977)

Utgivningsdatum

06T4

Arendebeteckning

06T6

60T6

Mottagarens uppgifter

62T4

Författare

10850 Razevig

10T4

Dokumenttitel och undertitel

Digital Simulation of Continuous Stochastic Systems

Referat (sammandrag)

simulation algorithms for multivariable stochastic differential equations are given. Algorithms of different orders of convergence are derived using Picard iteration and mean square estimation of stochastic integrals. The algorithms are tested on a simple example, Both constant and variable integration step size are used. FORTRAN programs are included.

Referat skrivet av

author

Förslag till ytterligare nyckelord

Numerical Integration. ITO equations. Variable steplength.

Klassifikationssystem och -klass(er)

50T0

Indextermer (ange källa)

52T0

Omfång 32⊤pages

Språk

English

Sekretessuppgifter ISSN 60T0

Övriga bibliografiska uppgifter

Dokumentet kan erhållas från

Department of Automatic Control Lund Institute of Technology

P O Box 725, S-220 07 LUND 7, Sweden

56T2

Pris 66T0

Blankett LU 11:25 1976-07

DOKUMENTDATABLAD enligt SIS 62 10 12

SIS-DB 1

DIGITAL SIMULATION OF CONTINUOUS STOCHASTIC SYSTEMS

V.D. Razevig

1. FORMULATION OF THE PROBLEM

A mathematical model of a dynamic system with stochastic perturbations can be described by the vector differential equation

$$dx = a(x,t)dt + b(x,t,)dw(t)$$
 (1)

where x is an n-dimensional state vector, w(t) a m-dimensional vector whose components are a(x,t) is a n-vector of coefficients and b(x,t) is n x m matrix of coefficient It is assumed that both a(x,t) and b(x,t) satisfy Lipschitz conditions [3].

Equation (1) is considered as a stochastic differential equation in the sense of the stochastic integral [1]

$$I_{v} = \int_{t_{0}}^{t} \Phi(x(\tau), \tau) dw(\tau) =$$
(2)

$$= 1.i.m.\sum_{\Delta \to 0} \Phi((1-v)x(t_{i}) + vx(t_{i+1}),t_{i})[w(t_{i+1}) - w(t_{i})]$$

where
$$t_0 < t_1 < \ldots < t_N = t$$
, $\Delta = \max(t_{i+1} - t_i)$, $\Phi(x,t)$ is an arbitrary

function of x and t, and the parameter ν lies within the interval $0 \le \nu \le 1$. The Ito integral corresponds to $\nu = 0$, the Stratonovich integral to $\nu = 0.5$. One physical example which corresponds to intermediate values of ν is mentioned in [11].

The purposes of the report is to develop numerical algorithms of different order for integration of (1). Both constant and variable steplengths are considered. The integration interval $t\in[t_{\min},t_{\max}]$ is divided into N segments

$$t_{\min} = t_0 < t_1 < t_2 < \dots < t_N = t_{\max}$$
 of sizes $h_r = t_{r+1} - t_r$.

When integrating equation (1) with constant steplength h_r =h=const, successively finer approximations to the same sample of noise w(t) were obtained by successive doubling

of N in such that the value of an approximation to the Wiener process w(t) at any point t_r equals the values of finer approximations at that time. When applying the variable steplength algorithms, the current step size h_r is an integer multiple of some smallest integration step size

$$h_{\min} = \frac{t_{\max} - t_{\min}}{2^{K_{\max}}}.$$
 (3)

The current step size is thus equal to

$$h_{r} = \frac{t_{max} - t_{min}}{2^{K_{r}}}$$
 (4)

It is determined by the parameter \mathbf{K}_r within the interval $\mathbf{K}_{\text{min}}{^<\mathbf{K}_r}{^<\mathbf{K}_{\text{max}}}.$

The samples of the m-dimensional Wiener process $w(t) = \{w_j(t)\}$ are generated by computer as

$$w_{j}(t_{r+1}) = w_{j}(t_{r}) + \sqrt{h_{\min}} \sum_{l=1}^{\Sigma} \zeta_{J_{r}+(l-1)m+j}$$
 (5)

where j=1,2,...,m, $z\zeta_1$ are Gaussian random numbers with zero mean and unite variance which are generated with the smallest sample interval h_{\min} , J_r is the number of latest sample of the random number generator at the previous integration step t_r . See also Fig. 1.

Fig. 1. Wiener process generator

2. SIMULATION ALGORITHMS AT ONE INTEGRATION STEP

Using Picard iterations [3] the following difference schemes are obtained

$$x^{[\ell+1]}(t_{r+1}) = x^{[\ell]}(t_r) + \int_{t_r}^{t_{r+1}} a(x^{[\ell]}(s), s) ds + \int_{t_r}^{t_{r+1}} b(x^{[\ell]}(s), s) dw(s)$$
 (6)

where the indices in the square brackets indicates the number of iterations.

Using the zero approximation $x^{[0]}(t)=x(t_r)$ and a Taylor series expansion of the functions a_i and b_{ij} near the point $(x(t_r),t_r)$ a second approximation is obtained by retaining only the first-order derivatives of functions $a_i(x,t)$ and $b_{ij}(x,t)$. Hence

$$x_{i}^{[2]}(t_{r+1}) \approx x_{i}(t_{r}) + a_{i}^{r} h_{r} + \frac{\partial a_{i}^{r}}{\partial t} \frac{h_{r}^{2}}{2} + \frac{n}{\sum_{k=1}^{\infty} \frac{\partial a_{i}^{r}}{\partial x_{k}}} a_{k}^{r} \frac{h_{r}^{2}}{2} + \frac{h_{r}^$$

where $h_r = t_{r+1} - t_r$ and the notations

$$a_{i}^{r}=a_{i}(x(t_{r}),t_{r}), b_{ij}^{r}=b_{ij}(x(t_{r}),t_{r})$$

has been introduced.

