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Chapter 1

 

Resonant Circuits

 

In radio frequency (RF) applications reactive components, such as capacitors
and inductors, are often combined with resistors to form 

 

RLC

 

 networks. They
are of great value as they can be used to match impedances (important for
efficient power transfer, for example), cancel transistor parasitics to provide
high gain at high frequencies and filter out unwanted signals.
Furthermore, passive RF components can in general not be treated as ideal,
but can reliably be modelled by 

 

RLC

 

 networks. The impedance of such a cir-
cuit is a complex function of frequency, and has therefore normally both a
resistive (real) and reactive (imaginary) part. The condition where the reactive
part vanishes and the impedance is purely resistive is called 

 

resonance

 

. The
frequency (or frequencies) where this occurs is called the 

 

resonance fre-
quency

 

. A circuit with one or more resonance frequencies is named a 

 

resonant
circuit

 

. The word resonance refers to the ability of reactive components to
store energy. That is, energy can bounce back and forth, or resonate, between
the magnetic field in the inductor and the electrical field in the capacitor.

+12

OUT

(a)

(b) (c)

(d)

Figure 1.1  Example of resonant circuits: (a) parallel LC, (b) series LC,
(c) receiver input stage and (d) multielement low-pass filter.
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The magnitude of the resonant circuit impedance shows a more or less sharp
maximum or minimum at the resonance frequency. The 

 

bandwidth

 

 or 

 

selec-
tivity

 

 is often defined in terms of the width of this peak or notch.
Another important property is the loss of energy which is denoted by the

 

quality factor

 

 or simply 

 

Q

 

. As it will be shown in the succeeding sections the

 

Q

 

 is a useful quantity that can be used to compute bandwidth, impedance
transformation, voltage/current transformation among many other utilities.
This chapter gives a short briefing about the most important terms concerning
resonant circuits that are necessary to understand in high-frequency design.
The fundamental theory of network theory is covered in [1]. A more compre-
hensive discussion is found in [2] and [3].

 

1.1 Basic Terms

 

1.1.1 Series and Parallel Resonance

 

The model of the resonant circuits can be derived in two basic forms, the
serial or the parallel circuit. Although most of the real networks are combina-
tions of series and parallel connections, it is often preferable to characterise
the circuit by a clean serial or parallel equivalent circuit. Useful methods for
conversion between the basic forms will be described in section 1.2.3.
The series network is recognised when the current path  forms a path
through all the elements in contrast to the parallel network where an equal
voltage  is found on all the elements.

The serial form implies that impedance terms are the most convenient way to
analyse the serial resonance whereas it is more handy to analyse the parallel
resonance in admittance terms. 
The impedance and admittance of the circuits in figure 1.2 are simply:

(1.1)

(1.2)

The circuits will be examined in the succeeding section, but first some other
parameters have to be explained.

Iin

Vin

R CL
R

C
Ls

s
s

Z s

I

in

inV p p pZ p

(a) (b)

Figure 1.2  Basic resonant circuits, (a) series and (b) parallel network.
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----------–⎝ ⎠
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Zp ω( )
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Rp
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1
ωLp
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⎛ ⎞+= = =
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1.1.2 Resonance Frequency

From inspection of the equations (1.1) and (1.2) it is clearly seen that imped-
ance respectively admittance quantities goes to infinity both at DC and at infi-
nitely high frequency. What divides “low” from “high” is the frequency at
which the inductive and capacitive parts cancel. Known as the resonant fre-
quency, this is given by

(1.3)

To say that the reactive terms cancel is certainly true, but a little careless. As it
will be shown shortly, the individual voltages or currents in the reactive ele-
ments can be surprisingly large, although they cancel each other as far as the
external world is concerned. It will also be shown that these augmented quan-
tities is a sign that an impedance transformation has taken place. However, to
explore these behaviours entirely and describe them in the most generally
useful way, the quality factor has to be introduced.

1.1.3 Quality Factor, Q

Contrary to resistors perfectly ideal reactive elements can not, according to
the basic theory, cause any loss of power. Seeing that impedance of most of
the components and circuits contains both a resistive and a reactive part the
loss of energy has to be regarded. This quality is described by a parameter
named the quality factor, or just Q.
There are numerous definitions of Q, but the most fundamental one is

(1.4)

Note that Q is dimensionless, and that it is proportional to the ratio of energy
stored to the average power dissipated per unit time. The definition is funda-
mental because it does not care about what stores or dissipates the energy.
Consequently it applies perfectly well even to distributed systems, such as
transmission lines, where individual inductances, capacitances and resist-
ances hardly can be identified. There is no restriction for Q to solely be used
in electrical circuits, it can excellently be applied to mechanical systems etc.
It should also be clear that the notion of Q is relevant both to resonant and
nonresonant systems. Therefore it is appropriate to characterise an RC circuit,
or even a single component, by the Q.
The diagram in figure 1.3 gives a sense of the magnitude of Q for several,
both electrical and non electrical systems. It is clearly seen that inductors tend
to be significantly lossier than capacitors, which is useful to keep in mind
when the design work is about to start.

ωLs
1

ωCs
----------–⎝ ⎠

⎛ ⎞ 0      or = ωCp
1

ωLp
----------–⎝ ⎠

⎛ ⎞ 0=

 ω0
1
LC

-----------         or        f0
1

2π LC
------------------= =⇒

Q 2π maximum instantaneous energy stored in the network
energy dissipated per cycle

--------------------------------------------------------------------------------------------------------------------------------⋅≡
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To get some more useful expressions the definition is used to derive the Q of
the parallel circuit in figure 1.2b at resonance. The resonant frequency is
denoted , the cycle time  and the peak voltage across
the network is denoted .
Recall that energy in such a network bounces back and forth between the
inductor and the capacitor, with a constant sum at resonance. As a conse-
quence, the peak energy stored in either the capacitor or inductor is equal to
the total energy stored in the network at any given time. Since the peak capac-
itor voltage is known, it is convenient to use it to compute the network
energy:

(1.5)

The next step is to derive the amount of energy dissipated per cycle which is
equal to the dissipated power multiplied by the cycle time. Again, this is easy
to carry out, since the network degenerates to a simple resistance at reso-
nance.

(1.6)

Finally the Q of the network can be expressed:

(1.7)

100
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109

1012

1015

spectral lines
earth

mechanical pendulum

ordinary quartz resonator

good quality capacitor

cathedral bell

piano string

RF inductorballs

Q

Figure 1.3  The order of Q shown for some various examples.
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It is easy to check the validity of the derived expression. As the parallel resist-
ance goes to infinity, Q does as well. This behaviour seems reasonable since,
in the limit of infinite resistance, the network degenerates to a pure LC sys-
tem. With only purely reactive elements in the network, there is no way for
energy to dissipate, and Q should go to infinity, just as the equation says it
should.
If  is substituted in equation (1.7) the expression for Q will be

(1.8)

The quantity  has the dimension of resistance, and is sometimes called
the characteristic impedance  of the network. This term is usually applied
to transmission lines, but has a certain importance even in lumped networks.
It is important because it is equal to the magnitude of the capacitive and
inductive reactances at resonance, as it is easily shown:

(1.9)

This quantity will frequently be used in Chapter 2 where the characteristic
impedance of a transmission line is given by the same expression, but  and

 are interpreted as the inductance and capacitance per unit length.

1.1.4 Bandwidth

The behaviour of the network has been discussed in the previous sections at
frequencies far from resonance as well as exactly at the resonance frequency.
In this section the behaviour of the resonant circuit will be explored at fre-
quencies slightly shifted from resonance.
The parallel circuit will be used to examine the admittance when the fre-
quency is displaced  from the resonance. The first step is to rewrite equa-
tion (1.2) as

(1.10)

Then let  and  will give

(1.11)

For values of  that are small relative to  this expression simplifies to
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(1.12)

Thus, this admittance behaviour is exactly the same as that of a resistor of
value  in parallel with a capacitor of value 2C, except with 
replacing . Hence, the shape of the admittance curve for small positive dis-
placements above  is the same as that of a parallel RC network. The sin-
gle-sided bandwidth may therefore be defined as simply  by
analogy with the RC case. From symmetry of the admittance function, the
shape for displacements below  will be the mirror image of that above res-
onance, so that the total -3 dB bandwidth, see figure 1.4, is just

(1.13)

If the bandwidth is normalised to the resonant frequency, a highly useful
expression is derived:

(1.14)

The fractional bandwidth is simply . That is, for a given resonant fre-
quency higher Q implies narrower bandwidth.
Keep in mind that either frequency or angular frequency may be used to spec-
ify the bandwidth:

(1.15)

Figure 1.4  Definition of the 3 dB bandwidth.

The use of the ratio 3 dB is a widely used convention to define the bandwidth
of resonant circuits. 3 dB means that the quantity of interest has changed to
half the value relative the maximum (due to the identity ,
the ratio is  when currents or voltages are calculated). The 3 dB band-
width is sometimes denoted half-power bandwidth and consequently  and

 are called half-power frequencies.
However, in many applications, such as filters, it may be suitable to choose
different ratios than 3 dB.
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1.2 Serial and Parallel Models

The aim of this section is to place together the behaviour and the most impor-
tant expressions of the two basic ways to model a resonant circuit. In the suc-
cessive text it is assumed that all of the components are ideal. All losses are
represented by the resistor.

1.2.1 Series Resonance

In the pure series model all of the components are connected in such a way
that the current  flows through all the elements in a single path. The index
“s” at each component denotes series connection.

The input impedance of the series circuit is

(1.16)

where  is the resonant frequency. A very distinct attribute is
that the serial resonance always shows minimum impedance, with a value ,
at the resonance. 

Iin
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s
Z s

I
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Figure 1.5  Series RLC circuit.
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Figure 1.6  Frequency response of the series RLC circuit.
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It can be noticed that at the half-power frequencies, f1 and f2, the magnitude
of the reactance is equal to the resistance , the magnitude of the
impedance , and the phase angle of the impedance .
The corresponding admittance, even if it is rarely needed, may be written

(1.17)

The quality factor is given by

(1.18)

The voltage at the capacitor and inductor can differ significantly from the net-
work input voltage. At the resonance frequency the network input current is

. Since  at resonance, the inductor and capacitor
voltages will be equal in magnitude and opposite in phase.

(1.19)

That is, the voltage across the reactive elements is Q times as large as the
overall network voltage. Hence, if  and the network is driven at
resonance with an one-volt voltage source, the voltage at the inductor and the
capacitor will each reach 200 volts. This is a useful experience to keep in
mind when choosing components.

X R=( )
Z 2R= θ 45°±=

Ys ω( ) 1
Zs ω( )
--------------

Rs

Rs
2 Xs

2+
------------------ j

Xs

Rs
2 Xs

2+
------------------–= =

1
Rs
----- 1

1 Q2+
----------------⎝ ⎠

⎛ ⎞ j 1
Xs
----- Q2

1 Q2+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=

Qs
ω0Ls

Rs
------------ 1

Rs ω0Cs⋅
----------------------

f0

f2 f1–
--------------

f0

B3dB
-----------= = = =

0.4 0.6 0.8 1 1.2 1.4 1.6
10

100

200

f [MHz]

|Z| [Ω]

Figure 1.7  Plots of Z(ω) versus f for a series resonant circuit
with several values of Qs.
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1.2.2 Parallel Resonance

In a pure parallel model components are connected in such a way that an
equal voltage  is found on all the elements. The index “p” at each variable
denotes parallel connection. 

The input admittance of the parallel circuit is

(1.20)

where  is the resonant frequency. The expression is similar
to equation (1.16) except that all admittance quantities are substituted by
impedance quantities. In order to make a comparison between the serial and
parallel circuits the equivalent impedance is derived and plotted:

(1.21)
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Figure 1.8  Parallel RLC circuit.
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The equation for Q involves the same terms as for the serial case, but in recip-
rocal form:

(1.22)

The inductive and capacitive branch currents at resonance can depart signifi-
cantly from the network input current. At resonance the voltage across the
network is . Since the inductive and capacitive reactances are equal in
magnitude at the resonance frequency, the inductive and capacitive branch
currents will be equal in magnitude:

(1.23)

Accordingly the current flowing in the reactive branches is Q times as large as
the net current. Hence, if  and the network is driven at resonance
with a one-ampere source, that is one-ampere will flow through the resistor,
but 200A will flow through the inductor and the capacitor (until it vaporise).
Again, we have seen that it is of utmost importance to consider the maximum
voltages and current that can arise in high-Q resonant circuits, particularly in
high-power applications.

1.2.3 Series-to-Parallel Conversion

In practice purely series or parallel resonant circuits rarely exist. Therefore it
is essential to master conversion between the serial and parallel shape. Con-
sider, for example, the circuit sketched in figure 1.11. As has been indicated
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Figure 1.10  Plots of Z(ω) versus f for a parallel resonant circuit
with several values of Qp.
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previously, inductors tend to be significantly lossier than capacitors. Conse-
quently the model shown in the figure is often a more realistic approximation
to typical parallel RLC circuits.

The trouble starts when an external load, RL, is connected to the circuit. For
example, without any ingenious tools the only way to calculate the Q is
through lengthy algebraic -calculations.
However, since the purely parallel RLC network has been analysed in detail,
it would have been a wastage not to re-use as much as possible of this work.
The idea is to convert the series LR branch into a parallel equivalent. Clearly,
such a substitution cannot be valid in general, but over a suitably restricted
frequency range around the resonance the precision is fairly reasonable.
To show this formally, the impedances of the series and parallel LR sections
in figure 1.12 are equated.

(1.24)

If the serial and parallel sections are supposed to be equivalent, their Q’s must
certainly be equivalent and

(1.25)

When the real and imaginary parts in equation (1.24) are separated and com-
bined with equation (1.25) the result is

(1.26)
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Figure 1.11  A practical parallel LC circuit with series resistance
in the inductive branch.

jω

R

Z RLZ

s

p p
L s

Figure 1.12  Series and parallel equivalent.
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(1.27)

In the same manner similar sets of equations for computing series and parallel
RC equivalents can be derived. The resistive part will be identical to equation
(1.26) and the capacitive part will be

(1.28)

Note the similarity with the equations (1.17) and (1.21) when impedances are
converted to admittance or vice versa. The expressions (1.26) to (1.28) may
be written in a universal form that applies to both RL and RC networks or to
impedance-admittance conversion:

    where R is the resistive part, and (1.29)

    where X is the reactive part. (1.30)

Accordingly, any circuit or component can be characterised either by a series
or parallel equivalent. Independently of the used configuration, the general
circuit properties (Z, f0, Q) are assumed to be equal. The formulas above are
very handy tools to convert any mixed RLC network into a pure parallel (or
series) one that is straightforward to analyse. However, it is vitally important
to remember that the equivalencies are valid only in a narrow span around the
resonant frequency.

1.3 Tapped Resonant Circuits

The RLC networks discussed so far lacks flexibility because the bandwidth
and Q are fixed once the values of R and any load resistance are specified. In
order to get an extra degree of freedom to independently choose the band-
width and the load resistance, an additional circuit element is required. A
common way to do this is to divide either the capacitor or inductor into two
series components. The low-resistance load is then assumed to be connected
across one of them as in figure 1.13. Alternatively a “tap” can be joined to a
continuous coil as shown in figure 1.18. Tapped circuits are frequently used in
intermediate-frequency amplifiers and oscillators since it combines a resona-
tor with impedance transformation that allows coupling to the circuit without
degrading Q excessively. The remaining part of this chapter will deal with
voltage and impedance transformation in tapped resonant circuits and later on
the topic of impedance matching and network design will be extensively dis-
cussed in Chapter 5.

Lp Ls
1 Q2+

Q2
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Cp Cs
Q2

1 Q2+
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Rp Rs 1 Q+ 2( )=

Xp Xs
1 Q2+

Q2
----------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=
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1.3.1 Tapped Capacitor

The operation of the tap is best understood as a consequence of the capacitive
voltage divider. A voltage transformation in a perfectly lossless network must
be accompanied by an impedance transformation proportional to the square
of the voltage ratio if power is to be conserved. As an additional feature the
tap provides DC-isolation between the source and the resonant circuit. It is to
be designed for specified values for the source (or load) resistance , reso-
nance frequency , bandwidth  and the values of  are to
be found. For the sake of clarity, the reactances are assumed to be ideal in this
section. To avoid confusion with the serial resistance , the source is
indexed “g” in this section.

1.3.1.1 Unloaded Tap

When the tap is considered to be unloaded, i.e.  (for practical work
 is good enough), the following expressions may be used:

(1.31)

Note the similarity of equation (1.31) to resistive voltage dividers. As there is
no additional loss of power, 

(1.32)

(1.33)

Note that  must be less than  because of the analogy with a voltage
divider. The equivalent circuit, when the source is transformed into a pure
parallel circuit, is shown in figure 1.14. Now the already familiar expressions
for  can be used to solve the task.

Rg
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Figure 1.13  A tapped-capacitor circuit with a connected source.
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1.3.1.2 Loaded Tap

If the tap can not be regarded as unloaded as above, the design process
becomes more complicated. In general, the impedance transformation can be
calculated by successive parallel-to-series conversion as shown in the follow-
ing section.

The deduction is performed in two steps:
1. Parallel-to-series conversion of 

Equations (1.29) and (1.30) and the quality factor  corresponding to
the sub-circuit  and  are used to transform these elements into
the equivalent series elements  and  in the capacitive branch.

C LE'

R'

g

g

eq

Figure 1.14  The source resistance transformed into the resonant circuit.

C

C2

1

R'g
Rg

Figure 1.15  Transformation of  into  when the tap is
heavily loaded i.e. .

Rg R′g
Rg XC1

«

Rg and C1

Q1
Rg C1

R′s C′1
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(1.34)

(1.35)

(1.36)

If  is not reasonably high, it is obvious that the resonance frequency will
be slightly decreased. However, for simplicity it is here assumed that the fre-
quency shift can be neglected.

2. Series-to-parallel conversion of 

In the final step  is transformed into an equivalent parallel resistor
 across  and . For this purpose, a new  from the sub-cir-

cuit  and  has to be calculated. If  is sufficiently large, which
is the normal case at this end,  and there is no need to cal-
culate a final value for .

(1.37)
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CC 2

1

s
1

2

g

Figure 1.16  Parallel-to-series conversion.
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Figure 1.17  Series-to-parallel conversion.
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 (assuming unshifted ) (1.38)

(1.39)

 if  large (1.40)

These calculations may see, tedious, but the ideas behind them are very sim-
ple. After some experience about the serial-parallel conversions, the computa-
tions are quite reasonable to solve.

1.3.2 Tapped Inductor, Transformer

An alternative to the capacitive tap is to achieve the coupling by a tapped-
inductor circuit or autotransformer. If the coil is wound upon a ferrite core
such that the coefficient of coupling is close to unity, it behaves like an ideal
transformer and the results are readily predictable. With air-cored coils that
are often used in the higher-frequency ranges, the coupling coefficient k may
be on the order of 0.1, and the ideal transformer approximation does not hold
in all cases. Still the resonance frequency can be calculated and eventually

 can be neglected in many practical situations, but for a more accurate
computation it is necessary to deal with a more elaborate analysis.
Non-ideal transformers will not be treated in this text. However, it is essential
to keep in mind that losses in the windings and iron cores will rapidly
increase with frequency.

If there is need for DC-isolation an ordinary transformer can be used.

Q2
1

Rs ω0C′eq⋅
---------------------------= ω0

R′g Rs 1 Q2
2+( )=

C″eq C′eq
Q2

2

1 Q+ 2
2

----------------
⎝ ⎠
⎜ ⎟
⎛ ⎞

C′eq≈= Q2

R′g

C
E

R

C E'

R'

g

g n2

n1

g

gL L

n2

n1

Figure 1.18  A tapped-inductor circuit with a connected source.
The total number of turns is n1 + n2.
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Figure 1.19  Transformer with separate windings.
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The derivations are almost the same as for the tapped-capacitor case. There-
fore only the transformation equations are given. If the transformer can be
considered as unloaded, i.e. , and with unity coupling (k=1), the fol-
lowing equations are useful:

(1.41)

(1.42)

Note that  must be less than  because of the analogy to a voltage
divider.
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Chapter 2

Transmission Lines

The previous chapter discussed resonant circuits which may be referred to as
lumped circuits with components like inductors, capacitors and resistors. The
term lumped is used because the components (and whatever is connecting
them together) can be regarded as infinitesimally small, that this their physi-
cal size do not influence the electrical behaviour of the circuit. Therefore,
when such circuits are analysed the connection between two components can
be regarded as a node which has a certain node voltage. In other words,
whether the connection is a small piece of copper on a printed circuit board or
a long cable is not considered.
When a time-varying signal is present in a circuit, say, a sinusoid, it cannot be
assumed that the circuit may be considered as lumped. Consider the simple
circuit in figure 2.1 where a voltage source with an output impedance  is
connected to a load  with a pair wires of equal length . If the length of
the wires is disregarded each wire is assumed to be part of one node. Then,
the voltage at the load is easily calculated as the voltage division between 
and .

It may be conceived by the reader that a signal appearing at  will propagate
with a finite velocity to . However, if the propagation time is much smaller
than the time period of the signal it is obvious that the signal at  and  will
be the same and therefore the circuit can be regarded as a lumped circuit.

ZS
ZL !

ZS
ZL

ZS

ZL

Figure 2.1  Voltage source connected to a load using wires with length !.

!

A B

A
B

A B
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When the time period of the signal is on the same order of magnitude as the
propagation time or less it is equally obvious that the signal in  and  will
not be the same any more. The length of the wires will influence the electrical
behaviour of the circuit which now should be considered as a distributed cir-
cuit. In this case, the wire might be considered as a medium for transmission
of a signal from a source to a load and the term transmission line or line for
short is used. In its simplest form, a transmission line can be considered to be
a pair of guiding conductors or wires as shown in figure 2.1.
Because the signal propagates from one point to another through a transmis-
sion line it is natural to use the term wave or as is common in electronics,
travelling wave. A wavelength  can be associated with the wave as it propa-
gates in the line (  will be used to denote the wavelength in free space). The
wavelength of the signal is defined as , where  is the
velocity of propagation, or more commonly phase velocity, and T is the time
period of the signal. As the physical size is a prime parameter rather than the
propagation time through the line, the wavelength is more convenient to use
than the time period of the signal. That is, a circuit should be considered as
distributed if the wavelength is on the same order of magnitude as the physi-
cal size of the circuit or less. The case where the wavelength is a fraction of
the transmission line length is shown in figure 2.2 which illustrates the signal
voltage along the transmission line at one time instance and also the signal
voltage as a function of time at the left end of the transmission line.

This chapter will start by presenting a theoretical basis for transmission lines
and travelling waves. This in turn will be used to define the reflection coeffi-
cient, the standing wave ratio and some other useful quantities. Finally, we
will discuss how the transmission line can be used for realising impedance
transformation and resonant circuits.

2.1 Modelling

To understand transmission lines a mathematical representation of the wave is
needed as well as an electrical model of the line. Below, the travelling wave
will be defined first without introducing any parameters that directly relates

A B

λ
λ0

λ vp T⋅ vp f⁄= = vp

ZS

vS t( ) ZL

Figure 2.2  Travelling wave on a transmission line.
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to the physical realisation of a transmission line. Secondly, the transmission
line will be modelled using an equivalent lumped circuit and finally these two
models will be tied together.

2.1.1 Modelling Waves on Transmission Lines

In figure 2.3 a piece of transmission line is assumed to be excited by a sinu-
soidal signal from the left. The signal will propagate along the line in the pos-
itive (forward) direction along the -axis. The voltage at a given point of time
and position along the line can then be written as

(2.1)

where  is the complex amplitude or phasor of  at
, β is the phase constant of the wave and φ0 is an auxiliary phase. The

index “+” indicates positive direction of propagation.

Amplitude maxima for  occurs for  (n = inte-
ger). The phase of a specific point of the wave front shifts by 2π if z increases
by one wavelength ( ) or if the time changes by one period (T), that is

(2.2)

(2.3)

The phase velocity of the wave is obtained from (2.2) and (2.3)
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+
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z 0=

Figure 2.3  Wave travelling in a positive direction along a transmission line.
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(2.4)

In the general case, waves may travel in both direction in a transmission line
and the wave propagating in the negative (reverse) direction, i.e. towards neg-
ative values of , can be written as

(2.5)

Since a sinusoidal signal with a fixed frequency  is assumed the time
dependency of the signals are of little importance and is therefore commonly
omitted. Instead the wave phasor as a function of the position along the line is
used, that is

(2.6)

(2.7)

Equally, we may define the complex amplitude of the total voltage at a given
position when waves are travelling in both directions:

(2.8)

So far, only the voltage of a wave has been discussed. It goes without saying
that there must be an accompanying current wave that is related to the voltage
wave and therefore

(2.9)

(2.10)

At a given position or node of the line the total voltage appear as the sum of
the two waves as given in (2.8) and similarly the net current through the node
or the position is simply given by

(2.11)

The relation between the voltage wave and the current wave will be discussed
later when the electrical properties of the transmission line have been dealt
with.
When propagation takes place in a transmission line where the losses are
noticeable, the wave is gradually attenuated, see figure 2.4. The losses mainly
arise from the line itself but if a line has a leaky shield or no shield at all,
energy will radiate from the line and cause signal loss. In order to take the

vp
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T
--- λf ω
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----= = =
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attenuation into consideration,  in the previous expressions is replaced by
the propagation constant, , where  is the attenuation constant
and  as earlier defined, the phase constant. The attenuation constant is
expressed in neper per metre. It can be converted into dB/m by

1 neper = 10 log e2 = 8.69 dB (2.12)

By substituting  by  in (2.6) and (2.7) the expressions for waves on a
lossy transmission lines are obtained

(2.13)

(2.14)

This section has presented a model for the wave with a propagation coeffi-
cient  to describe how the wave propagates along the line, e.g., in terms of
velocity and attenuation. Although voltages and currents were assumed to
constitute the wave, the model for the wave could just as well be used e.g. for
an acoustic wave. Therefore, the next step involves relating the propagation
coefficient to the electrical properties of a transmission line and also the rela-
tion between the voltage wave and the current wave must be defined to make
the picture complete.

