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Popular Summary

This thesis revolves around atrial fibrillation (AF), which is the most common car-
diac arrhythmia encountered in clinical practice. Atrial fibrillation is manifested
by an irregular heart rhythm, which may lead to formation of blood clots in the
heart, and consequently, to stroke. The most common symptoms of AF are heart
palpitation, fatigue, and chest pain, while it may as well be completely asymp-
tomatic. Therefore, early identification of AF is of great importance, to enable
timely initiation of anticoagulants and reduce the risk of stroke.

Screening the population at risk of AF provides the opportunity to find pa-
tients with AF at an early stage, and has led to numerous AF screening studies
around the world. Such screening calls for specialized recording systems that are
affordable, portable, safe, and easy to use, now available thanks to recent tech-
nological advances. Such systems include handheld ECG recorders, patches, and
wearables, e.g., smartwatches.

Recording with these systems is often done outside the clinical environment
to facilitate intermittent or continuous recordings over a longer period without
the need for individuals to attend healthcare centers. However, this comes with
the cost that the ECG signals recorded in the home environment often display
a lower signal quality compared to conventional clinical ECG recordings. The
lower signal quality disturbs the performance of automated ECG analysis and
leads to false arrhythmia detections, which require expert review to be ruled out.
Such expert review is a time-consuming and costly procedure.

With the aim to make AF screening more efficient, the main theme of the
present thesis is on quality control in the ECG screening context from signal
measurement to arrhythmia detection. The first part of the thesis addresses iden-
tification of transient noise and artifacts in ECGs recorded using a handheld
device, using a convolutional neural network (CNN) applied before AF detec-
tion to reduce the number of false AF detections. The proposed CNN is able to
identify false beat detections caused by transient noise, which leads to a reduced
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Popular Summary

number of false AF detections.
The second part investigates the signal quality produced by a novel electrode

technology and its potential to reduce the number of false AF detections in com-
parison to a commercially available counterpart. The novel electrode technology
is shown to produce ECGs with a better signal quality and is thus better suited
for automated ECG analysis.

The usefulness of AF screening may be further enhanced by identifying indi-
viduals at risk of developing AF in the future. The third part of the thesis focuses
on the detection of short-episode supraventricular tachycardias (sSVT) which ha-
ve been shown to be associated with a higher risk for development of AF. In this
work, the major challenge is to detect very brief episodes of arrhythmia, i.e., as
short as 2.4 s, in data of lower signal quality, without causing large numbers of
false detections. With the proposed method, the number of false detections of
sSVT is considerably reduced.

Finally, the last part of the thesis presents a simulation model for ECG signals,
capable of generating multiple types of rhythms, as well as noise and artifacts of
various sources, in a time-varying manner. The availability of simulation models
is of great importance for performance evaluation of arrhythmia detectors and
quality control techniques where the availability of expert annotated data is li-
mited, as well as when training machine learning models, which require large
training databases.

Overall, the four parts of the thesis, in different ways, contribute to a more
efficient AF screening.
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Abstract

This thesis comprises an introductory chapter and four papers related to quality
control in ECG-based atrial fibrillation (AF) screening. Atrial fibrillation is a
cardiac arrhythmia characterized by an irregular rhythm and constitutes a major
risk factor for stroke. Anticoagulation therapy significantly reduces this risk, and
therefore, AF screening is motivated. Atrial fibrillation screening is often done
using ECGs recorded outside the clinical environment. However, the higher
susceptibility of such ECGs to noise and artifacts makes the identification of
patients with AF challenging. The present thesis addresses these challenges at
different levels in the data analysis chain.

Paper I presents a convolutional neural network (CNN)-based approach to
identify transient noise and artifacts in the detected beat sequence before AF
detection. The results show that by inserting a CNN, prior to the AF detector,
the number of false AF detections is reduced by 22.5% without any loss in the
sensitivity, suggesting that the number of recordings requiring expert review can
be significantly reduced.

Paper II investigates the signal quality of a novel wet electrode technology,
and how the improved signal quality translates to improved beat detection and AF
detection performance. The novel electrode technology is designed for reduction
of motion artifacts typically present in Holter ECG recordings. The novel elec-
trode technology shows a better signal quality and detection performance when
compared to a commercially available counterpart, especially when the subject
becomes more active. Thus, it has the potential to reduce the review burden and
costs associated with ambulatory monitoring.

Paper III introduces a detector for short-episode supraventricular tachycardia
(sSVT) in AF screening recordings, which has been shown to be associated with
an increased risk for future AF. Therefore, the identification of subjects with such
episodes may increase the usefulness of AF screening. The proposed detector
is based on the assumption that the beats in an sSVT episode display similar
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morphology, and that episodes including detections of deviating morphology
should be excluded. The results show that the number of false sSVT detections
can be significantly reduced (by a factor of 6) using the proposed detector.

Paper IV introduces a novel ECG simulation tool, which is capable of pro-
ducing ECGs with various arrhythmia patterns and with several different types of
noise and artifacts. Specifically, the ECG simulator includes models to generate
noise observed in ambulatory recordings, and when recording using handheld
recording devices. The usefulness of the simulator is illustrated in terms of AF
detection performance when the CNN training in Paper I is performed using
simulated data. The results show a very similar performance when training with
simulated data compared to when training with real data. Thus, the proposed
simulator is a valuable tool in the development and training of automated ECG
processing algorithms.

Together, the four parts, in different ways, contribute to improved algorith-
mic efficiency in AF screening.
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Chapter 1

Background and Motivation

1.1 Thesis Introduction

Atrial fibrillation (AF) is the most common arrhythmia in clinical practice with
a prevalence of 3% and higher in the population above 60 years of age [1]. Atrial
fibrillation constitutes a major risk factor for stroke [2], and recent estimates sug-
gest that 13% of all patients with AF are undiagnosed [3]. Therefore, screening
for AF has been suggested as a means to reduce the consequences of AF.

In recent years, home-based screening for AF has been facilitated by novel
portable technologies for ECG measurement, and has reached a technologi-
cal capacity to allow screening on a population level, also referred to as mass-
screening [4–14]. One major challenge when performing ECG-based AF screen-
ing on a population level is the very large number of ECGs that are generated,
which necessitates automated analysis for the detection of pathological ECG char-
acteristics, ideally aiming at finding all patients with previously undetected AF
to an as low false alarm rate as possible.

However, performing home-based screening for AF with such a requirement
is challenging, mainly due to the higher susceptibility of home-based recording
systems to noise and artifacts in comparison to standard resting ECGs. Another
challenge that further complicates the detection of AF is the presence of a broad
range of non-AF arrhythmias in the elderly population who are often the target
of screening.

In the screening setting, ECG episodes with lower signal quality disturb the
detection of important ECG characteristics such as the exact beat occurrence
times, which in turn may lead to false arrhythmia detections. Such false arrhyth-
mia detections will require manual review by clinical experts to be ruled out. Due
to the size of screening databases and the aim to find all important cases, the re-
quired manual review may become a time-consuming and costly task. Thus, the
inherent logic of ECG screening is that better ECG measurement quality trans-
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Chapter 1. Background and Motivation

lates to better arrhythmia detection performance, lower false alarm rates, and vice
versa.

The work in the present thesis is closely related to the analysis chain from
measurement via detection of ECG characteristics to clinical decision making,
see Fig. 1.1. The common theme of the included papers is on signal quality and
its relation to AF screening performance; how signal quality can be addressed in
the arrhythmia detection stage, how a better signal quality achieved in the mea-
surement stage translates to better detection of ECG characteristics, and how
realistic noise and artifacts can be simulated for performance evaluation of ar-
rhythmia detectors and for training of machine learning-based models.

ECG Measurement Detection of ECG Characteristics
Clincal Desicion 

Making

Data Augmentation Clincal Parameters

Figure 1.1: The AF screening analysis chain from ECG measurement, via de-
tection of ECG characteristics to clinical uses cases, including AF detection and
AF prediction. Data augmentation is important when training machine-learning-
based models and for arrhythmia detection performance evaluation.

Specifically, in the context of ECG-based AF screening, this thesis consists of the
following four parts:

• Paper I presents a novel approach to reduce the number of false AF detec-
tions by identification of transient noise which disturbs the beat detection.