Equation (7) contains three stochastic integrals. The first two integrals are the same for any value of the parameter ν defined in (2). The Ito lemma [9] gives

$$[w_{j}(t_{r+1})-w_{j}(t_{r})](t_{r+1}-t_{r}) = \int_{t_{r}}^{t_{r+1}} (s-t_{r})dw_{j}(s) + \int_{t_{r}}^{t_{r+1}} [w_{j}(s)-w_{j}(t_{r})]ds$$
(*8)

Introduce the integral

$$\theta_{j} = \int_{t_{r}}^{t_{r+1}} [w_{j}(s) - w_{j}(t_{r})] ds.$$
(9)

This integral can not be expressed in closed form. It is therefore approximated by its mean square estimate based on the assumption that the samples $w_j(t_r)$ and $w_j(t_{r+1})$ are known. Hence

$$\hat{\theta}_{j} = E\{\theta_{j} | w_{j}(t_{r+1}), w_{j}(t_{r})\} = \frac{1}{2} h_{r} \Delta w_{j}^{r}$$
(10)

where

$$\Delta w_{j}^{r} = w_{j}(t_{r+1}) - w_{j}(t_{r}). \tag{11}$$

The estimate $\hat{\theta}_j$ converges to θ_j for each realization of w(t) as h_r is refined.

The diagonal elements (l=j) in the third stochastic integral at expression (7) can be calculated analytically, others (l \neq j) are estimated using the procedure outlived above. Hence

$$\hat{\psi}_{1j}^{r} = \int_{t_{r}}^{t_{r+1}} \Delta w_{1}(s) dw_{j}(s) = \begin{cases} \frac{1}{2} \left[\Delta w_{j}^{r} \right]^{2} - \left(\frac{1}{2} - v \right) h_{r}, & 1 = j, \\ \frac{1}{2} \Delta w_{1}^{r} \Delta w_{j}^{r}, & 1 \neq j. \end{cases}$$
(12)

Introducing (8), (10) and (12) into the approximation (7) retaining terms of different orders of magnitude, a set of algorithms for digital simulation of the stochastic differential equation (1) are obtained.

2.1 First Order Algorithms

A first order algorithm is obtained from the general expression (7) by neglecting terms order $h_r \Delta w_j$, h_r^2 etc. The algorithm is given by

$$\hat{\mathbf{x}}_{\mathbf{i}}^{r+1} = \hat{\mathbf{x}}_{\mathbf{i}}^{r} + \mathbf{a}_{\mathbf{i}}^{r} \mathbf{h}_{r} + \sum_{j=1}^{m} \mathbf{b}_{\mathbf{i}j}^{r} \Delta \mathbf{w}_{\mathbf{j}}^{r} + \sum_{j=1}^{m} \sum_{k=1}^{m} \frac{\partial \mathbf{b}_{\mathbf{i}j}^{r}}{\partial \mathbf{x}_{k}} \sum_{l=1}^{m} \mathbf{b}_{\mathbf{k}l}^{r} \hat{\mathbf{\psi}}_{\mathbf{l}j}^{r}$$

$$(13)$$

where $\hat{\psi}_{1j}^r$ is defined in (12), $\hat{x}_i^r = \hat{x}_i(t_r)$, the $\hat{x}(t_r)$ marks the approximative value of exact solution $x(t_r)$.

The sample path convergence of the scheme (10) to the exact solution of equation (1) follows from [8] if the Ito stochastic integral is replaced by the general definition (2) and the new rules of stochastic integral calculations are considered.

If we neglect the last term of the right side of algorithm (13) the Euler scheme

$$\hat{x}_{i}^{r+1} = \hat{x}_{i}^{r} + a_{i}^{r}h_{r} + \sum_{j=1}^{m} b_{ij}^{r} \Delta w_{j}^{r}$$
 (i=1,2,...,n) (14.)

is obtained. This converges to the Itô solution of equation (1). It has an accuracy of order \sqrt{h} . Therefore, if v>0, algorithm (13) is the simplest algorithm for obtaining the numerical solution of the stochastic differential equation (1) in the sense of the general stochastic integral (2).

^{*} We do not use higher than second order iterations (7), since we can not estimate more complicated stochastic integrals. If we replace higher order integrals by equivalent random values as is done in [5, 9], we get only statistical convergence, not the sample path.

2.2 Higher Order Algorithms

The algorithm order $h^{3/2}$ is obtained from the full expression (7):

$$\hat{\mathbf{x}}_{\mathbf{i}}^{\mathbf{r}+1} = \hat{\mathbf{x}}_{\mathbf{i}}^{\mathbf{r}} + \mathbf{a}_{\mathbf{i}}^{\mathbf{r}} \mathbf{h}_{\mathbf{r}} + \sum_{\mathbf{j}=1}^{m} \mathbf{b}_{\mathbf{i}\mathbf{j}}^{\mathbf{r}} \Delta \mathbf{w}_{\mathbf{j}}^{\mathbf{r}} + \sum_{\mathbf{j}=1}^{m} \sum_{\mathbf{k}=1}^{\infty} \frac{\partial \mathbf{b}_{\mathbf{i}\mathbf{j}}^{\mathbf{r}}}{\partial \mathbf{x}_{\mathbf{k}}} \sum_{\mathbf{l}=1}^{m} \mathbf{b}_{\mathbf{k}\mathbf{l}}^{\mathbf{r}} \psi_{\mathbf{l}\mathbf{j}}^{\mathbf{r}} + \sum_{\mathbf{j}=1}^{m} \mathbf{b}_{\mathbf{k}\mathbf{l}}^{\mathbf{r}} \psi_{\mathbf{l}\mathbf{j}}^{\mathbf{r}} + \sum_{\mathbf{j}=1}^{m} \frac{\partial \mathbf{a}_{\mathbf{i}\mathbf{j}}^{\mathbf{r}}}{\partial \mathbf{x}_{\mathbf{k}}} \mathbf{b}_{\mathbf{k}\mathbf{j}}^{\mathbf{r}} + \sum_{\mathbf{k}=1}^{n} \frac{\partial \mathbf{b}_{\mathbf{i}\mathbf{j}}^{\mathbf{r}}}{\partial \mathbf{x}_{\mathbf{k}}} \mathbf{a}_{\mathbf{k}}^{\mathbf{r}} + \sum_{\mathbf{k}=1}^{n} \frac{\partial \mathbf{a}_{\mathbf{i}\mathbf{j}}^{\mathbf{r}}}{\partial \mathbf{x}_{\mathbf{k}}} \mathbf{a}_{\mathbf{k}}^{\mathbf{r}} + \sum_{\mathbf{k}=1}^{n} \frac{\partial \mathbf{a}_{\mathbf{i}\mathbf{j}}^{\mathbf{r}}}{\partial \mathbf{x}_{\mathbf{k}}} \mathbf{a}_{\mathbf{k}}^{\mathbf{r}} \right).$$

