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Epigenetic Variation Influence mRNA Expression and
Insulin Secretion in Human Pancreatic Islets
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Claes Ladenvall? Tina Ronn’, Charlotte Ling'*

1 Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmo, Sweden, 2 Department of Clinical Sciences,
Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Malmo, Sweden

Abstract

Genetic and epigenetic mechanisms may interact and together affect biological processes and disease development.
However, most previous studies have investigated genetic and epigenetic mechanisms independently, and studies
examining their interactions throughout the human genome are lacking. To identify genetic loci that interact with the
epigenome, we performed the first genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human
pancreatic islets. We related 574,553 single nucleotide polymorphisms (SNPs) with genome-wide DNA methylation data of
468,787 CpG sites targeting 99% of RefSeq genes in islets from 89 donors. We identified 67,438 SNP-CpG pairs in cis,
corresponding to 36,783 SNPs (6.4% of tested SNPs) and 11,735 CpG sites (2.5% of tested CpGs), and 2,562 significant SNP-
CpG pairs in trans, corresponding to 1,465 SNPs (0.3% of tested SNPs) and 383 CpG sites (0.08% of tested CpGs), showing
significant associations after correction for multiple testing. These include reported diabetes loci, e.g. ADCY5, KCNJ11, HLA-
DQAT1, INS, PDX1 and GRB10. CpGs of significant cis-mQTLs were overrepresented in the gene body and outside of CpG
islands. Follow-up analyses further identified mQTLs associated with gene expression and insulin secretion in human islets.
Causal inference test (CIT) identified SNP-CpG pairs where DNA methylation in human islets is the potential mediator of the
genetic association with gene expression or insulin secretion. Functional analyses further demonstrated that identified
candidate genes (GPX7, GSTT1 and SNX79) directly affect key biological processes such as proliferation and apoptosis in
pancreatic B-cells. Finally, we found direct correlations between DNA methylation of 22,773 (4.9%) CpGs with mRNA
expression of 4,876 genes, where 90% of the correlations were negative when CpGs were located in the region surrounding
transcription start site. Our study demonstrates for the first time how genome-wide genetic and epigenetic variation
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interacts to influence gene expression, islet function and potential diabetes risk in humans.
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Introduction

Most cells in the human body share the same genetic sequence
while the epigenetic pattern varies between different cell types and
over time. DNA methylation is one of the most studied epigenetic
modifications and it is involved in multiple biological processes
such as transcriptional control during embryonic development, X-
chromosome inactivation, genomic imprinting and regulation of
cell specific gene expression [1]. In differentiated mammalian cells,
DNA methylation occurs primarily on the 5’ position of cytosine
followed by guanine, so called CpG sites [2]. Alterations in DNA
methylation may affect phenotypic transmission and may be part
of the etiology of human disease [3].

Inheritance of epigenetic traits between generations has been
shown in animals [4,5]. Previous studies in twins further suggest
that genetic factors may affect DNA methylation profiles [6,7].
Moreover, genetic variation has been shown to influence the inter-
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individual variation in DNA methylation in the human brain,
fibroblast and adipose tissue [8—14]. While some of these studies
used the Infinium HumanMethylation27 BeadChip which covers
~14,500 genes [8-10], others used the HumanMethylation450
BeadChip and limited the analysis to cis regulatory effects [12-14].
However, studies examining the impact of genetic variation on the
genome-wide DNA methylation pattern of most genes and
regions, in both cis and trans, throughout the human genome
are still scarce.

Pancreatic islets contribute to the regulation of whole body
glucose homeostasis by secreting insulin in response to increased
plasma glucose concentrations. Deficient insulin secretion, result-
ing in chronically elevated blood glucose levels, is a characteristic
of diabetes mellitus. Recent genome-wide association studies
(GWAS) have identified numerous genetic loci associated with
diabetes and its related traits [15-30]. However, these variants
only explain a small proportion of the estimated heritability for
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Author Summary

Inter-individual variation in genetics and epigenetics
affects biological processes and disease susceptibility.
However, most studies have investigated genetic and
epigenetic mechanisms independently and to uncover
novel mechanisms affecting disease susceptibility there is
a highlighted need to study interactions between these
factors on a genome-wide scale. To identify novel loci
affecting islet function and potentially diabetes, we
performed the first genome-wide methylation quantitative
trait locus (mQTL) analysis in human pancreatic islets
including DNA methylation of 468,787 CpG sites located
throughout the genome. Our results showed that DNA
methylation of 11,735 CpGs in 4,504 unique genes is
regulated by genetic factors located in cis (67,438 SNP-CpG
pairs). Furthermore, significant mQTLs cover previously
reported diabetes loci including KCNJ11, INS, HLA, PDX1
and GRB10. We also found mQTLs associated with gene
expression and insulin secretion in human islets. By
performing causality inference tests (CIT), we identified
CpGs where DNA methylation potentially mediates the
genetic impact on gene expression and insulin secretion.
Our functional follow-up experiments further demonstrat-
ed that identified mQTLs/genes (GPX7, GSTT1 and SNX19)
directly affect pancreatic B-cell function. Together, our
study provides a detailed map of genome-wide associa-
tions between genetic and epigenetic variation, which
affect gene expression and insulin secretion in human
pancreatic islets.

diabetes [31], proposing that there are additional genetic factors
left to be discovered. These may include genetic variants
interacting with epigenetic mechanisms.

To study the interaction between genetics and epigenetics and
to identify novel loci affecting islet function and potentially
diabetes, we performed the first genome-wide DNA methylation
quantitative trait locus (mQTL) analysis in human pancreatic
islets. The specific goals for this study were to: 1) identify single
nucleotide polymorphisms (SNPs) associated with altered DNA
methylation (mQTLs) in human pancreatic islets; 2) test if
identified SNPs in significant mQTLs affect islet gene expression
and diabetes related phenotypes; 3) examine the causal relation-
ship between genotype, DNA methylation and gene expression or
insulin secretion in human pancreatic islets; 4) test if identified
candidate genes, based on our mQTL results, have a functional
role in pancreatic B-cells; 5) examine if mQTLs in human
pancreatic islets also associate with diabetes and its related traits in
GWAS. To reach these goals, we related genome-wide genotype
data of SNPs with genome-wide DNA methylation data of
~470,000 CpG sites covering 21,231 (99%) RefSeq genes and
most genomic regions in pancreatic islets of 89 human donors.
Here, both cis and {rans regulatory effects of SNPs on DNA
methylation were analyzed. SNPs found to be associated with
DNA methylation levels in the mQTL analysis were then
followed-up with an expression quantitative trait locus (eQTL)
analysis in the human islets, and related to islet insulin secretion
data. In addition, we used a causal inference test (CIT) [32] to
model the causal relationships between genotype, DNA methyl-
ation and phenotypic outcome. A number of candidate genes,
where both  DNA methylation and gene expression were
assoclated with genetic variation, were then selected for functional
follow-up analysis in clonal B-cells. Finally, identified mQTLs were
examined for overlap with reported diabetes loci in publicly
available GWAS data. The study design is described in Figure 1.
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Using this approach, we identified significant mQTLs in ¢is and
in {rans. Numerous mQTLs were associated with altered mRNA
expression and insulin secretion in human islets. Notably,
identified mQTLs covered known diabetes loci. Together, our
study highlights the importance of integrating genetic and
epigenetic data in order to identify new loci affecting biological
processes and disease risk.

Results

Associations between genetic variation and DNA
methylation — A genome-wide mQTL analysis in human
pancreatic islets

To examine whether genetic variation is associated with DNA
methylation levels in human pancreatic islets, a genome-wide
mQTL analysis was performed. In total, genotype data of 574,553
SNPs and DNA methylation data of 468,787 CpG sites from
pancreatic islets of 89 human donors (Table S1) were included in
the analysis. A correlation heatmap illustrating the overall
variability in DNA methylation among included samples is
presented in Figure S1. In the mQTL analysis, a total of
111,360,152 SNP-CpG pairs were found to be located in cis and
269,231,617,059 SNP-CpG pairs were located in trans. We
proceeded to calculate the statistical significance threshold for the
cis and trans-mQTL analyses, taking the linkage dependency of
SNPs and number of tests into account. Linkage disequilibrium
(LD) based SNP pruning, which takes into account the linkage
dependency of SNPs that are run against DNA methylation of the
same CpG site in the mQTL analysis, was then used to calculate
the number of independent tests based on r?<0.9 for the SNPs
and thereby the significance threshold after correction for multiple
testing. After LD-based pruning, 102,307,720 SNP-CpG pairs
were identified showing independence based on r*<0.9 in ¢is and
this number was subsequently used as a correction value for
multiple testing in the cis-mQTL analysis (significance threshold in
the ¢is-mQTL: 0.05/102,307,720=4.9x10"'% (Table 1). Fur-
thermore, 200,388,516,440 SNP-CpG pairs were identified
showing independence based on r?<0.9 in #rans and this number
was used as a correction value for multiple testing in the (rans-
mQTL analysis (significance threshold in the trans-mQTL: 0.05/
200,388,516,440 = 2.5x10~ ') (Table 1).

Note that LD-based SNP pruning was used in order to calculate
statistical significance thresholds based on number of independent
tests. Our goal was to detect and present SNPs that show
significant associations with DNA methylation regardless of
linkage dependency and we subsequently included all genotyped
SNPs in the mQTL analysis. In the ¢is-mQTL analysis, 67,438
SNP-CpG pairs were identified showing significant associations
between genotype and DNA methylation levels after correction for
multiple testing. These 67,438 SNP-CpG pairs consist of 36,783
unique SNPs (6.4% of tested SNPs) and 11,735 unique CpG sites
(2.5% of tested CpG sites) which are annotated to 4,504 unique
genes (Table 1). Among the significant cis-mQTLs, there are
31,313 SNP-CpG pairs with a LD threshold of r*<0.9 and 24,963
SNP-CpG pairs with 1?<0.8 (Table 1). These include 20,251
unique SNPs with LD r’<0.9 and 16,557 unique SNPs with
1?<0.8 (Table 1).

Depictions of the most and least significant cis-mQTLs are
shown in Figure 2A-B and all significant ¢is-mQTLs are
presented in Table S$2. Distance analysis of significant cis-
mQTLs showed that the majority of associated SNPs were located
within a short range from CpG sites (Figure 2C). A SNP located
within a cytosine or guanine of a CpG site, a so called CpG-SNP,
can potentially remove or introduce a CpG site. Among SNP-CpG
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Figure 1. Flow-chart showing the analysis pipeline. Direction of the arrows represents the workflow of the study design with performed
analysis indicated. Solid lines indicate analysis performed within data of human pancreatic islets. Dashed lines indicate analysis performed against
external databases. Light grey boxes indicate input data of human pancreatic islets. Dark grey boxes indicate output of significant data. White boxes
indicate follow-up studies for look-up or functional- and biological validation of significant results.

doi:10.1371/journal.pgen.1004735.g001

pairs showing significant associations in the cis-mQTL analysis,
459 pairs were identified as CpG-SNPs. Moreover, the cis-mQTLs
showing the most significant associations were within SNPs located
close to a CpG site (Figure 2D).

In the trans—mQTL analysis, 2,562 SNP-CpG pairs showed
significant associations between genotype and DNA methylation
levels after correction for multiple testing. These 2,562 SNP-CpG
pairs consist of 1,465 unique SNPs (0.3% of tested SNPs) and 383

unique CpG sites (0.08% of tested CpG sites), which are annotated
to 247 unique genes. Among the significant frans-mQTLs, there are
837 SNP-CpG pairs with a LD threshold of r?<0.9 and 629 SNP-
CpG pairs with r*<0.8 (Table 1). These include 620 unique SNPs
with LD r*<0.9 and 492 unique SNPs with r*<0.8 (Table 1).
Depictions of the most and least significant trans-mQTLs are
shown in Figure 2E-F and all significant {rans-mQTLs are
presented in Table S3. Out of the significant trans-mQTLs,

Table 1. Number of significant mQTL results in human pancreatic islets.

cissmQTL trans-mQTL
SNP-CpG pairs 67,438 2,562
SNP-CpG pairs with LD r?<0.9 31,313 837
SNP-CpG pairs with LD r*<0.8 24,963 629
Unique SNPs 36,783 1,465
Unique SNPs with LD r?<0.9 20,251 620
Unique SNPs with LD r?<0.8 16,557 492
Unique CpG sites 11,735 383
Unique genes 4,504 247

Significance threshold <0.05 after correction for multiple testing.
Correction value cis=102,307,720.

Correction value trans =200,388,516,440.