2.1.2 Modelling Transmission Lines

A transmission line is a conductor where the electrical properties are uniform
with distance along the line. The analysis can be done by solving the Max-
well’s field equations which involves, in addition to the time variable, three
space variables. This is, however, an excessive approach as the result would

jβ
γ α jβ+= α

β

jβ γ

V+ z( ) V0
+e γz– V0

+e αz– e jβz–= =

V- z( ) V0
-eγz V0

-eαzejβz= =

Figure 2.4  Wave travelling in a positive direction along a
lossy transmission line.
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contain much more information than what is necessary here. Also, hand cal-
culation would be out of the question. Instead, distributed-circuit theory will
be used which involves only one space variable besides the time dependency.
A transmission line can be modelled using a lumped T-network circuit as
shown in figure 2.5 with the following elements

• series resistor to model loss in the conductor
• series inductor to represent the current and stored magnetic energy in

the line.
• shunt resistor (represented by its conductance) to model loss in the

material supporting the two conductors (e.g. substrate on a printed cir-
cuit board)

• shunt capacitor to represent the charge and the stored electric energy in
the line.

Because the properties of the line are distributed the section of length 
should be regarded as an infinitesimal section of the line and consequently the
four parameters ( ) are given as “per unit length” and the circuit
element values for one section are therefore obtained as these values multi-
plied by the length .

The voltage and current drops in one section may be written as

(2.15)

(2.16)

Dividing these two equations by  and taking the limit as  the
transmission-line equations (or telegrapher equations) are obtained as
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R
2
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2
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Figure 2.5  A lumped circuit model for a transmission line.
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(2.17)

(2.18)

These equations are given using the phasor notation of voltages and currents
and it may be suitable at this point to remark the connection with the time
domain representation of the signals which are easily obtained from

(2.19)

(2.20)

Remembering the relations between the wave voltages (currents) and the total
cross-section voltage (current) at a given position along the -axis:

(2.21)

(2.22)

The relations between the lumped circuit model of the transmission line and
the propagation coefficient defined earlier can be derived by differentiating
(2.21) and (2.22) two times with respect to  (compare with (2.17) and
(2.18)):

(2.23)

(2.24)

If this result is compared with (2.17) and (2.18) we obtain

(2.25)

Thus, there is now a direct connection between the propagation coefficient
and the electrical properties of the line. To be able to relate the current wave
and voltage wave (2.15) and (2.23) can be exploited:
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(2.26)

The ratio of the voltage wave and the current wave is easily obtained from
(2.26) and is given by

(2.27)

where  is referred to as the characteristic impedance of the transmission
line. Note that this is not an impedance in the normal sense as it applies to
waves rather than node voltages and currents. Also, the characteristic admit-
tance may be defined as .

2.1.3 Low-Loss Transmission Lines

For practical transmission lines the loss in rather low such that  and
. Under these assumptions the propagation constant can be approxi-

mated as

(2.28)

Therefore the attenuation and phase constants are given by

(2.29)

(2.30)
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Similarly, the characteristic impedance is approximated by

(2.31)

Note that (2.31) shows that the characteristic impedance is real-valued if the
loss is small. Using (2.31), the propagation constant can also be written as

(2.32)

From equation (2.30) the phase velocity is

(2.33)

It is important to note that the product  is independent of the geometry of
the transmission line and depends only on the permeability  and permittiv-
ity  of the insulating medium in the transmission line (e.g. the substrate of a
printed circuit board or the supporting material between the conductor and
the shield in a cable). In the special case with air as the insulator free-space
parameters can be assumed. Thus, the phase velocity is approximately equal
to the velocity of light in free space:

(2.34)

Again, if the supporting material has a permeability and/or permittivity differ-
ent from their free-space counterparts we have

(2.35)

The relative phase velocity can be defined as

(2.36)
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2.1.4 Reflection Coefficient

When a wave (let it be e.g. a travelling wave or an acoustic wave) reaches a
discontinuity in the propagation medium some amount of the wave will be
reflected. Therefore, in the general case, the voltage or current at just any
position along a transmission line is a sum of two waves: one wave travelling
in the forward (positive) direction and the other travelling in the reverse (neg-
ative) direction. For the transmission line, the discontinuity might be an
impedance terminating the line as shown in figure 2.6. 

In the interface between the line and the terminating impedance we may
define an incident wave travelling in the forward direction, . The ratio
between this wave and its associated current  is given by the characteristic
impedance of the line . However, the ratio of the voltage across the load

 and the current through the load  is of course given by . This mis-
match in impedance levels results in that the incident wave cannot fully be
absorbed by the load and this results in a reflection. Noting that

 (2.37)

(2.38)

gives

(2.39)

and solving for  yields

(2.40)

Consequently,

(2.41)

ZL

Figure 2.6  Transmission line terminated by an impedance.
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Here we note that there will be no reflection only when the impedance of the
load will be equal to the characteristic impedance of the line.
The ratio between the reflected and incident wave is a commonly used quan-
tity and is termed reflection coefficient, denoted by Γ. In other words,

(2.42)

Thus, for the specific case discussed above where the reflection in the inter-
face between a transmission line and a load was considered the reflection
coefficient becomes (also using (2.41))

(2.43)

or if solved for 

(2.44)

While the reflection coefficient is a convenient quantity to describe the mis-
match between a transmission line and a terminating impedance it is by no
means limited to that case. The use of the reflection coefficient can be gener-
alised to describe the ratio between the reverse and forward waves at any
position along a transmission line. Starting from the load and moving from it
we will move against the propagation direction of the forward wave but fol-
low the propagation direction of the reverse wave. Thus, the forward and
reverse waves will change by a certain amount of phase but with opposite
signs and therefore the reflection coefficient will change accordingly.
Figure 2.7 illustrates a line terminated with a load as discussed above but now
with the extension that the waves should be investigated at a distance  from
the load. Note that  is measured from the load in the negative direction with
reference to the -axis.
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Equations (2.13) and (2.14) can be used to investigate how the waves are
changing with distance (in the positive  direction) starting at a distance 
from the load:

(2.45)

(2.46)

Setting  gives

(2.47)

(2.48)

and consequently

 or (2.49)

(2.50)

At this point it goes without saying that the reflection coefficient is, in gen-
eral, a complex-valued quantity. As such we may write

(2.51)

ZL

Figure 2.7  Transformation of the reflection coefficient.
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where the magnitude  is usually less than unity. Note that  is the phase
angle between the forward and reverse voltages and is referred to as the phase
angle of the reflection coefficient. Returning to equation (2.50) it can be seen
that phase constant  results in a clockwise rotation of  with increasing
distance  from the load whereas the attenuation constant  results in an
exponential decay of the magnitude . This is exemplified in figure 2.8.
For a lossless line the magnitude remains constant and only the phase of Γ is
shifted with an angle of -2βd as shown in figure 2.9.

Γ θ

β Γd
d α

Γd

2βd–

ΓL

θL

ΓLe 2γd–

Figure 2.8  Reflection coefficient for a lossy transmission line.

2βd–

ΓL

θL

ΓLe j2βd–

Figure 2.9  Reflection coefficient for a lossless transmission line.
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2.1.5 Impedance and Admittance Transformation

The reflection coefficient was first introduced to represent the mismatch
between the characteristic impedance of a transmission line and a terminating
load impedance. As the reflection coefficient is given by the ratio between the
reverse and forward waves, the definition of the reflection coefficient could
be extended to represent the ratio of these waves at any position along a trans-
mission line. Furthermore, an important relationship between the reflection
coefficient at the load and at a distance  from the load, respectively, was
found to be (refer to figure 2.9)

(2.52)

Equation (2.52) can be viewed as a transformation of the reflection coefficient
at the load. Similarly, the load impedance will also be transformed by the
transmission line. Referring to figure 2.10, the impedance  is given by

(2.53)

To derive an expression for  the associated voltage  and current  are
expressed in terms of waves which in turn can be transformed to waves at the
load, i.e.

(2.54)

(2.55)

At the load end ( ) equations (2.54) and (2.55) become

(2.56)
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Figure 2.10  Transformation of load reflection coefficient and impedance 
using a transmission line.
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(2.57)

By solving these two equations for  and  we obtain

(2.58)

(2.59)

Substitution of  and  in equations (2.54) and (2.55) yields

(2.60)

(2.61)

and finally the ratio of equations (2.60) and (2.61) gives

(2.62)

Some simplifications are possible by using

(2.63)

which yields

(2.64)

For the special but common case of a line with no or negligible loss the prop-
agation constant is reduced to , and using the following relationships,

 and , (2.65)

yield

(2.66)
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The transformation of impedances using transmission lines is extensively
used in radio and microwave electronics. Two special but important cases will
be presented below where a line of a given length  is terminated with a
short-circuit and an open-circuit, respectively, see figure 2.11.

The frequency behaviour of these circuits are particularly interesting and can
be derived from (2.66) assuming that the lines are lossless. For the short-cir-
cuit load the input impedance is given by

(2.67)

If the frequency is sufficiently low the above expression can be linearised as

(2.68)

which shows that for low frequencies the short-circuited transmission line
behaves like an inductor with a value . This is exemplified in
figure 2.12 where the input reactance has been plotted according to (2.67) and
the low-frequency approximation (2.68).
Similarly, with an open-circuit load the input impedance is given by

(2.69)

Again, if the frequency is sufficiently low the impedance is given by

!

ZL 0=

Figure 2.11  Transmission line with
(a) short-circuit load and (b) open-circuit load.
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(2.70)

which shows that for low frequencies the open-circuit transmission line
behaves like an capacitor with a value . This illustrated in fig-
ure 2.13 which shows the input reactance based on (2.69) as well as on the
low-frequency approximation of (2.70).
For these two special cases we can conclude that a short-circuit and an open-
circuit transmission line can be used to emulate the behaviour of an inductor
and capacitor, respectively. The frequency range is limited though, the curves
in figures 2.12 and 2.13 degenerates completely at 1GHz (with the given line
parameters) and the approximation is valid to about 500MHz. The length
used for the lines corresponds to a quarter of a wavelength at 1GHz and thus
the approximation is valid for .

2.1.5.1 Impedance and Reflection Coefficient

So far, expressions have been derived for the transformation of the reflection
coefficient and the impedance, respectively, along a transmission line. How-
ever, with the introduction of the reflection coefficient it was given that

(2.71)

which was derived for the case with a load connected to a transmission line.
This expression is, however, not limited to this. By combining (2.43) and
(2.62) the same expression is obtained for :

(2.72)

and since ,

(2.73)

which is, as expected, identical with (2.71). This expression reveals an impor-
tant property of transmission lines, a repeated impedance pattern with
increasing . For a lossless line

(2.74)
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In other words, the reflection coefficient rotates clockwise with increasing
distance from the load. This means that  for  where 
is an integer and consequently the impedance along a lossless line will be
repeated for every interval of a half-wavelength distance:

(2.75)

While the reflection coefficient has so far been defined for the case where
waves can be identified on a transmission line equation (2.73) suggests that
the reflection coefficient can be used to represent any impedance as long as

 is given. In this context  may be referred to as a reference impedance
rather than a characteristic impedance. Furthermore, the impedance itself, can
by represented by a normalised impedance

(2.76)

and similarly the normalised admittance is given by

(2.77)

It should be noted that the lowercase letters are commonly designated for nor-
malised quantities in describing distributed transmission-line circuits.

2.1.6 Waves and Power

As a wave may be represented by a voltage wave and an associated current
wave the wave carries power. Considering the case when an incident wave
propagates along line towards a load with  a wave will be reflected.
This wave will, of course also carry power.
Assuming that the incident voltage wave and the associated current wave at
the load (see figure 2.14) are in phase (that is  is real-valued) the power
carried by the wave is given by

(2.78)

where the voltage and the current are given as peak values. Similarly, the
power of the reflected wave can be written as
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(2.79)

According to the principle of conservation of energy, the incident power
minus the reflected power must be equal to the power transmitted to the load:

(2.80)

where Tp denotes the transmission factor which is defined as

(2.81)

The transmission factor can be expressed in terms of the reflection coefficient
as

(2.82)

The relation between the corresponding voltages or currents is called the
transmission coefficient and is defined as

(2.83)

Noting that the voltage across the load is given by

(2.84)

the voltage transmission coefficient can be written as
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Figure 2.14  Transmission of power via transmission line to load.
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(2.85)

2.1.6.1 Multiple Reflection

The discussion on transmission lines has so far mainly dealt with the case
where a wave propagates along a transmission line and as the wave reaches
the terminating load is more or less reflected. This scenario will now be
extended to include the source that drives the circuit, see figure 2.15. Here the
interface between the source and the transmission line is commonly termed
the sending end and consequently the interface between the line and load is
termed the receiving end.
As for the load, the impedance of the source  may be represented by a
reflection coefficient  and in terms of reflection of waves the source will
behave identically with the load, that is an incident wave (travelling in the
negative direction with respect to the -axis) will be reflected, resulting in a
wave travelling in the positive  direction.

Thus, on a low-loss line with mismatch at both ends, there will be multiple
reflection of waves that will ‘bounce’ back and forth along the line as illus-
trated in figure 2.15 until the amplitude of the wave has decreased to an insig-
nificant level. This means that transfer of power from the source to the load
has a complicated dependency on the interaction between the line length,
source impedance and load impedance. However, multiple reflection can be
avoided if either the sending end or the receiving end is properly terminated
( ).
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Figure 2.15  Transmission line with reflection both at the sending and 
receiving ends.
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A complete derivation of the expression for the power transmission from the
source to the load is out of the scope for this text but the basic idea is to con-
sider the primary wave (  in figure 2.15) transmitted by the source before
considering the effects of reflection. This wave is the wave that is obtained
when the transmission line is assumed to be infinitely long, i.e. it presents an
input impedance equal to its characteristic impedance  which gives

(2.86)

Thus, the total wave, leaving the sending end is a sum of several waves such
that

(2.87)

After a few more steps the following useful expression is found:

(2.88)

where  denotes the available power from source and equals

(2.89)

which is the power delivered from the given source to a load that is (conju-
gately) matched to the source. Here, the source voltage  is given by its
peak value.
Equation (2.88) can be explained by four sources of transmission losses: line
loss, mismatch loss at the sending end, mismatch loss at the receiving end and
a residual term arising from multiple reflections. The last term can be positive
or negative and varies sharply with small variations in the length of the line,
i.e. with small changes in frequency. This creates several drawbacks from a
system point of view.

2.1.7 Standing Wave and Standing-Wave Ratio

The voltage or current at a point  on a transmission line is in the general
case the sum of two waves travelling in opposite directions and with unequal
amplitudes. This scenario is known to create a standing-wave pattern along
the transmission line.
Consider the voltage at a given position  along a lossless line,
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(2.90)

Noting that the magnitude of the factor  is constant with  the mag-
nitude of the voltage  will change in accordance with  only
which represents the voltage standing-wave pattern. Thus, maxima and
minima of  will occur for

(2.91)

where  is an integer. From (2.91) it can be concluded that the distance
between any two successive maxima or minima is half a wavelength.
The ratio between the maximum and minimum value of  is termed the
standing-wave ratio (denoted by SWR or )

(2.92)
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Figure 2.16  Standing-wave pattern in a lossless line.
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In figure 2.16 a standing wave pattern is exemplified together with the time-
domain signal at the minima and maxima of the pattern. Note that only the
voltage standing-wave pattern is shown. The corresponding current standing-
wave pattern is in anti-phase with the voltage pattern such that maxima of the
current pattern coincide with the minima of the voltage pattern and vice
versa.
The above analysis on standing waves applies to lines with no or negligible
loss. The standing-wave ratio SWR was defined for this case as the ratio of
the maximum to the minimum value of the voltage or current along the line.
When the line has significant loss the SWR is of little use as the standing-
wave pattern will change with distance.

2.2 Transmission Lines Resonators

To round of this chapter the transmission line used as a resonator will be
investigated and the relationships between the line resonator and lumped res-
onant circuits presented in the previous chapter will be identified. Here a
quarter-wavelength resonator terminated with a short-circuit will be investi-
gated, see figure 2.17. 

We will first investigate the case when the line is lossless. The input imped-
ance for this circuit is obtained from equation (2.66) with 

(2.93)

To identify the similarities between transmission line resonators and lumped
resonators the input impedance for each circuit can be compared in the fre-
quency domain. Thus, for the transmission line we have

(2.94)

This expression is best understood by plotting the reactance as a function of
frequency where free-space parameters are assumed, that is . The
length is m and .

ZL 0=

Figure 2.17  Short-circuit quarter-wavelength transmission line.
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For frequencies below 1GHz the reactance of the resonator is inductive and
for frequencies above (up to 2GHz) the reactance is capacitive and at 1GHz it
is infinite. Thus, qualitatively this circuit has some resemblance with a paral-
lel resonant circuit as shown in figure 2.19.

The purpose of the following analysis is find the equivalent parallel resonant
circuit for the quarter-wavelength line resonator.
The frequency behaviour of the transmission line will be investigated in the
proximity of the resonant frequency, that is at , thus

(2.95)
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Figure 2.18  Reactance of 1GHz quarter-wavelength line resonator.
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Figure 2.19  Parallel resonant circuit.
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For the parallel circuit (without a parallel resistor ) we have 

(2.96)

By equating (2.95) and (2.96) the equivalent capacitor is obtained:

(2.97)

Since  at resonance the equivalent inductance becomes

(2.98)

Finally, a lossy line should be considered to identify the value of . The
approach is similar to previous analysis but now with an attenuation constant

 included. This complicates the derivation substantially and only the result
is given here (a complete derivation is found in [1]):

(2.99)

Thus, a Q-factor can be found for the line resonator:

(2.100)

and, furthermore, relating to the parameters of the lumped circuit model for
the line with low loss

(2.101)

Req

Zin

jωLeq
1

jωCeq
---------------⋅

jωLeq
1

jωCeq
---------------+

------------------------------------
jωLeq

1 ω2LeqCeq–
--------------------------------

jωLeq

1 ω2LeqCeq–
--------------------------------= = =

j ω0 ∆ω+( )Leq

1 ω0 ∆ω+( )2LeqCeq–
------------------------------------------------------

j ω0 ∆ω+( )Leq

1 ω0
2LeqCeq 2∆ωω0LeqCeq––

--------------------------------------------------------------------------≈=

j ω0 ∆ω+( )
2∆ωω0Ceq–

------------------------------ j 1
2∆ωCeq
--------------------–≈=

j– Z0
2
π
---

ω0
∆ω
-------- j 1

2∆ωCeq
--------------------–= Ceq⇒ π

4ω0Z0
---------------=

XC XL–=

ω0Leq
1

ω0Ceq
---------------= Leq⇒

4Z0
ω0π
----------=

Req

α

Req
Z0
α!
-------

Z0
αλ 4⁄
--------------

2βZ0
απ

------------= = =

Q
Req

ω0Leq
-------------- β

2α
-------= =

1
Q
---- 2α

β
------- 1

ω0 LC
------------------ R C

L
---- G L

C
----+⎝ ⎠

⎛ ⎞= = =

R
ω0L
---------- G

ω0C
----------+ 1

QS
------ 1

QP
-------+= =



2.3 References

45

where  represents the quality factor of the series elements in the lumped
circuit model for the transmission line whereas  represents the shunt ele-
ments. Note that the Q-factor is independent of the length of the line and thus
it should be regarded as a general quality factor for the transmission line.
The analysis presented above to find the equivalent parallel resonant circuit is
based on the behaviour of the circuits in the vicinity of the resonant frequency
only. Thus, the question that remains to be answered is how well the line res-
onator emulates the parallel resonant circuit over a wider frequency range.
This is best illustrated by plotting the absolute value for the impedance of
both circuits. Using the same parameters as above, that is ,

m and , with the addition of , the result is
shown in figure 2.20. The curves are very close from DC to about  but
beyond this range the line resonator will have multiple resonant peaks with
the first one appearing at .

As a final remark it is important to note that it is not only the short-circuited
quarter-wavelength line that is useful as a resonator. Repeating the analysis
above will reveal that a quarter-wavelength line terminated with an open-cir-
cuit will behave as series resonant circuit, a half-wavelength line with an
open-termination will behave as a parallel resonant circuit and so on.

2.3 References

[1] D. M. Pozar, Microwave Engineering, 2nd edition, Wiley, 1998.
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Chapter 3

Passive Components

In the discussion of resonant circuits ideal circuit elements were assumed.
This assumption of course keeps the basic analysis on a reasonable level.
Unfortunately, the behaviour of real components deviates more and more
from their ideal counterparts as the frequency is increased. For example, for a
sufficiently high frequency a capacitor may very well behave as an inductor.
The causes are found in limitations of the physical realisation and character-
istics of the materials that are used.
Transmission lines were also discussed in a previous chapter without taking
any consideration to implementation aspects. However, in contrast to lumped
components the non-ideal behaviour of a transmission line does not so much
lie in the line itself but rather in the interface, that is, when transmission lines
are terminated (e.g. to ground or open-circuit) and when they are connected
together in junctions or in corners. However, as the frequency becomes
higher dispersive effects will show up which complicates the modelling of
transmission lines significantly. These effects are, however, not discussed
here and it is assumed that all travelling waves are transverse electromagnetic
waves (TEM waves) without any longitudinal field component. With this
assumption the physical design of transmission line circuits is quite straight-
forward although it may involve more or less complicated design equations
and tables. Two commonly used geometries for transmission lines are
depicted in figure 3.1. 

Figure 3.1  Two commonly used transmission line geometries
(a) coaxial line (b) microstrip line.
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The purpose of this chapter is to discuss real lumped components, their
behaviour and how they can be modelled. Furthermore, design formulas are
presented for the most common transmission line geometries and parameters
for various conductor and substrate materials are given. Finally, transmission
line discontinuities as junctions, terminations and corners will be discussed
briefly.

3.1 Lumped Components

In contrast to transmission lines, that are considered as distributed circuit ele-
ments, the lumped components are assumed to be infinitely small. This
approximation holds as long as the wavelength is much longer than the phys-
ical dimensions of the components. However, even though a component can
be considered as lumped and not distributed, the physical size of the compo-
nent itself and the parts that resides therein will still introduce, what is
referred to, parasitic effects that can be modelled with ideal circuit elements
such as inductors and capacitors. The reactive parasitic effects will combined
and together with the intrinsic component form a resonant circuit. Therefore,
a resonance frequency can be found which is usually termed the self-reso-
nance frequency, SRF of the component. The SRF is an important parameter
that is used to specify the useful frequency range for a lumped component.
It is readily seen that to obtain small parasitic effects (and high self-resonance
frequency) small components with very short leads should be used. For this
purpose surface mount design (SMD) components exist in a number of stand-
ard sizes, given by size codes in mil (1/1000 inch) or mm units. Examples are
given in figure 3.2 where dimensions are given for various sizes. However,
the values given for the height T should just be considered as an example.
Depending on the nature of the component and its value the height may very
well be larger, of course still within the specification of the standard.
Another driver for small components is the continuous miniaturisation of
electronic equipment. The penalty for using small components is, however,
lower power and voltage handling capabilities which must be considered in
the design work.

Figure 3.2  Various surface mount design (SMD) sizes.

Dimensions in mm

size code 
(mm)

size code
(mil)

L W T

1005 0402 1.0 0.50 0.4

1608 0603 1.6 0.8 0.5

2012 0805 2.0 1.2 0.6

3216 1206 3.2 1.6 0.6

L

WT
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3.1.1 Resistors

A real resistor can be modelled with the equivalent circuit found in figure 3.3.
The actual resistance is surrounded by inductive elements partly originating
from the leads but also from the actual resistance, which physical realisation
may very well resemble the structure of an inductor, e.g. a spiral. Resistors
with long leads can have several nH in series inductance ( ) and the
intrinsic inductor  may be in the same order of magnitude. The capacitive
elements may arise from the material used but it also depends on the struc-
ture. Here, the parasitic capacitance  can be on the order of 1pF. From fig-
ure 3.3 one parallel and one series resonance circuit can be identified.
Therefore, considering the values for the parasitic elements that were exem-
plified a resistor may exhibit a resonance frequency as low as 1GHz or even
lower. Of course, in the vicinity of the resonance frequency and certainly
above, the resistor is useless.

If we do not consider any particular application one of the most common
techniques to manufacture resistors are based on a carbon-composition mate-
rial shaped as a cylinder with leads at each end. The carbon-composition
material is made of densely packed carbon granules and between each pair of
granules there is a parasitic capacitor which will add up to 1pF or less in par-
asitic capacitance for the whole resistor. This disqualifies the carbon-compo-
sition material for use in high frequency applications.
The parasitic capacitance can be significantly reduced if a resistive material
such as carbon is deposited as a thin film onto a ceramic cylinder. The carbon
film is then spiralised to obtained the desired resistance by scribing a spiral
pattern on the film, see figure 3.4. The spiral shape will inevitably result in a
parasitic inductance but the parasitic capacitance being some tenth of pF will
still dominate the reactive behaviour. Using a metal film instead of carbon can
reduce the parasitic capacitance further and the resistor will be useful for high
frequency applications.