$$(15)$$

As mentioned above, we can not estimate more complicated stochastic integrals, than these given by (9) and (12), $\int \left(\Delta w(s)\right)^2 ds$, for example. It is **still** possible to partly improve the accuracy of algorithm (15) retaining the higher derivatives of the functions $a_i(x,t)$ at the second iteration $x^{[2]}(t)$. Thus algorithms analogous to the forth-order Runge-Kutta (RK) scheme for deterministic equations [4] can be obtained as follows

$$\hat{x}_{i}^{r+1} = \hat{x}_{i}^{r} + \frac{1}{6} (K_{1i} + 2K_{2i} + 2K_{3i} + K_{4i}) - (\frac{1}{2} - v) \sum_{j=1}^{n} \sum_{k=1}^{m} \frac{\partial b_{ik}^{r}}{\partial x_{j}} b_{jk}^{r} h_{r}$$

$$(i=1,2,...,n) \qquad (16)$$

where

$$K_{1i} = a_{i}(\hat{x}^{r}, t_{r}) h_{r}^{r} + \sum_{j=1}^{m} b_{ij}(\hat{x}^{r}, t_{r}) \Delta w_{j}^{r},$$

$$K_{2i} = a_{i}(\hat{x}^{r} + \frac{1}{2}K_{1}, t_{r} + \frac{1}{2}h_{r}) h_{r} + \sum_{j=1}^{m} b_{ij}(\hat{x}^{r} + \frac{1}{2}K_{1}, t_{r} + \frac{1}{2}h_{r}) \Delta w_{j}^{r},$$

$$K_{3i} = a_{i}(\hat{x}^{r} + \frac{1}{2}K_{2}, t_{r} + \frac{1}{2}h_{r}) h_{r} + \sum_{j=1}^{m} b_{ij}(\hat{x}^{r} + \frac{1}{2}K_{2}, t_{r} + \frac{1}{2}h_{r}) \Delta w_{j}^{r},$$

$$K_{4i} = a_{i}(\hat{x}^{r} + K_{3}, t_{r+1}) h_{r} + \sum_{j=1}^{m} b_{ij}(\hat{x}^{r} + K_{3}, t_{r+1}) \Delta w_{j}^{r}.$$

When the coefficients b_{ij} of equation (1) are small the scheme (16) has advantages compared with scheme (15) and (13) from a convergence-rate accuracy criterion. But for large b_{ij} the two schemes have approximately the same accuracy. A similar phenomenon was first mentioned in [2] and then in [4, p.190].

Another way to get RK type approximations of equation (1) is to apply the standard RK scheme [4] which converges to the Stratonovich solution of stochastic differential equation (1) (see [2], [6], [7], [8], [13]). Hence the solution of equation (1) in the sense of the general stochastic integral (2) can be obtained by applying the standard RK scheme to the Stratonovich equation, equivalent to equation (1) which is given by

$$dx_{i}^{Str} = a_{1i}(x,t)dt + \sum_{j=1}^{m} b_{ij}(x,t)dw_{j}(t)$$
 (i=1,2,...,n) (18)

where

$$a_{1i}(x,t) = a_{i}(x,t) - (\frac{1}{2} - v) \sum_{j=1}^{n} \sum_{k=1}^{m} \frac{\partial b_{ik}}{\partial x_{j}} b_{jk}(x,t). \quad (19)$$

The standard RK scheme to solve equation (18) is given by

$$\hat{x}_{i}^{r+1} = \hat{x}_{i}^{r} + \frac{1}{6} (K_{1i} + 2K_{2i} + 2K_{3i} + K_{4i}) \quad (i=1,2,...,n)$$
 (20.)

where the coefficients K_{1i}, \dots, K_{4i} are defined in (17) replacing the functions $a_i(x,t)$ by $a_{1i}(x,t)$ (19).

Our experiments show that the two RK type schemes (16) and (20) have approximately the same rate of convergence but scheme (16) demands less computations at each integration step.

3. VARIABLE STEP SIZE

The integration step size control and estimation of local truncation error are well developed, for ordinary differential equations without stochastic disturbances [4]. It would be desirable to have analogous techniques for the stochastic differential equations also. An empirical development is given below.

The main idea for the variable integration step size method is the following. Each basic step of size h_r is done twice, once as two steps of size $h_r/2$ and once as one step of size h_r . See Fig. 2.

If the result of one step of size h_r is $x^{(1)}(t_{r+1})$, and the result of two steps of size $h_r/2$ is $x^{(2)}(t_{r+1})$. The local truncation error is given by

$$\delta_{r+1} = \max_{i} |x_{i}^{(1)}(t_{r+1}) - x_{i}^{(2)}(t_{r+1})|.$$
 (21)

Fig. 2. Variable step size

Compare δ_{r+1} with some limit error ϵ and modify steplength as follows:

- 1. If $\delta_{r+1} > \epsilon$ restart from point t_r using the integration step length $h_r^{new} = h_r^{old}/2$. To get the same samples of Wiener process the state of the random number generator and the value of the Wiener process $w(t_r)$ at each initial point t_r are stored. For a more detailed description, see [10].
- 2. If $\epsilon/10^<\delta_{r+1}^{}<\epsilon$ the next step is calculated using the step length $h_{r+1}^{}=h_r^{}.$
- 3. If $\delta_{r+1}\!\!<\!\epsilon/10$ calculate the next step using step length $h_{r+1}\!\!=\!\!2h_r\!\!\cdot\!$

This technique has been implemented for the RK method (20). See example in section 4.