LD =linkage disequilibrium.
doi:10.1371/journal.pgen.1004735.t001
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Figure 2. Depiction and distance analysis of associations between genotype and DNA methylation of significant mQTLs in human
pancreatic islets. Depiction of (A) the most significant cis-mQTL; rs1771445 vs. cg02372404, and (B) the least significant cis-mQTL; rs196489 vs.
cg06433283, among all identified cis-mQTLs in human pancreatic islets. Data is presented as Box and Whisker plots with P-values adjusted for
multiple testing. (C) Distance analysis between SNPs and CpG sites of significant cis-mQTLs plotted as the number of identified mQTLs within each
distance bin. Distance summary: minimum=0 kb, 10%ile=1.88 kb, 25%ile=7.62 kb, 50%ile=26.31 kb, 75%ile =74.76 kb, 90%ile=164.5 kb,
maximum =499.6 kb. (D) The strength of associations plotted against the distance between SNPs and CpG sites of significant cis-mQTLs after
correction for multiple testing. Depiction of (E) the most significant trans-mQTL; rs17660464 vs. cg22968622, and (F) the least significant trans-mQTL;
rs6440971 vs. cg10438649, among all identified trans-mQTLs in human pancreatic islets. Data is presented as Box and Whisker plots with P-values
adjusted for multiple testing. (G) Quantile-Quantile plots (Q-Q plots) of -log10 (P-values) illustrating the distribution of P-values for all analyzed SNP-
CpG pairs in the cis- (red dots) and trans- (blue dots) mQTL analysis in relation to a theoretical null distribution (grey diagonal line). Bold dots indicate
significant mQTLs identified in the cis- (red dots) and trans-(blue dots) mQTL analysis after correction for multiple testing.
doi:10.1371/journal.pgen.1004735.9g002

1,564 (61.0%) SNP-CpG pairs, which consist of 970 unique SNPs probes used to detect significant frans-mQ)T'Ls, were demonstrated

and 229 unique CpG sites, are located on different chromosomes. to have a perfect match elsewhere in the human genome (Table
Additionally, for the significant trans-mQTLs where the SNP and $2, 83). Additionally, all significant probes with a 47-50 bp match
CpG are located on the same chromosome, the median distance elsewhere in the genome and possible cross-reactivity based on

between SNP and CpG is 1.2 Mb and these are potentially Chen et al [33] have been indicated in Table S2, S3.
corresponding to long-range cis-effects.
We next generated quantile-quantile (Q-Q) plots of all —log10 Genomic distribution of mQTLs in human pancreatic

(P-values) for the c¢is and trans mQTL analyses to illustrate the islets
distribution of the P-values as compared to a theoretical null Although previous cancer studies have described the genomic
distribution (Figure 2G). The Q-Q plots illustrate that cis effects  Jocation of CpG sites that exhibit differential DNA methylation in
are stronger compared to trans effects. tumor versus normal cells [34,35], to our knowledge, no previous
A recent study reports that some probes on Illumina’s DNA study has examined the genomic distribution of CpG sites in
methylation chip can cross-react to multiple locations in the genome-wide mQTLs. Moreover, while there is an accumulation
genome [33]. However, only 14 out of the 11,735 probes used to of genetic variation on certain chromosomes associated with
detect significant ¢is-mQTLs in human islets, and five out of 383 disease [23,36], it remains unknown if there is an over- or
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underrepresentation of significant mQTLs on certain chromo-
somes linked to islet function. Here, we describe the genomic
distribution of significant mQTLs in human pancreatic islets.
When analyzing the chromosomal distribution of CpG sites
among significant ¢is-mQTLs, an overrepresentation of CpG sites
on chromosomes 6, 7, 8 and 21 together with an underrepresen-
tation of CpG sites on chromosomes 1, 2, 3, 12, 14, 15, 16, 17, 19
and 20 were found in comparison to the chromosomal distribution
of all analyzed sites on the Infinium HumanMethylation450
BeadChip based on chi-squared-tests (Figure 3A and Table
S4A). In the trans-mQTL analysis, an overrepresentation of CpGs
was found on chromosomes 6 and 17 together with an
underrepresentation on chromosomes 1, 9 and 14 (Figure 3A
and Table S4A). Chromosome 6, which possess the HLA region

a gene region known to be involved in diabetes and autoimmune
reaction [37,38], was found to show the highest enrichment when
comparing the chromosomal distribution of CpG sites among
significant mQTLs for both the ¢is- and trans-analysis compared
with all analyzed CpG sites (Figure 3A and Table S4A).

Moreover, the CpG sites analyzed using the Infinium
HumanMethylation 450 BeadChip have been annotated based
on their genomic location in relation to the nearest gene
(TSS1500, TSS200, 5'UTR, 1% exon, gene body, 3'UTR or
intergenic regions) [39] (Figure 3B). When comparing the
distribution of CpG sites of significant ¢is-mQTLs with all
analyzed sites on the Infinium array, CpG sites in the gene body
and intergenic regions were found to be overrepresented
meanwhile CpG sites in TSS1500, TSS200, 5'UTR, 1% exon
and 3'UTR were found to be underrepresented (Figure 3C and
Table S$4B). Among significant {rans-mQTLs, overrepresenta-
tions of CpG sites were found in the 1* exon and intergenic
regions while an underrepresentation of CpG sites was found in
the T'SS1500 (Figure 3C and Table S4B).

The CpG sites analyzed using the Infinium HumanMethylation
450 BeadChip have also been annotated based on their genomic
location in relation to CpG islands (CpG island, northern- and
southern shores, northern- and southern shelves or open sea) [39]
(Figure 3B). Overrepresentations of CpG sites were found in
northern- and southern shores, southern shelf and open sea while
an underrepresentation was found in CpG islands when compar-
ing the location of CpG sites of significant ¢is-mQTLs with all
analyzed sites on the Infinium array (Figure 3D and Table
$4C). CpG sites of significant {rans-mQTLs were found to be
overrepresented in CpG islands and underrepresented in northern
shores (Figure 3D and Table $S4C).

Epigenetic variation in enhancer regions has been proposed to
play a key role in the regulation of gene expression in pancreatic
islets [40-43]. We therefore proceeded to test if CpG sites in our
significant mQT'Ls are located in long stretch enhancers based on
publicly available data for human pancreatic islets [42]. These
stretch enhancers are referred to as large gene elements (=3 kb) of
enhancer states that are cell type specific [42]. Here, we found that
993 (8.5%) CpG sites in our significant ¢is-mQTLs and 11 (2.9%)
CpG sites in our significant frans-mQTLs are located in long
stretch enhancers specific for pancreatic islets (Table S2 and
Table S3), which is not more than expected by chance (P>0.05).
Additionally, we found that 139 (1.2%) CpG sites in our significant
cis-mQTLs and only two CpG sites in the significant {rans-
mQTLs are located in active enhancer regions of pancreatic islets
identified by Pasquali et al [43] (Table S2 and Table S3).

Moreover, we tested if the genomic distribution of the
significant mQTLs found in human islets in our study could be
replicated in publicly available data. Here, we took advantage of
published mQTL data in adipose tissue from Grundberg et al and
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we analyzed the genomic distribution of their significant cis-
mQTLs [12]. In agreement with the genomic distribution of
significant ¢is-mQTLs in human islets, we found that significant
cis-mQTLs in human adipose tissue were overrepresented in the
intergenic region, the gene body, the open sea as well as the shore
and shelf regions, while underrepresented in regions close to the
TSS and CpG island regions (Figure S2A-B). On the other hand,
we found differences between human islets and adipose tissue
regarding the chromosomal distribution of significant cis-mQTLs
(Figure 3A and Figure S2C). Of note, differences in the study
design and filtering of CpG probes between the two studies may
influence these results.

Association of identified mQTL-SNPs with mRNA
expression — A follow-up eQTL analysis in human
pancreatic islets

Both genetic variation and DNA methylation have been shown
to regulate gene expression [44,45]. Therefore, SNPs identified to
significantly affect DNA methylation in the mQTL analysis were
followed-up and related to mRINA expression levels in human
pancreatic islets. To calculate the number of independent tests to
be used for correction for multiple testing in this analysis, we first
connected SNPs of significant ¢is-mQTLs (n=36,783) with all
mRNA transcripts on the Affymetrix array located within 500 kb
of respective SNP — the set c¢is boundary distance. With this
setting, 895,764 SNP-mRNA transcript combinations were found
in ¢is. However, after LD-based pruning of these SNPs, 692,616
SNP-mRNA transcript combinations remained showing inde-
pendence of SNPs (based on r?<0.9) and this number was
subsequently used as a correction value for multiple testing
(significance threshold in the cis-eQTL: 0.05/692,616 =
7.2x107%) (Table 2). In this cis-ecQTL analysis, 302 SNP-
mRNA transcript pairs were identified showing significant
associations between genotypes and mRINA expression levels
after correction for multiple testing (Table 2 and Table S5).
These 302 significant pairs consist of 243 unique SNPs (0.7% of
the significant cis-mQTL SNPs) and 46 unique mRNA
transcripts (0.2% of tested mRNA transcripts). Among the
significant ¢is-eQTLS, there are 117 SNP-mRNA transcript
pairs with a LD threshold of r?<0.9 and 86 SNP-mRNA
transcript pairs with r*<0.8 (Table 2). These include 99 unique
SNPs with LD r’<0.9 and 76 unique SNPs with r°<0.8
(Table 2).

The SNPs of significant trans-mQTLs (n=1,465) were then
related to mRNA expression levels of all transcripts included on
the Affymetrix array, giving rise to 40,127,815 SNP-mRNA
transcript combinations. The correction value for multiple testing
was calculated to 16,982,420 after LD-based pruning of SNPs
(based on r?<0.9) (significance threshold in the frans-eQTL: 0.05/
16,982,420 =2.9x10" %) (Table 2). In the trans-cQTL, 32 SNP-
mRNA transcript pairs consisting of 22 unique SNPs (1.5% of the
significant frans-mQTL SNPs) and 8 unique mRNA transcripts
(0.02% of tested mRNA transcripts) were found to show
significance (Table 2 and Table S$6). Among the significant
trans-eQTLs, there are 16 SNP-mRNA transcript pairs with a LD
threshold of r?<0.9 and 10 SNP-mRNA transcript pairs with r?<
0.8 (Table 2). These include 10 unique SNPs with LD r’<0.9
and 7 unique SNPs with r°<0.8 (Table 2).

Moreover, a correlation heatmap illustrating the overall
variability in mRINA expression among included samples is
presented in Figure S3. We next used Mantel’s test [46] to
compare the hierarchical clustering results for mRNA expression
(Figure S3) and DNA methylation (Figure S1) and obtained a
correlation coefficient of 0.21 (P =10.005).
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Figure 3. Genomic distribution of CpG sites of significantly identified mQTLs in human pancreatic islets. (A) Chromosomal distribution
of CpG sites of significant cis- and trans-mQTLs in comparison to all analyzed CpG sites on the Infinium Human Methylation450 BeadChip. (B) All
analyzed CpG sites on the Infinium Human Methylation450 BeadChip have been annotated to genomic regions based on their relation to the nearest
gene (TSS: proximal promoter, defined as 200 bp or 1500 bp upstream of transcription start site; UTR: untranslated region) or in relation to the
nearest CpG island (CpG island: DNA stretch of 200 bp or more with a C+G content of >50% and an observed CpG/expected CpG in excess of 0.6;
Shore: the flanking region of CpG islands, 0-2000 bp; Shelf: regions flanking island shores, i.e., covering 2000-4000 bp distant from the CpG island).
Distribution of CpG sites of significant mQTLs in relation to (C) the nearest gene and (D) in relation to CpG islands. *Significantly different distribution
(P<<0.05) of CpGs of significant cis- or trans-mQTLs from what is expected by chance based on a Chi-squared-test when compared with all analyzed

CpG sites on the Infinium HumanMethylation450 BeadChip.
doi:10.1371/journal.pgen.1004735.g003

Causality inference test (CIT) - DNA methylation
potentially mediates the genetic impact on mRNA
expression

We further used CIT [32] to examine if relationships between
genotypes and phenotype (gene expression) are potentially
mediated through DNA methylation of CpG sites in significant
mQTLs. In this CIT approach, we consider SNPs identified in the
mQTL/eQTL analysis as causal factors (G), DNA methylation of
CpG sites identified in the mQTL analysis as potential mediators
(M) and mRNA expression identified in the eQTL analysis as a
phenotypic outcome (E). The possible relationships between these
three factors are shown in Figure 4A. Significant SNP-CpG pairs
from the mQTL analysis (Step I Figure 4B), where the mQTL-
SNPs also show significant association with mRINA expression in
the eQTL analysis (Step 2 Figure 4B), were included in the CIT.
In the CIT analysis of cis-mQTLs/eQTLs, we identified 28 SNP-
CpG-mRNA combinations (1.0%) consisting of 17 unique SNPs,
14 unique CpG sites and 5 unique mRNA transcripts that were
significantly called as causal (causal hypothesis Q-value<<0.05
based on FDR) and these represent potential methylation-
mediated relationships between SNPs and mRNA expression (left
panel Figure 4A, step 3 Figure 4B and Table 3). All hypothesis
tests of the CIT for ¢is interactions are presented in Table S7.
Interestingly, several identified relationships where DNA methyl-
ation potentially mediates the causal association between SNP and
mRNA expression were annotated to HLA genes (Table 3), a
gene region strongly linked to type 1 diabetes [37]. Moreover, a
causal relationship between SNPs, DNA methylation and mRNA
expression of genes involved in glutathione metabolism, including
GSTT2 (Q<0.05, Table 3) and GSTT1 (P<<0.05, Table S7),

were also identified in the CIT analysis. Glutathione metabolism is

known to protect against oxidative stress [47-49] and thereby has
a potential role in islet function.

In the CIT analysis of trans-mQTLs/eQTLs, we identified 4
SNP-CpG-mRNA combinations (10.8%) showing a causal rela-
tionship with FDR<5% (step 3 Figure 4B and Table S8).

Biological features of genes identified in the mQTL/eQTL
analyses

Next, we performed gene ontology and KEGG pathway
analyses to identify cellular components or biological pathways
with enrichment of genes that were significant in the mQT'L and/
or eQTL analyses in human pancreatic islets.

In the gene ontology analysis of significant cis-mQTLs, genes
annotated to identified CpG sites were enriched in biological
processes of relevance to human pancreatic islets, including the
MHC protein complex (Padj=5.8><10_7) and the endoplasmic
reticulum (ER) to golgi transport (P4 = 1.6x10™?) (Figure $4,
includes all enriched biological processes). Moreover, in the KEGG
pathway analysis, type 1 diabetes (Padj:?).?)Xqu), phagosome
(Pagi= 3.0x10™ %, cell adhesion molecules (Pag; =5.0x107%,
extracellular-receptor matrix (ECM) interaction (P,q;=2.7 x 1077
and folate biosynthesis (P,qj=0.011) were found among the
enriched pathways (Table 4, includes all enriched KEGG
pathways).

In the gene ontology analysis of genes showing differential
expression between genotype groups in the eQTL analysis of
significant ¢is-mQTL-SNPs, we again found enrichment of genes
in the MHC protein complex (P,qj = 1.6 X 10"%) and in ER to golgi
transport (P,q;=1.4X 10~%). Moreover, genes involved in glutathi-
one peroxidase activity (Pagy=1.1 x107?% and glutathione trans-
ferase activity (P,q=1.1 x107?%) were enriched in the gene

Table 2. Number of significant eQTL results in the human pancreatic islets.

eQTLs of ¢issmQTL-SNPs

eQTLs of trans-mQTL-SNPs

SNP-mRNA transcript pairs 302
SNP-mRNA transcript pairs with LD r?<0.9 117
SNP-mRNA transcript pairs with LD r’<0.8 86
Unique SNPs 243
Unique SNPs with LD r’<0.9 99
Unique SNPs with LD r?<0.8 76
Unique mRNA transcripts 46
Unique genes 42

Only SNPs of significant mQTLs are included in the eQTL analysis.