Llead
LS

CP

Figure 3.3  Equivalent circuit for a real resistor.

CP

RLSLlead

Figure 3.4  Principle of resistor with thin-film resistive material on ceramic
cylinder. The distributed nature of the parallel capacitance is illustrated with
capacitors between the spiral turns.

scribed slot

resistive film

ceramic cylinder

lead

electrode
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Thick-film techniques is used in SMD resistors. A resistive paste is applied to
the surface of a high grade ceramic substrate using screen printing. The
resistance value is determined by the mix of various components in the resis-
tive paste as well as the physical size of the resistive layer. The value is
trimmed to within tolerance, with laser cutting. SMD resistors are typically
manufactured using this technique and the combination of a small intrinsic
capacitance and the small SMD package makes it very useful for high fre-
quency application. One example of a SMD resistor and its geometry is given
in figure 3.5.

Example 3.1 High frequency behaviour of SMD resistor

A series of high frequency SMD resistors in 0603-size have the fol-
lowing parasitics:

 and , 
Plot the resistive and the reactive part of the impedance from 1MHz
to 10GHz for such a resistor with 10Ω, 100Ω, 1kΩ, 10kΩ resist-
ance. Normalise the resistance and the reactance with the DC value
of the resistance.
To plot the impedance, first derive an expression for the impedance
based on figure 3.3. By inspection of this circuit we obtain

and plots of resistance and reactance are shown below. From these
plots it obvious that high resistor values cannot be used for high fre-
quencies. Here, the parasitic capacitance will dominate as the fre-
quency is increased and finally bypass the resistor completely. Also,
there is a similar tendency for very low resistor values where the
reactance of the series inductance will have a significant influence
at high frequencies. To summarise, even though very small parasit-
ics are found for a 0603-sized resistor they will still influence the
characteristics of the component in the lower GHz-range.

Figure 3.5  (a) Physical dimensions of SMD resistor with size code 0402
(b) cross section of resistor.
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Figure 3.6  Normalised resistance of high frequency SMD 
resistors as a function of frequency.
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3.1.2 Capacitors

The most simple capacitor consists of two plates separated by a thin dielectric
material, see figure 3.8. This is the principle used for most capacitors, RF
capacitors in particular. 

The capacitance is given by

(3.1)

where  is the permittivity of free-space,  the relative permittivity for the
dielectric material,  is the area of one plate and  the distance between the
plates. For RF applications the size of the plates cannot be too large as it will
give more parasitic effects. Also, if a small footprint is desired (e.g. SMD) the
allowed size is certainly limited. Instead very thin dielectric sheets with a
large permittivity can be used, which in turn makes it possible to stack several
layers of plates to increase the area further. To obtain a very large capacitance
another principle similar to that of a regular battery can be used with anode
and cathode and an electrolyte in between. However, this principle is limited
to low frequency applications.
To investigate high frequency performance of capacitors, an equivalent model
including the parasitic effects should be used, see figure 3.9. As for the resis-
tor, there are inductive elements due to the leads, but also the internal struc-
ture of the capacitor give rise to some inductance. The parallel parasitic
capacitance, , is typically quite small and can be ignored in most cases as
it originates from the capacitive coupling between the electrodes, excluding
the intrinsic capacitor. This assumes of course that we only consider frequen-
cies below the first resonance frequency given by the series resonance circuit
that is obtained when we disregard .The series resistance, , also termed
the equivalent series resistance (ESR), is due to the internal loss in the capac-
itor and determines the quality factor of the component. In practice all the
elements in this equivalent model are frequency dependent. However, for fre-
quencies in the low GHz range the inductors and the capacitor can be
assumed to be constant while The ESR gradually increases with frequency
starting well below the GHz range. The lead inductance can be several nH
whereas the intrinsic inductance  is typically somewhat smaller. For this
reason the resonance frequency for capacitors are typically quite low and
inevitably decreases with increasing capacitance values.

Figure 3.8  Simple capacitor with two plates separated
by a dielectric disk.
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Figure 3.9  Equivalent circuit for a real capacitor.
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A plethora of various capacitors exists. The film capacitor uses a plastic film
as a dielectric material between the electrodes.The actual plastic material that
is used (e.g. polyester, polypropylene etc.) determines the properties in terms
of internal loss, temperature sensitivity, insulation resistance etc. Plastic film
capacitors are not used in high frequency applications, they are more suitable
in low frequency analog circuits and as decoupling capacitors in digital cir-
cuits.
The electrolytic capacitor have some similarities with a battery in that there is
an anode and a cathode with a dry or wet electrolyte. They can be manufac-
tured will very high capacitance values, up to several tenths of Farads but
they suffer from high resistance. The use of capacitors with wet electrolyte is
limited to energy reservoirs as found in power supplies whereas the dry coun-
terparts are of more general purpose nature. However, as with batteries this
capacitor has a polarity which must be considered in the design work. If
applied with a reversed voltage the capacitor may explode.
For high frequency applications the ceramic capacitor is widely used. Here
one or several layers of a ceramic material are printed with an electrode mate-
rial which in turn are connected to the terminals, see figure 3.10. Ceramic
capacitors are divided into three classes. Class 1 uses a material with a low
dielectric constant and they have very low sensitivity in terms of temperature,
frequency and voltage. They also exhibit a very low loss and they are suitable
for high frequency applications. Class 2 uses materials with a high dielectric
constant which enables more compact designs but they suffer form a nonlin-
ear dependency on temperature, voltage and frequency. They are used in non-
critical applications such as for decoupling. The class 3 ceramic capacitor is
based on a semiconducting material where the capacitance between granules
constitutes the capacitance. It is similar to class 2 in performance but they
have lower breakdown voltage.

Example 3.2 High frequency behaviour of SMD capacitor

A high frequency SMD capacitors in 0603-size with a nominal
value of  has the following parasitics:

 and , , 

Plot the absolute value of the impedance from 10MHz to 50GHz.
Note that in practice the parasitics will not be constant over such a
wide frequency range.

Figure 3.10  The structure of an SMD multi-layer ceramic capacitor.
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The expression for the impedance is found by inspection of figure
3.9:

and the result is shown figure 3.11.

From the plot it is evident that this capacitor will not be useful in
the GHz range. A deviation from the slope of the ideal capacitor
(dashed line) starts at around 700MHz and a series resonance dip
(due to  and ) is found just below 2GHz where the impedance
equals ESR. Yet another resonance effect is found above 10GHz
now with  and  in resonance.

3.1.3 Inductors and Transformers

Even a straight piece of wire exhibit an inductive behaviour although its
inductance is rather small per unit length of wire. Its inductance is given by

(3.2)

where  is the length of the wire and  the diameter (in metres).
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Figure 3.11  Absolute value of impedance for a high frequency 
SMD capacitor as a function of frequency.
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With the straight wire as a starting point the inductance can be increased by
increasing the magnetic flux linkage between different parts of the wire. This
is best done by forming a loop with one or multiple turns as shown in figure
3.12.

The inductance of this coil with an air core is approximately given by [1] 

(3.3)

where  is the length of the wire,  the diameter of the coil,  the number of
turns and  the permeability of free space. This formula is valid as long as
the length is greater than the radius. For the special case of a single loop of
wire the inductance is approximately

(3.4)

where  the diameter of the coil and  the diameter of the wire.
The inductance of a coil can be increased further by inserting a magnetic
high-permeability core which effectively increases the magnetic flux. This
approach has some shortcomings though as the a magnetic core will intro-
duce loss. More important, the permeability is frequency dependent and
approaches the permeability for air as the frequency is increased. In practice,
magnetic cores can be used up to 1GHz or less depending on the application.
An equivalent model for a real inductor is shown in figure 3.13. The resistor

 models the losses in the inductor wire and if present the losses in the core.
As for the wire the loss is small at low frequencies but as the frequency is
increased the Skin effect (see section 3.2.1) will manifest itself by increasing
the loss. The capacitor  models the capacitive coupling between the
closely spaced turns of a multi-turn inductor and therefore can be quite large.
As for the other components the inductor will also have a small parasitic
inductance due to the leads or electrodes.

Figure 3.12  Simple air-core inductor.
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Figure 3.13  Equivalent circuit for a real inductor.
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Example 3.3 High frequency behaviour of SMD inductor

A high frequency SMD inductor in 0603-size with a nominal value
of  has the following parasitics:

 and , 

Plot the absolute value of the impedance from 10MHz to 50GHz.
Note that in practice the parasitics will not be constant over such a
wide frequency range, especially not the series resistance .
The expression for the impedance is found by inspection of figure
3.13:

and the result is shown figure 3.14.

The self-resonance frequency is found to be 4GHz and beyond this
point the inductor is not of much use. A deviation from the slope of
the ideal inductor (dashed line) already starts at around 1GHz.

The Q-factor for inductors is usually quite limited and, moreover, it is fre-
quency dependent. In figure 3.15 the qualitative frequency behaviour of the
Q-factor is given with  denoting the total reactance of the component. At
low frequencies the DC resistance will determine the losses whereas the reac-
tance value will increase linearly with frequency. With increasing frequency
the Skin effect will gradually increase the loss (see section 3.2.1) which slows
down the Q-factor curve until it reaches a peak where the parasitic capacitor,

, causes the reactance to increase with the same rate as the loss. As the fre-
quency is increased further the effective reactance will decrease due to the
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parasitic capacitor which in turn will result in a decreasing Q-factor which
finally becomes zero at SRF. Note that this way of reasoning only applies for
an inductor that is supposed to be used as an inductor. If the inductor is part
of a resonance circuit the parasitic capacitance may be included (if the toler-
ances are adequate) in the total capacitor of the resonance circuit and the Q-
factor of the resonance circuit will therefore not degrade due to the parasitic
capacitor.

The inductor is the only component that can be easily implemented in the lab.
A piece of insulated copper wire wounded around a cylinder-shaped object
will make a fairly good air-core coil, see figure 3.12. Although this is not a
mass-production friendly approach air core inductors are actually manufac-
tures in SMD sizes where the coil is fixed by an acrylic jacket as shown in fig-
ure 3.16a. The jacket also give the inductor a well-defined geometry with a
flat top that makes them suitable for automatic placement. These inductors
provide Q-factors well beyond 100 in the GHz range and self-resonance fre-
quencies above 5GHz for 10nH and less.
Instead of using a jacket to fix the geometry of the inductor the wire can be
wounded around a dielectric core with a well-defined size that also provides
flat electrodes on the sides of the core, see figure 3.16b. These inductors have
a somewhat lower Q-factor than for the air-core inductors but may still reach
a value of 100.
Thin-film techniques can also be used in a fashion very similar to the con-
struction of resistors where a low resistive planar and spiral-shaped inductor
is grown on a ceramic substrate. The inductor geometry is accurately pat-
terned by means of photolithography and therefore the inductance value
becomes very accurate. These inductors does, however, not exhibit the high
Q-factor of the wire-wounded inductors described previously and typically
peaks at 50 or less.
Transformers are not as common as inductors at higher frequencies, say,
above a few hundred MHz. To obtain a large coupling factor transformers are
typically wounded around toroid-shaped magnetic cores which limits the
maximum frequency of operation. Surface mount transformers with ferrite
cores typically have a bandwidth well below 1GHz and at RF frequencies the
insertion loss is significant, on the order of 0.5dB. However, transformers
with a ceramic (non-magnetic) core are available with up to 2GHz bandwidth
(3dB insertion loss).

Figure 3.15  Qualitative frequency behaviour of Q-factor for an inductor.
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3.2 Transmission Lines

From the theoretical discussion on transmission lines in the previous chapter
it is not easily seen how we may go by to implement these lines. However,
from the schematic diagrams used to illustrate transmission lines one may
conceive that two parallel wires could constitute a transmission line.
Although not a practical solution this is indeed one possible geometry. Here,
we refer to the geometry of the transmission line as the cross-section layout
of the line.
In figure 3.17 various geometries are illustrated. The coaxial geometry is the
most common one to realise transmission lines as cables. For printed circuit
boards (PCBs) the microstrip geometry is widely used and in some cases also
the stripline geometry. The characteristic impedance of these lines of course
varies with how these geometries are scaled, e.g. the ratio between the radius
of the conductor and the shield in a coaxial line determines the characteristic
impedance together with the dielectric material between the conductor and
the shield.
Considering transmission lines on PCBs, one reason for the microstrip geom-
etry being widely used is the fact that it only requires two conductive layers
separated with a dielectric material.This should be compared with the strip-
line technique which requires three conductive layers and two dielectric lay-
ers. Also, using the coaxial transmission line might seem to be excessive if it
is compared with e.g. the simplicity of a twisted pair of wires.
However, the microstrip structure and twisted pair of wires are examples of
what are usually referred to as open-boundary transmission lines. That is, the
geometries do not limit the extension of the electric and magnetic fields to
within a finite area. This means that signals carried by such transmission lines
very well might couple to other lines in the vicinity and thereby cause unde-
sired interference. The coaxial line on the other hand is a closed-boundary
geometry which keeps the fields within the outer conductor. Finally, the strip-
line might be viewed as something in between, a semi-closed boundary line
as the fields will not extend beyond the two ground planes but still may cou-
ple to other transmission also residing between the two ground planes. 

(a) (b)

Figure 3.16  Various inductor implementations: (a) air core (b) dielectric 
core (c) thin-film inductor on ceramic substrate.

(c)
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3.2.1 Conductor and Substrate Materials

The materials used to implement a transmission line controls the properties of
the line. The permittivity of a dielectric material affects the phase velocity,

, and the characteristic impedance . The dielectric material also intro-
duce loss. The conductor material, however, only contribute loss and does not
influence  and .
For low frequencies the loss in the conductor is only given by the resistivity
or is reciprocal parameter, the conductivity . Thus for a given line structure
and dimensions it is straightforward to calculate e.g. the resistance per unit
length of transmission line or the attenuation constant . However, as the fre-
quency is increased the Skin effect will manifest itself by increased loss in the
line. The Skin effect is a result of the varying magnetic flux inside the con-
ductor which effectively will push the current to a narrow region below the
surface of the conductor. The depth of this region is termed the Skin depth
and represents the effective depth of the conductive area. In more detail the
current density decays exponentially from the surface towards the centre of
the conductor as illustrated in figure 3.18. Here it is also shown that the Skin
depth is equal to the distance from the surface for which the current density
has decreased by a factor . All this applies if the diameter or cross-sectional
width of the conductor is, say, 5 times the Skin depth or more, otherwise a
uniform current density can be assumed. The Skin depth is given by

(3.5)

outer conductor

(a) (b)
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Figure 3.17  Various transmission line geometries: (a) coaxial (b) microstrip 
(c) stripline.
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where  is the angular frequency,  the relative permeability of the conduc-
tor material and  the permeability of free-space. For the materials used as
conductors the relative permeability is equal to unity and thus only the con-
ductivity and frequency is needed to calculate the Skin depth. The conductiv-
ity for some metals are given in table 3.1.

Example 3.4 Resistance of wire at various frequencies

Calculate the resistance of circular wire made of pure copper with a
diameter of 0.1mm and 1 meter in length at 1MHz, 100MHz and
10GHz.
First, at DC there is no Skin effect and we assume that the current
density is uniform over the cross-section area of the wire. That is,
the conductive area is .
At 1MHz the Skin depth becomes . This should be
compared with the diameter of the wire which is 100µm. Since they
are within the same order of magnitude we can assume a uniform
current density over the cross-section area of the wire.That is, the
conductive area is .
For the other two frequencies the Skin depth becomes significantly
less than the diameter and the conductive area will be a thin region
below the surface:

Table 3.1  Conductivity for some metals.

Metal Conductivity  [S/m] ( )

Aluminium

Copper

Gold

Silver

ω µr
µ0

Figure 3.18  Skin effect: current density  as a function of distance from 
centre of circular conductor.
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100MHz: 
10GHz: 
Finally, the resistance becomes

The relative permittivity (or dielectric constant) for a substrate material is
usually preferred to be high as the phase velocity is decreased from the speed
of light in free space by a factor of . This in turn means a reduction of the
wavelength by the same factor and therefore also the physical length of a
transmission line to realise a certain electrical length. However, for very high
frequencies (millimetre-wave) the small size may not be advantageous any
more as the structures become to small to be manufactured with an adequate
accuracy and in this case a low relative permittivity might be desired. 
As mentioned above a dielectric material also adds loss and this is usually
represented by the loss tangent  where  is called the loss angle. For a
dielectric material with low loss the loss tangent is given by

(3.6)

This is also related to the quality factor or Q-factor of the material such that

(3.7)

The relative permittivity and loss tangent for some substrate materials are
given in table 3.2 below. These figures should be considered as typical figures
as they vary between different manufactures. Also, the parameters are both
frequency and temperature dependent.

Table 3.2  Relative permittivity for some substrate materials

Material

Alumina (ceramic form - SiO2) 10 0.0015

Epoxy fibre-glass (composite material) 4 0.02

Fused silica (amorphous form of quartz) 3.8 0.0001

Gallium arsenide (crystal - GaAs) 12.9 0.001

RT Duorid* 5880 (composite material) 2.20 0.0009

Silicon (crystal - Si) 11.9 0.004
* Rogers Corp., Chandler, Arizona
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3.2.2 Transmission Line Geometries

3.2.2.1 Coaxial Geometry

The coaxial line, the most commonly used structure for cables, consists of an
inner and an outer conductor usually supported by a homogeneous dielectric
material such as Teflon or Polyethylene. The geometry is shown in figure 3.19
below together with important parameters that determines the characteristic
impedance and the phase velocity.

Since the electrical field completely resides between the two conductors the
phase velocity is only controlled by the relative permittivity of the dielectric
material, that is,

(3.8)

Furthermore, it is quite straight forward to show that the characteristic imped-
ance is given by [3]

(3.9)

That is, as far as the dimensions are concerned only the ratio of the diameter
of the inner conductor and the inner diameter of the outer conductor controls
the characteristic impedance. However, the absolute dimensions are still
important. When high power signals are to be transferred the distance
between the conductors should be large enough to avoid dielectric break-
down. This occurs when the electrical field strength exceeds the maximum
field strength for the dielectric material.
Because the coaxial line is one of the most commonly used structures for
high power transmission and transmission over large distances it has served
as the basis for determining the standard impedance of 50Ω which is the most
widely used interface impedance found in many instruments. If no dielectric
material is present (air between the conductors) it can be shown [4] that to
obtain maximum power transfer capability the diameter ratio  should be
1.65 corresponding to a characteristic impedance of 30Ω whereas if the atten-

outer conductor

inner conductor
dielectric material

Figure 3.19  Coaxial line geometry.
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uation coefficient is to be minimised the ratio should instead be 3.6 which
corresponds to . The mean value between these two falls in the
neighbourhood of 50Ω.

3.2.2.2 Microstrip Geometry

The microstrip structure is easily adopted on PCB design since it only
requires two layers of conducting materials, the ground plane and the plane
with transmission lines, see figure 3.20.

It is not as easy to calculate the properties of this geometry as was the case for
the coaxial line. Not only do we have non-uniform distribution of the electric
and magnetic fields due to its complex geometry but also because the fields
penetrates both air and the substrate. Thus, to calculate e.g. the phase velocity
we cannot simply use the relative permittivity of the substrate or air. Instead,
a weighted mean value between the two should be used, here referred to as
the effective permittivity . Many formulas exists for microstrip calcula-
tions but they are all more or less empirical and are only accurate for a lim-
ited range of impedances. Then, on the other hand, the required accuracy
does not need to be any better than the process that is used to manufacture the
PCBs.
The characteristic impedance is easily found from figure 3.21 as a function of
substrate height, , and conductor width, . Notice that these curves assume
a zero thickness conductor which is an adequate approximation in most
cases. These curves have been calculated using the design equations in refer-
ence 5. To determine the phase velocity the curves in figure 3.22 should be
used which shows the effective permittivity as a function of the ratio 
and the relative permittivity of the substrate. As  ratio increases 
approaches . The reason is of course a larger portion of the electrical fields
between the conductor and the ground plane will only penetrate the substrate.

Z0 77Ω=

ground plane
dielectric material

conductor

Figure 3.20  Microstrip geometry.
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Figure 3.21  Characteristic impedance versus width/height ratio and relative 
permittivity of the substrate assuming zero thickness conductor.
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Figure 3.22  Effective permittivity versus width/height ratio and relative 
permittivity of the substrate assuming zero thickness conductor.
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Example 3.5 Design of a microstrip line

Calculate the width of a microstrip line to obtain a characteristic
impedance of 20, 50 and 100Ω. The line should have an electrical
length of one wavelength at 1GHz. The substrate is 1mm thick and
is made of epoxy fibre-glass, see table 3.2.
The substrate material has a relative permittivity of 4 and for the
desired characteristic impedances figure 3.21 gives the following
result:
20Ω: 
50Ω: 
100Ω: 
The wavelength in free-space is used as a starting point to calculate
the physical length of the transmission line. At 1GHz we have that

 and therefore
20Ω: 
50Ω: 
100Ω: 

3.2.3 Discontinuities

The previous treatment of transmission lines, where the lines had a continu-
ous cross-section geometry with field patterns being the same along its com-
plete extension, is a simplification which will cause more or less errors in
practice. In a real circuit a transmission line will not be separate entity of a
straight line. The fact that these lines will interface to other lines with differ-
ent widths, have turns to change direction and maybe be terminated to ground
or with an open end makes accurate modelling substantially more compli-
cated. The effects of these discontinuities can be taken into account using
models that are more or less empirical. The field patterns around these struc-
tures are to complicated to be handled purely analytical. Some models can be
found in e.g. [6] but since these models still improve by continuous research
the most advanced and up-to-date models are usually found implemented in
CAD tools. Here, the most common effects of microstrip discontinuities are
discussed briefly.

3.2.3.1 Open-Circuit Termination

The open-circuit termination shown in figure 3.23 is quite commonly used in
matching networks and filters where the open-circuit impedance is trans-
formed to a complex impedance by the transmission line. Unfortunately, the
abrubt termination will not cause an equally abrupt end of the fields. Instead,
the fields close to the termination will be distorted and fringing fields will
extend beyond the end of the transmission line. This can be modelled as a
capacitor at the termination as shown in figure 3.23b or more conveniently as
an extension of the line, see figure 3.23c. This model is adequate for low fre-

w h⁄ 7.3= w→ 7.3mm=
w h⁄ 2.1= w→ 2.1mm=

w h⁄ 0.5= w→ 0.5mm=

λ0 0.3m=
w h⁄ 7.3= εeff→ 3.4= λ→ λ0 εeff⁄ 0.163m= =
w h⁄ 2.1= εeff→ 3.1= λ→ 0.170m=

w h⁄ 0.5= εeff→ 2.8= λ→ 0.179m=
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quencies, that is when the line extension is substantially less then the wave-
length. Typically, this line extension lies in a region from say 0.1 to 1 times
the height of the substrate depending on the .

3.2.3.2 Corners 

Corners and bends are inevitable in practical transmission line circuits. Plain
transmission lines might need to have several corners to be able to use the
PCB area efficiently and in some transmission line structure, e.g. directional
couplers and filters, corners simply are a must to obtain the desired function.
The ideal corner should of course be transparent. For an abrupt corner, this is
not possible to achieve although it can be designed to have a minimal effect.
Also, if there is enough space, a rounded corner can be used. If the radius of
such a curvature is greater than 3 widths of the line the effect will be very
small.
To understand the qualitative behaviour of the corner the structure in figure
3.24a is used as a starting point. The square corner, defined by the structure
between the reference planes  and , are connected to two perpendicular
and uniform transmission lines. The corner can be modelled by a network as
shown in figure 3.24b with inductors, , representing the current and stored
magnetic energy and the capacitor, , representing the charge and the stored
electric energy. The same network is also an equivalent circuit for a short (rel-
ative to the wavelength) transmission line with a characteristic impedance
equal to

(3.10)

Since the square corner presents an excess capacitance compared with the
uniform transmission line the effective characteristic impedance of such an
equivalent line will be lower than that of the connecting lines. Also, an equiv-
alent line length is given by

w h⁄

(a)

(b)

ground plane
substrate

conductor

Figure 3.23  Microstrip line with open-circuit termination:
(a) electric field (b) equivalent capacitance (c) equivalent line extension.
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(3.11)

Here,  and  are unknown parameters describing the square corner and
can be obtained using appropriate models or CAD tools.

There is not much that can be done to significantly reduce the excess line
length that is introduced by the corner. This is usually not a problem since the
corner is most often a part of the line that is very much longer than  and
therefore the line can be compensated to account for it. The characteristic
impedance, on the other hand, is of prime concern. If  can be
increased to  of the connecting lines the corner can become almost trans-
parent. This is best done by decreasing  as illustrated in figure 3.25. The
depth of a suitable mitering cut ( ) depends on the  ratio of the line and
the permittivity of the substrate.

3.2.3.3 Symmetrical Step

The abrupt transition between two different line widths (and therefore 
and , as illustrated in figure 3.26a, is yet another very common structure.
As for the open-circuit termination there is not abrupt change of the electric
and magnetic fields around the transmission lines but rather a smooth trans-
mission which, effectively, might be modelled by the T-network in figure
3.26b. This assumes that the transition region is small compared with the
wavelength. The inductors represent the distorted current flow in the transi-
tion region whereas the capacitor represents the increased capacitance due to
the fringing electric fields at the transition edges. A coarse approximation
gives that the excess capacitance can be modelled as if the wider line ends at

∆l c
εeff

------------ LcCc⋅=

Lc Cc

Figure 3.24  The geometry of a square corner and equivalent models.
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∆l

Zcorner
Z0

Cc
y w h⁄

Figure 3.25  Corner geometry compensated with decreased capacitance by 
mitering the corner.
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reference plane  rather than at the actual transition , see figure 3.26c,
and therefore the effect of this discontinuity can be compensated by altering
the line widths accordingly.