• Paper II evaluates a novel electrode technology and investigates resulting
improvements in signal quality and detection performance when com-
pared to a commercially available electrode.

• Paper III presents a novel approach to the detection of short-episode
supraventricular tachycardias, which are associated with a higher risk of
development of AF, and therefore of importance in AF screening.

• Paper IV proposes a model for the simulation of motion artifacts in screen-
ing ECGs and assesses the performance of the method presented in Paper
I when that machine learning model is trained using simulated ECGs in-
stead of real ones.

The remainder of this introductory chapter gives an overview of AF, and as-
sociated treatment options, and summarizes the rationale for AF screening. An
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Chapter 1. Background and Motivation

overview of different types of screening devices and electrodes is given in Chap-
ter 2. Chapter 3 briefly introduces the machine learning approaches used in the
present thesis and summarizes previous works related to data analysis involved in
AF screening including beat detection, AF detection, signal quality assessment,
and prediction of AF. Chapter 4 provides an overview of ECG and noise simula-
tion models. Finally, a summary of the included papers is provided in Chapter 5.

1.2 What is Atrial Fibrillation?

Atrial fibrillation is a supraventricular tachyarrhythmia characterized by abnor-
mal electrical activity in the atria, which causes an irregular heart rhythm, and
thereby inefficient contraction. The most common symptoms of atrial fibril-
lation are fatigue, shortness of breath, palpitations, and chest pain. However,
many patients are asymptomatic, suggesting that the prevalence of AF may be
underestimated.

The diagnosis of AF is based on the rhythm of beats in the ECG. The main
components of a heartbeat in the ECG are the P wave, the QRS complex (consist-
ing of the Q, R, and S waves), and the T wave, where the time between successive
QRS complexes is called RR intervals. An ECG during AF is characterized by
irregular RR intervals, and an irregularly oscillating baseline known as fibrillatory
waves (f-waves) in place of the normal P waves, see Fig. 1.2.

QRS 

P
T

f-wavesf-waves Absence of P waves

RR Interval

Figure 1.2: An example of an ECG during normal sinus rhythm (top panel), and
an example of an ECG during AF (bottom panel), where the RR interval irregu-
larity, presence of f-waves, and absence of P waves can be observed.

5



Chapter 1. Background and Motivation

Based on the duration and recurrent nature of AF episodes, they are classified
into different types, including paroxysmal AF, when recurrent self-terminating
episodes last less than seven days, persistent AF, when self-termination fails
within seven days, long-standing AF, i.e., when an episode is lasting for more
than a year after starting a therapeutic intervention, and permanent AF, when
the intervention has failed and AF has been manifested [15].

1.2.1 Treatment and management of AF

The main problem with atrial fibrillation is that irregular and less organized con-
traction of the atria may lead to formation of blood clots, which may be carried
by the blood towards the brain, and which in turn, may cause a stroke. Therefore,
anticoagulants are, according to guidelines [2], considered for all patients with
AF to reduce the risk of stroke, and thereby, to reduce AF-related mortality.

Apart from stroke prevention, improving the quality of life in patients with
AF is another fundamental objective in the management of AF, pursued using
rate-controlling, or rhythm-controlling interventions. Atrial fibrillation episodes
often display an abnormally high heart rate, which if left untreated, may lead
to a deterioration of ventricular contractibility, and other complications. Rate-
controlling interventions seek to reduce the heart rate by means of pharmaceuti-
cals, or invasive catheter-based ablation therapy.

For most symptomatic patients, when rate-controlling interventions are
unsatisfactory, or for patients in the early stages of AF progression, rhythm-
controlling interventions may be applied. Such interventions aim at restoring
normal sinus rhythm, and at preventing AF recurrence. Electrical cardioversion
and antiarrhythmic drugs are rate-controlling interventions [16].

1.2.2 Rationale for AF Screening

Atrial fibrillation affects more than 30 million individuals worldwide. Only in
Europe, it is estimated that the number of individuals with AF will more than
double, reaching 18 million in 2060 [17], with 120,000-215,000 new cases per
year [1]. The increase is mainly due to the aging population and to intensified
efforts to find undiagnosed patients with AF [2].

Stroke is the first clinical manifestation in around 5-10% of individuals with
AF [18, 19], and as described above, oral anticoagulation treatment has been
shown to reduce the risk of stroke [2]. However, since AF may be paroxysmal and
asymptomatic in many patients, they may remain undetected and are therefore
not offered oral anticoagulants.

In combination, the factors mentioned above, namely the increasing preva-
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Chapter 1. Background and Motivation

lence of AF, and the availability of an accepted test and an efficient treatment
option, are in line with the criteria for medical screening proposed by the World
Health Organization [20] and have led to a Class I recommendation for AF
screening by the European Society of Cardiology [2]. Ongoing clinical trials aim
to answer questions related to the usefulness and cost-effectiveness of large-scale
screening programs [7, 14, 21–23].
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Chapter 2

ECG Electrodes and Recording
Systems

Several different types of ECG systems are available, from the widely used stan-
dard 12-lead ECG used in clinical routine, over ambulatory/Holter ECG systems
aimed at long-term monitoring during days or weeks, to simplified handheld
ECG devices performing intermittent single-lead measurements [24]. There are
also implantable cardiac loop recorders and different types of patches available
for ECG measurements [25, 26].

Several of these types of devices may be used for AF screening either us-
ing long-term continuous monitoring or using intermittent short-term measure-
ments recorded over a period of days or weeks. Obviously, a long-term contin-
uous recording may find more arrhythmic events but at the cost of lower signal
quality when the screened person is performing daily activities, which are well-
known to cause large amounts of disturbances and thereby false alarms. Corre-
spondingly, intermittent recordings have the advantages that no electrodes and
wires are attached to the body, and that all recordings are performed at rest, but,
on the other hand, may miss important events between the measurements.

The usefulness of each of the two techniques depends on the AF burden, i.e.,
the percentage of time in AF of the individual patient. The critical aspects for a
system to be used in a screening setting are that the screening tools are capable
of identifying patients with AF, safe to use, and cost-efficient. As described in
Chapter 1, successful and efficient AF screening relies on ECG recordings of
adequate quality. In this chapter, the measurement of the ECG is explained, first
in terms of the electrode, i.e., the interface to the skin, and its susceptibility to
various types of disturbances, and then, in terms of different recording systems.
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Chapter 2. ECG Electrodes and Recording Systems

2.1 ECG Electrodes and Related Disturbances

The electrical activity of the heart is recorded using a set of electrodes on the body
surface, which serves as an interface between the body and the recording device.
The difference in electrical potential measured between a pair of electrodes is
referred to as a lead. The resulting recording, the ECG, is characterized by a se-
ries of waves with distinct morphology and timing reflecting the patient’s heart
rhythm, see Fig. 1.2. The heart rhythm contains significant diagnostic informa-
tion reflecting whether the activation of the heart is normal or abnormal [27].
Often, a multi-lead configuration is used, combining unipolar and bipolar leads,
so that the spatiotemporal variation in the cardiac electrical field in various direc-
tions is reflected. A unipolar lead measures its voltage in relation to a reference
electrode positioned such that its potential remains almost constant during the
cardiac cycle, while a bipolar lead is a measurement between any two electrodes.

In order to record a reliable, high-quality ECG signal, the electrode should
provide stable contact with the body surface to ensure the minimal influence of
so-called motion artifacts, see below. In addition, the electrode-skin impedance
should be as low as possible to ensure that the measured ECG amplitude is large
enough and thereby well reflects the cardiac activity.

When an ECG is recorded, it may be contaminated by various types of noise
and artifacts, for example, when it is recorded in ambulatory conditions, or in
the home environment without electrode attachment to the body. The most
common types of noise and artifacts are powerline interference, baseline wander,
motion artifacts, and muscle noise [27]. Powerline interference (50/60 Hz) is a
narrowband interference caused by electrical currents induced in the wires to the
electrodes, e.g., due to improper grounding or interference from nearby devices,
whereas baseline wander is low-frequency artifact often caused by respiration,
body movements, sweating, or poor electrode contact. Both these types of dis-
turbances can be handled using linear and non-linear filtering approaches [27].