4. EXAMPLES

4.1 A Simple First Order System

Consider the equation

$$dx = axdt + gxdw(t)$$
 (22)

which has the Itô solution

$$x(t) = x(0) \exp\{(a - \frac{1}{2}g^2)(t - t_0) + g[w(t) - w(t_0)]\}.$$
 (23)

Fig. 3a shows the Itô solution of equation (22) at the point t=1 with initial condition x(0)=1 as a function of integration step size $h=1/2^{\rm K}$ for various integration procedures with constant integration step length (parameters a= -1, g=1). Fig. 3b shows the Itô solution of the equation

Fig. 3. - Simulation at the Ito equation (22) using different algorithms

Fig. 3 Simulation of the Itô equation (24) using different methods.

- 1 Euler method (14)
- 2 first-order method (13)
- 3- second approximation (15)
- 4 standard Euler-Cauchy method (second-order Runge-Kutta method) applied to the equivalent Stratonovich equation (18)
- 5 Euler-Cauchy method analogues to (16)
- 6 Standard Runge-Kutta method (20) applied to the equivalent Stratonovich equation (18)
- 7 Runge-Kutta method (16)

$$dx = a \sin(x)dt + g \sqrt{|x|} dw(t)$$
 (24)

where a = -1, g = 1, x(0) = 1.

The relative rates of convergence were as follows:

quickest - Runge-Kutta methods (16), (20),

- second approximation (15),

intermediate - Euler-Cauchy methods,

- first-order method (13),

slowest - Euler method (14).

4.2 Algorithms with variable Step Length

The accuracies of the integration methods with constant and variable step length applied to the Itô equation (22) are illustrated in Fig. 4. The picture shows how the accuracy defined as

$$\delta(t) = \left| \frac{x(t) - \hat{x}(t)}{x(t)} \right|$$
 (25)

depends on the number of steps integration. Note that x(t) in expression (25) is the exact solution (23) of equation (22), and that $\hat{x}(t)$ is the numerical solution. Fig. 4 shows that RK method (20) with variable integration step length provides about 100 times higher accuracy with the same number of steps than RK method with constant step length. The variable step RK method is of course much more accurate than the Euler method (14) with constant step size. The advantage of the variable step size method increases with increasing accuracy.

4.3 A phase-locked loop

In the article [12] is discovered by practice that "the Euler integration is greatly superior to Runge-Kutta methods from a convergence-rate accuracy criterion". It is difficult to comment this statement since there was neither mathematical expression for Runge-Kutta method used (it is not obvious for stochastic equations) nor exact references. The simulation

Fig. 4. - Accuracies of methods with constant and variable step size.

- 1 Euler method (14) with constant step size
- 2 Runge-Kutta method (16) with constant step size
- 3 Runge-Kutta method (16) with variable step size

of same phase-locked loop used in [12] has therefore been repeated. The equations are

$$\begin{cases} \frac{dx_{1}}{dt} = x_{2}, \\ \frac{dx_{2}}{dt} = -\sin(x_{1}) - \cos(x_{1})\xi_{1}(t) - \sin(x_{1})\xi_{2}(t) \end{cases}$$
 (26)

where ξ_1 (t) and ξ_2 (t) are uncorrelated white random processes with unite spectral density. The Ito and Stratonovich solutions of equation (26) are the same since the term

$$\Sigma\Sigma$$
 $\frac{\partial b_{ik}}{\partial x_{j}}$ b_{jk} =0. The Euler and Runge-Kutta methods (14) and

(20) with constant step size where therefore used. The simulation results over the time interval t6[0.1] with initial conditions $\mathbf{x}_1(0) = \mathbf{x}_2(0) = 1/4$ and with different integration step size $h=1/2^K$, K=1,2...,14 are shown at Fig. 5. Our results shows that the RK method (20) has a higher rate of convergence than the Euler method (14).

Fig. 5. - Simulation of the phase-locked loop.

CONCLUSION

A set of integration algorithms with different rate of convergence were developed for numeric solution of multidimensional stochastic differential equations (1) using both constant and variable integration step size. It was empirically shown by examples that the variable integration step size technique can be implemented for stochastic differential equations and taht it has advantages both with respect to accuracy and computation time. FORTRAN routines integrating equation (1) by Euler (14) and Runge-Kutta (20) methods with constant and variable integration step size were given in [10]. The programs used in this report are listed in the Appendix. In practice we recommend that the variable step size technique is used only with Runge-Kutta methods because of the slow convergence rate of the Euler method.

ACKNOWLEDGEMENTS

This work was done while the author was at the Department of Automatic Control, Lund Institute of Technology, under a grant from the Swedish Institute. I would like to thank the Swedish Institute for providing this opportunity and I would also like to thank Prof. K J Åström for many interesting discussions on integration of stochastic differential equations.

REFERENCES

- 1. K.J. Aström. Introduction to Stochastic Control Theory, Academic Press, New York, 1970.
- I.G.Cumming. Computing aspects of problems in non-linear prediction and filtering. Ph. D. thesis, University of London, 1967.
- 3. J.1. Doob. Stochastic processes. Wiley, New York, 1953.
- C.W.Gear. Numerical initial value problems in ordinary differential equations. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1971.
- 5. C.J.Harris. Modelling, simulation and control of stochastic systems with applications in wastewater treatment. Int. J. Systems Sci., vol. 8, No. 4, 1977, pp. 393-411.
- 6. E.J.McShane. Stochastic calculus and stochastic models. Academic Press, New York, 1974.
- 7. N.N.Nikitin, S.V.Pervachev, V.D.Razevig. Solving stochastic differential equations of follow-up systems on digital computers.

 Automat. and Remote Control, No. 4, 1975, pp.133-137.
- 8. N.N.Nikitin, V.D.Razevig. Methods of digital simulation of stochastic differential equations and estimating of their accuracy.

 To appear in the "USSR J. Comput. Math. and Math. Phys.", No. 2, 1978.
- N.J.Rao, J.D.Borwankar, D.Ramkrishna. Numerical solution of Ito integral equations. SIAM J. Control, vol. 12, No.4 , 1974, pp. 124-139.
- 10. V.D.Razevig. Simulation of non-linear stochastic differential equations. Dept. of Automatic Control, Lund Institute of Technology, Lund, Sweden, Report TFRT-7120 , 1977.
- 11. V.D.Razevig. Reduction of stochastic differential equations with small parameters and stochastic integrals. (Submitted to the Int. J. Control).

