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Abstract 
Background: 

Earlier clinical detection of cancer may improve survival as well as offer 
opportunities for less invasive treatment options. This thesis explores whether the 
mitochondria and its related genes in the nuclear genome can be used as novel 
methods for the diagnosis and prognosis of cancers. 

Aims and Methods: 

Paper I: To investigate if mitochondrial dysfunction (characterized by mtDNA 
copy number variations) is associated with prevalent, incident cancer and cancer 
mortality – droplet digital PCR (ddPCR).  

Paper II: To investigate the potential causal relationship between mitochondrial 
dysfunction (characterized by genetic predispositions in all mitochondrial-related 
genes) and common cancer risks – Mendelian randomization, colocalization.  

Paper III: To investigate mitochondrial mutations as potential biomarkers for the 
early diagnosis of breast cancer – whole mitochondrial genome sequencing, bioinformatics, 
ddPCR. 

Paper IV: To investigate the mitochondrial-related gene expression signature as a 
prognostic model to predict the clinical outcome for breast cancer patients – machine 
learning. 

Results and conclusions: 

Paper I: We found that mtDNA-CN was significantly associated with prevalent and 
incident cancer as well as cancer mortality. However, these associations were 
cancer-type specific and need further investigation. 

Paper II: We identified potential causal relationships between mitochondrial-
related genes and breast, prostate and lung cancer. Furthermore, this study identified 
candidate genes that can be the targets of potential pharmacological agents for 
cancer prevention. 

Paper III: We comprehensively characterized the mtDNA mutation landscape of 
breast cancer biopsies and matched baseline whole blood samples. Notably, we have 
identified and validated mt.16093T>C mutation, which was associated with a 67% 
increased risk of developing breast cancer, and could potentially be used as early 
breast cancer diagnostic biomarkers. 

Paper IV: We built a novel 14 genes mitochondrial signature model that could be 
an independent prognostic predictor and together with clinical variables as an 
improved model for predicting overall early-stage of breast cancer survival.
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Popular summary 
Cancer, a word that strikes fear into people, threatens millions of lives worldwide. 
What if we could detect cancer before it takes hold? We would be able to receive 
more effective treatments and improved our chances of survival. This is where the 
role of mitochondria, the tiny ancient bacteria that hacked our cells and now work 
as a powerhouse, comes into play. 

In the quest to conquer cancer, early detection is key. This thesis delves into a 
groundbreaking exploration of whether mitochondria and their related genes could 
become game-changers in the battle against cancer. The journey begins with a 
crucial question: Can mitochondria and their genetic companions serve as novel 
tools for diagnosing and predicting cancer outcomes? With a focus on early 
detection, the thesis takes us on a scientific adventure through a series of studies. 

The first part investigates mitochondrial dysfunction – a state where these cellular 
powerhouses are not functioning optimally. DNA that mitochondria house is known 
as mtDNA. By studying the changes in mtDNA copy number in healthy individuals 
and people with cancer, we uncover intriguing connections between mitochondrial 
dysfunction and cancer. These connections, however, were unique to different types 
of cancer, thus suggesting the complex nature of this relationship. 

The second part delves even deeper, exploring the genetic codes that govern our 
mitochondria. Using a unique technique called Mendelian randomization based on 
the differences in our genetics that are dispersed by mother nature, we dive into the 
genes related to mitochondria and their potential impact on common cancers. In 
doing so, we unveil potential causal relationships and identify genes that could 
potentially drive cancer and become targets for innovative cancer prevention 
approaches. 

In the third part, the focus shifts to the DNA mutations within mitochondria. These 
mutations are like tiny signposts, which might offer early clues to the presence of 
breast cancer. By comparing the mutations of mtDNA of breast cancer biopsies and 
cancer-free blood samples from the same patient, we uncover exciting clues. One 
specific mutation, known as mt.16093T>C, emerges as a potential biomarker for 
early breast cancer diagnosis. This discovery opens the door to more accurate and 
timely cancer detection. 

Finally, the fourth part takes us into the realm of machine learning, where computers 
can discern hidden patterns within complex data. Here, we develop a model using 
14 genes related to mitochondria. This model alone, or combined with clinical 
information, emerges as a powerful predictor of breast cancer outcomes in its early 
stages. 
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In summary, this thesis brings us to the frontier of cancer research, where 
mitochondria play a pivotal role in our battle against cancer. These findings offer 
hope for a future where early cancer detection becomes a reality, potentially leading 
to better treatment options and higher survival rates. Mitochondria – those small, 
hard-working, yet mighty, structures that might just hold the key to revolutionizing 
our approach to cancer detection and prognosis. The journey of science continues, 
fueled by the quest for a healthier, cancer-free world. 
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Introduction  

Cancer 
Cancer is a leading cause of death and a complicated disease that can affect any part 
of the body. It begins when cells divide and spread in an abnormal and uncontrolled 
way. Based on where the cancer begins, cancer can be divided into five main types: 
carcinomas, brain tumors, sarcomas, leukemias and lymphomas. Although there are 
other cancer types, carcinomas that are capable of forming solid tumors stand out as 
the most common form of cancer.  
At the level of cellular phenotype, different cancer types shared 14 commonalities 
in the process of forming malignant tumors. These include maintaining proliferative 
signaling, evading growth suppressors, undergoing non-mutational epigenetic 
reprogramming, escaping immune destruction, enabling replicative immortality, 
promoting tumor-related inflammation, interacting with polymorphic microbiomes, 
activating invasion and metastasis, inducing/accessing vasculature, inducing 
senescence in cells of different origins, causing genome instability and mutation, 
resisting cell death, reprogramming cellular metabolism, and unlocking phenotypic 
plasticity 1. 
Current clinical methods primarily detect cancer when it becomes visible on 
imaging techniques, and a tissue biopsy remains the gold standard for diagnosis. 
Nonetheless, obtaining tissue samples necessitates invasive methods, which can 
lead to side effects such as pain, infection risk, bleeding, and extended recovery 
periods. Furthermore, a tissue biopsy has limitations in detecting molecular residual 
disease and may not accurately represent all tumors within the body. Research 
indicates that molecular changes occur well before the cancer becomes clinically 
visible, which suggests that early detection through molecular diagnosis can 
enhance patient survival and outcomes. 
In addition, despite the progress in neoadjuvant and adjuvant therapies including 
chemotherapy, radiotherapy, hormone therapy, immunotherapy and targeted 
therapy, there remains a need to refine risk stratification and tailor treatment 
approaches for patients with cancer. Various clinical, histopathological and genetic 
factors have been employed to evaluate patient prognosis; however, more accurate 
and personalized markers are needed for improving patient outcomes, guiding 
treatment decisions, optimizing cancer care and reducing the burden of cancer on 
individuals and society. 
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Epidemiology 
According to data from 185 countries and 36 cancers from GLOBOCAN estimates 
in 2020, there were 19.3 million cancer incidences and 10 million deaths. Female 
breast cancer (11.7%) has the highest incidence in the overall population followed 
by lung cancer (11.4%), colorectal cancer (10.0%), prostate cancer (7.3%) and 
stomach cancer (5.6%). Lung cancer (18.0%) has the highest mortality rate followed 
by colorectal cancer (9.4%), liver cancer (8.3%), stomach cancer (7.7%) and female 
breast cancer (6.9%). To be specific according to sex, lung cancer is the leading 
diagnosed cancer (14.3%) and the leading cause of mortality (21.5%) in males, 
while breast cancer is the leading diagnosed cancer (24.5%) and the leading cause 
of mortality (15.5%) in females 2. With the increasing incidence and mortality rate 
of cancers, the economic cost worldwide from 2020 to 2050 has been estimated to 
be $25.2 trillion. Among the cancers, tracheal, bronchus, and lung (TBL, 15.4%) 
cancer, colorectal cancer (10.9%), breast cancer (7.7%), liver cancer (6.5%) and 
leukemia (6.3%) are responsible for the highest economic costs 3. 
According to the statistics from The National Board of Health and Welfare in 
Sweden, from 1970 to 2021, cancer cases increased while mortality decreased for 
both women and men (Figure 1). There is a decreased trend in new cancer cases in 
2020, which may potentially be due to delayed cancer diagnosis during the Covid-
19 pandemic. 
 

 
Figure 1. Number of new cancer cases and deaths in Sweden. Data source: The National Cancer 
Registry and the National Cause of Death Registry and The National Board of Health and Welfare. 
https://www.socialstyrelsen.se/globalassets/sharepoint-dokument/artikelkatalog/statistik/2022-12-
8309.pdf 

  
As shown in Figure 2, in 2021, prostate cancer and breast cancer are the most 
common cancers for men and women, respectively, followed by skin cancer. 
Prostate cancer was the leading cause of death among men and 2,077 men died from 
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it, while lung cancer caused 1,871 deaths and was the leading cause of death among 
women.  
 

Figure 2. The ten most common cancer in Sweden, 2021. Data source: The National Cancer Registry 
and the National Cause of Death Registry and The National Board of Health and Welfare. 
https://www.socialstyrelsen.se/globalassets/sharepoint-dokument/artikelkatalog/statistik/2022-12-
8309.pdf 

Risk factors  
Cancer is normally caused by inherited genetic mutations (5% to 12%) and 
susceptible modifiable risk factors.  
The inherited genetic mutations, which are known as germline mutations, were 
regarded as non-modifiable risk factors for certain cancers. For common cancers, 
patients with a first-degree family history of cancer have a 2- to 3-fold higher risk 
of developing the same cancer 4. The advancements in genomic technologies such 
as genome-wide association studies (GWAS) and next-generation sequencing 
(NGS) facilitated the explosive identification and characterization of cancer 
susceptibility genes in population-based genetic studies. Over the past decade, 
cancer risk loci were widely identified in different cancers, such as the 
predisposition in BRCA1, BRCA2, PALB2, TP53, ATM, and CHEK2 are associated 
with breast cancer; BRCA1, BRCA2, RAD51C, RAD51D are associated with ovarian 
cancer; MLH1, MSH2, MYH, AXIN2, POLD1, POLE with colorectal cancer; 
BRCA2, HPC1, AR, VDR with prostate cancer; BRCA2, PALB2, CDKN2A with 
pancreatic cancer; BRCA2, CDKN2A, POLH with melanoma; CDH1 with gastric 
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cancer, et al 4-9. The GWAS studies focusing on breast and prostate cancer have 
yielded the highest number of risk loci 10.  
Cancer is a polygenic rather than single mutation caused disorder and all the 
identified cancer susceptibility loci to date are linked with moderate increases in 
risk, where odds ratios are generally below 1.5 11. There are more risk loci that are 
identified in different cancers and combining the effect of multiple risk loci by 
polygenic score may perform better for risk stratification 12. 
Modifiable risk factors do not directly cause cancer and prevention by protecting 
from modifiable risk factors represents the most efficient strategy for managing the 
impact of cancers 13. Here, the common modifiable risk factors for cancers as 
illustrated in Figure 3 and described below. 

 
Figure 3. Major established modifiable cancer risk factors. Data source: The International Agency 
for Research on Cancer (IARC/WHO). https://cancerpreventioneurope.iarc.fr/preventable-cancers/  
 
Tobacco consumption: stands as the foremost single cancer incident and mortality 
causing factor, which significantly contributes to the development of many cancers 
including but not limited to lung, oral, stomach, pancreas, cervix, bladder etc 14.  
Alcohol consumption: accounted for 4% of cancer diagnoses worldwide and is 
associated with cancers of breast, colorectal, esophageal, liver, oral, pharynx and 
larynx in a dose-dependent manner 15,16. 
Physical activity and diet: may contribute to obesity and hold significant influence 
as key determinants of cancer risk 17. Sedentary behavior and high body fat are 
associated with major cancer-related outcomes. Diets rich in fruits and vegetables 
demonstrate protective effects against multiple cancer types, while excessive 
consumption of preserved meats has been associated with elevated cancer risk 18,19. 
Infectious diseases: Certain factors causing infectious diseases contribute to cancer 
development. The bacterium Helicobacter pylori can cause peptic ulcers that then 
increases the risk of gastric cancer. Hepatitis B and C viruses (HBV, HCV) are 
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associated with the risk of liver cancer and human papillomavirus (HPV) infection 
is a leading cause of cervical cancer 20,21. 
Exposure to carcinogens: exposure to ionizing radiation affects the immune system 
and paves the way for carcinogenesis, and exposure to ultraviolet radiation increases 
the risk of various skin cancers 22-24.  
Gaining insights into the interplay between inherited genetic mutations, lifestyle and 
environmental factors is also crucial for tailoring personalized preventive strategies 
and interventions.  

Diagnosis and prognosis 
A timely cancer diagnosis can significantly enhance the prospects of effective 
therapeutic intervention. In Sweden, there are three national screening programs for 
the early detection of breast, cervical and colorectal cancer implemented by the 
National Board of Health and Welfare. The participant rate reached 85% for breast 
cancer screening and the coverage rate of cervical cancer was around 82-83% in 
2021; the colorectal cancer screening program is under coordination. Patients who 
experienced cancer symptoms or suspicious results of a screening test need further 
diagnostic testing using approaches such as physical exams, laboratory tests, 
imaging-based tests and biopsy. For most cancers, a biopsy is the golden standard 
for diagnosis.  
Although the benefits of early detection are widely acknowledged for the 
improvement of cancer outcomes across diverse populations, approximately 70% of 
cancer deaths are concentrated within low- and middle-income countries with a late 
diagnosis according to the statistics from the World Health Organization (WHO). 
The utilization of currently existing cancer diagnostic techniques including positron 
emission tomography (PET), computed tomography (CT), magnetic resonance 
imaging (MRI) and magnetic resonance spectroscopy (MRS), alongside molecular 
diagnostic techniques, has facilitated enhanced rates of early cancer detection. 
However, there are challenges facing early detection due to: the inadequate 
understanding of the intricate biology underlying cancer, the accurately determining 
risk for cancer development, the identification and validation of reliable biomarkers, 
the development of technologies sensitive enough for early detection and the 
evaluation of early detection methodologies 25. Enhancing cancer diagnostics can be 
achieved by fostering multidisciplinary collaboration among radiologists, 
pathologists, genetic specialists and other specialties. 
When diagnosed with cancer, the term prognosis estimates how the disease 
progresses. Many factors affect prognosis including age, sex, BMI, the type and 
origin of the cancer, subtypes, cancer stage and grade, and response to treatment. 
The TNM staging system, based on the integration of tumor size or depth (T), lymph 
node spread (N) and metastases state (M), is a foundation for the prognosis of cancer 
26. Cancer prognosis is assessed by the combination of clinical evaluation, 
diagnostic test, and predictive model. Gene expression, methylation, long non-
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coding RNA, microRNA and protein were investigated to be potential diagnostic 
biomarkers to build predictive models for different cancers, peptide-based 
biomolecules and proteins are currently the most available cancer biomarkers. For 
breast cancer, the presence of estrogen receptors (ER), progesterone receptor (PR) 
and human epidermal growth factor receptor 2 (HER2) was used to determine 
malignancy 27. Plasma alpha fetoprotein (AFP) for the diagnosis of hepatocellular 
carcinoma 28, carcinoembryonic antigen (CEA) for lung cancer 29, prostate-specific 
antigen (PSA) for prostate cancer 30 etc. 
With the advancement in cancer genetic research, nucleic acid based liquid biopsy 
approaches were developed for cancer detection and prognosis 31. The liquid biopsy 
contains circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), plasma 
cell-free DNA (cfDNA), extracellular vesicles, proteins and metabolites, that can be 
assessed as cancer biomarkers. The ctDNA, which included nuclear and 
mitochondrial DNA, accounts for 0.1-10% of the total cfDNAwith range from 10-
100 ng/ml in plasma, and is widely investigated for clinical application 32,33. Over 
the years, the Food and Drug Administration (FDA) has approved several liquid 
biopsy assays for the clinical application of cancer diagnosis including Epi 
proColon® for colorectal cancer diagnosis, cobas® EGFR Mutation Test v2 for 
non-small-cell lung cancer (NSCLC) diagnosis, therascreen PIK3CA RGQ PCR Kit 
for breast cancer diagnosis, the FoundationOne®Liquid CDx for the diagnosis of 
NSCLC, prostate, ovarian and breast cancers, and CellSearch™ test prognostic for 
breast, prostate, and colon cancer 34. The liquid biopsy trials are continuously 
growing and around 200 trials started in 2022. Artificial intelligence (AI) methods 
were developed and applied to improve the performance of different liquid biopsy 
assays 35,36. In the coming years, AI involvement in liquid biopsy analysis for cancer 
diagnosis and prognosis will ultimately improve patient outcomes and offer a 
brighter future in the fight against cancer. 

Mitochondria 
The mysterious mitochondria, as ancient bacteria invaded the eukaryotic cells and 
became key players during the long evolutionary history 37,38. Mitochondrial is a 
double-membrane, bean-shaped structure, housing its mainly maternally inherited 
mtDNA containing 37 bioenergetic genes, but made of additional 1000s of nuclear 
genes. Besides generating adenosine triphosphate (ATP), the functions of 
mitochondria have been investigated extensively during the past decades.  

Multifunction of mitochondria in cancer 
Mitochondrial dysfunction has long been acknowledged as one of the cancer 
hallmarks. More than a century ago, Otto Warburg observed and demonstrated that 
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tumor cells tend to undergo glucose fermentation into lactate even in the presence 
of oxygen, rather than relying on oxidative phosphorylation for respiration and 
energy production 39. Since then, the functions of mitochondria in cancer have been 
widely studied 40-44. Apart from producing ATP to power life, mitochondria play 
crucial roles in multiple cellular processes including synthesizing metabolites, 
producing reactive oxygen species (ROS), maintaining redox balance and calcium 
homeostasis, regulating cell death and signaling, and controlling inflammation 45-48. 
As shown in Figure 4, the multifaceted involvement of mitochondria in different 
stages of cancer pathophysiology makes it challenging to draw simple dogma about 
their roles 40.  

 

 
Figure 4. Mitochondria and stage of tumorigenesis. Reprinted from Cell. 2016 Jul 28;166(3):555-
566. Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. © 2016 Elsevier Inc. 
 
Mitochondria act as a stress sensor, allowing cells to modulate and adapt to the 
microenvironment. Tumor cells exploit this advantage to flexibly adjust and survive 
in harsh conditions such as hypoxia and nutrient deprivation, to promote 
tumorigenesis and cause chemoresistance 49,50. However, the functions of 
mitochondria in different cancers vary due to the heterogeneity of tumor cells and 
microenvironments 51.  
Metabolic reprogramming is a crucial process in cancer characterized by reciprocal 
feedback from mitochondrial metabolism. Mitochondria contribute to this process 
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by altering cell metabolism and generating excessive ROS, leading to mutagenesis 
and activation of the oncogenic signaling pathway, then accumulating 
oncometabolites to control gene expression and protein stabilization, conferring 
resistance to cell death or senescence 52. Metabolic reprogramming is also regulated 
by mitochondrial dynamics, which encompasses alterations in their morphologies 
and mitochondrial trafficking, the contents exchange during the fission and fusion 
process, and the selective removal of damaged mitochondria 53. Mitochondria are 
normally characterized by fragmented and rounded structures in a rich-nutrient 
environment. However, to survive conditions caused by glucose deprivation, 
mitochondrial fusion and biogenesis are activated to increase oxidative 
phosphorylation and NAD+ production to support the high energy demands of 
rapidly proliferating cells, which may trigger tumor cell immortalization 54. In 
certain cancers, early hyperproliferative features may be characterized by decreased 
mitochondrial import and pyruvate metabolism, suggesting a preference for aerobic 
glycolysis 55. The balance between glycolysis and oxidative phosphorylation 
(OXPHOS) in cancer is intricately dependent on tumor stage and type 56. To cope 
with the metabolic chaos, cells may generate high levels of ROS that damage 
mitochondria, which must be removed through the mitophagy process to maintain 
mitochondrial mass homeostasis. Failure to do so can lead to the alteration of 
retrograde signaling controlled by mitochondrial metabolites, inducing cellular 
senescence and inhibiting mitochondrial biogenesis 57.  
Of note, cancer prognosis and chemotherapy resistance have been associated with 
increased mitochondrial gain and OXPHOS during treatment. Mitochondria transfer 
between cells, through cell fusion, nanotube, gap junction, or extracellular vesicles, 
has been considered a communication phenomenon. Cancer cells have cunningly 
exploited this process by hijacking the mitochondria from other non-malignant cells 
to gain metabolic advantages and enhance proliferation and malignancy. Moreover, 
this process may severely impair immune cells, thus leading to immunosuppression 
and chemoresistance 58-61. 
The presence of multiple copies of mtDNA due to its ployploid nature allows the 
coexistence of inherited and mutated in a heteroplasmy state, which is the mixture 
of mutated and wild-type mtDNA within one cell 62,63. The mitochondrial function 
is maintained when the deleterious heteroplasmic mutations are below a certain 
threshold. However, the shift to surpass this threshold leads to compromised 
mitochondrial performance and is commonly observed in cancers as pathogenic 
mitochondrial DNA mutations 64. The mtDNA with high heteroplasmic mutations 
potentially causes the intensive proliferation of malignant cells, further leading to 
oncogenic or metastatic metabolism shift 65,66. Studies have reported heteroplasmy 
shift as a potential driver for cancer progression and treatment response 67. Thus, in 
cancer research, not only the presence of mtDNA mutations but the heteroplasmy 
shift matters, and early detection of those mutations with heteroplasmy shift will 
improve the cancer outcomes. 
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Overall, mitochondria play critical roles in various aspects of oncogenesis. The 
perturbation of the oncogenic signaling pathways coupled with alterations in 
mitochondrial functions, may potentially contribute to cellular malignant 
transformation, carcinogenesis, tumor progression and metastasis 40,52.  