Motion artifacts are mainly caused by varying skin-electrode contact and a
varying impedance level, especially problematic in ambulatory monitoring when
ECG measurements are performed during daily activities. This type of artifact
is also troublesome when recording using handheld recorders, since the skin-
electrode contact may vary due to hand movements and varying pressure on the
electrodes. Muscle noise is commonly seen in ECGs recorded during ambulatory
monitoring, and during activities involving muscle contractions such as exercise.
Motion artifacts and muscle noise, especially during physical activity, are more
difficult to remove from ECG signals due to their overlapping spectral content
when compared to normal cardiac activity. Instead, more sophisticated denois-
ing strategies [28, 29] or signal quality assessment techniques are employed, to
either suppress the noise and artifacts or to identify and exclude poor quality
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Chapter 2. ECG Electrodes and Recording Systems

segments from further processing, see Sec. 3.4. Such approaches, however, carry
the risk of distorting cardiac components of the ECG, and of missing important
arrhythmic episodes occurring simultaneously with noise and artifacts.

The most direct way to address signal quality is by improvements in the ECG
electrode technology and in that way increase the robustness to noise and arti-
facts. An important factor in electrode design is the skin-electrode impedance
level. The electrode interface to the skin is illustrated in Fig. 2.1. The outermost
layer of the epidermis called the stratum corneum (SC), has a high impedance.
Hydrating this layer using gel creates an ionic pathway between the electrode and
SC, thereby reducing the skin-electrode impedance. Hence, the wet/gel electrode
is the most commonly used type of electrode in clinics today [30].

Figure 2.1: Equivalent circuit of the electrode-body interface.

The drawback of wet electrodes is that they dry out, which reduces the sig-
nal quality during long-term monitoring, and that they then may cause skin
irritation and discomfort. Therefore, during recent years, there has been a large
interest in the development of dry electrodes, often divided into contact and
non-contact dry electrodes [31–39]. Comparisons between dry and wet elec-
trodes have shown higher skin-impedance levels and more motion artifacts in
wet electrodes [32–34]. The signal quality difference has, however, been shown
to be less pronounced in recent studies [39]. Regardless of these efforts, wet elec-
trodes remain the standard choice of electrodes in clinical routine, and work on
improving their long-term properties is ongoing [38].

2.2 ECG Recording Systems

In this section, an overview of different types of ECG systems is provided. The
following types of systems are considered (see Fig 2.2 for an illustration):

• The standard 12-lead ECG
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• The ambulatory/Holter ECG and patches

• The handheld/single-lead ECG

Figure 2.2: An illustration of three types of ECG recording systems: (left) Stan-
dard 12-lead ECG), (middle) Ambulatory/Holter ECG, and (right) Handheld
recording system. Note that the exact position and the number of electrodes vary
for specific devices. This illustration is only for presentation purposes.

The Standard 12-lead ECG
The standard 12-lead ECG is an inexpensive technology for the investigation of a
patient’s cardiac health. Numerous ECG handbooks are available describing the
interpretation of various waves, amplitudes, and intervals; therefore, the standard
12-lead ECG is a globally accepted clinical tool. The recording duration varies
from 10 seconds in many hospital databases up to several hours during different
interventions. The standard 12-lead ECG is intended for diagnostics of ongoing
abnormal activity but is less well-suited for long-term monitoring, where the
main goal is to detect rare events. In AF screening, the main goal is to detect
ongoing AF or more rare episodes of AF, and then a measurement method with
fewer electrodes is sufficient.

The Ambulatory/Holter ECG and patches
Ambulatory monitoring devices, also known as Holter monitors, are widely
accepted in many clinical applications, such as screening and follow-up after
surgery, and are capable of recording ECGs with a duration of 1–30 days. Typi-
cally, a reduced lead system of 1-3 leads is used.

The main advantage of a Holter system is that the patient can wear the device
for a longer period of time, allowing the detection of rare cardiac events. The
main drawback is that the patient may be performing daily activities during the
recording, often causing longer segments of poor quality and a lot of segments
with moderate quality. See Fig. 2.3 for examples of signals recorded during daily
activities. Since non-standard leads are used in Holter systems, the purpose of
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Figure 2.3: Examples of ECGs recorded with a Holter device when the subject
is sitting at rest (top panel), is taking on clothes (middle panel), and is jogging
(bottom panel).

such systems is mainly to detect rhythm-related pathologies and less to detect
morphologic deviations.

Patches may be seen as a smaller and more integrated type of Holter system
incorporating wearable technology that bypasses the need for wire attachments.
The size of the patch limits the possibilities for tailoring specific bipolar leads, but
the placement of the patch may be optimized with respect to a certain recording
protocol so that the effects of noise and artifacts are minimized. Patches have
been used in screening studies, which, due to the extended monitoring time,
resulted in a higher yield of screening [22].

The Handheld/single-lead ECG
Handheld ECG recorders are inexpensive, portable, and easy-to-use devices that
are gaining increasing attention as a reliable tool for AF screening. Handheld
recorders produce an ECG similar to the standard lead I (between the arms) by
placing thumbs, fingers, or palms on the two electrodes, often with a duration of
30 s to 1 minute. Handheld ECG recorders can be used in the home environment
without expert supervision, producing signals with good/acceptable quality in a
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large majority of the recordings [40]. However, the quality of the recorded ECGs
depends on whether the users have carefully followed the provided instructions
for how to perform an ECG measurement. Figure 2.4 shows examples of ECGs
recorded with a handheld device where the signal quality is affected, most likely
due to hand movements or varying pressure on the electrodes.

Handheld devices may be provided with a built-in AF detection algorithm
to produce an immediate response, or they can send the recording to a data cen-
ter for analysis. The Zenicor ECG recorder [41], MyDiagnostick [42, 43], and
Kardia by AliveCor [44] are examples of handheld recorders that have been used
in screening studies.

The short duration limitation of handheld devices is compensated by instruct-
ing the users to record multiple ECGs per day for a period of time, e.g., two weeks
or up to months. Such an approach has been shown to identify up to four times
more patients with AF when compared to standard ambulatory monitoring dur-
ing 24 h [45].

Interestingly, when comparing the two screening studies, LOOP [22], using
implantable loop recorders, and StrokeStop I [21], using a handheld recording
device, a higher reduction of stroke, systemic embolism, all-cause mortality, and
major bleeding was shown in the StrokeStop I study [46]. The reason may be
explained by the fact that many AF patients identified in the LOOP study dis-
played a lower AF burden, which has been shown to be associated with a more
benign outcome [47], while in the StrokeStop I study, the identified AF patients
may have possessed a higher AF burden since AF episodes were found in a limited
screening time period.
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Figure 2.4: Examples of poor quality ECGs recorded using a handheld device,
where the signal quality is affected by hand movements or varying pressure onto
the electrodes.
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Chapter 3

Detection of ECG
Characteristics

The development of signal processing techniques for ECG analysis has been on-
going for several decades. And yet, advances in ECG device technology, availabil-
ity of massive amounts of data, and new clinical studies generate new research
questions and call for novel approaches to tackle the new challenges.

Examples of ECG signal processing needed in AF-related applications in-
clude preprocessing, beat detection and classification, rhythm analysis and ar-
rhythmia detection, extraction and characterization of f-waves, characterization
of AF episode patterns, assessment of drug responses, identification of individ-
uals at risk of developing AF, and outcome prediction of various interventions.
Some of these applications require more than one lead, long-term ECG record-
ings, or longitudinal data for a more reliable outcome, while rhythm analysis and
AF detection are feasible with as short as 30-s single-lead recordings.

Signal quality assessment has emerged as a crucial processing step in ECG
signal processing, mainly due to the growing interest in recording outside the
clinical environment using portable devices as well as during normal daily activ-
ities. As described in previous chapters, poor-quality ECG segments deteriorate
the performance of any subsequent ECG analysis.

Many applications in ECG signal processing involve parts where machine
learning is a useful tool. Detection of ECG characteristics may include one or sev-
eral thresholds applied to the extracted parameters (or features) that are selected
for the task. Depending on the desired level of flexibility in terms of features and
decision boundaries, more advanced machine learning approaches may be uti-
lized. The present thesis is based on this view, where traditional signal processing
and machine learning complement each other in order to solve practical prob-
lems. The description in the rest of the introduction is in line with this view and
describes what has been done related to different applications without separating
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ML-based approaches from other approaches.
In the first section of this chapter, a very brief summary of machine learn-

ing concepts and algorithms, relevant to this thesis, is provided. Then, in the
remainder of this chapter, the focus is on the detection of ECG characteristics
relevant to AF screening, signal quality assessment methods for ECG signals, and
prediction of AF.

