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Abstract

This thesis explores the physics of nanostructures involving nanowires, quantum
dots, superconductors, and topological insulators. These systems serve as excel-
lent platforms for fundamental physics studies and quantum technology applic-
ations.

The introduction contains information on the band structures of crystalline ma-
terials and transport phenomena in quantum dots. It is followed by discussions
on nanostructures involving superconductors. One-dimensional topological su-
perconductors and Majorana bound states, as well as two-dimensional topolo-
gical insulators and relevant material systems, are also presented. The theoretical
tools used for modeling the various nanostructures are discussed.

The thesis includes six research articles. The first two articles theoretically
investigate the possibility of creating high-quality Majorana bound states in a
system with two quantum dots coupled via a third quantum dot that is proximit-
ized by a superconductor. The study not only confirms the possibility of creating
these states, but also offers a roadmap for their detection, quality assessment,
and the demonstration of their nonabelian properties. The third and fourth art-
icles experimentally and theoretically study a parallel-coupled double quantum
dot system epitaxially defined in an InAs nanowire. It was found that certain
orbital crossings lead to the formation of ring-like states associated with giant
g-factors. The same system was studied at higher magnetic fields. The main
finding was that, for an increasing magnetic flux through the structure, crossings
with ring-like states periodically turn to crossings without ring-like states and
vice versa, with a period equal to one flux quantum. The fifth article focused on
a similar double quantum dot system coupled to superconducting leads to form
a Josephson junction. We found that, control over the hybridization between the
quantum dot orbitals can induce a π−0 transition in the current-phase relation.
In the sixth article, a core/shell/shell InAs/GaSb nanowire was theoretically
studied. The study revealed that the structure exhibits a finite hybridization
gap and hosts highly-localized end states, which are only partially protected
against disorder.
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Popular science summary

This thesis focuses on the electronic properties of nanostructures, which are sys-
tems with dimensions ranging from around 1 to 1000 nanometers. Due to their
small sizes, classical physics fails to fully explain the unique properties exhibited
by these structures, which are more appropriately described in the framework
of quantum mechanics. The electronic states of a nanostructure – meaning, the
states of electrons within the structure – can be efficiently manipulated with
electric and magnetic fields. Furthermore, nanostructures can be precisely man-
ufactured atom by atom, which grants a high degree of control over their shapes
and properties. These inherent characteristics render nanostructures highly ap-
pealing for both fundamental physics studies and potential applications.

More complicated nanostructures can be built by combining nanostructures
which can be identified as “building blocks”. One example of such a building
block is a nanowire, a relatively long and thin piece of material in which elec-
trons are free to move along the long dimension but are confined along the other
two, significantly shorter dimensions. Another example is a quantum dot, a
piece of material so small that the electrons “feel” the confinement effects along
all directions. Electrons in quantum dots are not completely immobilized, but,
because of this confinement, they are only allowed to occupy a discrete set of
energy levels. This electronic structure is similar to the one of atoms, which is
why quantum dots are often referred to as “artificial atoms”. Another important
building block is a superconductor, a material that shows zero electrical resistiv-
ity; electrons in a superconductor are allowed to travel unhindered for arbitrarily
long distances and times. Some metals exhibit this behavior, undergoing a sud-
den transition into a superconducting state at low temperatures, where their
resistivity becomes exactly zero. Different combinations of nanowires, quantum
dots and superconductors offer countless platforms with peculiar and interesting
electronic states. These are some of the main building blocks whose combin-
ations lead to new physics phenomena and to pioneering applications in the
emerging field of quantum technology. Quantum technology encompasses a wide
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range of applications that leverage the unique properties of quantum systems.
An example is a quantum computer – a computer that operates with quantum
bits, called qubits. Quantum computers can perform certain tasks much faster
than classical computers. Another application is quantum cryptography, which
introduces heightened security measures in communication protocols, ensuring
enhanced protection for sensitive data.

A significant portion of our research efforts concentrates on the theoretical study
of a series of three quantum dots. The quantum dots are coupled, meaning that
electrons can “hop” from one quantum dot to another. The middle quantum dot
is additionally coupled to a superconductor, inheriting some of its properties.
We found that the system can be tuned so that exotic states emerge on the
outer quantum dots, the so-called Majorana bound states. In the context of
condensed matter physics, Majoranas can be viewed as “half-electrons” localized
in space (one on each of the outer quantum dots in our case) and can be combined
to make a de-localized electron with finite components in both outer quantum
dots. We quantify the quality of the Majoranas by calculating how well they
are localized in their respective quantum dots, and we propose experimental
protocols that could be used to unambiguously distinguish them from other
quantum states. Majoranas can, in principle, be used to create qubits and build
a quantum computer. It is, in fact, predicted that Majorana qubits are more
stable than the qubits of other quantum computing platforms. Additionally,
Majoranas are predicted to have properties which have not been exhibited by
any other quantum state before. For example, exchanging the positions of two
Majoranas two times, the system does not return to its original state as one
would expect.

In cooperation with an experimental group, we also studied a double quantum
dot embedded in a nanowire. Quantum dots in nanowires can be formed by
changing the material along the nanowire axis which results in the formation
of thin, disk-like segments. With precise control of the electronic states in the
quantum dots the system can be tuned to form quantum rings. This is advant-
ageous because electrons in quantum rings can be more efficiently manipulated
with small magnetic fields, which is often desirable as a large magnetic field des-
troys the superconducting properties. Introducing an additional outer shell in
the nanowire, almost perfect quantum rings are formed without the need to fine-
tune the system. A similar double quantum dot system was also placed between
two superconductors to form a Josephson junction. Josephson junctions consist
of two superconductors connected via a small, non-superconducting segment (in
our case a double quantum dot) and they are used in various applications in-
cluding sensitive devices that detect weak magnetic fields and superconducting
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quantum computers. We found that the direction of the electrical current in the
system (which is the opposite direction of electron hopping from one supercon-
ductor into the double quantum dot and into the other superconductor) can be
tuned by tuning the coupling between the two quantum dots.

We additionally theoretically studied a core-shell-shell nanowire, a cylindrical
nanowire whose core and two shells are built with different materials. One of
the shells contained mainly electrons and the other one holes, which are defined
as absences of electrons. We found that the electrons and holes from the two
shells mix, which leads to the formation of states with both electron and hole
components. We also found that the nanowire hosts electronic states localized
at its ends. This could be reminiscent of the Majorana bound states discussed
above, but there is in fact no relation between these two types of states.

The results of our work could facilitate demonstrating the exotic properties of
Majoranas in the near future and the studied nanowires and quantum dots could,
in the long run, constitute integral ingredients of exciting technological applica-
tions.
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Populärvetenskaplig
sammanfattning

Denna avhandling fokuserar på de elektroniska egenskaperna hos nanostruktu-
rer, vilka är system med dimensioner som sträcker sig från cirka 1 till 1000
nanometer. Eftersom de är så små misslyckas klassisk fysik med att fullständigt
förklara de unika egenskaperna som dessa strukturer uppvisar, vilka mer lämp-
ligen beskrivs med hjälp av kvantmekanik. Nanostrukturer ger fysiker möjlighet
att effektivt manipulera deras elektroniska tillstånd – det vill säga elektroner-
nas tillstånd inom systemet. Dessutom kan nanostrukturer exakt tillverkas atom
för atom, vilket ger en hög grad av kontroll över deras former och egenskaper.
Dessa inneboende egenskaper gör nanostrukturer mycket attraktiva både för att
utforska ny grundläggande fysik och för potentiella tillämpningar.

Mer komplexa nanostrukturer kan byggas genom att kombinera nanostrukturer
som kan identifieras som “byggstenar”. Ett exempel på en sådan byggsten är
en nanotråd, en relativt lång och tunn bit material där elektroner kan röra sig
fritt längs den långa dimensionen men är begränsade längs de andra två, betyd-
ligt kortare dimensionerna. Ett annat exempel är en kvantprick, en bit material
så liten att elektronerna “känner av” begränsningseffekter längs alla riktningar.
Elektroner i kvantprickar är inte helt immobiliserade, men på grund av den-
na begränsning tillåts de bara existera i vissa bestämda energinivåer. Denna
elektroniska struktur liknar den hos atomer och därför kallas kvantprickar ofta
“konstgjorda atomer”. En annan viktig byggsten är en supraledare, ett material
som uppvisar noll resistans; elektroner i en supraledare kan färdas obehindrat
godtyckligt långa avstånd och tider. Vissa metaller uppvisar dessa egenskaper
och genomgår en plötslig övergång till ett supraledande tillstånd vid låga tempe-
raturer, där deras resistans blir exakt noll. Olika kombinationer av nanotrådar,
kvantprickar och supraledare erbjuder otaliga plattformar med speciella och in-
tressanta elektroniska tillstånd. Dessa är några av de främsta byggstenarna vars
kombinationer leder till nya fysikaliska fenomen och banbrytande tillämpningar
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inom det växande området kvantteknologi. Kvantteknologi omfattar en mängd
olika tillämpningar som utnyttjar de unika egenskaperna hos kvantsystem. Ett
exempel är en kvantdator – en dator som fungerar med kvantbitar istället för
klassiska bitar. Kvantdatorer kan utföra vissa uppgifter mycket snabbare än klas-
siska datorer. En annan tillämpning är kvantkryptografi, som möjliggör nya säk-
rare kommunikationsprotokoll och säkerställer förbättrat skydd för känsliga data.

En betydande del av den forskning som beskrivs i denna avhandling handlar
om teoretiska studier av tre seriellt kopplade kvantprickar. Kopplingen mel-
lan kvantprickarna innebär att elektroner kan “hoppa” från en kvantprick till
en annan. Den mellersta kvantpricken är dessutom kopplad till en supraledare
och får därmed några av dess egenskaper. Vi har funnit att systemet kan ju-
steras så att exotiska tillstånd uppstår på de yttre kvantprickarna, så kallade
Majorana-tillstånd. Inom kondenserad materiens fysik kan Majorana-tillstånd
ses som “halva elektroner” som är lokaliserade (en på varje av de yttre kvantpric-
karna i vårt fall) och kan kombineras för att bilda en icke-lokaliserad elektron
med ändliga komponenter i båda yttre kvantprickarna. Vi kvantifierar kvaliteten
hos Majorana-tillstånden genom att beräkna hur väl de är lokaliserade i sina
respektive kvantprickar, och vi föreslår experimentella protokoll som skulle kun-
na användas för att entydigt särskilja dem från andra kvanttillstånd. Majorana-
tillstånd kan i princip användas för att skapa kvantbitar och bygga en kvantdator.
Det finns anledning att tro att kvantbitar som baseras på Majorana-tillstånd är
ovanligt stabila. Dessutom förutsägs Majorana-tillstånd ha egenskaper som inte
har uppvisats av någon annan typ av kvanttillstånd. Till exempel, om man by-
ter plats på två Majorana-tillstånd två gånger, återvänder inte systemet till sitt
ursprungliga tillstånd som man skulle förvänta sig.

I samarbete med en experimentell grupp har vi även studerat en dubbel-kvant-
prick inbäddad i en nanotråd. Kvantprickar i nanotrådar kan bildas genom att
ändra materialet längs nanotrådens axel, vilket resulterar i bildandet av tun-
na skivliknande segment. Med noggrann kontroll av de elektroniska tillstånden
i kvantprickarna kan systemet justeras för att bilda kvantringar. Detta är för-
delaktigt eftersom elektroner i kvantringar kan manipuleras mer effektivt med
små magnetfält, vilket ofta är önskvärt eftersom ett stort magnetfält förstör de
supraledande egenskaperna. Genom att introducera ett ytterligare yttre skal i
nanotråden bildas nästan perfekta kvantringar utan behov av finjustering av sy-
stemet. Ett liknande system med en dubbel-kvantprick placerades också mellan
två supraledare för att bilda en Josephson-övergång. Josephson-övergångar be-
står av två supraledare som är sammankopplade via ett litet icke-supraledande
segment (i vårt fall en dubbel-kvantprick) och de används i olika tillämpningar,
till exempel för att mäta svaga magnetfält och i supraledande kvantdatorer. Vi
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fann att riktningen för den elektriska strömmen i systemet (vilken är motsatt
den riktning i vilken elektronerna hoppar från en supraledare till den dubbel-
kvantpricken och in i den andra supraledaren) kan justeras genom att justera
kopplingen mellan de två kvantprickarna.

Vi har dessutom teoretiskt studerat en cylindrisk nanotråd som består av en kär-
na och två skal byggda av olika material. Ett av skalen innehöll främst elektroner
medan det andra innehöll hål, vilka definieras som saknade av elektroner. Vi
fann att elektronerna och hålen från de två skalen blandades, vilket ledde till
bildandet av tillstånd med både elektron- och hålkomponenter. Vi fann också
att nanotråden har elektroniska tillstånd lokaliserade vid sina ändar. Detta kan
påminna om de Majorana-tillstånd som diskuterades ovan, men det finns inte
någon relation mellan dessa två typer av tillstånd.

Resultaten av vårt arbete kan underlätta att demonstrera Majorana-tillståndens
exotiska egenskaper inom en snar framtid och de studerade nanotrådarna och
kvantprickarna skulle på sikt kunna utgöra ingredienser i spännande teknologiska
tillämpningar.
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Introduction

Nanowires (NWs), quantum dots (QDs), and quantum wells (QWs) are examples
of nanostructures intensively studied in the field of mesoscopic physics [1]. The
field lies in the middle of the vast gap between macroscopic physics described by
the classical theories (e.g., classical thermodynamics, Newton’s laws, etc.) and
microscopic physics described by quantum mechanics. In a physical system, an
important length scale is set by the de Broglie wavelength, λdB, of the charge
carriers in the system (λdB = h/p, where h is Planck’s constant and p is the
carrier’s momentum). Nanostructures have dimensions that are comparable to
the de Broglie wavelenght of their carriers, and quantum confinement effects
giving rise to the quantization of the energy spectrum become important. At
this scale a microscopic description – even though exact – would be cumbersome,
as the dimensions are still too large. As a result, mesoscopic physics has been
developed as a separate field with its own formalism and nomenclature. The
interest in mesoscopic physics and nanostructures is at least two-fold.

On the one hand, the unique properties of nanostructures have led to various

Figure 1: (a) In a bulk system, a carrier (grey ball) can move freely in all three spatial dimensions. (b) If
the system’s size in one dimension is comparable to the carrier’s λdB, confinement effects along
that dimension become important and the system is practically 2D. A 2DEG is an example of
such a system. (c) A system confined in two dimensions is effectively 1D. A NW is an example of
such a system. (d) In QDs carriers are confined in all three dimensions.
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technological applications as they are small enough to exhibit quantum proper-
ties but large enough to be manufactured and controlled efficiently. For example,
NWs already have various applications in integrated circuits [2] and solar cells
[3], while QDs are utilized in opto-electronic applications [4, 5] and have been
proposed as platforms for quantum computation with spin qubits [6–8]. Addi-
tionally, certain combinations of semiconductor QWs have a topological insulator
phase [9–12]. Topological insulators are materials that exhibit an insulating bulk
and metallic states at their boundaries and they are important for applications
in the field of spintronics [13].

On the other hand, nanostructures offer the opportunity to explore fundamental
physics. While macroscopic systems have significant extent in all three dimen-
sions (3D), nanoscale systems can practically be 2D [such as 2D electron gases
(2DEGs) in QWs], 1D (NWs) or even 0D (QDs) (see Figure 1), and the ideal-
ized concept of a lower-dimensional object can actually be manufactured. QDs
are often called artificial atoms [14] because of their point-like dimensions and
quantized energy spectrum. In the same spirit, systems with multiple QDs are
called artificial molecules and concepts from molecular physics such as bonding
and anti-bonding orbitals become relevant in QD spectroscopy.

Introducing superconductivity to nanostructures leads to even richer physics and
advanced technological applications. For example, a Josephson junction consists
of two superconductors coupled via a narrow non-superconducting segment [15–
17]. Josephson junctions are integral parts of superconducting quantum inter-
ference devices (SQUIDs) [18] and superconducting quantum computers [19–21].
Another example is a Cooper pair (CP) splitter. CP splitters consist of two QDs
coupled to a superconductor and can be used to generate and study CPs that
are split into spatially separated entangled electrons [22–29]. Under certain con-
ditions, a semiconductor NW proximitized by a superconductor is predicted to
be a 1D topological superconductor [30, 31]. 1D topological superconductors
host exotic states at their ends, named Majorana bound states (MBSs) [32–37],
which constitute the basis for one of the proposed quantum computing platforms
[38–41].

The aim of this thesis is to provide a background on the properties and the
theoretical modelling of nanostructures similar to the ones described above and
to present the results of our research efforts which are reported in papers I to
VI. In the following, a brief description of our research results is given and the
thesis outline is presented.

Papers I and II theoretically study a system of two QDs coupled via a third
QD which is proximitized by a superconductor. We showed that this system
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can host high-quality MBSs which are similar to the ones mentioned above, but
only emerge at fine-tuned sweet spots of the parameter space. For this reason
they are called poor man’s MBSs (PMMs). It was also concluded that it is pos-
sible to demonstrate nonabelian physics with PMMs under realistic experimental
conditions.

Papers III to V resulted from collaborations with an experimental group. Pa-
pers III and IV focus on a double QD (DQD) system which was found to host
ring-like states and exhibited giant and electrostatically tunable g-factors. Both
these features are advantageous for the efficient manipulation of electronic states
in QDs. In paper V a similar DQD was coupled to two superconductors to form
a Josephson junction. The main finding of this paper is that the direction of the
electrical current through the junction can be controlled through the coupling
strength between the two QDs.

In paper VI a core-shell-shell NW was theoretically investigated. The layering of
the NW is similar to the layering of QWs in a previously known 2D topological
insulator proposal. We found that in this new quasi-1D geometry the topological
features survive only partially.

The thesis is organized as follows: The remainder of this introductory chapter
highlights important band structure features of crystalline materials and presents
transport phenomena in setups involving QDs. The second chapter provides an
introduction to properties of superconductors relevant for the work presented
in this thesis and discusses processes at the interface between superconducting
and non-superconducting materials. Furthermore, the chapter describes various
setups involving superconductors, including QD-superconductor hybrids. The
third chapter is mostly dedicated to 1D topological superconductors and MBS
physics. It begins by introducing a toy model for topological superconductiv-
ity and then presents a more realistic model. Experimental signatures of the
emergence of the topological phase are also discussed, along with schemes to
probe the nonabelian nature of MBSs and a minimal system that hosts PMMs.
The fourth chapter focuses on the physics of 2D topological insulators and two
material systems suitable for their realization. In the fifth chapter the main
theoretical tools used to model the systems under study are covered. This in-
cludes a tight-binding (TB) discretization recipe for continuous Hamiltonians,
and the chapter concludes with a model for transport through QDs. The sixth
chapter provides extended summaries of papers I to VI and the original papers
are attached in the final chapter.
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1 Band structure of solids

Solving the Schrödinger equation including the interactions between all the elec-
trons and nuclei in a solid state system in order to obtain its energy levels and
wavefunctions is a hopelessly complicated task. Various theoretical tools and
approximations have been developed in order to circumvent exactly that diffi-
culty [42]. Here we begin with a heuristic approach and consider the simplest
possible case of one electron being trapped in a cubic area that represents our
solid. For large solid dimensions the electron is practically free and its dis-
persion is given by the energy-momentum relation E(k) = �

2k2/(2me), where
k = |k| = |p|/� = p/�. Here, p, k, me are the electron’s momentum, wavenum-
ber and mass respectively, while � = h/(2π) is the reduced Planck’s constant.
Surprisingly, this simple model turns out to describe metals quite well, at least
qualitatively. Metals are good conductors, meaning that under a small bias
voltage a current will run through them. In practice, this happens because elec-
trons can be accelerated and gain energy higher than their equilibrium energy
which can be accommodated by the fact that the parabolic energy dispersion is
continuous and there are no gaps in the energy spectrum. This model cannot
explain the electrical resistance of semiconductors and insulators though, which
exhibit a suppressed conductance at low temperatures.