- 12. F.D.Taylor. On stochastic phase-lock loop solutions. IEEE Trans. on Communications, vol. COM-24, January 1976, pp. 138-140.
- 13. D.J.Wright. The digital simulation of stochastic differential equations. IEEE Trans. Automat. Control, vol. AC-19, February 1974, pp. 75-76.
- 14. Programming and Documentation Rules for Subroutine
 Libraries Designed for the SCL. Eds Elmqvist, Tyssø,
 Wieslander, 1976.

Appendix

The FORTRAN program package for simulating the n-dimensional stochastic differential equation (1) contains three standard subroutines STOCH, STH, STEP, the main program, and at least two user subroutines SIDE and OUTP which are called on by standard subroutines, Tables 1-3. This package was tested on the computer PDP-15.

A.1 Main Program

The main program calls on the standard subroutine

CALL STOCH(XI,TMIN,TMAX,NX,NR,EPS,K,KMAX,KMIN,ISTEP, METHOD,TP1,DP,NU,IS,W)

where the input arguments are:

XI - vector of initial conditions of state variables

TMIN - initial time of integration

TMAX - upper limit of integration time

NX - number of first-order equation n in (1)

NR - number of input Wiener processes main (1)

EPS -local truncation error in the variable integration step length method, $\boldsymbol{\epsilon}$

K - defines the value of the integration step h (4) if ISTEP=0, otherwise K indicates the initial value of h

KMAX - indicates the minimum value of the integration step length h_{min} (3)

KMIN - indicates the maximum value h_{max}

ISTEP - if ISTEP=0, the integration interval $[t_{min}, t_{max}]$ is divided into 2^K equal segments of length h (4), otherwise the variable integration step method is used

METHOD - if METHOD=0, the subroutine obtains Itô solution by the Euler method, otherwise Stratonovich solution by the fourth-order Runge-Kutta method

TPl - first point of time to output the solution by means of the user subroutine OUTP

DP - increment of time to output the solution

NU - initial state of the random number generator (odd number).

The argument IS is the <u>output</u> one which equals the number of integration steps. Vector W is the <u>allocation vector</u>.

In the main program the user has to define the input arguments and declare the real dimensions of vectors XI(NX) and $W(7 \cdot NX + 4 \cdot NR)$.

A.2 Standard Subroutines

Subroutine STOCH (Table 1) is the auxiliary subroutine for dynamic allocation of vectors in FORTRAN programs (see report [14]). This subroutine calls the basic subroutine STH (Table 2) which organizes the numerical integration with a constant, if ISTEP=0, or with variable step length otherwise. The subroutine STH also contains the Wiener process generator (5) which calls the library subroutine MCREDI.

Subroutine STH calls the standard subroutine STEP (Table 3) to integrate one step by the Euler method (14), if METHOD=0, or by the RK method (20) otherwise.

A.3 User Subroutines

A.3.1 Subroutine SIDE. Subroutine STEP calls on the user subroutine

SIDE (T+H,H,XH,R,DX)

where the input arguments are

- T -current time, t_r
- H current integration step length, h_r , when using constant step technique, $h_r/2$ otherwise
- X initial vector $\vec{x}(t_r)$ on elementary integration interval (t_r, t_{r+1})
- R -vector of Wiener process increments $\Delta \vec{w}_r$.

The user has to write the program to calculate the output vector argument DX of dimension NX in such a way.

For the Euler method (14) DX is the vector state variables increments, for the R-K method (20) it is the vector coefficient \vec{K}_{ℓ} (ℓ =1,2,3,4).

The vector DX contains coefficients of the stochastic differential equation (1). Let the n×l vector $A(I) = \alpha_i(\vec{x}(t_r), t_r)$. Note that in many practical cases matrix $||b_{ij}||$ in equation (1) contains many zero elements. Therefore the user has to write down the n×m matrix $||b_{ij}||$ as a vector $B(J) = b_{ij}(\vec{x}_r, t_r)$ for non-zero elements b_{ij} . The dimension of B is equal to data of non-zero elements in matrix $||b_{ij}||$.

In the FORTRAN notation the i:th component of vector DX is equal to

$$DX(I) = A(I) *H+B(...) *R(I) + ... +B(...) *R(NR),$$

$$I = 1, 2, ..., NX.$$
(A.1)

Thus, in subroutine SIDE, the user has to define the vector coefficients A(I) and B(J) and write the expression (A.1) where H and R(J) are input arguments defined into basic subroutine STEP.

Due to allocation vector techniques the dimension of the vectors X, R, and DX can be described like this:

DIMENSION
$$X(1)$$
, $DX(1)$, $R(1)$

For vectors A and B the user has to point out their real dimensions.

A.3.2 Subroutine OUTP. Basic subroutine STH calls on the subroutine

to output the current time T, the vector state variables X and the Wiener process WIENER.

All the arguments of subroutine OUTP are the input arguments defined into the basic subroutine STH.

Dimensions of the vector X and WIENER are described in such a manner:

DIMENSION X(1), WIENER(1).

```
001
        C
              NAME: STOCH
        C
002
003
        C
               SUBTITLE: SOLUTION OF THE NONLINEAR ITO OR STRATONOVICH STOCHASTIC
        C
004
               DIFFERENTIAL EQUATIONS
        C
005
006
        C
              KEYWORDS:
007
        C
        C
008
               SOLUTION, SYSTEM OF NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS.
        C
009
              ITO EQUATION, STRATONOVICH EQUATION
        C
010
        C
              IMPLEMENTOR: VSEVOLOB D.RAZEVIG
011
                                                    DATE: 1977-05-19
        C
012
        C
013
014
        C
              INSTITUTE:
        C
015
              -----
        C
              DEPARTMENT OF AUTOMATIC CONTROL
016
        C
              LUND INSTITUTE OF TECHNOLOGY, SWEDEN
017
        C
018
        C
              ACCEPTED:
019
                                                        VERSION: 1
        C
020
021
        C
        022
        C
023
        C
              PURPOSE
024
        C
025
              ======
026
        C
        C
027
              ITO OR STRATONOVICH SOLUTION OF THE SYSTEM OF N FIRST-ORDER NUNLINEA
        C
028
              STOCHASTIC DIFFERENTIAL EQUATIONS X = A(X,T) + B(X,T) + W + WITH
        C
029
              CONSTANT OR VARIABLE LENGTH STEPS
        C
030
031
        C
              USAGE
032
        C
              =====
        C
033
        C
034
              PROGRAM TYPE: SUBROUTINE
        C
035
036
        C
037
        C
              ARGUMENTS:
        C
038
        C
              STOCH(XÍ, TMIN, TMAX, NX, NR, EPS, K, KMAX, KMIN, ISTEP, METHOD,
039
040
             1TP1, DP, NU, IS, W)
041
        C
        C
042
              XΙ
                     - VECTOR OF INITIAL CONDITIONS OF STATE VARIABLES
043
        C
              TMIN
                    - INITIAL TIME OF INTEGRATION
        C
044
              TMAX
                     - UPPER LIMIT OF INTEGRATION TIME
        C
045
              NX
                     - NUMBER OF EQUATIONS
046
        C
              NR
                     - NUMBER OF INPUT WHITE NOISES
047
        C
              EPS
                     - LOCAL TRUNCATION ERROR
        C
048
              K
                     - INDICATE THE INITIAL VALUE OF THE INTEGRATION STEP
        C
                       H=(TMAX-TMIN)/2**K
049
050
        C
              KMAX
                    - INDICATE THE MINIMUM VALUE OF THE INTEGRATION STEP
051
        C
                      HMIN=(TMAX-TMIN)/2**KMAX
        C
052
              KMIN
                    - INDICATE THE MAXIMUM VALUE OF THE INTEGRATION STEP
        C
053
                       HMAX=(TMAX-TMIN)/2**KMIN
        C
054
              ISTEP # IF ISTEP=0, INTEGRATION INTERVAL DIVIDED INTO 2**K EQUAL
                       SEGMENTS OF LENGTH H, OTHERWISE ARE USED THE VARIABLE
055
        C
056
        C
                       INTEGRATION STEP
        C
              METHOD- IF METHOD=0, SUBROUTINE OBTAINS ITO SOLUTION BY EULER METHOD
057
        C
058
                       OTHERWISE STRATONOVICH SOLUTION BY THE FOURTH-ORDER
        C
059
                       RUNGE-KUTTA METHOD
        C
060
              TP1
                     - FIRST POINT OF TIME TO OUTPUT THE SOLUTION BY MEANS USER
        C
061
                       SUBROUTINE OUTP
062
        C
              DP
                     -- INCREMENT OF TIME TO OUTPUT THE SOLUTION
        C
063
              NU
                    - INITIAL STATE OF RANDOM NUMBER GENERATOR
```

```
- NUMBER OF THE INTEGRATION STEPS
064
                     - ALLOCATION VECTOR HAVING DIMENSION 7*NX+4*NR
        C
065
066
        C
        C
              NOTES:
067
        C
0.68
               1) USER COMPOSES THE MAIN PROGRAM WHICH CALLS ON SUBROUTINE STOCH
        C
069
        C
              2) USER COMPOSES SUBROUTINE SIDE(T,H,X,R,DX)
070
071
        C
        C
                  INPUT ARGUMENTS:
072
        C
073
074
        C
                  T
                      - CURRENT TIME
        C
                      - CURRENT INTEGRATION STEP LENGTH
075
                  H
        C
                      - CURRENT STATE VARIABLES VECTOR
076
                  X
        C
                      - WIENER PROCESS INCREMENT VECTOR
077
        C
0/8
        C
                  OUTPUT ARGUMENT
079
080
        C
                     - UNIT INCREMENT VECTOR EQUALS TO DX(I)=A(X,T)*H+B(X,T)*R(J)
        C
081
                  DX
                        (I=1,2,...,NX, J=1,2,...,NR). NONLINEAR VECTOR COEFFICIENTS
        C
082
                        A(X,T) AND B(X,T) ARE DESCRIBED BY USER, DIMENSION
        C
083
        C
                        OF A(X,T) EQUALG TO NX, MAXIMUM DIMENSION OF B(X,T)
084
        C
                        EQUALS TO NX*NR.
085
        C
               3) USER COMPOSES SUBROUTINE OUTP(T,x,WIENER) TO OUTPUT
086
087
        C
                  THE SOLUTION X(I) AND WIENER PROCESS WIENER(J).
        C
              4) SUBROUTINE STOCH CALLS ON INNER SUBROUTINES STH AND STEP
088
              5) SUBROUTINE STH CALLS ON LIBRARY SUBROUTINE MCREDI (RECTANGULAR
        C
089
        C
                  RANDOM NUMBER GENERATOR)
090
        C
091
092
        C
              METHOD
        C
093
              ======
        C
1194
        C
               IN STH IS USED EULER OR FORTH-ORDER RUNGE-KUTTA METHOD BOTH WITH
095
        C
              CONSTANT AND VARIABLE INTEGRATION STEP LENGTH . THE CURRENT STEP
096
              IS HALFING AND DOUBING IN SUCH A MANNER TO GET THE SAME SAMPLES
        C
097
               OF NOISE WHILE SOLVING THE EQUATION WITH DIFFERENT VALUES OF
098
        C
099
        C
              EPS OR K.
        C
100
        C
              REFERENCES:
101
        C
102
               1. D.J.WRIGHT, IEEE TRANS. ON AUTOMATIC CONTROL, V.AC-19, N 1, 1974
        C
103
        C
               2. N.NIKITIN, S.PERVACHEV, V.RAZEVIG, AUTOMATION AND
104
        C
                  REMOTE CONTROL, N 4, 1975.
105
        C
               3. C.W.GEAR. NUMERICAL INITIAL VALUE PROBLEMS IN ORDINARY
106
        C
                  DIFFERENTIAL EQUATIONS, 1971.
107
        C
108
109
        C
               CHARACTERISTICS
        C
110
               C
111
        C
               REVISIONS:
112
113
        C
114
        C
        C----
115
        C
116
               SUBROUTINE STOCH(XI,TMIN,TMAX,NX,NR,EPS,K,KMAX,KMIN,ISTEP,METHOD,
117
             1TP1, DP, NU, IS, W)
118
119
               DIMENSION XI(1), W(1)
120
        C
121
        C
122
               KW1=1
123
124
              KW2=KW1+NX
125
               KW3=KW2+NX
```