3.1 Machine Learning

Machine learning, in broad terms, is a field of study where algorithms learn to
identify specific patterns within a dataset during a training phase. Two main types
of learning can be distinguished as supervised learning and unsupervised learning1.
In supervised learning, a model is exposed to a training dataset where ground
truth (labels) related to the training dataset are provided, and this knowledge is
used to optimize the performance of the model. In other words, the objective is
to learn a function, which optimally maps the training data to the ground truth.
Unsupervised learning, on the other hand, is the case where the ground truth is
not provided, and the model learns the underlying structure of the training data
by itself. In the present thesis, only supervised learning for classification purposes
is used.

A multitude of algorithms and models exist for supervised learning. Tradi-
tional approaches include, e.g., k-nearest neighbors, linear discriminant analysis,
decision trees, random forests, and support vector machines (SVM). In these ap-
proaches, the “raw input data” is transformed to a low-dimensional space, by
means of feature extraction, which is typically based on prior knowledge related
to the task at hand, and the performance becomes associated with the ability of
the user to extract an optimal feature set. This step is bypassed in another class
of models called artificial neural networks (ANN), which are composed of in-
terconnected nodes and layers. The layered architecture of ANNs facilitates the
mapping from raw data to the outputs.

In the following, two machine learning models relevant to the present thesis,
the SVM and the convolutional neural network (CNN), are described in more
detail. The objective of an SVM is to find the hyperplane, which separates the
various classes in the training dataset by maximizing the distance between the
hyperplane and the points closest to the decision boundary. While originally
introduced for linearly separable data, SVMs were extended to non-separable
cases by introducing a slack variable that penalizes data points that occur on the
wrong side of the hyperplane, and to non-linear classification by the kernel trick,

1This is a rather traditional categorization; recent categorizations may include semi-supervised
learning or reinforcement learning as well.

18



Chapter 3. Detection of ECG Characteristics

which maps the data into a higher-dimensional space, where the data can be
linearly separated [48, 49].

A CNN is a specific type of feed-forward ANN. While a wide range of CNN
architectures have been proposed in the literature, their building blocks are of-
ten very similar, namely convolutional, pooling, and fully connected layers [50].
The convolutional layer is the core of the CNN, which performs a convolution
operation using a number of learnable filters/kernels. An element-wise nonlinear
activation function is applied to the convolved results to generate feature maps.
Common activation functions are tanh, ReLU, and sigmoid. Note the important
property of the CNN, which is weight sharing, meaning that a kernel is shared
by all locations (spatial) of the input. Pooling layers reduce the resolution of the
generated feature maps model complexity and introduce a property called shift-
invariance to the CNN. The most common pooling layers are average pooling,
where the average of a local part of the feature map is selected, and max pooling,
which as the name suggests, the maximum value is selected instead. After sev-
eral convolutional and pooling layers, the generated feature maps are flattened,
and connected to one or more fully-connected layers which perform the actual
classification.

3.2 QRS Complex Detection

A crucial step for rhythm analysis and detection of AF is the correct detection of
QRS complexes. An inadequate performance at this step propagates to the sub-
sequent analysis and deteriorates the overall performance. Hence, the detection
of QRS complexes has been widely studied over many decades.

Often, a QRS detector includes two main steps: a preprocessing step, which
emphasizes the QRS complexes in relation to other ECG components, and a
detection step, which utilizes a thresholding approach to identify the QRS com-
plexes. The preprocessing step can be done by means of the first and/or second
derivative of an ECG signal [51], Hilbert transform [52,53], empirical mode de-
composition [54, 55], or wavelet transform [56]. The detection step is done by
means of zero-crossing, or fixed/adaptive thresholding of the transformed ECG
signal [57].

The most common database used for performance evaluation of QRS com-
plex detectors is the MIT-BIH Arrhythmia Database [58, 59], which contains
ECG signals with a variety of QRS complex morphologies, ectopic beats, as well
as noisy segments, where existing methods have reached sensitivities and positive
predictive values above 99.5%.

However, in the presence of noise and artifacts displaying QRS-like wave-
forms, QRS detection is a complicated task. In fact, the topic has been revisited
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in recent years, now focusing on ECG signals recorded under ambulatory con-
ditions using new recording systems such as wearables, where the signals present
lower signal quality [60, 61].

3.3 Detection of AF

Detection of AF is a widely studied topic in the literature. As described previously,
the main properties of an ECG signal during an AF episode are:

• the presence of an irregular rhythm,

• the presence of f-waves, and

• the absence of P waves.

An AF episode with a duration of ≥ 30 s has been considered the standard
requirement for a clinically relevant AF diagnosis. However, AF episodes of
duration < 30 s have received increasing attention in recent years since they
may be an indicator of longer AF episodes outside the screening/monitoring pe-
riod [46, 62, 63].

Quantification of rhythm irregularities is the most prominent attribute for
the vast majority of the proposed AF detectors (referred to as rhythm-based AF
detectors [64]), simply due to the dominant amplitude of R waves when com-
pared to P and f-waves (cf. Fig. 1.2), which may be masked even in the presence
of low-to-moderate levels of noise and artifacts.

An RR interval series is used as the input to rhythm-based AF detectors,
computed by

𝑑(𝑘) = 𝑡(𝑘)−𝑡(𝑘 −1), 𝑘 = 1,…,𝐾, (3.1)

where 𝐾 is the total number of detected QRS complexes and 𝑡(𝑘) is the occur-
rence time of the 𝑘:th R-wave. The most commonly used measures to quan-
tify the irregularity of the RR interval series are statistical dispersion measures,
turning points ratio, histogram-based parameters, entropy measures, symbolic
dynamics, and Poincaré-based measures, see below for further details. An AF de-
tector relies either only on one irregularity measure [65–68], or on a combination
of several measures [69, 70].

As statistical dispersion measures, the coefficient of variation, defined by the
ratio of the standard deviation to the mean of 𝑑(𝑘), and the root mean square of
successive differences defined by

𝐷𝑅𝑀𝑆𝑆𝐷 =
√√√
⎷

1
𝐾

𝐾
∑
𝑘=1

𝑑(𝑘)2, (3.2)
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are the most commonly used in rhythm-based AF detectors [65, 69].
The Poincaré plot is another technique used to characterize the dispersion

of RR intervals as well as classify different types of cardiac rhythms, displaying
successive pairs in an RR interval series, i.e., the current RR interval versus the
previous one, see Fig. 3.1. During an AF episode, the constructed Poincaré plot
is expected to be more scattered compared to during sinus rhythm, or in the
presence of frequent ectopic beats. To translate the level of scattering into a de-
tection feature, the density of points in different regions [66], or the geometrical
characteristics of the points in the Poincaré plot [71], have been used.

Figure 3.1: Poincaré plots obtained from the RR intervals of two 30 s ECGs; (left)
during sinus rhythm, and (right) during AF.

Entropy-based measures, which quantify the predictability (or regularity) of
a given series of observations, have also been used for AF detection. Given an
RR interval series, entropy decreases when the series becomes more predictable
(or less irregular) and increases when the series becomes less predictable (or more
irregular). Several estimates of entropy have been used for AF detection, such as
Shannon entropy, approximate entropy, and sample entropy. Shannon entropy is
defined by

𝐼ShEn = −
𝐵

∑
𝑖=1

𝑝(𝑥𝑖)log2(𝑝(𝑥𝑖)), (3.3)

where 𝑥𝑖 is an observation series, with 𝐵 distinct values, and 𝑝(𝑥𝑖) is the prob-
ability of 𝑥𝑖 to occur, which in practice is estimated using the histogram of the
observation series. Here, the observation series is the RR intervals series, except
that the shortest and longest RR are excluded to decrease the effect of outliers.
This measure is, however, prone to produce a lower-than-expected entropy in
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higher heart rates, as the differences in the RR series are relatively smaller com-
pared to those of a lower heart rate.