A lot can be gained by adding an extra feature to the simple model, namely
a periodic potential from the positively charged nuclei in the solid which can
be considered to be approximately immobilized. With the use of Bloch’s the-
orem [43] it is found that the available electron states in systems with crystal
structure form energy bands while there are also gaps in the spectrum [44, 45].
The characterization of a material as a metal, semiconductor, or insulator can
then be done as follows: Placing the electrons in the bands according to the
Pauli exclusion principle, the highest energy electron can be within an energy
band (unfilled band) or it can just have completed a band (filled band). In
the former case, there are higher energy states easily accessible to electrons and
the material is a metal. In the latter case, higher energy levels are in the next
energy band. If there is a finite gap Eg between the filled band and the next
unfilled band, the material is a semiconductor or an insulator. The difference
between semiconductors and insulators is a quantitative one and materials with
Eg � 4 eV are considered to be semiconductors while materials with Eg � 4 eV
insulators1. For insulators and semiconductors, the highest occupied completely
filled band is called the valence band (VB) and the next band with available

1The terminology used in practice is not always consistent with this classification. Topolo-
gical insulators usually have band gaps much smaller than 4 eV [46], yet they are still called
“insulators”.

4



Figure 2: (a) Schematic representation of the VB and CB of a semiconductor with a direct band gap Eg at
kx = 0. An electron (e) can be excited from the VB to the CB leaving a hole (h) behind. The CB
and VB are often referred to as electron and hole bands respectively. (b) For III-V semiconductors
the VB is split to the LH, HH and split-off bands with different curvatures. The CB (E) is also
shown.

electron states the conduction band (CB). These concepts are depicted schem-
atically in Figure 2(a), where the energy dispersions of the CB and the VB are
plotted with respect to kx (ky = kz = 0), k = (kx, ky, kz) being the Bloch vector.
As it is suggestively drawn, the energy dispersions are again parabolic. This is,
in fact, approximately the case for many semiconductors and insulators close to
the Γ point (k = 0) [47]. The difference is that me is replaced by an effective
mass given by ( 1

m∗
n(k)

)
ij
=

1

�2

∂2En(k)

∂ki∂kj
, (1)

where n is the band index. A difference in the effective mass translates to a
difference in the curvature of the bands. The dispersions are given by

ECB(kx) = ECB +
�
2k2x

2m∗
CB

, EVB(kx) = EVB +
�
2k2x

2m∗
VB

, (2)

where ECB (EVB) is the minimum (maximum) of energy and m∗
CB (m∗

VB) the
effective mass in the CB (VB). Note that m∗

CB > 0 while m∗
VB < 0. An electron

from the VB can be excited to the CB leaving a hole behind. The VB can then
be more easily described as a band occupied by a hole rather than a band that
misses one electron. For this reason the VB is frequently referred to as the hole
band while the CB as the electron band.

Many of the NWs, QDs, and QWs studied in this thesis are made of compound
III-V semiconductors which are created combining elements from Group III (B,
Al, Ga, In) and Group V (N, P, As, Sb) of the periodic table. We look at
the band structure of III-V semiconductors a bit more closely. The first thing
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to note is that the VB in these materials is formed by electrons occupying p
atomic orbitals and the CB by electrons from s orbitals [48]. As a result, an
extra three-fold degeneracy is introduced in the VB. Second, these materials
have very strong spin-orbit (SO) interaction. Electrons moving in the positive
ionic background experience an effective magnetic field which couples to the
orbital degrees of freedom [49]. This field is referred to as the SO field. The SO
field lifts the three-fold degeneracy of the VB leaving three separated VBs, the
light hole (LH), heavy hole (HH) and split-off bands [50] shown in Figure 2(b).
Note that, in contrast to an external magnetic field, the SO field does not break
time-reversal symmetry. This form of the band structure close to the Γ point is
in fact also shared by other semiconductors which are important in applications,
such as Ge [49] and CdTe [9].

1.1 Confinement effects

As we saw in the previous section, for many semiconductors the energy dispersion
of the CB close to the Γ point is approximately parabolic:

E3D
CB(k)− ECB =

�
2k2

2m∗
CB

. (3)

Band-structure calculations assume that the crystal momentum p = �k is a good
quantum number, which is true for a periodic system with infinite extent along
all spatial dimensions. Suppose now that the system is confined in the z direction
so that a (practically) 2D system is formed in the xy plane [see Figure 1(b)].
The crystal momentum is not a good quantum number along z any more, the
confinement leads to the quantization of energy, and the CB dispersion becomes
[51]

E2D
CB(kx, ky)− ECB = El +

�
2(k2x + k2y)

2m∗
CB

, (4)

where El is a discrete set of energy levels with l = 1, 2, ... (l ∈ N). For each
value of l a new parabolic sub-band is introduced, El higher in energy than
ECB. Further confining the system along y first and along x next for 1D and 0D
systems [see Figures 1(c, d)] one obtains

E1D
CB(kx)− ECB = Eml +

�
2k2x

2m∗
CB

and E0D = Enml, (5)

where Eml and Enml also are discrete sets of energy levels (n,m, l ∈ N). The
spectrum becomes completely discrete for 0D systems like QDs.
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Figure 3: (a) Sketch of a ZB InAs NW with two WZ segments forming a QD. (b) Corresponding band
diagram showing the CB edge.

1.2 Epitaxially-defined quantum dots in nanowires

The QDs studied in papers III to V are created in NWs which are quasi-1D
structures. Adding two potential barriers along the NW axis, axial confinement
is also achieved and the confined area can be considered quasi-0D, a QD. The
barriers can either be made of a different material [52] or the same material in
a different crystal phase, the latter being the case for the InAs QDs studied
in Papers III to V. InAs NWs can be grown in two crystal phases, wurtzite
(WZ) and zinc blende (ZB), with different structure and electronic properties
(for details see, e.g., Ref. [53]). Figure 3(a) shows a sketch of a NW that takes
advantage of this feature in order to form a QD. Two thick, closely-spaced WZ
barriers are grown in an otherwise ZB InAs NW and a ZB QD is formed because
the CB edge in the ZB phase is lower in energy than the CB edge in the WZ
phase [54]. This is more clearly illustrated in the band diagram of Figure 3(b)
where the CB edge of the heterostructure is drawn along the NW axis.

2 Transport phenomenology in quantum dots

Spectroscopic information on QDs can be obtained from transport experiments.
The standard setting for studying transport through a QD is shown in Fig-
ure 4(a). Source (S) and drain (D) contacts are tunnel-coupled to the QD so
that electrons can tunnel from S/D to the QD and vice versa. The setup also
includes a gate contact (G) which is only capacitively coupled to the QD. In
order to calculate the energy levels in the QD, both electrostatic contributions
(from the voltages VS , VD, VG and the electrons in the QD) and the energies
of single-particle orbitals must be taken into account. The constant interaction
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Figure 4: (a) Transport setup for a QD with tunnel-coupled leads S and D and capacitively coupled gate G.
(b, c) Energy level diagrams for the transport setup in (a), showing the QD, S, and D chemical
potentials. In (b) the QD chemical potential μN is in the bias window leading to finite current.
The Coulomb blockade regime is depicted in (c); no QD chemical potentials are in the bias window.

model [55, 56] provides an approximate description of the QD spectrum. The
basic assumption is that the energies of the many-body states can be calculated
by occupying single-particle orbitals with electrons and adding the electrostatic
contributions. Here, only the main results are mentioned and rigorous deriva-
tions can be found in Refs. [57–59]. In this framework, the QD (electro-)chemical
potentials are central quantities. The chemical potential μN is defined as the
energy required to add one electron to a QD with N −1 electrons. We note that
the present analysis concerns transitions from the many-body ground state with
N − 1 electrons to the many-body ground state with N electrons and the role of
excited many-body states in the QD will be examined in Section 2.2. For total
QD energies EN , EN−1, μN is given by

μN = EN − EN−1 = εN +
e2

CΣ

(
N − 1

2

)− e
∑
j

αjVj . (6)

In Eq. (6), εN is the energy of the single-particle orbital occupied by the Nth
electron. For a QD isolated from the environment and without Coulomb inter-
actions, one would have EN = εN due to confinement alone. The index j runs
through j = S,D,G and −e is the electron charge. The quantities αj = −Cj/CΣ

are called lever arms and they quantify the strength of the electrostatic coupling
of each contact to the QD, while Cj stands for the capacitance between the QD
and contact j. The quantity CΣ is the self-capacitance of the QD and is equal
to −∑

j Cj , so that
∑

j αj = 1. The current through the QD depends on the
relative positions of the chemical potentials in the QD and in the contacts S, D.
For a finite bias voltage VDS = VD − VS an asymmetry in the chemical potentials
of the contacts is introduced (μS − μD = eVDS). If a QD chemical potential is
placed in the bias window as shown in Figure 4(b), electrons can tunnel from
S to D through the QD level, leading to a finite current. If there are no QD
chemical potentials in the bias window [see Figure 4(c)] there are no available
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states for the electrons to travel through the QD and the current is suppressed2.
The QD is then in the Coulomb blockade regime [60, 61]. The distance between
two consecutive chemical potentials is the addition energy:

Eadd(N) = μN − μN−1 = εN − εN−1 +
e2

CΣ
= EQ(N) + U, (7)

which naturally consists of a quantum-mechanical part EQ(N) = εN − εN−1 and
an electrostatic part U = e2/CΣ, the charging energy. For a spin-degenerate QD
and for an even N , one has εN = εN−1 and the addition of the Nth electron only
costs U . The states of circularly symmetric systems such as carbon nanotube
QDs [62] or ring QDs (see papers III and IV) are four-fold degenerate (due to
angular momentum and spin) in the absence of interactions and EQ is finite
only for every fourth added electron. The concepts described in this section
are crucial to understand the features of a charge stability diagram, which are
presented in the following section.

2.1 Charge stability diagrams

When investigating the transport properties of QD systems, it is useful to study
charge stability diagrams in order to extract relevant system parameters, such
as U and CΣ. Figure 5 shows a sketch of a charge stability diagram, where
the differential conductance dID/dVDS is plotted as a function of VDS and VG.
When a QD chemical potential enters the bias window the current increases
and a finite differential conductance is measured. Lines with negative (positive)
slopes correspond to μS (μD) aligning with a QD chemical potential. The con-
ductance lines define areas of fixed electron numbers which correspond to the
white areas with N = 0− 4, the so-called Coulomb diamonds. The Coulomb
diamonds define the Coulomb blockade regimes. The addition energy can be
extracted from the width or the height of the Coulomb diamonds. According to
the previous section Eadd = U at odd-N diamonds and Eadd = EQ(N) + U at
even-N ones (for a spin-degenerate QD).

Starting at point A, the QD is in a regime with zero electrons as the chemical
potential for having one electron (μ1) is higher than both μS and μD, which are
aligned for VDS = 0. Increasing VG lowers the QD chemical potentials until μ1,
μS , and μD are aligned at point C. Any further increase of VG will cause μ1 to
drop below μS and μD and the QD to enter the one-electron (1e) regime. At

2Note that this analysis is exact at zero temperature. At finite temperatures, electrons in
S and D can be found at energy levels above μS and μD and transport of electrons via the
QD can occur even when a QD chemical potential is outside the bias window.
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Figure 5: Sketch of the charge stability diagram for a spin-degenerate QD with symmetrically applied bias
and equal lever arms for S and D. The black lines correspond to finite differential conductance.
Regimes with transport via one and two levels in the QD are denoted with the light blue and
darker blue colors respectively. The panels A to G show the energy level diagrams for the points
marked in the charge stability diagram.

point E the 2e regime is reached and it is now μ2 that is aligned with μS and μD.
Starting again from A and going vertically in the direction of increasing VDS this
time, the system arrives at point B where μ1 just enters the bias window from
above. Any further increase of VDS will place μ1 inside the bias window leading
to a finite current. Electrons from S can tunnel into the QD and sequentially out
to D and the number of electrons in the QD changes between 0 and 1. Regimes
that correspond to finite current via one level in the QD are denoted with the
light blue color. At point D, μ1 is aligned with μD, and μ2 is aligned with μS .
Any further increase of VDS will place both μ1 and μ2 inside the bias window
leading to a current via both levels. Regimes that correspond to finite current
via two levels in the QD are denoted with the darker blue color. The charging
energy can be read-off at D as U = μ2 − μ1 = μS − μD = eVDS . Having found
U and thus CΣ, CG can be calculated through αG as

αG =
U

e(V E
G − V C

G )
⇒ CG =

e

V E
G − V C

G

, (8)

where V C
G and V E

G are the gate voltages at points C and E. At point F, it is μD

that is aligned with μ2 while at point G the addition energy can be extracted as
Eadd = eV G

DS .
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It is worth mentioning that the particularly symmetric diamonds drawn in Fig-
ure 5 correspond to the case where the bias voltage is applied symmetrically
(VS = −VDS/2, VD = VDS/2) and αS = αD. In experiments the bias is usually
asymmetric (VS �= −VD) and the Coulomb diamonds in the corresponding charge
stability diagrams are tilted.

2.2 Transport via excited states

Single-electron tunneling processes

Transport experiments in QDs reveal additional features not depicted in Fig-
ure 5. Coulomb diamonds describe transitions between ground states, while the
many-body quantum states of a QD also include excited states for each electron
number N . Figure 6 shows a sketch of the upper half of a Coulomb diamond
corresponding to the N -electron ground state of a QD. The red line denotes con-
ductance via an excited N -electron state with chemical potential μex

N . Along the
red line and within the Coulomb diamond, the bias voltage is not high enough
to induce a transition via μN+1, but it is high enough to access a transport path
via μex

N . At point A, μex
N is aligned with μS , and μN is aligned with μD.

Cotunneling

In all the transport processes described so far, only one electron is involved.
Coherent tunneling of two or more electrons also plays a role in transport when
the coupling between the QD and the S and D leads is significant. One example
of such processes is cotunneling [61, 63]. The process described at point B is
elastic cotunneling (ECT). It can take place at any bias voltage and results
in background conductance inside the Coulomb diamonds, denoted by the light
blue color inside the diamond areas. An electron occupying an orbital can tunnel
out to one of the contacts and a second electron can tunnel in from the other
contact and occupy the newly available orbital. The initial and the final QD
states are identical and the energy is conserved for the whole process. There is
a violation of energy conservation in the intermediate state (after electron 1 has
tunnelled out and before electron 2 tunnels in), which is allowed for short enough
times according to the energy-time uncertainty relation. At point C, the onset
of inelastic cotunneling can be seen, denoted by the deeper blue color. In such
processes the final state of the QD is different from the initial one. In order to
observe inelastic cotunneling, eVDS must be at least equal to ΔE = μex

N − μN ,
see the left C panel. Similarly to ECT, an electron initially in the QD can tunnel
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Figure 6: Sketch of the upper half of a Coulomb diamond corresponding to the N-electron ground state of
a QD. Transport via an excited N-electron state is denoted with the red line, while the lighter
and deeper blue colors depict the regimes with ECT and inelastic cotunneling respectively. The
panels A to C depict energy level diagrams for the points marked in the Coulomb diamond. At
point A, single-electron tunneling via the excited N-electron state with chemical potential μex

N
can take place. Panels B and C show ECT and inelastic cottuneling respectively.

out to one of the contacts (electron 1). The difference here is that electron 2
tunnels into the excited state (middle C panel). If the chemical potential of
the excited state is in the bias window and the de-excitation rate to the ground
state is small, electron 2 can tunnel out to the other side as shown in the right C
panel. This process is called cotunneling-assisted single-electron tunneling. QD
spectroscopy in the cotunneling regime is heavily employed in papers III and IV
in order to obtain information on excited states.

2.3 Parallel-coupled double quantum dots

DQD systems have received a lot of attention because of the possibility to tune
and hybridize orbitals belonging to different QDs [64–70]. In serial DQDs, one
QD is coupled exclusively to a lead S and the other QD is coupled exclusively
to another lead D, while the QDs are additionally coupled to each other. In
order to observe single-electron transport at zero-bias voltage the individual QD
chemical potentials must be aligned. Reference [71] provides a detailed analysis
of the transport properties of serial DQDs and of relevant experimental setups. In
parallel-coupled DQDs, both QDs are coupled to both leads and aligning the QD
chemical potentials is not required to observe transport. A thorough description
of experimental setups and a detailed spectroscopic analysis of parallel-coupled
DQD systems in general and epitaxially-defined parallel-coupled DQDs in InAs
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Figure 7: (a) Parallel-coupled DQD setup. QDs L and R are capacitively and tunnel-coupled to S, D, and
to each other and only capacitively coupled to gates L and R. (b, c, d) Sketch of the charge
stability diagram for the DQD in the (b) uncoupled, (c) strongly coupled, and (d) intermediate
regime. (e, f) Measurements of zero-bias conductance as a function of VL and VR for (e) a ring
QD and (f) a DQD. In (f), crossings and anti-crossings are highlighted with the red and magenta
rectangles respectively. (b, d) are adapted from Ref. [65] and (e, f) from paper IV.

NWs in particular can be found in Ref. [59]. Here, we focus on the parallel-
coupled DQD system, which is also the system of focus in papers III to V.

The setup is shown schematically in Figure 7(a). Two QDs – left (L) and right
(R) – are capacitively and tunnel-coupled to leads S and D and to each other.
Gates L and R are only capacitively coupled to QDs L and R and control their
chemical potentials. Cross-capacitances CLR and CRL are also present and affect
the electrostatics of the system. The capacitance between contact i and QD j
is denoted as Cij , the inter-dot one as Cint, while the inter-dot tunnel coupling
is quantified by the parameter t. In order to gain insight into conductance
measurements in parallel-coupled DQDs we first explore two extreme parameter
regimes.

Figure 7(b) shows a sketch of a charge stability diagram at zero bias for CLR =
CRL = Cint = t = 0 for varying VL, VR. The lines separate regimes with different
electron numbers (NL, NR) in QDs L and R and correspond to the aligning of a
chemical potential in QD L (horizontal lines) or QD R (vertical lines) with μS

and μD. As CLR = CRL = 0, horizontal (vertical) lines are parallel to the VR

(VL) axis. One can also find points where regimes that differ by two electrons
are degenerate – for example (0, 0) and (1, 1) or (1, 1) and (2, 2) – since Cint = 0
and electrons in the one QD do not affect the electrostatics in the other QD.
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The other extreme with large CLR, CRL, Cint, t is shown in Figure 7(c). In this
regime the DQD behaves as one QD with charge N = NR +NL. All solid lines
have a single slope as the individual chemical potentials of the QDs cannot be
independently changed. The electrons are not localised and the dashed lines are
included to aid the eye for the intermediate case shown in Figure 7(d), where
the characteristic DQD honeycomb pattern appears [65]. In this case CLR, CRL,
and Cint are finite but significantly smaller than CLL(RR). It is also noted that
t � 0 here and electrons are well-localised in each QD. The red lines connect
triple points where three charge states are degenerate. Their length increases
with Cint and they do not appear in transport experiments as they only denote
the limit between having an electron in QD L or R. Crossing these lines in the
VL, VR parameter space does not change the electron number in the DQD and
does not lead to a conductance peak.