Significance threshold <0.05 after correction for multiple testing.
Correction value of eQTL analysis for cis-mQTL-SNPs =692, 616.
Correction value of eQTL analysis for trans-mQTL-SNPs = 16,982,420.
LD =linkage disequilibrium.

doi:10.1371/journal.pgen.1004735.t002
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SNPs of significant cis-mQTLs are regressed against mRNA expression of transcripts located in cis (=500 kb).
SNPs of significant trans-mQTLs are regressed against mRNA expression of all transcripts.
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Figure 4. CIT analysis identifies mQTLs where DNA methylation potentially mediates genetic associations with mRNA expression in
human pancreatic islets. (A) Depiction of possible relationship models between genotype as a causal factor (G), DNA methylation as a potential
mediator (M) and islet mRNA expression as a phenotypic outcome (E). Left diagram: The causal or methylation mediated model. Middle diagram: The
reactive or methylation-consequential model (reverse causality). Right diagram: The independent model. (B) lllustration of the study approach to
identify if DNA methylation of CpG sites potentially mediates the causal association between SNPs and islet mRNA expression. Left: Workflow steps.
Middle: Tested relationships between G, M and E in the different steps. Right: Number of identified sites in each step. Bottom: Conditions that must
be fulfilled to conclude a mathematical definition of a causal relationship between G, M and E. Significantly called as causal at 5% FDR (causal
hypothesis Q<0.05).

doi:10.1371/journal.pgen.1004735.g004

PLOS Genetics | www.plosgenetics.org 8 November 2014 | Volume 10 | Issue 11 | 1004735



Genome-Wide Interactions Genetics and Epigenetics

€00Y'SELF001 Uabd leuInof/L£g1°01:10P
‘(W) uone|fyldsw yNQG ybnouyy pareipaw Ajjernualod si (3) uoissaidxa yNyw 13|si pue (D) adAlousb usamiaqg diysuoneas ayl 1eyl buimoys (S0°0>onjeA-D) Yd4 %S e sisayrodAy jesned 1D
‘pawoyad 1591 Juspuadapul Jo Jaquinu Y3 uo paseq Buiisal ojdiNW o) Pa1331I0d saN[RA-d ‘SANS-TLOW-SI2 JO sishjeue 11DS — (3) uolssaidxa YNYW 139|s! uewny pue (9) adAlousb ussmiaqg suoneosse paisnipy :3 sA O

‘pawioad s1sa} Juspuadapul JO JSqUINU 3y} uo paseq Hurisal a|diNW 104 PSIdBII0D SaNjRA- “sisAjeue T DW-s — () uonelAylaw YNG pue (D) adAjoush usamisq suoneosse paisnipy i\ SA D

'sayis ©d) Jo uonelAyidaw YNQG AQ paleipaw sem uojlssaidxa YNYW 19[S pue sisAjeue JIDW-SI> 9y} Ul PAIIUSPI SINS USSMIDQ SUOIIRIDOSSE JI 1591 O} Pasn sem (1[D) 1S3 dJudIdju| [esned

20-395% 50-3¢8L ov'L 90-310°L 9%'6 1900-YTH 1¥hST18 YS6YELES] Apog 994a-VTH 66925/1 16> 9
20-3Ery 03T %S €0-39€°€ 192 SgYG-VIH 9EvSTL8 SS66CLESS d1uabia1u| - 8/£611006> 9
Z0-3LLY £0-35€°2 €9 £0-309°6 1v'6 190G-VTH [¥hSTI8 S9156€TS! Apog 994a-VTH 66975/116> 9
20-320% ¥0-399°L  68'9— S0-310°L 568 £EPPS9D0T S09108 106685.51 005155 1:ApogiApog EEPPSIDOT6ESOPPIOTEXV ZLTShrLL6d z
20-3v6'€ ¥0-3£T°C 91/ 80-32'L €00L— 1900-YTH L¥hSTI8 €09YELESI Apog 19YG-VTH YrSrorL6d 9
70-3/8°€ Y0-3LT9  €69— 90-30£C vT6 £EPbS9D0T 509108 6/16v8YS1 005155 1:ApogApog £EPPSIDOT6E80FPIOTEXYd S97T8YLZhd 4
20-3£9°€ YO-IVE'L 8z'L £0-376'L 86— 711D 608108 €5YTT8YSI Apog 11aa £7E9Y8YZ0d 44
70-355°€ Y0-3T9  €69— S0-3€LT 6L8 £Ep659D01 509108 6/16v8Y51 005 1SS1ApogiApog £EPPSIDOT6E808HI0TIXYd L0¥€806162 z
z03LLe 50-378L ov'L £0-918'L 86 1900-YTH 1¥¥ST18 YS6YELES] S1usbiany| - 8446110063 9
203LLT €0-35€°L ) Y0-301°L - 180G-VTH [¥hSTI8 S9156ETSI Apog 194GV TH yrSHorL6d 9
20-3L2T v0-3997  68'9— 90-3vL'€ L6 £66559001 5091708 10668551 005155 1:ApogiApog £EPPSOD0T6E800PD0T8XVd LbT652063 z
70-396'L €0-35€7L LE°9 L0-3LE°L €56 1900-YTH [¥hSTI8 S9156€754 Siusbianyl - 101191062 9
20-389'L 90-397'L Le'g 01-395°€ €TLL- 71159 796v£08 888/0015! Apog 110 £VE9Y8YT0d w
70-319'L 90-397'L LE'8 01-395°€ €Ll 711D 608108 888£0015! Apog 11aa €rE9Y8YZDd a4
€0-396'6 Y0399,  689— 60-361°L 9601 £EP6S9D0T 509108 106685/ 005155 1!ApogiApog £EPPSIDOT6E808HI0TEXVd 5616887162 4
€0-3056 20-3LTy %S $0-3+8'8 6L SGYA-VIH 9EbSTL8 SS667LESI S1uabiaiu| - LOL 19062 9
€0-3Lt'L 20Ty %S $0-3+8'8 6L S9YQ-VIH 9EvST18 YS66TLES] S1uabiau| - LOLL9¥b06> 9
£€0-398'9 70351E $09— €0-316'L 08'L— 1900-YTH 1¥hST18 69958754 Apog LYOa-¥VTH 7806162062 9
€0-3p1'9 20Ty %S €0-39€°€ 191 S9YQ-VIH 9EvST18 8Y66TLES! S1uabiau| - 8446110063 9
£0-3€6° Z035L'E $09— €0-316'L 08'L— 1900-YTH [¥hSTI8 L¥L§LZ65) Apog LVOG-YTH 7806162063 9
£0-3€6° Z0-35L'E  $09— €0-316'L 08'L— 190G-VTH [¥hST18 9152H9ps) Apog LVOA-YTH 7806162063 9
€0-3€6'S 70351 $0'9— €0-316'L 08'L— 1900-YTH [VbSTI8 850120€s! Apog LVOG-YTH 7806162062 9
€0-32€°S S0-3¢8L ov'L £0-395F €96 1900-YTH L¥hSTI8 THEOELES) Apog S9YT-YTH 640740062 9
€0-356'% $0-3€97 vo'L £0-38T'L 166— 711D 796v£08 SE90€€754 fpog 110 £rE9Y8YZHd a4
€0-3e'e Y0-399°L  689— L0-3LE°L 06'6— £E0659D01 09708 L06685.51 ApogiApog 6£805D078XVd SL¥L151062 z
€0-387°€ €0-35€°L L£°9 90-3LT v16 190G-YTH 1¥hST18 S9156€Z54 Apog 994G-VTH £120715262 9
£0-376C S0-3¢8L ov'L £0-395F €96 1900-YTH [¥hST18 [8TOELES! Apog SGYA-VIH 640770062 9
€0-319°L €0-35€°L ) 80-300'8 zo'01 180G-VTH L¥hSTI8 S9156ETSI S1uabiamu| - 8446110063 9
snjep-0 snjep-d  3eis-L snjep-d 1e35-1 susp PI PI uoibay susp susp PI
pa3d>a110D pa3d32410D
IT5) IsAD WSsAD adudsuel] yNYW dNS ody WD

*s19|sI d1easoued uewny ul uoissaIdxa YNHW YUm uolledosse d11auab jo Joleipaw |ennualod e st says Hd) Jo uonejfylsw ausym s71109/STLOW-SI2 payiusp| *€ a|qel

November 2014 | Volume 10 | Issue 11 | 1004735

PLOS Genetics | www.plosgenetics.org



Genome-Wide Interactions Genetics and Epigenetics

Table 4. KEGG pathways with enrichment of genes annotated to CpG sites of significant cis-mQTLs in human pancreatic islets.

Pathway (total
number of genes in
pathway)

Observed
number of
genes

Expected
number of
genes

Ratio of
enrichm

ent Raw P-value

Adjusted
P-value

Observed genes

Type 1 Diabetes (41)

Autoimmune thyroid
disease (41)

Allograft rejection (34)

Graft versus host

disease (37)

Viral myocarditis (66)

Phagosome (143)

Cell adhesion molecules -
CAMs (125)

Extracellular matrix (ECM)
receptor interaction (83)

27

27

22

23

31

55

49

34
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9.16

9.16

8.26

14.74

31.94

27.92

18.54

295

2.10

1.72

1.75

3.02x107°

3.02x107°

1.43x107°

2.19%1077

8.44x10°°

9.28x107°

1.54x107°

0.0001

10

3.32x10°7

332x1077

1.05%x107°

1.20x107°

0.0003

0.0003

0.0005

0.0027

HLA-DRA, HLA-DQA2, CD86, HLA-DQA1,
HLA-E, HLA-F, HLA-DMB, CD80, IL1A,
GZMB, HLA-DPB1, INS, HLA-A, FAS, HLA-
DMA, HLA-DPAT1, HLA-DRB1, HLA-B,
ICA-1, HLA-DQB1, HLA-G, PTPRN2,
HLA-C, HLA-DOA, GAD1, HLA-DOB,
HLA-DRB5

HLA-DRA, HLA-DQA2, CTLA4, CD86,
HLA-DQAT, HLA-E, HLA-F, HLA-DMB,
CD80, TPO, GZMB, HLA-DPB1, HLA-A,
FAS, HLA-DMA, HLA-DPA1, HLA-DRBIT,
HLA-B, HLA-DQBI1, HLA-G, TG, HLA-C,
HLA-DOA, TSHR, HLA-DOB, HLA-DRBS,
IFNA4

HLA-DRA, HLA-DQA2, CD86, HLA-DQAT,
HLA-E, HLA-F, HLA-DMB,CD80, GZMB,
HLA-DPBT, HLA-A, FAS, HLA-DPAT, HLA-
DRB1, HLA-DMA, HLA-B, HLA-DQBI,
HLA-G, HLA-C, HLA-DOA, HLA-DRBS,
HLA-DOB

HLA-DRA, HLA-DQA2, CD86, HLA-DQAT,
HLA-E, HLA-F, HLA-DMB, CD80, IL1A,
GZMB, HLA-DPB1, HLA-A, FAS, HLA-
DPAT1, HLA-DRB1, HLA-DMA, HLA-B,
HLA-DQB1, HLA-G, HLA-C, HLA-DOA,
HLA-DRB5, HLA-DOB

HLA-DRA, HLA-DQA2, CASP3, CD55,

MYH13, CD86, HLA-DQA1, HLA-E, HLA-
F, CASP9, SGCD, HLA-DMB, CD80, CAV1,
LAMA2, HLA-DPBT, HLA-A, MYHT1,

ITGB2, HLA-DPA1, HLA-DRB1, HLA-DMA,
HLA-B, FYN, HLA-DQBI, HLA-G, MYH15,
HLA-C, HLA-DOA, HLA-DOB, HLA-DRB5

HLA-DRA, DYNC1I2, TUBB2A, ATP6V1A,
HLA-E, HLA-F, TAP1, TUBB6, DYNCTI1,
ITGB5, HLA-DPB1, NCF2, HLA-A, HLA-
DRB1, MBL2, HLA-DPA1, PLA2R1, HLA-
DQBT, ITGB3, ATP6V0A4, ATP6V0A2,
TAP2, TUBAL3, HLA-C, DYNC2H]T,
TUBBS, TUBA3D, COMP, ATP6V0D1,
ATP6VOE2, ATP6V1G1, C3, HLA-DQA2,
PIK3C3, SEC61B, TUBAI1A, THBS2, HLA-
DQA1, RAB7A, VAMP3, HLA-DMB,
TUBA3E, FCGR3B, COLECT1, TLR6, CD36,
ITGB2, HLA-DMA, HLA-B, TLR2, HLA-G,
SCARB1, HLA-DOA, HLA-DOB,
HLA-DRB5

HLA-DRA, CDH4, CLDN15, CD86, HLA-E,
HLA-F, CD276, SDC2, SELL, CNTNAP2,
NRXN1, CLDN14, HLA-DPB1, HLA-A,
HLA-DRB1, HLA-DPA1, CDH15, CDH1,
HLA-DQB1, CD6, CLDN14, HLA-C,
CLDN3, NCAM1, ITGA9, CLDN18, HLA-
DQA2, CTLA4, CLDN23, HLA-DQAT,
HLA-DMB, ICAM3, CD80, MAG, JAM3,
NEGRI, ITGB2, CNTNAP1, PTPRF, HLA-
DMA, HLA-B, MPZ, CDH5, HLA-G,
NFASC, HLA-DOA, HLA-DOB, SIGLECT,
HLA-DRB5

COL-4A2, AGRN, HSPG2, TNXB, SDC2,
ITGB5, COL6A3, ITGA3, GP5, COL6AT,
ITGB3, COL5A1, COL2A1, ITGATI,
COL4A1, COL5A3, ITGA1, CD44, ITGAS,
COMP, LAMA4, SV2C, COL6A2, LAMCI,
THBS2, COL11A2, COL1A1, RELN,
LAMA2, CD36, LAMB1, VWF, GP6,
LAMAS
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presentation (68)

Pathway (total Observed Expected

number of genes in number of number of Ratio of Adjusted

pathway) genes genes enrichment Raw P-value P-value Observed genes

Other types of O-glycan 20 9.61 2.08 0.0004 0.0098 UGTI1A1, GXYLT2, UGT1A4, GXYLTI,

biosynthesis (43) UGT2B15, UGT1A10, ST6GALI,
GLT25D2, UGT1A7, MGAT5B, POMGNT],
UGTI1AS5, ST3GAL3, UGT1A3, UGTIA9,
UGT2B17, FUT9, UGT1A6, UGT1AS,
ST6GAL2

Folate biosynthesis (11) 8 2.46 3.26 0.0005 0.0110 ALPPL2, ALPP, GCH1, QDPR, ALPL, PTS,
DHFR, GGH

Antigene processing and 27 15.19 1.78 0.0009 0.0180 HLA-DRA, HLA-DQA2, HLA-DQA1, HLA-

E, HLA-F, HSP90AB1, TAP1, HLA-DMB,
HLA-DPB1, HLA-A, HSPA1B, HLA-DPAT,
HSPATL, HLA-DRB1, HLA-DMA, HLA-B,
TAPBP, NFYA, HLA-DQBT, HLA-G, TAP2,
HSP90AA1, HLA-C, HLA-DOA, HLA-DOB,
KLRC2, HLA-DRB5

P-values have been adjusted for multiple testing using Benjamini-Hochberg.
doi:10.1371/journal.pgen.1004735.t004

ontology analysis of the cis-eQTLs (Figure S5). In the KEGG
pathway analysis of differentially expressed genes in the cis-eQTL
(Table 89), genes involved in the glutathione metabolism pathway
which is of relevance to islet function were enriched including the
following identified genes: GSTTI, GSTM3 and GPX7
(Pqj=3.0x107%.