Sample entropy is defined as the logarithm of the conditional probability that
if a series repeats itself for 𝑚 samples within a tolerance 𝑟, it also repeats itself for
𝑚+1 samples,

𝐼SampEn(𝑚,𝑟) = ln( 𝐵(𝑚,𝑟)
𝐵(𝑚+1,𝑟)), (3.4)

where 𝐵(𝑚,𝑟) is the probability that a series, in this case 𝑑(𝑘), is repeating itself
for 𝑚 samples within a tolerance 𝑟. To estimate 𝐵(𝑚,𝑟), the RR interval series
𝑑(𝑘), is divided into subsequences of length 𝑚. Then, 𝐵(𝑚,𝑟) is computed as

𝐵(𝑚,𝑟) = 1
(𝐾 −𝑚)(𝐾 −𝑚−1)

𝐾−𝑚−1
∑
𝑖=0

𝐾−𝑚−1
∑

𝑗=0,𝑗≠𝑖
𝐻(𝑟 −||d(𝑖)−d(𝑗)||∞).

(3.5)
where d(𝑖) is a vector of 𝑚 consecutive RR intervals starting at interval 𝑖, and 𝐻
is the Heaviside function. An increasing value of 𝐼SampEn indicates a transition
from normal sinus rhythm to AF.

A simplified approach to sample entropy based on 𝐵(𝑚 = 1,𝑟) is used
in [72], where the maximum norm in (3.5) is replaced by the probability of
two RR intervals within a detection window is differing less than the threshold
𝑟. This simplified measure is estimated by

�̂�(𝑚 = 1,𝑟) = 2
(𝐾 −1)(𝐾 −2)

𝐾−2
∑
𝑖=0

𝐾−1
∑

𝑗=𝑖+1
𝐻(𝑟 −|𝑑(𝑖)−𝑑(𝑗)|. (3.6)

To account for the higher heart rate during an AF episode, (3.6) is divided by the
exponential average of the RR intervals, where RR intervals related to ectopic
beats are excluded. Another possibility to include the heart rate information is
to replace the tolerance 𝑟 with a varying tolerance based on the estimated heart
rate within the detection window.

Since morphological features of the beats are not considered in rhythm-based
AF detectors, they are prone to generate false positives in the presence of frequent
ectopic beats, other irregular arrhythmias, and poor-quality segments. Such prob-
lems with rhythm-based AF detectors have motivated the inclusion of informa-
tion related to the atrial activity, i.e., the absence of P waves and presence of
f-waves, in AF detectors, which may be challenging due to the much lower am-
plitude of such waves, especially in ECGs with low-to-moderate signal quality.
The two approaches presented in [73,74] included P wave absence as a feature in
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the AF detection. Such detectors are also important since they can also be used
in patients with pacemakers or in those taking rate-controlling drugs where beat
irregularity has been suppressed.2

Detectors based on the above-described principles have reached a high per-
formance, i.e., ≥ 97% for both sensitivity and specificity, when tested on the
MIT-BIH Atrial Fibrillation Database (AFDB) [59, 75], in part, since the men-
tioned challenges with irregular non-AF arrhythmias and poor quality signals are
less significant in this database. Therefore, such performance cannot be translated
to AF detection in a screening setting. Based on the AF screening guidelines and
recommendations, the population included in screening studies is often older
than 75 years (or older than 65 with additional risk factors). Therefore, the pres-
ence of arrhythmias other than AF is more likely compared to the case when a
younger population is screened.

In addition to the described detectors, recent interest in deep learning has
led to a new generation of AF detectors, exemplified by the studies [76–80].
Deep learning-based approaches enable the detection of AF without the need
for “expert-crafted features” describing, e.g., irregularity. While showing promis-
ing results, comparison of performance between deep learning-based AF detec-
tors and the “traditional” AF detectors has turned out to be complicated, even
when using the same database, due to annotation conversion often required for
deep learning-based AF detectors3 (i.e., performance evaluation done on a beat-
to-beat or episode-to-episode basis), exclusion of data to handle data imbalance
or poor signal quality, as well as the presence of data from the same patients in
training and test sets [81, 82].

Hence, it is reasonable to conclude that no AF detector is able to detect
AF with high sensitivity and precision in the presence of complicating factors,
such as non-AF rhythms with irregularities that resemble AF, and noise and ar-
tifacts. Such problems are by far more pronounced when dealing with screening
ECGs either in the form of short-term intermittent recordings or in the form of
continuous long-term ECGs recorded during daily activities. For intermittent
recordings, the short duration makes the detection even more difficult as many
irregularity parameters are developed for segments longer than 30 s, where the
performance drops for increasingly shorter episodes.

2Interestingly, the inclusion of information on the atrial activity did not contribute to improving
the performance of the AF detectors when tested on AFDB. This may be explained by the fact
that no measure was included to address the signal quality, which makes reliable identification of
P and f-waves difficult [64].

3Note that the annotation conversion is required for some of the “traditional” AF detectors as well.
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3.4 Signal Quality Assessment

Automated ECG analysis requires reliable identification of ECG characteristics,
which may be difficult when recording in ambulatory conditions, or when using
handheld ECG devices where the electrodes are not attached to the body. Such
recordings are prone to contain motion or muscle artifacts. In terms of arrhyth-
mia detection, a lower signal quality translates to lower QRS and P wave detec-
tion performance, and consequently, poorer arrhythmia detection performance,
often realized by very high false detection rates. Ruling out the false detections
requires manual review by experts, which is a time-consuming and costly task,
and ideally, should be limited to as small a subset of the recordings as possible.

As described in Sec. 2.1, noise and artifacts, including baseline wander and
powerline interference can be suppressed using ECG denoising techniques. How-
ever, motion artifacts, often characterized by rapid baseline variations with QRS-
like appearances, and muscle noise, especially during physical activity, remain
problematic and deteriorate the QRS detection performance and any subsequent
rhythm analysis. In such a case, a more feasible approach is to use signal quality
assessment to exclude noisy ECG segments before further analysis takes place. A
wide variety of approaches have been presented to address signal quality assess-
ment, including the degree of agreement between two QRS detectors and statis-
tical measures such as kurtosis and skewness of ECG segments [83–85], signal-
to-noise ratio (SNR) estimation [86–88], heart rate-based criteria [89, 90], and
correlation-based metrics either in time or in the time-frequency domain [91,92].
Such measures are either used in the form of a rule-based signal quality metric
or fed to a machine learning model to classify an ECG segment into a relevant
quality class.

Estimation of SNR requires an estimate of the noise-free ECG and an esti-
mate of the noise. Estimation of a noise-free ECG was done in [87] by creating
an ensemble average 𝑦𝑎𝑣𝑔(𝑛), defined by

𝑦𝑎𝑣𝑔(𝑛) = 1
𝐾

𝐾
∑
𝑘=1

𝑦𝑘(𝑛) (3.7)

where 𝑦𝑘(𝑛) is the 𝑘:th detected beat. Then, assuming that any deviation from
this “noise-free ECG” is due to noise, the SNR of the 𝑘:th beat was computed
by

𝑆𝑁𝑅𝑘 = 10log10

1
𝑁 ∑𝑁

𝑛=1 𝑦𝑎𝑣𝑔(𝑛)2

1
𝑁 ∑𝑁

𝑛=1(𝑦𝑘(𝑛)−𝑦𝑎𝑣𝑔(𝑛))2
, (3.8)

where 𝑁 is the number of samples included in each beat. Alternatively, SNR
estimation in [88] used wavelet Wiener filtering [93] to estimate a noise-free
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ECG, which was subtracted from the original ECG to estimate the noise. The
SNR was computed similarly to (3.8), except that the output was calculated on
a sample-by-sample basis.

The intervals between successive detected QRS complexes (i.e., RR intervals)
have also been used for signal quality assessment [89, 90], based on that erro-
neous QRS detections in a poor quality ECG affect the RR interval series. A
heart rate variability (HRV)-based approach presented in [90] is based on that in
poor quality ECGs, the estimated HRV signal displays a different energy distri-
bution for various frequency bands compared to one derived from good quality
ECGs, whereas in [89] measures including the mean RR interval, the RR inter-
vals boundaries, and the ratio of the maximum RR interval to the minimum were
used. These measures were then complemented with a template matching mea-
sure using the average of all crosscorrelation coefficients between an ensemble
beat average and each detected beat.