Potential clinical application of mitochondria in cancer 
The mtDNA ranges from 10 to 10,000 in an origin-specific manner according to 
energy demands, thus also has a great abundance in circulation, allowing for the 
identification of cancer-associated mtDNA copy numbers (mtDNA-CN) variations, 
mtDNA mutations and alterations of mitochondrial-related nuclear genome. Efforts 
have been made to investigate the potential clinical application of mitochondria in 
cancer, by quantifying the mtDNA copy number (mtDNA-CN) in blood samples, 
identifying mtDNA mutations that are associated with cancer and pharmaceutically 
targeting mitochondria for cancer treatment. Some examples are described below. 
For prevalent cancer, mtDNA-CN levels were higher in lymphocytic leukemia, lung 
and pancreatic cancer biopsies than matched normal tissue, while lower mtDNA-
CN was observed in the biopsies of kidney and myeloid cancer compared to normal 
counterparts 68. A study showed that elevated mtDNA-CN was associated with an 
increased risk of lymphoma and breast cancer, while decreased risk of skeleton and 
hepatic carcinoma cancer 69,70. A comprehensive meta-analysis study of 39 
publications underscored the association between high mtDNA-CN and, increased 
risk of hematological cancer (50%), decreased risk of soft tissue sarcoma (88%), 
endometrial (83%) and bladder cancers (49%) 71. Our Swedish population-based 
prospective study observed that breast cancer had higher mtDNA-CN compared to 
controls and lower mtDNA-CN was associated with a 16% decreased risk of genital 
organ cancer 72. Furthermore, elevated mtDNA-CN in peripheral blood was shown 
to be associated with a poor cancer prognosis, and elevated mtDNA-CN in cancer 
biopsies was associated with a better outcome 73.   
The accumulation of mtDNA mutations reflects mitochondrial fitness and the 
mtDNA mutation has been identified as a major contributor of driver mutations in 
cancer 74. For instance, germline mtDNA mutations mt.3197T>C, mt.13708G>A, 
mt.10398A>G, mt.16093T>C and mt.16519T>C were associated with breast cancer 
75-77 and mt.16519T>C and mt.5460G>A was associated with pancreatic cancer 78-

80. Furthermore, somatic mtDNA mutations and their accumulation have been 
observed across multiple cancers, influencing cancer progression and metastasis 
68,81. However, compared to the nuclear genome, the mitochondrial genome is not 
extensively investigated in cancers. Considering the importance of mitochondrial 
mutations in cancer pathology, further investigations are needed to fully understand 
its role in cancer diagnosis and prognosis.  
The majority of the genes governing the mitochondrial function and dynamics are 
synthesized in the nuclear genome and subsequently translocated into mitochondria 
82. In recent times, mitochondrial-related genes have been demonstrated as the 
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potential molecular biomarkers for colon cancer 83,84, renal cell carcinoma 85,86, 
prostate cancer 87, esophageal cancer 88, bladder cancer 89, lung cancer 90-93, liver 
cancer 94,95 and stomach cancer 96. 
Although the mtDNA-CN, mtDNA mutation and mitochondrial-related genome 
alterations are not universal across all cancers, the abundance quantities of 
mitochondria in circulation presents a non-invasive alternative for cancer diagnosis 
and prognosis. Given the indispensable and multifaceted roles of mitochondria, 
numerous unresolved features remain. Rapid advancements in research and clinical 
trials have yielded promising results, offering stimulating prospects for the clinical 
application of mitochondrial medicine in the foreseeable future.  

Advancements in cancer genetic research 
In the past decade, the cancer genetic landscape research has been profoundly 
shaped by the emergence of cutting-edge technological and analytical 
methodologies. The identification and validation of cancer-associated molecular 
biomarkers using high throughput methods such as next-generation sequencing 
(NGS) and droplet digital PCR (ddPCR), have revolutionally improved our capacity 
to dissect the cancer molecular alteration with high resolution. Concurrently, data-
driven analytical methods such as Mendelian randomization (MR) and machine 
learning, have enabled a deep exploration of complex causal associations and 
predictive molecular patterns in cancer. 

High throughput experimental methods  
In this thesis, we applied both NGS and ddPCR to identify and validate the cancer-
associated mtDNA-CN variations and mutations.  

Next-generation sequencing 
Next-generation sequencing has revolutionized genomics research with the high-
throughput resolution for deciphering the complexity of intrinsic genetic 
information. As illustrated in Figure 5, the NGS workflow of DNA sequencing 
contains four steps: library preparation, cluster amplification, sequencing, alignment 
and data analysis. Library construction begins with the fragmentation of DNA, 
adding specialized adapters to both ends of the DNA and then amplifying using 
PCR-based methods. The adapters contain complementary sequences that enable 
the fragments to attach to the flow cell. Then, add the prepared library to the flow 
cell and load it onto a sequencing machine, where the DNA sequences are further 
amplified into clonal clusters. The process called sequencing by synthesis starts, 
with modified nucleotides containing fluorescent tags and reversible terminators 
binding to the DNA template. The fluorescent signal captured by the machine 
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indicates a specific nucleotide has been added and the terminator is removed for the 
attachment of the next base. The sequencing process generates millions of short 
reads that constitute raw sequencing data. Following data acquisition, 
bioinformatics, including quality control, base calling, sequence alignment, variant 
calling and annotation, are applied to transform raw reads into informative genetic 
insights.  

 
Figure 5. NGS workflow. Data source: Illumina, An introduction to Next-Generation Sequencing 
Technology. 

Droplet digital PCR 
NGS can only apply to a limited sample size with lower depth and is recommended 
to use for the identification of unknown molecular alteration. The ddPCR is cost-
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effective when quantification of only a few targets is desired with high sensitivity. 
Compared to widely implemented read-time PCR, ddPCR provides highly accurate 
and direct quantification without requiring a calibration curve and quantitative 
variability, especially for low abundant targets 97,98. Companies such as Bio-rad, 
Qiagan, Thermo Fisher Scientific, Stilla Technologies and RainDance 
Technologies, have provided ddPCR platforms. Here is the example of ddPCR 
workflow from Bio-rad, which starts with combining DNA samples, primers and 
probes with the ddPCR supermix, then loading the prepared samples into the 
disposable droplet generator cartridge. The cartridge is loaded to the droplet 
generator to make monodispersed droplets (~20,000). Subsequently, PCR 
amplification is performed that enables each nucleic acid molecule to be 
individually amplified with its exclusive droplet. After PCR, the plate can be loaded 
into the droplet reader, where the positive and negative droplets in each sample are 
plotted to the interface of the ddPCR software that allows visualization of each 
droplet and the target nucleic acid can be quantified as copies/µl (Figure 6). 

 
Figure 6. Classify droplets into clusters. WT: wild-type; MT: mutant. Data source: Bio-rad, Droplet 
Digital PCR Applications Guide. 

Data-adaptive analytical methods  
For large-scale genetic studies, MR estimates the causal relationships and machine 
learning for predicting outcomes.  

Mendelian randomization 

The golden standard to measure causal association is to perform a randomized 
control trial (RCT). Mendelian randomization (MR) was regarded as the RCT 
performed by mother nature, the genetic variants are intrinsically categorized that 
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can function as instrumental variables (IVs) to explore the potential causal 
association between exposure and outcome (Figure 7). In MR, using random 
allocation of alleles circumvents bias from unobserved modifiable variables such as 
lifestyle and environmental factors, as well as the intricate challenge of reverse 
causation 99.  

 
Figure 7. Comparison of the design of a Mendelian randomization study and a randomized 
controlled trial. Reprinted from Nat. Rev. Rheumatol. 2017 Feb 22;13(3):193. Robinson PC, Choi 
HK, Do R, Merriman TR. © The authors. 

To perform MR analysis, adherence to three core assumptions is imperative as 
illustrated in Figure 8: 1. the genetic instruments must robustly associate with the 
exposure (P < 5×10-8); 2. the genetic instruments remain untethered to any 
confounding factors; 3. the genetic instruments impact on the outcome solely 
through exposure 99. The two-sample MR is widely used that allows the evaluation 
of the association between IVs and exposure/outcome generated from distinct 
populations 100.  

 
Figure 8. MR core assumption. Created with Powerpoint. 
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Machine Learning 

Machine learning has emerged as a powerful and transformative tool in the 
healthcare and biomedicine field. It encompasses diverse algorithms that enable 
computers to learn intrinsic patterns and insights from complex and high-
dimensional data, with the capacity to adapt and improve over time when new data 
is added in. Traditional statistic methods rely on making an inference about 
population-based samples, while machine learning employs the identification of 
patterns within data for repeatable predictions. Due to the heterogeneity and 
complex nature of cancer, machine learning has proven to be able to identify 
intricate relationships, unravel the complexities of cancer, and aid in diagnosis, 
prognosis, treatment decision and drug discovery. 

Application and comparison of different machine learning methods are shown in 
Figure 9. In this thesis, we applied Lasso (Least Absolute Shrinkage and Selection 
Operator) Cox regression on the selected datasets to build a prognostic 
mitochondrial signature model for breast cancer. The Cox proportional hazard is a 
frequently used model to interpret coefficients in terms of the hazard ratio. However, 
the conventional Cox model is limited when we need to estimate the coefficient of 
numerous features. The Lasso regularization with a penalty term shrinks the 
coefficients associated with less important predictors towards zero, which can 
effectively promote variable selection and enhance the model's interpretability 101. 
The Lasso Cox regression, which merges the principles of Cox regression analysis 
with the regularization technique, can effectively manage multicollinearity and can 
select relevant variables, mitigating overfitting, thus yielding an interpretable model 
for survival analysis. 

Equation of Lasso Cox regression 
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n: the number of patients in the dataset. 

p: the number of variables (in our study are genes). 

λ: the regularization parameter that controls the amount of shrinkage applied to the 
coefficients. 

𝛽*: the coefficient of the j-th predictor variable. 

𝑥1*: the value of the j-th predictor for the i-th patient. 
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𝑑1: is an indicator variable that equals 1 if the death event occurs for the i-th patient. 

𝑡1: the time at which the death event occurs for the i-th patient. 

𝑅1(𝑡1): the set of patients at risk at the time 𝑡1. 

Here, the first term in the equation (λ∑ |𝛽*|
+
*,- ) is the Lasso penalty term. It shrinks 

the coefficients (𝛽*) towards zero; the second term, ∑ G𝑑1 log(𝜆) + ∑ 𝛽*𝑥1*
+
*,- HC

1,- , 
is the partial likelihood function of the Cox proportional hazards model that captures 
the relationships between predictor variables and the hazard function; the third term, 
∑ log	(∑ 𝑒:;<=>∈@A(BA) )C
1,- , is the log-likelihood term that accounts for the 

contribution of events that occurred for each patient, which quantifies the likelihood 
of observing the event times given the predictor variables and coefficients. 

Lasso Cox regression aims to find the values of coefficients (𝛽*) that minimize the 
combined loss of the partial likelihood and the Lasso penalty, obtaining a model that 
balances predictive accuracy and the sparsity of predictors.  
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Figure 9. Comparison of different machine learning methods. Reprinted from Nat Rev Mol Cell 
Biol. 2022 Jan;23(1):40-55. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine 
learning for biologists. © 2021 Springer Nature Limited. 
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Aims  

The overall aim of my thesis is to explore whether the mitochondria and its related 
genes in the nuclear genome can be used as novel methods for the diagnosis and 
prognosis of cancers.    
 
The specific aims of each study were: 

Paper I: To investigate if mitochondrial dysfunction (characterized by mtDNA 
copy number variations) is associated with prevalent, incident cancer and cancer 
mortality. 

Paper II: To investigate the potential causal relationship between mitochondrial 
dysfunction (characterized by genetic predispositions in all mitochondrial-related 
genes) and common cancer risks. 

Paper III: To investigate mitochondrial mutations as potential biomarkers for the 
early diagnosis of breast cancer. 

Paper IV: To investigate the mitochondrial-related gene expression signature as a 
prognostic model to predict the clinical outcome of breast cancer patients.  
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Materials and methods 

 
The objective of my research is to identify mitochondrial-associated biomarkers that 
can aid in the diagnosis and prognosis of cancer based on the Swedish (European) 
population, which involved clinical data analysis, experimental identification and 
validation using publicly available databases or cohorts. 

Study population and data sources 

WHILA cohort 
Data used in paper I and paper III were derived from The Women’s Health in Lund 
Area (WHILA) study, a prospective population-based cohort. WHILA was initiated 
in 1995 and targeted all women aged 50-59 years (born between 1935 and 1945) 
residing in the Scania region of southern Sweden. These women were invited to 
participate in a health survey following written informed consent and without 
financial compensation. Between December 1995 and February 2000, 6917 women 
out of the total population of 10,766, who lived in the five southern municipalities, 
underwent a physical examination. Participants were provided up to two hours to 
complete the questionnaire, which has been previously described 102, and in case of 
any uncertainties were encountered, experienced research nurses were available to 
offer guidance. 
Participants were longitudinally followed from the day of inclusion until the 
occurrence of death or, no event occurred until 31 May 2015, whichever came first. 
The plasma samples were collected from all participants when they were recruited 
(baseline). However, the whole blood samples were collected midway through the 
study (starting from October 1997), a total of 3225 participants with the availability 
of their blood samples were included in the present cohort. 
Paper I included all 3225 participants with blood samples, 3062 out of them were 
eligible for measuring the mtDNA copy number (mtDNA-CN) with ddPCR (Figure 
10).  
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Figure 10. Flowchart of participants included in Paper I. 

 
For paper III, samples were first selected for the mtDNA sequencing. We included 
a total of 349 women diagnosed with breast cancer during follow-up after excluding 
prevalent cancers. Among these women, 345 had baseline cancer-free plasma 
samples collected and 173 women had matched diagnostic biopsies. We included 
only those women who were diagnosed with breast cancer within three years of 
inclusion, as the detection of mutations before this period was not anticipated. Based 
on these criteria, 86 tumor biopsies were identified and where available, matched 
50 baseline whole blood samples were included for mtDNA sequencing. After 
sequencing, we identified candidate mtDNA mutations and validated the mutations 
using ddPCR on the plasma samples collected from the same patients but before the 
clinical diagnosis of cancer. A total of 304 patients with available plasma samples 
were diagnosed with breast cancer during follow-up and 359 age and date-of-
sampling matched controls were included for ddPCR validation (Figure 11). 
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Figure 11. Flowchart of participants included in Paper III. 

eQTL, mQTL and pQTL 
In paper II, the eQTL summary statistics were retrieved from the eQTLGen 
Consortium, which was established to investigate the genetic architecture of blood 
gene expression and to understand the genetic factors underlying complex traits. 
The eQTLGEN Consortium included blood samples from 31,684 individuals and 
contains information on 10,317 trait-associated single nucleotide polymorphisms 
(SNPs) related to 19,960 genes 103. The mQTL summary statistics containing 
information on SNPs that are robustly associated with gene methylation were 
downloaded from a meta-analysis study involving two cohorts (n = 1980) 104. The 
pQTL summary statistics containing information on SNPs associated with the 
protein expression were downloaded from a meta-analysis study involving five 
proteome datasets 105-109. However, all QTL datasets included in this study did not 
contain information on SNPs that are associated with the expression or methylation 
of genes located on the X and Y chromosomes and mtDNA.  

GWAS summary statistics 
In paper II, GWAS summary statistics of European ancestry investigating the 
association between SNPs and the risk of 18 types of cancers were obtained from 
publicly available large-scale studies. 
The Breast Cancer Association Consortium (BCAC) comprised 133,384 breast 
cancer cases and 113,789 controls from 82 studies. The SNPs associations with 
breast cancer risk were adjusted for age, country and array-specific first 10 ancestry 

Source population (n = 6917)

Exclusion : 
Prevalent cancers, 
Poor quality of ctDNA

WHILA Cohort (1995 - 2015)

Selected matched (age and 
date of sampling) cancer-

free controls (n=359)

All patients with incident 
breast cancer (n=304) 

Cancer-free individuals (n = 3038)

follow up

Death
(n = 48)

Censor  
(n = 256)

Death of cancer
(n = 42)

Death of other reason
(n = 6)

Exclusion : 
Limit volume of ctDNA



40 

principal components (PCs). In addition, we included the associations of SNPs with 
five molecular subtypes of breast cancer based on tumor grade and receptor status 
for further subgroup analysis 110.  
For bladder cancer (cases: 2670, controls: 385,138), corpus uteri cancer (cases: 
1515, controls: 210,164), esophagus cancer (cases: 992, controls: 386,907) and non-
Hodgkin lymphoma (cases: 1579, controls: 386,126), SNP association were 
obtained from a published study of 454,787 UK Biobank participants. The SNPs 
association were adjusted for age, sex, array-specific 10 ancestry PCs, exome 
sequencing batch and sequencing-specific 20 PCs 111. 
The SNPs associated with cervical cancer (cases: 1889, controls: 461,044) and 
melanoma (cases: 3598 controls: 459,335) risk were downloaded from the IEU 
OpenGWAS project derived from UK Biobank and adjusted for age, sex and 
genotype measurement batch 112. 
For colorectal cancer (cases: 6581, controls: 463,421), gastric cancer (cases: 1029, 
controls: 475,087), pancreatic cancer (cases: 1196, controls: 475,049) and thyroid 
cancer (cases: 1054, controls: 490,920), SNPs associations were retrieved from a 
large cross-population study involving BioBank Japan, UK Biobank and FinnGen. 
The SNPs associations were adjusted for age, sex, top 20 genotype PCs and time 
from sampling to biobanking 113.  
The SNPs associated with endometrial cancer (cases: 12,906, controls: 108, 979) 
risk were derived from a meta-analysis of 17 studies comprising of the UK Biobank, 
the Epidemiology of Endometrial Cancer Consortium (E2C2) and the Endometrial 
Cancer Association Consortium (ECAC), with adjustments for corresponding PCs 
in each study 114. 
For kidney cancer, SNPs associations were obtained from a sex-specific GWAS 
study analysis of renal cell carcinoma for men (cases: 3227, controls: 4916) and 
women (cases: 1992, controls: 3095), with age, study center and significant 
eigenvectors as covariates 115. 
For liver cancer, SNPs associations were obtained from a case-control GWAS study 
of alcohol-related hepatocellular carcinoma (cases: 775, controls: 1332), with 
adjustments for the first 10 genotype PCs, age, sex, and liver fibrosis 116. 
For lung cancer, SNPs associations were obtained from a meta-analysis of 4 GWAS 
studies (cases: 11,348, controls: 15,861), involving individuals from the MD 
Anderson Cancer Center (MDACC), the Institute of Cancer Research (ICR), the 
National Cancer Institute (NCI) and the International Agency for Research on 
Cancer (IARC). The SNPs associations were adjusted for age, sex, histology and 
smoking status 117. 
The SNPs associations of the oral cavity and pharyngeal cancer risk were obtained 
from a GWAS study (cases: 2497, controls: 2928) of the International Head and 
Neck Cancer Epidemiology Consortium (INHANCE), with adjustments for age, sex 
and PCs 118. 
The SNPs associations of the overall ovarian cancer risk and different histotypes of 
epithelial ovarian cancer risk were obtained from the Ovarian Cancer Association 
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Consortium (OCAC, cases: 25,509, controls: 40,941) with the adjustments for 
project-specific PCs 119. 
For prostate cancer, SNPs associations were obtained from a meta-analysis 
conducted by the Prostate Cancer Association Group to Investigate Cancer-
Associated Alterations in the Genome Consortium (PRACTICAL, cases: 79,148, 
controls: 61,106), with adjustments for PCs and study specific covariate 120. 
GWAS summary statistics for SNPs associated with mtDNA-CN were obtained 
from a study based on UK biobank-scale whole exome sequencing of 415,422 
individuals, with adjustments for age, sex, 40 ancestry PCs and exome sequencing 
batch 121.  