Furthermore, genes annotated to CpG sites of significant trans-
mQTLs were also found to be enriched in the MHC protein
complex (P,q;=1.1x107%) and the ER part (P,q=3.8x1077)
when performing a gene ontology analysis (Figure $6). This was
also reflected in the KEGG pathway analysis of trans-mQTLs
(Table S10) where type 1 diabetes was found to be an enriched
pathway of relevance in human pancreatic islets, including the
following genes: PTPRN2, HLA-DRBI, HLA-B, HLA-C,
HSPDI and HLA-DRB5 (P,qj=6.0x 1074,

In the gene ontology analysis of genes showing differential
expression between genotype groups in the eQTL analysis of
significant {rans-mQTL-SNPs, the carboxylic acid metabolic
process was found to be enriched (P.qj = 8.4x107°) (Figure S7).
However, no significant enrichment was found in the KEGG
pathway analysis including the same dataset.

Knockdown of Gpx7, Gstt1 and Snx719 alters B-cell

proliferation and cell death signaling

To examine whether altered expression of some of the identified
candidate genes in the islet mQTL/eQTL analyses affect B-cell
function and thereby potentially the development of diabetes, we
silenced the expression of three selected genes; Gpx7, Gsttl and
Snx19, in clonal B-cells. These genes were selected based on their
potential role in diabetes and islet function [47,49-51] and
because they showed both differential DNA methylation and gene
expression between genotype groups in the mQTL and eQTL
analyses (Table S2 and Table S3). One representative mQTL
and eQTL for GPX7,, GSTTI and SNXI9, respectively, is
presented in Figure 5A-C. Morcover, GPX7 and GSTTI
belong to the genes that were enriched in the glutathione
metabolism KEGG pathway of significant cis-eQTLs. The
knock-down experiments were performed to establish if identified
genes in our mQTL analysis have a biological function in
pancreatic B-cells. While both GPX7 and GSTT! encode proteins
that are known to protect against oxidative stress [48,52,53], sortin

PLOS Genetics | www.plosgenetics.org
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nexin 19, encoded by SNX19, may put cells into a pre-apoptotic
state [50]. We therefore studied cell number and cell death
signaling, measured as caspase-3/7 activities, under control and
lipotoxic stress conditions when silencing selected candidate genes
in clonal B-cells. The expression level of Gpx7, Gsttl and Snx19
respectively, was significantly reduced in the siRNA knockdown
experiments (P<<0.05, Figure 5D). Interestingly, both under
control and lipotoxic conditions, we found increased caspase-3/7
activities in P-cells with silenced Gpx7 or Gsitl expression
compared to negative control siRNA transfected (siNC) B-cells
(P<0.05, Figure 5E). Moreover, when crystal violet staining was
used to measure B-cell number, knockdown of Snx19 resulted in
increased cell number compared to negative control cells under
both normal and lipotoxic conditions (P<<0.05, Figure 5F).

Associations of identified mQTLs with insulin secretion in
human pancreatic islets

Pancreatic islets play a major role in controlling whole-body
glucose-homeostasis through secreting insulin in response to
elevated blood glucose levels and other fuels. To further examine
phenotypic outcomes of significant mQTLs in human pancreatic
islets, significant c¢is and frans mQTL-SNPs were related to
glucose-stimulated insulin secretion from human islets in vitro.
Out of the identified cis-mQTL-SNPs, 1,843 (5.0%) SNPs were
associated with glucose-stimulated insulin secretion in vitro (P<
0.05) (Table S11). Moreover, seven of the cis-mQTL-SNPs
associated with insulin secretion were also identified in the cis-
eQTL analysis including the GPX7 and HLA genes (Table S5).
Additionally, out of the identified trans-mQTL-SNPs, 90 (6.1%)
SNPs were associated with glucose-stimulated insulin secretion in
human islets (Table 812). We next used CIT [32] to examine if
relationships between genotypes and phenotype (insulin secretion)
were potentially mediated through DNA methylation of CpG sites
in the significant mQTLs. In this CIT approach, we consider
genotypes of SNPs identified in the mQTL analysis as causal
factors (G), DNA methylation of CpG sites identified in mQTL
analysis as potential mediators (M) and islet insulin secretion as a
phenotypic outcome (I). The possible relationships between these
three factors are shown in Figure S8A. Significant SNP-CpG
pairs from the mQTL analysis where mQTL-SNPs also show
association with insulin secretion were included in the CIT
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Figure 5. Identified mQTL/eQTL candidate genes GPX7, GSTTT and SNX19 affect f-cell number and apoptosis. Associations identified in
the mQTL/eQTL analyses of human pancreatic islets. (A) rs835342 located approximately 5 kb upstream of GPX7 associates with DNA methylation of
cg18087326 located 406 bp upstream of the GPX7 transcription start site (TSS) as well as with mRNA expression of GPX7. (B) rs4822453 located
~121 kb downstream of GSTT1 associates with DNA methylation of cg17005068 located 241 bp upstream of the GSTT1 TSS as well as with mRNA
expression of GSTT1. (C) rs3751035 located within exon 1 of SNX79 associates with DNA methylation of cg08912652 located within the gene body of
SNX19 as well as with mRNA expression of SNX79. Data are presented as Box and Whisker plots with P-values adjusted for multiple testing. (D) gPCR
quantification of siRNA mediated knockdown of Gpx7 (siGpx7), Gstt1 (siGstt1) and Snx19 (siSnx19) compared to negative control siRNA (siNC). * P<
0.01, the graphs show the average of four independent knockdown experiments presented as mean = SEM. (E) Knockdown of Gpx7 and Gstt1
resulted in increased combined caspase-3/7 activity compared to negative control siRNA under both control (white bars) and lipotoxic (black bars)
conditions. * P<<0.05, the graph shows the average of three independent knockdown experiments presented as mean * SEM. (F) Knockdown of
Snx19 (siSnx19) resulted in increased cell number compared to negative control siRNA (siNC) under both control (white bars) and lipotoxic (black
bars) conditions. * P<<0.05, the graph shows the average of six independent knockdown experiments presented as mean + SEM.
doi:10.1371/journal.pgen.1004735.g005

(Figure S8B). The CIT analysis of cis-mQTLs identified 14 traits association from MAGIC investigators [60-64]. Significant
(0.5%) SNP-CpG pairs consisting of 10 unique SNPs and 8 unique mQTL-SNPs overlapping with SNPs showing associations with
CpGs that were called as causal (causal hypothesis P-value<<0.05; type 2 diabetes (P<<0.05 in DIAGRAM) or with glucose, insulin
nothing hold for FDR with Q-value<0.05) and represent potential and proinsulin traits (P<<0.05 in MAGIC) are presented in Table
methylation-mediated relationships between mQTL-SNPs and S15 and Table S16, cis- and trans-mQTL-SNPs respectively.
insulin secretion (Figure S8B and Table S13). One identified These include SNPs annotated to the KIFI11-HHEX-IDE region,
mQTL, where methylation potentially mediates the causal WESI1, ADCY5, KCNJ11, FADSI, SIRT2 and SNXI9.

association between the SNP and islet insulin secretion, was As an evaluation of the number of islet mQTL-SNPs also
annotated to PTPRNZ2 (also known as IA-2f or in rodents as reported to be diabetes associated SNPs in GWAS, we further
phogrin) (Table S13). Interestingly, the PTPRN2 gene encodes a checked for overlap between mQTL-SNPs identified in human

protein that is an autoantigen in type 1 diabetes [54,55]. When islets and SNPs associated with breast cancer, stroke and
performing the CI'T analysis of frans-mQTLs, no SNP-CpG pairs hypothyroidism; diseases not relevant for our targeted tissue of
were found to show a causal relationship with islet insulin secretion pancreatic islets. In total, there were 63 reported SNPs associated
(Figure S8B). with breast cancer, 18 SNPs associated with stroke and 20 SNPs
associated with hypothyroidism in the GWAS catalog with P<

Identified mQTLs/eQTLs in human pancreatic islets 10°° (accessed March 2013). Out of these, four breast cancer
capture reported diabetes SNPs SNPs, one SNP associated with stroke and no hypothyroidism
Previous GWAS have identified SNPs associated with an SNPs COl.lld be identified di.re<.:tly or through a proxy SNP as cis-
increased risk of diabetes or diabetes related traits [15,20,56]. mQTLs in human pancreatic islets. However, the SNPs associated

with the additional traits were neither identified in the frans-

Nevertheless the molecular understanding of how these SNPs ! ) )
mQTL analysis nor in the eQTL analyses of human islets.

contribute to disease is still limited. To examine if previously
reported diabetes SNPs may affect DNA methylation and/or gene o .
expression in human pancreatic islets, a key tissue in the Associations between DNA methylation and mRNA

pathogenesis of diabetes, they were checked for overlap with the expression in human pancreatic islets

identified mQTLs/eQTLs in the present study. Depending on the genomic location of a CpG site, DNA

The GWAS catalog (www.genome.gov/gwastudies, accessed methylation may regulate gene transcription in several different
March 2013) [57] was used to find SNPs reported to be associated ways [65,66]. Nevertheless, the association between DNA
with diabetes. In total, 317 SNPs were identified showing methylation and gene expression throughout the human genome
associations (P<10~°) with type 1 diabetes, type 2 diabetes or remains poorly described. To test if DNA methylation is directly
related traits (glucose-, insulin- and proinsulin traits). To get better associated with gene expression in human pancreatic islets, we
reference coverage of these SNPs a proxy search using SNAP [58] performed a linear regression between individual mRNA tran-
was performed, giving 5,448 SNPs in LD (r">0.8) with the scripts and DNA methylation of CpG sites in cis (500 kb up- and
reported diabetes SNPs. This dataset was then used to check for 100 kb downstream of respective gene), including age, gender,
any overlap with the identified SNPs in the mQTL/eQTL BMI, HbAlc, islet purity, days in culture and batch as covariates.
analyses of human islets. We found significant associations between DNA methylation and

In the overlap, 32 out of 317 (10.7%) reported diabetes SNPs mRNA expression for 31,315 combinations (FDR<5%), consist-
were found to match directly or through a proxy with the ing of 22,773 unique CpG sites (4.9% of tested CpG sites) and
identified cis-mQTL-SNPs, consisting of SNPs associated with 5,377 unique mRNA transcripts (19.6% of tested mRNA
type 1 diabetes (n=12), type 2 diabetes (n=12), fasting-plasma transcripts), which are annotated to 4,876 genes. Out of these,
glucose (n=4; 1 SNP overlapping with type 2 diabetes), 2 hour CpG sites in 20,376 combinations (65.1%) were located in the
glucose challenge (n=1), insulin response (n=2) and proinsulin region 0-500 kb upstream of a transcription start site, CpG sites in
(n=2) (Figure 6A-H; Table S14). Morcover, one diabetes 5,718 combinations (18.3%) were intragenic, and CpG sites in
associated SNP (rs9272346 HLA-DQAI, PT1D<107128) was 5,221 combinations (16.7%) were located 0-100 kb downstream

found through the proxy search to overlap with a c¢is-mQTL- of a gene (Figure 7). For CpGs upstream from a transcription
SNP (rs1063355 HLA-DQBI, R?=0.87) (Figure 6B) that start site, 9,436 combinations (46.3%) showed negative and 10,940
showed association with mRNA expression in the human islets combinations (53.7%) showed positive correlations between DNA
(Table S5). Identified trans-mQTL-SNPs were not found to methylation and mRNA expression (Figure 7A). For intragenic
overlap with reported diabetes SNPs identified through GWAS. CpGs, we found 3,694 (64.6%) negative and 2,024 (35.4%)

Identified mQTL-SNPs were also checked for overlap with positive correlations (Figure 7B). Interestingly, negative correla-
publicly available consortium data of type 2 diabetes associations tions were enriched for CpGs in the region close to the

from DIAGRAMv3 GWAS meta-analysis [59] and for glycemic transcription start site (Figure 7C-D). For example, for CpGs
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Figure 6. Diabetes SNPs reported by GWAS associate with DNA methylation in human pancreatic islets. Depiction of some identified
associations between SNP and DNA methylation in islets of reported type 1 diabetes loci: (A) INS, (B) HLA and (C) PTPN2; type 2 diabetes loci: (D)
KCNJ11, (E) WFST and (F) ADCY5; and glucose-trait loci: (G) PDX1 and (H) GRB10. P-values adjusted for multiple testing. HLA rs1063355 and WFST
rs1801216 were identified through proxy search and are in linkage with the GWAS reported diabetes SNPs HLA rs9272346 and WFST rs1801214,

respectively.
doi:10.1371/journal.pgen.1004735.9g006

in the region 1 kb upstream to 1kb downstream from the
transcription start site, 90% of the correlations between DNA
methylation and mRNA expression were negative. For CpGs
downstream of the gene, we found negative correlations for 2,499
combinations (47.9%) and positive correlations for 2,722 combi-
nations (52.1%) (Figure 7E).

