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Fast reconstruction of harmonic functions from Cauchy data
using the Dirichlet-to-Neumann map and integral equations

Johan Helsing® and B. Tomas Johansson”*

aCentre for Mathematical Sciences, Lund University, Lund, Box 118, 221 00, Sweden;
bSchool of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

(September 2010)

We propose and investigate a method for the stable determination of a harmonic function
from knowledge of its value and its normal derivative on a part of the boundary of the
(bounded) solution domain (Cauchy problem). We reformulate the Cauchy problem as an
operator equation on the boundary using the Dirichlet-to-Neumann map. To discretize the
obtained operator, we modify and employ a method denoted as Classic II given in [15, Section
3], which is based on Fredholm integral equations and Nystrom discretization schemes. Then,
for stability reasons, to solve the discretized integral equation we use the method of smoothing
projection introduced in [17, Section 7], which makes it possible to solve the discretized
operator equation in a stable way with minor computational cost and high accuracy. With this
approach, for sufficiently smooth Cauchy data, also the normal derivative can be accurately
computed on the part of the boundary where no data is initially given.

Keywords: Alternating method; Cauchy problem; Dirichlet-to-Neumann map; Laplace
equation; Second kind boundary integral equation.

AMS Subject Classification: 35R25; 65N20; 65N35; 31A10; 31A05

1. Introduction

The stable reconstruction of a harmonic function from given Cauchy data is a
problem of fundamental importance in many engineering applications in fluid and
heat flow, such as in non-destructive testing and tomography, see, for example,
[9, 14, 24, 31, 32]. The governing model is the Laplace equation with overspecified
data given on a part (arc) of the boundary of the solution domain in the form of
the solution and its normal derivative; the solution u satisfies

Au=20 in §,

u = fo on I'cq,

O (1)
— =gc on I'c.

ov

We assume here that € is a planar bounded Lipschitz domain in R? with I'c an
(open) arc of the boundary I' = 99, and define I'y = '\ T'¢. The element v is the
outward unit normal to the boundary I'. On the boundary part I'y, the solution
and its normal derivative are unknown and have to be reconstructed. We assume
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that the given Cauchy data fc and gc are sufficiently smooth and compatible
such that there exists a solution u. Note that uniqueness of the solution is well
established, see, for example [5, 7]. It is well-known that the Cauchy problem (1)
is ill-posed and thus measurement errors in the data can completely destroy the
reconstructions unless regularizing methods are employed.

Reconstruction of u in (1) is a classical problem and there are therefore many
different numerical methods in the literature for its solution, some are listed in [6].
In 1989, Kozlov and Maz’ya [22, 23] proposed the alternating method, which is an
iterative procedure for the reconstruction of the solution u. This method preserves
the governing Laplace operator and the regularizing character is achieved by appro-
priate change of the boundary conditions. The alternating method has successfully
been employed to several applied problems, see, for example, [2—4, 8, 10, 13, 18—
21, 25, 27-29]. However, in most studies it has been reported that this procedure can
be time-consuming and that non-accurate reconstructions of the normal derivative
are obtained. There are more involved methods that can be more efficient, see [11]
and [12].

Recently, in [17], the authors of the present paper investigated ways of imple-
menting the alternating method to speed up convergence and minimize the compu-
tational cost. The authors took advantage of the reformulation of the alternating
method in terms of an operator equation on the boundary, together with a recent
integral equation method [15, 16]. Inspired and encouraged by those results, we
reformulate the Cauchy problem as another operator equation on the boundary.
In the literature, the most straightforward reformulation based on the Dirichlet-
to-Neumann map seems to have been overlooked and we therefore present this
reformulation in this paper and shall compare the obtained results with those
in [17]. Note that, however, a method in this direction was given in [33], where the
Cauchy problem (1) was discretized using the boundary element method, and the
corresponding linear system of equations was regularized using various techniques
including Tikhonov regularization. Moreover, there is also a recent investigation on
an effective way to numerically implement the Dirichlet-to-Neumann map, see [15],
making our present approach for the Cauchy problem timely. We point out that
our focus is to produce a fast method that is straightforward to implement and
has high accuracy. The obtained approximation could perhaps then be used as a
priori information in methods like [6, 22].

To discretize the obtained operator, we modify and employ a method denoted as
Classic II given in [15, Section 3|. This method was originally given to compute the
Dirichlet-to-Neumann map on the boundary of a two-dimensional domain exterior
to a single contour, and is based on Fredholm integral equations and Nystrom
discretization schemes. We outline how to adjust the method to our case. Then,
for stability reasons due to the ill-posedness of the Cauchy problem (1), to solve the
discretized integral equation we use the method of smoothing projection introduced
in [17, Section 7], which makes it possible to solve the discretized operator equation
in a stable way with minor computational cost and high accuracy.