Figure 7(e) shows conductance measurements for a single QD from paper IV for
comparison with Figure 7(c). Lines with a single slope appear, in agreement to
the single QD picture. Note that here, the states come in groups of four because
of spin and orbital degeneracy, as the QD is actually ring-shaped. Figure 7(f)
shows conductance measurements for a parallel-coupled DQD from the same pa-
per and is included for comparison with Figure 7(d). The honeycomb pattern
appears but one also notices that there exist sharp crossings and anti-crossings
highlighted with the red and magenta rectangles respectively. The sharp cross-
ings are in agreement with Figure 7(d) and correspond to t � 0, whereas the
anti-crossings appear in regimes where t is large. See papers III and IV and
Section 16 for details.
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Nanostructures involving
superconductors

3 A glance at the BCS theory of superconductivity

The superconducting state of a material is characterized by the absence of res-
istivity [72, 73] which leads to dissipationless electric currents called supercur-
rents. Superconductors are also perfect diamagnets exhibiting the Meissner-
Ochsenfeld effect [74]. These properties could be described by early phenomeno-
logical models such as the London equations [75] or the Ginzburg-Landau theory
of superconductivity [76], but a microscopic theory describing the underlying pro-
cesses leading to a superconducting state was missing. In 1957, John Bardeen,
Leon Cooper, and John Robert Schrieffer proposed the first microscopic theory
of superconductivity, the BCS theory [77]. According to the BCS theory, below a
critical temperature Tc and for momenta close to the Fermi surface, electrons in
a metal can form pairs with opposite momenta and spins, the so-called CPs [78].
The pairing occurs because of effectively attractive electron-electron interactions
attributed to interactions between electrons and phonons, which are excitations
of the positively charged ionic lattice [79, 80]. The theory admits a mean field
(MF) description [81, 82]:

HMF
BCS =

∑
kσ

ξkc
†
kσckσ −Δ

∑
k

c†k↑c
†
−k↓ −Δ∗∑

k

c−k↓ck↑, (9)

where ξk = εk−μS, εk is the energy dispersion relation in the normal metal state,
μS is the chemical potential of the superconductor, and c†kσ creates an electron
with momentum k and spin σ =↑, ↓. The superconducting order parameter Δ
obtains a finite value for temperatures below Tc. In general Δ = |Δ|eiθ, where
θ is the superconducting phase. When we consider a single superconductor this
phase can be gauged away and Δ can be taken to be real. In a system with
multiple superconductors this is no longer the case and the phase differences
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between the superconductors give rise to interesting phenomena, see Section 4.2.
Equation (9) can be written in the diagonal form [82]

HMF
BCS =

∑
kσ

EkB
†
kσBkσ, (10)

in terms of the Bogoliubov operators

Bk↑ = u∗kck↑ + vkc
†
−k↓, B†

−k↓ = −v∗kck↑ + ukc
†
−k↓, (11)

where
|uk|2 = 1

2

(
1 +

ξk
Ek

)
, |vk|2 = 1

2

(
1− ξk

Ek

)
, (12)

and
Ek =

√
ξ2k + |Δ|2. (13)

Viewing the electron annihilation operators as creation operators for holes3, the
quasiparticles (QPs) described by the Bogoliubov operators are coherent super-
positions of electrons and holes and the quantities uk, vk are the coherence
factors. The BCS ground state is characterized by the absence of QPs. The
energy required to add a QP to the system is Ek. Comparing this to the nor-
mal metal case, where adding an electron costs ξk and removing an electron (or
adding a hole) costs −ξk, we see that a superconducting gap of 2|Δ| between Ek

and −Ek is present around μS at the Fermi momentum k = kF where ξk = 0.
The QPs in a superconductor are more electron-like for k ≡ |k| > kF (ξk > 0)
and more hole-like for k < kF (ξk < 0), as can be seen from their defining
Eqs. (11–12). The minimum energy required to add an electron to the system
is |Δ|, whereas to break a CP an energy of at least 2|Δ| is needed as it involves
the excitation of two electrons.

From the QP dispersion relation in Eq. (13), the density of states (DOS) in
the superconductor D(Ek) can be calculated equating the number of QP states
in the interval dEk with the number of electron states in the interval dξk,
D(Ek)dEk = D(ξk)dξk, which gives

D(Ek) =
Ek√

E2
k − |Δ|2

D(ξk) for Ek > |Δ| and (14)

D(Ek) = 0 for Ek < |Δ|, (15)

where the absence of states within the gap was used and only states above μS were
accounted for. Equation (14) exhibits a divergence in the DOS for Ek = |Δ| and
converges to the normal metal 3D DOS (D(Ek) ∝

√
Ek) for Ek � |Δ|. Figure 8

highlights many of the concepts described above.
3In this context, holes are defined as absences of electrons below the Fermi level in the CB,

while in Section 1 they were defined as absences of electrons in the VB.
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Figure 8: Sketch of the DOS with respect to energy Ek for QPs in a superconductor close to the Fermi
level μS. The blue (white) color denotes occupied (unoccupied) states. CPs (shown encircled by
a purple ellipse) are at the Fermi level of the superconductor μS (denoted with the purple line).
In order to add a QP (spin in the black circle) to the superconductor, an energy |Δ| must be paid
with respect to μS.

4 Superconducting junctions

4.1 Andreev reflection and Andreev bound states

According to the previous section, superconductors are characterized by the
absence of states within the superconducting gap. Coupling a superconductor
to, for example, a metal in the normal state, this is no longer the case and states
with energies below the gap can develop in the combined system [83]. In order to
see how sub-gap states come about, it is instructive to look at possible scattering
processes close to the interface between a metal in the normal state (N) and a
superconductor (S), an NS junction [see Figure 9(a)]. An electron approaching
the interface from the N side can be reflected as an electron with the same spin
(spin not shown in the Figure). This process is referred to as normal reflection
(NR, 1 → 2). There exists another process in which an electron can be reflected
as a hole with opposite spin (retroreflection, 1 → 2′). This process is called
Andreev reflection (AR) [84, 85]. Upon AR a CP is transmitted into the S
side. AR is the dominant transport mechanism for electron energies below the
gap and it is suppressed for energies above the gap and for non-transparent
interfaces [86]. The opposite process in which a hole is reflected as an electron
with the subtraction of a CP from the S side is also possible. For a system with
an N part sandwiched between two S parts (an SNS junction), one can imagine
coherent repeated ARs at the SN and the NS interfaces leading to bound states,
similarly to the particle-in-a-box case, see Figure 9(b). These states are called
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Figure 9: (a) Sketch of an NS junction. Electrons are depicted as filled black dots and holes as unfilled
ones, while the arrows point to the direction of the group velocities. Process 1 → 2 is NR while
1 → 2′ is AR, which includes adding a CP to the S side. (b) Sketch of an SNS junction. Multiple
ARs at the right (NS) and the left (SN) interface lead to the formation of ABSs which carry CPs
between the two S sides. (c) Sketch of a CP splitter. With CAR the two electrons of a CP are
separated and can tunnel into different N parts.

Andreev bound states (ABSs) [87] and they are responsible for the coherent
transport of CPs in SNS junctions. For a system with a narrow S part sandwiched
between two N parts, crossed AR (CAR) can take place, see Figure 9(c). The two
electrons of a CP are separated and can tunnel into different N parts. Controlling
and boosting CAR is important for CP splitters [22–29] and for the realization
of minimal Kitaev chains [88, 89], see also Section 10 and papers I and II.

4.2 Josephson junctions

A Josephson junction [15–17] is schematically depicted in Figure 10(a). It con-
sists of two superconductors, SL and SR, separated by a narrow non-supercon-
ducting part which can, for example, be a metal, an insulator, or a QD. We
consider equal magnitudes of the order parameters in SL, SR, but, in general,
different superconducting phases θL, θR. In a Josephson junction, CPs from SL
can tunnel into SR and vice versa, giving rise to the so-called Josephson current
[15–17]. Within the simplest models, Josephson junctions are governed by the
following equations [90, 91]:

I(t) = Ic sinΘ(t), (16)
dΘ(t)

dt
=

2e

�
V (t). (17)

In Eq. (16), I(t) is the Josephson current and Ic is the critical current, a
quantity characteristic for a Josephson junction. The phase Θ(t) is given by
Θ(t) = θLR(t)+δ, where θLR(t) = [θL − θR](t) and δ is the intrinsic phase of the
junction. The intrinsic phase can in principle have any value, but in this thesis
(and in paper V) we focus on the cases δ = 0 and δ = π which are referred to
as a “0-junction” and a “π-junction” respectively. Equation (16) describes the
behavior of the junction under two different experiments. First, for a constant
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Figure 10: (a) Sketch of a Josephson junction. Two superconductors SL and SR with superconducting phases
θL and θR are separated by a narrow, non-superconducting material (gray area). (b) Sketch of
a DC SQUID biased with current I and subjected to a magnetic field B. Superconductors SL

and SR are connected through narrow, non-superconducting parts (shown in gray), forming two
Josepshon junctions, 1 and 2.

θLR �= 0, a DC current will flow through the junction. For 0 < θLR < π, the cur-
rent flows from SL to SR (SR to SL) for a 0(π)-junction. The maximum current
|I| = Ic develops for θLR = π/2. Second, if one injects a DC current into the
junction, a finite, constant θLR will develop. In the first case, current flow takes
place without the appearance of a voltage difference between SL and SR. This
is also true in the second case, as long as the magnitude of the injected current
is smaller than Ic. For |I| > Ic, Eq. (16) is no longer valid and a finite voltage
difference will also appear.

In Eq. (17), V (t) = [VL − VR](t) is the voltage difference between SL and SR.
Considering a constant V applied on the junction, integration of Eq. (17) gives

Θ(t) = Θ(0) +
2eV

�
t, (18)

and substituting Eq. (18) in Eq. (16) we get an alternating current with angular
frequency 2eV/�.

Using Eqs. (16) and (17) one can calculate the energy stored in a Josephson
junction. With the initial conditions Θ(0) = 0, I(0) = 0, the energy stored after
current-biasing the junction for time t is

E =

∫ t

0
I(t)V (t)dt =

Ic�

2e

∫ Θ(t)

0
sinΘ′dΘ′ =

Ic�

2e
[1− cosΘ(t)]. (19)

Note that the Josephson current can be calculated from this energy as

I =
2e

�

dE(Θ)

dΘ
. (20)

Equation (20) is in fact quite general and valid for any Josephson-type junction
with a Θ-dependent thermodynamic potential E [92].
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4.3 Superconducting quantum interference devices

SQUIDs are superconducting circuits containing Josephson junctions, see Refs.
[18, 81, 91] for detailed descriptions of different SQUID types and their prop-
erties. Here, we focus on a DC SQUID with two Josephson junctions, like the
one shown in Figure 10(b). A current I is injected from the SL side and splits
in two currents I1 and I2 passing through junctions 1 and 2. A perpendicular
magnetic field B can control the current through the system. In the following,
we derive an expression that gives the current I as a function of the magnetic
flux Φ through the SQUID loop. For the derivation certain assumptions are
made. The inductance L of the circuit is considered to be negligible (LI ≈ 0)
and the effect of the magnetic field on the junctions themselves is disregarded.
It is also assumed that the injected current is sufficiently small so that I1 < Ic1
and I2 < Ic2, where Ic1 and Ic2 are the critical currents of junctions 1 and 2.

In a superconductor, the change of the superconducting phase along a path
A → B is attributed to the current density j and the magnetic vector potential
A [91]:

θB − θA = θBA = − me

e�nCP

∫ B

A
jdl− 2e

�

∫ B

A
Adl, (21)

where me is the electron mass and nCP the density of CPs in the superconductor.
If the path is a closed loop, θBA = 2πs (s ∈ Z) in order to have a single-valued
superconducting phase. Gathering phase contributions along the closed loop
shown in Figure 10(b) (dashed line), the current density contribution can be
disregarded if the thickness of the circuit is larger than the London penetration
depth [75] and the loop is deep in the superconducting bulk. Considering also
that the parts of the loop in the non-superconducting (gray) areas of 1 and 2
have negligible length, the vector potential contribution in the counter-clockwise
direction is

(θL1 − θL2) + (θR2 − θR1) = −2e

�

∫ L1

L2
Adl− 2e

�

∫ R2

R1
Adl ≈ −2e

�

∮
Adl, (22)

where L(R)1(2) is the position of the left (right) edge of the non-superconducting
area of junction 1 (2) along the loop. The integral in the last step of the above
expression is the magnetic flux Φ through the loop. Including the phase contri-
butions from the junctions, the total phase change along the loop is

θRL1 + θLR2 − 2π
Φ

Φ0
= −2sπ ⇒ θLR1 + θRL2 = 2π

[
s− Φ

Φ0

]
.
= θ̃, (23)

where θRL1(2) = θR1(2) − θL1(2) = −θLR1(2), Φ0 = h/(2e) is the superconducting
flux quantum, and s ∈ Z. Without loss of generality, θLR1, θRL2 can be expressed
as θLR1 = θ̃/2 + θ0, θRL2 = θ̃/2− θ0.
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For 0-junctions with sinusoidal current-phase relations, I1 and I2 are given by

I1 = I01 = Ic1 sin(θLR1) = Ic1 sin

[
π

(
s− Φ

Φ0

)
+ θ0

]
, (24)

I2 = I02 = Ic2 sin(θLR2) = −Ic2 sin(θRL2) = −Ic sin

[
π

(
s− Φ

Φ0

)
− θ0

]
, (25)

while for π-junctions, I1 = Iπ1 = −I01 and I2 = Iπ2 = −I02 . Thus, different
combinations of 0- and π-junctions, lead to a different total current I = I1 + I2.
For intrinsic phases δ1 and δ2 corresponding to the junctions 1 and 2, it can
be shown that the maximum value of |I| (and thus the critical current for the
SQUID) is [18, 93, 94]

|I|max =

√
(Ic1 − Ic2)2 + 4Ic1Ic2

∣∣∣∣cos
(
π
Φ

Φ0
+

δ1 + δ2
2

)∣∣∣∣
2

. (26)

For δ1 = δ2 = 0 both junctions are 0-junctions (0− 0 SQUID), while for δ1 = 0,
δ2 = π we have a 0 − π SQUID. From the above expression, we see that |I|max

oscillations are shifted by π for a 0−π SQUID. This feature is utilized in Paper V
to determine whether the SQUID under study is in the 0 − 0 or in the 0 − π
regime.

5 Quantum dots coupled to superconductors

ABSs do not only form in N parts of SNS junctions. They can also appear as
sub-gap localized states in QDs coupled to superconductors. For concreteness,
we consider a QD with a single spinful level coupled to a superconductor. The
Hamiltonian describing the system is HSQD = HQD+HMF

BCS+HT. The Hamilto-
nian HMF

BCS is given in Eq. (9) and corresponds to the superconductor, while the
QD and the tunneling Hamiltonians are

HQD =
∑
σ

εσnσ + Un↑n↓, (27)

HT =
∑
k

tSkc
†
kσdσ +H.c. (28)

In Eq. (27), εσ is the energy of the QD single-particle orbital with spin σ =↑, ↓,
nσ = d†σdσ, d†σ creates an electron with spin σ in the QD and U is the QD
charging energy. In Eq. (28), tSk is the tunneling amplitude between the QD
orbitals and the state with momentum k in the superconductor. The magnitude
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Figure 11: Lowest energy excitations for the combined SQD system and for U < |Δ| as a function of the
negative 1e chemical potential in the QD, −μ1. The red lines correspond to a QD with an induced
superconducting pairing potential Δeff , while the black dashed lines correspond to Δeff = 0.

of the charging energy U with respect to the superconducting order parameter
|Δ| determines the nature of the emerging ABSs and two important regimes can
be identified [95]. In the following, we describe these regimes qualitatively and
provide effective versions of HSQD that adequately capture the physics in each
regime.

For U < |Δ|, the QP excitations in the superconductor are high in energy com-
pared to the QD chemical potentials, and the effect of the coupling between the
QD and the superconductor can be understood in terms of CPs tunneling in and
out of the QD, coupling the 0e and 2e regimes with an induced superconducting
pairing Δeff . Figure 11 shows the minimum excitation energy Eex

min for the com-
bined SQD system as a function of the negative 1e QD chemical potential −μ1

(red lines). The Δeff = 0 Coulomb diamonds are also shown (black dashed lines).
Due to the superconducting pairing, the charge degeneracy at the peak of the
N = 1 Coulomb diamond is lifted and a state appears within the diamond. For
a very strong coupling to the superconductor we have |Δeff | > U . There is no
regime with an 1e ground state in this case and the red-line crossings disappear.

The features described in the above paragraph are captured in the infinite Δ
model, a frequently used approximation in QD-superconductor hybrid structures,
see Refs. [96–103]. Integrating out the superconductor and taking the limit
|Δ| → ∞, HSQD becomes

H
|Δ|→∞
SQD =

∑
σ

εσnσ + Un↑n↓ +
[
Δeffd

†
↑d

†
↓ +H.c.

]
, (29)

where, like in the qualitative analysis above, Δeff is the induced superconducting
pairing on the QD.

For U > |Δ|, the QP excitations in the superconductor can couple to uncoupled
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Figure 12: (a) Transport setup that probes the spectrum of the combined SQD system. The QD is tunnel-
coupled to a normal lead N and a superconductor S (tunneling amplitude tS) and capacitively
coupled to gate G. (b) Lowest energy excitations for the combined SQD system as a function of
the negative 1-electron chemical potential in the QD, −μ1. The blue lines correspond to tS = 0,
the red lines to tS �= 0, while the black dashed lines to excitations of an isolated QD. The YSR
states are the sub-gap states in the N = 1 Coulomb diamond and Δ is the superconductor’s
order parameter. For panels A to E, μS is at the purple dashed line.

spins in the QD. The situation is equivalent to having a magnetic impurity in the
superconductor which leads to the formation of Yu-Shiba-Rusinov (YSR) states
below the superconducting gap [104–106]. The spectrum of the combined SQD
system can be studied with a weakly coupled N probe [107, 108], see Figure 12(a).
Excitations for the completely uncoupled SQD system correspond to occupying
either QD levels or QP states in the superconductor. The minimum energy
Eex

min for such excitations as a function of the negative 1e QD chemical potential
−μ1 is depicted with the blue lines in Figure 12(b). At point A, μ1 > |Δ| and
Eex

min = |Δ|. Note that for a completely uncoupled SQD system the process
depicted in panel A cannot actually take place and the corresponding line would
not appear in a transport experiment. At B and C, Eex

min = μ1 but μ1 > 0 for B
and μ1 < 0 for C. Finally at D, the system is past the particle-hole symmetric
point μ1 = −U/2 and Eex

min = μ2. For the depicted QD U > 2|Δ| in fact, so that
Eex

min = |Δ| at μ1 = −U/2. The excitation energies of the opposite processes are
also drawn. As the coupling between the QD and the superconductor increases,
the exchange interaction between the electron in the QD and the QPs in the
superconductor pushes Eex

min below |Δ|. For point E, a QP excitation can create
a singlet with the QD electron, as shown with the dashed red ellipse in frame
E. The reduced Eex

min for this singlet can be seen as a YSR state below the gap
and YSR excitations are shown in red both in the lower E panel and in the
N = 1 Coulomb diamond. The diamonds correspond to the minimum excitation
energies for an isolated QD.
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YSR physics can be captured by employing another approximation for HSQD,
the zero-bandwidth (ZBW) approximation [109–112]. The main assumption of
the ZBW approximation is that the QD mainly couples to QPs with energy |Δ|.
In the ZBW approximation, HSQD becomes

HZBW
SQD =

∑
σ

εσnσ + Un↑n↓ +
[
Δc†↑c

†
↓ + t̃Sc†σdσ +H.c.

]
, (30)

where t̃S is the renormalized coupling between the QD and the superconductor.

Summarizing this section, coupling a QD to a superconductor results in the
appearance of states within the N = 1 Coulomb diamond. For U < |Δ| this
happens because of the coupling between the N = 0 and N = 2 states in the
QD and for U > |Δ| because of the coupling between the N = 1 state in the QD
and QPs in the superconductor [95].
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Majorana bound states in 1D
condensed matter systems

In high energy physics, Majorana fermions are elementary chargeless particles
that are their own antiparticles [113]. They are described by Hermitian operat-
ors and are predicted as special solutions of the Dirac equation. In condensed
matter systems, Majoranas are predicted to emerge as collective excitations in
topological superconductors and are referred to as MBSs [33–37].

A fermionic operator can, in general, be decomposed in terms of two MBSs as

c =
1

2
(γA + iγB), (31)

where γ†A(B) = γA(B). The inverse transformation is

γA = c† + c, γB = i(c† − c). (32)

From the above equations and the fermionic anticommutation relations, the fol-
lowing MBS properties can be derived:

γ2A(B) = 1, {γA, γB} = δAB. (33)

MBSs are nonabelian anyons [38–40]; in contrast to ordinary electrons, for ex-
ample, considering a system of two MBSs and exchanging their positions twice,
the system does not return to its original quantum state. Apart from the appar-
ent fundamental physical interest in these properties, the nonabelian nature of
MBSs constitutes also the basis of topological quantum computation proposals
[38–41].