Recently, deep learning approaches have been proposed for ECG signal qual-
ity assessment, exemplified by the studies [94, 95], alleviating the need for fea-
ture extraction. A deep belief network was employed to identify and exclude
episodes of poor quality prior to AF detection in [94]. In another study [95],
a two-dimensional convolutional neural network was employed to classify 5 s
ECG segments, transformed into two-dimensional input using the continuous
wavelet transform, into either good or poor quality. They reported an accuracy
of 93%, while, misclassifying about 5% of the segments annotated as AF as poor
quality.

Signal quality assessment is usually implemented as a binary classification,
where an ECG recording/segment is classified into either poor quality, which
should be rejected, or good quality, meaning that a reliable analysis is possible. A
handful of studies have introduced a more detailed signal quality classification,
e.g., in up to five levels, from clean (or minor noise) to extreme noise [88,96,97].
However, this more detailed classification may become problematic as ECG data
used for training often are annotated by the majority vote of several experts.

While the purpose of signal quality assessment approaches is to identify noisy
ECG segments, a number of studies have taken a step further and investigated the
impact of such identification on arrhythmia detection performance [85, 94, 98,
99]. Obviously, when using a reliable ECG signal quality assessment technique,
the number of false arrhythmia detections is expected to decrease. On the other
hand, its impact on sensitivity in arrhythmia detection is of great importance
and needs to be considered. Tuning a signal quality classifier between sensitivity
and positive predictive value depends on the application. In AF screening, where
high sensitivity is needed, the classifier may be tuned to exclude fewer segments
to not miss important arrhythmic episodes.
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3.5 Prediction of AF

While the main motive of AF screening is the early identification of patients with
AF, the usefulness of screening may be enhanced by identifying individuals with
a higher risk of developing AF in the future. Prediction of AF is closely related
to AF incident risk assessment, where the aim can be to reduce the number of
individuals that need to be screened or to indicate whether an individual may
need extended screening.

Several approaches have been considered for the prediction of AF, including
blood biomarkers [100–102], clinical risk scores [103–106], and ECG-based
features [107–117].

The biomarker N-terminal B-type natriuretic peptide (NT-proBNP) has
been investigated in two studies, showing that patients with AF had elevated NT-
proBNP levels [101,102]. The NT-proBNP was used in the StrokeStop II study
to reduce the number of individuals that needed to be included in the screen-
ing program [14]. Several blood biomarkers related to the pathophysiological
mechanisms of AF were also investigated in [100], where TIMP-4, NT-proANP,
and NT-proBNP were the most associated with the presence of AF. However,
measuring blood biomarkers is an invasive and costly procedure.

The two clinical risk scores, CHADS2 and CHA2DS2 − VASC were origi-
nally introduced to assess the risk of stroke in patients with AF. The two scores
summarize the risk factors of congestive heart failure, hypertension, age, diabetes,
stroke, vascular disease, and gender into a single metric. Given that the compo-
nents of these scores are known to be risk factors for AF, their usefulness for the
prediction of new-onset AF has also been investigated [118,119]. The CHARGE-
AF score, another clinical risk score, specifically developed to assess the risk of
future AF [104], was used in [106] and showed a better performance compared
to CHA2DS2 − VASC for AF prediction.

Several previous studies have investigated AF prediction using ECG-based
features and characteristics. It has been reported that excessive supraventricular
ectopic activity is associated with a higher risk of future AF [107–112], where
excessive supraventricular activity was defined as ≥ 30 supraventricular ectopic
complexes (SVEC) per hour or the presence of runs of ≥ 20 SVEC.

With the increasing interest in AF screening using short ECGs, the prognos-
tic implications of short-episode supraventricular arrhythmias have also gained at-
tention [114,115]. It has been shown that patients with short-episode supraven-
tricular tachycardias, had a higher risk for future development of AF [115].

Detection of SVECs has been addressed in the literature, often in beat clas-
sification studies, where the aim is to classify a single heartbeat into normal, ven-
tricular, or supraventricular. Such beat classifiers are often based on two-lead
ECGs, using a variety of features extracted from the RR intervals series, as well
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as from morphological features of the ECG waves [120–124].
Identification of patients with paroxysmal AF from sinus rhythm using ECG-

based features has also been investigated. Such identification is of importance due
to the paroxysmal nature of AF where the often limited ECG recording duration
may cause AF episodes to otherwise be missed. Two studies [113,117] addressed
the identification of patients with a history of AF, based on ECGs recorded during
normal sinus rhythm using deep convolutional neural networks with promising
results. The ECG recordings during normal sinus rhythm were limited to 31
days before the first ECG in AF in [113] and to the screening period in [117].

The application of deep learning to 12-lead ECG signals to develop a five-
year AF incidence risk metric has been addressed in [116], showing that the deep
learning-based metric was correlated with the CHARGE-AF score, but the pre-
dictive performance was further enhanced when using both predictors. Saliency
mapping of the deep learning-based approach showed that P wave information
heavily influenced the predictive performance.
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ECG Simulation and Data
Augmentation

The availability of numerous publicly available annotated ECG databases has fa-
cilitated the development of methodologies for the analysis of various ECG char-
acteristics, such as beat detection and delineation, arrhythmia detection and clas-
sification, and ST-segment analysis. In practice, however, most public databases
often include a limited number of subjects, a few leads, and mainly good-quality
recordings, and the prevalence of arrhythmia may not reflect the realistic situation
that may be encountered on a population level. This questions the generalization
of such methodologies to a more complicated scenario compared to the case for
which they have been validated.

One situation where a simulation model is useful is in the detection of brief
AF episodes. There are only a limited number of brief AF episodes in the MIT-
BIH Atrial Fibrillation Database, and therefore, the performance of AF detectors
for brief AF episodes can not be accurately assessed. Similarly, ECG simulation
models are of great importance for the development and validation of method-
ologies for the analysis of ECG characteristics in more complex conditions, e.g.,
for performance assessment in different leads, for different burdens of ectopies
and other arrhythmias, and for different levels and burdens of noise and artifacts.

In the context of AF screening where large databases exist, these are highly
imbalanced such that the number of recordings with sinus rhythm highly out-
numbers the number of recordings with AF and other arrhythmias. Therefore,
ECG simulation models with the capability to generate recordings with similar
characteristics as the ones found in screening databases would pave the way for
the training of more advanced machine learning-based models, as well as for the
development and performance assessment of novel methodologies for the detec-
tion of ECG characteristics in the presence of complicating factors.

Two types of signal modeling may be considered: Either an electrophysiolog-
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ical model is used with the purpose of explaining and exemplifying mechanisms
of arrhythmia and how they can lead to different ECG patterns, or a statisti-
cal model is considered which mainly focuses on producing ECG characteristics
resembling those of real ones. Electrophysiological models may start at the cel-
lular level with ion channel activity, and end with the spread of depolarization
waves throughout the atria and ventricles, and their projection onto, e.g., the
body surface. Such models may account for anatomical aspects of the heart, e.g.,
the position of the heart, atrial and ventricular volumes, and of the torso, and
typically have very high levels of complexity [125].

Electrophysiological models are of great importance for the interpretation of
ECG abnormalities by linking structural or electrophysiological changes to ECG
features, e.g., investigating the origin of atrial and ventricular ectopic beats, the
substrate and activation pattern behind atrial flutter which can guide ablation
procedures, or the relationship between ion channel activity and drug-induced
changes [126]. Several examples of the use of such models are available in the lit-
erature investigating the effect of simulated myocardial infarctions on ST and QT
segments [127], the influence of left ventricular mass on QRS amplitude [128],
and the effect of ventricular activation on QRS complex morphology [129]. For
electrophysiological models, the most important question is the degree of reli-
ability of such models, which is limited by the level of understanding of the
underlying disease, as well as by the levels of electrophysiological and anatomical
details introduced in the model. Electrophysiological models typically include
numerous parameters which need to be set correctly to produce realistic signals.

The other approach to ECG modeling is to rely on mathematical and sta-
tistical models describing various ECG components, without taking underlying
electrophysiological mechanisms into account. In a simple form [130], a single-
lead ECG signal may be simulated in normal sinus rhythm, while such simula-
tion may be extended to generate multi-lead ECG, to account for time-varying
ECG characteristics (e.g., PQ and ST segments), as well as to include a spectrum
of different arrhythmias. The following sections of this chapter describe various
aspects of statistical ECG models.