SCANB and TCGA-BRCA 
In paper IV, the breast cancer RNA-seq data were collected from Sweden 
Cancerome Analysis Network-Breast Initiative (SCANB) and The Cancer Genome 
Atlas Breast Invasive Carcinoma (TCGA-BRCA). The SCANB started in August 
2010 in the southern region of Sweden and patients with primary breast cancer were 
recruited. After signing the written informed consent, tumor biopsies, blood samples 
and data from the national quality registry for breast cancer were collected and 
followed. Until December 2020, SCANB has included over 16,000 patients and 
sequenced more than 13,500 RNA-seq libraries. In our study, we could obtain the 
RNA-seq data of 6657 patients from SCANB dataset with a follow-up of 4094 days 
122. The TCGA-BRCA data is part of a large-scale genomics program started in the 
United States in 2006 that included clinical data and molecular characterization of 
more than 20,000 primary cancer samples from 33 cancer types, alongside the 
matched normal tissue counterparts 123. For breast cancer, we could obtain the RNA-
seq data with sufficient clinical information of 1086 patients from TCGA-BRCA 
with a follow-up of 8065 days. However, after 4094 days, only 28 patients were 
followed, and five patients were deceased by the end of the study. In this case, to 
control the follow-up time for both datasets, those 28 patients were filtered out and 
1039 breast cancer patients from TCGA-BRCA were included in this study.  

Ethical statements 
For paper I and paper III, data were derived from the WHILA cohort. The specific 
studies were covered in ethical approvals from the regional ethical committee at 
Lund University (approval nos. 2011/494 and 2015/6). All participants provided 
written informed consent following a comprehensive explanation of the study's 
objectives. The research was conducted in accordance with the guidelines in the 
Helsinki Declaration. Additionally, the studies did not include any vulnerable 
individuals, dependent relationships, or animal research. 
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For paper II and paper IV, all data used in analyses were generated from previous 
studies, for each of which ethical approval and individual consent were already 
obtained by their respective initiators/investigators. The data are freely available 
online and were permitted for public use. 

Assessment of outcomes 
The outcome in paper I and paper III, are the cancer incidence and mortality from 
the WHILA cohort. This information was obtained from the Swedish Cancer 
Registry and Death Registry and information on prevalent cancer was obtained from 
self-reported questionnaires. A total of 187 women were diagnosed with prevalent 
cancer at baseline, while 3038 women were cancer-free when they were enrolled at 
baseline. The cancer-free women were followed from the day of initial screening 
until the occurrence of one of the following events: (1) diagnosis of cancer; (2) death 
(from any cause: overall mortality, from cancer: cancer mortality); (3) end of the 
study (31 May 2015).  For paper I, the cancer outcomes were further categorized 
based on the World Health Organization's International Classification of Diseases 
(ICD, revision 10) as: (a) breast cancer; (b) digestive system cancer (including liver, 
pancreatic gastric cancer, small intestine, colon, rectum, and oral cancer); (c) 
respiratory system cancer (lung cancer); (d) genital organ cancer (including ovary, 
cervix, uterus, and corpus cancer); (e) urinary system cancer (including kidney and 
urethral cancer); (f) hematological cancer (including myeloma, leukemia, and non-
Hodgkin's lymphoma); (g) nervous system cancer; (h) melanoma and other 
malignant neoplasms of the skin; (i) endocrine gland cancer (thyroid cancer). For 
paper III, we only included breast cancer incidence as an outcome and identified a 
total of 304 women with incident breast cancer during a median follow-up period 
of 18.3 years. Among these women, 48 died from any cause (overall mortality) and 
42 deaths were due to cancer (cancer mortality). 
The outcomes for paper II are the 18 cancer summary statistics. For paper IV, the 
overall survival of breast cancer, was obtained from publicly available databases.  

Assessment of covariates 
For paper I and paper III, information on potential confounding factors was obtained 
from the health survey, which included the following factors: age at screening, body 
mass index (BMI), education level (categorized as 1-9, 10-11, or 12 years of 
schooling), alcohol consumption habits (categorized as no consumption, <12 g/day, 
or ≥12 g/day), smoking habits (classified as non-smokers, past smokers with <1 
pack year and stopped smoking at least one month prior to the study, and current 
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smokers), physical activity at home (categorized as low activity and high activity) 
and physical activity at work (categorized as low activity, moderate activity and 
high activity). Information on the prevalent diseases and first-degree family history 
of cancer (defined as cases where the mother or sister had any type of cancer) were 
collected from baseline self-reported questionnaires and incident diagnoses of 
diabetes, cardiovascular disease and hypertension were obtained through the 
Swedish health registers.  

Droplet digital polymerase chain reaction (ddPCR) 

Quantification of mtDNA copy number 
For paper I, ddPCR (QX200 AutoDG Droplet Digital PCR System, Bio-Rad, USA) 
was used to quantify the absolute mtDNA-CN out of the total genomic DNA 
extracted from the whole blood using QiAamp96 DNA Blood kit (Qiagen, Inc., 
Hilden, Germany). We used specific primers designed in the group to target the 
mitochondrial MT-ND1 (assay ID: dHsaCPE5029120) gene and the nuclear 
EIF2C1 (assay ID: dHsaCP1000002) gene. All probes had an Iowa Black® FQ 
quencher attached. Probes linked to HEX fluorophore were used for nuclear DNA, 
while mtDNA probes were attached to FAM fluorophore. The primer and probes 
were procured from Bio-Rad (Hercules, CA, USA). The runs along with quality 
control steps were performed as previously described procedures 124. In brief, we 
pooled a 20 µl multiplex reaction containing 1 ng of DNA from samples, primers, 
probes, ddPCR Supermix for probes and 5U/reaction of the restriction enzyme 
HindIII. The reaction plate was sealed and incubated at room temperature for 20 
minutes for restriction enzyme digestion. Subsequently, the plate was loaded into 
an automated droplet generator to generate droplets and followed by end-point PCR. 
The plate was then kept overnight at 4°C to maximize droplet recovery. The plate 
was later read on the droplet reader, data were downloaded and analyzed using 
QuantaSoft™ Software to determine the numbers of positive and negative droplets 
in each sample and the fraction of positive droplets was fitted to a Poisson 
distribution to calculate the absolute copy number in units of copies/µl. The final 
mtDNA-CN is presented as a ratio between absolute mitochondrial and nuclear (as 
reference) DNA copy number. 

Validation of mtDNA mutations 
For paper III, ddPCR was used to validate the candidate mtDNA mutations in the 
cell-free DNA (cfDNA) extracted from the plasma samples. The plasma samples 
were collected from whole blood after 2000 g for 10 min centrifugation within 8 h 
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of sample collection and stored at −80°C. We added a synthetic DNA template 
(TATAA Universal DNA Spike 166 bp; TATAA Biocenter) as spiked-in in each 
thrawed plasma sample (1ml). We obtained cfDNA following the manufacturer's 
instructions for the QIAamp Circulating Nucleic Acid Kit (Qiagen, Inc., Hilden, 
Germany). The Spike 166-bp assay facilitates the amplification of a specific 69-base 
segment within the synthetic template and this synthetic DNA was quantified in all 
samples by ddPCR. Samples with an extraction efficiency of more than 90% were 
included in the following analysis. 
For the samples included in the mutation validation, we designed the mutation 
assays for mt.1888G>A and mt.16093T>C and ordered the assays along with 
primers, probes and reagents from BioRad. The primer details for all assays can be 
found below: 
Mt.1888G>A:  
MIQE Context:  4ec16488bb305da9800c1ad1d37d68aa|seq1:140-262:+ 
CAAGGACTAACCCCTATACCTTCTGCATAATGAATTAACTAGAAATAACTTTG
CAAGGAGA[G/A]CCAAAGCTAAGACCCCCGAAACCAGACGAGCTACCTAAGA
ACAGCTAAAAGAGCACACCCG 

Mt.16093T>C: 
MIQE Context:  4f645a5f181d564bb6a9baaf6fe0b62e|seq1:140-262:+ 
TGGGGAAGCAGATTTGGGTACCACCCAAGTATTGACTCACCCATCAACAACCG
CTATGTAT[T/C]TCGTACATTACTGCCAGCCACCATGAATATTGTACNGTACCAT
AAATACTTGACCACCTGT  

We pooled 22 µl ddPCR reaction composed of 11 µl of ddPCR Supermix for probes, 
4 µl of template ctDNA, 1 µl of FAM- and HEX-labelled probes each, and 1 µl of 
5U/reaction HindIII Restriction enzyme. The reactions were prepared in a semi-
skirted 96-well plate and sealed using an automated pierceable foil heat sealer. 
Subsequently, a droplet was generated using the AutoDG system and the plate was 
resealed with the heat sealer. The PCR amplification was carried out with the 
following parameters: initial enzyme activation at 95 °C for 10 minutes, followed 
by 40 cycles of denaturation at 94°C for 30 seconds, annealing/extension at 54°C 
for 1 minute, and a final enzyme deactivation step at 98°C for 10 minutes. After 
PCR, the plate was incubated at 4 °C overnight to maximize droplet recovery. The 
plate was read using a droplet reader, and the data were analyzed using QuantaSoft 
Software to determine the number of droplets containing positive (mutant) and 
negative (wild-type) fluorophores for each sample. 

Sequencing library preparation 
In paper III, we sequenced the mtDNA from breast biopsies and matched available 
whole blood samples. After surgery, the biopsy samples were immediately snap-
frozen and stored at –80°C in the South Swedish Breast Cancer Group tumor bank. 
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DNA from biopsies was extracted using the QiaAmp nucleic acid kit (Qiagen, 
Germany) according to the manufacturer’s instructions. The standard EDTA blood 
tubes were used to collect baseline whole blood samples and blood genomic DNA 
was extracted using QIAamp96 DNA Blood (Qiagen, Germany) according to the 
manufacturer’s instructions. Then, we applied long-range PCR using two pairs of 
primers to amplify the entire mitochondrial genome from extracted biopsy and 
whole blood DNA. The primer sequences employed are as follows:  
MTL_Fwd1: AAAGCACATACCAAGGCCAC 
MTL_Rev1:  TTGGCTCTCCTTGCAAAGTT 
MTL_Fwd2: TATCCGCCATCCCATACATT 
MTL_Rev2: AATGTTGAGCCGTAGATGCC 

The library preparations were carried out using the Nextera DNA Flex library 
preparation kit (Illumina, USA), following the manufacturer's guidelines. The 
concentrations of the purified libraries were measured using the Qubit 4.0 - 1× ds 
DNA high sensitivity assay (Invitrogen, USA), and the size range of the libraries 
(500 bp-1000 bp) was verified using Experion electrophoresis (Bio-Rad, USA). The 
final library pool with 2% internal control (phiX) was diluted to 80-100 pM and 
then loaded into our in-house iSeq100 system for sequencing. In the end, we 
obtained dual-index, paired-end raw fastq files as result.  

Bioinformatic and statistical analysis 

Mendelian randomization 
In paper II, Mendelian randomization was used to investigate causal inference 
between mitochondrial dysfunction and cancers (Figure 12). We included the 
publicly available summary statistics from 18 common cancers (2107 to 491,974 
participants), gene expression, DNA methylation and protein expression 
quantitative trait loci (eQTL, mQTL and pQTL, respectively. 1000 to 31,684 
participants) on individuals of European ancestry, were included. Genetic variants 
located within 1000 kb on either side of the 1136 mitochondrial-related genes 
coding sequence (in cis) and robustly associated (P < 5× 10−8) with the 
mitochondrial molecular alterations were used as instrumental variables, and their 
causal associations with cancers were examined using summary-data-based MR 
(SMR) analyses. The SMR applied a two-step least-squares (2SLS) approach to 
estimate the effect size of an exposure on an outcome. In this study, the Linux 
version 1.0.3 of SMR software with default options was used to first extract the 
SNPs with Psnp-mitodys < 5× 10−8. We obtained 662,968 SNPs that were associated 
with the expression of 1013 mitochondrial-related transcripts from cis-eQTL, 
931,304 SNPs that corresponded to 2550 mitochondrial-related DNA methylation 
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CpG sites from cis-mQTL and 23 SNPs that were associated with 23 mitochondrial-
related protein expressions from cis-pQTL. Subsequently, those SNPs with linkage 
disequilibrium (LD) r-squared > 0.90 or < 0.05 were excluded after SMR analyses. 
The causal associations were calculated as follows: 

βmitodys-cancer = βSNP-cancer / βSNP-mitodys 

Here, βmitodys-cancer represents the estimated effect size of mitochondrial dysfunction 
on cancer, βSNP-cancer represents the estimated effect size of the SNP on cancer and 
βSNP-mitodys represents the estimated effect size of the SNP on mitochondrial 
dysfunction. To control the genome-wide type I error rate, we used Bonferroni 
correction to adjust the SMR P-value. P-value thresholds of 0.05 / the number of 
probes (1013) = 4.936 × 10−5, 0.05 / 2550 = 1.961 × 10−5 and 0.05 / 23 ≈ 0.002 were 
set for the statistical significances of the association between mitochondrial-related 
RNA expression, mitochondrial-related DNA methylation, mitochondrial-related 
protein expression, and cancer outcomes, respectively. Additionally, the embed 
heterogeneity in dependent instruments (HEIDI) test in SMR software was run to 
test whether the observed association was due to the vertical pleiotropy than the LD 
with the causal variant. The European ancestry obtained from the 1000 Genomes 
Project Consortium was used as a reference to estimate the LD 125. A P-value 
threshold < 0.01 after the HEIDI test indicated the association was potentially due 
to linkage rather than pleiotropy and should be discarded from the analysis 126.  
Following the primary SMR analysis, MR Egger, weighted median, Inverse 
variance weighting (IVW), simple mode and weighted mode were performed 
(TwoSampleMR R package) to further confirm the causal associations. The 
Cochran Q statistic embedded in MR Egger and IVW method was used to test 
heterogeneity across individual causal effects, and a Cochran's Q test P-value of < 
0.05 indicates the presence of heterogeneity 127. MR Egger regression and MR-
PRESSO (Pleiotropy Residual Sum and Outlier) were applied to examine the 
presence of horizontal pleiotropy. MR Egger regression evaluates whether the 
pleiotropic effects of all identified genetic variants are independent of their 
instrument strength (InSIDE assumption). An intercept close to zero and a P-value 
> 0.05 indicates no directional pleiotropies driving the results of MR analysis 128. 
MR-PRESSO can identify and adjust for outliers reflecting horizontal pleiotropic 
biases, a Global test P-value > 0.05 indicates the absence of horizontal pleiotropic 
outliers 129. To access the robustness of the results, the leave-one-out sensitivity tests 
were applied, and one genetic variant was removed at each time to confirm that the 
results were not driven by a single variant (the estimate of the rest variants > 0) 130. 
For the causal effect of a single genetic variant on the outcome, the Wald ratio 
estimate was applied to obtain the causal estimate 131. Additionally, the strength of 
the variants was calculated using the F-statistic, where a value > 10 is considered a 
strong MR instrument.  
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Figure 12. Workflow of Mendelian randomization analyses performed in Paper II 
 
Importantly, to assess the presence of a shared causal variant in the region for both 
exposure and outcome, colocalization analysis was also conducted. The basic 
hypothesis for colocalization is: 
H0: neither trait has a causal variant 
H1: only trait 1 has a causal variant 
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Except for the HEIDI test, we conducted another colocalization analysis based on 
the Bayesian test to estimate the posterior probability of shared variants 132. In brief, 
for each leading SNP in the outcome GWAS summary statistics, we retrieved all 
SNPs within 100 kb up and downstream of the leading to analyze the posterior 
probability of H4 (PP.H4). We estimated the PP.H4 with default priors, assumed 
that the probability of a shared causal variant for trait 1 (P1) and trait 2 (P2) be 10−4, 
and the probability of a shared causal genetic variant across both traits (P12) to be 
5×10−5. In this study, PP.H4 > 0.8 is the cut-off for the evidence of colocalization 
between the GWAS and QTL association. 

MtDNA variant calling 
In paper III, after sequencing of mtDNA, we obtained raw .fastq files and performed 
quality control on the files using MultiQC v1.8 133, the adapters from library 
preparation were removed using TrimGalore v0.6.5 134. Then, the cleaned .fastq files 
were analyzed using the multifunctional integrated software MToolBox v1.0 135. 
This step generated a variant call format (.vcf) file containing detailed information 
on mtDNA mutations for each sample. The .vcf files were individually normalized 
and merged using BCFtools v1.8 136 to create a final .vcf file that contained all 
samples. The effects of the mutations in the .vcf file were annotated by integrating 
the NCBI Homo sapiens Annotation with mitochondrial DNA function locations 
from MITOMAP 137. Haplogrep v2.4.0 was utilized 138 to determine the haplogroup 
of each mtDNA sequence. Subsequent to variants identification, we performed 
quality control and defined heteroplasmic mutations (characterized by the ratio 
between mutant and wild-type alleles). The criteria of heteroplasmic mutation were 
adopted and modified according to Wei et al, 2019 63, as follows:  

1. Mutations with the lower bound of the confidence interval (CI) of heteroplasmic 
variant allele frequency (VAF) below 1% were retained. 
2. Mutations at sites with multiple alternate alleles and alleles with a heteroplasmy 
level (HL) of less than 5% were discarded. 
3. Heteroplasmic mutations at sites with over 98% of the upper bound of the CI were 
re-categorized as homoplasmic mutations. 
4. Mutations falling within specific regions associated with misalignment errors 
related to homopolymeric tracts were discarded.  
5. Heteroplasmic variants with sequencing depth below 100× or low HL (< 5%) 
with depth below 250× were discarded.  

RNA sequencing data processing 
In paper IV, the mRNA expression data of 6657 breast cancer patients in SCANB 
cohort in the format of fragments per kilobase of exon model per million mapped 
fragments (FPKM), with adjustment of library protocol, was downloaded from 
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Mendeley database (https://data.mendeley.com/datasets/yzxtxn4nmd). FPKM was 
further converted into transcripts per kilobase of exon model per million mapped 
reads (TPM) format then the values were normalized into log2 (TPM + 1). The 
mRNA expression data of 1039 breast cancer patients in TCGA-BRCA cohort in 
the format of log2 (TPM + 0.001) was downloaded and extracted from the XENA 
(https://xenabrowser.net/datapages/?dataset=TcgaTargetGtex_rsem_isoform_tpm&host=ht
tps%3A%2F%2Ftoil.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucs
c.edu%3A443), then normalized the values into log2 (TPM + 1). 

Machine Learning 
In paper IV, we aimed to construct mitochondrial-related gene expression signatures 
for breast cancer prognosis using machine learning. SCANB and TCGA-BRCA 
mRNA expression data and clinical information were employed to build the model. 
We first retrieved known 1136 mitochondrial-related gene list from MitoCarta v3.0 
139. After excluding genes that were not presented in the SCANB mRNA datasets, a 
final set of 1094 genes was retained. We randomly divided the SCANB dataset into 
an 80% training set (n = 5326) and a 20% test set (n = 1331). Univariable Cox 
regression analysis was performed in the training cohort and 234 genes were 
identified to be significantly associated with the overall survival of breast cancer 
after Bonferroni correction (P < 0.05/1094). To ensure the robustness of the genes’ 
selection, a bootstrap approach was performed by repeatedly sampling 80% of 
training sets 1000 times and 231 genes with P < 0.01 in over 800 times were 
retrieved. Then, we applied the Lasso Cox regression with 10-fold cross-validation 
(using the R package “glmnet”) and shrunk to 33 genes in SCANB training dataset 
based on the “lambda.lse” value. Compared to the predictive coefficients of 
univariate Cox regression analyzed results on SCANB testing dataset and TCGA-
BRCA dataset, a total of 14 genes that had the same predictive trends across all 
datasets were selected to build the most appropriate mitochondrial signature model. 
Based on the median expression level of the derived signature, we classified the 
patients into low and high-risk score groups for further analysis.  