3.2.3.4 T-Junction

The last structure to be discussed in this chapter is the T-junction where three
lines are joined as illustrated in figure 3.27a. In this particular case there is
one main or ‘through’ line with the same width throughout the junction
whereas the shunt line may have a different width. Note the location of the
interface between the lines defined by the reference planes ,  and .
Other reference planes could be devised to separate which part belongs to
which line. This is of course only a matter of definition and the equivalent cir-
cuit model for the junction will change accordingly. However, the definition
given in figure 3.27a is the one that is assumed for most models.

A2 A1

Figure 3.26  (a) The geometry of a symmetrical step, (b) equivalent model 
and (c) equivalent extension of wide line.

Cs

Ls 2⁄ Ls 2⁄

w1

A1 A1 A1
(a) (b)

w2

zero length

A2

(c)

A1

∆l

A1 A2 A3

Figure 3.27  The geometry of a T-junction and its equivalent model.
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Again, a T-network is used for modelling but now extended with another
inductor and a transformer to account for the third line, see figure 3.27b. This
model is only valid when the dimensions of the junction is much smaller than
the wavelength. The transformer models dispersion effects. If there is no dis-
persion,  equals unity. When the reference planes are taken as in figure
3.27a the inductors and the capacitor in the equivalent model have negative
values. 
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Chapter 4

The Smith Chart

As seen in the previous chapters the mathematical treatment of transmission-
lines and resonant circuits shows a tendency to derive intricate expressions.
The important relationships between the reflection coefficient, impedance
and standing-wave ratio are complex and difficult in general. That is why
there is a need for a graphical tool to show the results and even make it possi-
ble to graphically solve very lengthy and complex equations.
The most useful graphical tool available to the rf designer is the Smith Chart,
shown in figure 4.1, that transforms the z-plane into the . The first
draft was conceived in the early 1930s by Phillip Smith, at that time an engi-
neer at Bell Laboratories.
This chapter will explain what the chart represents and how it can be used at
the rf workbench. In several of the succeeding chapters the Smith Chart will
be used in the design of impedance matching networks, amplifiers and other
tasks. 
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Figure 4.1  The basic Smith Chart
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4.1 Construction of the Smith Chart

A complex impedance of the form  can equally be defined by the
corresponding reflection coefficient . Especially when
transmission-lines are involved, the latter is the most convenient parameter to
use.
The fundamental relationship between reflection coefficient and normalised
impedance at a pair of terminals may, as stated in Chapter 2, be written as

(4.1)

The Smith Chart is a mapping between the Γ-plane

(4.2)

and the normalised z-plane

(4.3)

To show the relationship it is first necessary to sort out the real and imaginary
parts, therefore equation (4.1) is written as

(4.4)
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When this is separated into its real and imaginary parts, the two resulting
equations are

(4.5)

(4.6)

Equation (4.5) represents a family of circles whose centres are located at
, and with radius equal to .

Similarly, equation (4.6) describes another set of circles whose centres are at
, and with radius equal to .

The conclusion is that impedances with fixed resistance are mapped into con-
stant resistance circles in the Γ-plane, and impedances with fixed reactance
are mapped into constant reactance circles as shown in figure 4.3.
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On the Smith Chart the p-axis is calibrated in r-values, instead of being cali-
brated linearly. The calibration is obtained from equation (4.4) setting x equal
to zero:

(4.7)

The r-scale is seen to extend from zero to infinity for p-values ranging from
. Generally the chart is used only for load impedances with a posi-

tive resistive component. That means that all impedances with positive real
part are mapped into the unit circle in the Γ-plane. Thus, the outer limit of the
Smith Chart is the circle , which corresponds to maximum mis-
matching of a lossfree line with an open alternatively short-circuited load or a
purely imaginary load.
Also on the Smith Chart, there is no need to show the q-axis as the segments
of x-circles are marked directly in the x-values. Additional scales are added
around the perimeter of the chart, showing the reflection coefficient angle,
transmission coefficient angle and wavelengths along a transmission-line.
Below the chart is a linear scale found for reading the reflection coefficient
magnitude. Further scales are added for determining other radially scaled
parameters. A complete Smith Chart is shown in figure 4.5.
As it is seen that all impedances with a positive real part are mapped within
the unit circle, the consequence is that impedances with a negative real part
are mapped into the are outside the unit circle. Negative resistance does never
exist in passive components, however in the discussion of stability in amplifi-
ers and in oscillator design the phenomena will show up.

p r 1–
r 1+
-----------=

1 to 1+–

Γ 1=
r=

 0

r=
 – 

0.2

r= – 0.6 r= – 1.4

r= – 2

r=
 –1

r=
 – 

0.4

r= – 3

x = 1

x= –1

x=
 – 

0.5
x=

 – 
0.5

x= – 0.2

x= – 0.2

Figure 4.4  Extended Smith Chart showing negative resistance
coordinates outside the unit circle.
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4.2 Practical Applications of the Smith Chart

The Smith Chart is basically of use for the transformation  or
. The network analyser is a good example. The instrument meas-

ures the reflection coefficient, but when the load impedance is requested, the
result can instantly be presented on the screen in a Smith Chart. However,
many other parameters related to these quantities can be graphically deter-
mined in the chart. This section will describe the most common applications.
Indeed, there are so many uses for the chart that several books have been
written on the subject. A detailed description of the chart and its applications
is given by Phillip H. Smith. [1]

4.2.1 Reflection Coefficient and Electrical Length

If we move the observation point along a transmission-line by a distance d,
from the load and in direction to the source, the reflection coefficient will be
transformed as stated in section 2.1.4:

(4.8)

This relationship corresponds to a clockwise rotation of the Γ-vector. The
angle is found on the inner concentric scale marked “ANGLE OF COEFFICIENT
IN DEGREES”. An example is shown in figure 4.6 where  and

. Curve a) shows a lossfree line, whereas curve b) shows a lossy
line with the attenuation constant .
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Figure 4.6  Transformation of the reflection coefficient along
(a) a lossfree line and (b) a lossy line.
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A complete turn, 360°, in the chart corresponds to a  change in

that conforms with a line with an electrical length of . Analogous will
the result of a  line be a half turn. This is shown on the outermost circular
scale, which is calibrated in the electrical length of the transmission-line. The
direction is indicated on the chart by the arrows marked “WAVELENGTHS
TOWARD GENERATOR” and “WAVELENGTHS TOWARD LOAD”.
The magnitude of  determines the distance from the centre of the chart.
This is a linear relationship from 0 to 1 that is denoted on the linear scare
beneath the chart and marked “RFL COEFF, E OR I”. An alternative scale gives
the corresponding dB relationship, “ATTEN [dB]”.
It is clearly seen that the Smith Chart is a very convenient tool to calculate the
input impedance of a transmission-line when a known load is connected to
the other side:

1. Plot the load impedance or  on the chart.
2. Determine the electrical length of the line.
3. Rotate the locus of  around the centre according to the appropriate

scales calibrated in wavelengths.
4. If the actual line is loss free, the locus traces an arc with constant

radius. On the other hand, if the losses in the line are significant the
radius has to be decreased according to the attenuation constant α:

 

4.2.2 Impedance and Admittance

Any plot on the Smith Chart represents a series combination of resistance and
reactance of the form . Note that the scales on the chart are always
denoted in normalised quantities. If the impedance variables in the basic
expression

(4.9)

are replaced by admittance quantities, , the locus for the correspond-
ing admittance is found to be

(4.10)

This corresponds to a rotation of 180° around the constant -circle. Thus
the Smith Chart can be used for admittance quantities as well. That makes a
convenient way to do serial-to-parallel-conversion ab shown in figure 4.7. It
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is to be remembered that an inductance corresponds to a positive reactance
but to a negative susceptance. An inductive impedance is located in the upper
half of the chart, while an inductive admittance is found in the lower half.

The chart can also be used for impedance calculation of series connected cir-
cuit elements. When a resistive component is added, the locus of the imped-
ance moves along a constant reactance arc. Addition of a reactive component
moves the locus along a constant resistance circle. An example is shown in
figure 4.8. Connection in parallel is carried out in the same way, except that
admittances instead of impedances are to be added which is illustrated in fig-
ure 4.9.

0.
5 1

0.5

1

180°�
-j0
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1 +j1
z

y

Figure 4.7  Impedance-admittance conversion on the Smith Chart.
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Figure 4.8  Series addition of circuit elements. (a) a resistance r = 0.5 and
 (b) a capacitive reactance x = -1.
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When consecutive connections with mixed series and shunt elements are to
be calculated, a Smith Chart with superimposed admittance coordinates is
very useful. This eliminates the over and over again need for conversion
between impedance and admittance. However, it is advisable to keep one’s
mind on the scales, as there are twice as many it is very easy to get lost.
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Figure 4.9  Shunt addition of a capacitance with the reactance x = -1
which corresponds to the susceptance b = 1.
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4.2.3 The Circuit Q Factor

The Q factor, which is measure of the losses in a circuit, is as stated in Chap-
ter 1 defined as

(4.11)

for a series circuit. Therefore it is seen that impedances located near the
resistance axis corresponds to low Q factors. On the contrary are impedances
near the unit circle implying high Q factors. This is illustrated in where sev-
eral constant Q lines are traced.

4.2.4 Power Relations

Beneath the complete Smith Chart, shown in figure 4.5, are also some scales
printed for determining some of the power relations that are discussed in sec-
tion 2.1.6.
The relationship

(4.12)

is the ratio between the power of the reflected wave and the incident wave and
can be read from the scale marked “RFL COEFF P”. The corresponding loga-
rithmic expression is given by the scale marked “RTN LOSS [dB]”.

Q x
r
--=

Q = 16

Q = 0.5�
�

Q = 0.5�
�

Q = 1�
�

Q = 1�
�

Q = 2

Q = 2

Q = 4

Q = 4

Q = 16

Figure 4.11  Constant Q lines in the Smith Chart.
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The power transmission factor or the mismatch loss is defined as the ratio
between the power transmitted to the load and the power in the incident wave.
The relation is depicted as

 (4.13)

and is given by the scale marked “TRANSM. COEFF. P”.

4.2.5 Standing-Wave Ratio

Among the additional scales below the Smith Chart there are also scales
marked “SWR” and “dBS” intended for reading the standing-wave ratio, ear-
lier defined in section 2.1.7:

(4.14)

However it is usually easier to determine the SWR directly in the chart by
reading the value of r where the constant -circle intersects the horizontal
axis at the right side . This follows from

(4.15)

As  is real at the horizontal axis and assumed to be positive, then

(4.16)

Tp 1 Γ 2–=

ρ SWR
Vmax

Vmin
--------------≡ ≡
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Imin
-------------=

Γ
r 1≥( )

ρ 1 Γ+
1 Γ–
---------------=

Γ

ρ 1 Γ+
1 Γ–
------------- r= =

2

ΓL = 0.333∠60°�

ρ = SWR = 2

Figure 4.12  Example of reading the SWR in the Smith Chart.
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Chapter 5

Network Design

Impedance matching is one of the most important tasks for the RF (Radio
Frequency) designer to deal with. As the power gain as a rule is poor at high
frequencies and the circuits often have to handle weak signals, special care
has to be taken in the design of RF networks. A true illustration is the front-
end of any sensitive receiver and transmitter where different kinds of imped-
ance matching are necessary to meet a hard specification.

Three different approaches can be identified:
1. The input signal (antenna) is most likely connected to the amplifier by

a matching network that transforms the antenna impedance to the
required source impedance for optimal noise performance. At this
point noise matching is essential as the signal level can be just slightly
exceeding the noise level. The topic is discussed in detail in Chapter 8.

2. In order to deliver a high level of output power and adequate efficiency,
the matching network between the power output amplifier and the
antenna is designed to provide a specified amount or maximum output
power. The network transforms the antenna impedance to the optimum
load impedance that is required for the amplifier to deliver maximum
output power. This topic is discussed in detail in Chapter 14.

3. The remaining interstage matching networks are designed to provide
maximum possible transfer of power. The method, called complex con-
jugate matching, will be further explained in this chapter.

Antenna
MixerRF amp

Match.
network

Minimum noise

Match.
network

Max power transfer

Match.
network

Max power transfer

Match.
network

Max output power

Combiner

Match.
network

Max power transfer

Power amp

LO

1

2

3 3

3 Amplifier

Figure 5.1  Three different kinds of matching can be found in
the front-end of a low noise receiver.
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Apparently, any needless loss in a circuit, that is already carrying extremely
low signal levels, simply cannot be tolerated. Therefore, in most instances,
extreme care is taken during the initial design of such a front-end, to make
sure that each device in the chain is properly matched to its load.
Different approaches to the design of matching networks will be discussed in
more detail in the following sections. No matter if the purpose of the network
is to match for minimum noise factor, maximum output power or maximum
transfer of power, the same design methods can be applied. The only differ-
ence is how the source and load impedances are selected. However, in this
chapter we will focus on networks designed for maximum transfer of power
(complex conjugate matching).

5.1 Matching

When a load is to be connected to a signal source there are three options that
might be referred to as current matching, voltage matching and finally power
matching. If a purely resistive source and load are considered the following
applies:

• Current matching - the load resistance should be low with respect to
the source resistance.

• Voltage matching - the load resistance should be high with respect to
the source resistance.

• Power matching - the load should be power matched, i.e. . As
will be demonstrated in this chapter, a matching network can be
designed such that any load resistance can be transformed to be power
matched with the source resistance. This results in a higher current and
voltage for the load than what is possible to achieve with current and
voltage matching.

Figure 5.2 shows the results of various choices of load resistance. The source
voltage is assumed to be 1 Vrms and .
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Figure 5.2  The choice of load resistance determines the kind of signal
transfer. Maximum power transfer occurs when RL = RS.
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Example 5.1 Signal transfer when  is varied.

Explore the circuit in figure 5.2.
The current and the voltage at the load is

(5.1)

(5.2)

Obviously maximum current is delivered simultaneously as the
voltage is zero if the load is a short circuit. On the contrary, the
result will be maximum voltage and zero current if the load resist-
ance is infinite.
However, at both these extreme conditions no power will be gener-
ated in the load. Then it remains to find out how to choose  for
maximum power transfer. The power produced at  is

(5.3)

where the voltages and the current are given as RMS values. By
deriving  with respect to  it is easily found that maximum
power is transferred to the load when .

As seen in example 5.1, maximum power will be transferred to the load if the
load resistance is equal to the source resistance as stated in the power match
theorem:

(5.4)

In this case equal amounts of power will be produced in the load as in the
source itself. All other ratios between the source and the load resistance will
result in a worse transfer of power, i.e. more power will be dissipated in the
source than transferred to the load.
The maximum amount of power that can be produced at the load is defined as
available power from source, 

(5.5)

In a high frequency environment the impedances are normally not purely
resistive. That is, we have to find an optimum load impedance to obtain the
best transfer of power. Real power is purely produced in the real part of the
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load impedance and the highest amount is delivered only if the current and
the voltage across the load resistance are in phase. As previously discussed in
Chapter 1, this condition will be fulfilled when the circuit is in resonance. 

(5.6)

This technique is referred to as complex conjugate matching.
Figure 5.3 shows that the matching problem is brought back to the power
match theorem stated in equation (5.4).
For example, the source, with a series reactive component of  (a capaci-
tor), is driving its complex conjugate load impedance consisting of a 
reactance (an inductor) in series with . Then the reactive parts will cancel
each other leaving only  together with  and since they are equal, maxi-
mum transfer of power will occur.

So when we are dealing with complex conjugate matching, we are simply
referring to a condition in which any source reactance is resonated with a
reactance of equal magnitude and opposite sign, leaving equal resistor values
for the source and load terminations.
The elimination of the reactive parts implies that the available power from
source can be calculated as previously defined in equation (5.5):

(5.7)

In most cases the source and the load impedances are fixed and that makes it
impossible to provide proper matching without additional components. The
solution is to insert a matching network between the signal source and the
load as shown in figure 5.4. The primary objective is to force the load imped-
ance to “look like” the desired impedance from the source point of view. If
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Figure 5.3  Maximum transfer of power occurs when the source impedance is
driving its complex conjugate load impedance.
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the network matching on one side, matching is automatically obtained on the
other side. The design and the qualities of frequently used networks will be
illustrated in the next sections.

5.2 Network Design by Lumped Circuits

There are an infinite number of possible structures which can be used to fulfil
the impedance matching function of figure 5.4. However, because we are
dealing with reactances, which are frequency dependent, there is perfect
match only at one frequency. At all other frequencies diverging from the
matching centre frequency, the impedance match becomes gradually worse
and eventually nonexistent. 
Simple networks designed with only two reactances, such as the L network,
leaves no freedom to control the bandwidth. This can be a problem in broad-
band circuits where a perfect match is wanted everywhere within a broad
passband. One solution is to increase the number of reactances in the match-
ing network, in that the designer gains the freedom to choose both the imped-
ances to match and the bandwidth at the expense of a more complex network.
This will be discussed in the succeeding sections.

5.2.1 The L Network

The most simple and therefore widely used matching circuit is the L network.
If the load and source impedances are resistive the two reactances that forms
the network must be of opposite kind, i.e. if the series element is an inductor
the shunt element must be a capacitor. Depending on the desired transfer
function there are four possible matching circuits as shown in figure 5.5. 

The choice of circuit is based on the ratio between  and  as well as the 
required filter shape. For example, an amplifier output matching network is 
often combined with the low-pass filtering circuitry needed to suppress 
unwanted harmonics. In other situations it is essential to maintain a dc path 
through the network and then a low-pass configuration will be the typical 
choice.
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Figure 5.4  A network is needed to carry out proper matching when
the load and source impedances are fixed.
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However, the primary idea is that the source and load impedances should see 
their complex conjugate when they look into the network.

Example 5.2 Analysis of a simple L network.

Analyse the matching network in figure 5.6 and verify that the 50Ω
source is matched to the 250Ω load.

Without the impedance-matching network, if the load were con-
nected to the source directly, the relative output power would
decrease by approximately 2.5 dB according to equations (5.3) and
(5.5)

This loss will be eliminated by the matching network assuming that
the reactive components do not introduce any additional losses.
The mechanism of the impedance matching is best understood by
transforming the circuit to the serial equivalent as described in sec-
tion 1.2.3.
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Figure 5.5  The L network has four possible configurations depending on
the magnitude of the source and load impedances and the desired filter
shape.

(a) Low-pass, RL RS> RL RS<(b) Low-pass, 

(c) High-pass, (d) High-pass, RL RS> RL RS<
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Figure 5.6  A simple impedance-match network.
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The parallel combination of  and C is transformed into the series
equivalent circuit as stated in the equations (1.29) and (1.30)

After the parallel-to-series conversion it is clearly seen that the reac-
tive component of -j100Ω will be cancelled by the series inductance
of +j100Ω and  in figure 5.7c will be purely resistive and equal
to the source resistance 50Ω.
The conclusions are:

• The function of the shunt component of the impedance-matching net-
work is to transform a larger impedance to a smaller value, with a real
part equal to the real part of the other terminating impedance.

• The series impedance-matching element then resonates or cancels any
reactive component present, thus leaving the source driving an appar-
ently equal load for optimum transfer of power.

The design of the L network is fairly simple by using the quality factor as
illustrated in figure 5.8: 

L
j100Ω

250Ω

R L
C

-j125Ω 50Ω

R'L

C'
-j100Ω

50Ω

R'L
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1Y 1Z 2Z

Figure 5.7  Analysis of the network by parallel-to-series conversion.
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If power match is obtained it is obvious that the Q factors related to the series
and the shunt leg of the circuit has to be equal. By the use of the definitions
stated in section 1.2.1 and 1.2.2 the network can be easily designed using the
following equations:

(5.8)

(5.9)

(5.10)

The quantities  and  may be either capacitive or inductive reactance
but, if both the source and load impedances are pure resistances, each must be
of the opposite type.
It is very rare that the terminating impedances both are pure resistances in the
real world. Transistor input and output impedances are almost always com-
plex valued. Antennas, mixers, filters and most other sources and loads are no
different in that respect. That is, they contain both resistive and reactive com-
ponents. It is therefore essential to handle these reactances in an intelligent
manner to obtain adequate impedance matching.
The design procedure is quite similar to the above described method. The
idea is to let the source and load reactances be included into the matching net-
work. Almost every set of complex source and load impedances can be
matched by the following approach:

1. Choose a network configuration from figure 5.5 to meet the initial con-
ditions and desired filter shape.

2. The matching elements are first calculated as stated in equations (5.8)
to (5.10), ignoring the stray reactances.

3. At last, the stray component values are combined with the calculated
element values leaving final values for the network elements.

The method is illustrated in the following example:
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Example 5.3 Design of a matching network with complex terminations.

Design a network that will match the impedances  and  as
shown in figure 5.9. The dc path between the source to the load
should be blocked and the operating frequency is . 

Since  and dc blocking is required only one network con-
figuration is possible, namely figure 5.5c.

Disregarding the reactive source and load components, initial values
for the two network elements  and  are calculated as defined
in equations (5.8) to (5.10):

Now we have to take care of the reactive source and load compo-
nents. From figure 5.11 it is understood that  connected in series
to  should equal :
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The same approach is used at the shunt leg,  connected in paral-
lel to  equals :

Note that in some occasions it will not be possible to compensate the reactive
source and load components within the suggested network configuration.
There are two different approaches to handle this problem:

1. If there is no disadvantages due to the filter or dc requirements one or
both of the network elements can be changed to the opposite type, i.e. a
capacitor is replaced with an inductor or vice versa.

2. In other cases additional reactances may be inserted in the network to
resonate the source or load reactances at the actual frequency.

The last suggestion, when the network has to be extended with one or more
components, leads to the next section where three-element matching will be
treated.

5.2.2 The Pi and T Network

As seen in the previous section, the Q of the 2-element network is determined
by  and . This is a disadvantage as it prevents the designer to choose an
arbitrary circuit bandwidth, since the source and load impedances usually are
given by other requirements. If the network is extended by one element this
disadvantage will be overruled. The 3-element network, shown i figure 5.12,
can be designed for just any bandwidth in high-Q applications. The designer
has almost full freedom to select any practical circuit Q as long as it is greater
that Q which is the result of a 2-element network.
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The Pi and T networks can be described as two “back-to-back” connected L
networks. Both sides are designed to match the terminating impedances to a
virtual resistance, supposed to be an invisible load between the two networks.

The loaded Q of one of the L networks is used to calculate an approximate
value of the virtual resistance . The magnitude of Q can be derived from
the bandwidth requirements or simply be settled by the designer.
If a Pi network is to be designed, the highest value  of either  or 
should be used.  must be smaller than the terminating resistances as it is
connected to the series branch each L section.

(5.11)

The same approach is valid for the T network with one exception. As  is
connected in the shunt arm of the L sections, the smallest of the terminating
resistances is used. Thus  will always be larger than either  or .

(5.12)

When  is defined, each L network is calculated in exactly the same manner
as was described in the previous section. The design procedure is displayed in
the following example.
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Figure 5.12  The three-element network, (a) Pi configuration and
(b) T configuration.
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Example 5.4 Design of a Pi network

Design a Pi network as shown in figure 5.12a to match a 50Ω
source to a 250Ω load. The loaded QL of the network should be 20.
What are the possible configurations of the network?
From equation (5.11) the virtual resistance is calculated as

In the design of the L network on the load side the source resistance
is replaced by the virtual resistance . The reactances are given
from equations (5.9) and (5.10):

(5.13)

(5.14)

Before we proceed with the calculations of the reactances on the
source side, the Q value for the L network on that side has to be
defined. This is done by using equation (5.8) where  is replaced
by  because the source is connected to the shunt branch.
Equally is  in the formula substituted by  as the load is con-
nected to the series leg of the network.

 

Now the remaining reactances can be calculated:

The entire design is shown in figure 5.14. Note that the virtual
resistance  is not really in the circuit, and is shown just for clar-
ity.

Rv
RL

1 QL
2+

------------------ 250

1 202+
----------------- 0.62Ω= = =

Rv

XS2 QLRv 20 0.62⋅ 12.5Ω= = =

XP2
RL

QL
------ 250

0.62
---------- 12.5Ω= = =

RL
RS 50Ω=

RS Rv

QS
RS

Rv
------ 1– 50

0.62
---------- 1– 8.9= = =

XP1
RS

QS
------ 50

8.9
------- 5.6Ω= = =

XS1 QSRv 8.9 0.62⋅ 5.5Ω= = =

Rv
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So far in the design only the reactances are calculated. The last step
will be to figure out possible configurations to implement the net-
work.
All the reactances can all be either capacitive or inductive. The only
limitation is that  and  as well as  and  must be of
opposite types. Just as all the four elements are determined, the final
circuits are formed by combining the series branches  and .
Note that if an inductance is selected, the reactance should be added
and if a capacitor is selected, the reactance should be subtracted.
The four possible configurations are shown in figure 5.15.

The example above illustrates how a 3-element matching network can be
formed in several shapes. The choice has to be made for each application
depending on factors such as the elimination of stray reactances or the need to
pass or block dc.