In addition, we looked for any overlap between significant
mQTL/eQTL results and direct associations between DNA
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methylation and mRNA expression. Thereby, we extracted and
paired CpG sites and mRNA transcripts that were significantly
affected by the same SNPs in the mQTL/eQTL analyses, which
resulted in identification of 410 unique CpG-mRNA transcript
pairs. Out of these, 287 (70%) also showed a significant direct
association between DNA methylation and mRNA levels, where
164 (57.1%) CpG-mRNA transcript pairs showed negative
correlations and 123 (42.9%) showed positive correlations (Table
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Figure 7. Distribution of CpG sites significantly associated with one or more mRNA transcripts, separated based on negative or
positive correlations. (A) 20,376 combinations in the region 0-500 kb upstream of transcription start site and (B) 5,718 intragenic combinations.
Negative correlations were enriched in the region surrounding the transcription start site, both (C) upstream and (D) downstream. (E) 5,221
combinations 0-100 kb downstream of the gene. Associations corrected for multiple testing using false discovery rate at 5% (Q<0.05).
doi:10.1371/journal.pgen.1004735.g007
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$17). Of note, for all three genes selected for functional follow-up
experiments based on both significant mQTL and eQTL results
(Figure 5), DNA methylation was directly associated with gene
expression, e.g. DNA methylation of 8 CpG sites within or around
GSTT1 showed the most significant correlations with mRNA
expression of GSTTI (P,q;<9.9x10™"%) (Table $17). Addition-
ally, DNA methylation within or around GPX7 and SNXI9 was
directly associated with mRNA expression of respective gene

(Table S17).

Biological validation and replication of mQTL and eQTL
data

To biologically validate our findings from the genome-wide
mQTL analysis and the eQTL analysis, we analyzed DNA
methylation with Pyrosequencing and mRNA expression of two
selected genes (GPX7 and SNX19) in pancreatic islets from a
different set of human donors than the ones used for the mQTL/
eQTL analyses. The characteristics of the 37 islet donors used for
biological validation can be found in Table S18. Importantly, our
mQTL/eQTL data could be biologically validated in the new set
of islets (Figure 8A-B, Figure 5, Table S2 and Table S5).
We found significant differences in methylation and expression
between genotype groups which were in the same direction as the
genome-wide mQTL/eQTL analysis. Of note, for validation of
SNX19 expression, there was only expression data available from
one carrier of the rare variant and the association did not reach
significance, P=0.12 (Figure 8B). It should also be noted that we
were able to validate significant mQTL data detected with an
Infinium probe that contains a SNP by the use of Pyrosequencing
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(Figure 5C and Figure 8B), i.c., there is a SNP (rs4402303, G/
T) located in the SNX19 methylation probe (cg08912652, Table
$2), which either introduces or removes a CpG site and this SNP is
in full LD with our significant mQTL SNP (rs3751035; D' =1,
r?=1 based on 1000 Genomes project, CEU population panel,
distance between SNPs=5.7 kb).

We further examined whether our significant islet cis-mQTLs
(presented in Table 82) were identified in previous reported
mQTL studies from other human tissues [8,9,12—14]. Here, we
tested for the overlap of CpG sites in significant mQTLs in our
study and previously reported mQTL studies. For example, we
found that ~33% of identified CpG sites in significant cis-mQTLs
in our human islet study were also identified in significant cis-
mQTLs in adipose tissue [12]. The numbers of CpG sites in
significant ¢is-mQTLs in our human islets study that could be
replicated in previously published human mQTL studies are
presented in Table S19. Significant ¢is-mQTLs identified in
human pancreatic islets and not replicated in other human tissues
may be islet specific. In total, we found 6,898 CpG sites in
significant ¢is-mQTLs annotated to 3,241 unique genes in our islet
mQTL analysis that cannot be replicated in any of the previously
published human mQTL studies used in the overlap analysis
[8,9,12-14]. To look for potential biological relevance of
significant ¢is-mQTLs only identified in human islets, we
performed KEGG pathway analysis of this subset of 3,241 unique
genes (Table $20). However, we cannot rule out that unequal
filtering and inclusion criteria of CpG probes, different significance
thresholds for calling mQTL hits and various cis windows together
with other factors may influence the replication of our islet
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Figure 8. mQTLs/eQTLs of GPX7 and SNX79 identified in the genome-wide analysis were biologically validated in pancreatic islets
from a different set of human donors. Biological validation of associations for (A) GPX7 rs835342 with DNA methylation of cg18087326 as well as
with mRNA expression of GPX7 and (B) SNX19 rs3751035 with DNA methylation of cg08912652 as well as with mRNA expression of SNX79 in a set of
human pancreatic islets from donors (n=37) not included in the genome-wide mQTL/eQTL analysis. DNA methylation was analyzed using
Pyrosequencing and mRNA expression using Affymetrix microarray. Data are presented as Box and Whisker plots with P-values.

doi:10.1371/journal.pgen.1004735.g008
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mQTLs in previously published mQTL studies in other human

tissues.

Associations between imputed genotype data and DNA
methylation in human pancreatic islets

To generate a reference map of mQTL data in human
pancreatic islets, we finally imputed autosomal genotype data
generated with the Human OmniExpress BeadChip for the 89
islet donors to the 1000 Genomes phase 1, version 3 reference
panel. We then associated imputed autosomal genotype data,
including 6,544,062 SNPs, with DNA methylation data of 468,787
CpG sites from islets of 89 human donors. Based on significance
thresholds of 4.9x10™"" and 2.5x10™ " in the cis- and trans-
mQTL analyses, respectively, we found 978,128 SNP-CpG pairs
in ¢is (Table 5 and Table S$21) and 59,529 SNP-CpG pairs in
trans (Table 5 and Table $22) showing significant associations
between genotypes and DNA methylation levels. These 978,128
cis-SNP-CpG pairs consist of 494,642 unique SNPs (7.6% of tested
SNPs) and 14,308 unique CpG sites (3.1% of tested CpG sites),
which are annotated to 5,160 unique genes (Table 5 and Table
S$21). Moreover, the 59,529 frans-SNP-CpG pairs consist of
34,351 unique SNPs (0.5% of tested SNPs) and 545 unique CpG
sites (0.1% of tested CpG sites), which are annotated to 352 unique
genes (Table 5 and Table $22). Of note, only 2,573 new CpG
sites were discovered in the c¢is-mQTL analysis of imputed
genotype data compared with the cis-mQTL analysis of directly
genotyped SNP data (Table 1/Table S2 and Table 5/Table
$21). Additionally, we discovered 162 new CpG sites in the trans-
mQTL analysis of imputed genotype data compared with the
analysis of directly genotyped SNP data (Table 1/Table S3 and
Table 5/Table $22). The mQTL analysis of imputed genotype
data identified all significant SNP-CpG pairs presented in Table
S2 and Table S3. The modest increase in discovered CpG sites
and unique genes in the mQTL analysis of imputed SNPs is most
likely due to a dependency in imputed and directly genotyped SNP
data as the directly genotyped SNP data generated with the
Human OmniExpress BeadChip was used for imputation.

Discussion

It is well established that genetic and epigenetic variation
contributes to the development of numerous diseases, including
diabetes [40,56,65,67—73]. While most studies have investigated
genetic and epigenetic mechanisms independent of each other,
they may interact and together affect biological processes and
susceptibility to disease. Here, we perform the first mQTL analysis
in human pancreatic islets targeting DNA methylation of ~99% of
RefSeq genes and most genomic regions in the human genome.
The present study gives new insights on how genetic and

Genome-Wide Interactions Genetics and Epigenetics

epigenetic factors can interact in humans and provides a detailed
map of genetic loci affecting the genome-wide DNA methylation
pattern in human pancreatic islets.

Pancreatic B-cells secrete insulin in proportion to extracellular
glucose concentrations and thereby contribute to whole-body
glucose-homeostasis. Deficient insulin secretion, giving rise to
chronically elevated blood glucose levels, is a hallmark of diabetes
mellitus. Recent GWAS have identified SNPs associated with an
increased risk of both type 1 diabetes [15-17,19,21,22,24] and
type 2 diabetes [25-28]. Interestingly, many of these SNPs seem to
affect pancreatic islet function, autoimmunity and inflammation
[15,23,74-79]. However, SNPs identified by GWAS only explain
a small part of the estimated heritability of type 2 diabetes based
on family studies [31], suggesting that there are additional genetic
factors left to be discovered. SNPs that are carriers for inheritance
of DNA methylation may explain some of the missing heritability
of complex diseases. In the present study, we found that SNPs
associated with DNA methylation, mRNA expression and insulin
secretion in human pancreatic islets also showed nominal
associations with type 2 diabetes as reported by the DIAGRAM
consortium [59] and with glucose/insulin traits as reported by
MAGIC investigators [60-64]. It is possible that some of the
overlapping SNPs have escaped detection to disease phenotypes in
previous GWAS and that association to diabetes can only be
significantly detected if the degree of DNA methylation in cases
and controls is taken into account. However, other cohorts than
the one used in this study will be needed to test this.
Environmental factors can change the degree of DNA methylation
and may thereby control phenotype transmission [67,71,72,80—
82]. Effects of SNPs that interact with DNA methylation levels
may thereby change under different environmental conditions,
which could affect their impact on disease risk [70]. This may be
one explanation for gene-environment interactions.

The majority of reported loci that predispose to diabetes seem to
act through insulin secretion defects from pancreatic islets [83-83].
However, the molecular mechanisms of how most of these SNPs
affect their target gene or phenotypic outcome remain unknown.
In the present study, we found that several SNPs identified in
GWAS to associate with type 1 diabetes (e.g. PT'/PN2 [15], INS
[15] and HLA [86]), type 2 diabetes (e.g. ADCY5 [60,64,87] and
KCNJI1 [25,26,29,79]) and glucose-traits (GRBI0 [64] and
PDX1 [64]) were also associated with differential DNA methyl-
ation between genotype groups in human pancreatic islets. In
particular we found an enrichment of significant mQTLs in the
HLA region on chromosome 6p21, which possess the strongest
genetic determinant for type 1 diabetes [23] and predisposition to
autoimmunity [78]. In total, 55% of the CpG sites in significant
cis-mQTLs on chromosome 6 were located within the HLA gene
region (Chr6:29.570.005-33.377.701 - human genome build 37)

Table 5. Number of significant mQTL results in human pancreatic islets when including imputed genotyped data.

cissmQTL trans-mQTL
SNP-CpG pairs 978,128 59,529
Unique SNPs 494,642 34,351
Unique CpG sites 14,308 545
Unique genes 5,160 352

Significance threshold <0.05 after correction for multiple testing.
Correction value cis=102,307,720.

Correction value trans =200,388,516,440.
doi:10.1371/journal.pgen.1004735.t005
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and the enrichment cannot be explained by the distribution of
analyzed sites on the array. A non-HLA gene, PTPN2, known to
affect the risk of type 1 diabetes and Crohn’s disease was also
identified in the mQTL analysis of human islets [15,74]. PTPN2
encodes a non-receptor type protein member of the tyrosine
phosphate family and is expressed in B-cells where it has been
shown to be involved in cytokine-induced apoptosis [75,88]. We
also found significant mQTLs in the PDXI and INS (insulin)
genes. PDX1 (pancreatic duodenal homeobox 1) is a transcription
factor involved in pancreas development and function [89,90].
The PDXI1 gene is also expressed in B-cells of the mature
pancreas, where it plays a role in glucose-dependent regulation of
insulin gene expression and insulin secretion. Recent studies from
our group show that increased DNA methylation may reduce
expression of PDXI and INS in diabetic islets and contribute to
the development of the disease [40,68,91]. Altered DNA
methylation levels in human pancreatic islets based on genotype
may be a molecular mechanism through which diabetes associated
SNPs contribute to the disease phenotype.

We recently showed that ~50% of previously reported type 2
diabetes risk SNPs are so called CpG-SNPs that introduce or
delete possible DNA methylation sites. These type 2 diabetes
associated CpG-SNPs were significantly associated with altered
DNA methylation, gene expression and islet hormone secretion in
pancreatic islets from non-diabetic human donors [65]. In the
present study, we also looked for associations between significant
mQTL-SNPs and islet insulin secretion in our study cohort and we
found numerous associations with P<<0.05. However, the lack of
available insulin secretion data measured in pancreatic islets in
vitro in an independent cohort limits our possibility to replicate
and strengthen our results. Nevertheless, our findings may provide
interesting biological insights to the field of insulin secretion.

Further, in order to mathematically model the relationships
between genotype, DNA methylation and a phenotype (mRNA
expression and insulin secretion), we performed CIT analysis [32].
While the CIT for mRNA expression remained significant after
correction for multiple testing, the CIT for insulin secretion did
not stand correction for multiple testing. Interestingly, we found
that genetic associations with mRINA expression of genes located
in the HLA region and of genes involved in glutathione
metabolism were potentially mediated through DNA methylation.
Both the HLA gene region and the glutathione genes have been
genetically linked to type 1 diabetes and are suggested to play a
biological role in islet function [37,47]. Our data also suggest that
DNA methylation of a CpG site within PTPRN2 is the potential
mediator of the association between a SNP in the same gene and
islet insulin secretion. The gene product of PTPRN2 (also known
as IA-2f or in rodents as phogrin) is a receptor type of the protein
tyrosine phosphatase family known to be a major islet autoantigen
in type 1 diabetes [54,55]. Expression of the PTPRN2 gene
product in pancreatic islets is shown to have important biological
B-cell functions and is involved in the regulation of insulin
secretion [92-95]. Together with the mQTL findings in e.g. HLA
genes and PTPN2, our results highlight that future studies may
need to integrate genetics and epigenetics in order to clarify how
candidate genes for type 1 diabetes contribute to the disease. To
our knowledge, only two previous studies have applied a CIT
approach to model the interacting relationship between genotype
and DNA methylation on the effect of a human phenotype
[13,96]. In line with the study by Liu et al. that found ten
differentially methylated positions in blood that mediate genetic
risk in rheumatoid arthritis [96], we found in the present study 14
differentially methylated positions in human islets that act as
potential mediators of genetic associations with mRINA expression.
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Since the CIT analyses are based on hypotheses that mathemat-
ically model the causal relationships of interactions between
genetics and epigenetics on phenotypes, we cannot rule out the
fact that confounding factors not coped for in the models may
influence the suggested calls of causality. Although independent
studies need to verify the modelled relationships, we will
emphasize that the study approach previously addressed by Liu
et al [96] and Gutierrez-Arcelus et al [13] and applied here reveals
novel interesting information about molecular interactions be-
tween genetics and epigenetics, and may pose new questions about
disease causality.