Statistics 
For count/frequency comparison between two groups for categorical variables, 
Pearson chi-square test or Fisher’s exact test was used depending on sample sizes; 
for continuous variables, student’s t-test was used if the variables were normally 
distributed, otherwise, the Wilcoxon rank sum test (also known as Mann Whitney 
U Test) was used. A two-sided P < 0.05 was considered to reject the null hypothesis 
and achieve statistical significance in two group comparison. In paper I and III, for 
baseline characteristics comparison between prevalent cancer vs cancer-free or 
cancer-free vs incident cancer or mutation vs wild-type, Pearson chi-square test was 
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used to compare the categorical variables such as education level, smoking habits, 
alcohol consumption, activity at work, activity at home, diabetes, CVD, 
hypertension, first-degree family history of cancer. Student’s t-test was used to 
compare the continuous variables such as age and BMI. In paper III, to compare the 
mtDNA mutations between biopsies and whole blood samples, Poisson regression 
was used to compare the difference between the mutation counts in two groups and 
the Wilcoxon rank sum test was used to compare the difference between mutation 
HLs in two groups. Fisher’s exact test was performed to compare mutations between 
two groups across various mitochondrial regions or mutation consequences. The 
binomial test was used to assess the difference in the number of negative or positive 
mitochondrial HL changes within the same mitochondrial region. To account for 
multiple testing, Bonferroni correction was applied when conducting Fisher’s exact 
test and the binomial test. 
In paper I, to evaluate the association between prevalent cancer (yes/no) and 
mtDNA-CN at baseline, the linear regression analysis was performed and β 
coefficients were obtained. In paper II, we acquired β coefficients after SMR 
analyses and odds ratios (ORs) estimate per 1-ln increment in mitochondrial genome 
levels was used to measure the causal effect of mitochondrial dysfunction on cancer 
risk, which can be calculated by the formula: ORmitodys-cancer = exp (βmitodys-cancer). In 
paper III, to evaluate the association between the presence of candidate mtDNA 
mutations (mt.1888G>A and mt.16093T>C) and breast cancer incidence, logistic 
regression analysis was performed, ORs and 95% confidence intervals (95% CIs) 
were calculated. 
For the follow-up study design, Cox proportional hazards model was applied to 
explore the association between variable and event of interest by calculating the 
hazard ratios (HRs) with 95% CIs and potential confounders adjustment. In paper I, 
to evaluate the association between mtDNA-CN and cancer incidences, participants 
were dichotomized into high and low mtDNA-CN groups according to median value 
and the high group served as the reference group in the Cox regression analyses. 
The association between mtDNA-CN, all-cause mortality and cancer-specific 
mortality was also evaluated and competing risk models were applied while 
analyzing cancer-specific mortality to control the deaths from other causes. In paper 
III, the Cox proportional hazards model was performed and HRs with 95% CIs were 
calculated to evaluate the association between mutation mt.1888G>A, 
mt.16093T>C and cancer mortality. Kaplan-Meier survival curve allows the 
graphical presentation of survival probability over time that is commonly used in 
time-to-event studies. In paper IV, Kaplan-Meier analyses were performed to plot 
the overall survival according to the expression of mitochondrial signature in breast 
cancer patients. The time-dependent ROC curves with HRs and 95% CIs value of 
AUC (the area under the ROC curves) were plotted to evaluate the predictive 
performances of the mitochondrial signature models at 1-, 3-, and 5-year in different 
cohorts. To establish a nomogram model by integrating the mitochondrial signature 
with clinical features, stepwise regression analysis was performed to select the most 
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relevant variates from clinical characteristics including age, ER, PR, HER2, PAM50 
subtypes and treatment. The model with the lowest Akaike information criterion 
(AIC) value was selected for nomogram establishment.  
All statistical analyses were carried out in SPSS software version 23 (IBM, Armonk, 
NY, USA), SAS version 9.4 or R version 4.1.2 (https://cran.r-project.org/).  
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Results and discussion 

Paper I 
To investigate the association between mitochondrial dysfunction, characterized by 
mtDNA copy number (mtDNA-CN) variation, and prevalent, incident cancer and 
cancer mortality, we quantified the mtDNA-CN from baseline whole blood of all 
the eligible 3062 participants, 174 out of them had cancer before the inclusion. The 
cancer-free participants were followed with an average of 15.2 years untill the end 
of the study, 491 developed cancer and 134 died during the follow-up period (Figure 
10).  
To investigate the association between prevalent cancer and mtDNA-CN, we 
conducted linear regression analysis. As shown in Table 1, breast cancer was the 
most prevalent cancer (40.8%) in our study population. Our results demonstrated a 
significant positive association between prevalent breast cancer and elevated 
mtDNA-CN (12.39 copies/µl).  

 
Table 1. The β coefficients and 95% confidence intervals of mtDNA-CN associated with 
prevalent cancer.  

 
a Adjusted for age, BMI, education level, smoking habits, alcohol consumption, activity at work and home, diabetes, 
CVD, hypertension.  

 
For 491 participants who developed cancer, we conducted Cox regression analysis 
to investigate the association of the mtDNA-CN and cancer risk. Our findings, in 
Table 2 show that participants with lower baseline levels of mtDNA-CN had a 16% 
reduced risk (95% CI: 0.72, 0.98) of developing genital organ cancer (including 

Characteristics No. of Cases
Crude Univariate Adjusted Univariate a

β (95% CI) P Value β (95% CI) P Value

Prevalent cancer 174 2.75 (-2.67, 8.18) 0.320 4.18 (-1.18, 9.55) 0.059
Breast cancer 71 10.70 (2.36, 19.03) 0.012 12.39 (4.15, 20.63) 0.003

Digestive system 11 -6.53 (-27.52, 14.46) 0.351 -6.54 (-27.27, 14.20) 0.537
Respiratory system 1 3.86 (-65.64, 73.36) 0.913 1.27 (-67.36, 69.90) 0.971

Genital organs 30 -3.48 (-16.23, 9.27) 0.593 -0.48 (-13.09, 12.13) 0.941
Urinary system 5 -24.98 (-56.07, 6.11) 0.115 -20.77 (-51.47, 9.94) 0.185

Hematological cancer 7 -25.23 (-51.51, 1.05) 0.060 -25.21 (-51.19, 0.77) 0.057
Nervous system 5 -10.76 (-41.86, 20.34) 0.498 -8.80 (-39.53, 21.93) 0.575

Skin 17 11.27 (-5.62, 28.17) 0.191 9.51 (-7.19, 26.21) 0.264
Endocrine glands 17 -2.57 (-19.47, 14.47) 0.766 -0.88 (-17.58, 15.84) 0.918
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ovary, cervix, uterus, and corpus cancer) after adjustments for potential 
confounders. The baseline level of mtDNA-CN was also dichotomized into high (> 
111 copies/µl, as reference) and low (≤ 111 copies/µl) groups according to the 
median value. Compared to the group with a high level of baseline mtDNA-CN, 
participants with lower mtDNA-CN had an increased risk of urinary system cancer 
(including kidney and urethral cancer with adjusted HR: 8.2, 95% CI: 1.06, 63.2) 
and hematological cancer (including myeloma, leukemia, and non-Hodgkin's 
lymphoma with adjusted HR: 1.97, 95% CI: 1.02, 3.81). However, no statistically 
significant association was found between mtDNA-CN and other cancer risks 
(Table 2).   

 
Table 2. Hazard ratios and 95% confidence intervals of mtDNA-CN associated with incident 
cancer.   

 
a Adjusted for age, BMI, education level, smoking habits, alcohol consumption, activity at work and home, diabetes, 
CVD, hypertension.  
b P < 0.05  

 
For 134 participants who died during the follow-up, we conducted Cox regression 
analysis to investigate the association between the mtDNA-CN and cancer 
mortality. As shown in Table 3, we found a significant association between 
participants with lower baseline levels of mtDNA-CN had a 20% increased risk of 
all-cause mortality (95% CI: 1.01, 1.42) and similarly, a 21% increased risk of 
cancer-specific mortality (95% CI: 1.01, 1.45) after adjustment for potential 
confounders. Upon further stratification of the data based on cancer type, we 

Characteristics
mtDNA-CN HR (95% CI)

per 1-SD decrease in 
mtDNA-CN High (n = 1406) Low (n = 1482)

All cancer
No. of cancer diagnoses 242 249

Person-years of follow-up 21,700 22,238
IR, per 1000 person-years 11.15 11.19

Crude HR (95% CI) 1 (Ref) 1.04 (0.87, 1.24) 1.01 (0.92, 1.10)
Adjusted HR (95% CI) a 1 (Ref) 0.99 (0.83, 1.19) 0.99 (0.90, 1.08)

Cancer types 
(adjusted HR and 95% CI a)

Breast cancer 1 (Ref) 1.05 (0.78, 1.42) 0.95 (0.84, 1.08)
Digestive system 1 (Ref) 0.83 (0.54, 1.29) 1.03 (0.84, 1.26)

Respiratory system 1 (Ref) 0.91 (0.42, 2.02) 1.18 (0.88, 1.60)
Genital organs 1 (Ref) 0.60 (0.33, 1.10) 0.84 (0.72, 0.98) b

Urinary system 1 (Ref) 8.20 (1.06, 63.2) b 1.08 (0.72, 1.63)
Hematological cancer 1 (Ref) 1.97 (1.02, 3.81) b 1.11 (0.85, 1.46)

Nervous system 1 (Ref) 1.62 (0.49, 5.31) 1.07 (0.66, 1.72)
Skin 1 (Ref) 0.82 (0.49, 1.39) 1.05 (0.82, 1.34)

Endocrine glands 1 (Ref) 0.79 (0.29, 2.13) 1.01 (0.63, 1.63)
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observed a notable negative association between the baseline level of mtDNA-CN 
and both all-cause mortality (adjusted HR: 2.15, 95% CI: 1.04, 4.44) and cancer-
specific mortality (adjusted HR: 2.42, 95% CI: 1.03, 5.70) in patients with genital 
organ cancer. Similar associations were maintained when dichotomizing the 
mtDNA-CN level according to the median and compared to the high baseline 
mtDNA-CN group, low mtDNA-CN had significantly higher risks of mortality from 
all causes and cancer-specific in genital cancer patients. These results revealed a 
potential clinical application of mtDNA-CN as a prognostic marker for mortality of 
genital cancer patients. 

 
Table 3. Hazard ratios and 95% confidence intervals of mtDNA-CN associated with mortality.   

 
a Adjusted for age, BMI, education level, smoking habits, alcohol consumption, activity at work and home, diabetes, 
CVD, hypertension.  
b P < 0.05  

 

Characteristics
mtDNA-CN HR (95% CI)

per 1-SD decrease in 
mtDNA-CNHigh Low

All cancer
No. of cancer patients 242 249
No. of all-cause deaths 62 72

No. of cancer-specific deaths 57 66
Person-years of follow-up 1652 1578

All-cause mortality rate, per 100 person-years 3.75 4.56
Cancer specific mortality rate, per 100 person-years 3.45 4.18

Adjusted all-cause mortality HR (95% CI) 1 (Ref) 1.14 (0.80, 1.62) 1.20 (1.01, 1.42) b

Adjusted cancer-specific mortality HR (95% CI) a 1 (Ref) 1.15 (0.80, 1.66) 1.21 (1.01, 1.45) b

Cancer types
(adjusted all-cause mortality HR and 95% CI) a

Breast cancer 1 (Ref) 1.42 (0.58, 3.51) 1.16 (0.77, 1.74)
Digestive system 1 (Ref) 1.08 (0.46, 2.51) 1.53 (1.02, 2.28)

Respiratory system 1 (Ref) 0.27 (0.06, 1.25) 0.48 (0.18, 1.24)
Genital organs 1 (Ref) 8.06 (1.75, 37.2) b 2.15 (1.04, 4.44) b

Urinary system 1 (Ref) - -
Hematological cancer 1 (Ref) 0.05 (0.00, 74.4) -

Nervous system 1 (Ref) - -
Skin 1 (Ref) - -

Endocrine glands 1 (Ref) - -

Cancer types
(adjusted cancer-specific mortality HR and 95% CI) a

Breast cancer 1 (Ref) 1.71 (0.67, 4.35) 1.23 (0.86, 1.77)
Digestive system 1 (Ref) 0.89 (0.34, 2.39) 1.42 (0.90, 2.25)

Respiratory system 1 (Ref) 0.34 (0.08, 1.44) 0.48 (0.21, 1.08)
Genital organs 1 (Ref) 5.59 (1.61, 19.4) b 2.42 (1.03, 5.70) b

Urinary system 1 (Ref) - -
Hematological cancer 1 (Ref) - -

Nervous system 1 (Ref) - -
Skin 1 (Ref) - -

Endocrine glands 1 (Ref) - -
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To our knowledge, this remains the first population-based prospective cohort study 
that investigated the association between mtDNA-CN and cancer prevalence, 
incidence and mortality in multiple cancer types. Compared to our well-optimized 
and accurate ddPCR method for the quantification of the absolute mtDNA-CN, real-
time PCR and whole genome sequencing (WGS) are still the most commonly used 
methods to semiquantify the mtDNA-CN 140,141, even for the latest cancer studies 
142-144. Our study cohort only included middle-aged women that were followed 
prospectively for up to 20 years, which minimized confounding factors related to 
age and sex. However, the study’s sample size was limited to specific cancer types 
with a small number of cases and affecting statistical power. The findings of this 
study indicate that mtDNA-CN is associated with prevalent and incident cancer and 
cancer mortality in a cancer-specific manner. After this publication, another group 
performed a large-scale meta-analysis that included more than 300,000 participants 
and, in agreement with our conclusions confirmed that the association of mtDNA-
CN and cancer is highly heterogeneous and, in a cancer-specific manner 71. We also 
published a review paper that summarized the associations between mtDNA-CN 
and cancers 140. Nevertheless, no definitive conclusion could be drawn on the 
association between mtDNA-CN and cancer when considering all cancer types, and 
the possible explanation for the heterogenous and conflicting associations observed 
in different studies is the variability in sample selection, study design and methods 
employed to measure mtDNA-CN.  
Considering the dynamic feature of mtDNA-CN caused by genetic predisposition 
and exposure to environmental and lifestyle factors 121,145, alternative approaches 
based on genetic variants could be adopted to uncover the association especially the 
causal correlation between mtDNA-CN and cancers. To address this, we later 
investigated the causal effects of mtDNA-CN variation on cancers using Mendelian 
randomization. The results showed that the causal association of mtDNA-CN on 
cancers was also cancer type specific and mtDNA-CN was causally associated with 
the risk of cervical and ovarian cancer (genital organ cancer) 77, which allied with 
the finding of this study.  

Paper II  
To identify the causal relationship between mitochondrial dysfunction characterized 
by genetic predisposition (SNPs) in all known mitochondrial-related genes and 18 
common cancers of European ancestry, Mendelian randomization (MR) and 
colocalization analyses were performed (Figure 12).  
We first conducted large-scale two-sample MR analyses on mitochondrial-related 
cis-eQTLs and cancer outcomes (Figure 13). Out of 18 cancers, we identified a total 
of 7 associations across 7 distinct SNPs for breast cancer, 4 associations across 4 
distinct SNPs for prostate cancer, one association for gastric cancer and no 
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significant genetic association for the other cancer types. The colocalization 
analyses confirmed the causal effects of mitochondrial gene expression related 
SNPs on breast and prostate cancer. In breast cancer, one standard deviation (SD) 
decrement of FDPS expression caused by rs6677385 was associated with a 34% 
decreased cancer risk (95% CI: 0.49, 0.83); one SD increase of NSUN4 expression 
caused by rs41293273 was associated with a 5% increased cancer risk (95% CI: 
1.03, 1.07). In prostate cancer, one SD increase of NSUN4 expression caused by the 
same SNPs in breast cancer was associated with a 6% increased cancer risk (95% 
CI: 1.03, 1.09).  

 

 
Figure 13. Mendelian randomization and colocalization analyses identified causal relationships 
between the expression of mitochondrial-related genes and breast, prostate cancer.  
a Represents the effect size (β) of a variant on mRNA expressions. β > 0 means positive association, and β < 0 
means negative association. 
b ‘Colocalization’ indicates PP.H4 between eQTLs and cancer outcomes, PP.H4 > 0.8 was applied as the cut-off 
for the evidence of colocalization. 

 
We then conducted MR analyses on mitochondrial-related cis-mQTLs and cancer 
outcomes (Figure 14). Out of 18 cancers, we identified a total of 15 associations 
across 14 distinct SNPs for breast cancer, 11 associations across 10 distinct SNPs 
for prostate cancer, one association for gastric cancer, 4 associations across 3 
distinct SNPs for lung cancer and 2 associations in SNPs for melanoma. The 
colocalization analyses confirmed the causal effects of mitochondrial gene 
methylation related SNPs on breast, prostate and lung cancer. In breast cancer, we 
identified 6 distinct SNPs that can regulate NSUN4 methylation levels at 7 different 
CpG sites and all exhibited a positive association with cancer risk. In prostate 
cancer, we found the same positive association between NSUN4 methylation and 
cancer risk. Additionally, one SD increase of NUDT5 methylation caused by 
rs4750175 was associated with a 4% decreased prostate cancer risk (95% CI: 0.95, 
0.98). In lung cancer, one SD increase of VARS2 methylation caused by SNPs 
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presented in different methylation CpG sites was associated with an over 20% 
increased cancer risk. 

 
Figure 14. Mendelian randomization and colocalization analyses identified causal relationships 
between the methylation of mitochondrial-related genes and breast, prostate and lung cancer.  
a Represents the effect size (β) of a variant on DNA methylation. β > 0 means positive association, and β < 0 means 
negative association. 
b ‘Colocalization’ indicates PP.H4 between mQTLs and cancer outcomes. PP.H4 > 0.8 was applied as the cut-off 
for the evidence of colocalization. 
 
We also conducted MR analyses on mitochondrial-related cis-pQTLs and cancer 
outcomes. However, no causal association was identified, which might be attributed 
to the incompleteness of the pQTL datasets, thus limiting the identification of SNPs 
robustly associated with mitochondrial-related protein expression. 
The numerous roles of mitochondria have been demonstrated over a century, and 
the increasing numbers of studies have not surprisingly reported the relevance of 
mitochondrial dysfunction in different cancers ranging from mtDNA mutation, 
mtDNA-CN to molecular alteration in selected mitochondrial-related nuclear genes 
80,146,147. However, earlier studies did not investigate causal inferences between 
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mitochondrial dysfunction and cancers. This data-driven study fills the gaps by 
conducting Mendelian randomization and examines the causal associations of 
mitochondrial dysfunction characterized by genetic predisposition in common 
cancers. We identified specific mitochondrial-related genes and proved their causal 
relationship with cancer. Notably, the alteration of, FDPS was associated with 
breast cancer, NUDT5 with prostate cancer, VARS2 with lung cancer, and NSUN4 
with both breast and prostate cancers. However, except for NSUN4, the other three 
genes were relatively well-studied and regarded as anti-cancer drug targets for 
cancer prevention and treatment 148-150. Untill now, the mechanistic studies on 
NSUN4 have mainly been focused on its functions in the methylation process 151,152. 
Here, we identified three commonly shared SNPs related not only to NSUN4 
expression but also to its methylation that were causally associated with both breast 
and prostate cancer after ruling out the horizontal pleiotropy, underscoring and 
affirming the important role of this gene involved in the carcinogenesis of hormone-
dependant cancers. How the SNPs presented in NSUN4 contribute to carcinogenesis 
warrants further investigation on additional cohorts and experimental studies.  
Mitochondrial dysfunction, is a general concept but a complicated process, which 
is challenging to measure directly. The present study included all known 
mitochondrial-related genes from the nuclear genome, thereby avoiding selection 
bias and directly addressing the mitochondrial dysfunction caused by nuclear 
genetic predisposition. However, there is still no QTL dataset developed specifically 
containing the association of mtDNA genetic variants and mitochondrial gene 
expression, methylation or protein expression. Furthermore, there is no GWAS 
dataset that can directly address mitochondrial dysfunction, thus our assessment of 
mitochondrial dysfunction is only limited to nuclear genetic predisposition, hence 
potentially underpowered to detect the direction of causal association and unable to 
estimate the direct causal effects by performing multivariable MR. For the causal 
association analysis between the methylation of mitochondrial-related genes and 
cancer, we identified more association signals across distinct genetic loci even after 
colocalization analysis due to the mQTL dataset employed in this study providing 
all SNPs assigned to a gene. However, the eQTL dataset provided only the most 
significant SNP (topSNP) assigned to a gene, thus potentially filtering out possible 
causal genetic variants for cancer. Nevertheless, this is the first comprehensive MR 
study that included a large sample size (up to 491,974 participants) and 
demonstrated the causal effects of mitochondrial dysfunction on breast, prostate and 
lung cancer. Moreover, the identified causal genes could be potentially considered 
for inclusion in genetic screening for cancer prevention. 
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Paper III  
To investigate if the mitochondrial mutations could potentially be biomarkers for 
early diagnosis of breast cancer, we first sequenced mtDNA from 86 cancer biopsies 
and available matched 50 baseline cancer-free whole blood samples from the same 
individuals selected from our WHILA cohort, to identify candidate mutations. Then, 
we designed a nested case-control study to validate if the identified mutations could 
be traced back to plasma samples prior to breast cancer diagnosis. 
When comparing all the mtDNA mutations identified from biopsies and whole 
blood samples, we found that the majority of the homoplasmic and heteroplasmic 
mtDNA mutations were shared between the two groups, suggesting that those 
mutations were more likely to be germline mutations (Figure. 15A). No statistical 
difference was observed in the frequencies of homoplasmic mutations between 
biopsies and whole blood samples when stratified into different mitochondrial 
genome region. However, in certain regions such as D-loop, RNR2, COX1, and 
CYTB, biopsies exhibited a higher abundance of heteroplasmic mutations compared 
to whole blood samples (Figure. 15B-E).   