50Ω

R

250Ω

R
S

L
P1X P2X

S2XS1X

vR

12.5Ω0.62Ω5.6Ω

5.5Ω 12.5Ω

Figure 5.14  The equivalent circuit for the Pi network
with calculated reactances.
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Figure 5.15  The four possible configurations for the Pi matching network.
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5.2.3 Network Design Using the Smith Chart

The Smith Chart is, as shown in section 4.2.2, an excellent tool to calculate
the impedance when series or shunt elements are connected in ladder-type
arrangements. An important advantage of the method is that each node of the
network can be verified by measurement of the impedance before the calcula-
tion is resumed.
A common simplification in the design work is to assume lossless matching.
The procedure then is simple:

1. Normalise the required load and source impedances and plot on the
chart

2. Choose the desired network configuration.
3. Add shunt and series elements on the chart until the requested imped-

ance is achieved.
Remember, when a series element is added its reactance is added in z-
coordinates, i.e. the locus of the impedance is moving along a constant
resistance circle. When a shunt element is added the susceptance is
added in y-coordinates, i.e. the locus is moved along a constant con-
ductance circle.

4. Read from the chart and denormalise the selected reactances or sus-
ceptances and calculate the component values at the actual frequency.

For series elements: (5.15)

For shunt elements: (5.16)

The procedure is illustrated in the following example.

zL
ZL

Z0
-----=    and   zS

ZS

Z0
-----=

z-coordinates y-coordinates zy-coordinates

Series C

Series L 

Shunt L

Shunt C 

Capacitivereactan
ce

com
po

ne
nt

(-jX
/Z

0) Capacitivesusceptancecomponent(+jB/Y0)

Inductive susceptance component (-jB/Y
0 )Ind

uc
tiv

e r
ea

cta
nce

com
ponent (+jX/Z0)

Conductance component (G/Y0)
Resistance component (R/Z0)

Series C

Series L Shunt L

Shunt C 

Figure 5.16  Summary of addition of reactive components on a Smith Chart.

C 1
ωx
------- 1

Z0
-----⋅=    or   L x

ω
---- Z0⋅=

C b
ω
---- 1

Z0
-----    or   L⋅ 1

ωb
------- Z0⋅= =
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Example 5.5 Design of a matching network on the Smith Chart.

Design a network, operating at 400 MHz, that will match the load
impedance  to a  for optimum transfer of
power. Calculate the components and estimate the network band-
width. Use the configuration shown in figure 5.17 and assume loss-
less reactances.

First of all the impedances are normalised to  and plot-
ted in the chart

Optimum transfer of power is achieved when the source “sees” the
complex conjugate of its impedance, i.e. , when it is
looking into the network. Due to reciprocity the same condition is
true as  should be seen when looking into the net-
work from the load’s point of view. It is therefore obvious that there
are two different paths to follow in the chart. However, any of them
produces equal solutions. For clarity, both paths are illustrated in
figure 5.18.
Let’s start at the load.
As the inductor is connected in series, its reactance is added to .
In order to determine the amount of reactance, an additional con-
stant conductance circle showing  is drawn.
Then follow the constant resistance circle from  until it intersects
the help circle. The normalised value of the inductive reactance, ,
is equal to the difference between the two points read from the scale
at the circumference.

The next step is to calculate the value of the capacitive reactance,
, that is connected in parallel. As calculation of shunt connec-

tions are best done by addition of admittances, the value corre-
sponding to  is plotted:

ZL 10 j10Ω+= 50Ω

50Ω

R

LZ
S

10+j10Ω

C

L

Figure 5.17  A two-element network.

Z0 50Ω=

zL
ZL

Z0
----- 0.2 j0.2   and   zS+

ZS

Z0
----- 1= = = =

zS∗ zS 1= =

zL∗ 0.2 j0.2–=

zL

g 1=
zL

xi

jxi z1 zL– 0.2 j0.4+( ) 0.2 j0.2+( )– j0.2= = =

xc

z1

y1
1
z1
---- 1 j2–= =
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As capacitive susceptance is added to , the locus is shifted at the
constant conductance circle towards . The nor-
malised value of the susceptance, , is read from the scale as the
difference between  and :

This completes the calculation on the chart and the result is shown
in figure 5.18a.
If the start point is chosen to the source, the procedure will be
almost the same except that the path will end in  as illustrated in
figure 5.18b. The values of  and  are exactly the same as the
values derived by the former path.

An approximate value of the network bandwidth is derived from the
node that corresponds to maximum Q. Referring to figure 4.11, that
point seems to be  that gives

Finally, the component values are calculated at  by
using equations (5.15) and (5.16):

y1
yS∗ 1 zS⁄ 1= =

bc
y1 yS∗

jbc yS∗ y1– 1 1 j2–( )– +j2= = =

yL∗
xi bc

(a) (b)

x=
0.2

x=
0.2

b=2

b=2

zL = 0.2+j0.2
z*

L = 0.2-j0.2
ySy*

S

z1

y1

Figure 5.18  Calculation of the reactances on the Smith Chart. a) shows the
path from the load to the source and b) shows the reverse direction.

z1 r1 jx1+=

B
f0

Q
----

f0r1

x1
--------- 400 106 0.2⋅ ⋅

0.4
--------------------------------- 200MHz= = = =

f0 400MHz=

L
xi

ω
---- Z0⋅ 0.2

2π 400 106⋅ ⋅
--------------------------------- 50⋅ 4nH= = =

C b
ω
---- 1

Z0
-----⋅ 2

2π 400 106⋅ ⋅
--------------------------------- 1

50
------⋅ 16pF= = =
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In the initial phase of the design, the designer has to decide what kind of net-
work configuration to use. The selection is normally based on the load and
source impedance ratio and other practical aspects, such as filter characteris-
tics or the need of a dc path.
The qualities of four kinds of L networks was discussed in section 5.2.1 and
figure 5.5. The circuits are reprinted in figures 5.19a-d and completed with
outlines of the Smith Chart that defines the matching capabilities of the possi-
ble L-type combinations. The remaining figures 5.19e-h shows L networks
based on reactances of equal type, known as tapped-capacitor circuit or
tapped-inductor circuit in Chapter 1.
Figure 5.19 serve as a guide to the selection of a suitable L-type matching cir-
cuit for any particular impedance transformation. If the locus of the load
impedance, , falls anywhere inside of the unshaded area, it is transformable
to a pure resistance . 

zL
z0
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Forbidden�
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z0

Forbidden�
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-jx
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-jx
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-jx

0 ∞C
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(a)
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(d)

(f)

(h)

0z Lz

0z Lz

0z Lz

0z Lz

0z Lz

0z Lz

0z Lz

0z Lz

Figure 5.19  Eight possible L-type networks for transforming a complex load
impedance zL to a pure resistance z0.
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It is clear that the L-match is very common due to its simplicity. However,
there are only two degrees of freedom as only the values of L and C are possi-
ble to select. Hence, once the impedance transformation ratio and the reso-
nant frequency have been specified, the network Q is automatically
determined. If a different value of Q is required, the network has to be
expanded at least by one more element that provides additional degrees of
freedom. This is illustrated by analysing example 5.4 in the Smith Chart:

Example 5.6 Analysis of a Pi network on the Smith Chart

Analyse the network in figure 5.20 that was designed in example
5.4 to match a 50Ω source to 250Ω load.

The loaded QL of the network can be calculated from z1:

50Ω

R

250Ω
R

S

L
P1x

5.6Ω

P2x

12.5Ω

Sx

18Ω

Figure 5.20  The Pi network with reactances calculated in example 5.4
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It can be found out from example 5.6 that the shape of the impedance path
gives a sense of the network Q. Figure 4.11, showing constant Q lines in the
Smith Chart, is a valuable help on how to choose a proper path for a required
Q. This is illustrated in example 5.22 where two different paths are outlined,
both matching  to . The conclusion is that the Q will decrease when the
path is hold close to the resistance axis.

There is however a lower limit of Q that can be implemented by a three-ele-
ment network. In the actual example the minimum possible Q is 2, and then
the circuit is reduced to a two-element L network.
Hence, under some conditions it may be necessary to increase the number of
network elements to fulfil the specification. Figure 5.23 illustrates the concept
where two networks of higher order are performing equal impedance trans-
formation, but are showing different values of Q. Under these circumstances
it is not possible to determine the Q value numerically on the chart. However,
it is a good indicator to find out the order of Q. Compare with the systematic
methods for filter design in Chapter 12.

zL zS

rL

Q=20

Q=2.5
Q=2.0

za1
zb1

zS = zS
*

za2

zb2

Figure 5.22  An alternative solution for the problem in example 5.6.

zS

Net a

zS zL

Net  b

zL

zL

zS
*

path b

path a

Figure 5.23  Multielement matching. Path a shows a high Q
and path b shows a low Q network.
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5.3 Network Design by Line Structures

When the operating frequency advances into the micro-wave region the prac-
tical problems to handle lumped reactive components will be evident. Para-
sitic reactances as well as rising losses are no longer negligible.
Unfortunately this will result in complex models and tedious calculations to
meet, if it is ever possible, any stipulated specification.
Luckily there are alternative techniques that are independent of lumped ele-
ments to achieve impedance transformation. As seen in section 2.1.5 the input
impedance of a transmission line with an electrical length of " and the oppo-
site end is connected to a load impedance is given by

 where (5.17)

(5.18)

Substituting equation (5.18) into (5.17) yields the final expression for :

(5.19)

For a lossless line when , and by using
  and , equation (5.19) is reduced to

(5.20)

Zin Z0
1 Γin+
1 Γin–
-----------------=

Γin ΓLe 2γ "– ΓLe 2α"– e j2β"–= =

ZL

Figure 5.24  Transformation of impedance by a transmission line.
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Γin Zin, ΓL

"
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Zin Z0
ZL Z0+( )eγ " ZL Z0–( )e γ– "+

ZL Z0+( )eγ " ZL Z0–( )e γ– "–
----------------------------------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

Z0
ZL Z0 γ "tanh+
Z0 ZL γ "tanh+
------------------------------------⎝ ⎠

⎛ ⎞=

γ jβ=
jβ"sinh j β"sin= jβ"cosh β"cos=

Zin Z0
ZL β"cos jZ0 β"sin+
Z0 β"cos jZL β"sin+
---------------------------------------------------⎝ ⎠

⎛ ⎞ Z0
ZL jZ0 β"tan+
Z0 jZL β"tan+
-----------------------------------⎝ ⎠

⎛ ⎞= =
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A look into the Smith Chart exposes a new kind of path where the impedance
locus is navigating along a  arc. If the transmission line can be considered
as lossless, which is the normal approximation, the arc turns into a constant

 circle, as shown in figure 5.25.

Almost any impedance matching problem can be solved theoretically by a
single line element by selecting proper electrical length and characteristic
impedance. However, in many cases the solution for the single element line
will assume unreasonable dimensions besides the lack of freedom to control
the network bandwidth. These problems can be mastered by connecting sev-
eral line elements with changed properties in cascade or by connecting reac-
tive shunt elements, so called stubs, to the network. These methods will
successively be discussed in the following sections.
Since the electrical length of a transmission line is inversely proportional to
the frequency, these kind of matching networks are only utilised at frequen-
cies in the GHz range. At lower frequencies the dimensions of the network
tends to be unrealistically bulky. Nevertheless, line elements can reliably be
combined with lumped circuit elements in order to perform impedance
matching at intermediate frequencies.

5.3.1 Quarter-Wave Transformer

An important application is a line with fixed electrical length of , often
named as “quarter-wave transformer”. Assuming a lossless line the required

 is derived from equation (5.20): 

(5.21)

Γ

Γ

"

Zina Zinb

b) lossy line

a) lossless line

Γ L a 
= e

-j2
β"

Γ L b 
= e

-2α
# e

-j2
β"

ZL
ΓL

Figure 5.25  transmission line as an impedance transformer.

λ 4⁄

Z0

" λ 4⁄       β"⇒ π 2⁄= =

Zin
Z0

2

ZL
-----       ⇒ Z0 ZinZL= =
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The procedure is illustrated in the following example where the problem in
example 5.2 is solved by a transmission line.

Example 5.7 Design of quarter-wave transformer.

Calculate the characteristic impedance of a  line to properly
match a 50Ω source to a 250Ω load.

The result is depicted in the Smith Chart as a half turn via the con-
stant  circle, that is intersecting the normalised load and source
resistances.

λ 4⁄

RL 250Ω=

Figure 5.26  Quarter-wave transformer.
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Z0 RsRL 50 250⋅ 111.8Ω= = =
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------ 50
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------------- 0.45 ,    rL
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111.8
------------- 2.24= = = = = =
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Figure 5.27  The result of the quarter-wave transformer
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When the ratio between the load and source impedances is large, the band-
width associated with the quarter-wave transformer will be fairly narrow.
Unfortunately, as there are only two degrees of freedom, the characteristic
impedance and the length, there is no possibility to control the bandwidth
unless the network is extended with one or more elements. Note the similarity
to the discussion concerning the L network in the previous section.

Thus, a low standing-wave can be obtained over a wider frequency band if the
impedance is changed gradually by two or more quarter-wave lines. Maxi-
mum-flatness is achieved when the subsequent impedance shifts are exhibit-
ing geometrical relationships determined by the binomial coefficients. Each
change in impedance is then determined by

(5.22)

where n is the total number of line sections and k is the position of each sec-
tion starting with  at the source, i.e.  and .
This procedure can, of course, also be applied to lumped ladder-type net-
works.

Table 5.1  Binomial Coefficients 

n ↓ k → 0 1 2 3 4 5

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

Zin

Figure 5.28  Impedance transformation by cascaded quarter-wave lines.

ΓLΓin

RL

RS

If RS RL<  then RS Z01 Z02 RL< < <

λ 4⁄ λ 4⁄

Z02Z01

Z0 k( )

Z0 k 1–( )
------------------

RL

RS
------⎝ ⎠

⎛ ⎞

n

k 1–⎝ ⎠
⎛ ⎞ 2n⁄

=

k 1= Z0 0( ) RS= Z0 n 1+( ) RL=

n

k⎝ ⎠
⎛ ⎞



Chapter 5 Network Design

106

For example, if three quarter-wave sections are used to match  to , the
four steps are determined from the number series 1-3-3-1. Thus the character-
istic impedance for each section is given by

Figure 5.29 shows the broadening of bandwidth when the matching network
in example 5.7 is designed with one, two or three quarter-wave sections for
maximum-flatness. The frequency scale is normalised to the mid-frequency

 corresponding to the electrical wavelength . It can also be observed
that perfect matching, SWR = 1:1, in all cases is obtained at .

5.3.2 Line Section with Optimised Length and Z0

Obviously, quarter-wave transformers are only capable of matching purely
resistive impedances as each line section always moves the impedance locus
one half turn in the Smith Chart. This was illustrated in figure 5.27.
Nevertheless, matching of a complex-valued load impedance to a complex-
valued source can, with a few exceptions, be obtained through optimising
both  and the length of the line. If the source impedance is equal to

, complex conjugate matching is obtained when the load
impedance  is transformed into .
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The optimum characteristic impedance of the line, assuming a lossless line,
conforms to

(5.23)

and can be obtained by solving equation (5.23) with respect to :

(5.24)

As a positive and real  is required, it is obvious that not all combinations of
impedances are possible to match with one single line. Some limitations
when  is pure resistive are depicted in figure 5.31.

When  and  are normalised by the value of  from equation (5.24) and
plotted on the Smith Chart, they will both be found on the same constant 
circle. The electrical line length is then finally read on chart or derived from

(5.25)

Figure 5.30  Impedance transformation by a single line with optimised 
characteristic impedance and length.
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the unshaded area, it is transformable to a pure resistance  by a single
line.

zL
zS rS=

Zin

ZL

RS
Z0

"

ZL ZS Z0
Γ

Γin ΓLe j2βd–       d
λ
---⇒ 1

4π
------ θL θin–= =



Chapter 5 Network Design

108

The procedure is illustrated in the following example.

Example 5.8 Calculation of optimum  and line length.

Design a single transmission line as shown in figure 5.30 to perform
matching between

, and
.

Equation (5.24) is used to calculate the characteristic impedance:

The source and load impedances are normalised by  and then
plotted on the chart:

It is clear that  and  both are located on the same constant 
circle.
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optimised to obtain matching between a complex load and a complex source
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The electrical length of the line, expressed in wavelengths, is at last
read from the outermost circular scale:

It is of course possible to design cascaded line sections, each with optimised
 and length. However, the necessary calculations for this kind of applica-

tion is to extensive to be carried out by hand.
At higher frequencies, corresponding to centimetre or millimetre waves, the
impedance transformation often is achieved by line structures where the char-
acteristic impedance continuously is altered from the load to the source
impedance, so called tapered lines. However, the theory needed to calculate
the shape of such structures is fairly comprehensive and is therefore not cov-
ered by this text. 

5.3.3 Stubs, Short-Circuited and Open Line Sections

As seen in the previous section, there are sets of impedances that can not be
matched entirely by one line section. A more reliable method is to combine a
transmission line with a shunt connected susceptance as shown in figure 5.33.
As a matter of principle, matching can be obtained between every pair of
impedances by this approach:

1. The load impedance is transformed by a line to an impedance where
the real part of the corresponding admittance is equal to the real part of
the desired input admittance.

2. The remaining imaginary part is adjusted by a shunt susceptance to
attain the input impedance.

The shunt element may be a lumped component, but as stated earlier the per-
formance is limited with increasing frequency. A more common application
is the use of open or short-circuited line elements, so called stubs.

"
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Figure 5.33  An example of a matching network that uses one line segment
and a short-circuited stub. The corresponding impedance path is shown in the
Smith Chart.
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Depending on the ratio between  and , the stub often needs to be con-
nected to the proper end of the line. In the example shown in figure 5.33

 and therefore the stub is connected to the source side of the line.
Compare with the discussion concerning the L network in section 5.2.1.
In contrast to the design of lumped networks, where the calculations are done
in sequence on a single Smith Chart, it is preferable to handle the design of
the stub separately as soon as the required shunt susceptance is determined.
The stub can consist either of an open or a short-circuited line. The choice
depends on practical matters such as the need for a dc path and obtaining a
convenient electrical length. As a rule the short-circuited stub is preferable, as
the end effects are easier to handle.

The input impedance of the stub is pure reactive and determined from equa-
tion (5.20) for a short-circuited stub

(5.26)

or for an open stub

(5.27)

The characteristic impedance of the stub can be chosen arbitrary. However,
higher values of  reduces the consequences of stray effects at the end of the
stub. By substituting  the electrical length  of the short-
circuited stub is calculated as

(5.28)
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Figure 5.34  The susceptance is controlled by the length of the
microstrip and the termination.
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and the length of the open stub is derived in the same manner:

(5.29)

It is very convenient to calculate the stubs on the Smith Chart as shown in fig-
ure 5.35. Starting at  in the case of short-circuited line, or

 by an open line, the admittance locus is moved along the perime-
ter of the chart as the stub length is increased. The line is assumed to be loss-
less. The electrical length is found on the outermost circular scale. If the
calculated stub length is inconveniently short, it can be extended by one or
more  as this corresponds to complete turns in the chart.

The shunt stub can be split into two parallel stubs in order to give a more
symmetrical structure as shown in figure 5.36. By this action each stub must
produce half the value of the requested susceptance as they are connected in
parallel. Depending on the choice of open or short-circuited stubs and the
requested susceptance, the length of the symmetrical stubs may be either
shorter or longer than the single stub. 
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Figure 5.35  Determining the electrical length of a stub on the Smith Chart.
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Example 5.9 Design of a matching network using one stub.

Design on the Smith Chart a network that consists of a line and a
short-circuited stub, as shown in figure 5.33, to obtain complex con-
jugate match between the load impedance  and
the source impedance . The characteristic imped-
ance for the line and the stub is .

The procedure will be to find a suitable electrical length  of the
line that transforms  to a value  where the real part of the cor-
responding admittance  is equal to the input conduct-
ance. Then the stub is shunt connected to the end of the line and 
is adjusted by addition of the susceptance  until the imaginary
part of  is equal to the input susceptance. Finally the stub length

 is determined to transform the short-circuited end  to the
required value .
Start by calculating the normalised input and load impedances.

jB
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jB jB
2
--- jB
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---

Single stub Symmetrical stubs

jB jB
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"single
"symm
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Figure 5.36  A single stub can be split into two parallel stubs.
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Figure 5.37  Single stub matching network.
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When the impedances are plotted
in the Smith Chart two help circles
are drawn:
1. A constant  circle through 
2. A constant g circle through .
There will be two intersections, 
and . between the circles. Each
of them is a possible solution and

 that gives the shortest transmis-
sion line is selected.

The electrical length  of the
line is read on the outermost cir-
cular scale:

and the impedance  is found to
be

When the admittances corre-
sponding to  and  are calcu-
lated or read on the chart it is seen
that their real part are equal

The difference in the imaginary
parts has now to be compen-
sated by addition of a sus-
ceptance from the shunt
connected stub. The proper
value of the sub susceptance is

Then the electrical length is cal-
culated on a separate chart.
As a short-circuited stub was
specified the length  will be a turn from  to :

Addition of the shunt susceptance to  will result in

The complete solution is shown in figure 5.38.
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If there are bandwidth requirements that can not be fulfilled by single stub
matching, the network can be extended by several sections. Refer the discus-
sion concerning the lumped Pi network, figure 5.22 and 5.23
For laboratory work matching units are available based on two adjustable
stubs having fixed connection points at a transmission line.
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Chapter 6

Introduction to HF Amplifier 
Analysis and Design

In the audio frequency range designing is simplified by the fact that there are
amplifiers that can be regarded as ideal for many applications. For example, a
general purpose operational amplifier operating at a couple of kHz exhibits
many desirable features like voltage gain over 60dB, an input impedance of
several M :s and output impedance is in the range of a few :s. This along
with the possibility of adding feedback without risking instability enables us
to more easily design voltage, current, transconductance and transresistance
amplifiers with an optimal behaviour for each purpose. 
However, when increasing the frequency up towards the MHz area, one soon
realises that the former amplifier is now anything but ideal. An evident exam-
ple of this is when designing active low pass filters where one sometimes
incorrectly assumes that if one has made a 1kHz low pass filter, then signals
at frequencies in the MHz range should be heavily attenuated. When evaluat-
ing the design it may be a painful experience to realise that this was not the
case since our formerly ideal operational amplifier now has a gain close to
unity.
This chapter will deal with the problems of analysing and designing amplifi-
ers at higher frequencies. Focus is especially placed on what special consider-
ations that have to be taken to get the wanted performance. Analysis on what
trade-offs are needed between different amplifier parameters to fulfil the
specifications. It would be nice to be able to design a low noise-high power-
wideband amplifier with low current consumption, but generally one has to
let go on some of the wishes. High frequency amplifier design is in this way
an excellent example of the old saying that you always have to pay in one end
to gain something in the other.

Ω Ω
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6.1 Transistor Model and Frequency 
Dependency

So why do amplifiers start to behave differently as the operating frequency is
increased? To answer this question one has to look at the hybrid-  model of
in this case a bipolar transistor, a technology still used in many high fre-
quency applications

Figure 6.1  Hybrid-π model of a bipolar transistor.

In Figure 6.1 the different impedances connected between the nodes of the
transistor are depicted. Not only are there resistive components along with a
generator but also reactive and thus frequency dependent impedances. At DC,
these capacitors could be disregarded having infinite impedance but as soon
as frequency increases, so does also the influence from these capacitors
The notation of transistor parameters in the hybrid-  model varies signifi-
cantly in the literature. In Table 6.1 some common parameters are listed along
with definitions and alternate names. 

Table 6.1  Hybrid-  transistor parameters for a bipolar IF transistor.

Parameter Defined as Typical value 
at 

alternative 
notation

device 
dependent

device 
dependent

10pF

device 
dependent

0.5pF

device 
dependent

1pF

π
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gmvb ′evbe

+

-
e

c
vce

+

-
cce

cb ′cb

rce

rb ′c

b’rbb ′

π

π

IC 1mA=
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------⋅
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Example 6.1 Transistor model at different frequencies

A:
What are the impedances in the hybrid-  model for a small signal
RF npn transistor biased at 1mA at DC, 10 and 1000 MHz? 
The transistor has the following parameters:

, , 
, , 

B: 
How is the common emitter circuit affected by a load of  and a
source impedance of ?
Solution:
The missing transistor parameters can be calculated as:

At DC all capacitors can be omitted from the model

Figure 6.2  Hybrid-  transistor model at DC.

With a source impedance of  the voltage division on the input
will be almost 1 making . The output load is primarily the

 load making the amplifier an almost perfect transconductance
amplifier with the transconductance equal to . The feedback
from the output to input through the  resistor is marginal and
the amplifier can be regarded as unilateral, i.e. isolated between
input and output in the reverse direction.
If the same circuit is observed at 1MHz the reactances are included
since they may now be significant. 

Figure 6.3  Hybrid-  transistor model at 1MHz.
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The feedback path, although still with a high impedance, is now
completely determined by the capacitor. The input impedance is
now shunted by  which is of the same magnitude as 
and thus causes a low-pass behaviour on the input. At the output the
total load is still determined by the load impedance.
Finally at 1000MHz (which is above the normal operating range of
a transistor with the parameters as stated above) the capacitive com-
ponents are quite dominating.

Figure 6.4  Hybrid-  transistor model at 1GHz.

We can now state that all resistances in the transistor are fully
shunted by their respectively parallel capacitance. The input capaci-
tance forms a clear low pass filter not only with the source imped-
ance but also with . Even if we had the opportunity of lowering
the source impedance still a significant part of the signal would be
attenuated at the input. Shunt feedback is provided by  making
the input impedance even lower. On the output,  is now almost
ten times lower than the resistive load causing low-pass behaviour
as well a phase shift. At such a high frequency as 1GHz, the ampli-
fier will have a quite different behaviour compared to the cases at
lower frequency in that gain will be lower along with input and out-
put impedance. There is also a clear reverse path making the input
sensitive on the output load and vice versa. Plotting the amplifier
gain versus frequency yields the following result.