4.1 Modeling of cardiac activity

Generally, the main components of an ECG signal may be described by the
ventricular morphology, the ventricular rhythm, and the atrial morphology.
A switch mechanism may be added to enable transitioning between different
rhythms and arrhythmias, where the different components may be replaced by
suitable alternatives in order to generate realistic ECGs [131].

A multi-lead model for simulation of PQRST complexes was presented
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in [132], which is the extended version of the single-lead PQRST complex model
presented in [130] based on a dipole model of the heart. Inspired by [130,132],
the PQRST model in [131], for each lead 𝑙, is defined by a summation of 𝐾
Gaussian functions

𝑞𝑙(𝑡) =
𝐾

∑
𝑘=1

𝛼𝑙,𝑘exp[−(𝑡−𝜇𝑙,𝑘)2

2𝜎2
𝑙,𝑘

], 𝑙 ∈ {X,Y,Z}, (4.1)

where 𝛼𝑙,𝑘, 𝜎𝑙,𝑘, and 𝜇𝑙,𝑘 determine the amplitude, width, and location of each
Gaussian component. The model is able to generate a wide variety of PQRST
complex morphologies and has been the basis for the ECG simulator presented
in [131], except for the P waves, where a linear combination of three Hermite
functions with mono-, bi-, and triphasic morphologies was used.

The PQRST morphology model was complemented by a ventricular rhythm
model [130], accounting for high-frequency respiratory sinus arrhythmia and
low-frequency baroreflex regulation, using a bimodal power spectrum, which
consists of two Gaussian distributions, defined by

𝑆(𝐹) = 𝑃1

√2𝜋𝜎2
𝑉 ,1

exp[−(𝐹 −𝐹1)2

2𝜎2
𝑉 ,1

]+ 𝑃2

√2𝜋𝜎2
𝑉 ,2

exp[−(𝐹 −𝐹2)2

2𝜎2
𝑉 ,2

]

(4.2)
where 𝑃1 and 𝑃2 are the power of the low-frequency and high-frequency com-
ponents, respectively, and 𝐹1, 𝐹2, 𝜎2

𝑉 ,1, and 𝜎2
𝑉 ,2 are the mean frequency and

width of the Gaussian for each of the low- and high-frequency components, re-
spectively. The resulting RR interval series can be obtained using the inverse
Fourier transform of 𝑆(𝐹), and an appropriate scaling in order to generate an
RR series with a desired heart rate.

Introducing arrhythmia to a statistical simulation model adds complexity
to the resulting signals, making such models suitable when assessing the perfor-
mance of arrhythmia detectors under specific conditions. Paroxysmal AF mod-
eling was introduced in [131], using a two-state continuous-time Markov chain,
enabling switching between AF and normal sinus rhythm, where the duration 𝑑
in each state (i.e., episode duration) was determined by an exponential probabil-
ity density function (PDF),

𝑝(𝑑) = 𝜆𝑒−𝜆𝑑𝐻(𝑑), (4.3)

where 𝜆 is the rate parameter of the exponential PDF, (i.e., the rate of episodes),
and 𝐻(𝑑) is the Heaviside step function. The median duration of AF episodes
is defined by
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̄𝑑𝐴𝐹 = ln 2
𝜆𝐴𝐹

, (4.4)

where 𝜆𝐴𝐹 denotes the rate of AF episodes. The median duration of normal
sinus rhythm episodes is assumed to be

̄𝑑𝑆𝑅 = 𝐵
1−𝐵

̄𝑑𝐴𝐹 (4.5)

where 𝐵 (0 ≤ 𝐵 ≤ 1) is the burden of AF, i.e., the ratio of the total amount of
time when AF is present to the duration of the ECG recording. When switch-
ing to AF, the ventricular rhythm and P wave models are replaced by the cor-
responding components during AF, i.e., a ventricular rhythm model represent-
ing AF irregularity, and an f-wave model representing the atrial activity, respec-
tively [133, 134].

4.2 Modeling of noise and artifacts

The presence of noise and artifacts impacts any analysis of ECG signals. Hence,
modeling of noise and artifacts is of great importance, since it allows assessment
of the impact of noise and artifacts when estimating and detecting various types
of ECG characteristics, or when assessing the performance of ECG denoising
strategies [28, 87, 94, 135, 136].

The MIT-BIH Noise Stress Test Database (NSTDB) [59, 137], including
3 half-hour two-lead recordings of noise typical in ambulatory ECG (baseline
wander, motion artifacts, and electrode movements), has been widely used for
the purposes stated above. Meanwhile, this database is restricted both in the
number of leads and with regard to signal duration, which limits its application
in, e.g., ECG denoising performance evaluation. Still, this database has served
as the starting point for noise modeling.

Given that noise and artifacts in ECG recordings often display a non-
stationary behavior, a time-varying auto-regressive (AR) model was proposed
in [132], and fitted to the NSTDB to model the noise, 𝑥(𝑛), as

𝑥(𝑛) = 𝑎1,𝑛𝑥(𝑛−1)+⋯+𝑎𝑝,𝑛𝑥(𝑛−𝑝)+𝑤(𝑛), (4.6)

where 𝑝 is the model order, 𝑎𝑖,𝑛(𝑖 = 1,…,𝑝) are the time-varying coefficients
of the AR model, and 𝑤(𝑛) is white noise. To facilitate simulation of noise in
multi-lead ECGs, given that NSTDB only includes two leads, reconstruction of
a third lead has been proposed as a means to be able to further extend the noise
to 12 leads using the inverse Dower matrix [138]. Such an approach has been
proposed, where in [139], principal component analysis (PCA) was applied to
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the two available leads, and the first principal component was used as the third
lead, while in [131], the square root of the sum of squares of the first two leads
served as the third lead.

The appearance of noise and artifacts depends on the recording conditions.
Hence, modeling and simulation of noise and artifacts in different conditions are
warranted, exemplified by the studies [140, 141] aiming at such simulation for
wearable sensors. For ECGs recorded using textile sensors, modeling of noise and
artifacts was based on filtering of heavy-tailed non-Gaussian white noise using
AR models [140]. Simulation of motion artifacts was investigated in [141] where
three different approaches, including AR modeling, Markov chain modeling, and
a recurrent neural network (RNN) were used. When modeling using a Markov
chain, the input data (collected motion artifact) was min-max normalized and
quantized, where each of the quantized values served as a discrete element in
the Markov chain model. When using the RNN, a target sequence for each
training window was created by shifting the data by one step. It was shown that
the RNN was the best-performing approach in terms of morphological features,
frequency characteristics, and distribution of motion artifacts, while both the
Markov chain and AR modeling approaches had limitations when it came to
imitating the frequency characteristics and morphology of motion artifacts.
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Summary of included papers

The four parts of the present thesis are all in different ways related to AF screening
and how to improve the efficiency in the associated analysis chain from ECG
measurement to clinical decision making. The connection of each paper in this
analysis chain is illustrated the Fig. 5.1.

ECG Measurement Detection of ECG Characteristics
Clincal Desicion 

Making

Data Augmentation Clincal Parameters

Paper II

Signal quality 

assessment of a novel 

electrode technology 

for motion artifact 

reduction

Paper III

Detection of sSVT 

episodes with 

reduced false 

detection rate

Paper I

Identification of 

transiet noise for 

reduced false AF 

detections

Paper IV

Simulation of 

noise and artifact 

observed in 

screening ECGs

Figure 5.1: Connection of each of the four parts of the thesis to the AF screening
analysis chain.

As described previously, the detection of ECG characteristics includes the
detection of noise and disturbances, beats, AF, and other arrhythmias. Papers I
and III deal with such detection and both use machine learning-based approaches.
Paper II focuses on how better measurement quality leads to better detection
performance, while paper IV proposes an improved ECG simulator with the
capacity to produce realistic simulated ECG screening data for future studies.
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Paper I: Identification of Transient Noise to Reduce
False Detections in Screening for Atrial Fibrillation

Screening for AF using handheld ECG devices outside the clinical environment is
gaining increasing attention. However, the very large size of screening databases
in combination with the lower signal quality of signals recorded at home, typi-
cally caused by transient noise, becomes problematic and leads to large numbers
of false AF detections. Since false AF detections require manual expert review to
be ruled out, reduction of such false detections saves time and cost.