This chapter focuses on MBSs in 1D condensed matter systems. We begin by
showing how MBSs appear in a simple model proposed by Kitaev, the Kitaev
chain [32]. Next, we briefly present a theoretical model of a Majorana NW
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(MNW) [30, 31], the low-energy sector of which maps onto a continuum version of
the Kitaev chain [114], and whose realizations have been in the spotlight of MBS-
related experimental activity during the past decade [115–122]. We continue with
discussing experimental signatures of MBSs, focusing on local [123–132] and
nonlocal [88, 121, 133–138] conductance signatures and MBS quality assessment
with the help of an additional QD [118, 139–141]. The nonabelian properties of
MBSs and schemes that can be used to probe them [142–150] are the focus of
Section 9. The last part of this chapter is dedicated to minimal Kitaev chains,
which are predicted to host states similar to MBSs, called PMMs [151]. Minimal
Kitaev chains have received a lot of attention very recently, due to important
theoretical (see Ref. [152] and papers I and II) and experimental [27–29, 88, 89]
advances.

6 The Kitaev chain

The Kitaev chain [32] is a TB chain of spinless fermions with p-wave supercon-
ducting pairing. The Hamiltonian describing the system is given by

HKitaev = −
N∑

n=1

μc†ncn −
N−1∑
n=1

(tc†ncn+1 +H.c.) +

N−1∑
n=1

(Δcncn+1 +H.c.), (34)

where cn annihilates an electron on cite n, −μ is the energy associated with oc-
cupying a site, t quantifies the hopping between neighbouring sites, and Δ is the
superconducting pairing between neighbouring sites. We will, in the following,
take t and Δ to be real. The system is shown in Figure 13(a), where the fermi-
onic sites are denoted with the black dashed ellipses. Each fermionic mode can
be decomposed in terms of two MBSs on the same site as cn = 1

2(γn,A + iγn,B)
[MBSs are denoted with red dots in Figure 13(a)]. In terms of the MBSs, Eq. (34)
becomes

HKitaev =− 1

2

N∑
n=1

μ(1 + iγn,Aγn,B)

+
1

2

N−1∑
n=1

[i(Δ + t)γn,Bγn+1,A + i(Δ− t)γn,Aγn+1,B] .

(35)

Depending on the values of the parameters μ, t, and Δ, two distinct cases can
be identified. For t = Δ = 0 and μ �= 0, Eq. (35) becomes

HKitaev = −1

2

N∑
n=1

μ(1 + iγn,Aγn,B) = −
N∑

n=1

μc†ncn, (36)
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Figure 13: (a) The Kitaev chain. The black dashed ellipses denote fermionic sites and μ, t, and Δ quantify
the onsite potential, nearest-neighbour hopping, and nearest-neighbour superconducting pairing
respectively. The operators on fermionic site n can be decomposed in terms of MBSs γn,A and
γn,B (red dots). (b) In the trivial case, only MBSs from the same fermionic site couple. (c) In
the topological case, only MBSs from neighbouring sites couple.

and only MBSs within the same fermionic site are coupled. This case describes
one fermionic mode localized on each site, see Figure 13(b).

For Δ = t �= 0 and μ = 0, Eq. (35) reduces to

HKitaev =

N−1∑
n=1

itγn,Bγn+1,A = t

N∑
n=1

(
2d†ndn − 1

)
, (37)

where only MBSs on neighbouring sites are coupled [see Figure 13(c)] and dn =
1
2(γn,B + iγn+1,A) are fermionic modes composed of the coupled MBSs. Since
MBSs γ1,A and γN,B do not appear in Eq. (37), they commute with the Hamilto-
nian, and they can be used to define a delocalized fermionic mode

f =
1

2
(γ1,A + iγN,B), (38)

that also commutes with the Hamiltonian. With this choice of parameters, the
ground state of HKitaev is two-fold degenerate, since the state |0〉 characterised
by the absence of fermionic modes (dn |0〉 = 0) and the state |1〉 = f † |0〉 have
the same energy EGS, as

HKitaev |1〉 = HKitaevf
† |0〉 = f †HKitaev |0〉 = f †EGS |0〉 = EGS |1〉 . (39)

These states have even and odd fermion number parities respectively, as f †f |0〉 =
0 and f †f |1〉 = |1〉. Note also that one gets the one state from the other acting
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with the MBS operators γ1,A and γN,B, e.g., γ1,A |0〉 = |1〉. In addition, there is
always a finite gap 2t to the lowest excited state. Since f is delocalized between
sites 1 and N , operators acting only on site 1 or N cannot read out the parity
of the ground state. Quantum information stored in the parity of the ground
state is thus protected against local perturbations, as long as the energy gap to
the excited states remains finite. This robustness is one of the cornerstones of
topologically-protected quantum computation with MBSs [38–41]. This case is
clearly very different from the previously discussed one. We refer to the phase
of the system depicted in Figure 13(b) (Δ = t = 0, μ �= 0) as trivial and to the
one depicted in Figure 13(c) (Δ = t �= 0, μ = 0) as topologically nontrivial or
topological.

Away from the fine-tuned situation Δ = t �= 0, μ = 0, the lowest energy fermi-
onic mode f can only be decomposed in terms of linear combinations of γn,A(B)

including also MBSs from the interior of the chain and the ground state degener-
acy is lifted [41]. However, as long as μ < |2t|, the ground state energy splitting
decreases exponentially as the system size increases and vanishes in the limit
N → ∞ [153–155]. This scaling of the ground state splitting is a characteristic
of the topological phase and in the following we will see how the phases μ < |2t|
and μ > |2t| are topologically distinct.

Gapped Hamiltonians that can be continuously transformed to each other without
a gap closing are topologically equivalent [156–161]. The passing from a trivial
to a topological regime is signified by a bulk gap closing and re-opening. In order
to study the bulk properties of the Kitaev chain, we enforce periodic boundary
conditions by including the terms −tc†Nc1+ΔcNc1+H.c. in Eq. (34) and perform
the Fourier transformation cn = (1/

√
N)

∑
k e

iknack. Next, we write the Fourier-
transformed Hamiltonian in Bogoliubov-de Gennes (BdG) form. This involves
doubling the degrees of freedom of the system by viewing the electron annihil-
ation operators as creation operators for holes. In practice, this is achieved by
making substitutions of the form

c†kck =
1

2
(1 + c†kck − ckc

†
k), (40)

see Refs. [162, 163] for details. In BdG form, the Fourier-transformed Hamilto-
nian reads (up to a constant term) [41]

HBdG
Kitaev(k) =

1

2

∑
k

(
c†k, c−k

)(−μ− 2t cos(ka) 2iΔsin(ka)
2iΔsin(ka) μ+ 2t cos(ka)

)(
ck

c†−k

)
, (41)

where k = 2πm/N with m ∈ N, and a is the distance between neighbouring
sites. The energy dispersion is

EBdG
Kitaev(k) = ±

√
[μ+ 2t cos(ka)]2 + 4Δ2 sin2(ka). (42)
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Figure 14: QP (Δ = t/2, red lines) and bare electron (Δ = 0, black dashed lines) energy dispersion as a
function of the momentum k for the bulk Kitaev chain. (a) Trivial regime (μ = −3t). (b) Topo-
logical transition (μ = −2t). (c) Topological regime (μ = 0).

Figure 14(a) shows the energy dispersion EBdG
Kitaev(k) as a function of k for μ =

−3t, Δ = t/2 (QPs, red lines), and Δ = 0 (bare electrons, black dashed lines).
We see that the energy spectrum is gapped both in the superconducting and
in the non-superconducting case. For μ = −2t the gap closes at k = 0 [Fig-
ure 14(b)]. For 2t > μ > −2t the QP dispersion becomes gapped, while the bare
electron dispersion remains gapless, as can be seen in Figure 14(c) where they are
plotted for μ = 0. The point μ = −2t is associated with a transition between to-
pologically distinct phases. Similar considerations apply to the transition point
at μ = 2t.

7 The Majorana nanowire

Finding materials with the properties of the Kitaev chain is not an easy task.
Electrons are spinful and the existence of p-wave superconductivity in materials
is an issue of active research [164]. An alternative route is to artificially engineer
a system that exhibits properties similar to the ones of the Kitaev chain, us-
ing more conventional ingredients. One of the early and subsequently intensely
studied proposals is the MNW, a semiconductor NW with Rashba SO coupling
[165–167] proximitized by an s-wave superconductor in a magnetic field [30, 31].
We note that the origin of Rashba SO coupling is different from the origin of the
SO coupling presented in Section 1. The Rashba SO coupling originates from
the structural asymmetry of the combined NW-substrate system, which gives
rise to a finite electric field E inside the NW [168]. These effects are taken into
account by including a Rashba term in the Hamiltonian:

HR
SO =

αSO

�
(e× p) · σ, (43)
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where e is the unit vector along the direction of E, p is the momentum operator,
σ is the Pauli vector and αSO quantifies the Rashba SO strength. We refer to
the vector αSO(e× p)/� as the Rashba SO field.

The Hamiltonian for the MNW is HMNW = HNW+HΔ. The bare NW Hamilto-
nian is

HNW =

∫
dxΨ†(x)

(
p2x
2m

− μ+
αSO

�
σypx +

EZ

2
σz

)
Ψ(x), (44)

where Ψ(x) = [Ψ↑(x), Ψ↓(x)]T is the field operator in real space, m is the ef-
fective electron mass (we drop the * superscript here), μ the chemical potential
of the NW, and EZ is the Zeeman energy resulting from a magnetic field along
ẑ perpendicular to the SO field (αSOpx/�)ŷ. The induced superconductivity is
modelled by

HΔ =

∫
dx

[
ΨT (x)

1

2
ΔiσyΨ(x) + H.c.

]
, (45)

where Δ is the induced superconducting pairing.

We first study the energy dispersion of HNW for an infinitely long NW. Fourier
transforming Eq. (44) using Ψ(x) = (1/2π)

∫
dkeikxΨ(k) we obtain [41]

HNW(k) =

∫
dkΨ†(k)

(
�
2k2

2m
− μ+ αSOkσy +

EZ

2
σz

)
Ψ(k), (46)

where Ψ(k) = [Ψ↑(k), Ψ↓(k)]T . The energy dispersion is

ENW(k) = εk ± rk, εk =
�
2k2

2m
− μ, rk =

√
E2

Z

4
+ α2

SOk
2. (47)

Figure 15(a) shows ENW(k) as a function of k for EZ �= 0 and αSO = 0. The
finite Zeeman energy splits the spin-degenerate parabolic band into two bands
with spins polarized parallel and anti-parallel to the z-axis at every value of
k. Note that states with opposite momenta have the same spin polarization.
The s-wave superconducting pairing in Eq. (45) on the other hand, only couples
electrons of opposite momenta and spins. Thus, even if HΔ is included, the
particle-hole gap remains closed in this case. The dispersion for EZ = 0 and
αSO �= 0 is shown in Figure 15(b). The spin-degenerate bands split at finite
momenta but remain degenerate at k = 0. Electrons with the same energy have
opposite spin polarizations (parallel and anti-parallel to the y-axis) and opposite
momenta in this case. If HΔ is included a particle-hole gap opens. But since
time-reversal symmetry is not broken this gapped phase is topologically trivial.
The dispersion for EZ �= 0 and αSO �= 0 is shown in Figure 15(c). The finite
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Figure 15: Dispersion relation of the bare NW for (a) EZ �= 0, αSO = 0, (b) EZ = 0, αSO �= 0, and
(c) EZ �= 0, αSO �= 0. The chemical potential is set to zero (dashed blue lines).

magnetic field opens a gap at k = 0 and Kramers degeneracy is lifted. Electron
spins at the same energy and opposite momenta align along different directions.
The pairing HΔ can induce a particle-hole gap in this case and time-reversal
symmetry is broken. Thus, HMNW can in principle have a topological phase.

In order to study the topological properties of HMNW, we Fourier transform it
and write it in BdG form [41]:

HBdG
MNW(k) =

1

2

∫
dkΨ†(k)

(
h(k) −Δiσy
Δiσy −h(−k)∗

)
Ψ(k) (48)

where Ψ(k) =
[
Ψ↑(k), Ψ↓(k), Ψ

†
↑(−k)Ψ†

↓(−k)
]T

and h(k) = εk + αSOkσy +
EZ
2 σz. The energy dispersion is

EBdG
MNW(k) = ±

√
ε2k + r2k +Δ2 ± 2

√
ε2kr

2
k +Δ2

E2
Z

4
. (49)

The lowest energy branches (+−) and (−+) of the dispersion relation are plotted
in Figure 16 as functions of k for Δ �= 0 (red solid lines, QPs) and Δ = 0 (black
dashed lines, bare dispersion). In Figure 16(a) EZ < 2

√
μ2 +Δ2 and the QP

spectrum is gapped. The gap closes for EZ = 2
√

μ2 +Δ2 [Figure 16(b)] and
reopens for EZ > 2

√
μ2 +Δ2 [Figure 16(c)]. Similarly to the Kitaev chain, this

gap closing and reopening signifies a topological phase transition. One can in
fact show that, for EZ < 2

√
μ2 +Δ2 and EZ > 2

√
μ2 +Δ2, HBdG

MNW(k) can be
deformed into HBdG

Kitaev(k) in the trivial and the topological regime respectively,
without closing the gap [41, 114]. Thus, in the regime EZ > 2

√
μ2 +Δ2 the

MNW is topologically equivalent to the Kitaev chain in the topological regime
and MBSs are expected to appear at the two ends of the MNW.
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Figure 16: QP (Δ �= 0, red lines) and bare electron (Δ = 0, black dashed lines) energy dispersion as a func-
tion of the momentum k for the MNW. (a) Trivial regime (EZ < 2

√
μ2 + Δ2). (b) Topological

transition (EZ = 2
√

μ2 + Δ2). (c) Topological regime (EZ > 2
√

μ2 + Δ2).

8 Conductance signatures and quality assessment of
MBSs

As in the Kitaev chain, the appearance of unpaired MBSs at the two ends of a
MNW in the topological regime implies a degeneracy between ground states with
different parity corresponding to the zero-energy fermionic mode composed of the
unpaired MBSs being occupied or unoccupied. This feature can be probed with
a transport setup like the one in Figure 17(a), where a MNW in the topological
regime is tunnel-coupled to a normal lead L and the zero-energy fermionic mode
is composed of γ1 and γ2. If the chemical potentials in L and in the MNW
are aligned, electrons in L do not require extra energy to occupy the fermionic
mode in the MNW. This translates to a zero-bias peak in the local differential
conductance GLL = dIL/dVL. The zero-bias peak is, in fact, predicted to be
quantized to the conductance quantum G0 = 2e2/h [123–132]. Early transport
experiments in similar setups indeed exhibited zero-bias peaks [115, 117], but it
gradually became clear that topologically trivial ABSs emerging due to disorder
in long MNWs can mimic the conductance characteristics of MBSs [83, 128, 169–
178]. Since the normal lead is only coupled to one end of the MNW, it is
impossible to distinguish between tunneling into a delocalized fermionic mode
composed of γ1 and γ2 [see Figure 17(a)] and tunneling into a trivial ABS at
zero energy localized at the coupled end. Therefore, a zero-bias peak in the local
differential conductance of a MNW is a necessary but not a sufficient condition
for the MNW to be in the topological regime.

Significantly more convincing evidence can be obtained with nonlocal conduct-
ance measurements [88, 121, 133–138] in a setup similar to the one sketched
in Figure 17(b). Normal leads, L and R, are coupled to opposite MNW ends
which allows measurement of the nonlocal conductances GLR = dIL/dVR and
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Figure 17: (a) Transport setup for measuring local conductance of a MNW with MBSs γ1 and γ2 with a
normal metal lead L. (b) With an additional normal lead R coupled to the other end of the
MNW, nonlocal transport spectroscopy can be performed. (c) Coupling the MNW to a QD D,
information on MBS localization and on the topological properties of the MNW can be obtained
with local spectroscopy alone. (d, e, f) Expected positions of local conductance peaks for the
combined QD-MNW system shown in (c) as functions of the energy εD of the level of QD D for
(d) ξ = 0, η2 = 0 (no splitting of the zero-bias peak), (e) ξ = 0, η2 = η1/2 (diamond pattern),
and (f) ξ = η1/2, η2 = 0 (bowtie pattern).

GRL = dIR/dVL. While a local conductance peak provides evidence of a fer-
mionic state with local support, nonlocal conductance is only finite for states
with finite support along the length of the MNW [134]. Since such states can
only be found in the continuum above the induced gap in the MNW, nonlocal
conductance can monitor the closing and re-opening of the particle-hole gap.
Nonlocal conductance steers the attention to the detection of the passing to the
topological regime rather than the detection of MBSs. A protocol to determine
whether a MNW is in the topological regime was proposed in Ref. [138]. Accord-
ing to the protocol, the existence of simultaneous zero-bias peaks in GLL and
GRR in parameter regimes beyond the topological phase transition as monitored
by GLR and GRL would imply the emergence of unpaired MBSs at the ends of
the MNW with a very high probability. In Ref. [121] it was reported that several
devices passed the protocol.

Coupling a MNW to a QD, local conductance can provide information on the de-
gree of localization of MBSs and on their topological nature by probing the spec-
trum of the combined QD-MNW system [118, 139–141]. The setup is sketched
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in Figure 17(c). QD D is coupled to the left end of a MNW and to the nor-
mal lead L. The splitting of the ground state degeneracy of the bare MNW, ξ,
quantifies the overlap of the MBSs γ1 and γ2 (ξ = 0 for an infinitely long MNW
with γ1 and γ2 localized at the left and right end respectively). The coupling
of the QD to MBS γ1 is η1, while η2 accounts for a possible coupling to MBS
γ2. For topological MBSs |η2/η1| = 0 and the QD couples only to γ1. If a finite
component of γ2 also exists at the left end of the MNW one has |η2/η1| > 0. For
|η2/η1| � 1, the QD couples equally to γ1 and γ2 which corresponds to having
a local trivial ABS at the left end of the MNW. The local conductance peaks of
the combined QD-MNW system appear at the voltages [140]

VL = ±1

2

√
(ξ − εD)2 + (η1 + η2)2 ± 1

2

√
(ξ + εD)2 + (η1 − η2)2, (50)

where εD is the energy of the single QD level which is considered to be spin-
polarized. Figure 17(d) shows the expected positions of the conductance peaks
as functions of εD and for ξ = 0, η2 = 0. In the case of perfectly localized
MBSs and when the QD only couples to γ1, a zero-bias conductance peak is
observed for any value of εD, as coupling to only one of the MBSs cannot lift
the ground state degeneracy of the QD-MNW system. Figure 17(e) shows the
corresponding plot for ξ = 0, η2 = η1/2. Coupling to both MBSs leads to a
splitting of the zero-bias peak which still vanishes for large |εD| but obtains
its maximum value at the resonance (εD = 0), giving rise to a characteristic
“diamond” shape. Finally, for ξ = η1/2, η2 = 0, the zero-bias conductance peak
splits away from the resonance and the MBS overlap gives rise to a characteristic
“bowtie” pattern [Figure 17(f)]. Paper II showed that a similar setup can be used
to assess the quality of PMMs.

9 Nonabelian operations

The successful execution of a braiding experiment would provide the most com-
pelling evidence of the realization of spatially separated MBSs. A few proposals
on how braiding might be realized can be found in Refs. [37, 142–150, 179–185].
All braiding schemes are based on the fact that isolated MBSs are nonabelian
anyons [38–40]. Generalising the results of Section 6, a system with 2N unpaired
MBSs will have 2N degenerate ground states. If a finite gap to the excited states
exists, operations adiabatic with respect to the gap can drive the system from
one ground state to another. Ground state changes within the degenerate sub-
space can be achieved, for example, with exchanges of the MBS positions. Such
operations constitute the basis of topological quantum computation [38–41].
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In this section, we first show that position exchanges of MBSs have nontrivial
effects on their state and how these effects can be harnessed to create a qubit
and perform quantum computation. Next we focus on how such exchanges can
be achieved in a setup with three MNWs [142–150]. We note that in this section
we follow closely the reviews [35, 41].