Figure 6.5  Voltage gain versus frequency for the loaded transistor.
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The amplifier shows a clear low-pass behaviour due to the capaci-
tive loading on both input and output as well as the feedback capac-
itor from collector to base. Determining exactly which capacitor
that is the main cause behind the reduction in gain requires a more
thorough analysis of the poles and zeroes of the circuit. The 3dB-
breakpoint in the gain curve is also a function of both source and
load impedances so it is not possible to talk about transistor band-
width without specifying the circumstances.

A useful way of analysing the circuit is by the Miller theorem. The purpose if
this is to transform the feedback capacitor  to an equivalent capacitor at
the input (and output). 

The voltage source  causes a voltage over the node  and a current 
through the feedback path (based on the results above the current through

 is neglected). 

the currents in the collector node will then be

(6.1)

and thus

(6.2)

which can be approximated by 

(6.3)

This approximation is valid as long as  and .
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The result of the Miller theorem is that the feedback capacitor can at the input
be modelled as a capacitor between base and emitter (ground) and with a
magnitude of . The behaviour can also be regarded as
a capacitor between two nodes as in figure 6.6. When the voltage on the left
side is raised 1V, the current should be  if the right side was connected
to ground (a). But since the node on the capacitors right side decreases 
volts (b), the total voltage over the capacitor is now  volts and thus the
current is  making the capacitor look like a  times big-
ger than in reality, viewed from the left side (c).

Figure 6.6  Miller equivalent of feedback capacitor.

By using the same method it can be shown that  as seen from the output
will look as it has a magnitude of . The Miller equiva-
lent of the transistor is thereby reduced to the unilateral model in figure 6.7

Figure 6.7  Miller equivalent of a bipolar transistor in CE coupling.
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The input and output impedance will vary with frequency as can be seen in
Figure 6.8. At lower frequencies the input impedance is well approximated by
the Miller theorem with  and . 
At the same frequency range the output circuitry can be regarded as

. When frequency is increased both the output and
input reactance magnitude is reduced while the resistive part stays fairly con-
stant. When approaching and passing 100MHz, especially the input imped-
ance changes in a non-uniform way. This is because the feedback and thus
reduced gain changes the Miller effect. 
If the transistor is to be used in the upper frequency range, simulation is defi-
nitely recommended and then with the actual transistor model instead of the
current source equivalents used here. The main benefit of the current source
approach is that it is possible to do hand calculations to verify the result, or at
least its credibility within an order of magnitude.

6.2 Tuned and Compensated Amplifiers

In the previous section it was shown how the capacitive effects of the transis-
tor could be disregarded at low frequency but caused great impact in the MHz
range. To design for example a 77 MHz IF amplifier with good performance,
one in some way must compensate for these effects to avoid mismatch and
thereby gain reduction. One effective way to reduce these effects is simply to
tune out them using a corresponding reactance but with the opposite sign. If
the transistor in example 6.1 was loaded not only by the resistance  on the
output but also with an inductance of suitable size, the capacitance would be
neutralized and the gain would increase at the resonant frequency, see figure
6.9

Figure 6.9  Gain of transistor amplifier with tuned and un-tuned output. 
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By tuning the output it is thus possible to extend the maximum gain to a
higher frequency. The side effect is that the amplifier will have a band pass
frequency response. The bandwidth of this response is actually the same as
the single side bandwidth in the un-tuned case. Consider the tuned circuit in
figure 6.9 with resistor in parallel with a capacitance and an inductance. The
Q value of that circuit will be 

(6.4)

(6.5)

By changing the parallel inductance L, the centre frequency will be moved
but the 3 dB bandwidth , being a function of R and C, will remain the
same. In the extreme case, the inductance will be infinite and we will end up
with the un-tuned case in ( ) figure 6.9.
The tuned amplifier in figures 6.9 has only an inductance to neutralise the
capacitance and thus tune the output of the transistor. A more common prac-
tice is to add both one inductance and one capacitance. This to be able to
more freely choose the values of the components as well as making the tuning
less sensitive to the internal capacitances of the transistor.

Example 6.2

Design an output network that has a resonant (=centre) frequency of
10.7 MHz for a transistor amplifier. Use the parameters from exam-
ple 6.1.
The output capacitance for the transistor is

 and this can be tuned by a parallel
inductance of . This may solve the prob-
lem in theory but designing a coil with such a large inductance at
10.7MHz will be quite difficult if one wants to avoid self-resonance
in the coil. A better solution is to add a parallel capacitance of say

 to the already existing , thereby reducing the induct-
ance to a much more feasible . With this solution there is
also the possibility of making the external capacitor tuneable, either
mechanically or electrically.

In the same way as in the example with the output capacitance, the input and
feedback capacitances can be compensated. By adding an inductance in par-
allel with the feedback capacitor  the feedback now forms a parallel reso-
nant circuit with an impedance maximum at . This technique enables a
cancellation of the feedback in a limited frequency range and may be effec-
tive as such. However, determining the magnitude of the inductance as well as
connecting it in a way so stray effects are avoided is a quite difficult task. The
new feedback path is also prone to cause instability far away from the reso-
nant frequency.
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6.3 Choice of Topology

If one takes apart a radio from the 70:s or early 80:s one will notice that the
device is almost completely built from discrete components and there are lots
and lots of components to adjust, both resistive and reactive. Beside the fact
that it is almost impossible not to turn on at least one of these screws to see if
there is any effect it was a technique possible when volumes were small and
almost each radio application in each country had its own frequency range,
bandwidth and type of modulation. Today when many radio systems are
standardised on a worldwide basis and radio equipment are made in much
larger volumes, there has also emerged a need for different types of amplifi-
ers.

1. Specialised amplifiers, often integrated circuits that are designed for
maximum performance in a certain system with a strict set of demands.
This can be power amplifiers for wireless local-area-networks (LAN)
and low noise amplifiers for mobile radio front-ends. Often these are
integrated together with other radio functions as mixers to make the
solution more cost effective.

2. General wideband amplifiers with almost optimal performance regard-
ing noise, output power and gain over a large bandwidth, usually from
DC up to the GHz range. These may sometimes be programmable or
part of a larger series to further extend the application area. The princi-
ple here is to sell few items to many applications as opposed to the pre-
vious class. These are also usually integrated amplifiers or hybrids,
discretely built up amplifiers in a common package.

3. Custom amplifiers designed to get absolute maximum performance in
one certain area. Combined with the fact that these amplifiers may not
go into production in any large volumes, this makes it possible to still
build these amplifiers from discrete components and have them indi-
vidually tuned. It is a costly procedure but sometimes necessary when
specifications are hard to fulfil.

In this chapter we will mainly focus on the third group. With the knowledge
of how to design high frequency amplifiers “from scratch” one will also gain
knowledge when it is possible and more cost effective to use a general solu-
tion. One can also see what trade-offs that have to be made between the dif-
ferent amplifier parameters. 

6.4 Discrete Amplifiers

A discrete transistor amplifier can be designed using a common emitter (CE),
common base (CB) or common collector (CC) coupled transistor. The CC
coupling is less common in high frequency design since the load on the emit-
ter provides a feedback that is fixed to a voltage gain of unity. Besides insta-
bility is a large problem since the emitter is not directly connected to ground
(this is actually a way of making oscillators-adding a reactive component
between device and ground to cause instability). The common base amplifier
is widely used in high frequency design thanks to its low input capacitance at
high voltage gain. The current gain is however always unity due to feedback.
The only coupling not providing any feedback from either load or source is
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CE (it still has feedback from the internal transistor paths but this is not
related to the coupling). The advantage of this is that current and voltage gain
can be determined by the designer. There is also a much wider variety of
making external feedback loops.
Comparing the CB and CE amplifiers for different parameters give that the
CE amplifier is preferred for most applications but we will encounter cases
where the CB amplifier has its benefits.

Table 6.2  Comparing CE and CB amplifier performance.

Parameter Common emitter Common base

Voltage gain

Current gain

Output power Limited by supply volt-
age and collector quies-
cent current

As CE but output 
voltage swing is lim-
ited by input voltage 
swing

Noise figure Very good. Often deter-
mined by thermal noise 
from 

Fair. Often deter-
mined by shot noise 
in collector current

Input impedance High, with high input 
capacitance due to Miller 
effect.

Low, but with low 
input capacitance 
since it is non-
inverting

Output impedance High Very high due to 
feedback

Main application All sorts of amplifiers High frequency 
amplifiers and oscil-
lators

g– mRL gmRL

β 1

rbb ′
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6.4.1 Choosing the Operating Point

The design of an HF-amplifier is often aimed at fulfilling a certain require-
ment, usually gain or power or in some tricky cases: both. No matter which,
the crucial point is still the operating point when no AC-signal is applied on
the input. For a CE amplifier with a a parallel resonant circuit as collector
load as seen in figure 6.10 there are two requirements regarding .

Figure 6.10  CE amplifier with resonant collector circuit.

(6.6)

(6.7)

Equation (6.6) shows that given a certain load  on the collector,  and
thereby  must be chosen to give a certain amplification. In equation
(6.7),where  is the collector-emitter saturation voltage, states that to
provide a certain output power in the load, the operating point values  and

 should be large enough. The maximum expression indicates that the out-
put power could either be limited by the collector current or the collector-
emitter bias voltage. To assure that the output power is large enough both
have to be evaluated. 
By transforming the connected load via a network like for example a tap or
transformer one can yield an arbitrary load impedance. This is however still
an under-determined system where there are more parameters than equations.
To fulfil the design one has to consider less obvious aspects such as power
consumption, component availability, available area on the circuit board and
cost. If there are no such additional demands on the design, the designer has
to determine one parameter and calculate the others based on this. The design
process can under those circumstances be iterative before one has come up
with a solution with reasonable parameters and component values.
The bottom line is that there is no perfect or single solution given a specifica-
tion. The designer must compare pros and cons and make the best possible
amplifier under the circumstances.
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Figure 6.11  CE coupled small signal amplifier with tuned collector circuit.

Example 6.3 Design of a 10.7MHz amplifier

Design a small signal amplifier with  and
 using the circuitry in figure 6.11. The amplifier

should have an output power of at least 0.5 mW and a gain of at
least 10 assuming that the load impedance is  The transistor
parameters are , , ,

, .
One possible solution
The Q-value of the loaded collector circuit is . Since
the output should be matched for maximum power gain, the trans-
formed load  should be equal of that already at the collector.
This leaves us with some initial demands on the design.
•  to assure that bandwidth demands are

met
•  makes the output matched.
•  is the specified gain and finally

• , this since there are two equal loads on the collector,
the output impedance  and the transformed load . 
The efficiency of the transistor is maximum 50%[1] and that leaves
25% for each of the loads. 

At this point one must make the now famous decision to set one or a
few parameters and calculate the rest. It might be useful to have
some kind of math/spreadsheet computer program to assist in mak-
ing the calculations since many parameters interact and the design
might be revised many times.
In this design the choice is to keep the total collector load in the area
of . This means that it will be possible to use standard-Q coils
having a loss equalling a parallel resistance in the area of 
and an unloaded Q-value . The load  should now be
transformed to . This gives a transformer turn ratio  of
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6.3. From this, can be calculated as

which is a realistic value for a design like this. Checking the ampli-
fier output power shows that the amplifier is simultaneously current
and voltage limited if  is 2.7V. To get the specified output
power  can be as low as 2V. With either configuration the
amplifier can run off a 3.3V supply and there will still be enough
voltage for the emitter resistor. Here we chose  and 

With the operating point and  determined one can also calculate
. This means that the parallel resistance

from the coil must be slightly more than  to make
.

This gives us a value of the inductance provided that its is
known. Another possibility if  cannot be chosen arbitrarily is to
add a resistance  in parallel with the primary coil of the trans-
former so .
The observant designer has by now noticed that many of the values
are not exactly “off the shelf” but must be replaced by standard val-
ues. This is another reason why the design should be made in a
spreadsheet environment since one can have the design updated for
each parameter choice and checked that performance meets the ini-
tial specifications.
The next step in the design of the collector circuit is to determine
the tuning capacitors. With  where L is already
determined, the total collector capacitance must be

.
It is wise to accomplish this by using one 200pF fixed capacitor and
another 20-50pF tunable one in parallel.
Making the bias network is rather straightforward since

 and the high  makes the base current
 low, only . If we assure that the current through  and
 is much larger than the base current the voltage divider can be

treated as unloaded. 

We previously realised that  would be sufficient for
the power demand and this together with  yields that

 and . These are neither crucial values,
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they can often be a factor 2 larger or smaller without any severe
effect. As long as the transistor input impedance is low enough,
only a negligible part of the input signal is lost in the bias network. 
The final step in the design is to determine the coupling capacitors.
A node can be considered as decoupled if the impedance of the
capacitor connected to the node is significantly smaller than the
nodes resistive part. For the decoupling capacitor on the emitter this
means that

resulting in . For the base bypass capacitor the calcula-
tion is somewhat more complicated. The input impedance should be

 but since there is also  that is magnified through the
Miller effect we will have an almost purely capacitive input. In this
example,

Choosing a input capacitor of  should be sufficiently large.
Another brute force method is to determine which is the largest
capacitor available that has a resonant frequency well above  and
use that one. It may though result in an unnecessary large design. It
is often advisable to decoupled the emitter with another capacitor
100 times smaller than the first one to assure that even very high
frequencies are decoupled properly.

6.4.2 Common Base Amplifier

As seen from the CE amplifier calculations, the base-collector capacitance
can appear as very large and yield a low input impedance at high frequencies.
To prevent this there is the possibility to vary the base-emitter voltage through
the emitter instead of the base. This configuration, pictured in figure 6.12 is
called common base (CB) configuration. It has good high frequency charac-
teristics but the low input impedance and high output impedance makes it less
common in IF stages where one often wants to stack several similar stages
after each other with low interstage loss.

Figure 6.12  Common base amplifier with transformer coupled collector.
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The transistor hybrid-  model in a CB configuration is depicted in figure
6.13

Figure 6.13  Bipolar transistor in CB configuration.

What differs most between the CB- and CE configuration is the input imped-
ance and that a CB amplifier is non-inverting. The input impedance can be
calculated assuming that  is large and  negligible. Calculating the
input current yields that one finds that

(6.8)

(6.9)

This implies that one can make a condensed model of the CB amplifier
according to figure 6.14, based on a model suggested by [2].

Figure 6.14  Condensed model of a transistor in CB configuration.

6.5 Designing with Amplifier Modules

In radio designs of today with a higher and higher degree of integration it is
more likely that one will use some kind of integrated amplifier that consist of
a few transistors that can be configured and biased in different ways. Depend-
ing on the demands on the amplifier one may choose to use a circuit with eve-
rything fixed and no external components. The disadvantage is that these
ready made general purpose amplifiers have somewhat lower performance
than if you make the full design by yourself.
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6.5.1 The CA3028 Differential Amplifier/Cascode

An example of a integrated circuit well suited for IF amplifier designs is
CA3028 from Harris semiconductor[3]. The amplifier, pictured in figure 6.15,
has a differential stage on top of a single transistor. In addition there are resis-
tors for biasing. With a few external components it can be configured as a dif-
ferential amplifier with current generator on the emitter or, as in figure 6.15,
as a cascode amplifier with voltage controlled gain (VCG) capability. The
cascode is a two transistor amplifier where the first transistor  is in CE
configuration and the second  in CB. The other transistor in the differen-
tial pair  should be regarded as disconnected for the time being but will
contribute in the VGC -mode described later in this chapter. 

Figure 6.15  IF amplifier CA3028 connected as cascode with voltage control-
led gain capability. Internal components are within the dashed box.

The main benefits of using a cascode instead of a single CE stage is not as
one might think gain but that the input impedance is not affected by the Miller
effect. Excellent isolation between input and output also makes the amplifier
stable. For a CE stage, the input impedance is

. This means that at high gain the influ-
ence of  will be significant. Since the gain of the CE stage is  one
must analyse the load on the collector to calculate the gain and thereby the
input impedance. The same collector current will run in both the transistors
leading to an input impedance on  emitter of  making
the voltage gain for  unity. With this low voltage gain the influence from

 can often be disregarded compared to . For the second stage the volt-
age gain is  and in addition to this the turns ratio of the transformer

. 

Example 6.4 Voltage gain for a cascode amplifier

Calculate the voltage gain of the cascode in figure 6.15 if
 and the turns ratio of the loss-less transformer is 3:1.
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First calculate the base voltage and from this the emitter voltage and
current

The transformed load is the only load on the collector since the cas-
code configuration has increased output impedance compared to a
CE stage. This gives the gain as

To use the amplifier in VCG mode the full differential pair must be used. If
the gain control voltage  is the same as that of the base voltage of ,
then the collector currents in  and  will be equal. The emitter currents
of  and  will then add up as collector current of .

(6.10)

The load on the collector of the input stage will be the same, see equation
(6.11), but since only half of the collector current  runs in , the gain
will now be 50% lower than if the VCG voltage was zero.

(6.11)

By increasing the VCG voltage on  the current  will increase and
thereby cause a decrease in  so that equations (6.10) and (6.11) are still
valid. This causes the gain to fall and we will thus have a voltage controlled
gain. This voltage may be derived from a detector in a radio receiver and
thereby keep the signal within limits to avoid saturation in the amplifiers.
This function is called automatic gain control (AGC) and is necessary as soon
as there is information in the signal amplitude.
Many times even this integrated amplifier has too low integration to meet the
demands on the latest radio equipment. Often the manufacturer tries to incor-
porate several IF amplifiers and also a detector in the same circuit (for exam-
ple Philips 3189 IF amp and FM detector). The advantage is that the footprint
will be much smaller but on the other hand the circuit will be system specific.
For portable radio equipment such as mobile telephones, the demands on size
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are very strict and production series so large that one usually makes a set of
custom chips for each specific system to achieve maximum performance.
Mobile telephone systems like GSM and DECT as well as PAL TV systems
all have their own chip-sets providing just the necessary system functions to
reduce cost and size.

6.5.2 Mini-Circuits™ MAR family

Another example of integrated amplifiers in the RF area are the MAR ampli-
fiers from Mini-Circuits™. This is a family of amplifiers that are designed to
meet certain specifications regarding output power, gain and noise.

Figure 6.16  Data sheet for the MAR amplifier family (Reprinted by permis-
sion of Mini-Circuits™).

The design phase here is to pick a member of the family with data that meet
ones specifications and in case they all can not be met, compromise. One
major advantage of these amplifiers (as with any pre-made module - there are
lots of others) is that they demand very few external components, usually just
a biasing resistor and two bypass capacitors for input and output, see figure
6.17. For many applications they are a convenient way of achieving amplifi-
cation when one does not have extreme demands. The amplifiers are fairly
cheap and are excellent for prototyping and evaluation purposes. In the final
design it is likely that many components are instead integrated on one chip,
but before one is at that stage, there might be lots of investigations and altera-
tions. Since the internal resistors are fixed all one has to do is to attach a
proper resistor to the output. From the data sheets in figure 6.16 one can find
what DC voltage and current that should be applied to the output pin for
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proper operation. If one uses MAR1 in a 12V system the data sheet specifies
that the base voltage should be 5V and the current 17mA. The resistor is then
calculated as . The coil is a RF choke
to prevent loss of the output signal in the bias resistor. This is chosen to be as
large as possible. One upper limit is that a coil goes into resonance at high
frequencies but as long as the impedance is large it does not matter if it is
capacitive or inductive. The coupling capacitors on the input and output
should be large enough to provide an impedance of only a couple of :s at
the selected frequency. Even though the modules are wideband one should
always include some input and output filtering to reduce noise and stop inter-
fering signals from driving the amplifier into saturation.

Figure 6.17  MAR amplifier circuit layout. (Reprinted by permission of Mini-
Circuits™).

There is little need for matching the input and output as long as the biasing
follows the specifications. A typical value of the input and output standing
wave ratio (SWR) is 1:1.5 - 1.8 giving a loss below 0.5 dB per port from DC-
1GHz which is sufficient for most applications but very low noise amplifiers.
One of the reasons that the amplifier shows so good SWR over such a large
frequency range is that there are no frequency selective elements other than
stray effects inside the packaging and that the amplifier has both serial and
parallel feedback, see Figure 6.17.
The wideband properties puts fairly high demands on circuit layout. If it is
recommended to use ground planes and well decoupled DC voltages with a
“normal” amplifier it is absolutely necessary here. Since the amplifiers have
gain up to several GHz, only a few pF of stray capacitance may cause insta-
bility. Further demands and design recommendations can be found in [4]

6.6 Alternatives to Compensating

In this chapter we have assumed that unwanted capacitive effect could be
compensated out, at least for a limited frequency range, leaving an almost
ideal transistor. But we have also encountered how the gain and impedance
levels fall off rapidly when frequency is increased. If we further replace our
transistor model with a more complex one like the Gummel-Poon models
used by, e.g., SPICE we will have something like 60 transistor parameters
that all depend on operating point as well as each other in a delicate way.
When frequency is so high that all these parameters become significant, it
will be an impossible task to do effective amplifier design by trying to com-
pensate out one transistor component. By doing so we will inevitably also
affect a lot of other parameters, parameters that we had no intention of chang-
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ing and the amplifier design runs the risk of becoming a huge iterative proc-
ess. When it comes to MOS transistors the situation is even more complicated
since each parameter set has a limited operating range. Depending on the lay-
out of the transistor not only the parameters but also the model type must be
updated. Even with qualified simulation software it is hard to achieve a valid
result due to the complicated process along with many parasitic effects. 
Some unwanted stray effects may not be possible to neutralise simply
because one can not get direct access via the bonding pads on the device. For
example, neutralising the base-collector capacitance seems like an achievable
task but if  along with stray inductances in the bond wires must consid-
ered, as in the GHz range, it becomes much more complicated. Another prob-
lem is to extract the hybrid-  parameters for the device. Some can be found
in data books and some, but definitely not all, can be measured directly but
what about the others? Of course, something is always better than nothing but
making simulations with a model that has some many flaws that the result
must seriously be doubted is not an effective way of designing radio circuits.
Since it is so hard to get a general overview on what to expect from a device
at such high frequencies an alternative is needed. Most transistor manufactur-
ers supply their devices with various two-port parameters, usually S, y or z
parameters. These parameters say nothing about the actual device and its
physical properties. it may be a bipolar, MOS or whatever device in any pack-
aging. The important thing is the parameter set between the different nodes of
the device. Using such a parameter set makes microwave design easier but
gives little information of what to expect if the conditions where the parame-
ters were obtained changes. The best solution may be to have a good knowl-
edge of the interior process of the device combined with any contribution
from the package. From this, deviations from the expected result can be
explained and hopefully corrected. The parameter approach can then be used
in a much more effective way than if the device is just considered to be a
“black box”.

6.7 The Bottom Line

How the IF amplifier should be designed and what integration level one will
choose is much a matter of application. Doing the design from scratch gives
many degrees of freedom and the possibility of including system specific
considerations. The drawback is that it may take a lot of time and experimen-
tal work. The ready made amplifier IC/hybrids of today are often sufficient
for most applications since there is a variety to choose from. A design often
has its goals in a specific gain or power level but even things as noise, size,
power consumption are important. If the amplifier should be mass produced
one also have to think about cost, testability and reliability.
The important part is that the designer knows about the topologies available
and chooses the best one according to specifications, well aware that there
might be another solution with somewhat better performance if one just had
that little extra time.
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Chapter 7

High Frequency Transistors

As the frequency of operation reaches 1GHz and beyond transistors are typi-
cally operated close to their frequency limit. Even though there are transistor
technologies commercially available that can produce useful power at
100GHz or more using better devices than necessary can not be economically
justified. Cost increases rapidly with increasing frequency capabilities.
A plethora of various transistor technologies are available from the very basic
silicon bipolar transistors (BJT) and field-effect transistors (FET) to more
advanced and complex technologies such as high-electron-mobility transis-
tors (HEMT). Today the evolution of semiconductor technology has even
pushed the capabilities of the basic transistor technologies such that there are
now products commercially available that can operate at 5GHz or more and
the development continues.
There are basically two ways to increase the maximum frequency of opera-
tion of transistors. One is the downscaling of critical structures of the intrinsic
transistor. Simplified, for bipolar type of devices it is the width of base that
controls the frequency capabilities whereas for the FET devices it is the gate
length. The second approach is to use more clever transistor structures and
materials to increase the mobility of the charge carriers, reduce parasitic ele-
ments and obtain high saturation drift velocity.
The previous chapter serves as an introduction to the design of high fre-
quency amplifiers where the starting point is low frequency design based on
the hybrid-π model for the bipolar transistor. As the frequency increases it is
demonstrated that the influence of the reactive components increases accord-
ingly. To some extent this can be solved by introducing tuning and hand cal-
culations are still reasonably accurate. 
The next chapter also deals with the design of high frequency amplifiers but
the approach is completely different. For one thing we do not longer rely on
hybrid-π models or the like. The reason is that there will be too many signifi-
cant elements in the models. These does not only come from the intrinsic
transistor but also from the actual package carrying the transistor chip. A sim-
plification is necessary but with a preserved accuracy. Another issue is the
fact that circuit elements like the structures on the circuit board must be con-
sidered as distributed which complicates the design work even more when
using the traditional low frequency methods. 
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The purpose of this chapter is to present an overview of the most common
transistor technologies available for radio and microwave frequencies as well
as presenting measures used to rate frequency performance of transistors.
Also, the influence of the package will be discussed. From this knowledge
together with the previous chapter the design approaches discussed in the
next chapter will come as no surprise to the reader. Here, we rely on the com-
plex behaviour of a transistor, including the package if necessary, being cap-
tured in a black box model represented by just a few parameters.