In this work, a CNN is proposed to identify transient noise in the sequence
of beats before AF detection. The CNN classifies each detection produced by a
QRS detector, into either a true or a false beat detection, and was trained using
false beat detections compiled from poor-quality signals, and true beat detections
compiled from good-quality signals. The performance of the CNN was evaluated
using a subset of the AF screening database StrokeStop I, and resulted in sensitiv-
ity, specificity, and accuracy of 96.4%, 96.9%, and 96.9%, respectively. Despite
being trained and validated on detections compiled from two different sets of sig-
nals, the classifier can be applied to any sequence of beat detections for separation
into the two classes.

The RR interval series obtained after applying the CNN is fed to a low-
complexity rhythm-based AF detector, which was optimized for 30 s ECG record-
ings. Another subset of StrokeStop I, which was labeled as ”irregular rhythm”
using a commercial software, was selected for further performance evaluation
and thus contains recordings that typically cause false AF detections and thereby
require manual expert review.

By inserting the CNN before the AF detector, the number of false AF de-
tections was reduced by 22.5% without any loss in sensitivity. Figure 5.2 shows
two examples of ECGs contaminated with transient noise, which were excluded
from manual review after inserting the CNN before the AF detector.
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Figure 5.2: Two examples of ECGs contaminated with transient noise; without
quality control, these two recordings are falsely detected as AF due to rhythm ir-
regularities caused by transient noise. By identifying and excluding transients (red
crosses) before AF detection, the two recordings are correctly detected as non-AF;
true beat detections are indicated with blue dots.
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Paper II: Signal Quality Assessment of a Novel ECG
Electrode for Motion Artifact Reduction

The presence of noise and artifacts is a common problem when analyzing and
interpreting ECGs, especially during ambulatory monitoring when the subjects
are more active. The larger part of the signal that has an acceptable signal quality,
the lower the risk that important arrhythmic episodes may be missed. Therefore,
the development of novel electrode technologies robust to noise and artifacts has
received a lot of attention in the research community.

This paper investigates a novel wet electrode technology (Piotrode) in terms
of recorded signal quality when compared to a commercially available counter-
part (Ambu). Two signal quality indices (ensemble standard deviation and time–
frequency repeatability) were used for signal quality assessment. In addition, the
resulting QRS and AF detection performance when the two types of electrodes
are used, were investigated.

Electrocardiograms were collected from 20 healthy subjects during sitting at
rest, sitting and crossing arms, walking, walking in stairs, running, and undress-
ing and dressing. The two signal quality indices demonstrated similar trends: the
signal quality improvement of the novel technology became increasingly larger
as the subjects became increasingly more active, see Fig 5.3. Notably, during
running, in 7 out of 20 ECGs recorded using the Ambu electrode, AF was falsely
detected, with a false positive rate between 36% to 100%. On the other hand, no
false AF detections were observed for ECGs recorded using the Piotrode electrode.
The QRS detection performance using the Piotrode electrode was considerably
better than that of the Ambu electrode, especially during running but also for
lighter activities.

In conclusion, the novel wet ECG electrode produced signals with less mo-
tion artifacts, and therefore fewer false QRS and AF detections, thereby offering
the potential to reduce the review burden and resulting cost, associated with am-
bulatory monitoring.
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Figure 5.3: Examples of signal recorded simultaneously during running using (a)
the Piotrode and (b) the Ambu electrodes. The red circles display the detected
events by a QRS detector
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Paper III: Detection of Short-Episode
Supraventricular Tachycardias in Atrial Fibrillation
Screening

This paper introduces a detector for short-episode supraventricular tachycardia
(sSVT) in screening ECGs. The presence of sSVT has been shown to be associ-
ated with a higher risk of developing AF. Therefore, identification of individuals
with such episodes may improve the usefulness of AF screening, where the iden-
tified cases may be subject to intensified screening to find the onset of AF.

Short-episode supraventricular tachycardias are defined as episodes of at least
five consecutive supraventricular beats, with a heart rate of at least 100 beats per
minute, and a duration shorter than 30 s. Detection of sSVT is challenged in
ECGs recorded using a handheld device due to the lower signal quality, and the
presence of ectopic beats which mimic rhythm characteristics of sSVT episodes,
and lead to large amounts of false detections in screening databases.

The introduced sSVT detector assumes that supraventricular beats within
an sSVT episode display similar morphology, meaning that a considerable de-
viation in morphology is either due to noise and artifacts, or to ectopic beats,
and therefore such episodes need to be excluded. An SVM is trained using a
simulated ECG database with recordings of varying signal-to-noise ratio, to clas-
sify a sequence of 5 beats into either a similar or a non-similar beat sequence.
Examples of simulated signals with similar and non-similar beat sequences are
displayed in Fig 5.4, where a template is selected from each sequence of 5 detec-
tions, and subtracted from the remaining detections within the sequence. Thus,
the classification becomes independent of the patient’s individual rhythm and
beat morphology, and is rather focused on morphologic variation between the
detected beats. The choice of 5 detections is motivated by the minimum num-
ber of supraventricular beats within an sSVT episode. Next, episodes with similar
beats are subject to a set of rhythm criteria with regard to duration and heart rate.

The performance of the proposed detector is tested on the Swedish AF screen-
ing database StrokeStop II, which has been annotated with regard to the presence
of sSVT episodes on a record basis, resulting in sensitivity, specificity, and posi-
tive predictive value of 84.6%, 99.4%, and 18.5%, respectively. In comparison
to the performance of an sSVT detector in [115] the results show that a signifi-
cant reduction in the expert review burden (by a factor of 6) can be achieved.
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Figure 5.4: Example of a similar beat sequence (top) and non-similar beat se-
quence (bottom) episode. The left column shows an ECG episode and the de-
tected events. The middle column shows the events and the template (in red),
after min-max normalization. The template beat is taken as the beat yielding the
lowest mean absolute value of the residuals when subtracted from each of the other
four beats. The right column shows the residuals obtained by subtraction of the
template from each event.
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Paper IV: ECG Modeling for Simulation of
Arrhythmias in Time-Varying Conditions

This paper introduces an ECG simulator capable of generating ECG signals in-
tended for training and performance evaluation of novel ECG-related detection
and classification algorithms. A major limitation today is the limited access to
large annotated databases and to databases with varying levels of disturbances and
rhythm complexity. The proposed simulator is able to produce ECG signals with
varying beat morphologies, varying rhythm, multiple arrhythmic patterns, and
several types of noise including noise typical in exercise stress tests, ambulatory
recordings, and ECGs recorded using handheld devices.

The simulator is built around a discrete-time Markov chain model for the
simulation of atrial and ventricular arrhythmias. Each state of the Markov chain
is associated with statistical information on episode duration and heartbeat char-
acteristics of the relevant rhythm. Modeling of muscle noise and motion arti-
facts increases the complexity of the simulated ECGs, making the simulator well
suited for data augmentation in machine learning applications, as well as for per-
formance evaluation of signal quality assessment and arrhythmia detection algo-
rithms for signals contaminated with noise and artifacts. Here, the filtered white
noise approach serves as the starting point but is altered in several aspects to ac-
count for prominent characteristics such as a time-varying level of muscle noise
with a random occurrence pattern, and randomly changing QRS-like motion
artifacts.

The realism of the simulated ECGs is assessed by three experienced doctors,
where 79 out of 100 simulated ECGs were assessed as realistic, showing that
simulated ECGs are difficult to distinguish from real ECGs (the corresponding
number for the realistic signals was 84 out of 100). Examples of real and simu-
lated ECGs are displayed in Fig 5.5. The usefulness of the simulator is illustrated
in terms of AF detection performance where simulated and real ECGs, respec-
tively, are used to train a CNN for signal quality control. The results show that
both types of training lead to similar performance; using simulated ECGs, a slight
decrease (0.5%) in the sensitivity resulted, while FPR increased by 3.9%.
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(a)

(b)

(c)

0.2s 0.
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V

Figure 5.5: Single-lead, 10-s simulated ECGs (upper) and similar-looking real
ECGs (lower) with (a) muscle noise, (b) motion artifacts, common in ambulatory
monitoring and exercise stress testing, with muscle noise added, and (c) motion
artifacts common in handheld AF screening.
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