9.1 Braiding MBSs

Exchanging the positions of two MBSs, γ1 and γ2, can be described with the
action of the unitary braid operator B12:

B12γ1B
†
12 = χ2γ2, B12γ2B

†
12 = χ1γ1, (51)

where χ1, χ2 are factors to be determined. From B12B
†
12 = 1 and γ2n = 1 it fol-

lows that (B12γnB
†
12)

2 = 1. From Eqs. (51) we additionally have (B12γ1B
†
12)

2 =

χ2
2 and (B12γ2B

†
12)

2 = χ2
1, which implies that χ1 = ±1, χ2 = ±1. The ac-

tion of the braid operator on the number operator f †
12f12 = 1

2(1 + iγ1γ2) [with
f12 =

1
2(γ1 + iγ2)] is

B12f
†
12f12B

†
12 =

1

2
(1− iχ1χ2γ1γ2). (52)

Fermion number parity conservation enforces B12f
†
12f12B

†
12 = f †

12f12 which leads
to χ1χ2 = −1. Whether χ1 = 1, χ2 = −1 or χ1 = −1, χ2 = 1 depends on the
Hamiltonian that drives the unitary evolution for the exchange [41, 142]. For
χ1 = 1, χ2 = −1, the effect of exchanging the two MBSs is

γ1 → −γ2, γ2 → γ1. (53)

The specific choice of χ1 = 1, χ2 = −1 allows us to write the braid operator that
exchanges the MBSs γ1 and γ2 as

B12 =
1√
2
(1 + γ1γ2). (54)

The effect of the braid operator on the number states of the fermion f12 (f12 |012〉 =
0, f12 |112〉 = |012〉) amounts only to multiplication with a phase factor:

B12 |012〉 = 1√
2
(1 + i) |012〉 , B12 |112〉 = 1√

2
(1− i) |112〉 . (55)

Acting with the braid operators on the MBSs two times brings the MBSs to their
original positions, but both operators acquire a minus sign:

γ1 → −γ1, γ2 → −γ2. (56)
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An experiment aiming at exhibiting the nonabelian nature of MBSs, would begin
with initializing the system of γ1 and γ2 at a given parity state |012〉 or |112〉.
After performing the exchange, the parity of the MBSs pair is read out. A
prerequisite for this to happen is to fuse the MBSs into the fermion f12 by
bringing them close to each other or by coupling them. According to our analysis
above and depending on the initial state, the outcome of the measurement after
the fusion can either be even parity (corresponding to the vacuum |012〉) or odd
parity (corresponding to the fermion |112〉). Thus, fusing two MBSs one can get
either the vacuum or a fermion. This is a consequence of the fusion rules for
a broad group of anyons – whose most famous representatives are the MBSs –
called Ising anyons [38–40].

Even though braiding and double-braiding MBSs has nontrivial effects on the
MBS operators [see Eqs. (53) and (56)], these effects cannot be detected because
exchanges of two MBSs do not alter the occupation of the fermionic state f12.
In the following section we describe how this is altered if two additional MBSs
are considered.

9.2 MBS qubits

We consider a system of four MBSs γ1, γ2, γ3, γ4 and the basis |n12, n34〉, where
n12 = 012, 112 and n34 = 034, 134, corresponding to the occupation numbers of
the fermions f12 = 1

2(γ1 + iγ2) and f34 = 1
2(γ3 + iγ4). Suppose that the system

is initialized in the even parity state |012, 034〉. Exchanging MBSs belonging to
the same fermion (γ1 ↔ γ2 or γ3 ↔ γ4) has the trivial effect of multiplying the
state with a phase factor. The exchange of MBSs belonging to different fermions
has a nontrivial effect though:

B23 |012, 034〉 = 1√
2
(|012, 034〉+ i |112, 134〉), (57)

where B23 = (1+γ2γ3)/
√
2. We see that starting from a state with zero fermion

occupation, braiding MBSs we obtain a superposition of the fermionic states
being empty or occupied. For a double braid the state changes as B2

23 |012, 034〉 ∝
|112, 134〉. This is a remarkable result. Exchanging the positions of two MBSs
twice, the system does not return to its original state, as the fermion occupations
which are measurable quantities have changed. MBS exchanges can only induce
changes within the same parity subspace and starting from an odd parity state
one would in an equivalent way get B2

23 |012, 134〉 ∝ |112, 034〉.
Four MBSs can be used to define a qubit. Focusing on the even parity subspace,
and considering |012, 034〉 ≡ |0〉 and |112, 134〉 ≡ |1〉 to be the north and south
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pole of the Bloch sphere respectively, an equivalence can be found between the
action of the Pauli matrices on |0〉, |1〉 and the action of products of MBSs on
|012, 034〉, |112, 134〉:

− iγ1γ2 = σz = −iγ3γ4, −iγ2γ3 = σx, −iγ1γ3 = σy = −iγ2γ4. (58)

Qubit operations with MBSs are topologically protected as quantum information
is encoded nonlocally in the MBSs and is thus robust against local perturbations.
However, MBS qubits are susceptible to tunneling of QPs which can change the
computational space from even to odd and vice versa. Such tunneling events
are referred to as QP poisoning [186–188]. QP poisoning sets an upper limit to
the duration of braiding operations. On the other hand, MBS exchanges have
to be performed adiabatically with respect to the gap to the excited states. As
long as the MBS exchanges are performed sufficiently slowly to be adiabatic and
sufficiently fast to avoid QP poisoning, the results of braiding are not dependent
on how the exchanges are performed.

A drawback of quantum computation with MBS qubits is that braid operations
are not sufficient for universal quantum computation; braiding can only imple-
ment qubit rotations by π/2:

B12 = e−iπ
4
σz = B34, B23 = e−iπ

4
σx . (59)

In order to perform universal quantum computation with MBSs, schemes in-
cluding more involved operations have been suggested, see for example Refs. [38,
189, 190]. Alternatively, one could consider combining MBS qubits with other
qubit architectures [191–195].

9.3 Braiding in trijunctions

Since we focus on MBSs in 1D systems, one might wonder how braiding can be
possible, since it requires moving the MBSs around one another. The solution
is to create networks of 1D MNWs, which effectively are 2D. The minimal setup
to physically exchange two MBSs is the trijunction [142, 143, 150] shown in the
panels of Figure 18. The trijunction consists of three connected MNWs A, B,
and C which can fully or partially be in the topological regime hosting MBSs
at the ends of the topological region. This can be achieved with locally varying
parameters such as the chemical potentials in the MNWs. In step 1, none of the
legs of the trijunction is in the topological regime, which is denoted with the
light blue color. In step 2, MNW A becomes topological (darker blue) with two
MBSs γ1 (red) and γ2 (green) at its ends. Adiabatically moving the edges of
the topological region (step 3) the MBS pair can initially be moved to MNW B
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Figure 18: Protocol for physical exchange of the positions of two MBSs in a trijunction consisting of MNWs
A, B, and C. The light (dark) blue color denotes the parts of the trijunction that are in the
trivial (topological) regime. At the end of the protocol the positions of MBSs γ1 (red) and γ2

(green) are exchanged.

(step 4), where now it is γ1 that is closest to the center of the trijunction. In
step 5, the MBSs are transferred to MNW C and in a similar manner back to A
in step 6, where now their positions are exchanged.

The protocol described in the previous paragraph can be very hard to imple-
ment in practice and alternative schemes have been considered to braid MBSs
in trijunctions without physically moving them [144–149]. Such a scheme is out-
lined in the panels of Figure 19. Three MNWs A, B, C are placed in a trijunction
arrangement but the couplings between them and between the MBSs at their
ends can be turned on and off. The aim of the protocol is to exchange MBSs
γ1 (red) and γ2 (green), while MBSs γ3 (yellow) and γ4 (magenta) remain unaf-
fected during the protocol. The protocol begins with the MBSs in C fused (step
1), which is denoted by the gray dots, a finite coupling energy ξC (solid black
line) and a lighter blue color of MNW C. In step 2, ξC is gradually decreased
while the coupling between MNWs A and C, λA, is gradually increased (black
dashed lines). In step 3, λA attains its maximum value and ξC = 0. The MBSs
in A and C closest to the center of the trijunction are now fused, while the
MBS in C away from the junction is decoupled. In Ref. [144] it was shown that
this operation is equivalent to the transfer of MBS γ1 to the end of MNW C
away from the junction. In step 4, λA is gradually decreased while the coupling
between MNWs B and C, λB, is gradually increased. In step 5, λA = 0, λB

attains its maximum value, and γ2 is transferred to the end of MNW A closest
to the junction. Similar tunings of ξC and λB in steps 6 and 7 transfer γ1 to
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Figure 19: Protocol for braiding MBSs γ1 (red) and γ2 (green) with MNWs A, B, and C in a trijunction
arrangement. Colorful MBSs are uncoupled while gray ones are fused. The couplings between
the MNW C and the MNWs A and B (λA, λB) and the coupling between the MBSs in C
(ξC) can be turned on and off. Solid black lines denote maximum couplings while dashed ones
increasing/decreasing couplings.

MNW B. An adapted version of the protocol described above was one of the
nonabelian operations considered in Paper II.

10 Minimal Kitaev chains and PMMs

As mentioned in Section 8, the disorder in long MNWs can lead to the emergence
of trivial ABSs that mimic the conductance characteristics of the MBSs [83,
128, 169–178]. An alternative proposal to avoid complications due to disorder
is to engineer an artificial Kitaev chain consisting of QDs coupled via s-wave
superconducting segments [196]. It was shown in Ref. [151] that a system with
only two QDs coupled via an s-wave superconductor can also host MBSs. In
this section some of the main findings of Ref. [151] are summarized, as they
constitute the basis for the work presented in Papers I and II. We also briefly
discuss the connection between the theoretical model suggested in [151] and a
similar model suggested quite recently [152].

The system considered in Ref. [151] is sketched in Figure 20(a). Two QDs, L and
R, spin-polarized by the noncollinear magnetic fields BL and BR, are coupled
via a superconductor S. The geometry is similar to the one considered for CP
splitters [22–29]. Figure 20(b) shows the corresponding energy level diagram,
where two possible couplings between the QDs, χ and Ω, are also depicted.
The coupling χ quantifies ECT from one QD to the other via states in the QP
continuum of S, while Ω quantifies the strength of CAR, which involves breaking
of CPs in S and subsequent tunneling of the constituent electrons into the QDs
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Figure 20: (a) Setup to realize PMMs. QDs L and R are coupled through a superconductor S and are
subject to noncollinear magnetic fields BL and BR. Adapted from Ref. [151]. (b) Energy level
diagram where the processes of ECT and CAR are shown with strengths χ and Ω respectively.
Adapted from paper II.

L and R. Such tunneling processes are studied in detail in Ref. [197]. Note that
local AR is suppressed as the QDs are spin-polarized. The magnitudes of χ and
Ω depend on the angle ϕ between BL and BR as

χ = χmax cos(ϕ/2), Ω = Ωmax sin(ϕ/2), (60)

where χmax, Ωmax correspond to the maximum strength of ECT and CAR re-
spectively. Since ECT is spin-preserving, χ is suppressed for ϕ = π. On the
other hand, since the electrons of the CPs have opposite spins in S, Ω is sup-
pressed for ϕ = 0. Varying the angle ϕ, the relative magnitudes of χ and Ω
can be tuned, which is crucial for the formation of MBSs in this system. The
Hamiltonian is

Hspinless = ωLd
†
LdL + ωRd

†
RdR + (χd†LdR +Ωd†Ld

†
R +H.c.), (61)

where dL (dR) annihilates an electron in QD L (R) and ωL, ωR are the on-site
energies. The Hamiltonian Hspinless is a minimal version of HKitaev [cf. Eq. (34)]
with only two fermionic sites, with the difference that Hspinless allows for different
on-site energies ωL, ωR. Tuning the on-site energies to ωL = ωR = 0 and the
angle ϕ so that χ = Ω or χ = −Ω, unpaired MBSs appear in the QDs L and
R and the system has two degenerate ground states with even and odd fermion
number parity (see the analysis in Section 6). In order to study deviations from
this fine-tuned situation, we write Hspinless in the many-body basis {|00〉, |11〉,
|10〉, |01〉}, where |nLnR〉 are number states and |11〉 = d†Ld

†
R |00〉:

Hspinless =

⎛
⎜⎜⎝
0 Ω 0 0
Ω ωL + ωR 0 0
0 0 ωL χ
0 0 χ ωR

⎞
⎟⎟⎠ . (62)

The lowest-energy eigenvalues in the even and the odd sector are

Ee =
ω+

2
− 1

2

√
(ω+)2 + 4Ω2, Eo =

ω+

2
− 1

2

√
(ω−)2 + 4χ2, (63)
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where ω+ = ωL + ωR and ω− = ωL − ωR. For ωL = ωR = 0 and |Ω| = |χ|,
Eo − Ee = 0. Note that the degeneracy is not lifted for ωL = 0, ωR �= 0 or
ωL �= 0, ωR = 0. For ωL = ωR = 0 and |Ω| �= |χ|, Eo − Ee = −|χ| + |Ω|, while
for ωL �= ωR �= 0 and |Ω| = |χ|, expanding up to second order in ωL,R, we find
Eo −Ee = ωLωR/2|Ω|. Thus, the ground state degeneracy splits to linear order
in Ω and χ and to second order in ωL,R. This is in contrast to the exponentially
small ground state energy splitting for a Kitaev chain in the topological regime
(see Section 6). The MBSs presented in this section have the same properties
as the MBSs discussed in the previous sections but they can only be found at
fine-tuned sweet spots of the parameter space. They are not associated with a
topological phase and they are not topologically protected. For this reason they
were named PMMs.

Reference [152] proposed an alternative way to tune the relative amplitudes of
ECT and CAR in a system with two QDs coupled via an ABS with energy εABS in
a NW with Rashba SO coupling proximitized by an s-wave superconductor. The
model in Ref. [152] does not require a finite angle between the spin polarizations
in the two QDs. Instead, it relies on the spin-flipping mechanism provided by the
Rashba SO coupling under a global magnetic field. Without SO coupling only
ECT processes would be possible, while the finite SO coupling allows for CAR
processes as well. It was shown in Ref. [152] that the amplitudes of ECT and
CAR depend differently on εABS. For εABS = 0, an interference effect causes the
ECT amplitude to vanish, while the amplitude of CAR is maximal. For large
|εABS| it was found that the amplitude of ECT is finite while the amplitude of
CAR is suppressed. One can thus navigate to a sweet spot with equal amplitudes
of ECT and CAR (and thus PMMs) by controlling εABS.

Both models described above consider fully spin-polarized QDs. This is not the
case in experiments aiming to realize minimal Kitaev chains [27–29, 88, 89], as
a high magnetic field would destroy superconductivity. With a finite splitting
to the higher spin states, the QD charging energies will also play a role. It is
thus fair to wonder whether a sweet spot with PMMs can even be reached under
realistic experimental conditions and, if so, how the properties of the PMMs will
be affected. These issues, along with the effects of strong coupling between the
QDs and the ABS, are the main focus of papers I and II.
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2D topological insulators

Topological insulators are materials that exhibit an insulating bulk and metallic
states at their boundaries. Conductance via the boundary states is dissipa-
tionless as they are protected by time-reversal symmetry which excludes back-
scattering. Among topological materials, topological insulators are classified in
the symmetry class AII according to the Altland and Zirnbauer classification
scheme [156], as they do not have particle-hole symmetry like the topological
superconductors presented in the previous chapter. Apart from the theoretical
interest in topological insulators, several applications that can harness the ro-
bustness of the boundary states have been suggested, see for example Ref. [198].
References [199, 200] provide excellent reviews on topological insulators, while
Ref. [201] provides a self-contained introduction.

In this chapter, we focus on 2D topological insulators. For 2D topological insu-
lators the boundary states are 1D edge states that come in Kramers-degenerate
pairs. This is similar to having two copies of the quantum Hall effect [202, 203],
which is why 2D topological insulators are also called quantum spin Hall insulat-
ors, the difference being that the quantum spin Hall effect requires no magnetic
field. Moreover, the states are spin-momentum locked so the spin current is finite
even though the charge current is zero.

11 CdTe/HgTe quantum wells

The quantum spin Hall effect was first observed in CdTe/HgTe QWs [10], where
a HgTe layer is sandwiched between two CdTe layers. The discovery followed the
prediction by Bernevig, Hughes, and Zhang who modelled the system deriving
the BHZ Hamiltonian [9]. The QW is shown in Figure 21(a). In bulk, for both
materials the same bands as for III-V semiconductors are formed close to the Γ
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Figure 21: (a) Geometry of the CdTe/HgTe QW, Z is the growth direction. Adapted from Ref. [204]. (b,
c) Band diagram for the QW at the Γ point for (b) the topological (d > dc) and (c) the trivial
(d < dc) regime. Adapted from Ref. [9].

point, namely E, LH, and HH4, see Section 1. In CdTe the E band lies above the
LH and HH bands, but in HgTe the band structure is inverted and the LH and
HH bands lie above E. The band diagram for the QW at the Γ point is depicted
in Figure 21(b) (blue continuous line for the E band edge and red continuous
line for the common LH and HH band edge, H). The inverted band structure in
HgTe results in the formation of the subbands E1 from a linear combination of
the E and LH bands and H1 from the HH band, shown with blue and red dashed
lines in Figure 21(b). Thus, in the inverted regime H1 lies above E1. In a QW
heterostructure confinement effects also play a role. If the thickness d of the
HgTe layer is smaller than a critical value dc the CdTe band ordering dominates
and E1 lies above H1 [see Figure 21(c)]. At d = dc the gap closes, signifying
a topological phase transition between the gapped regimes d < dc and d > dc.
The inverted regime with d > dc is topological while the d < dc regime is trivial.

The physics of the relevant subbands of the system is captured by the BHZ
Hamiltonian [9] which reads

HBHZ =

(
h(k) 0
0 h∗(−k)

)
, (64)

where

h(k) =

(
ε(k) +M(k) Ak+

Ak− ε(k)−M(k)

)
, (65)

and ε(k) = C−D(k2x+k2y), M(k) = M−B(k2x+k2y), k± = kx±iky. HBHZ is writ-
ten in the basis (|E1,+〉 , |H1,+〉 , |E1,−〉 , |H1,−〉)T . Within the same subband,
|E1,±〉 or |H1,±〉, ± denotes Kramers partners. The parameters A,B,C,D,M
are adjusted for specific heterostructures. Importantly, M is the parameter that
controls the transition from the trivial to the topological regime. The bands of
the BHZ model in the kx direction and for ky = 0 are plotted schematically in
Figures 22(a, b). In Figure 22(a) the system is in the trivial regime (M > 0)

4The split-off band lies far below in energy and we neglect it in the present discussion.
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Figure 22: Band structure of the BHZ Hamiltonian along kx and for ky = 0. (a) For M > 0 the system is
in the trivial regime and the subbands E1, H1 do not hybridize. (b) For M < 0 the system is in
the topological regime and a hybridization gap is present. (c) SIA induces spin splitting between
Kramers pairs for |kx| �= 0.

and the subbands E1, H1 do not hybridize. For M = 0 the gap closes and for
M < 0 it re-opens and the system is in the topological regime, see Figure 22(b).
Starting from large |kx|, the lower band is H1-like and the higher band is E1-like.
Moving towards smaller |kx| the bands hybridize and in the vicinity of |kx| = 0
the situation is reversed as the higher band is H1-like and the lower band is
E1-like.

One drawback of the CdTe/HgTe QW system is that the topological phase trans-
ition cannot be observed because the parameter controlling the transition is the
thickness of the HgTe layer, which is fixed for each sample and cannot be changed
continuously. Moreover, the fabrication and control of CdTe/HgTe QWs are
quite demanding [11]. Shortly after the observation of the quantum spin Hall
effect in CdTe/HgTe QWs the investigations for additional 2D topological insu-
lator candidate platforms began.