 

 
Figure 15. Mitochondrial genomes mutational landscape of 86 biopsies and available matched 
50 whole blood samples. 
A. Circos plot depicts the mitochondrial mutations identified in biopsies and whole blood samples. From outside 
of the circle to inside: (1) mitochondrial genes colored based on genome region: yellow for D-loop, purple for 
coding genes, green for rRNAs, orange for tRNAs. (2) mtDNA position. (3) phastCons100 conservation scores 
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from UCSC. (4) identified mutations with the radial axis representing the heteroplasmy level from inner 0% to 
outer 100%. Red crosses represent biopsies, while blues are whole blood samples. Mutations observed in both 
samples from the same individual are denoted with squares. (5) Mutation density with adjustment for comparison 
between two groups. a) red: biopsies. b) blue: whole blood samples. B-C. The mutation rate of mtDNA genomic 
regions. The vertical axes indicate the number of refined heteroplasmic (B) or homoplasmic (C) mutations in each 
gene divided by the number of samples. Darker color represents biopsies while lighter color is the whole blood 
samples. Mitochondrial genes are displayed and colored based on the regions as described in A. D-E. Comparison 
between two groups regarding mutations in mitochondrial genes. 
 
We further analyzed the 50 matched biopsy-whole blood pairs and observed cancer 
biopsies had elevated occurrences of C to A/G/T and T to G heteroplasmic 
substitutions, while lower T to A substitutions. No statistical difference was 
observed in homoplasmic mutational spectra between the two groups (Figure. 16A-
B). These findings suggest cancer biopsies were potentially susceptible to 
spontaneous deamination of cytosine. Through comparing within two groups, we 
categorized the mutation into three types: germline mutation (mutation present in 
both groups, de novo mutation (mutation only present in biopsies) and lost mutation 
(mutation only present in whole blood samples). As shown in Figure. 16C, de novo 
mutations presented in cancer biopsies had significantly higher heteroplasmy levels 
(HL). Subsequently, we annotated the mutations into nonsynonymous and 
synonymous according to the influence of the mutation on the mitochondrial 
genome. We found that the mutations identified in this study had a higher ratio of 
dN/dS. The overall dN/dS ratio was higher for heteroplasmic mutations compared 
to homoplasmic mutations, while de novo and lost heteroplasmic mutations had 
lower dN/dS ratios than germline mutations (Figure. 16D). Moreover, compared to 
matched whole blood samples, the mutations in the D-loop and rRNA genes had 
higher HL in biopsies (Figure. 16E). These intriguing results suggest that breast 
cancers manifest distinct heteroplasmic mutation signatures during cancer 
pathogenesis.  
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Figure 16. The positive selection of breast cancer during mitochondrial heteroplasmic shift.  
A-B. The mtDNA heteroplasmic (A) and homoplasmic (B) nucleotide mutational spectra in matched 50 biopsy-
whole blood pairs. C. Left, the difference in the percentage shift of HL between biopsy and the matched whole 
blood samples (HL Biopsy − HL whole blood) is ordered by the degree of shift. Right, the distribution of the 
percentage shift difference of HL between biopsy and the matched whole blood sample. D. dN/dS for all types of 
muatations. E. The number of heteroplasmies showing an increased or decreased HL in each mtDNA region in 
biopsy-whole blood pairs. 
 
After analyses of mutation identified by NGS in two groups, we shortlisted two 
candidate mutations for ddPCR validation. The HL of the mtDNA mutations – 
mt.1888G>A and mt.16093T>C were quantified on 663 plasma samples collected 
before the clinical diagnosis of breast cancer. As shown in Figure 17, we 
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dichotomized the mutations as wild-type (HL < 10%) and mutated (HL ≥ 10%) 
based on the natural cut-off.  
 

 
Figure 17. The HL distribution of mt.1888G>A and mt.16093T>C mutation in baseline plasma 
samples. 
 
To investigate the association between the mutations and breast cancer risk, we 
conducted logistic regression analyses. The results showed that the presence of 
mt.16093T>C was significantly associated with an increased risk of breast cancer, 
suggesting that this mutation could potentially be used for earlier detection of breast 
cancer (Table 4). 

 
Table 4. Odd ratios and 95% confidence intervals of cancer incidence associated with mtDNA 
mutations. 

 
a Adjusted for age, BMI 
b Adjusted for age, BMI, education level, smoking habits, alcohol consumption 
c Adjusted for age, BMI, education level, smoking habits, alcohol consumption, activity at work, activity at home 
d Adjusted for age, BMI, education level, smoking habits, alcohol consumption, activity at work, activity at home, 
diabetes, hypertension, family history of cancer 

 
The clinical methods used today will not detect breast cancer tumors before they are 
visible on currently used imaging methods, however, cancer-associated molecular 
changes appear earlier prior to clinical diagnosis 153. Cancer-related information is 
shed into the bloodstream during tumorigenesis, which potentially can be detected 
earlier for improving breast cancer diagnostics and patient outcomes. However, 
detection of early breast cancer at the molecular stage is challenging due to low 
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circulating copies of nuclear DNA in the blood 154. MtDNA exists two to four orders 
of magnitude more copies per cell, resulting in higher abundance in the circulation 
and hence providing a better opportunity for earlier cancer detection 155,156. During 
the preparation of this study, another mtDNA sequencing study was published 
comparing breast cancer biopsies and matched peripheral blood (collected before 
mastectomy) in a Mexican population, which showed that the mutation identified in 
the biopsies could be detected in the blood 157. However, unlike the published study, 
our study aimed to detect and identify cancer-associated mtDNA mutations earlier 
than the clinical diagnosis. Thus, we included the breast biopsies, matched whole 
blood and plasma samples (baseline cancer-free) from the same individuals. The 
mtDNA mutations presented in the whole blood samples worked as a reference to 
rule out germline or haplogroup-associated mutations and identify the potential 
cancer-associated mutations. The plasma samples were used for validation of the 
shortlisted candidate mutations. This hypothesis-generating study demonstrated that 
mtDNA mutations detected in the plasma samples could potentially be used as early 
diagnostic biomarkers by first, comprehensively depicting the mtDNA mutation 
landscapes of baseline cancer-free whole blood samples and matched breast cancer 
biopsies, and then validating the identified candidate mutations in baseline plasma 
samples prior to breast cancer diagnosis.  
Somatic mtDNA mutations were predominantly found to be heteroplasmic and will 
cause disease when exceeded a certain threshold 68. In this study, we set up strict 
criteria for defining the mutations as heteroplasmic or homoplasmic and observed 
the positive evolutionary selection of both heteroplasmic and homoplasmic 
mutations with breast cancer development. Through comparing the mtDNA 
mutations of breast cancer biopsy with matched baseline whole blood samples from 
the same individual, the mutations were well-categorized according to the 
distribution into germline, lost and de novo mutations. The majority of de novo 
mutations with were under positive selection, especially in D-loop, suggested that 
mitochondrial transcription was potentially altered during breast cancer 
pathogenesis. Furthermore, a higher frequency of C to T transitions in mtDNA is a 
common evolutionary phenomenon. However, we observed substitution from C to 
other nucleotides besides T in our breast biopsies, which also suggests a potential 
association of the substitution with breast cancer. In this study, due to the limitations 
of obtaining matched whole blood samples for all biopsies included in this study, 
we only sequenced 50 whole blood samples and compared them with 86 cancer 
biopsies, preventing the identification of additional de novo mutations. Still, we 
could validate the identified mutations by ddPCR with unprecedented resolution 
than next-generation sequencing in the plasma samples of our breast cancer cohort. 
Even with a small sample size and limited statistical power to draw robust 
conclusions, we interpreted the findings of this study objectively and identified one 
heteroplasmic mutation – mt.16093T>C, the presence of which increases the risk of 
developing breast cancer and could be used as an early diagnostic biomarker.  
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Paper IV  
To investigate if the mitochondrial-related gene expression has prognostic value in 
early-stage breast cancer, the SCANB mRNA expression dataset (n = 6657) was 
employed and randomly divided into a training cohort (80%, n = 5326) and a testing 
cohort (20%, n = 1331), TCGA-BRCA (n = 1093) worked as a validation cohort. 
Lasso Cox regression was conducted to build a mitochondrial signature model to 
predict breast cancer survival.  
For this study, a 14 genes mitochondrial signature model was built and the risk score 
of each patient was calculated by the formula:  
Mitochondrial signature risk score = –0.01855457 × ABAT exp. – 0.10642093 × 
ABCA9 exp. + 0.00705353 × CLPB exp. + 0.04435106 × MRPS9 exp. + 0.01909035 
× MTCH1 exp. + 0.05581194 × MTHFD1L exp. – 0.01490574 × NAGS exp. + 
0.00607169 × NDUFB4 exp. – 0.11098209 × PABPC5 exp. – 0.11065619 × 
PLGRKT exp. – 0.00465041 × RBFA exp. + 0.038724433 × RTN4IP1 exp. – 
0.00433475 × SLC25A24 exp. + 0.00842707 × UQCRFS1 exp.  
According to the median value of the mitochondrial signature risk score, we could 
divide the patients in study cohorts into low and high-risk groups. Our mitochondrial 
signature model demonstrated that patients with high mitochondrial signature 
expression had shorter overall survival (Figure. 18A-D) in the SCANB training 
(HR: 2.41, 95% CI: 2.08, 2.80), SCANB testing (HR: 1.77, 95% CI: 1.33, 2.36), 
whole SCANB cohort (HR: 2.24, 95% CI: 1.96, 2.55) as well as TCGA-BRCA 
validation cohort (HR:1.49, 95% CI: 1.08, 2.06). The prognostic values of 
mitochondrial signature were measured by the area under the receiver operating 
characteristic (ROC) curve (AUC) at 1-, 3- and 5-year of overall survival in our 
study cohorts. It yielded AUC values of 0.74, 0.70, and 0.68 for the SCANB training 
cohort, 0.67, 0.68, and 0.61 for the SCANB testing cohort, 0.72, 0.69, and 0.66 for 
the whole SCANB cohort, and 0.66, 0.63, and 0.57 for the TCGA-BRCA validation 
cohort, respectively (Figure. 18E-H). 
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Figure 18. Evaluation of the predictive performance of the mitochondrial signature model. 
(A-D). Kaplan-Meier plots depict overall survival based on the expression of mitochondrial signature in breast 
cancer patients across the cohorts. (E-H). Time-dependent AUC of mitochondrial signature at 1-, 3-, and 5-year 
intervals across the cohorts.  
 
To improve the predictive performance, we further constructed a nomogram by 
incorporating the mitochondrial signature with clinical variables. Multivariable Cox 
and stepwise regression analyses were conducted to select the most effective 
combination of predictors to build the nomogram. The resultant nomogram model 
included age, N stage, T stage, PAM50 subtypes, treatment, and the mitochondrial 
signature with good agreements in predicting the 1-, 3-, and 5-year survival rates. 
(Figure. 19A-B). Compared to other predictors, the nomogram model performed the 
best followed by age and mitochondrial signature (Figure. 19C-D). The prognostic 
values of nomogram were also measured by ROC curve at 1-, 3- and 5-year of 
overall survival in SCANB and TCGA-BRCA cohort. It yielded AUC values of 
0.84, 0.79, and 0.79 for the whole SCANB cohort, and 0.92, 0.83, and 0.78 for the 
TCGA-BRCA validation cohort, respectively (Figure. 19E-F). The results 
demonstrated that the nomogram model exhibited high predictive accuracy in our 
study cohort. 
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Figure 19. Establishment and evaluation of a nomogram model for breast cancer overall survival 
prediction. 
A). Nomogram model constructed for overall survival prediction in breast cancer. pN: N stage, pT: T stage, 
riskScore: score calculated using mitochondrial signature formula (B). Calibration plot demonstrates the accuracy 
of the nomogram in the SCANB cohort. (C-D) Decision curve analysis (DCA) of nomogram performance for 3- 
(C), and 5-year (D) overall survival. (E-F). Time-dependent AUC analysis of nomogram model at 1-, 3-, and 5-
year intervals in SCANB cohorts (E) and TCGA-BRCA cohort (F). 
 
Early detection and accurate breast cancer diagnosis remain crucial for tailoring 
treatment decisions, identifying high-risk subgroups, monitoring long-term 
outcomes, and advancing research and patient care. Prognostic models have been 
developed but failed to be extensively applied widely due to the limited sample sizes 
and insufficient validation in external cohorts 158-165. As we mentioned in other 
studies, mitochondrial dysfunction plays a crucial role in cancer development, often 
linked to increased aggressiveness and metastasis. Most of the genes that regulate 
mitochondrial function are from the nuclear genome and imported into 
mitochondria, the alternations in these genes may contribute to cancer 
pathophysiology. However, there is limited knowledge currently about the role of 
these genes in the overall survival of early-stage breast cancer patients. This is the 
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first study specifically including all known mitochondrial-related genes to build a 
potential prognostic model for early-stage breast cancer patients. The 14 genes 
mitochondrial signature model was demonstrated to be an accurate predictor of 
breast cancer survival and when integrated with clinical variables offered a robust 
prediction of clinical prognosis.  
In this study, we built the model based on SCANB dataset, which is the largest early-
stage breast cancer mRNA sequencing cohort originating from Sweden, and TCGA-
BRCA as an external validation cohort. The large-scale dataset allowed for an 
unbiased analysis when employing Lasso Cox regression to automatically select 
relevant features and prevent the model from overfitting. However, compared to 
TCGA-BRCA, patients from SCANB benefitted from the free mammogram 
screening program and adjuvant target therapy, thus were diagnosed relatively 
earlier with better treatment, which influenced the survival rates and possibly 
reduced the prediction accuracy in the validation cohort. Thus, large and updated 
cohorts are needed as external validation for future perspectives. When it comes to 
building mRNA expression signature models using machine learning, many studies 
performed the feature selection based on the differential expression of the genes 
between two groups. In our study, we included all mitochondrial-related genes and 
assumed that genes differentially expressed compared to normal tissue have the 
potential to be prognostic biomarkers. The 14 genes we integrated into 
mitochondrial signature showed robust predictive value for breast cancer survival, 
however, the functions of each gene were not well-defined, suggesting that further 
studies are needed to investigate the mechanism behind these genes.  
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Conclusions and future perspectives  

Conclusion 
In conclusion, this thesis has effectively investigated the feasibility and efficacy of 
applying mitochondria and its related nuclear genes as potential diagnosis and 
prognosis biomarkers for cancer. Below is the specific conclusion for each study. 

Paper I 
  
The mitochondrial DNA copy number (mtDNA-CN), a proxy for mitochondrial 
dysfunction, quantified in the peripheral blood was associated with a higher risk of 
prevalent cancer in a cancer-specific manner. Moreover, the mtDNA-CN has the 
potential clinical applications as a prognostic biomarker for mortality of genital 
cancer.  

Paper II 
 
This data-driven Mendelian randomization study provided evidence for genetic 
determinants of mitochondrial dysfunction associated with the risk of cancer in a 
cancer-specific manner, underscoring the pivotal role of mitochondrial dysfunction 
in the pathogenesis of multiple cancer types. Most importantly, the identified 
putative causal genes can be used as potential predictive biomarkers as well as 
pharmacological targets for cancer prevention. 

Paper III 
We conducted a comprehensive characterization of the mtDNA mutation landscape 
in breast cancer biopsies and matched baseline whole blood samples, providing 
insights into the evolutionary positive selection of cancer-related heteroplasmic 
mtDNA mutations. Notably, the mitochondrial mutations identified in biopsies can 
be detected in matched plasma samples prior to cancer diagnosis, suggested that the 
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potential application of these mtDNA mutations as early diagnostic biomarkers for 
breast cancer.  

Paper IV 
We built a novel 14 genes mitochondrial signature model that could be an 
independent prognostic predictor for the survival outcomes of early-stage breast 
cancer. Moreover, we proposed that the nomogram model by integrating 
mitochondrial signature with clinical variables improved the predictive accuracy of 
overall early-stage breast cancer survival.  

Future perspectives  
The findings from this thesis have shed light on the important scientific and clinical 
relevance of mitochondria in cancer diagnosis and prognosis. The exploration of 
mitochondria and their related nuclear genes holds great promise for future cancer 
research and personalized medicine. Moving forward, there are several exciting 
perspectives to consider: 
 
1. Potential clinical applications of mtDNA-CN: The conclusions drawn from our 
and other studies show heterogeneity in the association of mtDNA-CN with cancer 
incidence and mortality. Further research could therefore focus on improving study 
design sophisticatedly, standardizing mtDNA-CN measurements and validating 
those conclusions in larger and diverse patient cohorts to enable the clinical 
application of mtDNA-CN for cancer diagnosis and risk stratification. 
 
2. Targeting mitochondrial dysfunction for cancer prevention: Mendelian 
randomization proved the causal effects of mitochondrial dysfunction on cancers. 
Future studies could investigate the mechanistic links among these causal genes, 
mitochondrial dysfunction and carcinogenesis, with a particular focus on the 
pharmacological manipulation of the identified causal genes for cancer prevention. 
 
3. Early diagnosis of breast cancer using mtDNA mutations: We showed that 
mtDNA mutations could potentially be early diagnostic biomarkers for breast 
cancer. Prospective studies could further validate these findings and include a larger 
sample size to identify and detect additional cancer-associated mtDNA mutations 
as non-invasive and cost-effective screening tools for early breast cancer detection. 
 
4. Mitochondrial signature for breast cancer prognosis: Our mitochondrial signature 
model holds great potential as an independent prognostic predictor for early-stage 
breast cancer outcome. Future validation using large external validation could 
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further refine the model, potentially leading to the implementation of this model into 
clinical practice to aid in patient risk stratification and personalized treatment 
decisions. The mechanistic function of the genes included in the model needs further 
investigation. 
 
Overall, the studies conducted in this thesis provide a basis for the future application 
of mitochondria and its related genes as tools for cancer diagnosis, prognosis, and 
treatment. The identified genes and mtDNA mutations offer exciting opportunities 
for future scientific research, clinical application and development of drugs for 
cancer prevention and treatment. Continued investigation of mitochondrial biology 
and genetics in cancer will undoubtedly contribute to the advancement in the fight 
against cancer. 
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Simple Summary: Individuals with abnormal alterations in mitochondrial DNA copy number
(mtDNA-CN) and telomere length are at higher risk of developing certain types of cancer. This report
suggests that mtDNA-CN and relative telomere length measured in peripheral blood have potential
clinical applications for risk prediction of different cancers and that mtDNA-CN could be used
as a prognostic biomarker in malignancy. This comprehensive work strengthens several previous
relevant findings in certain types of cancer and broadens our understanding of the link between
mtDNA-CN, telomere length and future risk of many cancer types. The translational implication
of our findings is that postmenopausal genital organ cancer patients with lower levels of baseline
mtDNA-CN or shorter telomere length can be identified for early adjustment of lifestyle and hormone
replacement therapy.

Abstract: Changes in mitochondrial DNA copy number (mtDNA-CN) and telomere length have,
separately, been proposed as risk factors for various cancer types. However, those results are
conflicting. Here, mtDNA-CN and relative telomere length were measured in 3225 middle-aged
women included in a large population-based prospective cohort. The baseline mtDNA-CN in
patients with prevalent breast cancer was significantly higher (12.39 copies/µL) than cancer-free
individuals. During an average of 15.2 years of follow-up, 520 patients were diagnosed with cancer.
Lower mtDNA-CN was associated with decreased risk of genital organ cancer (hazard ratio (HR),
0.84), and shorter telomere length was associated with increased risk of urinary system cancer (HR,
1.79). Furthermore, mtDNA-CN was inversely associated with all-cause (HR, 1.20) and cancer-specific
mortality (HR, 1.21) when considering all cancer types. Surprisingly, shorter telomere length was
associated with decreased risk of cancer-specific mortality when considering all cancer types (HR,
0.85). Finally, lower mtDNA-CN and shorter telomere length were associated with increased risk of
both all-cause and cancer-specific mortality in genital organ cancer patients. In this study population,
we found that mtDNA-CN and telomere length were significantly associated with prevalent and
incident cancer and cancer mortality. However, these associations were cancer type specific and need
further investigation.

Keywords: mitochondrial DNA copy number; relative telomere length; cancer types; prevalent
cancer; cancer risk; mortality
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1. Introduction

Cancer is expected to rank as the leading cause of death (age < 70) worldwide and is
the single most important public health problem that lacks a global solution [1]. Studies
from epidemiological profiles of cancer have shown that different exposures to risk factors,
lifestyles, economic settings and access to care or screening programs, for a person who
develops cancer, may vary heterogeneously [2–4]. Nevertheless, morbidity and mortality
caused by cancer in every world region pose a huge threat to global development and lay a
tremendous burden on our society.