For the outline of this paper, in Section 2, we present the reformulation of the
Cauchy problem and point out some properties of the Dirichlet-to-Neumann map
and its relation to the Poincaré-Steklov operator. In Section 3, geometry and pa-
rameters for the numerical investigations are presented. The numerical method
for the discretization of the operator from Section 2, based on Fredholm integral
equations and Nystrom discretization schemes, are given in Section 4. In Section 5,
we show how to numerically construct the solution and its normal derivative on
I'y, and give some numerical results including noisy data. Conclusions are found
in Section 6.
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2. Reformulation of the Cauchy problem (1)

2.1. The Dirichlet-to-Neumann map

Let L?(Q2) be the standard L?-space with the standard norm. As usual, H'(f2)
is the Sobolev space of real-valued functions in € with finite norm given by the
relation Hu||%{1(9) = HUH%Z(Q) + HVUH%Q(Q), where V = (04, , 0, ).

For trace spaces, we recall that the space of traces of functions from H'(2) on T
is HY2(I'). Restrictions of elements in H'/2(T") to the boundary part I'c (I'y)
constitute the space H'/2(T'¢) (H/2(I'y)).

We then recall some facts about the Dirichlet-to-Neumann map, for the proofs,
we refer to [26]. Given f € H'/?(T), the Dirichlet problem

Au=0 in Q,
{u:f on I, (2)

has a unique solution in H!(2). Moreover, the normal derivative g = du/0v of u
on T' is well-defined as an element in the dual space H~'/2(I"). The operator D
that maps f to ¢ is a bounded operator denoting the Dirichlet-to-Neumann map.
Furthermore,

(Df, fU)a-12@yxmem) = (f D) moe@yxa-12(r), (3)

where (-, ) g-1/2(r)xgr/2(ry is the duality pairing between the space HY2(I') and
H~'2(T") induced by the scalar product in L?(I'). For connections between the
Dirichlet-to-Neumann map and the Poincaré-Steklov operator, see [1] and [30].

2.2. Reformulation of (1)

To reformulate problem (1), we use restrictions of the Dirichlet-to-Neumann map
to the respective boundary part. First, let the operator Acy be defined such that
Acu fu is the normal derivative on I'c of the solution to

Au=0 in Q,
u:.fU on FUa (4)
u=20 on I'c.

Similarly, let Acc be defined such that Acc fc is the normal derivative on I'c of
the solution to

Au=0 in €,
u=0 on T'y, (5)
u= fc on I'g.

Then the Cauchy problem (1) is equivalent to solving the following operator equa-
tion on the boundary

Acu fu = g9c — Acc fe. (6)

The corresponding operator equation obtained in [17] was derived using mixed
boundary value problems instead of the above ones which only have a Dirichlet
condition imposed.
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Note that in both these problems (4) and (5), we possibly have discontinuous
Dirichlet data. Thus, suitable spaces for the data are then the corresponding L?2-
spaces on the respective boundary part, and the corresponding solution will then
be in L?(2). The normal derivative on I'c in (4) has meaning since local regularity
results for elliptic equations clearly imply that u has, locally, derivatives of second
order near I'c due to the zero Dirichlet condition imposed on I'c. Similarly, since
we assumed that Cauchy data in (1) is sufficiently smooth, the normal derivative
on I'y exists in (5).

Now, it is straightforward, using the pairing (3), to obtain the following.

Theorem 2.1: The adjoint operator Afy of Acu is defined by

. ou
Atufo = 5|FU,

where u is the solution to (5).

With knowledge of the adjoint operator, we can then, for example, employ
Tikhonov regularization to (6) and obtain a stable approximation fi ) from

(AtuAcu + M) fuy = Agu(ge — Acafo).

Alternatively, iterative methods, such as the Landweber-Fridman or conjugate gra-
dient methods can be employed to solve (6). However, since our focus is to develop
a fast method that is straightforward to implement and has high accuracy, to
solve (6) we shall instead employ a recent method based on smoothing projections
that was introduced in [17, Section 7).

Provided data is smooth enough, the normal derivative, gy, also exists on I'y of
the solution to the Cauchy problem (1). To construct it, let Ayy fu be the normal
derivative of the solution to (4) on I'y, and let Ayc fc be the normal derivative of
the solution to (5) on I'y. Then

gu = Avu fu + Auc fe. (7)

Note that from Theorem 2.1, we have Ayc = Afy.