7.1 Transistor Technologies

Two fundamentally different transistor technologies exist, the bipolar junc-
tion transistor (BJT) and the field-effect transistor (FET). In the BJT positive
and negative charge carriers diffuse through the two junctions (collector-base
and base-emitter) between the collector and the emitter controlled by an
external current into the base. In a FET a channel is acting as a current source
between drain and source controlled by a gate voltage. The channel can be of
enhancement type or depletion type, i.e., a gate voltage must be applied to
build up a channel or to deplete an existing channel, respectively.
For each basic technology one can choose materials different from silicon,
otherwise by far the dominant semiconductor material. Another possibility is
to mix material for different regions of the transistor. When only one material
is used for all regions such as silicon-to-silicon or germanium-to-germanium
(varying only in doping profiles and densities) the transistor is said to be a
homojunction transistor. When two completely different materials are used
such as germanium-to-gallium-arsenide the term heterojunction is used. In
addition to material options, there are many ways to realise the actual struc-
ture of a transistor, especially when it comes to FET devices with the actual
channel and the control thereof.
The most common technologies will be briefly described below as well as
their relation to other technologies. However, it is not the purpose of this text
to treat semiconductor physics of these devices nor their properties in more
detail. Only a qualitative description will be given. For more information
about semiconductor physics refer to, e.g., [1][2] and for microwave devices
in particular [3]. A more designer-oriented presentation can be found in [4].

7.1.1 Bipolar Devices

The principle geometry of a bipolar device is always the same. However, in
practice the geometry varies with fabrication process, the intended applica-
tion and whether the transistor is a discrete transistor or integrated on a chip.
A simple structure is shown for a discrete npn BJT in figure 7.1. Typically,
emitter and base contact stripes are interdigitated as shown in figure 7.2 to
increase the perimeter and thereby increasing the current handling capabili-
ties and reducing parasitic resistors and capacitors.
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Heterojunction bipolar transistors are usually referred to as HBTs. Various
combinations of materials can be conceived to form such a transistor but it is
important that the lattice constants are close. One example is to use n-type
germanium and p-type gallium arsenide. The advantage of HBTs over regular
BJTs can be expressed in terms of semiconductor physics:

1. Higher emitter efficiency (affecting the current gain) because emitter
minority carriers flowing from the base to the emitter are blocked by
higher barrier in the valence band.

2. Less base resistance because the base can be heavily doped without
sacrificing emitter efficiency.

3. Less emitter current crowding because of low voltage drop along the
emitter-base junction. Emitter current crowding has, however, the
desirable effect to reduce the base resistance but it can also reduce the
emitter efficiency.

4. Improved frequency response because of higher current gain and lower
base resistance.

collector layer, n

emitter layer, n

base layer, p

collector contact

Figure 7.1  Simplified structure of a planar n-p-n discrete BJT.
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Figure 7.2  (a) Surface layout of transistor with interdigitated emitter and base 
contacts and (b) cross section.
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In addition to this, some of the materials that can be used for HBTs have
high-temperature capabilities. As an example, a transistor formed by an n-
type AlGaAs emitter, a p-type GaAs base and a n-type GaAs collector can be
operated above . The performance of HBTs is comparable with
HEMTs described in the next section. 

7.1.2 FET Devices

In this chapter we briefly consider four different types of FET devices, the
junction field-effect transistor (JFET), the metal-semiconductor field-effect
transistor (MESFET), the metal-oxide-semiconductor field-effect transistor
(MOSFET) and finally the high electron-mobility transistor (HEMT). They
are all based on controlling the cross-sectional area of a channel available for
current flow between source and drain with a voltage applied to the gate. The
operational principle of the various technologies are described below and the
basic structure of each type of FET device is exemplified in figure 7.3. In
practice the drain, gate and source are interdigitated similar to the bipolar
devices.
The JFET, see figure 7.3a, contains a conductive channel with a direct inter-
face to the gate having opposite doping to form pn-junction with the channel.
By applying a gate voltage (backward biased) the depletion layer in the junc-
tion can be controlled thereby changing the cross-sectional area of the chan-
nel. The JFET was the first FET device that was invented. However, today the
JFET is not a competitive technology for higher frequencies.
The MESFET is identical in operation to the JFET but instead of a pn-junc-
tion there is a metal-semiconductor rectifying junction, i.e. a schottky barrier,
established between the gate contact and the doped channel. The performance
of a GaAs MESFET device compared with Si JFET or MOSFET is evident
from significantly higher mobility and saturation drift velocity.
The MOSFET structure illustrated in figure 7.3c is an n-channel enhancement
mode device where a positive gate voltage attracts negative charge carriers to
form a channel between the source and the drain just beneath the gate insula-
tor. Not illustrated here is the depletion mode device where the channel is n-
doped to conduct without applying a gate voltage. Instead, a negative gate
voltage must be applied to deplete the channel. Despite speed limitations
MOSFETs are attractive compared with MESFETs and JFETs in power
amplifiers because they exhibit better linearity and has a larger non-destruc-
tive gate voltage range since there is no junction that can be forward-biased.
The MOSFET has many acronyms including IGFET (insulated field-effect
transistor), MISFET (metal-insulator-semiconductor field-effect transistor)
and MOST (metal-oxide-semiconductor transistor).
HEMTs, sometimes also referred to as heterojunction MESFET or HFET, is
quite different from the other FET devices. One example of a HEMT struc-
ture is shown in figure 7.3d where a sequence of GaAs and AlGaAs layers
forces an electron gas to form in the interface of the undoped GaAs layer and
the undoped AlGaAs layer. The mobility of the electrons in this gas is much
higher than for electrons in the conduction band of a doped material of the
same type. Also, for lower temperatures the mobility in HEMTs increases
dramatically. As is the case with MOSFETs, both enhancement mode and
depletion mode HEMTs can be fabricated.

300°C
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The properties of the various transistor technologies available for RF and
microwave applications are summarised and compared in table 7.1.

Table 7.1  Performance comparison between various
transistor technologies (derived from [3])

Technology Speed Power Noise

Si BJT *** ** **

Si MOSFET * **** **

GaAs-AlGaAs HBT ***** *** ***

GaAs MESFET *** *** ***

HEMT ***** **** ****

Figure 7.3  Simplified structures
(a) n-channel JFET (b) n-channel MESFET

(c) n-channel MOSFET (d) HEMT
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7.2 Transistors in High Frequency Operation

The behaviour of a transistor operating at high frequencies is to large extent
determined by capacitive elements in the transistor. These elements determine
the maximum frequency of operation for the device. Actually, it is common
for radio and microwave transistors to operate at frequencies a tenth of this
maximum frequency ( ) or more. This means that the margins are small
and care must be taken in the design to avoid waste of transistor performance.
The common-emitter (common-source) configuration is mostly used and that
configuration will be assumed to be used throughout this section. To under-
stand what limits the transistor performance in terms of frequency we need an
intuitive model as a starting point.
In circuit simulation software, e.g. Spice etc., fairly complex models are used
to model the intrinsic behaviour of transistors. Up to 60 parameters can be
specified and simulation results can be very accurate provided that the param-
eters are correctly specified. Such a complex model takes into account many
aspects of the transistor operation including the nonlinear behaviour, but the
model is also difficult to understand. For analysis and hand-calculation pur-
poses we need to model the transistor with as few parameters as possible. The
simulation model is far to complex for these purposes. The hybrid-π model is
a small-signal model for bipolar transistors that is suitable for our needs.
Most of the model element values can be calculated directly or can be found
in data sheets. Another alternative is to use a simulator with an accurate
model to extract the hybrid-π element values for a given operating point. We
can also develop an equivalent model for FET devices that is equally useful.
These models will be used below to demonstrate the qualitative behaviour of
transistors at high frequencies.
Two figures of merit are commonly used to rate transistors in terms of fre-
quency capability. These are:

1.  - the transition or gain-bandwidth frequency. This is the frequency
where the short-circuit current gain becomes unity.

2.  - the maximum frequency of oscillation. This is the frequency
where the maximum available power gain (MAG) becomes unity and
theoretically indicates the highest frequency at which the device will be
able to oscillate.

The transition frequency, , is mostly used to rate transistors for low fre-
quency applications and transistors in digital circuits whereas  is used to
rate radio and microwave transistors. Both these two figure of merits will be
investigated below for bipolar and FET devices and how they relate to ele-
ments in simplified models for these devices.

7.2.1 Bipolar Transistors

A hybrid-π model of an intrinsic bipolar transistor is shown in figure 7.4.
Some elements are more dominating than others, especially for high frequen-
cies. The collector-emitter resistor, , is typically very large and the reac-
tance of the base-collector capacitor, , is small in comparison to the
base-collector resistance. Sometimes transistor models are used that model
the distributed nature of the base resistor and the base-collector capacitor.

fmax

fT

fmax

fT
fmax

rce
Xcb ′c
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Such a model splits the capacitor in two parts (or more) as shown in figure
7.4. Omitting the insignificant elements and the distributed capacitor we get
the model in figure 7.5.

To begin with, consider the frequency dependency of the current gain. Short-
circuiting the output of the model in figure 7.5 and omitting the base resistor,

 the current gain becomes

(7.1)

and since  equals the DC current gain  we can write

(7.2)

The last approximation is only valid for high frequencies. To obtain the tran-
sition frequency we solve (7.2) for  which gives

(7.3)

The transconductance, , and the base-emitter capacitance, , are pro-
portional to the collector current. However, for small collector currents the
base-collector capacitance, , dominates over , which means that 
will increase with increasing current up to the point where  is of similar
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Figure 7.4  Hybrid-π model.
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Figure 7.5  Simplified hybrid-π model.
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size as . For even higher currents  decreases again. This effect is how-
ever not covered by this simple theory. The reduction of  is due to high-
level injection and the Kirk effect, which out of the scope to treat in this text.
The conditions for deriving  is different from that of . For  we
must have conjugate matching both at the input and the output in contrast to
the short-circuit output that was used for deriving the transition frequency. It
can be shown that the maximum frequency of oscillation is given by

(7.4)

From this expression we see that under certain circumstances the maximum
frequency of oscillation,  can be larger than the transition frequency.
Even though the current gain is unity or less the transistor can still be capable
of power amplification if the input impedance is smaller than the output
impedance of the device.
The transition frequency can also be expressed in terms of the charge carrier
transit time, , such that

(7.5)

The transit time in turn is composed of several terms but it is dominated by
the transit time through the base and the collector depletion layer. Therefore,
to obtain a high transition frequency the thickness of the base and the collec-
tor depletion layer should be small. The former is possible with state-of-the-
art bipolar process technology that improves continuously. The latter is a mat-
ter of doping the collector and the base properly.
However, there are some fundamental limits that will also limit the perform-
ance of transistors no matter how small geometries that can be fabricated.
One limitation is the that there is a maximum possible velocity of charge car-
riers in a semiconductor, the saturation drift velocity , and is on the order of

 cm/s for both electrons and holes in silicon and in germanium. There
is also a maximum electric field that can be sustained in a semiconductor
without having dielectric breakdown. For silicon this field is about  V/
cm and  V/cm for germanium.
The transit time can be expressed as

(7.6)

where  represents the effective emitter-collector distance and  the charge
carrier velocity. If the carriers are moving at the saturation drift velocity, ,
the transit time can only be reduced by reducing . But there is a lower limit
on  since the electric field will increase accordingly and finally cause die-
lectric breakdown. This in turn can be circumvented by reducing the voltage
applied to the device but this also reduces the maximum attainable power.
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It should be noted that the maximum obtainable frequency that can be esti-
mated from these simple relations are too optimistic. In practice the velocity
and the electric field intensity will not be uniform in the transistor structure
which will reduce the attainable frequency quite substantially. A more
detailed treatment of physical limitations on the performance of transistors is
found in [5].

Example 7.1 Performance of Silicon BJT

Calculate the transition frequency and maximum frequency of
oscillation for a silicon BJT with , ,

  and .
For the transition frequency we have

Here the transconductance is given by 
and we get

For the maximum frequency of oscillation we have

7.2.2 FET Devices

A small signal equivalent model for the intrinsic part of FET devices is shown
in figure 7.6. This model is accurate enough to describe the qualitative behav-
iour of all FET devices. The gate-source resistor  represents a small resistor
from the gate through the channel to source. For a real device the actual
resistance of the gate structure must also be included since it may be in same
range as the intrinsic part.
In many cases the feedback capacitor  can be disregarded in a coarse esti-
mation of performance. In this case  and  are easily derived from the
model schematic and it is found that

 and (7.7)
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(7.8)

The transition frequency can also be expressed in terms of the charge carrier
transit time ( ) through the channel (similar to the BJT):

(7.9)

Given the gate length, , we can associate the charge carriers with a velocity,
, such that

(7.10)

Due to the small geometries of high performance transistors very large elec-
tric fields are present in the channel forcing the charge carriers into velocity
saturation. For devices with small structures we can therefore replace the
velocity, , with the charge carrier saturation drift velocity, , and the transi-
tion frequency then becomes

(7.11)

Example 7.2 Performance of GaAs MESFET

Calculate the transition frequency and maximum frequency of
oscillation for an GaAs MESFET device in room temperature. The
effective gate length  is 0.50µm. The total gate-source resistance
equals 7Ω and the drain-source resistance equal 350Ω.
The drift velocity for electrons in GaAs has a peak at  V/cm
and equals  cm/s [2]. For higher electric fields the saturation
drift velocity converge towards  cm/s. Assuming that the
device is operated with the latter figure we get
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Figure 7.6  Small signal equivalent model of FET device.
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and

7.3 Package Modelling

The simple hybrid-π model and the equivalents for field-effect transistors
give satisfactory accuracy for discrete realisation only when designing cir-
cuits for low frequencies. There is no well-defined limit but problems can be
expected at a few hundred MHz or less. This is due to the influence of the
pins and the package that houses the transistor chip. 
The transistor chip is encapsulated in a package and connected through bond-
ing wires to the external pins. Bonding wires are modelled as inductors some-
times in series with small resistors. Bonding wires that are close to each other
and the pins that they are connected to exhibit more or less inductive and
capacitive coupling.
The equivalent circuit for the surface mount plastic package SOT23 housing
the BFR520 transistor is shown in figure 7.7 as well the physical dimensions
of the package. The resistors in series with the inductors are fairly small in
this case and can be represented by a Q value for each inductor. In this exam-
ple the Q value is about 50 at 1GHz.

Figure 7.7  Package equivalent circuit for SOT23 and physical dimensions.

As is obvious from figure 7.7 the complexity of the transistor increases sub-
stantially when the package is taken into account. As will be described in the
next chapter a two-port representation can be used for the complex circuit
modelling a discrete transistor. Instead of specifying all circuit elements both
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within the intrinsic device and the package, four complex-valued parameters
are specified for each combination of frequency and operating point of inter-
est. Examples of such parameters are S parameters and y parameters. Meas-
ured S or y parameters are usually provided by the manufacturers of high
frequency transistors. In some cases small-signal equivalent model parame-
ters are also given. These are however typically best-fit values that have been
fitted to the measured S-parameters.
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Chapter 8

Amplifier Design Using 
Two-Port Network 
Representation

This chapter deals with the design of high frequency amplifiers for small sig-
nal applications where the amplifying devices, the transistors, are character-
ised by two-port networks. Such a two-port is a rather abstract representation
given by a set of a few parameters that have no direct connection with the
physical behaviour of the device. One parameter set is valid for one fixed fre-
quency and one fixed operating point only.
The design methods presented in this chapter differ substantially from the
methods within the discipline of traditional analog circuit design. The latter
relies on using models like the hybrid-π model for bipolar transistors. Such a
model consists of circuit elements that are related to the physical behaviour
of the transistor. As long as these models can be kept simple by disregarding
insignificant elements in the models, amplifiers can be designed using power-
ful methods that provides an overall picture of the amplifier behaviour. With
such a method we do not necessarily design for a specific frequency, instead
we can control the complete frequency response through the manipulation of
poles and zeros that are related to the component values in the circuit. For
discrete realisation these methods are applicable below a few hundred MHz,
sometimes much less depending on the type of components used and the
accuracy that is required.
In the case of higher frequencies the behaviour of a transistor must be mod-
elled with more elements including the package. Most of these element are
reactive elements, i.e., capacitors and inductors, that make the traditional
methods difficult or impossible to use because of the increased complexity.
This is where the two-port representation manifests itself, a black-box repre-
sentation with a set of parameters for each frequency and operating point.
Since a complex circuit is compressed into a model with a small number of
parameters for a fixed operating condition, design methods based on such a
model do no provide the insight that for example pole-zero analysis and the
hybrid-π model provide. 
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The chapter contains two parts. The first serves as an introduction to two-port
representations where y, z and ABCD parameters and their applications are
introduced. From this perspective power gain and stability concepts are
defined. This forms the basis for second part that deals with S parameters and
design of amplifiers using S parameters. 

8.1 Y, Z and ABCD Parameters

To be able to define the different two-port representations consistently we
need to define the two-port. Consider the diagram in figure 8.1. 

Figure 8.1  Two-port network representation.

Each port is associated with a current and a voltage with directions as indi-
cated. If the two-port is linear it can be described using four complex-valued
elements for one frequency and one operating point. That is, four elements
are required to relate the two current and the two voltages to each other. The
admittance parameters are probably the most intuitive because the equivalent
schematic reminds of a stripped-down hybrid-π model. The schematic is
shown in figure 8.2 and the corresponding equations in matrix form is given
by

(8.1)

Figure 8.2  Two-port schematic based on y parameters.

In addition to the admittance (y) parameters the most commonly used param-
eters (except for S parameters that will be treated separately in this chapter)
are the impedance (z) parameters and the chain or ABCD parameters. They
are defined as follows:
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z parameters:

(8.2)

ABCD parameters:

(8.3)

An equivalent schematic for the z parameters is illustrated in figure 8.3.

Figure 8.3  Two-port schematic based on z parameters.

For completeness we also show one possible equivalent schematic for the
ABCD parameters in figure 8.4. Although, the ABCD parameters are proba-
bly better understood by the mathematical definition (8.3).

Figure 8.4  Two-port schematic based on ABCD parameters.

The y, z and ABCD parameters are attractive because they are simple to
measure at low frequencies. Consider for example  in (8.1). By applying a
signal to the input port and setting , i.e., AC short-circuiting the out-
put of the device being measured, we get 

(8.4)

All y, z and ABCD parameters can be measured in this way with short- or
open-circuit terminations. It goes without saying that we can transform one
set of parameters to another set of parameters, refer to tables 8.2 and 8.3.
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If two two-ports are connected to form a new two-port, parameters for the
new two-port is easily calculated from the individual parameter sets if the
correct type of parameters is chosen. To begin with, again consider the y
parameters and corresponding schematic diagrams for two two-ports in shunt
connection in figure 8.5.

Figure 8.5  Shunt connection using y parameters.

From the schematic it is obvious that the new two-port is represented by the
sum of the matrices of the individual two-ports when the two-ports are shunt
connected, i.e.,

(8.5)

Similarly, if two two-ports are connected in series as shown in figure 8.6 the z
parameters are the most appropriate and again the new matrix is given by the
sum of the matrices of the individual two-ports, i.e., 

(8.6)
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Figure 8.6  Series connection using z parameters.

Another important case is cascading of two-ports as in figure 8.7, and this is
where ABCD parameters becomes handy.

Figure 8.7  Cascade connection using ABCD parameters.

The new parameters are given by matrix multiplication, i.e.,

(8.7)

It was demonstrated how the parameters can be measured by simply AC short
or open-circuit the input or the output of a device. However, well-defined
open-circuit or short-circuit tests are very difficult to achieve at high frequen-
cies, especially over a broad band. Also, it is very common that radio fre-
quency transistors oscillates due to internal feedback if any of the two ports
are short or open-circuited. This of course makes the measurement impossi-
ble. Instead, for measuring purposes at high frequencies, S parameters are
preferred because they rely on connecting a reasonable resistive load to both
the input and output when measuring a device. Please note that this fact does
not imply that the parameters described earlier are useless for higher frequen-
cies. They are still valid for design and analysis no matter what the frequency
is. It is perfectly alright to measure a device with a network analyser to obtain
S parameters and convert these parameters to y parameters for example, if
this is more convenient for the designer.
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Parameter sets are typically given for transistors in common-emitter (or com-
mon-source) configuration. If we have a parameter set for a transistor in one
of the other configurations, common-base (common-gate) or common-collec-
tor (common-drain), we can convert these parameters to correspond to
another configuration. Formulas are found in table 8.1.

Table 8.1  
Conversion between y parameters for various transistor configurations.

CE - common-emitter CB - common-base CC - common-collector

from CE from CB from CC

to
CE

to
CB

to
CC
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y11b y12b y21b y22b+ + +
y12b y22b+( )–
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Table 8.2  
Conversion from S and z parameters to S, z, y, and ABCD parameters.

S z

S

z

y

A
B
C
D

S11

S12

S21

S22

S11
z11n 1–( ) z22n 1+( ) z12nz21n–

∆1
--------------------------------------------------------------------------=

S12
2z12n

∆1
-------------=

S21
2z21n

∆1
-------------=

S22
z11n 1+( ) z22n 1–( ) z12nz21n–

∆1
--------------------------------------------------------------------------=

z11n
1 S11+( ) 1 S22–( ) S12S21+

∆5
------------------------------------------------------------------=

z12n
2S12

∆5
-----------=

z21n
2S21

∆5
-----------=

z22n
1 S11–( ) 1 S22+( ) S12S21+

∆5
------------------------------------------------------------------=

z11

z12

z21

z22

y11n
1 S11–( ) 1 S22+( ) S12S21+

∆6
------------------------------------------------------------------=

y12n
2– S12

∆6
--------------=

y21n
2– S21

∆6
--------------=

y22n
1 S11+( ) 1 S22–( ) S12S21+

∆6
------------------------------------------------------------------=

y11
z22

z
-------=

y12
z12–
z

----------=

y21
z21–
z

----------=

y22
z11

z
-------=

An
1 S11+( ) 1 S22–( ) S12S21+

2S21
------------------------------------------------------------------=

Bn
1 S11+( ) 1 S22+( ) S12S21–

2S21
------------------------------------------------------------------=

Cn
1 S11–( ) 1 S22–( ) S12S21–

2S21
------------------------------------------------------------------=

Dn
1 S11–( ) 1 S22+( ) S12S21+

2S21
------------------------------------------------------------------=

A
z11

z21
-------=

B z
z21
-------=

C 1
z21
-------=

D
z22

z21
-------=

∆1 z11n 1+( ) z22n 1+( ) z12nz21n–=
∆5 1 S11–( ) 1 S22–( ) S12S21–=
∆6 1 S11+( ) 1 S22+( ) S12S21–=
zijn zij Z0⁄= yijn yijZ0=
An A= Bn B Z0⁄= Cn CZ0= Dn D=
z z11z22= z12z21–
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Table 8.3  
Conversion from y and ABCD parameters to S, z, y, and ABCD 

parameters.

y ABCD

S

z

y

A
B
C
D

S11
1 y11n–( ) 1 y22n+( ) y12ny21n+

∆2
----------------------------------------------------------------------------=

S12
2– y12n

∆2
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2
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1
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D
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D
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∆– 8

B
---------=
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1–

B
------=

y22
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B
---=

A
y– 22
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----------=

B 1–
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D
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A

B

C
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∆4 An Bn Cn Dn+ + +=
∆8 AD BC–=
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8.2 Stability

An amplifier needs an input signal to produce an output signal. This is not the
case for an oscillator. The amplifier has been designed for stable operation.
The oscillator has been deliberately designed to be unstable. The cause of
instability is positive feedback within the circuit. Therefore, feedback is a
problem in amplifier design and a prerequisite in oscillator design.
If a circuit is designed by considering a transfer function in terms of poles
and zeros we know that the poles must be located in the left-half plane for
stable operation. Other measures for stability analysis that are closely related
to pole-zero patterns are amplitude and phase margin that can be found from
a Bode plot or a Nyquist plot. Basically, poles and zeros give the designer an
overall picture of the frequency response. This is not case for a two-port rep-
resented by a parameter set. Here, the condition for stability must be defined
differently because we only consider one frequency at the time.

8.2.1 Negative Resistance

Stability properties of a two-port can be investigated by looking at the port
impedances. If the resistive part of a port impedance is negative the two-port
will be able to oscillate, it all depends on how the port is loaded. A negative
resistance may not be a property that is easy to accept or understand. The
concept of travelling waves provides another way of looking at it because we
can think of a one-port that has a reflection coefficient that is larger than unity
which actually corresponds to a negative port resistance. This means that an
incident wave is reflected by the port with more power than the incident
wave. 
For oscillation to occur, a negative resistance is not sufficient. The circuit
must include reactive elements that must be in resonance at the desired fre-
quency of oscillation. A general treatment of this topic can be found in the
chapter on oscillators. In this special case where we consider a port with a
negative resistance the criteria for oscillation can be formulated using the
loop impedance, see figure 8.8. Oscillation will occur if the loop resistance is
negative and the loop reactance is zero, i.e., the load resistance must not be
larger than the absolute value of the port resistance and the load reactance
must cancel the port reactance.

Figure 8.8  Loop impedance for port with load.
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In the case of amplifier design it is advisable to have a fair margin to avoid
oscillation. If possible, negative port resistances should be avoided com-
pletely, see section 8.2.3. However, if necessary this rule can be stretched but
care must be taken to include effects of component tolerances, aging and tem-
perature when the margins become smaller.