The dysfunction of mitochondria is one of the hallmarks of cancer. Mitochondria
have their own genome (mtDNA, 16,596 base pair) and, according to the energy demands,
their copy numbers range from a few hundred to more than 10,000 in a cell type- and
origin-specific manner [5,6]. MtDNA is circular double-stranded DNA, located in the
mitochondrial inner membrane close to the site where excessive reactive oxygen species
(ROS) are routinely generated, and it is prone to be injured by oxidative attack [7–9].
The damaged mtDNA molecules are primarily resolved via robust base excision repair.
However, unlike nuclear DNA, mtDNA with double-strand breaks (DSBs) is degraded
rapidly instead of being repaired, leading to a significant decrease in mtDNA copy number
(mtDNA-CN) [10]. Non-cleaved mtDNA is subsequently replicated by a mitochondrial
replisome comprising DNA polymerase gamma (Pol γ), twinkle helicase and single-strand
binding protein SSBP1 as a feedback mechanism to compensate for the metabolic defects in
impaired mitochondria [11,12]. Thus, mtDNA-CN is a relative measurement that reflects
mitochondrial pathologies and it is prone to alteration under various energy requirements
and physiological and environmental conditions [13,14]. Nevertheless, erroneous replica-
tion and repair can contribute to accumulating mtDNA mutations, leading to mitochondrial
dysfunction and signaling to the nucleus [12,15]. As an indirect biomarker for mitochon-
drial function, mtDNA-CN has been widely associated with many diseases, including
cancer [16], aging [17–19], depression [20,21], cardiovascular disease [22,23], type 2 dia-
betes [24,25], liver disease [26,27], chronic kidney disease [28,29] and neurodegenerative
disease [30]. However, current studies on the mtDNA-CN in cancer have reported mixed
results; most were based on a case–control design and were inconsistent for various types
of cancers.

Telomeres are the nucleoprotein complexes crucial in preserving chromosomal sta-
bility and integrity; their length ranges from 5 to 15 kb in humans and varies among
tissues [31]. Telomerase is the enzyme responsible for maintaining telomere length and is
silenced in normal somatic cells. In the absence of maintenance mechanisms, telomeres
undergo shortening with cell division in most human tissues, reflecting organism aging at
the cellular level influenced by oxidative stress [32–35]. Short telomeres eventually trigger
cellular senescence and a DNA damage signal where cells will stay in a quiescent state
for years and secrete factors that influence aging-related diseases rather than undergo
apoptosis, which was suggested as a tumor suppressor mechanism for humans [36]. How-
ever, the abnormal or extreme shortening of telomere length may cause chromosomal
degradation and contribute to malignant cell transformation, which is associated with a
higher risk of multiple human diseases, including cancer [37,38]. Telomere shortening has
a dual role in carcinogenesis. It promotes the initiation of cancer by inducing chromosomal
instability, while telomere length maintenance characterized by telomerase expression
is required for cancer cell proliferation and tumor growth [39]. Similar to mtDNA-CN,
the reports on telomere length as a biomarker for cancer risk are contradictory.

MtDNA and telomere length are highly variable across cell types but maintained
within a constant range according to the specific tissue, therefore, mtDNA-CN and telom-
ere length measured in peripheral blood are considered a surrogate for the measurement
of personal health outcomes. Both mitochondria and telomeres serve as critical regulators
of the aging process, and their structures are easily damaged by ROS and systemic inflam-
mation; they also play important roles in tumorigenesis [40–42]. The conclusions drawn
from previous studies showed conflicting results on the associations between mtDNA-CN
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or telomere length and risk of cancers. Possible explanations could be sample collection,
sample selection, study design and measurement errors. Few prospective studies have
been performed on telomere length and cancer risk. However, to the best of our knowledge,
no prospective study has been conducted on mtDNA-CN and all cancer incidence. Further-
more, the most popular techniques for quantification of mtDNA-CN and telomere length
are PCR based, which in most cases provide relative measurements. Moreover, there is
no study available with a focus on population-based studies systematically analyzing
the association between mtDNA-CN, telomere length and the prevalence, incidence and
mortality of all cancer types. We aimed to comprehensively explore this possibility in a
large cohort of middle-aged Swedish women with precisely quantified mtDNA-CN and
telomere length from our well-optimized droplet digital (dd) PCR and quantitative real-
time (qRT) PCR methods, respectively. We hypothesized that mtDNA-CN and telomere
length are potential biomarkers for the identification of prevalent cancers as well as for the
prediction of incident cancers.

2. Materials and Methods
2.1. Study Population

The present study was conducted based on Women’s Health in Lund Area (WHILA),
a prospective population-based cohort that started in 1995. All women, aged 50–59 years
(born between 1935 and 1945) and living in Scania in southern Sweden, were invited to
participate in a health survey. From December 1995 to February 2000, a total of 6917 women
(out of 10,766, the total population of women in the five southern municipalities in 1995)
underwent a physical examination and answered a questionnaire. There was no financial
reimbursement for participation. After providing written consent, the participants were
given up to two hours to answer the questionnaire. The questionnaire that was distributed
to all participants has been described previously [43]. If they had any uncertainties,
they could ask an experienced research nurse for assistance. Participants were followed
from the day of screening until death, or if no event occurred, until 31 May 2015. However,
the blood samples for DNA extraction were collected midway through this study (from
October 1997) and therefore 3225 participants were included in the present study.

2.2. Outcome Measurement

Information about cancer incidence and mortality was obtained from the Swedish
Cancer Registry and Death Registry and information on prevalent cancer was obtained
from self-reported data from questionnaires. Among the participants included in the
study, 187 individuals were diagnosed with cancer at baseline (prevalent cancer) and 3038
individuals were cancer-free at baseline. We followed the cancer-free women from the day
of screening until (1) cancer diagnosis; (2) death; (3) ending date of this study (31 May
2015). Individuals’ diagnoses of cancer were then identified and followed until death from
any cause (overall mortality) and from cancer (cancer mortality) and/or till the end of the
study period, whichever came first.

The following cancer outcomes were classified according to the WHO’s International
Classification of Diseases (revision 10) as (a) breast cancer; (b) digestive system cancer (liver
cancer, pancreatic cancer, gastric cancer, small intestine cancer, rectum cancer, colon cancer
and oral cancer); (c) respiratory system cancer (lung cancer); (d) genital organ cancer
(ovary cancer, cervix cancer, uterus cancer and corpus cancer); (e) urinary system cancer
(kidney cancer and urethral cancer); (f) hematological cancer (myeloma, leukemia and
non-Hodgkin’s lymphoma); (g) nervous system cancer; (h) melanoma and other malignant
neoplasms of the skin; (i) endocrine gland cancer (thyroid cancer).

2.3. Extraction of DNA

Peripheral blood samples were collected in ethylenediaminetetraacetic acid (EDTA)
tubes. Total genomic DNA was extracted using a QiAamp96 DNA Blood (Qiagen, Inc.,
Hilden, Germany) from a 200 µL blood sample according to the manufacturer’s instructions.
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The concentrations and purities of isolated DNA samples were spectrometrically analyzed
and frozen at −20 ◦C for further usage.

2.4. Quantification of Relative Telomere Length

Genomic DNA extracted from blood was quantified by a Nanodrop (ND-2000, Thermo
Scientific, Waltham, MA, USA) and then normalized to 5 ng/uL in TE buffer that contained
Escherichia coli DNA. The DNA was heated at 95 ◦C for 30 min, then followed by 1 min on
ice, spun down briefly at 1000× g at 4 ◦C and kept at 4 ◦C. Telomere length was measured
by real-time PCR based on a previous report by Cawthon [44] and modified by our group.

The copy number of telomeric repeats was compared to a single copy gene (β-
hemoglobin, HBG) to normalize the quantity of the input DNA. The telomere to HBG
(T/S) ratio represents the average relative length of the telomeres. Detailed methods have
been described previously [45]. Briefly, 20 ng DNA from samples and 7 references (from
Jurkat cell line) were pooled in triplicate in 384-well plates, qPCR was performed separately
for telomeres and HBG and negative controls were included. As for the measurement
of telomere length, a standard curve from reference DNA was generated (Bio-Rad CFX
Manager software v. 2.0.) and used in each assay plate. Telomere and HBG concentrations
were calculated according to the standard curve. All standard curves for both telomere
and HBG had correlation coefficients of R2 > 0.99. The PCR efficiencies for each reaction
were higher than 93%. The inter- and intracoefficients of variation (CV) for the T/S ratios
were 6.2% and 3%, respectively.

2.5. Quantification of MtDNA Copy Number

Droplet digital PCR (ddPCR) was used to quantify the absolute copy number of
nuclear DNA (nDNA) and mtDNA. The mtDNA/nDNA content was assessed using spe-
cific primers designed to target the mitochondrial MT-ND1 (assay ID: dHsaCPE5029120)
gene and nuclear EIF2C1 (assay ID: dHsaCP1000002) gene. Probes targeting nDNA were
attached to a HEX fluorophore whereas mtDNA was attached to FAM and had an Iowa
Black® FQ quencher on all probes. All primer and probes were obtained from Bio-Rad
(Hercules, CA, USA). Quality control for every step of our well-optimized ddPCR method
was stringent, as described previously [46]. Briefly, 1ng DNA from samples, including
positive and negative controls, was separately pooled in a 20 uL multiplex reaction con-
taining primers (900 nM), probes (250 nM), ddPCR Supermix for probes (no UTP, 2X)
and 5U/reaction restriction enzyme (HindIII). The plate with reactions was sealed and
incubated at room temperature for 20 min to allow restriction enzyme digestion and then
loaded into the automated droplet generator to generate droplets, followed by end-point
PCR. The after-PCR plate was kept overnight at 4 ◦C to maximize the droplet recovery.
The plate was finally read on the droplet reader, and data were collected and analyzed
using QuantaSoft™ Software to calculate the numbers of positive and negative droplets in
each sample. The fraction of positive droplets was then fitted to a Poisson distribution to
determine the absolute copy number in units of copies/µL. The inter- and intra-CVs for
absolute quantification of mtDNA-CN were 4.2% and 3.1%, respectively.

2.6. Assessment of Covariates

We collected information on potential confounding factors at baseline through the
health survey, including age at screening, body mass index (BMI), education (1–9, 10–11,
≥12 years of schooling), alcohol habits (no consumption, <12 g/day, ≥12 g/day) and
smoking habits as non-smokers, past smokers (≥1 pack year, stopped smoking ≥1 month
prior to the study) and current smokers (≥1 pack year). Physical activity at home was
defined according to the questionnaire and the participants with a score of 1–3 were
categorized as low activity at home: 1 = hardly do anything at all, 2 = mostly sedentary,
3 = light physical exertion. High activity at home was categorized with a score of 4–6:
4 = strenuous exercise 1–2 h/week, 5 = strenuous exercise at least 3 h/week, 6 = hard regular
exercise. Physical activity at work was categorized as low, moderate and high. Information
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on comorbidity was collected from both baseline self-reported questionnaires and the
Swedish health registries concerning diabetes (including type 1 and type 2 diabetes as
yes/no), cardiovascular disease (CVD, including stroke, coronary heart disease, abdominal
aortic aneurysm as yes/no) and hypertension (yes/no).

2.7. Statistics

A Pearson chi-square test was used to compare categorical variables (education level,
smoking habits, alcohol consumption, activity at work, activity at home, diabetes, CVD,
hypertension) and continuous variables (age at screening, BMI) were compared using Stu-
dent’s t-tests. Linear regression analysis was performed to evaluate the association between
prevalent cancer (yes/no) and mtDNA-CN or telomere length at baseline. We further pro-
duced a Cox proportional hazards model to explore the association between mtDNA-CN,
telomere length and cancer incidence in 3038 cancer-free individuals. Subjects were di-
chotomized into high and low mtDNA or long and short telomere length groups according
to the median based on the distribution of mtDNA-CN or telomere length. The high
or long group served as the reference group in the analyses. Hazard ratios (HRs) and
95% confidence intervals (95% CIs) were calculated to evaluate the association between
mtDNA-CN, telomere length and cancer risk. We further examined the association between
mtDNA-CN, telomere length and all-cause mortality, as well as cancer-specific mortality in
520 cancer patients. Competing risk models were created while analyzing cancer-specific
mortality. Deaths from other causes were considered as competing risks. Kaplan–Meier
survival curves were calculated to evaluate the association between mtDNA-CN and
telomere length and cancer mortality. To control for potential confounders, the following
variables were included in the multivariate regression model: age, BMI, education level,
smoking habits, alcohol consumption, activity at work, activity at home, diabetes, CVD and
hypertension. All statistical analyses were carried out in SPSS software version 23 (IBM,
Armonk, NY, USA) and SAS version 9.4.

3. Results

Of the 3225 participants who had their blood samples collected at baseline and were
included in this study, 187 (5.8%) were reported as having prevalent cancer and 3038
women without cancer were followed for incident cancer. During an average 15.2 years of
follow-up, 520 of 3038 participants (17.1%) developed cancer and, among them, 138 died
during the follow-up (Figure 1).

3.1. Population Characteristic of Prevalent Cancer and No Cancer at Baseline

Table 1 shows the characteristics of the study population at baseline. Compared
to cancer-free individuals, cases were older and less likely to consume alcohol (p < 0.05).
Telomere length (mean ± SD) was normally distributed and was shorter in participants with
prevalent cancer. No significant differences were observed between cancer-free individuals
and prevalent cancer patients in terms of BMI, education level, smoking habits, activity
at work, activity at home, diabetes, CVD or hypertension. All of the variables referenced
above were considered as potential confounders and were adjusted in the subsequent
multivariable analyses.

3.2. Prevalent Cancer and MtDNA-CN/Telomere Length

We performed further crude and adjusted linear regression analysis to investigate
the association between prevalent cancer and mtDNA-CN or telomere length. The cancer
diagnoses were categorized into cancer types according to ICD codes to determine whether
the results applied to site-specific cancers. All cancers in this study were categorized across
the nine main cancer types in the following way: breast, digestive system, respiratory
system, genital organ, urinary system, hematological tumor, nervous system, skin and
endocrine gland cancer (Table S1).
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Our results show that prevalent breast cancer was significantly associated with higher
mtDNA-CN (adjusted β was 12.39; 95% CI = 4.15, 20.63; p = 0.003). An inverse association
between prevalent hematological cancer and mtDNA-CN was found, however, it did not
reach statistical significance (adjusted β was −25.21; 95% CI = −51.19, 0.77; p = 0.057)
(Table 2).

Furthermore, prevalent cancer was significantly associated with shorter telomere
length (crude β was −0.03; 95% CI = −0.05, −0.01; p = 0.027). However, this association
became non-significant after adjusting for potential confounders (adjusted β was −0.02;
95% CI = −0.04, 0; p = 0.059). Stratification of the data according to the cancer types
suggested that the associations between telomere length and breast and genital cancers
were stronger; however, the results did not reach statistical significance (Table 3).

Cancers 2021, 13, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 1. Flow chart of participants in this cohort study. 

3.1. Population Characteristic of Prevalent Cancer and no Cancer at Baseline 
Table 1 shows the characteristics of the study population at baseline. Compared to 

cancer-free individuals, cases were older and less likely to consume alcohol (p < 0.05). Te-
lomere length (mean±SD) was normally distributed and was shorter in participants with 
prevalent cancer. No significant differences were observed between cancer-free individu-
als and prevalent cancer patients in terms of BMI, education level, smoking habits, activity 
at work, activity at home, diabetes, CVD or hypertension. All of the variables referenced 
above were considered as potential confounders and were adjusted in the subsequent 
multivariable analyses. 

  

Source population (n = 6917)

Study population (n = 3225)

Exclusion: No blood sample for DNA or 
Poor quality of DNA (n = 3692)

Prevalent cancer patients (n = 187) Cancer-free individuals (n = 3038)

Cancer diagnosis
(n = 491)

Censor  
(n = 2397)

Cross-sectional design Cancer incidence

Follow up

Death
(n = 134)

Censor  
(n = 357)

Cancer mortality

Eligible samples for mtDNA-CN 
analysis (n = 2888)

Eligible samples for telomere 
length analysis (n = 3037)

Cancer diagnosis
(n = 520)

Censor  
(n = 2517)

Follow up

Death
(n = 138)

Censor  
(n = 382)

Figure 1. Flow chart of participants in this cohort study.



Cancers 2021, 13, 3842 7 of 18

Table 1. Baseline characteristics of mtDNA-CN and telomere length stratified by prevalent and no cancer.

Characteristics
Prevalent Cancer

(n = 187)
No Cancer
(n = 3038) p-Value a

Mean SD Mean SD

Age 57.6 2.8 57.1 2.9 0.027
BMI 25.7 4.3 25.7 4.1 0.848

mtDNA-CN 111.7 40.8 109.0 35.1 0.385
Telomere length 0.69 0.15 0.72 0.15 0.027

Number % Number %

Education level 0.755
0–9 112 57.1 1736 59.9

10–11 25 14.0 424 13.4
≥12 50 28.9 878 26.7

Smoking habit 0.585
Non-smokers 151 79.9 2422 80.7
Past smokers 6 1.8 55 2.7

Current smokers 31 18.5 561 16.6

Alcohol habit 0.048
No consumption 62 33.2 761 25.0

<12 g/day 105 56.1 1908 62.8
≥12 g/day 20 10.7 369 12.1

Activity at work 0.866
Low 51 27.3 866 28.5

Moderate 88 47.1 1441 47.4
High 48 25.7 731 24.1

Activity at home 0.174
Low 119 63.6 1780 58.6
High 68 36.4 1258 41.4

Comorbidity
Diabetes 34 18.2 416 13.7 0.086

CVD 39 20.9 547 18.0 0.327
Hypertension 79 42.2 1266 41.7 0.877

CVD indicates cardiovascular disease. a Student’s t-tests were performed for continuous variables. Chi-square
tests were performed for categorical variables.

Table 2. Linear regression models examining association between prevalent cancer and mtDNA-CN.

Characteristics No. of Cases
Crude Univariate Adjusted Univariate a

B (95% CI) p-Value β (95% CI) p-Value

Prevalent cancer 174 2.75 (−2.67, 8.18) 0.320 4.18 (−1.18, 9.55) 0.059
Breast cancer 71 10.70 (2.36, 19.03) 0.012 12.39 (4.15, 20.63) 0.003

Digestive system 11 −6.53 (−27.52, 14.46) 0.351 −6.54 (−27.27, 14.20) 0.537
Respiratory system 1 3.86 (−65.64, 73.36) 0.913 1.27 (−67.36, 69.90) 0.971

Genital organs 30 −3.48 (−16.23, 9.27) 0.593 −0.48 (−13.09, 12.13) 0.941
Urinary system 5 −24.98 (−56.07, 6.11) 0.115 −20.77 (−51.47, 9.94) 0.185

Hematological cancer 7 −25.23 (−51.51, 1.05) 0.060 −25.21 (−51.19, 0.77) 0.057
Nervous system 5 −10.76 (−41.86, 20.34) 0.498 −8.80 (−39.53, 21.93) 0.575

Skin 17 11.27 (−5.62, 28.17) 0.191 9.51 (−7.19, 26.21) 0.264
Endocrine glands 17 −2.57 (−19.47, 14.47) 0.766 −0.88 (−17.58, 15.84) 0.918

a Adjusted for age, body mass index (BMI), education level, smoking habits, alcohol consumption, activity at work, activity at home,
diabetes, CVD, hypertension.
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Table 3. Linear regression models examining association between prevalent cancer and telomere length.

Characteristics No. of Cases
Crude Univariate Adjusted Univariate a

β (95% CI) p-Value β (95% CI) p-Value

Prevalent cancer 187 −0.03 (−0.05, −0.01) 0.027 −0.02 (−0.04, 0) 0.059
Breast cancer 77 −0.03 (0.06, 0.01) 0.098 −0.03 (−0.06, 0.01) 0.143

Digestive system 11 −0.02 (−0.11, 0.07) 0.697 −0.02 (−0.11, 0.07) 0.683
Respiratory system 1 −0.08 (−0.38, 0.22) 0.592 −0.08 (−0.38, 0.22) 0.597

Genital organs 35 −0.05 (−0.10, 0) 0.069 −0.04 (−0.09, 0.01) 0.119
Urinary system 5 −0.05 (−0.18, 0.09) 0.472 −0.03 (−0.17, 0.10) 0.635

Hematological cancer 7 0.08 (−0.04, 0.19) 0.175 0.08 (−0.04, 0.19) 0.191
Nervous system 5 −0.08 (−0.21, 0.05) 0.219 −0.08 (−0.21, 0.06) 0.256

Skin 18 −0.02 (−0.09, 0.06) 0.687 −0.02 (−0.09, 0.05) 0.628
Endocrine glands 17 −0.01 (−0.09, 0.06) 0.704 −0.01 (−0.08, 0.07) 0.834

a Adjusted for age, BMI, education level, smoking habits, alcohol consumption, activity at work, activity at home, diabetes, CVD, hypertension.

3.3. Cancer Incidences and MtDNA-CN/Telomere Length

Baseline characteristics of participants with no cancer at baseline are shown in Table
S2. MtDNA-CN and telomere length were normally distributed. A significant decrease
in mtDNA-CN and telomere length was seen with age (p < 0.001, Figures S1 and S2).
For mtDNA-CN, further associations were observed for the following variables: education
level, smoking habits, alcohol habits, activity at work, diabetes, CVD. Baseline telomere
length was shorter in participants with higher BMI and less physical activity (Table S2).