12 InAs/GaSb quantum wells

The InAs/GaSb QW [11] consists of one GaSb layer and one InAs layer between
two layers of AlSb that act as barriers, see Figure 23(a). The system is a type-II
QW and the VB of GaSb is higher in energy than the CB of InAs. The band
diagram is shown in Figure 23(b), with blue (red) continuous lines denoting the
CB (VB) edges in the different layers. E1 (H1) here corresponds to the lowest-
energy subband in the CB (VB) of InAs (GaSb) and is depicted with a blue
(red) dashed line. For small material thicknesses, E1 in InAs is higher in energy
than H1 in GaSb, and the system is in a trivial insulator regime exhibiting a
confinement gap. For larger material thickness, E1 lies lower than H1, and the
system is predicted to be a 2D topological insulator exhibiting a hybridization
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Figure 23: (a) Geometry of the InAs/GaSb QW with AlSb layers, Z is the growth direction. Adapted from
paper VI. (b) Band diagram for the QW depicted in (a). E1 (H1) is the lowest-energy subband
in the CB (VB) of InAs (GaSb) and is depicted with a blue (red) dashed line. Adapted from
Ref. [11].

gap [11]. Note that the electrons are provided by the InAs layer while the holes
by the GaSb one, which leads to relatively weak electron-hole hybridization and
thus a small hybridization gap. Moreover, accumulation of electrons and holes
in InAs and GaSb creates a built-in electric field. This asymmetry is taken into
account by adding a structural inversion asymmetry (SIA) term to the BHZ
Hamiltonian [11, 205]:

HSIA =

⎛
⎜⎜⎝

0 0 −iR0k− −S0k
2−

0 0 S0k
2− iT0k

3−
iR0k+ S0k

2
+ 0 0

−S0k
2
+ −iT0k

3
+ 0 0

⎞
⎟⎟⎠ , (66)

where the first order terms (∝ k±) couple the Kramers pair |E1,±〉, the third
order terms (∝ k3±) couple the Kramers pair |H1,±〉, the second order terms
(∝ k2±) mix the E1 and H1 bands, and R0, T0, S0 are the corresponding para-
meters quantifying the coupling strength. The effect of SIA on the BHZ band
structure is shown in Figure 22(c). Turning on the SIA terms adiabatically the
hybridization gap does not close and the system is still in the topological regime.
SIA splits the Kramers pairs only for |kx| �= 0, while the degeneracy is not lifted
at kx = 0 since time-reversal symmetry is not broken.

An advantage of InAs/GaSb QWs comparing to CdTe/HgTe QWs is that tuning
of the relative position of the bands E1, H1 in the heterostructure can be achieved
with front and back gate voltages Vf and Vb [see Figure 23(b)]. One can thus
drive the system continuously in and out of the topological regime. Experimental
results confirm such a control over the topological phase [12].
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Theoretical tools

13 Tight-binding discretization

The modelling of mesoscopic systems employs a variety of theoretical tools and
computational techniques. TB discretization is a widely used method for calcu-
lating the eigenvalues and eigenvectors of a given closed system and for perform-
ing transport calculations. Its popularity stems from its intuitive formalism and
from the fact that there exist readily available open-source numerical packages
[206–208] that can be used to simulate a wide variety of systems. We have, in
fact, already encountered a TB model in this thesis, the Kitaev chain [32] in
Section 6.

The idea behind TB discretization is to represent real space with a grid of sites
that electrons can occupy. A characteristic length scale is set by the distance
between neighboring sites, the lattice constant d. We note here that d is usu-
ally much larger than inter-atomic distances in real materials and sites do not
correspond to actual atoms, rather to areas in real space representing a number
of atoms. TB discretization techniques that are described here are thus not to
be confused with atomistic TB calculations that account for atomic orbitals.
The discretized system is considered to be a good approximation of the continu-
ous one if d � λdB, where λdB is the de Broglie wavelength of the electrons
in the system. For the calculations in papers III, IV and VI – which involve
semiconductors – d was taken to be on the order of 1 nm.

13.1 General form

Any non-interacting TB Hamiltonian can be written in the form

H =
∑
μ,ν

Hμν |μ〉 〈ν| , (67)
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where μ, ν are collective indices corresponding to sites in real space (r) and any
additional orbitals (a). The coupling between two sites r and r′ is given by
summing over the orbital degrees of freedom

Hrr′ =
∑
a,a′

Hra,r′a′ |ra〉 〈r′a′| . (68)

The total Hamiltonian H can thus be written as a sum over all Hrr′ . Typically,
the Hamiltonian is written in matrix form and exact diagonalization is performed
to find the corresponding eigenvalues and eigenvectors.

13.2 Alternative notations and second quantization form

In the literature the elements of Eq. (68) are often given in the mixed notation

Hrr′ = HM
rr′ |r〉 〈r′| ≡ |r〉 〈r′| ⊗HM

r,r′ , (69)

where HM
rr′ is explicitly written in matrix form, characterizing the internal de-

grees of freedom. The elements of HM
rr′ are Hra,r′a′ and their dimensions are

Na ×Na, where Na is the number of the internal degrees of freedom. HM
rr′ can,

for example, be just a scalar for a system with no internal degrees of freedom or
a 2× 2 matrix for a system with spin 1/2. This notation is used in Section 13.4.

Moreover, it is quite natural to rewrite Eq. (68) within the framework of second
quantization. The action of the operator |ra〉 〈r′a′| on the basis states is defined
by

|ra〉 〈r′a′| |r′′a′′〉 = δr′r′′δa′a′′ |ra〉 . (70)

These properties can be reproduced by the action of creation and annihilation
operators on number states:

c†racr′a′ |r′′a′′〉 = δr′r′′δa′a′′c
†
ra |0〉 = δr′r′′δa′a′′ |ra〉 , (71)

where c†ra creates an electron on site r in orbital a. Equation (68) can thus be
written in a second-quantized form:

Hrr′ =
∑
a,a′

Hra,r′a′c
†
racr′a′ . (72)

13.3 Discretization of continuous Hamiltonians

The first step towards discretizing a continuous Hamiltonian is to replace the po-
sitional basis states of the system and any scalar quantities [collectively gathered
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in the function V = V (x, y, z)] appearing in the Hamiltonian with their discret-
ized counterparts. For a square lattice this is achieved with the replacements

|x, y, z〉 → |xn, yn, zn〉 = |nxd, nyd, nzd〉 ≡ |nx, ny, nz〉 , (73)
V (x, y, z) →V (xn, yn, zn) = V (nxd, nyd, nzd),≡ V (nx, ny, nz), (74)

where nx, ny, nz = 0, 1, 2, ... number the sites along the directions x, y, z.

Next, the Hamiltonian matrix elements 〈nx, ny, nz|H |n′
x, n

′
y, n

′
z〉 have to be cal-

culated in the new basis. This step involves expressing the spatial derivatives
acting on the basis states with finite differences, see for example Ref. [209]. The
partial derivatives with respect to x of a function f(x, y, z) at (xn, yn, zn) are
expressed as

∂xf(xn, yn, zn) ≈ f(xn + d)− f(xn − d)

2d
, (75)

∂2
xf(xn, yn, zn) ≈

f(xn + d) + f(xn − d)− 2f(xn)

d2
, (76)

∂3
xf(xn, yn, zn) ≈

f(xn + 2d)− 2f(xn + d) + 2f(xn − d)− f(xn − 2d)

2d3
. (77)

In the right-hand sides of the above equations, the arguments that remain con-
stant have been suppressed, and expressions of the form f(xn+d) actually stand
for f(xn + d, yn, zn). The partial derivatives with respect to y and z are given
by expressions similar to Eqs. (75–77). The above expressions can be combined
to obtain mixed derivatives. For instance, the mixed derivative ∂xy is given by

∂xyf(xn, yn, zn) =
f(xn + d, yn + d) + f(xn − d, yn − d)

4d2

−f(xn + d, yn − d) + f(xn − d, yn + d)

4d2
. (78)

Given the expressions (75–78) which provide the derivatives at a specific point,
one can express the corresponding operators in the discretized positional basis.
For example, from Eq. (75) it is straightforward to find the expression for ∂x:

∂x ≡ 1

2d

∑
nx,ny ,nz

[
|nx + 1, ny, nz〉 〈nx, ny, nz| − |nx − 1, ny, nz〉 〈nx, ny, nz|

]
.

(79)
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13.4 Applications

Rashba nanowire in a magnetic field

In this section, the first-quantization form of HNW given in Eq. (44) is discretized.
A similar Hamiltonian is the starting point for one of the theoretical models
employed in paper III. The Hamiltonian reads

HNW = − �
2

2m
∂2
x − μ− iαSOσy∂x +

EZ

2
σz, (80)

where � is the reduced Planck’s constant, m, μ, and αSO are the effective electron
mass, chemical potential, and Rashba SO strength in the NW respectively, and
σy,z are Pauli matrices acting in spin space. The system is shown in Figure 24(a).

The NW is discretized in an 1D grid of N points, see Figure 24(b). The discret-
ized positional states are |nx〉 for nx = 0, ..., N −1 and correspond to having one
electron on site nx. According to the previous section, the discretized version of
Eq. (80) is

HTB
NW =

[
σ0 (2t− μ) + σz

EZ

2

] N−1∑
nx=0

|nx〉 〈nx|

− (σ0t+ σyitSO)

N−2∑
nx=0

(|nx〉 〈nx + 1|+H.c.) ,

(81)

where t = �/(2md), tSO = αSO/(2d), and σ0 = diag(1, 1) is the 2 × 2 identity
matrix, written explicitly here. The Hamiltonian matrix elements fall under two
categories:

• Diagonal terms 〈nx|HTB
NW |nx〉 = σ0 (2t − μ) + σz

EZ
2 , which describe the

degrees of freedom of a specific site. These terms are referred to as onsite
terms.

• Off-diagonal terms 〈nx|HTB
NW |nx + 1〉 = −(σ0 t + σy itSO) and their Her-

mitian conjugates, which describe the hopping from site nx + 1 to site nx

and from site nx to site nx+1 respectively. These terms are referred to as
hopping terms.

Having calculated the matrix elements, one can write the Hamiltonian in matrix
form. The resulting matrix has dimensions 2N × 2N as the diagonal and off-
diagonal terms described above are 2× 2 matrices in spin space.

50



Figure 24: (a) Sketch of a Rashba NW subject to perpendicular magnetic and SO fields B and BSO. (b) The
discretized system consists of N sites and d is the lattice constant. The hopping amplitudes t
and tSO are also shown.

BHZ Hamiltonian

The BHZ Hamiltonian was introduced in Section 11 and is repeated here in a
more compact form:

HBHZ = σ0 ⊗ s0 ε(k) + σ0 ⊗ sz M(k) + σz ⊗ sxAkx − σ0 ⊗ sy Aky, (82)

where ε(k) = C − D(k2x + k2y), M(k) = M − B(k2x + k2y). The parameters
A, B, C, D, and M are material-specific and the Pauli matrices σj , sj act in
the spin and band spaces respectively. The primary goal here is to obtain a
discretized real space Hamiltonian in order to study systems finite in both the x
and y directions. Letting one dimension be infinite, the Hamiltonian for a semi-
infinite TB-regularized stripe can be obtained. Finally, letting the remaining
finite dimension be infinite one arrives at a TB-regularized version of Eq. (82).
Initially, the replacements kj → −i∂j are needed to express HBHZ in real space.
Next, the procedure described in Section 13.3 is followed.

For a system finite in both the x and y directions, the total discretized Hamilto-
nian is a sum of the following terms:

• Onsite terms:

∑
nx,ny

[
σ0 ⊗ s0

(
C − 4D

d2

)
+ σ0 ⊗ sz

(
M − 4B

d2

)]
|nx, ny〉 〈nx, ny| . (83)

• Hopping x direction:

∑
nx,ny

[
σ0 ⊗ s0

D

d2
+ σ0 ⊗ sz

B

d2
− iσz ⊗ sx

A

2D

]
|nx + 1, ny〉 〈nx, ny|+H.c. (84)
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• Hopping y direction:

∑
nx,ny

[
σ0 ⊗ s0

D

d2
+ σ0 ⊗ sz

B

d2
+ iσ0 ⊗ sy

A

2D

]
|nx, ny + 1〉 〈nx, ny|+H.c. (85)

Considering the system to be infinite along the x direction, kx is a good quantum
number, and the discretized positional states along x can be Fourier transformed
as

|nx〉 = 1√
Nx

∑
kx

einxdkx |kx〉 , (86)

where Nx is the number of sites along the x direction and |kx〉 are momentum
eigenstates. Using the discrete δ function

δkx,k′x =
1

Nx

∑
nx

einxd(kx−k′x), (87)

Eqs. (83–85) become:

• Onsite terms:

∑
kx,ny

{
σ0 ⊗ s0

[
C − 4D

d2
+

2D

d2
cos(dkx)

]
+ σ0 ⊗ sz

[
M − 4B

d2
+

2B

d2
cos(dkx)

]

+σz ⊗ sx
A

d
sin(dkx)

}
|kx, ny〉 〈kx, ny| . (88)

• Hopping y direction:

∑
kx,ny

[
σ0 ⊗ s0

D

d2
+ σ0 ⊗ sz

B

d2
+ iσ0 ⊗ sy

A

2D

]
|kx, ny + 1〉 〈kx, ny|+H.c. (89)

Considering the system to be infinite in the y direction as well and Fourier
transforming, a TB regularization of Eq. (82) is obtained. Dropping the sums
over kx, ky and the operators |kx, ky〉 〈kx, ky|:

HTB
BHZ = σ0 ⊗ s0

[
C − 4D

d2
+

2D

d2
cos(dkx) +

2D

d2
cos(dky)

]
+ σz ⊗ sx

A

d
sin(dkx)

+ σ0 ⊗ sz

[
M − 4B

d2
+

2B

d2
cos(dkx) +

2B

d2
cos(dky)

]
− σ0 ⊗ sy

A

d
sin(dky).

(90)

The TB Hamiltonians derived in this section form the basis for the TB calcula-
tions performed for paper VI.
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14 Transport calculations with rate equations

The plethora of transport experiments involving mesoscale quantum systems has
led to a blooming of the theoretical field of modelling quantum transport. When
electron-electron interactions can be neglected, one-electron transport theory is
sufficient and the Landauer-Buttiker formalism [210, 211] can be employed in
combination with, e.g., TB models [206]. Neglecting electron-electron interac-
tions is a good approximation for systems in which the coupling to the leads is
the dominant energy scale and when confinement effects are negligible. In trans-
port setups involving QDs these conditions typically do not hold. As discussed in
Section 2, the Coulomb interaction often plays an important role in QD systems
and gives rise to interesting transport features. Common theoretical tools used
in transport calculations involving QDs are, for example, the non-equilibrium
Green’s functions [212] and the numerical renormalization group [213] formal-
isms, both of which can handle the case of strong couplings to the leads. The
former comes in many different versions, but typically has problems with very
strong electron-electron interactions, while the latter typically cannot handle
large systems or systems that are far from equilibrium. When the coupling to
the leads is weak, a good option is to use the rate equations (or Pauli) approach,
which falls under the category of the generalized master equations approaches
[214]. Considering the standard transport scenario with one or more QDs being
coupled to a number of reservoirs, the starting point of these approaches is to
trace out the reservoir degrees of freedom from the total density matrix in order
to obtain the reduced density matrix of the QDs. Next, an equation for the sta-
tionary state (reached after sufficiently long time) of the reduced density matrix
of the QDs can be set-up and solved. Once the reduced density matrix elements
have been calculated, they can be used to calculate particle currents.

Rate equations can be formally derived in the real-time diagrammatics frame-
work [215–217] and from the second order von Neumann approach [218, 219]
by ignoring processes of second and higher order in the tunnel couplings to the
reservoirs and off-diagonal density matrix elements. A derivation for the second
order von Neumann case can be found in Ref. [220]. Here, intuitive arguments
for their validity are given instead, and a form of the equations not relying on
charge being a good quantum number in the system is presented. This form is
useful when superconducting pairing is present in the QDs.

The full system is described by the Hamiltonian

H = HQD +HR +HT, (91)

where HQD =
∑

aEa |a〉 〈a| is the diagonalized QD Hamiltonian with eigenvalues
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Ea and eigenvectors |a〉, HR =
∑

r Hr is the sum of the reservoir Hamiltonians
Hr, and HT contains the couplings between the reservoirs and the QD. Explicitly:

Hr =
∑
kσ

εrkσc
†
rkσcrkσ, (92)

HT =
∑
rkσa

[
T aa′
rσ+ |a〉 〈a′| crkσ − T aa′

rσ− |a〉 〈a′| c†rkσ
]
. (93)

Even though arbitrary interactions are allowed on the QD, we assume that the
reservoirs are noninteracting. The QD eigenstates |a〉 are many-body states of
definite parity (parity here refers to the number of electrons in the QD being even
or odd). The operator crkσ annihilates an electron of spin σ in momentum state
k in reservoir r and εrkσ is the corresponding electron energy. The transition
matrix elements T aa′

rσ+(−) are given by the expressions:

T aa′
rσ+ =

∑
l

trlσ 〈a| d†lσ |a′〉 , T aa′
rσ− =

∑
l

t∗rlσ 〈a| dlσ |a′〉 = (T a′a
rσ+)

∗. (94)

The quantities T aa′
rσ+ describe transitions from QD state |a′〉 to |a〉 caused by an

electron with spin σ jumping from reservoir r into the QD and T aa′
rσ− describe the

same transitions caused by electrons escaping from the QD to the reservoir, while
tlrσ parametrize the coupling between the QD and the reservoir. The orbitals l
can belong to the same or different QDs. From the transition matrix elements
the tunneling couplings can be calculated using Fermi’s golden rule [82]:

Γaa′
rσ+(−) =

∑
k

2π

�
|T aa′

rσ+(−)|2δ(Ea − Ea′ − εrkσ), (95)

where the δ function is included, as the process is only allowed when the energy
difference between the final and the initial state matches the energy of a mode
in the reservoir. The right-hand side of the above expression is summed over k
and turning the sum into an integral using the reservoir- and spin-specific DOS
ρrσ we finally obtain

Γaa′
rσ+(−) =

2π

�
ρrσ|T aa′

rσ+(−)|2, (96)

where ρrσ was taken to be energy-independent. In order to write down the
tunneling rates, one has to also factor in the occupation probabilities of the states
in the reservoirs. Assuming that the reservoirs remain at thermal equilibrium at
all times, the occupation probabilities follow the Fermi-Dirac distribution:

fr(ε) =
1

1 + [exp(ε− μr)/(kBTr)]
, (97)
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where μr, Tr are the chemical potential and temperature of reservoir r and kB
is the Boltzmann constant. For an electron to jump from the reservoirs into the
QD, the difference between the final and the initial QD energies must correspond
to an energy state with a finite occupation probability in the reservoirs. Here,
we employ a weak coupling approximation and only take into account coherent
tunneling of single electrons between the QD and the reservoirs. This is a good
approximation for sufficiently small tunnel couplings (considerably smaller than
the temperature) [220]. The rate with which electrons of spin σ are added to
the QD in order to change the QD state from |a′〉 to |a〉 is

W aa′
σ+ =

∑
r

Γaa′
rσ+f(Ea − Ea′) =

∑
r

W aa′
rσ+. (98)

Similarly, for an electron to jump from the QD to the reservoir, there must be
an available reservoir state and this process has a rate proportional to the state
being unoccupied:

W aa′
σ− =

∑
r

Γaa′
rσ−

[
1− f(Ea′ − Ea)

]
=
∑
r

W aa′
rσ−. (99)

The diagonal elements of the reduced QD density matrix are given by the oc-
cupation probabilities of the QD states. In our approximation, we neglect the
off-diagonal entries of the density matrix (coherences). This is a good approx-
imation as long as any (quasi-)degenerate QD eigenstates differ by a quantum
number that is conserved in the total system [58, 66, 220, 221]. If there exist
degenerate QD eigenstates that correspond to the same quantum numbers, co-
herences must be taken into account. For each state |a〉, the occupation probab-
ility Pa increases with transitions from the rest of the states |a′〉 to |a〉, weighted
by the probability Pa′ of |a′〉 to be occupied. Conversely, Pa decreases with
transitions having |a〉 as the initial state and any other |a′〉 as the final state,
weighted by the probability that |a〉 is occupied (Pa). Therefore, we can write
down the rate equation

Ṗa =
∑
a′,σ

[
W aa′

σ+ +W aa′
σ−

]
Pa′ −

∑
a′,σ

[
W a′a

σ+ +W a′a
σ−

]
Pa. (100)

Note that one can get from state |a′〉 to state |a〉 both by adding (+) and
removing (−) an electron to/from the QD when charge is not a good quantum
number and both processes have to be taken into account. The set of Eqs. (100)
is solved for the steady state Ṗa = 0 and typically is written in the form

WP = 0, (101)

where W is the rate matrix and P is a vector containing the probabilities Pa. The
system is under-determined and the normalization condition for the probabilities
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∑
a Pa = 1 provides the missing equation. Once the probabilities have been

calculated, the particle current flowing out of reservoir r per spin σ can be
expressed by counting particles tunneling into the QD minus particles tunneling
out of the QD weighted by the probabilities of the initial states:

Iprσ =
∑
aa′

(W aa′
rσ+ −W aa′

rσ−)Pa′ . (102)

The total electric current for reservoir r can be obtained summing over spin and
multiplying with −e.