Functional in vitro follow-up studies in B-cells of selected genes,
based on our mQTL/eQTL findings, showed that decreased
expression of Gpx7 and Gsttl significantly affects caspase activity
and decreased expression of Snxl9 significantly affects cell
number. These functional experiments were performed to test if
any of the identified genes in the mQTL/eQTL analyses have a
biological role in B-cells. Importantly, we could also biologically
validate our mQTL/eQTL results for GPX7 and SNX19 in a
different set of islets than the ones included in the genome-wide
analysis. Together, our data propose a model where altered DNA
methylation and expression of these genes in human islets based
on genotype may influence in vivo islet B-cell number and thereby
diabetes risk. Interestingly, GPX7 (glutathione peroxidase 7), and
GSTT1 (glutathione S-transferase theta 1), are involved in
glutathione metabolism, a pathway we found to be enriched
among differentially expressed genes in the eQ'TL analysis of the
human islets, and known to have cell protective functions against
oxidative stress [48,49,52]. Moreover, the protein encoded by
SNX19 (sortin nexin 19) has been shown to interact with the islet
autoantigen IA-2 and put cells into a pre-apoptotic state [50].
Here, we identified numerous mQTL loci that affect the
expression of these genes. Interestingly, some of these loci were
also nominally associated with glucose traits in analyses by
MAGIC investigators [60-64]. Together, our functional data
provide novel biological insights in the regulation of B-cell
function.

Additionally, the genes covering significant cis-mQTLs were
enriched in a total of 11 KEGG pathways. These include 9 KEGG
pathways relevant to pancreatic islet function, e.g. type 1 diabetes
[88,97], cell adhesion molecules [98], extracellular-receptor matrix
(ECM) interaction [99] and folate biosynthesis [100]. It should be
noted, however, that many individual genes are included in
multiple KEGG pathways and the significant pathways that do not
seem to be relevant for pancreatic islet function, such as viral
myocarditis, contain numerous individual genes with important
roles in pancreatic islets e.g. CASP3, CAVI and HLA-genes [101
103]. Moreover, for the analyses of genes covering significant cis-
eQTLs and trans-mQTLs, all of the identified KEGG pathways
were relevant to pancreatic islet function [49,104-111].

This study is to our knowledge the first to perform both ¢is and
trans mQTL analyses of DNA methylation data generated with
the Infintum HumanMethylation450 BeadChip. Our aim was to
select a cis distance that illustrates the overall distribution of
significant cis-mQTLs. Before selecting 500 kb as our c¢is distance,
we performed a preliminary mQ'T'L analysis where we used 1 Mb
as the cis distance. However, based on the small number of
significant SNPs identified in the cis window between 501 kb and
1 Mb (e.g. only 1.43% of significant mQTL-SNPs were located in
the 501-1000 kb window, while 98.57% of significant mQTL-
SNPs were located within the 0-500 kb window), we reduced the
cis distance to 500 kb. Quon et al have previously tried to find an
optimal window size for inclusion of ¢is acting SNPs for mQTL
analysis of methylation data from the human brain generated with
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the Infintum HumanMethylation27 BeadChip [112]. Here, they
propose that using a too large or too small czs window dramatically
reduced the number of identified heritable loci. However, it should
be noted that the optimal cis distance may vary in different tissues
and cell types.

In our mQTL analysis, we took advantage of the sampling of
DNA methylation across the genome to explore distribution of
mQTLs in genomic regions based on relation to the nearest gene
or in relation to the nearest CpG island. Interestingly, based on
Illumina’s annotations, we found an enrichment of significant cis-
mQTLs in the gene body and intergenic regions, as well as in
northern- and southern shores, southern shelf and open sea.
Additionally, we found less significant czs-mQTLs than expected in
CpG islands. Most of the previous mQTL analyses, which mainly
cover DNA methylation data in CpG islands of promoter regions,
have subsequently not been able to describe the genomic location
of significant mQ'T'Ls [8,9,113]. However, our study suggests that
DNA methylation in more CpG-depleted regions to a larger extent
is regulated by genetic factors. These results confirm previous
efforts from our group and others [12,72,91,114]. Interestingly, a
very recent study from our group shows that differentially
methylated CpG sites in pancreatic islets from patients with type
2 diabetes compared to non-diabetic donors are also overrepre-
sented in intergenic regions and the open sea while underrepre-
sented in CpG islands [91]. These results are also in line with a
previous global analysis of DNA methylation in adipose tissue
from twins using the Illumina 450 K chip, where they showed that
high variability of DNA methylation in the gene body and
intergenic regions across individuals can be explained by
regulation of genetic factors [12]. We further took advantage of
the published mQTL data in adipose tissue from Grundberg et al
[12] and analysed if the genomic distribution of their significant
cis-mQTLs show a similar pattern to the findings in our study.
Clonfirmative, significant ¢zs-mQTLs in human adipose tissue were
overrepresented in the intergenic region, the gene body, the open
sea as well as the shore and shelf regions, while underrepresented
in regions close to the TSS and CpG island regions based on
Illumina’s annotations. In agreement with the data in the present
study, we have previously found that CpG sites with significantly
altered methylation in human adipose tissue after an exercise
intervention or based on type 2 diabetes are enriched in the gene
body, intergenic region and open sea, while underrepresented in
the CpG island region [72,114]. Together, our genome-wide data
point to a direction that variable CpG sites in the human genome
are more frequently located outside CpG rich regions. Moreover,
the role of DNA methylation seems to vary in context between
different genomic elements, and although the function of DNA
methylation in gene body and enhancer regions is less well studied
compared to promoter methylation, DNA methylation in these
genomic regions seems to be crucial for biological function and cell
regulation [40-43,66]. It is possible that CpG sites annotated to
intergenic regions in our study overlap with enhancer regions and
thereby involve distal gene regulatory elements. Moreover, CpG
sites located within gene bodies or non-coding regions of a gene
may overlap with enhancer elements for another distant gene
[115]. Additionally, it has also been suggested that the relationship
between gene body DNA methylation and expression is bell
shaped and varies depending on the transcriptional activity of the
gene, e.g. that high levels of gene body methylation are observed
in genes with moderate expression levels while low levels of gene
body methylation are observed in genes with low and high
expression [116].

Although our mQTL analysis was performed in pancreatic islets
of to date the largest cohort of human islet donors, our statistical
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power is limited compared to large genetic population studies.
Nevertheless, after correction for multiple testing, we identified
~67,000 significant SNP-CpG pairs in human islets which
demonstrate a strong interaction between genetic and epigenetic
mechanisms. It may seem surprising that we found such a large
number of significant associations between SNPs and DNA
methylation in human islets from 89 donors after correcting for
multiple testing (e.g. we corrected for 102,307,720 tests in cis).
However, our mQTL data in human islets are in line with
previous mQTL analyses performed in human brain samples,
where ~8,000-12,000 significant SNP-CpG pairs were identified
when DNA methylation of only ~27,000 CpG sites was analyzed
in approximately 100-150 samples [8,9]. One should also keep in
mind that ~28% of common SNPs in the human genome either
introduce or remove a CpG site [117]. These so called CpG-SNPs
can have very strong effects on DNA methylation in human tissues
[65]. They have also been shown to be biologically relevant
[70,118-125]. Altering the binding of certain proteins is one
possible mechanism through which methylation in CpG-SNPs can
affect gene expression. For example, a recent study showed that
DNA methylation of a CpG site created by the G allele of a CpG-
SNP located in the 5'UTR of the GDF5 gene altered the binding
affinity for SP1 and SP3 repressor proteins which have a higher
affinity to the unmethylated allele and this lead to an expression
imbalance between both alleles [118]. Interestingly, another study
identified a variant associated with alcohol dependence that
mtroduces a CpG site in PDYN. Even though carriers of the T risk
allele had the highest binding affinity for a protein that regulates
PDYN expression positively the researchers found that increased
DNA methylation of the non-risk C allele increased its binding
affinity for this protein more than the non-methylated C allele but
still less than the risk T allele. Methylation of the C allele resulted
in increased PDYN expression and made it act similar to the risk
allele, and it is possible that the increase in DNA methylation may
be a consequence of alcohol consumption [119]. Additionally, our
group has previously reported a CpG-SNP in the promoter of
NDUFBG6 that shows increased DNA methylation in skeletal
muscle from elderly but not young subjects which resulted in
reduced NDUFB6 expression and insulin-stimulated glucose
uptake only in the elderly subjects [70]. This demonstrates that
the phenotypic outcome of a CpG-SNP can result not only from
genotypic differences but that even carriers of the same genotype
can have a different phenotype depending on the degree of DNA
methylation of the SNP site which can be influenced by lifestyle
and age. Interestingly, a CpG-SNP in the promoter of CYP17A1
is associated with Oligoasthenoteratozoospermia and testosterone
levels in infertile males and the degree of methylation in the SNP
site was high in colon and stomach tissue while low in testis, kidney
and adrenal gland [120]. The tissue specific DNA methylation
pattern within the CpG-SNP site of CYPI17A1 was further
associated with high CYPI7A1 expression in tissues with low
methylation in the SNP site. In addition, intragenic CpG-SNPs
can influence transcription elongation positively or negatively
through alternative promoters or noncoding transcripts [121—
123]. Methylation of a CpG-SNP can also play a role in the
regulation of splicing by helping the splicing machinery to identify
exons [124] or by affecting recombination rates [125]. Together,
these studies support key biological functions of differential DNA
methylation due to CpG-SNPs.

It should also be noted that previous human case-control studies
[73,91,126] and human intervention studies [71,72,80] have
identified quite a large number of significant differences in DNA
methylation in cohorts with less than 100 samples. Together, these
studies demonstrate that both genetic and environmental factors
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can have strong effects on the human methylome and that a large
number of significant differences in methylation can be found in
modest sample-sizes.

Epigenetic modifications are involved in the regulation of gene
transcription [67]. However, no previous study has to our
knowledge related DNA methylation data generated with the
HumanMethylation450 BeadChip to genome-wide expression
data. Here, we found direct associations between DNA methyl-
ation of 22,773 CpG sites and mRINA expression of 4,876 genes in
human islets. Interestingly, ~2/3 of the CpG sites that showed
significant associations with mRNA expression were located
upstream of a transcription start site. Additionally, 90% of the
associations were negative when CpG sites were located in the
region 1 kb upstream to 1 kb downstream of the transcription start
site. These data are in line with our previous studies where we
have shown that DNA methylation in promoter regions close to
the transcription start site has direct negative effects on the
transcriptional activity using luciferase assays [71,72]. While
methylation close to a transcription start site is known to block
initiation of transcription, methylation in the gene body might
contribute to transcriptional elongation [66]. In the present study,
35.4% of the associations between gene expression and DNA
methylation of intragenic CpGs were positive. Associations
between expression and methylation of CpGs located downstream
of genes have not been studied in human genome-wide data. We
found direct associations between expression and methylation of
CpGs located downstream of genes, where 47.9% of the
associations were negative. However, it remains to be tested if
methylation downstream of a gene affects the transcriptional
machinery. Additionally, for ~70% of identified mQTLs affecting
gene expression there was also a direct association between DNA
methylation and gene expression in human islets, suggesting that
altered DNA methylation in the mQTL has a direct impact on
gene expression. The CIT further supported this hypothesis.
Although, these novel data improve our understanding of the
associations between DNA methylation and gene expression
throughout the genome, additional studies are needed to examine
if the genome-wide association-pattern between methylation and
expression is tissue specific or general for multiple human tissues.

The key biological findings of our study include; 1) the
identification of a large number of SNPs with strong effects on
DNA methylation in human pancreatic islets; ii) the discovery of
SNPs previously known to affect diabetes and its related traits that
affect DNA methylation in human pancreatic islets; iii) the first
demonstration of how SNPs can mediate their effects on gene
expression via altered DNA methylation in human pancreatic
islets; 1v) the strong genetic regulation of DNA methylation in
genomic regions with low CpG density; and v) the illustration of
how the genome-wide DNA methylation pattern correlates
directly with gene expression in human pancreatic islets. Impaired
msulin secretion is a hallmark of diabetes. Understanding gene
regulation in human pancreatic islets is therefore essential for
creating a full picture of diabetes and for optimal drug
development. As the prevalence of diabetes is rapidly increasing
worldwide, the need for new treatment strategies for diabetic
patients is growing. New treatments may include epigenetic
editing, where selected genes are targeted [127]. The results from
our study may then be used to identify target genes for epigenetic
editing. Additionally, a growing body of literature proposes that
new therapeutic treatments for diabetes may target epigenetic
mechanisms e.g. enzymes responsible for altering the epigenetic
pattern in target tissues for the disease [128,129]. Importantly, our
study shows that subjects at risk for diabetes, by carrying genetic
risk variants for the disease, have altered DNA methylation in their
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pancreatic islets, and future therapeutics targeting epigenetic
modifications may potentially reduce the risk for diabetes in these
subjects.

In conclusion, we describe for the first time genome-wide
interactions between genetic and epigenetic variation in human
pancreatic islets. We show that interactions of these regulatory
mechanisms can influence islet mRNA expression, islet function
and potentially diabetes risk. Our results demonstrate the
importance of considering epigenetics when studying the impact
of genetic variation on phenotypic outcomes and human complex
diseases. All together, these data can serve as a reference for future
studies further dissecting the impact of genetic variation on
epigenetic traits as well as for the understanding of epigenetic
regulation of biological mechanisms.

Methods

Ethics statement

The pancreatic islet donor or her/his relatives had given their
written or oral informed consent to donate organs for medical
research upon admission to intensive care unit. All procedures
were approved by ethics committees at Uppsala and Lund
Universities.

Sample information

Pancreatic islets from 89 human donors not diagnosed with
diabetes mellitus were obtained from the Nordic Network for Islets
Transplantation, Uppsala University, Sweden (Table S1). This
islet cohort is a resource within the human tissue laboratory of
Lund University Diabetes Center (http://www.ludc.med.lu.se/
platforms/human-tissue-laboratory/) and data from this cohort
has previously been described [91,130-132]. Islets were prepared
and cultured for 4.0%£0.2 days prior to RNA and DNA isolation as
previously described [68]. AllPrep DNA/RNA Mini Kit was used
for islet DNA and RNA isolation (Qiagen GmbH, Hilden,
Germany) and concentrations and quality were measured with
NanoDrop ND-1000 spectrophotometer (NanoDrop Technolo-
gies, Wilmington, DE). Islet purity was 7520.8% [133]. Glucose-
stimulated insulin secretion was measured as stimulation index as
previously described [134].