During an average of 15.2 years of follow-up, we identified 520 patients with a cancer
diagnosis. To determine if the level of mtDNA-CN or telomere length was associated with
cancer risk, single-factor Cox regression analyses were conducted (Table 4). Participants
with a lower level of mtDNA-CN at baseline had a lower risk of having genital organ
cancer during follow-up, and the hazard ratio (HR) per one standard deviation (SD)
decrease in mtDNA-CN for incident genital organ cancer was 0.84 (95% CI = 0.72, 0.98).
Individuals with lower mtDNA-CN had increased risks of developing urinary system
cancer (adjusted HR 8.2, 95% CI, 1.06–63.2) and hematological cancer (adjusted HR 1.97,
95% CI, 1.02–3.81). No other cancer type was significantly associated with mtDNA-CN.
For a 1 SD decrease in the telomere length, the risk for incident urinary system cancer
increased 1.79 times (adjusted HR 1.79, 95% CI = 1.05, 3.07). The results showed a similar
trend when dichotomizing the mtDNA-CN (low, ≤111 copies/µL; high, >111 copies/µL)
and telomere length (short, ≤0.721965; long, >0.721965) according to the median into two
groups. Furthermore, the interactions for mtDNA-CN and telomere length for urinary
system cancer and hematological cancer were statistically significant.

3.4. Mortality and MtDNA-CN/Telomere Length

During the follow-up of 520 cancer patients, a total of 138 participants died (all-cause mor-
tality), and we also investigated the association between cancer mortality and mtDNA-CN or
telomere length. The Kaplan–Meier plots are presented in Supplementary Figures S3 and S4.

We found that lower mtDNA-CN at baseline was associated with increased all-cause
mortality (multivariable HR per 1 SD decrease, 1.20; 95% CI = 1.01, 1.42) as well as cancer-
specific mortality when considering all cancer types (multivariable HR per 1 SD decrease,
1.21; 95% CI = 1.01, 1.45). Stratification of data, according to cancer type, showed an
association between mtDNA-CN and all-cause mortality and cancer-specific mortality in
genital cancer patients. The risk for all-cause mortality increased 2.15 times (adjusted HR
2.15, 95% CI = 1.04, 4.44) and cancer-specific mortality increased 2.42 times (adjusted HR
2.42, 95% CI = 1.03, 5.70) for a 1 SD decrease in mtDNA-CN after adjusting for potential
confounders. We also dichotomized mtDNA-CN levels according to the median and
our results showed that compared with participants in the higher mtDNA-CN group,
the multivariable HR for mortality from all causes in genital cancer patients was 8.06 (95%
CI = 1.75, 37.2) and mortality from specific genital cancer was 5.59 (95% CI = 1.61, 19.4) in
the lower level mtDNA-CN group (Table 5).
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The HR per 1 SD decrease in telomere length for cancer-specific mortality was 0.85
(95% CI, 0.21–1.00, multivariable model) when considering all cancer types. Similar to
mtDNA-CN, shorter telomere length at baseline was associated with increased risk of
all-cause mortality (adjusted HR per 1 SD decrease was 2.23; 95% CI = 1.00, 4.52) and
cancer-specific mortality (adjusted HR per 1 SD decrease was 1.98; 95% CI = 1.10, 3.53) in
genital cancer patients. Of note, both a lower level of mtDNA-CN and shorter telomere
length were preferentially associated with increased mortality in patients with genital
cancer such as ovary, cervix, uterus and corpus cancer.

4. Discussion

To the best of our knowledge, this prospective cohort study is the first population-
based study to comprehensively explore the association between mtDNA-CN and telomere
length and cancer prevalence and incidence, as well as cancer mortality, among middle-
aged women. Our results show that both mtDNA-CN and telomere length are associated
with the prevalence as well as with future risk of cancer but in a cancer-specific manner.
Our results also show that mtDNA-CN was inversely associated with all-cause mortality
and cancer-specific mortality when considering all cancer types. Finally, shorter telomere
length was associated with a lower risk of cancer-specific mortality in all cancer types and
breast cancer. However, in genital cancer, lower mtDNA-CN and shorter telomere length
were associated with increased risk of all-cause mortality and cancer-specific mortality.

4.1. Comparison with Previous Studies
4.1.1. MtDNA-CN, Relative Telomere Length and Prevalent Cancer

Although we found that there was no significant association between mtDNA-CN
and overall prevalent cancer, we demonstrated that patients with prevalent breast cancer
had higher mtDNA-CN compared with cancer-free individuals. Consistent with our
result, a meta-analysis including 21 prospective studies and 17 retrospective case–control
studies also suggested no significant association between mtDNA-CN and overall prevalent
cancer [47]. Together, these results suggest that the association between higher mtDNA-CN
and prevalent cancer may be study population and cancer type specific and this could be
one of the reasons for the conflicting results published to date.

We found that prevalent cancer was associated with shorter telomere length, but this
association decreased after adjusting for potential confounders. In agreement with our
result, a meta-analysis of 46 retrospective observational studies also demonstrated a bor-
derline significant relationship between telomere length and overall prevalent cancer [48].

4.1.2. Baseline Levels of MtDNA-CN, Relative Telomere Length and Cancer Incidence

Our results demonstrated that a lower level of baseline mtDNA-CN was associated
with a lower future risk of genital organ cancer, urinary system cancer and hematological
cancer. Thus far, few prospective studies have been performed to investigate the association
between baseline mtDNA-CN and future cancer risk. Consistent with our results, a nested
case–control study observed a positive association between mtDNA-CN and risk in renal
cells [49]. Furthermore, two prospective studies also supported the hypothesis that higher
mtDNA-CN was associated with increased risk of chronic lymphocytic leukemia/small
lymphocytic lymphoma [50] and non-Hodgkin’s lymphoma [51].

We observed that women with shorter telomere length had a higher risk of urinary
system cancer. However, the result from another prospective study did not support a
significant association between leukocyte telomere length and future risk of renal cell
carcinoma [52].

4.1.3. Baseline MtDNA-CN, Relative Telomere Length and Mortality in Cancer Patients

Our results show that lower baseline mtDNA-CN was associated with increased all-
cause mortality as well as cancer-specific mortality in all cancer types, which is consistent
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with the result of the previous meta-analysis [53]. When categorized according to cancer
type, lower baseline mtDNA-CN was associated with genital cancer mortality.

We observed heterogeneous associations between telomere length and mortality in
different cancer types. Shorter baseline telomere length was associated with increased all-
cause mortality as well as cancer-specific mortality in genital organ cancer, but decreased
cancer-specific mortality in breast cancer. These inconsistent results across cancer types
may reflect different carcinogenic mechanisms conferred by specific telomeres in specific
cancer types. A previous systematic review suggested that shorter telomere length was
associated with poorer outcomes, which supported our result [54]. Shanta et al. reported a
significant association between shorter telomere length and poorer overall survival and
progression-free survival in patients with ovary cancer and cervical cancer [55]. However,
another study from Kotsopoulos et al. did not support a significant relationship in ovary
cancer patients [56].

Smoking is known to be significantly associated with the risk of several cancer types
such as cancer in the respiratory system, digestive system and urinary system [57]. Smoking
was also inversely associated with both mtDNA-CN and telomere length [9,58]. We further
investigated the association between cancer incidence and/or mortality and mtDNA-CN
and/or telomere length stratified by smoking status. Our result showed that the risk of
all-cause mortality increased 2.63 times (95% CI = 1.19, 5.83) and cancer-specific mortality
2.59 times (95% CI = 1.17, 5.42) for current or past smokers with low mtDNA-CN levels
(Table S3).

4.2. Potential Biological Mechanisms

Mitochondria are essential organelles that generate energy in the form of ATP through
respiration and oxidative phosphorylation (OXPHOS), produce ROS and initiate and
execute apoptosis. In cancers, the malfunctioning mitochondria shift metabolism from
OXPHOS to aerobic glycolysis, which has been suggested as a hallmark of carcinogen-
esis [59]. Mitochondrial dysfunction links to a decrease in apoptosis, an elevated level
of ROS and the activation of the hypoxia-like pathway, which also affects nuclear gene
expression and methylation [60,61]. MtDNA-CN, as a proxy for mitochondria function,
has been shown to differ between cancer tissues and corresponding normal tissues for a
number of cancer types, and its alterations in cancer appear to be tissue and tumor stage
specific [62]. In addition, average mtDNA-CN levels in blood decrease after the age of 50
in healthy people [63]. However, little is known about the mechanisms that lead to the
alteration in mtDNA-CN and the factors involved in the tissue-specific changes in cancers.
Extensive genetic studies offer evidence that polymorphic mutations are significantly asso-
ciated with mtDNA-CN levels and they seem to be context specific [64–66]. In addition to
genetic factors, a few studies also showed that different exposures to various chemicals,
risk factors, lifestyles, economic settings and health care systems significantly influence
mtDNA-CN [67–70]. Thus, the changes in mtDNA-CN might directly depend on the type
of mutations in nuclear DNA or mtDNA and/or be an adaptive response towards the
effect of the mutations in order to gain a growth advantage for certain types of tumors [71].

Telomeres are specialized structures that protect the ends of chromosomes from fusion
and DNA damage. Telomere length—a complex hereditary trait—seems to be a mitotic
clock of the lifespan of the cells; its maintenance has been widely studied but is not
well understood [72]. The telomerase enzyme plays a dominant role in maintaining and
regulating telomere length, and is upregulated in tumors compared with normal tissue
counterparts in over 90% of cancers. A subset of tumors employ a telomerase-independent,
homologous recombination-based mechanism called alternative lengthening of telomeres
(ALT) to elongate telomere length [73]. In cancers, a paradox about telomere length
exists; individuals with long telomeres have a higher risk for the majority of cancers while
cancerous tissues have short telomeres. Given that aging is the major risk factor for cancers,
telomeres in somatic cells are typically shorter in older populations [74]. Short telomere
length combined with other oncogenic changes might impair immune surveillance and lead



Cancers 2021, 13, 3842 14 of 18

to carcinogenesis [75]. Tumor cells that undergo oncogenic changes continue to divide and
bypass the senescence, and this stage is accomplished by either upregulation or reactivation
of telomerase expression, or by acquiring rarer ALT mechanisms to maintain these very
short telomeres to achieve cell immortality [72]. GWASs and other studies conducted on
different populations reported the identification of 18 multiple SNPs and rare variants
that were associated with telomere length [76,77]. Some studies have also shown that
carcinogen exposure, oxidative stress, inflammation, lifestyle and physiological stress were
associated with telomere dynamics [76].

Mitochondrial DNA and telomeres have been implicated in the aging process for a long
time. Growing evidence shows that telomere attrition regulates mitochondrial biogenesis
and function through the PARP1-NAD+-SIRT1, ATM/R-P53-PGC1α/β and ATM-AKT-
mTOR-PGC1β pathways, eventually resulting in mitochondrial dysfunction and increased
ROS generation [78]. Beyond aging, studies have also revealed the importance of the
telomere–p53–mitochondrial axis for cancer [79]. Therefore, further research is necessary to
elucidate the biological mechanism underlying the telomere and mitochondrion connection.

4.3. Clinical Relevance

Our findings suggest that potential clinical applications of mtDNA-CN or telomere
length as tools for risk prediction of different cancers and mtDNA-CN might be used
as a prognostic biomarker of malignancy. For example, based on our results, for genital
organ cancers, which are hormone-associated cancers, postmenopause with a lower level
of baseline mtDNA-CN or shorter telomere length will be suggested as an indicator of poor
health status, and therefore we can identify individuals for adjustment of lifestyle or for
hormone replacement therapy. However, the conflicting associations between mtDNA-CN,
telomere length and risk of cancer suggest that the application of these biomarkers to the
general population may be premature at this stage.

4.4. Strengths and Limitations

As a whole, our study has important merits. This is a population-based study with
a cohort followed prospectively for up to 20 years with a large population size. Second,
we performed the analysis only on middle-aged women and therefore it is not confounded
by variations in age and sex. Third, methodological bias is one of the main factors for
conflicting results published to date, but here, we used our well-optimized methods for
measurement of mtDNA-CN and telomere length to make the findings more consistent
and reliable. Compared to real-time PCR, our well-established ddPCR method does not
require external standards, has greater precision and improved reproducibility to provide a
rigorous quantification of the absolute mtDNA-CN [46]. Fourth, cancer cases were defined
by a questionnaire and the Swedish Cancer Register, so we had complete information on
cancer diagnosis and death during long-term follow-up.

Nevertheless, there are a few limitations to our study. First, for participants with
prevalent cancer, we do not have information on whether they underwent any chemother-
apy or radiation therapy when the blood samples were drawn at baseline. Previous studies
indicate that cancer treatment alters mtDNA-CN and telomere length [80–82]; thus, we can-
not completely rule out the influence of treatment on the changes in mtDNA-CN and
telomere length. Second, although our sample size is sufficient for the overall analysis, it is
limited to specific cancer types with a small number of cases. The power was also limited
for the analysis of prevalent cancer.

5. Conclusions

To the best of our knowledge, this is the first molecular epidemiological study in which
we have simultaneously investigated the associations between mtDNA-CN, telomere
length and prevalence, incidence and mortality of all cancer types in a large population-
based prospective study. Our study strengthens several previous relevant findings and
extends our understanding of the link between mtDNA-CN, telomere length and future
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risk of several cancer types. Further research is required to validate our results before the
application of mtDNA-CN and telomere length as cancer biomarkers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13153842/s1, Table S1: Spectrum of cancers in the WHILA study (1995–2015). Table S2:
Baseline characteristics of cancer incidence. Table S3: Hazard ratios and 95% confidence intervals of
cancer incidence and mortality associated with mtDNA-CN and relative telomere length stratified by
smoking status, Figure S1: The coefficient (r) correlation between mtDNA-CN and age was −0.126
(p < 0.001), Figure S2: The coefficient (r) correlation between relative telomere length and age was
−0.139 (p < 0.001), Figure S3: Kaplan-Meier plot for cancer mortality by mtDNA-CN categorized into
two groups according to the median, Figure S4: Kaplan-Meier plot for cancer mortality by relative
telomere length categorized into two groups according to the median.
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Summary
Background Mitochondrial dysfunction is a hallmark of cancer. However, it is unclear whether it is a cause of cancer.
This two-sample Mendelian randomization (MR) analyses, uses genetic instruments to proxy the exposure of
mitochondrial dysfunction and cancer summary statistics as outcomes, allowing for causal inferences.

Methods Summary statistics from 18 common cancers (2107–491,974 participants), gene expression, DNA methyl-
ation and protein expression quantitative trait loci (eQTL, mQTL and pQTL, respectively, 1000–31,684 participants)
on individuals of European ancestry, were included. Genetic variants located within or close to the 1136
mitochondrial-related genes (in cis) and robustly associated with the mitochondrial molecular alterations were used as
instrumental variables, and their causal associations with cancers were examined using summary-data-based MR
(SMR) analyses. An additional five MR methods were used as sensitivity analyses to confirm the casual
associations. A Bayesian test for colocalization between mitochondrial molecular QTLs and cancer risk loci was
performed to provide insights into the potential regulatory mechanisms of risk variants on cancers.

Findings We identified potential causal relationships between mitochondrial-related genes and breast, prostate,
gastric, lung cancer and melanoma by primary SMR analyses. The sensitivity and the colocalization analyses
further refined four genes that have causal effects on three types of cancer. We found strong evidence of positive
association of FDPS expression level with breast cancer risk (OR per SD, 0.66; 95% CI, 0.49–0.83;
P = 9.77 × 10−7), NSUN4 expression level with both breast cancer risk (OR per SD, 1.05; 95% CI, 1.03–1.07;
P = 5.24 × 10−6) and prostate cancer risk (OR per SD, 1.06; 95% CI, 1.03–1.09; P = 1.01 × 10−5), NSUN4
methylation level with both breast and prostate cancer risk, and VARS2 methylation level with lung cancer risk.

Interpretations This data-driven MR study demonstrated the causal role of mitochondrial dysfunction in multiple
cancers. Furthermore, this study identified candidate genes that can be the targets of potential pharmacological
agents for cancer prevention.
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Introduction
Mitochondria are the essential organelles that regulate
cellular energy production, metabolism, proliferation
and apoptosis. An altered mitochondrial function is a
well-known hallmark of cancer, which is commonly
characterized by abnormal mitochondrial morphology,
deficient mitochondrial copy numbers, aberrant ener-
getic metabolism, accumulation of reactive oxygen spe-
cies (ROS), imbalanced biogenesis and mitophagy.1 A
mild mitochondrial dysfunction may enhance the
amplification and invasion of cancer cells while a severe
level of dysfunction may cause cell death to inhibit
tumorigenesis. Thus, understanding the roles of mito-
chondrial dysfunction is essential for cancer research.
Mitochondrial dysfunction is a complex cellular process
that exhibits a spectrum of pathological conditions
although there is no specific biomarker/s to define
mitochondrial dysfunction.2,3 With the exception of the
37 critical bioenergetic genes encoded by the mito-
chondrion itself, the mitochondrial-related genome en-
compasses more than 1000 additional nuclear genes,
and the genetic predisposition in those genes will
potentially cause mitochondrial dysfunction.4 Many
experimental and epidemiological studies have attemp-
ted to infer the causal relationship between mitochon-
drial dysfunction and cancer by exploring the selective
mitochondrial DNA (mtDNA) and mitochondrial-
related nuclear DNA mutations that affect mitochon-
drial function and are associated with the risk of specific
cancer types.5,6 However, the results generated from

those studies are inconsistent and one of the reasons is
the methodologies used in these studies, which do not
consider the effect of confounders to differentiate be-
tween cause and consequence. Therefore, a compre-
hensive analysis of all genes related to mitochondrial
dysfunction in multiple cancer types by a robust method
is required to determine whether mitochondrial
dysfunction per se is a cause or consequence of cancer.

Mendelian randomization (MR) is a method that uses
genetic variants as instrumental variables (IVs) to explore
the potential causal association between lifetime exposure
and outcome. In MR, the use of the conceptional random
allocation of alleles avoids bias from unobserved con-
founders such as lifestyle and environmental factors and
the problem with reverse causality.7 The two-sample MR
allows for the assessment of the IVs-exposure association
and IVs-outcome association generated from different
populations.8 Genome-wide association studies (GWAS)
exploit the genetic associations with traits based on single
nucleotide polymorphisms (SNPs) and integration of the
GWAS data with gene expression and methylation
GWAS have allowed for the identification of expression
or methylation quantitative trait loci (eQTL or mQTL).9,10

A summary-data-based MR (SMR) has extended and
developed the conception of MR that can utilize the in-
dependent GWAS summary statistics data and QTL data
to prioritize potential causal genes from hits identified in
GWAS.9 By applying this method followed by a hetero-
geneity independent instruments (HEIDI) test, the po-
tential causal associations were distinguished from the
widespread linkage disequilibrium (LD) in the genome.

Research in context

Evidence before this study
Previous studies have shown associations between
dysfunctions in mitochondrial DNA (mtDNA), mtDNA copy
number or mitochondrial-related nuclear genes and different
cancer risks. However, these studies did not investigate causal
inferences between mitochondrial dysfunction and cancers.
We searched PubMed for studies in any language using the
search terms “mitochondrion OR mitochondria OR
mitochondrial dysfunction” AND “Mendelian randomization OR
Mendelian randomisation” AND “cancer OR cancers”. Of the
yielded 4 studies, three studies’ outcomes were COVID-19,
dementia and type 2 diabetes, respectively. The other study was
a meta-analysis study that presented heterogeneous estimates
for the effect of mtDNA copy numbers on different cancer risks
and suggested applying Mendelian randomization for unraveling
the casual correlation of mtDNA copy number with cancer risk.

Added value of this study
This data-driven study fills the gap by using Mendelian
randomization to examine the potential causal relationship
between mitochondrial dysfunction characterized by genetic
predisposition in all mitochondrial-related genes and

common cancer risks. Our findings provide evidence for the
potential causal effect of mitochondrial dysfunction on breast,
prostate and lung cancer, after sensitivity and colocalization
analyses. In addition, we identified a shared putative causal
gene, NSUN4, for both breast and prostate cancer. All
associations underscore the importance of mitochondrial
dysfunction in the pathogenesis of multiple cancer types.

Implications of all the available evidence
Our data-driven analyses support the increasing values in the
application of publicly accessible datasets to inform public
health. To date, our European population-based large-scale
study and the available evidence, indicate that individuals
with mitochondrial dysfunction have a higher risk of a certain
type of cancer, and point to the necessity of objective
measurement of mitochondrial function in epidemiologic
studies. For the identified putative causal genes, it is feasible
to be added to the genetic screening project for better cancer
prevention. True causal effects of mitochondrial dysfunction
on cancers might be more complex and need larger genetic
datasets and sophisticated experimental studies to further
confirm.
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To our knowledge, there has been no MR study
investigating the potential causal relationship between
mitochondrial dysfunction and the risk of common
types of cancer. Therefore, in this study, we aimed to
investigate the causal relationship between mitochon-
drial dysfunction characterized by genetic predisposi-
tion in mitochondrial-related genes and multiple cancer
types by the comprehensive two-sample MR analysis.