126

127

KW4=KW3+NX KW5=KW4+NR

Table 1 (continued)

128 129 130 131 132 133 134 135 136 137 138 139 140	C C	<pre>KW6=KW5+NR KW7=KW6+NR KW8=KW7+NR KW9=KW8+NX KW10=KW9+NX KW11=KW10+NX CALL ON THE BASIC SUBROUTINE STH CALL STH(XI,TMIN,TMAX,NX,NR,EPS,K,KMAX,KMIN,ISTEP,METHOD, 1TP1,DP,NU,IS,W(KW1),W(KW2),W(KW3),W(KW4),W(KW5),W(KW6),W(KW7), 2W(KW8),W(KW9),W(KW10),W(KW11)) RETURN</pre>

```
001
         \Box
002
         \mathbb{C}
               THIS IS BASIC SUBROUTINE TO SOLVE STOCHASTIC DIFFERENTIAL EQUATION
         C
003
004
               SUBROUTINE STH(X,TMIN,TMAX,NX,NR,EPS,K,KMAX,KMIN,ISTEP,METHOD,
005
              1TP1, DP, NU, IS, X1, X2, XH2, WIENER, WIENE1, R, R1, S1, S2, S3, S4)
006
         C
007
               DIMENSION X(1), X1(1), X2(1), XH2(1), WIENER(1), WIENE1(1), R(1), R1(1),
008
              1S1(1),S2(1),S3(1),S4(1)
009
         C
               DATA P12/6.283185307/
010
011
         C
012
         C
               DETERMINE ZERO INITIAL CONDITIONS FOR WIENER PROCESSES
         C
013
014
               DO 1 J=1,NR
015
             1 WIENER(J)=0.0
         C
016
017
         C
                 ... FOR TIME T, SWITCH IS AND VARIABLE TPR RUNNIG
         C
                THE OUTPUTING SUBROUTINE OUTP
018
019
         C
020
               T=TMIN
021
               1S=0
               TPR=TP1
022
023
               EPS1=EPS/10.0
024
         Ç
         Ç
025
               DETERMINE THE MINIMUM AND MAXIMUME VALUES
                                                              OF INTEGRATION
026
         C
               STEP LENGTH
         C
027
028
               HMIN=(TMAX-TMIN)/2**KMAX
029
               HMAX=(TMAX→TMIN)/2**KMIN
               SHM=SQRT(HMIN)
030
         C
031
         C
032
               CALL ON USER SUBROUTINE OUTP TO OUTPUT THE INITIAL CONDITIONS
033
         C
               CALL OUTP(T, X, WIENER)
034
         C
035
               THE BEGINING OF THE INTEGRATION.
036
         \mathbb{C}
         C
               DETERMINE THE CURRENT INTEGRATION LENGTH STEP
037
         Ç
038
039
             2 H=(TMAX-TMIN)/2**K
040
               H2=H+H
041
         C
         C
042
               STORAGE THE PRECEDING VALUE OF STATE NU OF RANDOM NUMBER GENERATOR
043
         C
               AND WIENER PROCESS FOR A RESTART
044
         C
045
               N1=NU
046
               DO 3 J=1,NR
047
               WIENE1(J) = WIENER(J)
048
             3 R(J) = 0.0
049
         C
050
         C
               CALCULATE THE NUMBER OF CONSECUTIVE SAMPLINGS KR
051
         C
052
               KR = INT(H/HMIN+0,1)
         C
053
        C
054
               GENERATE GAUSSIAN
                                     INCREMENTS R(J) OF WIENER PROCESS AND
        C
055
               THE WIENER PROCESS
                                     AT THE POINT T+H
         Ċ
056
057
               DO 4 |=1,KR
058
               DO 4 J=1,NR
            31 CALL MCREDI(NU, REC1)
059
060
               CALL MCREDI(NU, REC2)
061
               IF (REC1.EQ.0.0) GOTO 31
062
               GS=SQRT(-2,U*ALOG(REC1))*COS(P12*REC2)
063
             4 R(J)=R(J)+GS
```

```
064
               DO 5 J=1,NR
065
               R(J)=R(J)*SHM
066
             5 WIENER(J)=WIENER(J)+R(J)
067
        C
               CALL ON SUBROUTINE STEP TO CALCULATE THE STATE VARIABLES
068
               X1(1) ON THE FIRST STEP LENGTH H
        C
069
        C
0/0
               CALL STEP(T,H,X,R,X1,NX,NR,METHOD,S1,S2,S3,S4)
071
072
        C
073
        C
               IF ISTEP=0, PUT THE VALUES X1(1) TO THE CURRENT STATE VARIABLES
        C
074
               VECTOR X(I) AND GO TO THE BOTTOM OF SUBROUTINE
075
        C
076
               IF (ISTEP.NE.D)GOTO 7
077
               T = T + H
078
               DO 6 |=1,NX
079
             6 X(1) = X1(1)
080
               1S=|S+1
081
               GOTO 16
082
        C
083
        C
               IF ISTEP NOT EQUALS TO ZERO, COMPUTE THE NEXT STEP
        C
084
               OF THE LENGTH H AND THE LARGER STEP OF THE LENGTH 2*H
085
        C
086
        Ç
               GENERATE GAUSSIAN INCREMENTS OF WIENER PROCESS ON THE NEXT STEP R1(J)
        C
087
               AND CALCULATE WIENER PROCESS AT THE POINT T+2*H
        C
088
089
             7 DU 8 J=1,NR
090
             8 R1(J)=0.0
091
               DO 10 |=1,KR
092
               DO 10 J=1,NR
093
             9 CALL MCREDI(NU, REC1)
094
               CALL MCREDI(NU, REC2)
095
               IF(REC1.EQ.0.0)GOTO 9
               GS=SQRT(-2.0*ALOG(REC1))*COS(P12*REC2)
096
097
            10 R1(J) = R1(J) + GS
098
               DO 11 J=1,NR
099
               R1(J)=R1(J)*SHM
100
               W \mid ENER(J) = W \mid ENER(J) + R1(J)
101
            11 R(J) = R(J) + R1(J)
102
        C
103
        C
               CALL ON SUBROUTINE STEP TO CALCULATE XH2(1) ON THE LARGE STEP 2*H
104
        C
105
               CALL STEP(T, H2, X, R, XH2, NX, NR, METHOD, S1, S2, S3, S4)
106
        C
107
        Ç
               CALL ON SUBROUTINE STEP TO CALCULATE X2(1) ON THE SECOND STEP H
108
        Ç
109
               CALL STEP(T+H,H,X1,R1,X2,NX,NR,METHOD,S1,S2,S3,S4)
110
        C
111
        C
               CALCULATE THE LARGEST ERROR DM
112
113
               DM=0.0
114
               DO 12 |=1,NX
115
               DE=ABS(XH2(1)-X2(1))
116
               XA = ABS(X2(1))
117
               IF (XA.GT.1.0)DE=DE/XA
118
               IF (DE.GT.DM) DM=DE
119
           12 CONTINUE
120
        Ç
121
        C
               IS DM LARGER EPS?
122
        C
               IF(DM-EPS)13,13,20
123
124
        C
125
        C
               IF DM<EPS, DETERMINE CURRENT TIME T=T+H AND CURRENT STATE VARIABLES
126
        C
               X(I)=X2(I). IF IN ADDITION DM<EPS/10 DOUBL THE LENGTH STEP
```