Genotype data

Genome-wide genotyping was performed on DNA (200 ng)
from 89 islet donors using the HumanOmniExpressBeadChip,
which covers 731,412 SNPs and the iScan system (Illumina, Inc.
CA) according to the Illumina protocol. Genotype calling was
done with GenomeStudio software (Illumina). Quality control of
genotype data was performed by PLINK software toolset [135].
All subjects passed the call rate threshold of >98% for inclusion.
No gender discrepancy between the supplied donor information
and the genotypic gender was detected. In population stratification
analysis, no sample was highlighted as a population outlier
supporting a homogenous ethnic make-up of the included islet
donors. No donors were found to be related. SNP data were
excluded from subsequent analysis based on following criteria’s:
call rate <98%; monomorphic SNPs; MAF<0.05; HWE<(0.001;
SNPs located on X and Y chromosomes due to bias of mixed
gender population or with missing position. In total 574,553 SNPs
passed quality control.

DNA methylation analysis
Genome-wide DNA methylation profiling in pancreatic islets

from the 89 human donors was assessed using the Infinium
HumanMethylation450 BeadChip [39] (Illumina, Inc.), which
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analyzes DNA methylation in 482,421 CpG sites that cover 21,231
genes (99% of RefSeq genes) and all genomic regions [39]. DNA
(500 ng) from pancreatic islets was bisulfite treated with the EZ
DNA methylation kit (Zymo Research, Orange, CA) and used for
analysis of DNA methylation with Infinium assay according to the
standard protocol (User Guide part #15019519). BeadChips were
imaged with Illumina iScan. All samples had an acceptable
bisulfite conversion efficiency (intensity values >4000) [136] and
passed quality control steps in GenomeStudio where built in
control probes for staining, hybridization, extension and specificity
were examined.

Subsequent analyses were performed using the lumi package
from Bioconductor [137]. Methylation Beta-values were converted
to M-values (M =logy(Beta/(1-Beta))) [138] and these were used
for all statistical analysis. However, Beta-values were included in
the final report for its biological interpretation (Beta = 2/(2M+1))
[138]. Probes were then filtered and all CpG sites with a mean
detection P-value<<0.01 were considered detected and used for
subsequent analysis. The methylation data were background
corrected by subtracting the median intensities of built in negative
controls and then normalized using quantile normalization
[137,139]. COMBAT was used to correct for batch effects
[140]. While a strong batch effect could be identified before
COMBAT was applied (P=7.5x10"° for corrclation between
batch and the 1* component in a principal component analysis),
there was no longer any identified batch effect after COMBAT
(P>0.05 for the correlation between batch and first 10 principal
components). After preprocessing of methylation data and
exclusion of CpG sites located on X and Y chromosomes due to
bias of mixed gender population, we obtained DNA methylation
data for 468,787 CpG sites from human pancreatic islets. Probes
reported to be cross-reactive (=47 bases) or SNPs within
underlying probe sequence, according to Chen et al. (2013) [33],
are indicated in Table S2 and Table 83. Based on the important
role of CpG-SNPs on DNA methylation [65], probes with
potential SNPs in the probe sequence were not filtered out from
the mQTL analysis. The overall variability in DNA methylation
from all 89 donors is illustrated in Figure S1.

MRNA expression analysis

mRNA expression in pancreatic islets from 89 donors was
analyzed genome-wide using the GeneChip Human Gene 1.0 ST
array (Affymetrix, Santa Clara, CA) as previously described [133].
The array data was summarized and normalized using the Robust
Multi-Array analysis method with the oligo package from
Bioconductor. Gene transcripts with missing annotation or located
on X and Y chromosomes were excluded from the dataset.
COMBAT was used to correct for batch effects [140]. In total,
mRNA expression of 27,391 transcripts was obtained for further
analysis. The overall variability in mRNA expression from all 89
donors 1s illustrated in Figure S3.

Methylation quantitative trait loci (mQTL) analysis

To test for associations between SNPs and DNA methylation, a
linear regression model with biological covariates was used. In the
linear model; DNA methylation values were used as the
quantitative trait, SNP genotypes were encoded as 0, 1 or 2
according to the number of minor alleles, and the categorical
variable gender as well as the continuous variables age, BMI,
HbAlc, islet purity and islet culture days were included as
covariates. The analysis was based on an additive genetic model.
To distinguish between local (cis-) and distant (frans-) mQTLs, an
arbitrary boundary with the maximum distance of 500 kb between
SNPs and CpG sites were used to define cis-mQTLs. All other
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SNP-CpG pairs were considered as trans-mQTLs. The mQTL
analysis was performed by using the R package Matrix eQTL
[141]. P-values were adjusted with a correction value for multiple
testing, which takes into consideration the dependency of linkage
disequilibrium (LD) between SNPs by LD based pruning and
thereby uses the number of independent tests. In the c¢is-analysis,
LD based pruning of SNPs within a distance of 500 kb from a
CpG site was performed by pairwise-tagging (r><0.9) and the total
sum of all tagSNPs connected to each CpG site was used as a
correction value when correcting for multiple testing. LD
calculations were performed using R trio package (http://www.
bioconductor.org/packages/release/bioc/html/trio.html).  The
correction value for the ¢rans-analysis was calculated as the total
number of analyzed CpG sites multiplied by the number of all
tagSNPs in the whole datasct (pairwise-tagging r’<0.9) and
subtracted by the correction value for the cis-analysis. Significance
threshold was set to P<<0.05 after correction for multiple testing.

Expression quantitative trait loci (eQTL) analysis of SNPs
identified in the mQTL

To test for associations between SNPs and mRINA expression,
an eQTL analysis in the human pancreatic islets including the
significant SNPs found to be associated with DNA methylation in
the cis- or trans-mQTL analyses were performed. In the eQTL
analyses, significant SNPs identified in the cis-mQTL analysis
were related to expression of genes in ¢is (=500 kb between SNP
and mRNA transcripts); meanwhile, significant SNPs identified in
the trans-mQTL were related to expression of all analyzed genes
(no distance limit). To test for associations between SNPs and
mRNA expression a linear regression assuming an additive genetic
model was used. mRNA expression values were used as
quantitative trait, SNP genotypes were encoded as 0, 1 or 2
according to the number of minor alleles, and the categorical
variable gender as well as the continuous variables age, BMI,
HbAlc, islet purity and islet culture days were included as
covariates. In the eQTL analysis of significant ¢is-mQTL SNPs,
the correction value for multiple testing was calculated by the total
sum of tagSNPs within 500 kb to each mRNA transcript in the
dataset, where LD pruning of SNPs within a distance of 500 kb
from a mRNA transcript was performed by pairwise-tagging with
1?<0.9. The correction value for multiple testing for the eQTL
analysis of significant frans-mQTL SNPs was calculated by the
number of tagSNPs (LD pruning of included SNPs by pairwise
tagging with r°<<0.9) multiplied by the number of analyzed mRNA
transcripts.

Gene ontology and pathway analyses

Enrichment of gene ontology and/or biological pathways
assigned by KEGG was tested among the genes significantly
identified in the mQTL and e¢QTL analyses using Webgestalt
(http:/ /bioinfo.vanderbilt.edu/webgestalt, March 2013). The full
dataset of analyzed genes in respective mQTL and eQTL analysis
was used as background reference. P-values for the KEGG
pathway analyses were adjusted for multiple testing using the
Benjamini-Hochberg method.

RNA interference of Gsttl, Gpx7 and Snx19 in clonal

B-cells

Genes were silenced by siRNA transfection into 832/13 INS-1
B-cells [142] with Dharmafect I (Thermo Scientific, Waltham,
MA) according to the manufacturer’s instructions. siRNAs (Life-
Technologies, Paisley, UK) used were s151334 (Gpx7), s129302
(Gstt]), and s164019 (Snxl9). RNA was isolated 72 h post
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transfection with the RNeasy Plus mini kit (Qiagen) and converted
to cDNA with the RevertAid First Strand ¢cDNA Synthesis kit
(Thermo Scientific). Knockdown was quantified by qPCR with the
following TagMan assays (Life Technologies); Rn01416464_m1
(Gpx7), Rn00583932_m1 (Gsttl), and Rn01524775_m1 (Snx19).
Assays for Cyclophilin B (Rn03302274_ml) and Hpril
(Rn01527840_m1) were used as endogenous controls. Quantifi-
cation was done with the AACt method.

Proliferation/apoptosis measurements in clonal B-cells
B-cell number was quantified 72 h post transfection by crystal
violet staining as previously described [143], except we used a
0.1% crystal violet solution and read absorbance at 600 nm. The
combined activity of caspase-3 and -7 was determined 72 h post
transfection with the Apo-One Homogenous Caspase-3/7 assay

(Promega, Madison, WI). Lipotoxicity was induced as previously
described [144].

Associations of identified mQTL/eQTL SNPs with islet
insulin secretion

To examine if SNPs identified in the mQTL/eQTL analyses were
associated with glucose-stimulated insulin secretion in human
pancreatic islets cultured én vitro, linear regression analyses assuming
additive models adjusted for age, sex and BMI were performed.
Glucose-stimulated insulin secretion, measured as stimulation index
[134], was naturally log transformed before analysis.

Causal inference test (CIT)

A statistical hypothesis test called CIT [32] was used to
distinguish if associations between genotype of SNPs identified in
the mQTL analysis and phenotype (gene expression and islet
insulin secretion) was potentially mediated by DNA methylation of
CpG sites. Each of the genotype (G), methylation (M) and
phenotype (Y) relationships were assessed using CIT to classify
them as causal (methylation mediated), reactive (methylation
consequential) or independent [32]. The statistical test of CIT is
based on four mathematical conditions which must be satisfied for
the definition of causality: 1) G and Y are associated, 2) G is
associated with M after adjusting for Y, 3) M is associated with Y
after adjusting for G and 4) G is independent of Y after adjusting
for M [32]. A causal call with a hypothesis P-value<<0.05 suggests
that DNA methylation of a CpG site is a potential mediator
between a SNP and phenotype.

Overlap between identified mQTL/eQTL SNPs and
reported diabetes SNPs

The catalog of published genome-wide association studies
(GWAS) (www.genome.gov/gwastudies, accessed March 2013)
[57] was used to search for SNPs reported to be significantly
associated (P<10™% with type 1- and/or type 2 diabetes or
diabetes related traits as well as breast cancer, stroke and
hypothyroidism used as evaluation references. To gain better
reference coverage in the overlap between reported SNPs in the
GWAS catalog and identified mQTL/eQTL SNPs in the islets, a
SNP annotation and proxy (SNAP) [58] search was performed to
identify SNPs in LD with the identified mQTL/eQTL SNPs. The
search of LD SNPs was based on pairwise LD calculations of
genotype data from the 1000 Genomes project of the CEU
population panel, with r* threshold >0.8 and a distance limit of
500 kb from the query SNP. The published diabetes SNPs from
the GWAS catalog were then merged with the identified mQTL/
eQTL SNPs, together with LD SNPs, to search for overlap
between the two datasets.
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Publicly available data from the DIAGRAM consortium and
MAGIC investigators were also used to look for overlap between
identified mQTL-SNPs and SNPs showing associations with
diabetes or related traits (P<<0.05).

Associations between DNA methylation and mRNA
expression

To test if DNA methylation is directly associated with gene
expression in human pancreatic islets, we performed a linear
regression between DNA methylation of CpG sites and mRNA
transcripts in cis (500 kb up- and 100 kb downstream of respective
gene), including age, gender, BMI, HbAlc, islet purity, days in
culture and batch as covariates.

Analysis of DNA methylation with Pyrosequencing

Pyrosequencing was used to biologically validate the mQTL
data for methylation of two CpG sites annotated to GPX7
(cg18087326) and SNX19 (cg08912652). EpiTect Bisulfite Kit
(Qiagen) was used for bisulfite conversion of human islet DNA.
The PyroMark Assay design Software 2.0 (Qiagen) was used
for primer design. PyroSequencing assays (PCR primers and
sequencing primer) for the selected CpG sites (Qiagen) can be
found in Table 8$23. The PyroMark PCR kit was used for
amplification of bisulfite converted DNA. The PyroMark ID
96 and PyroMark Gold Q96 reagents were used for pyrose-
quencing (Qiagen) according to the manufacturer’s instruc-
tions. Data were analyzed with the PyroMark Q96 2.5.7
software program.

Imputation of genotype data

Autosomal genotype data generated with the HumanOm-
niExpressBeadChip and which passed quality control for the 89
islet donors was imputed to 1000 Genomes phase 1 using
Shapeit [145] for phasing and Impute2 for imputation [146].
Imputed data were then filtered based on MAF<0.05 and
HWE<0.001.

Statistical methods

Results are expressed as mean * sd/sem or Box and Whisker
plots. Data were analyzed using linear regression models or
Student’s t-test. T-statistics are reported from the linear regression
analysis, where a t-statistic is defined as the effect size estimate
(slope coeflicient) divided by its standard error.

Supporting Information

Figure S1 A correlation heatmap illustrating the overall
variability in DNA methylation of all analyzed probes among
the 89 donors included in the analyses.

(PNG)

Figure 82 Genomic distribution of CpG sites of significant
mQTLs in published data of human adipose tissue from
Grundberg et al. 2013. Distribution of CpG sites of significant
mQTLs in relation to (A) nearest gene and (B) CpG islands in
comparison to all analyzed CpG sites on the Infinium Human
Methylation450 BeadChip. (C) Chromosomal distribution of CpG
sites of significant mQTLs. mQTL data extracted from publicly
available data from Grundberg et al. 2013 [12]. *Significantly
different distribution (P<<0.05) of CpGs of significant mQT'Ls from
what is expected by chance based on a Chi-squared-test when
compared with all analyzed CpG sites on the Infinium
HumanMethylation450 BeadChip.

(TIF)
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Figure 83 A correlation heatmap illustrating the overall
variability in mRNA expression in human pancreatic islets of all
analyzed probes among the 89 donors included in the analyses.