Rate equations were used for differential conductance calculations in papers I
and II.
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Results

15 Summary and discussion for papers I and II

Paper I focuses on the setup shown in Figure 25(a). The studied system consists
of two QDs, L and R, coupled via an ABS in a central segment S, which can
be a short semiconductor NW segment proximitized by a superconductor [27–
29, 88, 89, 152] or a third QD strongly coupled to a superconductor. The QDs
L and R are additionally coupled to two normal leads N with applied voltages
VL and VR, included for tunnel spectroscopy. An applied global magnetic field
B is perpendicular to a SO field BSO, while the QD levels and the energy of the
ABS can be controlled by gates. Figure 25(b) shows the corresponding energy
level diagram with the relevant tunnel processes for the bare system (without the
leads). The Hamiltonian (excluding the leads) is HPMM = HQDs +HABS +HT.
Here, the QDs are described by

HQDs =
∑
σ,j

εjnjσ +
∑
j

Ujnj↑nj↓ +
∑
j

EZjnj↓, (103)

where njσ = d†jσdjσ, d†jσ creates an electron in the single-particle orbital with
energy εj in QD j = L,R with spin σ =↑, ↓, and Uj , EZj are the charging energy
and Zeeman splitting in QD j. The ABS is described by

HABS =
∑
σ

εABSnABS
σ +UABSnABS

↑ nABS
↓ +EABS

Z nABS
↓ +Δc†↑c

†
↓+Δ∗c↓c↑, (104)

where nABS
σ = c†σcσ, c†σ creates an electron in the single-particle orbital of the

central part with energy εABS and spin σ, and Δ, UABS, and EABS
Z are the

induced superconducting pairing, charging energy and Zeeman splitting in the
central part. The tunneling between the QDs and the ABS is given by

HT =
∑
σ,j

tjd
†
jσcσ +

∑
σ

sσ

[
tSOL d†Lσcσ̄ + tSOR c†σdRσ̄

]
+H.c., (105)
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Figure 25: (a) The PMM system. Two QDs, L and R, are coupled via a proximitized by an s-wave super-
conductor central part S that hosts an ABS. The QDs are additionally coupled to normal leads
N. The system is subject to a magnetic field B and a SO field BSO. (b) Corresponding energy
level diagram, where t and tSO are the amplitudes for spin-preserving and spin-flipping tunneling
processes. (c) Maximum calculated MP at even-odd ground-state degeneracies as a function of
EZ for different values of U . The figure is adapted from paper I.

where tj , tSOj are the amplitudes for spin-preserving and spin-flipping hopping
between QD j and the ABS, s↑,↓ = ±1, and σ̄ denotes the opposite spin compared
to σ.

In paper I, we showed that controlling the energies of the QD orbitals and the
energy of the ABS, the system can be tuned to sweet spots with two degenerate
ground states of even and odd fermion number parity. The sweet spots host
PMMs similar to the ones described in Ref. [151] and in Section 10. The physical
mechanism that enables this control is explained in detail in paper I and is closely
related to the one described in Ref. [152] and in Section 10. The novelty here is
that the PMMs emerge in the presence of interactions, with a finite Zeeman field,
and for large couplings between the QDs and the ABS. Due to the finite Zeeman
field, the PMMs are not perfectly localized in QDs L and R, and introducing
a measure that quantifies the PMM localization is necessary. The Majorana
polarization (MP) is such a measure [222–224], as it quantifies the degree to
which a Hermitian operator localized on one QD can switch between the even
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and the odd parity ground states. The MP is given by

Mj =

∑
σ

(
w2
σ − z2σ

)∑
σ (w

2
σ + z2σ)

, (106)

with wσ = 〈o|(djσ + d†jσ)|e〉 and zσ = 〈o|(djσ − d†jσ)|e〉, where |e〉, |o〉 are the
even and the odd parity ground states. The values of |Mj | lie in the interval
[0, 1]. If only one PMM is present in QD j we have |Mj | = 1, while |Mj | < 1
implies the presence of additional PMMs. The sweet spots are thus characterized
by: (i) a doubly-degenerate ground state with even-odd fermion number parity,
(ii) a finite gap between the ground state and the excited states, and (iii) a high
value of the MP.

In paper II, we additionally considered a low-energy model and a corresponding
low-energy MP:

H lowE = ξγγ̃, M lowE
L ≈ 1− ζ2

1 + ζ2
, M lowE

R ≈ −1− ζ̃2

1 + ζ̃2
, (107)

where ξ is the energy of the lowest-energy fermionic mode in the system com-
posed of the PMMs γ and γ̃. At the sweet spot ξ = 0. For a high MP, γ (γ̃)
is mainly localized in QD L (R). The parameter ζ (ζ̃) corresponds to the part
of γ̃ (γ) that is present in QD L (R). The magnitude of ζ lies in the interval
[0, 1], with ζ = 0 implying perfectly localized PMMs. The low-energy model was
used in order to gain intuitive understanding and to study the effect of having
imperfect PMMs on nonabelian operations.

Turning back to the spinful model and HPMM, Figure 25(c) shows the maximum
values of the MP (|M | = |ML| = |MR|) calculated for sweet spots as a function
of EZ and for different charging energies U on the QDs. For a large EZ , the MP
is very close to 1 with almost perfectly localized PMMs, as the system is in a
regime that is captured by the spinless model of Ref. [151] (see also Section 10).
For lower EZ , the maximum MP for the sweet spots decreases but a high U
contributes to retaining high MP values. Experimentally relevant parameters
U ≈ 5Δ, EZ ≈ 1.5Δ [27–29, 88, 89] correspond to |M | ≈ 0.986. For very low
EZ , even-odd degeneracies still exist, but they correspond to low MP values.
For these “low-MP sweet spots” the PMMs are not well-localized in the QDs.

15.1 Navigating to the sweet spot

In Section 8 we saw that local and nonlocal conductance measurements can be
used to detect MBSs in MNWs. The corresponding setup for the PMM system
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Figure 26: (a, b, c) Zero-bias local conductance GLL as a function of the QD energies εL, εR for (a) εABS

tuned to the sweet spot value, (b) |εABS| larger than the sweet spot value, and (c) |εABS| smaller
than the sweet spot value. (d, e, f) As in (a, b, c) but the nonlocal conductance GLR is plotted
instead. Γ is the tunnel coupling between the QDs and the N leads. The figure is adapted from
paper I.

is shown in Figure 25(a). Figure 26(a) shows the calculated local differential
conductance GLL = dIL/dVL at zero bias voltage as a function of the QD energies
εL, εR for εABS tuned to the sweet spot value. The peaks of GLL coincide with
the even-odd degeneracy lines and the sweet spot is located at the point where
the degeneracy lines cross. This is not the case for a detuned εABS as can be
seen in Figures 25(b, c), where the degeneracy lines anti-cross. One can thus
navigate to the sweet spot with local conductance measurements. Depending
on the temperature, however, the features of Figures 25(a, b, c) can be hard to
discern. Nonlocal conductance, on the other hand, gives rise to more distinct
features. In Figure 26(d), GLR = dIL/dVR is plotted for the same parameters
and in the same range as in Figure 25(a). We notice that GLR vanishes along the
degeneracy lines and that the negative and positive components of GLR close
to the sweet spot have comparable magnitudes. The picture is qualitatively
very different for the detuned situations in Figures 25(e) and (f), where the
parameters are the same as in Figures 25(b) and (c) respectively. The peaks
of GLR coincide with the degeneracy lines and GLR is dominated by either
negative [Figure 25(e)] or positive [Figure 25(f)] components. An additional
way to identify sweet spots in the same setup by comparing local conductance
peaks with quantum capacitance measurements is described in paper II.
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Figure 27: (a) The PMM system coupled to an additional QD D in order to assess the PMM quality with
local conductance (upper panel) and sketch of PMMs in the low-energy model (lower panel).
(b, c) Local differential conductance GRR of the combined system as a function of εD and bias
voltage V/2 = VL = −VR. The light-blue lines denote the splitting between the lowest-energy
even and odd parity states. In (b) |M | ≈ 0.986 in the bare PMM system while in (c) |M | ≈ 0.661.
The figure is adapted from paper II.

15.2 Quality assessment of PMMs

The MP is a useful quantity to theoretically assess the quality of PMMs, but it is
important to find experimental signatures that would indicate whether a PMM
system has a high or low MP. For this purpose, the setup shown in Figure 27(a)
was proposed in paper II. The difference between this setup and the setup in
Figure 25(a) is that an additional, spinful, QD D with single-particle orbital
energy εD is placed between the QD L and the lead L. A similar setup was pro-
posed in Refs. [118, 139–141] and was described in Section 8 as an experimentally
accessible way to assess the quality of MBSs in MNWs. The local conductance
GRR of the combined system (PMM system + QD D) was calculated after ex-
panding HPMM to include the QD D and the corresponding couplings. It is
plotted in Figures 27(b, c) as a function of εD and a symmetric bias voltage
V/2 = VL = −VR for PMM systems tuned to the sweet spot. In Figure 27(b),
|M | ≈ 0.986 in the bare PMM system, and the imperfect localization of PMMs
manifests as a splitting in the ground state energy indicated by the light-blue
lines close to zero bias. The splitting is small and because of finite temperature
effects it is not apparent as a splitting in the zero-bias conductance peak. In
Figure 27(c) |M | ≈ 0.661, the energy splitting is considerably larger, and this
translates to a clearly visible splitting of the zero-bias conductance peak. Thus,
the splitting of the zero-bias peak of GRR can be considered as a PMM quality
measure. In terms of the low-energy model, a MP smaller than 1 implies a finite
presence iζγ̃ of γ̃ in QD L [see lower panel in Figure 27(a)]. As a result, QD D
couples to both PMMs and the ground state degeneracy of the combined system
is lifted since there is no uncoupled PMM left.
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Figure 28: (a) Upper panel: Two coupled PMM systems, A and B, with tunneling amplitude tAB between
QDs AR and BL. Lower panel: Sketch of PMMs in the low-energy model. λAB couples the
PMM components in QDs AR and BL. (b, c) The four lowest-energy eigenvalues in the even and
the odd parity sector as a function of tAB . In (b) |M | ≈ 0.986 in the uncoupled PMM systems
while in (c) |M | ≈ 0.661. The figure is adapted from paper II.

15.3 Coupled PMM systems and PMM qubits

In Section 9.2 we established that in order to define a MBS qubit at least four
MBSs are required. Moreover, to realize the type of trijunction used for braiding
in Section 9.3, three coupled MNWs are needed. It is thus important to study
coupled PMM systems to proceed with PMM qubits and braiding. In paper II,
two coupled PMM systems, A and B, were initially considered as shown in
Figure 28(a). The Hamiltonian of the system is a straightforward generalization
of HPMM for two PMM systems, with additional coupling terms. The amplitude
for tunneling between QD R in system A (AR) and QD L in system B (BL) is
tAB. The four lowest-energy eigenevalues in the even and the odd parity sector
as a function of tAB for PMM systems with |M | = 0.986 tuned to their sweet
spots are plotted in Figure 28(b). At the sweet spot, each isolated system has
two degenerate ground states corresponding to even (|e〉) and odd (|o〉) parity.
For tAB = 0, the total system has four degenerate ground states, two with total
even parity (|eA〉 |eB〉 ≡ |ee〉, |oo〉) and two with total odd parity (|oe〉, |eo〉). For
tAB �= 0 the degenerate states split (almost) equally in the even (red continuous
lines) and the odd (green dashed lines) parity sector. As a result, the ground
state remains (almost) two-fold degenerate even for finite tAB. The effect of
lower MP is seen in Figure 28(c), where |M | = 0.661. The finite coupling splits
the states in each parity sector differently, and as a result, the even-odd splitting
of the ground state is larger compared to the case with high MP.

These results can be explained in terms of the low-energy model and the finite
components of PMMs mainly localized in AL (γ̃A) and BR (γ̃B) in the coupled
QDs AR and BL [see the lower panel of Figure 28(a)]. The generalization of
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H lowE for two coupled systems is

H lowE
AB =

i

2

∑
s=A,B

ξsγsγ̃s +
i

4
[λAB(γA − iζAγ̃A)(γB + iζB γ̃B)−H.c.] . (108)

According to the discussion in Section 9, the four PMMs can be used to define
a qubit in the even or the odd parity sector. For the fermions fs =

1
2(γs + iγ̃s),

where s = A,B, in the even parity sector we find σz = −iγAγ̃A = −iγB γ̃B,
σy = iγAγB = −iγ̃Aγ̃B, σx = −iγAγ̃B = −iγ̃AγB, while in the odd parity sector
σz = −iγAγ̃A = iγB γ̃B, σy = iγAγB = iγ̃Aγ̃B, σx = iγAγ̃B = −iγ̃AγB. The
coupling λAB is complex in general, but its phase can be controlled if we couple
the superconductors that proximitize the central parts in a loop. With a real
and positive λAB, H lowE

AB in the even and the odd parity sector can be written as

H lowE
AB,e = −ξ+

2
σz +

λAB

2
(1− ζAζB)σy,

H lowE
AB,o = −ξ−

2
σz +

λAB

2
(1 + ζAζB)σy,

(109)

where ξ± = ξA ± ξB. At the sweet spot ξA(B) = 0. For an MP close to 1,
ζA(B) ≈ 0, the weights of γ̃A and γ̃B in the coupled QDs are not significant, and
the states in the even and the odd subspace split almost equally. As a result,
the even-odd ground state degeneracy remains almost intact. This is what is
seen as an almost zero ground state splitting for tAB �= 0 in Figure 28(b). For a
low MP and significant ζA(B), the difference in the splittings between the even
and the odd states becomes important. This explains the significant splitting
between the even and the odd states in Figure 28(c). Additionally, the difference
between the frequency of the qubit rotation about the y axis in the even and the
odd computational space provides a PMM quality measure in the time domain.

15.4 Nonabelian operations with PMMs

In paper II, braiding with PMMs was considered, and the effect of the imperfect
MP on charge transfer-based [180, 184, 185], measurement-based [179, 182, 183],
and hybridization-induced [142–150] braiding was investigated. The protocols
were simulated using generalizations of Eq. (108) for more than two PMM sys-
tems and additional QDs. The charge transfer-based braiding protocol requires
a simple setup with two PMM systems and an additional QD but poses very
stringent requirements on the PMM quality (|ζ| ≤ 0.01) in order to reproduce
the topological MBS results. The measurement-based braiding protocol involves
a setup with three PMM systems coupled to two additional QDs. The protocol
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Figure 29: (a) Three PMM systems A, B, and C coupled in a trijunction geometry. The PMMs with the
highest contribution per QD for ζ = ζA = ζB = ζC ≈ 0 are also depicted. (b) Probability to
measure the state |oAoB〉 ≡ |oo〉 after a double braid as a function of ζ and protocol duration
τ . The maximum value of the couplings between systems A, B, and C is λmax. The figure is
adapted from paper II.

reproduces the topological MBS results for an MP equal to 1 (ζ = 0). However,
it was found that these results can be mimicked by QPs in the fermionic limit
|ζ| = 1. This requires some extra care in order to identify false positives.

For hybridization-induced braiding, we considered a setup and protocol similar
to the ones presented in Section 9.3 and Figure 19. The setup is shown in Fig-
ure 29(a) and involves three PMM systems A, B, and C. For ζ = ζA = ζB =
ζC = 0, the PMMs are fully localized as indicated in Figure 29(a) and the pro-
tocol exchanges γA and γB. Starting from an even parity in PMM systems A
and B (|eAeB〉 ≡ |ee〉), after a double braid the state becomes |oo〉 with 100%
probability (Poo = 1). Figure 29(b) shows the calculated probability Poo as
a function of ζ and the duration of the protocol τ . The protocol gives a res-
ult very close to the ideal one for |ζ| � 0.1 and for a wide range of protocol
durations. |ζ| = 0.1 corresponds to an MP around 0.98 which is within exper-
imental reach [27–29, 88, 89], as an MP of 0.986 corresponds to a EZ = 1.5Δ
[see Figure 25(c)].

16 Summary and discussion for papers III and IV

16.1 Paper III

Paper III studies a QW epitaxially defined in an InAs NW as sketched in Fig-
ure 30(a). The QW is created by two thick WZ barriers surrounding a narrow
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Figure 30: (a) ZB InAs QW formed by two WZ barriers in an otherwise ZB NW. The directions of the
magnetic fields with respect to the NW axis are also shown. (b) Scanning electron microscope
(SEM) image of the studied NW. The positions of contacts and gates are sketched with yellow
lines. (c) Schematic side view of the setup where the QDs L and R are depicted. (d) Charge
stability diagram of the DQD with the orbital numbers noted. The figure is adapted from
paper III.

ZB area. The NW is tunnel-coupled to metallic leads S and D for transport
spectroscopy, while the QW levels can be electrostatically tuned with the side-
gate voltages VL and VR, see Figure 30(b). For low electron numbers in the
QW, two QDs, left (L) and right (R), are formed and they are schematically
depicted in Figure 30(c). Figure 30(d) shows the zero-bias conductance G for
varying VL and VR. The conductance peaks indeed follow the characteristic for
DQDs honeycomb pattern (see Section 2.3). The system has been studied in
previous works [68–70] in a regime where the first orbital in QD L (OL = 1) is
close to degeneracy with the first orbital in QD R (OR = 1), which is referred to
as the (1, 1) crossing. Observing higher orbital crossings an additional pattern
emerges. Crossings that involve an even (odd) orbital in QD L (R) and an odd
(even) orbital in QD R (L) are sharper than crossings involving only even or
odd orbitals. The reason behind this “even-odd rule” will become clear in the
following.

Each orbital crossing involves four orbitals which can be unoccupied or occupied
by one to four electrons. Disregarding the rest of the electrons in the DQD, we
refer to the situation of occupying one, two, three, or four orbitals involved in the
crossing, as being in the 1e, 2e, 3e, or 4e regime respectively. Paper III mainly
focused on the 1e regime in crossing (2, 3) [green rectangle in Figure 30(d)]. In
the 1e regime only the ground state is occupied and information on the three
excited states can be extracted with cotunneling spectroscopy. We stress here
that this terminology is relevant for one-electron physics and does not refer to
the many-body ground state and excited states which would involve all the elec-
trons in the DQD. Figure 31(a) shows the differential conductance dI/dVDS as
a function of the bias voltage VDS between the leads and an applied magnetic
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Figure 31: (a) Measured dI/dVDS as a function of VDS and B‖ in the 1e regime of the (2,3) crossing.
(b) Calculated energies of the states involved in the 1e regime of the (2,3) crossing as a function
of B‖. The green and purple arrows denote the energies used to extract g-factors. (c) Measured
dI/dVDS as a function of VDS and ΔVL,R in the 1e regime of the (2,3) crossing for B‖ = 0.1 T.
(d) Calculated energies of the states involved in the 1e regime of the (2,3) crossing as a function
of Δorb for B‖ = 0.1 T. The figure is adapted from paper III.

field B‖ parallel to the NW axis in the 1e regime of the (2,3) crossing. Effective
g-factors g∗ can be extracted at a finite magnetic field from the energy split-
ting between states that are degenarate for zero magnetic field. Giant g-factors
(|g∗| ≈ 59, 83) in comparison to the bulk InAs value (g∗InAs = −14.9 [225, 226])
were estimated from Figure 31(a). Additionally, the g-factor enhancement was
only observed for a magnetic field parallel to the NW axis while it was quenched
for a perpendicular magnetic field (|g∗| ≈ 3). Another important feature is that
the g-factors decay rapidly when moving away from orbital degeneracy. This
is apparent in Figure 31(c) which shows dI/dVDS as a function of VDS and the
DQD detuning from the (2,3) crossing ΔVL,R in the 1e regime (at the crossing
ΔVL,R = 0). The splitting between the excited state and the ground state is
maximal for ΔVL,R = 0 and decreases for ΔVL,R �= 0.