3. Configuration for the numerics

To compare results, we shall use the same configuration as in [17] and recall its
definition below. We make no distinction between points in the real plane R? and
points in the complex plane C, thus all points are denoted z or 7. The solution
domain that we use for the numerical experiments is a bounded domain enclosed
by a curve with the parameterization

7(t) = (14+0.1cosbt)el!, —m<t<m, (8)

see Figure 1. Note that this geometry is not trivial since its curvature is varying.
The two arcs 'y and I'c are defined by

7(t) € Ty, —7T<t<—g, and 7(t) € T, —g<t<7r, (9)
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and the closure of these parts have two points in common, v = 7(7) and v, =
7(—m/2). The Cauchy data is generated from the harmonic function

u(z)—%{z_lsl}, (10)

where S7 = 1.4 + 1.4i, see Figure 1.
All numerical experiments presented are performed in MATLAB version 7.9 and

executed on an ordinary workstation equipped with an Intel Core2 Duo E8400
CPU at 3.00 GHz.

15 T T T T T

0.5r

-1.5 -1 -0.5 0 0.5 1 15

Figure 1. The solution domain © with boundary I' = I'y U I'c given by (8) and (9). The arcs I'y and I'c
meet at the two points v1 and 2. A total of 256 discretization points are constructed on I', 64 of which are
located on I'y. A source Si, for the generation of Cauchy data via (10), is marked by ‘x’.

4. Discretization

We discretize problem (1) via the reformulation in Section 2.2 using a variant of an
integral equation scheme originally designed for the fast and accurate computation
of the Dirichlet-to-Neumann map on the boundary of a two-dimensional domain
exterior to a single contour. The original scheme is denoted as Classic II in [15,
Section 3], and we now briefly review the main steps of our variant of that method.

The solution u(z) is represented in terms of an unknown layer density p(z) on I’
via a double-layer potential. Enforcing Dirichlet boundary conditions f(z) on I’
leads to a Fredholm second kind integral equation

(I+k)p(z) = f(z), =z€T, (11)
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where the action of the compact integral operator k on p(z) is given by

o) =+ [omaf (12)

Once (11) is solved for p(z), the normal derivative of u(z) at T can be computed
by applying a Cauchy-singular integro-differential operator K to p(z)

du

ey (z2) = Kp(2), zel. (13)

The action of K on p(z) is given by

o) — 5 {u(z) [ o) dr} | "

s T—Z

where the differentiation p’(z) =dp(z)/dz is along the tangent to I' and v(z) is the
outward unit normal to I' at z.

We discretize the operators &k and K using a Nystrom scheme based on the
composite trapezoidal quadrature rule. We use 256 discretization points on I', of
which the 64 first points are located on I'y and the remaining 192 points are located
on I'c. The Cauchy-singular integral in (14) is to be interpreted in the principal
value sense and we use the method denoted global regularization in [16] to achieve
this. The Fast Fourier Transform, carried out with MATLAB’s built-in functions
fft and ifft, is used for differentiation. The discretization results in two square
matrices k and K, both of dimension 256 x 256.

Now define the matrix A as the composition

A=K(I+k, (15)

where I is the identity matrix. Clearly, A is a discretization of the Dirichlet-to-
Neumann map given in Section 2.1, and if we let f and g be column vectors
containing the values of u(z) and du(z)/0v at the discretization points we have

Af=g. (16)

On partitioned form, where we have separated points on I'c from points on I'y,
this relation reads

Avu Auc | |fu| _ |8u (17)
Acu Acc | |fe gc|
Thus, in order to get the discretizations of the operators Ayy, Auc, Acu, and
Acc defined in Section 2.2, one only has to pick the appropriate blocks from the

matrix A in (16) via (17). Computing all the entries of A takes about 0.03 seconds
on the workstation mentioned in Section 3.

5. Solving for fy and gy
Now that we have access to the discretized operators Ayy, Auc, Acu, Acc, as

well as the known data fc and gc, it is easy to solve the discretized counterpart
of (6) for fy and subsequently use the discretized counterpart of (7) for gy. We
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Reference solution f Reference solution g
-0.18 . . . . . . . . . . .
0.12f
-0.2
0.1f
-0.22f
_0.24} 0.08}
-0.26f 0.06}
-0.28}
0.04f
—03}
0.02f
032 . . . . . . . . . . . . . . . .
-3 -28 -26 -24 -22 -2 -18 -16 -3 -28 -26 -24 -22 -2 -1.8 -16
Parameter value t Parameter value t

Figure 2. Reference solutions f and g on I'y for the problem detailed in Section 3.

concentrate on the setup detailed in Section 3. The reference solutions, that is, the
correct analytical values for fy and gy are shown in Figure 2.