(PNG)

Figure S4 Gene Ontology of significant cis-mQTLs including
genes annotated to the CpG sites showing differential DNA
methylation in human pancreatic islets. Analysis performed using
Webgestalt  (http://bioinfo.vanderbilt.edu/webgestalt, ~March
2013).
(TIF)

Figure 85 Gene Ontology of genes showing differential
expression in the eQTL analysis of cis-mQTL-SNPs. Analysis
performed using  Webgestalt  (http://bioinfo.vanderbilt.edu/
webgestalt, March 2013).

(TTF)

Figure S6 Gene Ontology of significant frans-mQTLs including
genes annotated to CpG sites showing differential DNA
methylation in human pancreatic islets. Analysis performed using

Webgestalt  (http://bioinfo.vanderbilt.edu/webgestalt, ~March
2013).
(TTF)
Figure S7 Gene Ontology of genes showing differential

expression in the eQTL analysis of trans-mQTL-SNPs. Analysis
performed using Webgestalt (http://bioinfo.vanderbilt.edu/
webgestalt, March 2013).

(TTF)

Figure S8 Identification of mQTLs where DNA methylation
potentially mediates genetic associations with islet insulin secretion
in human pancreatic islets. (A) Depiction of possible relationship
models between genotype as a causal factor (G), DNA methylation
as a potential mediator (M) and islet insulin secretion as
phenotypic outcome (I). Left diagram: The causal or methylation
mediated model. Middle diagram: The reactive or methylation-
consequential model (reverse causality). Right diagram: The
independent model. (B) Illustration of the study approach to
identify if DNA methylation of CpG sites potentially mediates the
causal association between SNPs and islet insulin secretion. Left:
Workflow steps. Middle: Tested relationships between G, M and I
in the different steps. Right: Number of identified sites in each
step. Bottom: Conditions that must be fulfilled to conclude a
mathematical definition of a causal relationship between G, M and
I. CIT not corrected for multiple testing and P-value<<0.05
considered significant.

(TIF)

Table S1 Islet donor characteristics and glucose-stimulated
insulin secretion in human pancreatic islets included in the study.
(PDF)

Table S2 Identified c¢is-mQTLs. (Sheet a) Presents all cis-
mQTLs showing significant association between SNP genotype
and CpG DNA methylation after correction for multiple testing.
The maximum distance of 500 kb between SNPs and CpG sites
were used to define ¢is-mQTLs. (Sheet b) Annotation of SNPs to
significant ¢is-mQTLs. Annotation based on HumanOmniEx-
press-12v1_J_Gene_Annotation_build37 (Illumina). (Sheet c) An-
notation of CpGs to significant cis-mQTLs. Annotation based on
Infintlum HumanMethylation 450 BeadChip (Illumina) [39]. Long
stretch enhancers for human pancreatic islets: Based on publicly
available data from Parker et al. (2013) [42]. Active enhancer
regions in human pancreatic islets: Based on data from Pasquali et
al. (2014) [43]. Cross-reactive probes: Maximum number of bases
(=47) matched to cross-reactive target and number of targets as
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reported by Chen et al.(2013) [33]. Probe SNPs reported by Chen
et al. (2013) [33]: SNPs reported by the 1000 Genomes project
(release 20110521) that are located within HumanMethylation450
probes, either in sequence of hybridization or at position of single
base extension (SBE). Locations of probe-SNPs are presented in
relation to MAPINFO of CpG sites, where SBE occurs. Global
allele frequencies (AF) and European continental allele frequencies
(EUR_AF) of reported probe-SNPs are included in the file.
(XLSX)

Table 83 Identified trans-mQTLs. (Sheet a) Presents all trans-
mQTLs showing significant association between SNP genotype
and DNA methylation of CpG sites after correction for multiple
testing. All SNP-CpG pairs not located in cis were considered as
trans-mQTLs. (Sheet b) Annotation of SNPs to significant (rans-
mQTLs. Annotation based on HumanOmniExpress-12v1l_J_Ge-
ne_Annotation_build37 (Illumina). (Sheet ¢) Annotation of CpGs
to significant trans-mQTLs. Annotation based on Infinium
HumanMethylation 450 BeadChip [39]. Long stretch enhancers
for human pancreatic islets: Based on publicly available data from
Parker et al. (2013) [42]. Active enhancer regions in human
pancreatic islets: Based on data from Pasquali et al. (2014) [43].
Cross-reactive probes: Maximum number of bases (=47) matched
to cross-reactive target and number of targets as reported by Chen
et al. (2013) [33]. Probe SNPs reported by Chen et al. (2013) [33]:
SNPs reported by the 1000 Genomes project (release 20110521)
that are located within HumanMethylation450 probes, either in
sequence of hybridization or at position of single base extension
(SBE). Locations of probe-SNPs are presented in relation to
MAPINFO of CpG sites, where SBE occurs. Global allele
frequencies (AF) and European continental allele frequencies
(EUR_AF) of reported probe-SNPs are included in the file.
(XLSX)

Table S4 Distribution P-values of CpG sites of significant
mQTLs in relation to (A) chromosomes, (B) nearest gene, and (C)
CpG islands. Supporting information to Figure 34, 3C and 3D.
(PDE)

Table S5 Identified eQTLs of significant c¢is-mQTL-SNPs.
(Sheet a) Presents all eQTLs showing significant association
between genotype of ¢is-mQTL-SNPs and mRINA expression after
correction for multiple testing. SNPs regressed against mRNA
expression of mRNA probe sets located in ¢is (=500 kb). (Sheet b)
Annotation of SNPs to significant eQTLs. (Sheet ¢) Annotation of
mRNA probesets to significant eQTLs. Annotation based on
HuGene-1_0-st-vl.na32.hgl9.transcript (Affymetrix).

(XLSX)

Table S6 Identified eQTLs of significant {rans-mQTL-SNPs.
(Sheet a) Presents all eQTLs showing significant association
between genotype of trans-mQTL-SNPs and mRNA expression
after correction for multiple testing. No distance limit between
SNPs and mRNA probesets. (Sheet b) Annotation of SNPs to
significant eQTLs. (Sheet c¢) Annotation of mRNA probesets to
significant eQTLs. Annotation based on HuGene-1_0-st-
vl.na32.hgl9.transcript (Affymetrix).

(XLSX)

Table S7 CIT of significant cis-mQTLs/eQTLs identified in
human pancreatic islets hypothesizing relationship models be-
tween genotypes, DNA methylation and mRNA expression. CIT,
causal inference test [32]. Genotype of SNPs identified in the cis-
mQTL/eQTL analysis are considered as causal factor (G), DNA
methylation of CpG sites identified in the cis-mQTL analysis as
potential mediator (M) and mRNA expression identified in the cis-
eQTL as phenotypic outcome (E) (see Figure 44 for potential
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relationships between factors). Called hypothesis models in the CIT
analysis: Causal relationship (causal P-value<<0.05 and reactive
P-value>0.05); Reactive relationship (causal P-value>0.05 and
reactive P-value<<0.05); Independent relationship (causal P-value>
0.05 and reactive P-value>0.05); and No-call (causal
P-value<<0.05 and reactive P-value<<0.05). Highlighted in bold
shows causal relationships with FDR<<5% (Causal Q-value<<0.05).
(XLSX)

Table S8 CIT of significant trans-mQTLs/eQTLs identified in
human pancreatic islets hypothesizing relationship models be-
tween genotypes, DNA methylation and mRNA expression. CIT,
causal inference test [32]. Genotype of SNPs identified in the
trans-mQTL/eQTL analysis are considered as causal factor (G),
DNA methylation of CpG sites identified in the rans-mQTL
analysis as potential mediator (M) and mRNA expression
identified in the trans-eQTL as phenotypic outcome (E) (see
Figure 44 for potential relationships between factors). Called
hypothesis models in the CIT analysis: Causal relationship (causal
P-value<<0.05 and reactive P-value>0.05); Reactive relationship
(causal P-value>0.05 and reactive P-value<<0.05); Independent
relationship (causal P-value>0.05 and reactive P-value>0.05); and
No-call (causal P-value<<0.05 and reactive P-value<<0.05). High-
lighted in bold shows causal relationships with FDR<5% (Causal
Q-value<<0.05).

(XLSX)

Tables 89 KEGG pathways with enrichment of genes showing
differential expression between genotype groups in the eQTL
analysis of ¢is-mQTL-SNPs. Analysis performed using Webgestalt
(http:/ /bioinfo.vanderbilt.edu/webgestalt, March 2013).

(PDF)

Table S10 KEGG pathways with enrichment of genes annotat-
ed to CpG sites of significant trans-mQTLs in human pancreatic
islets. Analysis performed using Webgestalt (http://bioinfo.
vanderbilt.edu/webgestalt, March 2013).

(PDF)

Table S11 Associations between significant cis-mQTL-SNPs
identified in human pancreatic islets and islet insulin secretion.

(XLSX)

Table S12 Associations between significant frans-mQTL-SNPs
identified in human pancreatic islets and islet insulin secretion.

(XLSX)

Table S13 Identified c¢is-mQTLs where methylation of CpG
sites is a potential mediator of genetic association with insulin
secretion in human pancreatic islets based on causal inference test
(causal P-value<<0.05).

(PDI)

Table S14 Overlap between significant cis-mQTL-SNPs iden-
tified in human pancreatic islets and SNPs reported to associate
with type 1 diabetes, type 2 diabetes, glucose traits, insulin traits or
proinsulin traits in the GWAS catalog (www.genome.gov/
gwastudies, accessed March 2013). (Sheet a) Reported GWAS
catalog SNPs or proxy SNPs in linkage (r*>0.8) overlapping with
significant ¢is-mQTL-SNPs. Proxy search performed by using
SNAP (1000 Genomes project, CEU population panel, r*>0.8,
distance limit 500 kb) [58]. (Sheet b) Extracted information from
the GWAS catalog about reported diabetes SNPs.

(XLSX)

Table S15 Overlap between significant cis-mQTL-SNPs iden-
tified in human pancreatic islets and data from the DIAGRAM
consortium or MAGIC investigators. (Sheet a) Association of SNPs
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with type 2 diabetes reported in DIAGRAM (P<<0.05) [59]. Data
available at www.diagram-consortium.org. (Sheet b) Association of
SNPs with HbAlc [62], (Sheet c) fasting glucose [60], (Sheet d)
fasting insulin [60], (Sheet ¢) HOMA-B [60], (Sheet {) HOMA-IR
[60], (Sheet g) fasting proinsulin [63], (Sheet h) BMI adjusted
fasting glucose [64], (Sheet 1) BMI adjusted fasting insulin [64],
and (Sheet j) BMI adjusted 2 h glucose [61] reported in MAGIC
(P<<0.05). Data downloaded from www.magicinvestigators.org.
(XLSX)

Table S16 Overlap between significant frans-mQTL-SNPs
identified in human pancreatic islets and data from the
DIAGRAM consortium or MAGIC investigators. (Sheet a)
Association of SNPs with type 2 diabetes reported in DIAGRAM
(P<<0.05) [59]. Data available at www.diagram-consortium.org.
(Sheet b) Association of SNPs with HbAlc [62], (Sheet c) fasting
glucose [60], (Sheet d) fasting insulin [60], (Sheet ¢) HOMA-B
[60], (Sheet f) HOMA-IR [60], (Sheet g) fasting proinsulin [63],
(Sheet h) BMI adjusted fasting glucose [64], (Sheet 1) BMI adjusted
fasting insulin [64], and (Sheet j) BMI adjusted 2 h glucose [61]
reported in MAGIC (P<0.05). Data downloaded from www.
magicinvestigators.org.

(XLSX)

Table 817 Associations between DNA methylation and mRNA
expression in human pancreatic islets. (Sheet a) All significant
combinations of CpG sites and mRNA expression probe-sets
showing associations between DNA methylation mRNA expres-
sions after correction for multiple testing using false discovery rate
<5%. (Sheet b) Merged mQTL/eQTL data where CpG sites and
mRNA expression probe-sets where both were significantly
affected by the same SNP. (Sheet ¢) Overlap between mQTL/
eQTL data and direct association between DNA methylation and
mRNA levels.

(XLSX)

Table S18 Islet donor characteristics and glucose-stimulated
insulin secretion in human pancreatic islets included in the
validation cohort.

(PDF)

Table S19 Overlap between significant CpG sites in our cis-
mQTL study in human pancreatic islets and previously published
cis-mQTL studies in other human tissues. Previously published
human mQTL studies in the overlap analysis includes: Zhang et
al. 2010 [8]; Gibbs et al. 2010 [9]; Gutierrez-Arceleus et al. 2013
[13]; Grundberg et al. 2013 [12]; and Wagner et al. 2014 [14].
(PDF)

Table $20 KEGG pathways with enrichment of genes annotated
to CpG sites of significant ¢is-mQTLs only identified in human
pancreatic islets (i.e. the pathway analysis includes CpG sites in
significant ¢is-mQTLs annotated to unique genes in our islet mQTL
analysis that cannot be replicated in any previously published
human mQTL study [8,9,12-14]. Analysis performed using
Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt, June 2013).
(PDF)

Table $21 Identified cis-mQTLs of imputed genotype data.
Presents all cis-mQTLs showing significant association between
SNP genotype including imputed genotype data and CpG DNA
methylation after correction for multiple testing. Imputed
autosomal genotype data generated with the HumanOmniEx-
pressBeadChip for islet donors to the 1000 Genomes phase 1. The
maximum distance of 500 kb between SNPs and CpG sites were
used to define cis-mQTLs. Annotation of SNPs to significant cis-
mQTLs based on genome build 37. Annotation of CpGs based on
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genome build 37 and Infinium HumanMethylation 450 BeadChip
(Illumina) [39]. Note: Data file is large (>90 MB).
(XLSX)

Table 822 Identified trans-mQTLs of imputed genotype data.
Presents all trans-mQTLs showing significant association between
SNP genotype including imputed genotype data and CpG DNA
methylation after correction for multiple testing. Imputed
autosomal genotype data generated with the HumanOmniEx-
pressBeadChip for islet donors to the 1000 Genomes phase 1. All
SNP-CpG pairs not located in cis were considered as trans-
mQTLs. Annotation of SNPs to significant cis-mQTLs based on
genome build 37. Annotation of CpGs based on genome build 37
and Infinium HumanMethylation 450 BeadChip (Illumina) [39].
(XLSX)

Table 823 DNA sequences for pyrosequencing forward, reverse
and sequencing primers.

(XLSX)
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