127

```
128
            13 IF (DM.LT.EPS1)K=K-1
129
               IF (K.LT.KMIN)K=KMIN
            14 T#T+H2
130
131
               1S=1S+2
132
               DO 15 |=1, NX
133
            15 X(1) = X2(1)
134
        C
135
        C
               CHECK THE NECESSERITY TO CALL ON SUBROUTINE OUTP
136
        C
            16 | F(T+TPR)2,19,19
137
138
            19 TPR=TPR+DP
139
               CALL OUTP(T, X, WIENER)
        C
140
141
        C
               IS T LARGER THAN TMAX?
        C
142
143
               IF(T+HMIN/2.0.LT.TMAX)GOTO 2
144
               GOTO 25
145
        C
146
        C
               IF DM>EPS, REPEAT THE CALCULATIONS HALFING THE LENGTH STEP
147
        C
148
            20 K#K+1
149
        C
150
        C
               IS K LARGER THAN KMAX?
        C
151
152
               IF(KMAX-K)21,22,22
        C
153
154
        C
               IF K>KMAX, ELIMINATE K AND GO TO THE NEXT STEP
        C
155
156
            21 K=KMAX
157
               GOTO 14
158
        C
159
        C
               IF K LESS OR EQUAL KMAX RENEW THE STATE OF THE RANDOM NUMBER
        C
160
               GENERATOR AND WIENER PROCESSES AND REPEAT THE CALCULATIONS
161
        C
            22 NU=N1
162
               DO 23 J=1,NR
163
164
            23 WIENER(J)=WIENE1(J)
165
               GOTO 2
            25 RETURN
166
```

167

END

```
001
        C
        C
002
               THIS IS INNER SUBROUTINE TO PERFORM INTEGRATION ON ONE STEP.
        Ĉ
003
               IF METHOD=0, SUBROUTINE STEP OBTAINS ITO SOLUTION BY EULER
        C
004
               METHOD, OTHERWISE STRATONOVICH SOLUTION BY THE FORTH-ORDER
        C
005
               RUNGE-KUTTA METHOD.
        C
006
               SUBROUTINE STEP(T,H,X,R,XH,NX,NR,METHOD,S1,S2,S3,S4)
007
800
        C
009
               DIMENSION X(1), R(1), XH(1), S1(1), S2(1), S3(1), S4(1)
010
        C
        C
               CALL ON USER SUBROUTINE SIDE TO DETERMINE THE INCREMENT OF
011
        C
               STATE VARIABLES ON THE STEP LENGTH H WITH INITIAL
012
013
        C
               CONDITIONS X(I) AT THE TIME T.
        C
014
               CALL SIDE(T,H,X,R,S1)
015
        C
016
017
        C
               IS METHOD=0?
018
        C
019
               IF (METHOD, NE. 0) GOTO 2
        C
020
        C
               IF METHOD=0 CALCULATE THE NEXT SAMPLE XH(I) OF EULER SOLUTION
021
022
        C
               AT THE POIN T+H AND GO TO THE BOTTOM OF THE SUBROUTINE
        C
023
024
               DO 1 |=1,NX
025
             1 XH(1) = S1(1) + X(1)
026
               GOTO 7
        C
027
028
        Ç
               IF METHOD NOT EQUAL TO ZERO CALCULATE THE NEXT RUNGE-KUTTA
        C
029
               COEFFICIENTS
030
        C
031
             2 DO 3 |=1,NX
032
             3 XH(1)=X(1)+S1(1)*0.5
033
               CALL SIDE (T+H+0.5,H,XH,R,S2)
               DO 4 |=1,NX
034
035
             4 XH(1)=X(1)+S2(1)*0.5
036
               CALL SIDE(T+H+0.5,H,XH,R,S3)
057
               DO 5 |=1,NX
038
             5 XH(1)=X(1)+S3(1)
               CALL SIDE(T+H,H,XH,R,S4)
039
        C
040
        C
               DETERMINE THE NEXT SAMPLE XH(I) OF STRATONOVICH SOLUTION
041
042
        C
043
               DO 6 |=1.NX
             6 XH(|)=(S1(|)+2.0*S2(|)+2.0*S3(|)+S4(|))/6.0+X(|)
044
045
             7 RETURN
046
               END
```