Methods
This study was conducted following the reporting
guideline of the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE,
Supplementary STROBE-MR checklist table).11

Study design
Fig. 1 summarizes the design of the present study and
the workflow of the selection of genetic variants and
analytical methods. To determine the mitochondrial
dysfunction characterized by the genetic predisposition
in the mitochondrial-related genome constituting from
both mitochondrion and nuclear, we extracted the in-
ventory of 1136 known mitochondrial-related genes
from the human MitoCarta3.0 database.4

To generate eQTL instruments for mitochondrial
genes, genetic variants located within 1000 kb on either
side of the coding sequence (in cis) that are robustly
associated with gene expression were extracted using
eQTLs summary statistics obtained from the eQTLGen
Consortium (https://www.eqtlgen.org/cis-eqtls.html).
The eQTLGen Consortium contains information on
10,317 trait-associated single nucleotide poly-
morphisms (SNPs) from 31,684 individuals.12 Howev-
er, the eQTLGen did not include variants associated
with the expression level of genes located on the X and
Y chromosomes and mtDNA. From cis-eQTL, 662,968
SNPs associated with the expression of 1013
mitochondrial-related transcripts were selected. MR
cis-mQTL instruments for genetic variants robustly
associated with mitochondrial gene methylation were
extracted using summary data from a meta-analysis of
two cohorts (n = 1980).10 In total, 931,304 SNPs were
selected corresponding to 2550 mitochondrial-related
DNA methylation CpG sites. MR cis-pQTL in-
struments for genetic variants associated with the
expression of mitochondrial-related proteins were
selected from five proteome datasets,13–17 and 23 SNPs
that were robustly associated with 23 mitochondrial-
related protein expressions were selected. All SNPs
included in the initial analysis had at least a suggestive
Psnp-mitodys <5 × 10−8.

GWAS summary statistics for cancer outcomes were
obtained from publicly available databases. A total of 18
types of cancers were included. The details of all QTL
and GWAS datasets for this study are presented in
Supplementary Table S1 and Supplementary methods.

Statistical analysis
The main analyses involved three stages: primary SMR
analyses, sensitivity analyses and colocalization
analyses.

Mendelian randomization requires meeting three
core assumptions (Supplementary methods). As an
extension of the MR concept, SMR was developed to
estimate the pleiotropic association between genetically
determined traits (e.g., gene expression, DNA methyl-
ation, or protein abundance as exposure) and complex
traits of interest (e.g., disease phenotype as outcome).9

To meet MR assumptions in our study, the causal as-
sociation was calculated as:

βmitodys−cancer = βSNP−cancer / βSNP−mitodys.

βmitodys-cancer is calculated as the estimated effect size
of mitochondrial dysfunction on cancer, where βSNP-
mitodys is the estimated effect size of SNP on mito-
chondrial dysfunction (a genetic variant—exposure trait
association) and βSNP-cancer is the estimated effect size of
SNP on cancer (the same genetic variant—outcome trait
association).

Here, we performed SMR using the Linux version
1.0.3 of SMR software in the command line using
default options (https://yanglab.westlake.edu.cn/
software/smr/#Overview). Odds ratio (OR) estimates
of mitochondrial dysfunction on the risk of cancer were
obtained as follows: ORmitodys-cancer = exp (βmitodys-cancer),
where OR is the odds ratio estimate per 1-ln increment
in mitochondrial genome levels and exp is the base of
the natural logarithm.

Sensitivity analyses were conducted after
completing the primary SMR analyses with 5 addi-
tional MR methods, including MR Egger, weighted
median, inverse variance weighting (IVW), simple
mode and weighted mode by using the TwoSam-
pleMR R package. Each of these methods calculates
the estimates of the causal effect based on slightly
different assumptions about the instrument validity
and therefore provide robust evidence of our findings
(Supplementary methods). All analyses in this part
were performed using R software (version 4.1.2, www.
r-project.org).

HEIDI test is one of the colocalization methods that
use external reference to estimate the LD. To refine the
results, we performed another Bayesian test for the
colocalization of two traits using the coloc R package
(https://chr1swallace.github.io/coloc/, version 5.1.0) to
estimate the posterior probability of shared variants.18

For each leading SNP in the investigated cancer
GWAS database, all SNPs within 100 kb up and down-
stream of the leading SNPs were retrieved for colocali-
zation analysis to analyze the posterior probability of H4
(PP.H4), and PP.H4 > 0.8 is the well-applied cut-off for
the evidence of colocalization of the GWAS and QTL
association (Supplementary methods).
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Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.

Ethics
All summarized statistics utilized in the MR analyses
were generated by previous studies, for which ethical
approval and individual consent were obtained for all
original studies.

Results
MR analysis of mitochondrial genome-wide
cis-eQTLs and cancer outcomes
After SMR testing, the associations of 662,968 SNPs
from blood representing mitochondrial-related gene

expression and cancer outcomes were obtained (Fig. 1).
To control the genome-wide type I error, we performed
multiple testing corrections, with the results showing
strong evidence of an association (PSMR<4.936 × 10−5

[Bonferroni correction, P < 0.05/1013]) followed by the
HEIDI test (PHEIDI>0.01) implemented in SMR soft-
ware to investigate if the association was due to a shared
causal variant and not pleiotropy. We thus identified 7
association signals across 7 unique genetic loci for
breast cancer, 4 association signals across 4 unique ge-
netic loci for prostate cancer and one association signal
for gastric cancer. We found no significant genetic
correlation for the other cancer types. Sensitivity anal-
ysis using additional MR methods relying on similar
assumptions was conducted and shown to support our
findings (Supplementary Table S2, Supplementary
Figure S1 and S2). We further performed colocaliza-
tion analysis to rule out confounding by LD; strong

Fig. 1: Flowchart of the analyses performed.
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evidence of colocalization between cancer GWAS and
eQTL exists if the posterior probability of shared causal
variant across gene expression and cancer (PP.H4) is
>0.80. The causal estimates are expressed as β co-
efficients, and the odds ratios (OR) for 1 standard de-
viation (SD) change in mitochondrial gene expression
level was calculated by the expectation of the β coeffi-
cient, as presented in Fig. 2 and Supplementary
Table S3.

For breast cancer, one SD decrease of FDPS
expression was associated with 34% lower risk (OR:
0.66, 95% CI: 0.49–0.83, PSMR = 9.77 × 10−7) while 1 SD
increase of NSUN4 expression was associated with 5%
higher risk (OR: 1.05, 95% CI: 1.03–1.07,
PSMR = 5.24 × 10−6). When sub-grouping breast cancer
according to the intrinsic molecular subtypes, the causal
associations showed a similar trend only with luminal
A-like breast cancer. Interestingly, we found a robust
causal association (OR per SD, 1.17; 95% CI: 1.12–1.23,
PSMR = 1.85 × 10−8) between MTX1 expression and
luminal A-like breast cancer, specifically. We also found
a strong causal association (OR per SD, 1.26; 95% CI:
1.15–1.37, PSMR = 2.94 × 10−5) between COX11 expres-
sion and luminal B-like/HER2-negative cancer
(Supplementary Table S4, Supplementary Fig. S3). For
prostate cancer, one SD increase of NSUN4 expression
was associated with 6% higher risk of cancer (OR: 1.06,
95% CI: 1.03–1.09, PSMR = 1.01 × 10−5).

Most importantly, our results show that the expres-
sion level of NSUN4 increased by rs41293273 is asso-
ciated with higher risk of both breast cancer and
prostate cancer.

MR analysis of mitochondrial genome-wide cis-
mQTLs and cancer outcomes
For the causal association between the DNAmethylation
of the mitochondrial-related genome and cancer out-
comes, Bonferroni correction (PSMR < 1.961 × 10−5) and
HEIDI test were performed. We identified a total of 15
association signals across 14 unique genetic loci for
breast cancer, 11 association signals across 10 unique
genetic loci for prostate cancer, one association signal
for gastric cancer, 4 association signals across 3 unique
genetic loci for lung cancer and 2 association signals
across one unique genetic locus for melanoma (Fig. 3
and Supplementary Table S5). The sensitivity analysis
supported the same associations (Supplementary
Table S6, Supplementary Fig. S4 and S5).

The colocalization analysis showed that different
genetic variants regulating NSUN4 had different effects
on methylation levels, hence the outcome. For example,
one SD decrease of NSUN4 methylation by rs6682266
was associated with 9% lower risk of breast cancer (OR:
0.91, 95% CI: 0.87–0.96, PSMR = 1.50 × 10−5), and
conversely, one SD increase of NSUN4 methylation by
rs6681857 was associated with 7% higher risk of breast
cancer (OR: 1.07, 95% CI: 1.04–1.10,
PSMR = 5.81 × 10−6). Here, in total, we found 6 unique
loci that regulated the methylation level of 7 different
CpG sites in NUSU4, and were positively associated
with the risk of breast cancer (Fig. 3). Analysis on breast
cancer molecular subtypes with NSUN4 methylation
showed a similar causal association but only for luminal
A-like breast cancer (Supplementary Table S7 and
Supplementary Fig. S6). Out of these 6 loci, two were

Fig. 2: Mendelian randomization results for the association between the expression of mitochondrial genes and cancer risk. aRepresents
the effect size (β) of a variant on mRNA expressions. β > 0 means positive association, and β < 0 means negative association. bOdd ratios were
calculated by the expectation of causal estimate (β coefficient). c‘Colocalization’ indicates PP.H4 between eQTLs and cancer outcomes. PP.H4 >
0.8 is the well-applied cut-off for the evidence of colocalization.
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also positively associated with risk of prostate cancer.
Furthermore, an increase of 1 SD of NUDT5 methyl-
ation was associated with 4% lower risk of prostate
cancer (OR: 0.96, 95% CI: 0.95–0.98, PSMR = 1.15 × 10−5)
(Fig. 3). For lung cancer, one SD increase of VARS2
methylation was associated with more than 20% higher
risk of cancer depending on different methylation CpG
sites (Fig. 3). We found no significant causal associa-
tions between mitochondrial genome methylation and
other cancer risks.

Furthermore, gene methylation is known to influ-
ence gene expression. Here, we also performed SMR
analysis on the causal association between
mitochondrial-related gene methylation and expression
by mapping the gene methylation to expression through
shared genetic variants. After multiple testing

corrections and the HEIDI test, we obtained the gene
list for the mitochondrial gene expression regulated by
DNA methylation CpG sites (Supplementary Table S8).
For the putative causal genes that we identified above,
SMR results showed that the methylation of NSUN4,
which was regulated by rs6682266, rs5013329,
rs56063031 and rs6681857, was associated with NSUN4
expression, and VARS2 methylation by rs2596495 was
also associated with VARS2 expression (Supplementary
Table S8).

MR analysis of mitochondrial genome-wide cis-
pQTLs and cancer outcomes
Only 23 proposed mitochondrial-related SNPs were
extracted from cis-pQTLs and no causal association was

Fig. 3: Mendelian randomization results for the association between mitochondrial gene methylations and cancer risk. aRepresents the
effect size (β) of a variant on DNA methylation. β > 0 means positive association, and β < 0 means negative association. bOdd ratios were
calculated by the expectation of causal estimate (β coefficient). c‘Colocalization’ indicates PP.H4 between mQTLs and cancer outcomes. PP.H4 >
0.8 is the well-applied cut-off for the evidence of colocalization.
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found based on our suggested threshold after the SMR
analyses. One possible explanation could be that the
pQTL datasets are not comprehensively developed, and
very few genetic variants that are robustly associated
with protein levels were identified.

Phenome-wide scan of identified genetic variants
To exclude possible pleiotropy of investigated cancers,
we performed phenome-wide scan analysis on the
identified variants, using both GWASATLAS19 and
PhenoScanner20 databases. The databases enable the
investigation of genetic variants across multiple disease
traits. The Manhattan plots were used to show
phenome-wide scan results of identified genetic variants
on different disease traits with any possible effect allele
obtained from GWASATLAS (Supplementary Fig. S8–
S10). The phenome-wide scan of all identified genetic
variants with disease traits from PhenoScanner was also
listed according to the following selection criteria: 1) the
SNPs shared the same effect allele with our results, 2)
the association reached GWAS significance
(P < 5 × 10−8) and 3) the absolute value of size effect (β)
>0.01 Supplementary Table S9). Interestingly, variants
related to the gene expression and DNA methylation of
NSUN4 that were causally associated with both breast
and prostate cancer were not found to be associated with
all available secondary traits (Supplementary Fig. S7 and
S8). This further suggests that the causal relationship
between NSUN4 and breast and prostate cancer identi-
fied in this study is robust. However, rs6677385 (FDPS
expression associated) was associated with secondary
traits such as metabolic-related blood urea nitrogen and
Crohn’s disease (Supplementary Fig. S9a). The
rs4750175 (NUDT5 methylation associated) was also
associated with endocrine-related traits (risk of type 2
diabetes, Supplementary Fig. S9b). Three SNPs associ-
ated with VARS2 methylation were further associated
with multiple traits such as metabolic, skeletal, respi-
ratory, psychiatric, immunological and endocrine-
related traits (Supplementary Fig. S10). The genetic
variants that are associated with the secondary traits may
potentially introduce horizontal pleiotropy, further in-
vestigations to rule out pleiotropy are needed.

Bi-directional MR analysis of mitochondrial
dysfunction and cancers
GWAS summary statistics were available only for
mtDNA copy number variation, which has been sug-
gested as a surrogate biomarker for mitochondrial
dysfunction. Currently, a GWAS dataset specifically
containing genetic variant association with mtDNA copy
number has been published.21 We used this dataset to
explore whether mitochondrial dysfunction is a conse-
quence of cancer and conducted bidirectional MR ana-
lyses on mtDNA copy number and cancers. Results

showed that the directions of causal association were
cancer type-specific; here mtDNA copy number varia-
tion has causal effects on cervical cancer, specific sub-
type of ovarian cancer (Supplementary Table S10), while
triple-negative breast cancer, head and neck cancer were
causally associated with mtDNA copy number variation
(Supplementary Table S11).

Discussion
In this study, we demonstrate that mitochondrial
dysfunction characterized by genetic predisposition has
causal effect on cancers, and identified important pu-
tative causal mitochondrial-related genes as follows: 1)
FDPS for breast cancer; 2) NUDT5 for prostate cancer;
3) VARS2 for lung cancer and 4) NSUN4 for both breast
and prostate cancers. Our results show that genetic de-
terminants of mitochondrial dysfunction were associ-
ated with the risk of cancer in a cancer type-specific
manner, which provides robust evidence for underlying
mechanisms linking the genetic loci, gene expression,
and methylation with multiple cancers.

The FDPS is a key enzyme that is involved in the
mevalonate pathway to catalyze the biosynthesis of
cholesterol and sterol, and to isoprenylate cellular me-
tabolites such as Ras, Rac, Rab and Rho for membrane
anchorage and cellular signaling.22 FDPS has been
investigated over decades for its physiological function
and was found to be associated with leukemia growth,23

the progression of prostate cancer,24 the poor breast
cancer prognosis,25 and directly involved in glioblastoma
drug resistance26 and pancreatic cancer radio-
resistance.27 However, its causal relationship with can-
cer is unclear. In this study, we show that gene
expression of FDPS has a causal relationship with breast
cancer. Studies have shown that knockdown FDPS
enhanced apoptosis and ectopic overexpression of FDPS
promoted cancer colony growth and proliferation by
affecting STAT3, AKT and ERK pathways.24 Prenylation
is important for exerting the activity of oncogenic pro-
teins, thus prenylation inhibitors have been widely
applied in clinical trials for cancer treatment.28 FDPS
was shown to be a key target of nitrogen-containing
bisphosphonates and it is already a clinical drug target
by Zoledronic acid.29 According to the DRUGBANK
database (https://go.drugbank.com/), more drugs have
been investigated such as Ibandronate, Minodronic acid
and Incadronic acid that target FDPS.

NSUN4 is an rRNA m5C methyltransferase that can
induce the methylation of the 12S rRNA of the small
ribosomal subunit joining in mitochondria and promote
rRNA rearrangements to form peptidyl transferase
center.30,31 A previous study showed that breast cancer
and prostate cancer shared a common risk locus
(rs5013329) and indicated that NSUN4 is the strongest
shared functional candidate at 1p34.32 However, our
results showed that rs5013329 related to NSUN4
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methylation was associated with decreased risk of breast
cancer only. Importantly, we identified additional 1 ge-
netic locus related to NSUN4 expression and 2 loci
related to NSUN4 methylation that were causally asso-
ciated with both breast and prostate cancer
(Supplementary Fig. S7). Furthermore, our phenome-
wide scan analysis showed that the causal relationship
between NSUN4 and both breast and prostate cancers
was not caused by horizontal pleiotropy. Together, these
results emphasize the potentially important role of
NSUN4 in carcinogenesis.

NUDT5 is differentially expressed in different types
of cancer and positively correlated with aggressive can-
cer disease phenotype, knockdown of which can sup-
press the proliferation of cancer cells without inducing
DNA oxidative lesion.33 In our study, we show that the
methylation level of NUDT5 has a strong causal effect
on prostate cancer. Those findings highlight that
NUDT5 may represent a promising drug target for
cancer prevention and treatment. More studies now
focus on the identification of NUDT5 inhibitors from
approved drugs and small molecules, and a potent
TH5427 was tested and shown to block hormone
signaling and disrupt the proliferation of breast cancer
cells.34

Several mutations in VARS2 have been associated
with mitochondrial diseases such as complex I defect,
early onset of mitochondrial encephalomyopathies and
encephalocardiomyopathies,35 and cancer risks
including breast cancer, colon and lung cancer.36–38

Here, we propose VARS2 as a causal gene only for
lung cancer. The mechanisms of VARS2 in lung cancer
carcinogenesis need further evaluation by experimental
studies.

The main strength of the present study is that we
performed a comprehensive MR analysis between
mitochondrial dysfunction, characterized by genetic
predisposition in all known mitochondrial-related
genes, and their causal relationship with cancers. The
inclusion of all genes related to mitochondria eliminates
the selection bias in previous studies and might be able
to address mitochondrial dysfunction directly. Secondly,
we have included a very large sample size and 18
different cancer outcomes from GWAS summarized
statistics, which allowed us to gain sufficient power to
elucidate causal relationships and make conclusive es-
timations for several cancer types. Thirdly, we used
SMR as the primary analysis and performed a sensitivity
analysis using 5 additional MR approaches and coloc-
alization analysis, which shows the robustness of our
findings. Finally, we only included samples of European
ancestry, thus, we minimized the biases caused by
different genetic backgrounds.

This study has several limitations as well. Although
we drew on the large available GWAS data sources, no
genetic variants were obtained that represent the mito-
chondrial protein expression and the available eQTL and

mQTL datasets did not have information on genetic
variants that were associated with gene expression or
methylation level in the X chromosome, Y chromosome
and mitochondrial genome; the mitochondrial genome-
wide associated genetic variants in this study mainly laid
on the mitochondrial-related nuclear genome rather
than the mitochondrial genome itself because a mito-
chondrial genome-specific QTL dataset has not yet been
developed. Moreover, GWAS dataset that directly re-
flected on mitochondrial dysfunction is not available,
hence we cannot assess the direction of causal rela-
tionship by using bi-directional MR based on current
software resources. In this study, we showed that causal
effects of mtDNA copy number variations and cancers
were bi-directional in a cancer-specific manner. How-
ever, GWAS summary statistics of mtDNA copy num-
ber variation are potentially underpowered to detect the
direction of causal association between mitochondrial
dysfunction and cancers. Furthermore, univariable MR
estimates the total effect of exposure on the outcome. As
an extension, multivariable MR simultaneously esti-
mates several potentially related exposures with a shared
set of SNPs on the outcome using GWAS summary
statistics, allowing for the assessment of the direct
causal effect of a single exposure on the outcome. In this
study, the exposure was mitochondrial dysfunction
characterized by predisposition in the mitochondrial-
related gene, which only can be retrieved from the
QTL datasets other than the GWAS dataset. Thus, we
are unable to perform multivariable MR to estimate the
direct causal effects of mitochondrial dysfunction on
cancers. Further studies should be conducted on the
question of whether mitochondrial dysfunction is
causally associated with cancer when GWAS or more
advanced methods are available.

This study leverages MR to examine the potential
causal relationship between mitochondrial dysfunc-
tion characterized by genetic predisposition in
mitochondrial-related genes and cancer, and demon-
strates the importance of mitochondrial dysfunction
in the pathogenesis of multiple cancer types. The
identified putative genes can function as potential
pharmacological targets for cancer treatment and
prevention, further research could explore details of
the underlying biological mechanisms.
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