The g-factor enhancement was attributed to orbital contributions [227] due to
the formation of ring-like states. This explains the highly anisotropic g-factor,
as orbital contributions are absent for a magnetic field perpendicular to the
formed rings. SO interaction and the alignment of an even (odd) orbital from
QD L with an odd (even) orbital from QD R were found to be the necessary
ingredients for the formation of such states. Significantly enhanced g-factors have
also been observed in carbon nanotubes [228] and semiconductor NWs [229, 230]
without the formation of DQDs. The novelty in this system is that the g-factor
enhancement can be controlled by electrical means, since, detuning the DQD
from orbital degeneracy destroys the ring-like states and leads to a fast decay of
the g-factor.

The experimental findings were supported by three theoretical models. The first
one relied on 3D modelling of the electrostatic environment of the segment of
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the NW containing the DQD and the WZ barriers. Once the electrostatic po-
tential on the DQD was determined, it was used as input to a single-electron
Hamiltonian in the effective mass approximation. The software COMSOL was
used to obtain the potential and solve the Schrödinger equation. Several para-
meters were adjusted to match the experimentally extracted g-factors and the
energy spectrum in the (2, 3) crossing. For example, Figure 31(b) shows the
magnetic field dependence of the four states involved in the (2,3) crossing in the
1e regime. The g-factors can be extracted from energy differences in a similar
manner as in Figure 31(a). Figure 31(d) shows the energies of the four states
involved in the (2,3) crossing as a function of detuning Δorb. We observe that
the splitting between the ground state and the first excited state is maximal at
orbital degeneracy and decreases with detuning, similarly to Figure 31(c).

The second model was more minimalistic, yet it succeeded in capturing the
important physics of the device. The DQD system was modelled as a 1D TB
ring split in two half rings (L and R) by a potential barrier. The starting point for
this model was similar to the 1D TB Hamiltonian of the Rashba NW presented
in Section 13.4 with periodic boundary conditions. With this model, it was
possible to show that the states involved in (even, odd) and (odd, even) crossings
correspond to ring-like states as they carry a finite angular momentum [〈Lz〉 ≈ 1�
for the (2, 3) crossing]. In contrast, the states of (odd, odd) and (even, even)
crossings do not form ring-like states [〈Lz〉 ≈ 0 for the (2, 2) crossing]. Using
this model we also showed that the g-factor can be much more effectively tuned
for the ring-like states of the (2, 3) crossing in comparison to the states of an
actual ring. For the former, the g-factor can be quenched to 30% of its maximum
value with a detuning of approximately 1 meV from orbital degeneracy. At this
detuning range the g-factor for a perfect ring was found to practically not be
affected at all.

The third model employed a perturbation theory analysis in the degenerate sub-
spaces of the (2, 2) and the (2, 3) crossings. The unperturbed system consists of
the two separated QDs L and R and the perturbation couples the QDs at two
points to form a ring. The first-order correction to the energy and thus the split-
ting of the degenerate states was found to be proportional to the SO interaction
strength for the (2, 3) crossing and to the spin-preserving tunneling strength for
the (2, 2) crossing. This explains the experimentally observed sharp features and
the anti-crossings shown in Figure 30(d), as the SO coupling is significantly smal-
ler than the spin-preserving tunneling. Inspecting the perturbed wavefunctions
it was also found that their absolute values are more uniform across the two QDs
in the (2, 3) case. This justifies the ring-like picture, as for a perfect ring the
absolute values of the wavefunctions are constant. Since it is straightforward to
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Figure 32: (a) The DQD Type A system, which can be viewed as a ring with two barriers. The system has a
two-fold rotational symmetry (n = 2). (b) Characteristic honeycomb pattern for the conductance
of a DQD. Crossings with sharp features for B = 0 turn to anti-crossings for B‖ = 0.7 T and
vice versa. The red and purple vectors mark the (6, 3) and (5, 3) crossings respectively. (c) The
ring QD Type B system is created with an extra InAsSb layer. The system is considered to
be a coherent quantum ring with a symmetry axis of high order (n high), with small local
deformations. (d) Conductance measurements for the Type B ring QD system. The grouping of
states (four states per group) is characteristic for a quantum ring. At B‖ = 0.2 T the grouping
is lost and only pairs of states appear. The states within each pair are separated by the Zeeman
splitting which is much smaller than the splitting between states of different angular momenta
(different pairs). This shows large orbital contributions to the effective g-factor. The figure is
adapted from paper IV.

generalize these results to other crossings, this model explains why the even-odd
rule works.

Details on modeling and experimental data on more crossings can be found in
the Supplementary Information of paper III.

16.2 Paper IV

Two types of systems were investigated in this paper. The Type A system is
similar to the DQD system in paper III and is shown in Figure 32(a). The main
difference here is that crossings of higher orbitals were studied and the evolution
of these crossings under a higher magnetic field was recorded. It was found that
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Figure 33: B‖ evolution for the states of (a) a perfect ring (C∞ symmetry), (b) a ring with four barriers
(C4 symmetry), and (c) a ring with two barriers (C2 symmetry). The figure is adapted from
paper IV.

the crossings that correspond to ring-like states for B = 0 (with an odd and an
even orbital aligned) are not ring-like for B‖ = 0.7 T, whereas the opposite is true
for the crossings not corresponding to ring-like states at B = 0 (with two odd
or two even orbitals aligned). These features can be seen in Figure 32(b), where
crossings that are sharp and are only split by the SO interaction for B = 0 turn
to anti-crossings for B‖ = 0.7 T and vice versa. An explanation is provided by an
extension of the degenerate perturbation theory analysis employed in paper III.
For a flux through the DQD system equal to half a flux quantum (φ = 0.5h/e)
corresponding to B‖ = 0.7 T, the overlap integrals between the QDs L and R
change sign [gaining a phase exp(iπ/2)] so that the (odd,odd) and (even,even)
crossings are now the ones only split by the SO interaction. Threading another
half a flux quantum through the DQD, one period is completed and the system
returns to the B = 0 behavior.

The Type B system is similar to the Type A system with an additional InAsSb
layer covering the NW (and thus the DQD), forming a ring QD as depicted in
Figure 32(c). The formation of a single QD is apparent from the conductance
measurements shown in Figure 32(d) and the absence of the honeycomb pattern.
Moreover, the grouping of four states that split only by the charging energy is
characteristic for the energy spectrum of a quantum ring with orbital and spin
degeneracy.

A perfect quantum ring threaded by a magnetic flux exhibits the Aharonov-
Bohm effect [231] and the different angular momentum states cross for an in-
creasing B‖. A TB model was used to calculate the energy spectrum of such a
ring, shown in Figure 33(a). The energy spectra of rings with various types of
barriers under a magnetic field have been studied both theoretically [232, 233]
and experimentally [234]. A perfect ring has an infinite rotational symmetry
C∞ and rings with lower symmetry can be studied by including appropriate
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Figure 34: (a) Sketch of the NW and close-up from the part with the WZ barriers along with the corres-
ponding band diagram. (b) SEM image of the setup. The NW is outlined with drawn purple
dots and the Josephson junctions are depicted with green crosses. Cr/Au top-gates (TG) are
used to tune the orbitals of the DQD and the transmission of REF. The SQUID loop is made of
Ti/Ai. (c) Sketched cross-section of the NW. For low electron occupancies the QD breaks into a
parallel DQD configuration. The DQD orbitals are also controlled by a Si++ back-gate (BG).
The figure is adapted from paper V.

barriers. Anti-crossings between different angular momentum states of these
imperfect rings lead to gaps in their energy spectra and the grouping of states
according to the rings’ symmetries. Figure 33(b) shows the calculated spectrum
for a ring with four barriers as a function of B‖. The system has a C4 rotational
symmetry which leads to the grouping of states in groups of four (not counting
spin). Aharonov-Bohm oscillations also appear, with a period completed for a
flux through the ring equal to one flux quantum. Similarly, the Type A DQD
system can be viewed as a ring with two barriers corresponding to a C2 rotational
symmetry and the calculated spectrum can be seen in Figure 33(c). This system
does not exhibit ring-like states for B = 0 but for half a flux quantum threading
the ring instead, where an approximate four-fold degeneracy is observed. Details
on the TB model can be found in the Supporting Information of paper IV.

17 Summary and discussion for paper V

In paper V, an InAs/InAsSb core/shell NW was studied in a SQUID geometry.
The NW is mainly in the ZB crystal phase and closely separated WZ barriers
epitaxially define a QD. Figure 34(a) shows a sketch of the NW and a close-
up of the QD segment with the corresponding band diagram. The structure
of the NW is similar to the Type B system of paper IV. Figure 34(b) shows
an SEM image of the SQUID and the position of the NW is outlined with
drawn purple dots. A superconducting Ti/Al loop connects the ends of the
NW, while the central part of the NW is also covered by a Ti/Al arm. This
creates two Josephson junctions marked with green crosses. We focus on the
Josephson junction containing the WZ segments, while the other, ZB junction
serves as a reference (REF). For low electron occupancies the QD breaks into a
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Figure 35: (a) Charge stability diagram for the weak-coupling crossing I. (b) ISW as a function of B for
the points in the (1,1) regime marked in (a). (c) ISW for a varying VBG along the red arrow
shown in (a). (d) Charge stability diagram for the intermediate-coupling crossing II. (e) ISW as
a function of B for the points in the (1,1) regime marked in (d). In the panels corresponding to
a π phase lines and points are plotted in red, while in the ones corresponding to a 0 phase they
are plotted in blue. The figure is adapted from paper V.

parallel-coupled DQD configuration, see Figure 34(c). The formation of a DQD
is attributed to local potential variations, reinforced by a top-gate (TG) and a
back-gate (BG) which control the DQD orbitals.

The magnetic flux through the SQUID is controlled by a perpendicular magnetic
field B. The current-phase relation is extracted by applying an increasing current
bias at different B values and measuring the differential resistance dV/dI through
the SQUID. The switching current ISW for each B value is estimated as the
maximum current for which dV/dI ≈ 0. For a larger current superconductivity
is destroyed and dV/dI becomes finite abruptly.

Current-phase relations for three orbital crossings with different tunnel coup-
lings were extracted. In analogous experiments with a single QD, a π shift was
observed in the SQUID current-phase relation for an odd QD occupation, which
implies a π shift in the QD current-phase relation [93, 235]. Thus, for spin-1/2
states, a single QD behaves as a π-junction. In paper V, it was found that the
DQD can, for certain configurations, exhibit a π phase for spin-1/2 states such
as (0,1) and (1,0), where (nT, nB) denote the occupations of the orbitals con-
trolled by the TG and the BG at a specific crossing. This is non-trivial, as seen
as isolated tunneling channels, nT(B) = 0 contributions lead to a 0 phase, while
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nT(B) = 1 contributions to a π phase. Whether the DQD exhibits a π phase or
not depends on the competition between these two contributions [236–238].

Figure 35(a) shows zero-bias conductance measurements as a function of the
BG and TG voltages VBG and VTG for crossing I, which is the crossing with
the weakest coupling between the QDs. Crossing I involves the first orbital in
the TG-controlled QD (orbital-1) and the first orbital in the BG-controlled QD
(orbital-A). It exhibits a π phase for almost all the regimes with an odd total
occupation in the DQD. The only exception is the (2,1) regime that shows a
0 phase. This was attributed to an increased coupling between the DQD and
the superconducting lead once orbital-1 is filled, which makes it the main trans-
port channel for CPs [239, 240]. The current-phase relations for the mentioned
regimes can be found in the Supplemental Material of paper V.

Here, we focus on the (1,1) regime. The panels of Figure 35(b) show the current-
phase relation for three points in the (1,1) regime that are marked in Figure 35(a).
Interestingly, a π phase was observed, regardless of the detuning from the center
of the (1,1) regime. This can be understood from the weak coupling between
the two QDs at crossing I, where transport basically takes place via two inde-
pendent spin-1/2 channels, each contributing to a π phase. Figure 35(c) shows
measurements of ISW along π-phase regimes as depicted by the red arrow in
Figure 35(a). The picture of independent channels is supported by the fact that
ISW is approximately doubled in the (1,1) regime.

Figure 35(d) shows the corresponding charge stability diagram for crossing II.
It involves orbital-1 and the second orbital in the BG-controlled QD, orbital-
B. A much larger coupling between the QDs is observed in this crossing. The
panels of Figure 35(e) show the current-phase relation for three points in the
(1,1) regime that are marked in Figure 35(d). We see that the π phase survives
only close to the center of the (1,1) regime (second panel, red line and points),
while detuning away from the center a 0 phase is observed (first and third panel,
blue lines and points). Thus, control of the orbitals and the hybridization in the
DQD can induce a π − 0 transition. This transition can be attributed to the
increasing double occupation of the individual QDs for an increasing coupling
strength, which favors the 0 phase. For crossing III, the hybridization was even
stronger, and as a result, no π phase was observed in the (1,1) regime.

The interpretation of the experimental findings was supported by theoretical cal-
culations. We modelled the DQD Josephson junction in the ZBW approximation
and calculated the Josephson current using

IJ =
2e

�

dEGS

dϕ
, (110)
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Figure 36: (a) Calculated I
π/2
J for the DQD Josephson junction as a function of the orbital energies εT and

εB for a coupling t ≈ 0 between the QDs. (b) As in (a) but for t = 0.2U . The figure is adapted
from paper V.

where EGS is the ground state energy and ϕ is the phase difference between the
two superconductors forming the junction. If IJ = Ic sin(ϕ+α) (where α = 0, π),
for a 0-junction IJ(π/2) ≡ I

π/2
J = Ic, while for a π-junction I

π/2
J = −Ic. We

thus calculate the supercurrent from Eq. (110) at ϕ = π/2 to compare with
experimental data, as the values of ISW correspond to maximal current values
in the DQD Josephson junction. Details on the model can be found in the
Supplementary Material of paper V.

Figure 36(a) shows the calculated I
π/2
J in the DQD Josephson junction for a

coupling t ≈ 0 between the QDs as a function of the orbital energies εT and
εB that correspond to the QD controlled by the TG and the BG respectively.
In the regimes with odd total electron numbers I

π/2
J < 0, therefore the π phase

dominates. For the regimes with even total electron numbers Iπ/2J > 0, indicating
a 0 phase. Similarly to the experiment, the only exception is the (1,1) regime,
which supports a π phase with significantly larger negative supercurrent. The
same plot for t = 0.2U (where U is the charging energy for each QD) is shown in
Figure 36(b). The π phase survives only close to the center of the (1,1) regime
and slight detunings lead to zero and subsequently positive I

π/2
J . This is also in

good agreement with the experimental findings.

18 Summary and discussion for paper VI

In Section 12, we saw that the InAs/GaSb QW system can be driven to a 2D to-
pological insulator regime hosting edge states [11, 12]. The edge states are robust
against disorder that preserves time-reversal symmetry. In paper VI, the elec-
tronic band structure and the topological nature of a core-shell-shell InAs/GaSb
NW were theoretically explored. Topological insulators are in the symmetry
class AII [156] and are not predicted to have a topological phase in 1D. Never-
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Figure 37: (a) Sketch of the InAs/GaSb QW with AlSb layers. Z is the growth direction. (b) Band structure
of the InAs/GaSb QW calculated with the k·p theory for layer thicknesses tAlSb = 10 nm,
tInAs = 11 nm, and tGaSb = 5 nm. (c) Band structure of the InAs/GaSb QW calculated with
the BHZ model. The parameters were chosen to match the band structure in (b). The figure is
adapted from paper VI.

theless, the studied NW is quasi-1D since it has a radial extent and it is worth
revisiting its topological properties. The calculations were performed within the
k·p theory framework using the Kane Hamiltonian [241] in the envelope func-
tion approximation. Details on this model can be found in Ref. [204]. The BHZ
Hamiltonian [9] presented in Sections 11 and 12 was used to model a finite-
length NW. In order to arrive at a NW geometry from the BHZ Hamiltonian,
we used the discretized Hamiltonians presented in Section 13.4, and imposed
periodic boundary conditions along one dimension. It was found that the NW
hosts end states that do not enjoy general topological protection, yet they are
robust against angular disorder.

Initially, the QW geometry sketched in Figure 37(a) was studied. Figure 37(b)
shows the band structure calculated using k · p theory. With appropriate choices
for the layer thicknesses, a large hybridization gap (Ek·p

g ≈ 3.4 meV) can be ob-
tained. We adjusted the values of the BHZ parameters in order to match the
band structure from the k·p calculations and Figure 37(c) shows the corres-
ponding band structure. With this choice of parameters the system is in the
topological regime.

Next, we studied a NW that is infinite along the z direction, see Figure 38(a).
The NW has an AlSb core and InAs, GaSb shells5. For material thicknesses
equal to the QW case, a much smaller hybridization gap was calculated for the
NW from the k·p theory (Ek·p

g ≈ 1 meV). Such discrepancies are attributed
to the fact that the same material thickness corresponds to a smaller volume
for a shell closer to the core. Curvature effects could also play a role. Fine-

5For computational reasons the AlSb core was taken to be hollow, as shown in Figure 38(a).
In an experiment, the hollow part would actually be filled with AlSb or some other insulating
material. Our choice does not affect the results qualitatively, as we found that the wavefunc-
tions around the gap decay fast in the central AlSb part.
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Figure 38: (a) Sketch of the InAs/GaSb NW with an AlSb hollow core. The radius of the hollow segment is
RC. (b) Band structure of the InAs/GaSb NW calculated with the k·p theory for RC = 10 nm,
tAlSb = 14 nm, tInAs = 9.5 nm, and tGaSb = 6.5 nm. (c) Band structure of the InAs/GaSb NW
calculated with the BHZ model. For the BHZ calculations the parameters are the same for the
NW and the QW band structures. The figure is adapted from paper VI.

tuning the core and shell thicknesses a larger hybridization gap can be obtained
(Ek·p

g ≈ 1.9 meV) and the corresponding NW band structure is shown in Fig-
ure 38(b). Figure 38(c) shows the NW band structure calculated with the BHZ
Hamiltonian with the same parameters as for the QW. The hybridization gap
persists in the BHZ case (EBHZ

g ≈ 3.7 meV). Confinement effects do not play a
role for the BHZ band structure, as the NW is modelled as a 2D system with
periodic boundary conditions along one dimension, and the NW is a “rolled-up”
2D sheet without radial extent. For the same reason, curvature effects are also
absent.

Finally, a finite-length NW was studied within the BHZ model. It was found
that the NW hosts end states, well-separated in energy from the bulk states.
The states are four-fold degenerate, two-fold degenerate in each Kramers sector.
This is in contrast to the finite QW system where the states are only Kramers-
degenerate. All end states were found to be highly localized at the NW ends.

In order to investigate whether the extra degeneracy is of topological nature,
we introduce disorder to the NW. An energy splitting was observed with in-
creasing disorder strength, but as long as time-reversal symmetry is not broken
the states remain Kramers degenerate. A typical disorder realization is shown
in Figure 39(a), where disorder is applied along the axial NW direction (V ax

dis).
Eigenvalues corresponding to bulk states are shown in black, while the ones cor-
responding to end states are shown in blue (finite angular momentum) and red
(zero angular momentum). The green and purple dots mark Kramers-degenerate
eigenvalues at finite disorder strength. Figure 39(b) shows the probability dens-
ities of the states corresponding to these eigenvalues along the NW. We see that
the states corresponding to each pair are very well-localized at one of the NW
ends. We conclude that the splitting due to disorder cannot be attributed to an
overlap of the states and thus the states are not topologically protected. Inter-

75



Figure 39: (a) Spectrum of the finite NW as a function of axial disorder strength. Eigenvalues corresponding
to bulk states are shown in black while eigenvalues corresponding to end states in blue (finite
angular momentum) and red (zero angular momentum). The green and purple dots denote
Kramers-degenerate eigenvalues at finite disorder. (b) Probability density along the NW for the
states corresponding to the eigenvalues marked with green and purple dots in (a). (c) Spectrum
of the finite NW as a function of radial disorder strength. The color code is the same as in (a).
The figure is adapted from paper VI.

estingly, the states are robust against disorder in the angular direction (V ang
dis ),

as one can see in Figure 39(c), since the eigenvalues remain four-fold degenerate
even for finite disorder.
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