Rather than using (6) as it stands we shall, for stability reasons, use the method
of smoothing projections introduced in [17, Section 7]. We represent fy in terms of
n coefficients fy in a monomial basis on the canonical interval [—1,1]

fy = Vafy, (18)

where V,, is a 64 x n Vandermonde matrix. Thus, we first solve (in the least squares
sense) the 192 x n overdetermined linear system

(AcuVn) fu = gc — Accfc (19)
for the unknown fy. Then we use (18) to obtain fyy. Finally, we compute gy from
gu = Ayufu + Auctc. (20)

Doing this for n = 1,2, ..., 32, takes an additional 0.01 seconds on the workstation
mentioned in Section 3. The excellent quality of the reconstruction is shown in
Figure 3. Comparison with Figure 7 in [17] shows an improvement in achievable
accuracy with between one and two digits. To further illustrate this and to make
it easier to compare, the results from Figure 7 in [17] are also included in Figure 3.

It is also of interest to add noise to the Cauchy data to verify the stability of
the method. Naturally, the more noise that is added, the less accurate the recon-
struction will be. Furthermore, the quality of the reconstruction varies between
realizations and if a very large number of points are sampled on I'c, one could try
filtering the Cauchy data to reduce the noise. Here, we shall ignore such issues and
simply add Gaussian noise with mean zero and standard deviation

o = 0.01 - max |fc|
to fo. The element fo and the corresponding noisy data are shown in Figure 4(a);

no noise is added to gc. As it turns out, a low degree basis with n = 2 for fy most
often gives the best reconstruction at this high level of noise. A typical example is
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Convergence of f and g on ™y

o gUfrom [17]|
+ flJ from [17]

o g, present

fU present

Relative L error
[
o

0 5 10 15 20 25 30
Dimension of basis n

Figure 3. Clean (no noise) Cauchy data fc and gc. Convergence of the reconstructions fy and gy with
the dimension n of the monomial basis onto which fy is projected. Equations (19), (18), and (20) are used
(present). For comparison the corresponding results obtained with the method from [17] are included.

shown in Figure 4(b). The reconstruction of the derivative is more inaccurate as

expected.
fc with and without noise 1% noise: Reconstruction of fU with n=2
-0.18
-0.2 fc without noise 1 02
fc with 1% noise|
-0.3
-0.22
-0.4
-0.24
-0.5
-0.26
-0.6
-0.28 -
-0.7 ___ Reference solution fre
_ _ Reconstruction fu
~0.8 -0.3
~0.9 A A R A i A A A A A A A A
-1 0 1 2 3 -3 -28 -26 -24 -22 -2 -1.8 -1.6
Parameter value t Parameter value t

(a) (b)

Figure 4. (a) Given clean (no noise) data fc in (1) and the corresponding noisy data. (b) Reconstruction of
fy via (19) and (18) for n = 2 and noisy data.

6. Conclusion

We have proposed and investigated a method for the stable reconstruction of a
harmonic function from Cauchy data. The aim was to produce a fast method that
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is straightforward to implement and has high accuracy. To achieve this, the Cauchy
problem was rewritten as an operator equation on the boundary using the Dirichlet-
to-Neumann map. To discretize the obtained operator, we modified and employed
a method denoted as Classic II in [14, Section 3]. This method was originally given
to compute the Dirichlet-to-Neumann map on the boundary of a two-dimensional
domain exterior to a single contour, and is based on Fredholm integral equations
and Nystrom discretization schemes. For stability reasons, to solve the discretized
integral equation, we used the method of smoothing projection introduced in [16,
Section 7|, which makes it possible to solve the discretized operator equation in a
stable way with minor computational cost and high accuracy. A numerical exam-
ple was investigated in a bounded domain having a non-trivial boundary (curva-
ture is varying). Compared with the numerical results in [16], using the proposed
approach, we obtain a higher accuracy in the reconstructed function values and
normal derivatives, of between one and two digits. Stability against noise in the
data was also investigated, showing that a stable solution can be obtained with
increasing accuracy as the noise is decreasing. Moreover, the present approach is
more efficient and faster, and also more straightforward to implement requiring a
small amount of computer code.
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