8.2.2 Port Impedances

Since the port impedances need to be investigated to determine the stability
properties of a two-port we need expressions for the port impedances as func-
tions of the two-port parameters as well as the source and load impedances. 
In general the source and load ports affects each other. The output impedance
depends on the source impedance and the input impedance depends on the
load impedance. Using y parameters, it is easy to show that the input and the
output admittances are given by:

(8.8)

(8.9)

where  is the source admittance and  the load admittance.

8.2.3 Unconditional Stability

A two-port is defined to be unconditionally stable if no source or load imped-
ance results in a negative output resistance or negative input resistance,
respectively. Here, we assume passive impedances that by definition have a
positive resistive part. Note that if this condition is not fulfilled it does not
necessarily mean that the amplifier will oscillate. Instead, if for example the
input impedance is negative for some load impedance we must investigate the
loop impedance before we can draw any conclusion on the behaviour of the
amplifier. However, a negative port resistance is undesirable and is usually
avoided.
To formulate the unconditional stability with equations we need to investigate
the input and output impedances, see (8.8) and (8.9). We can apply boundary
conditions for these equations so that the input, output, load and source resist-
ances must be larger than zero. From this analysis we can derive an explicit
expression for the stability referred to as a stability factor. One commonly
used stability factor is the Linvill stability factor,

(8.10)

yin y11
y12 y21⋅
y22 yL+
-------------------–=

yout y22
y12 y21⋅
y11 yS+
-------------------–=

yS yL

CL
y12 y21⋅

2 g11 g22⋅ ⋅ Re y12 y21⋅[ ]–
----------------------------------------------------------------=
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If  the two-port is unconditionally stable.  and  denote the
conductance part of the corresponding admittance, i.e.,  and

. Another well known stability factor is the Stern’s stability
factor,

(8.11)

If  the two-port is unconditionally stable. Stern’s stability factor dif-
fers from the Linvill stability factor in that it takes into account additional
resistances (  and ) that are shunt-connected at the input and at
the output. This is discussed in the next section.

8.2.4 Conditional Stability

Even though a two-port is not unconditionally stable it can be forced to stable
operation with a proper selection of source and load impedances. Such a two-
port is referred to as a conditionally stable two-port. However, the most use-
ful methodologies that are available for this case are based on S parameters
rather than y parameters, see next chapter. A few approaches that are not
based on S parameters are mentioned below.
The easiest way to make a conditionally stable two-port unconditionally sta-
ble is by resistive shunt-loading at the input or at the output or even both. The
effect of such loading is most easily investigated using Stern’s stability factor
since it provides a way to include source and load resistors. By proper selec-
tion of these we can force  and thereby obtain an unconditionally sta-
ble two-port. The disadvantage with this technique is that the gain is reduced
because power is dissipated in the resistors.
Neutralisation is another way of making a two-port more stable. The objec-
tive is to reduce or even neutralise the effect of the feedback capacitor
between the input and the output port, e.g. between the base and the collector
in a bipolar device. The principle is that an inductor is connected in parallel
with the capacitor. The value of the inductor is chosen in such a way that the
resonance frequency of the LC circuit becomes equal to the operating fre-
quency and thereby the feedback path will be neutralised.

8.3 Power Gain

Power is a more versatile unit than voltage and current when we have the
option to include inductors, capacitors and transmission lines in the circuit.
These circuit elements have one important contribution to the circuit per-
formance. We can preserve the power that is available from a source and
transfer it to the load without significant loss. This is achieved with conjugate
matching. This is exactly what is needed when an amplifier has to be
designed to operate close to . For obvious reasons power gain is pre-
ferred over voltage or current gain under these circumstances. Below, three
different power gain definitions are introduced that will be used extensively
from now on.

0 CL 1< < g11 g22
g11 Re y11[ ]=

g22 Re y22[ ]=

KS
2 g11 ginput+( ) g22 goutput+( )

y12 y21⋅ Re y12 y21⋅[ ]+
-----------------------------------------------------------------------=

KS 1>

ginput goutput

KS 1>

fmax
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8.3.1 Power Gain Definitions

Consider the two-port with source and load connected to it in figure 8.9. If we
would like to calculate the power gain of this circuit it is justifiable to ques-
tion what we mean by power gain.

Figure 8.9  Power gain definitions and related power quantities in a two-port.

We know that somehow the power relation between the input and the output
should be found. A closer look reveals that we can define several types of
power gains for different purposes. One definition is

(8.12)

where  is the power delivered to the load and  the power delivered to
the input of the two-port.  is called operating gain. It is readily understood
that this definition is independent of the source impedance - we only consider
how much power that reaches the input of the two-port but not what forces
this power into the two-port. On the output side we consider how much power
that is actually delivered to the load and for this reason  is dependent on
the load impedance.
If the source impedance is given we know that maximum power is transferred
to the load (in this case the input of the two-port) if the source and the load is
conjugately matched. The power that is transferred in this case is referred to
as available power from source, . We can use this property to introduce
a second power gain definition,

(8.13)

 is called transducer gain. Since the available power from the source is
required  becomes dependent on the source impedance.
These two power gain definitions were obtained by deciding how much of the
circuit at the input side of the two-port that should be part of the gain defini-
tion (see figure 8.9). We can do the same on the output side by defining avail-
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able power from network (the output of two-port), . This property
results in two additional power gain definitions, but only one is relevant and it
is

(8.14)

 is called available gain. Note that this definition is not dependent on the
load.
All three power gain definitions are commonly used for different purposes.
This will be evident later in this chapter. However, figure 8.10 will be used to
demonstrate one simple case where two different gain definitions are
required.

Figure 8.10  Cascade of amplifiers where two different gain definitions are 
required to calculate the total gain.

A two-port consists of three cascaded two-ports with source and load con-
nected at the ends. The question is how the gain of each individual two-port
should be specified to be able to calculate the total gain, lets say the trans-
ducer gain, , as indicated in figure 8.10, as a product of the individual
power gains. There are three solutions and we pick one as an example. The
total gain equals

This expression can be extended and arranged as follows

where  and  refer to the actual power delivered by stage 1 and 2
respectively to stage 2 and three respectively, i.e.,  and

. That is, the total gain can be written as the product of the
operating gain of stage 2 and 3 and transducer gain of stage 1. The other solu-
tions are left as an exercise for the reader.
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8.3.2 Gain with Conjugate-Matched Input and Output

Maximum gain is obtained with conjugate-matched input and output. We
make a distinction between two cases. The first case corresponds to that 
equals zero, i.e., there is no feedback from the output to the input. A two-port
with this property is said to be unilateral. In practice,  is never exactly
zero but if  is small enough a simplified design approach is applicable.
The case is illustrated in figure 8.11.
If the two-port is fixed the source and the load must satisfy  and

 respectively. Of course, the source and the load impedance do
usually not satisfy these equalities. Matching network must be placed in
between. The unilateral case is simple because we have that the input admit-
tance of the two-port equals  and the output admittance equals , i.e.,
the input and the output can be matched separately.

Figure 8.11  Unilateral two-port with conjugate matched source and load.

If a two-port cannot be considered as unilateral, i.e. it is bilateral, the mathe-
matical treatment of the conjugate-match case becomes much more difficult
because of the coupling between the input and the output. The input imped-
ance will depend on the load connected to the output and the output imped-
ance will depend on the source connected to the input, see (8.8) and (8.9).
This case is referred to as simultaneous conjugate match. To obtain simulta-
neous conjugate match the source impedance is given by

(8.15)

and the load impedance

(8.16)

Here  and  denote the conductance and the susceptance part of the cor-
responding admittance, i.e.,  and .
For this specific case maximum gain is obtained and is given by
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(8.17)

Typically, amplifiers are designed for maximum power gain if possible. How-
ever, it can be shown that this is only possible when the two-port is uncondi-
tionally stable.
It is readily understood that all power gain definition become equal when we
have conjugate match on both the input side and the output side because the
delivered power equals the available power at both ports, i.e.,

8.3.3 Gain with Arbitrary Source and Load

When a two-port is not unconditionally stable we cannot design for maxi-
mum gain as discussed in the previous section. In some cases you might
design for a specific gain rather than maximum gain. Both cases correspond
to mismatch at the input or at the output or both. However, we will not
present any design methodologies based on y parameters for this purpose
here. Instead, we only present the expressions for the various gain definitions
for arbitrary source and load impedances and wait with the more comprehen-
sive design methodologies until the next chapter. Thus, the operating gain can
be expressed as

(8.18)

and the transducer power gain is given by

(8.19)

and finally the available power gain is given by

(8.20)
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8.4 S-Parameters

At this point the reader is well acquainted with the two-port concept using
parameter sets like y and z parameters. In previous chapters travelling waves
have been introduced to facilitate analysis and design of distributed circuit
elements. The reflection coefficient is a quantity derived from this theory that
is used to characterise one-port networks. The concept of reflection coeffi-
cients can be extended to networks with any number of ports although we
will deal with no more than 2 ports in this text. So, instead of voltages and
currents at a port we will think in terms of incident waves and reflected
waves. Of course, since waves can scatter from one port to another the term
reflection coefficient is not appropriate any more. When we have more than
one port we instead refer to Scattering (S) parameters. These will be dis-
cussed in more detail in the following sections. We will also look into stabil-
ity and gain concepts based on S parameters rather than y parameters. This is
followed by a structured step-by-step design methodology that cover all
aspects of designing an amplifier with respect to gain. Noise is another
important topic that is brought up. Noise parameters are discussed followed
by a design methodology for minimum or specific noise. The fact that we
have to compromise between noise and gain is also discussed.
The strength of a wave that propagates in a transmission line can be described
by the voltage or the current amplitude for example. If the characteristic
impedance of the transmission line is known we can calculate the corre-
sponding current or voltage amplitude, respectively. However, in connection
with S parameters neither voltage nor current is used. Instead a more conven-
ient normalised notation related to the power carried by the wave is used as
we will see in the next section.

8.4.1 Definition of S-Parameters

A reflection coefficient  describes the properties of a linear one-port net-
work. This concept can be extended to include linear networks with any
number of ports. One incident wave, , and one reflected wave, , are asso-
ciated with each port denoted by index . In this text we will only deal with
two-ports for the sake of clarity. This is sufficient for most applications. The
treatment is easily generalised to N-port networks. 
Consider the two-port in figure 8.12. For the input port there is an incident
wave, , that in the general case contributes to the reflected wave, , at the
same port but it also scatters through the two-port and contribute to the
reflected wave, , at the output port. The same reasoning goes for the output
port.

Figure 8.12  Two-port network with incident and reflected waves.
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We conclude that we can define four (complex valued) parameters that char-
acterise the two-port network, just as was the case for the y, z and ABCD
parameters that were presented previously. Since incident waves can scatter
from one port to another these parameters are referred to as scatter (S) param-
eters that are defined by

(8.21)

or in matrix form

(8.22)

So far we have not dealt with the travelling waves denoted  and . As a
matter of fact is does not matter if the waves are defined to be voltage travel-
ling waves (  and  respectively) or current travelling waves (  and 
respectively). Equation (8.22) is valid for both cases. However, in connection
with S parameters these quantities are defined neither to be voltage waves nor
current waves. Instead, a normalised notation is used. 
Consider an incident wave  and a reflected wave  at one port of a two-
port. At this port we know that the total voltage equals

(8.23)

and the net current equals

(8.24)

where  is a reference impedance. The reflection coefficient for the port is
given by

(8.25)

We now introduce a normalised notation such that
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where  and  are referred to as power waves, which is the definition used in
connection with S parameters. Equations (8.23) to (8.25) can now be written
as

(8.26)

This means that both the “normalised” voltage and current at a specific loca-
tion can be expressed by the power waves  and . Note that the normalisa-
tion does not affect the definition of the reflection coefficient, .
The term power wave stems from the fact that the absolute value of the wave
squared equals the power associated with that wave, i.e.,

(8.27)

Here, the wave quantities  and  are given as peak values.
Thus the power delivered to a port can be express as the difference between
the power carried by the incident and the reflected waves, respectively, i.e.,

(8.28)

We conclude this section by saying that the S parameters are defined based on
a reference impedance  that is 50Ω by convention if nothing else is stated.

8.4.2 Properties of S-Parameters

From the definition of the S parameters in (8.21) we can define the individual
parameters as follows:
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This definition suggests how we should proceed to measure these quantities if
we can measure the incident and reflected waves associated with each port.
For example,  is obtained as the ratio of the reflected wave, , at port 1
to the incident wave  at the same port. Port 2 is assumed to be properly ter-
minated. With properly terminated we mean that whatever port 2 transmit to
its load nothing should be reflected back by the load again as an incident
wave to port 2 because this would then propagate all the way back through

 to port 1 and interfere with the measurement. Consequently, the load
connected to port 2 should have a reflection coefficient equal to 0 which cor-
responds to 50Ω.
In contrast to this type of port termination we saw that to measure y, z and
ABCD parameters we had to either short-circuit or open-circuit the ports to
measure a parameter. This is not feasible at high frequencies. Actually, it is
very difficult to realise well-defined broadband short-circuit and open-circuit
terminations. This is not the case for a 50Ω termination. Moreover, even if it
would be possible to realise well-defined short-circuit and open-circuit termi-
nations they would in many cases force the measured device to oscillate. This
is typically not the case with a 50Ω termination. 
.

Figure 8.13  Two-port network with incident and reflected waves.

Once the S parameters have been measured there is no restriction in trans-
forming them to other parameter sets. For example, y parameters are practical
if we want to calculate the total y parameter set for two two-ports connected
in parallel and ABCD parameters can be used when calculating the parame-
ters of two two-ports in cascade. No information is lost when a parameter set
is transformed to another type of parameters set. 
Note that when transforming y, z and ABCD parameters to S parameters the
parameters must be normalised with the reference impedance (50Ω) prior to
the transformation. And the other way around, when going from S parameters
to one of the other parameter sets the result will be normalised parameters
that should be denormalised.
The chain scattering parameters or scattering transfer parameters (or T
parameters for short) is a parameter set that is closely related to the S param-
eters. They are useful in analysis of cascaded networks. The total T parameter
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matrix of a number of two-ports in cascade is equal to the matrix product of
the T parameter matrices of all the individual two-ports. The T parameters are
defined as

(8.29)

We note that the waves associated with port 1,  and , are the dependent
variables whereas the waves associated with port 2,  and , are the inde-
pendent variables. Combining (8.22) and (8.29) we get the relationship
between the S parameters and the T parameters,

(8.30)

and

(8.31)

A network analyser is used for S parameter measurements. A network ana-
lyser can be calibrated to eliminate the influence of the circuitry (cables,
matching networks etc.) between the instrument and the device or circuitry
that should be measured. This operation is usually referred to as moving the
measurement reference plane. There is one simple and special case where it is
very simple to perform this operation with hand-calculations that also dem-
onstrates one property of the S parameters.
Assume that we have measured S parameters for the complete circuit in fig-
ure 8.14 and want S parameters for the two-port network without the trans-
mission lines. The S parameters for the two-port network is defined by

(8.32)
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Figure 8.14  Different reference planes for a two-port network with 
transmission lines.

We also assume that the characteristic impedance of the transmission lines is
 and that we know the complex propagation constant, , for the

transmission line. In most cases the transmission line can be considered as
lossless in which case we have that . The measurement equipment can
be calibrated to have reference planes at the connectors that we connect to
port 1’ and port 2’. The S parameters for the whole circuit are defined by

(8.33)

If we know the properties of the transmission lines we can calculate the S
parameters for the two-port network itself since we can relate the travelling
waves at port 1 and port 2 to the travelling waves at port 1’ and port 2’,
respectively. Thus we can write

(8.34)

If we substitute (8.34) into (8.33) we get

(8.35)

and rearranging gives

(8.36)
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, i.e., 

(8.37)

Similarly, we can derive the relations the other way around which yields

(8.38)

8.4.3 Signal Flow Graphs

For y, z and ABCD parameters we can draw schematics that corresponds to
the different parameter sets to make these representations less abstract.
Unfortunately, this is not easily done for the S parameters. S parameters relies
on travelling waves rather that node voltages or branch currents. For this rea-
son we need a graphical representation that separates waves that travel
through the same node or along the same transmission line but with opposite
directions.
Signal flow graphs can be used in analysis of circuits with travelling waves.
The concept is that a variable, a wave, is assigned a node. S parameters (for
multi-port networks) and reflection coefficients (for one-port networks) are
represented by branches between nodes and thus represent transfer functions
from one node to a contribution to another node. Branches emanate from
independent nodes and enter dependent nodes. Independent nodes correspond
to incident waves whereas dependent nodes correspond to reflected or scat-
tered waves. A signal flow graph for a one-port is shown in figure 8.15.

Figure 8.15  A one-port network and its corresponding signal flow graph.

From equation (8.21) we can directly develop the signal flow graph for a two-
port represented by S parameters, see figure 8.16. The incident and independ-
ent wave at port 1, , is partly reflected back again by  and contributes to
the reflected and dependent wave at the input, . It is also transmitted or
scattered to port 2 through  and contributes to the reflected and dependent
wave at the output, . The same reasoning applies to the incident wave at
the output, .
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Figure 8.16  A two-port network represented by a signal flow graph.

What we have not discussed so far is how to represent a signal source.
Clearly, a signal source is an independent variable. Consider the voltage sig-
nal source in figure 8.17. In this diagram there are two node voltages and one
branch current. To transform this into a signal flow graph we have to reformu-
late these quantities to waves.

Figure 8.17  Voltage signal source.

Kirchoff’s voltage law (KVL) gives

(8.39)

If we represent the source output voltage, , and the current, , with travel-
ling waves we get

(8.40)

Solving for  we get

(8.41)

Finally, the travelling waves are normalised to power waves and we get

(8.42)

where
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and the signal flow graph can be drawn directly from equation (8.42) as
shown in figure 8.18.

Figure 8.18  Signal source represented by a signal flow graph.

We have now presented how to develop signal flow graphs for three basic
blocks. These can be combined to investigate a two-port with a source and a
load connected to it, see figure 8.19.

Figure 8.19  Signal flow graph for a two-port with signal source and load.

The three blocks were connected using unit value branches (1). For example,
the wave that emanate from the source, , is also the incident wave to the
two-port. With the same reasoning applied to all other unit branches (except
for the source, , that is an independent variable) we can simplify the signal
flow graph to the graph shown in figure 8.20.

Figure 8.20  Simplified signal flow graph for a two-port with signal source and 
load.

Signal flow graphs are convenient for analysing systems with travelling
waves. Once a signal flow graph has been developed Mason’s rule (1 can be
applied to derive the ratio of a dependent to an independent wave and indi-
rectly therefore also the ratio of any variables. For example, it is possible
derive expressions for various types of gain and reflection coefficients for any
port.
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8.5 Stability Analysis Using S-Parameters

We know from above that stability characteristics of a two-port network can
be investigated by looking at the sign of the input and output port conduct-
ance (or resistance). If both the output and the input resistances are positive
for all passive source and load impedances the two-port is said to be uncondi-
tionally stable. If either the output or the input resistance or both are negative
for some configurations of source and load impedances the two-port is said to
be conditionally stable. We also know that a negative resistive part of an
impedance corresponds to a reflection coefficient with a magnitude larger
than unity. Therefore, the conditions for stability can be reformulated using
reflection coefficients as follows:

A two-port network is unconditionally stable if  and  for
all  and  that satisfy  and .

If the two-port is unilateral there is no coupling between the ports and we
know that  and . Thus, it is very easy to determine
whether an unilateral two-port is unconditionally stable or not. A unilateral
two-port is unconditionally stable if  and .
We can rewrite the condition above using S parameters. The input and output
reflection coefficients for a two-port are given by 

(8.43)

and

(8.44)

Thus, the condition for a two-port to be unconditionally stable is (
and  assumed):

(8.45)

It is difficult to tell whether a given two-port is unconditionally stable or not
from these inequalities. However, it can be shown that these inequalities can
be reformulated to

 and (8.46)
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where

(8.47)

(8.48)

Thus, a simple stability check can be performed for a given device in the very
beginning of the design work. The outcome of this stability check will deter-
mine the design methodology that should be used.
If the two-port is potentially unstable it means that some source or/and load
impedances will result in an input or/and an output reflection coefficient
whose magnitude is larger than unity. If this is case the device is still useful
but care should be taken to avoid the source and load impedances that result
in reflection coefficients larger than unity.
By solving  and  for  and , respectively, we
obtain boundaries that divide the source and load reflection coefficients into
two sets each. One set corresponds to  or  (the stable
region) and the other set corresponds to  or  (the poten-
tially unstable region). Fortunately, the boundaries are always defined by cir-
cles in the Smith chart and they are easy to calculate. The boundary in the

-plane that gives  is referred to as the input stability circle:

Radius of input stability circle:

(8.49)

Centre of input stability circle:

(8.50)

and similarly the boundary in the -plane that gives  is referred
to as the output stability circle:

Radius of output stability circle:

(8.51)

Centre of output stability circle:

∆ S11S22 S12S21–=

K
1 S11

2 S22
2 ∆ 2+––

2 S12S21
--------------------------------------------------------=

ΓIN 1= ΓOUT 1= ΓL ΓS

ΓIN 1< ΓOUT 1<
ΓIN 1> ΓOUT 1>

ΓS ΓOUT 1=

rS
S12S21

S11
2 ∆ 2–

------------------------------=

ΓSO
S11∗ ∆∗S22–

S11
2 ∆ 2–

-------------------------------=

ΓL ΓIN 1=

rL
S12S21

S22
2 ∆ 2–

------------------------------=



8.5 Stability Analysis Using S-Parameters

175

(8.52)

Figure 8.21 exemplifies what these stability circles might look like in the case
of a potentially unstable two-port.

.

Figure 8.21  Example of (a) input stability circle ( -plane) and (b) output 
stability circle ( -plane).

We now know how to calculate the boundary but we do not know whether the
stable region is within the circle or outside the circle.
It is readily understood that if we can prove that one arbitrary point is part of
the stable set or the potentially unstable set, then this holds for all other points
belonging to the same set. Lets consider the input stability circle as an exam-
ple. We can pick an arbitrary  and calculate the corresponding  using
(8.44). If  for this point in the -plane we know that it belongs to
the stable region and vice versa if . However, there is an even
more simple method.
Again consider the input stability circle, that is in the -plane. If we set

 (the centre of the Smith-chart) then  becomes equal to ,
i.e., we do not have to calculate . This is easily shown by (8.44).
So, if  then  lies in the stable region but also all other values
of  that are on the same side of the boundary, i.e., the input stability circle.
However, if  then  lies in the potentially unstable region and
consequently the other side of the stability circle constitutes the stable region.
Of course, the same reasoning goes for the output stability circle; If ,
the centre of the Smith-chart is a part of the stable region of -values and
the other way around if . This test is also illustrated in figures 8.22
and 8.23.
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Figure 8.22  Input stability circles and stable and potentially unstable regions 
for (a)  and (b) . Stable region dashed.

Figure 8.23  Output stability circles and stable and potentially unstable 
regions for (a)  and (b) . Stable region dashed.

Example 8.1 Stability properties of a transistor

Investigate the stability properties of BFR520 (Philips Semiconduc-
tors) with  and , at 300MHz and 2GHz. We
get the following S parameters from the data book:
300MHz:

2GHz:

To begin with, investigate whether the transistor is unconditionally
stable or not at these frequencies by calculating  (8.47) and 
(8.48).
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300MHz: , 
2GHz: , 
A two-port network is only stable if  and . Thus, the
transistor is unconditionally stable at 2GHz but not at 300MHz.
The next step is to draw the stability circles at 300MHz to deter-
mine which source and load impedances that lie in the stable region
(we already know that we can choose any passive source and load
impedance for 2GHz so we do not need the stability circles in this
case). We use equations (8.49) to (8.52) to calculate the centre and
the radius of the circles:
Input stability circle, 300MHz:

centre: 
radius: 

Output stability circle, 300MHz:
centre:
radius: 

Since  and  we know that the centre of the Smith-
chart is stable both for the input and the output.
In the 2GHz case we saw that the transistor is unconditionally sta-
ble and we are free to choose any passive source and load imped-
ance without violating the stability criteria. What does this means in
terms of stability circles?
Input stability circle, 2GHz:

centre: 
radius: 

Output stability circle, 2GHz:
centre: 
radius: 

We note that the difference between the radius and the length of the
circle centre vector is more than one both for the input and the out-
put stability circles. This means that the stability circles encircles
the Smith-chart completely. Since  and  the whole
Smith-chart is stable which we already knew from calculating 
and  above. A Smith-chart with the stability circles is shown in
figure 8.24.
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Figure 8.24  Stability circles for 300MHz and 2GHz, respectively.

This example demonstrates one problem in the design of amplifiers.
Assume that we would use this transistor to design an amplifier
operating at 2GHz. Once the source and load impedances have been
determined to achieve, let say, a certain gain at 2GHz it is justified
to ask if this amplifier will work properly at other frequencies as
well. As a matter of fact, we cannot predict the behaviour of the
amplifier at other frequencies than 2GHz based on the 2GHz
parameters. As we saw above the transistor is conditionally stable at
300MHz and the source and load impedances might very well lie in
the potentially unstable region at 300MHz. If this is the case, the
amplifier might become an oscillator. To summarise, once the
designer has completed the design for a specific frequency other
frequencies must be investigated as well to ensure that the design
will be stable for all frequencies below .
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We conclude this section by stressing the fact that we actually have two levels
of stability requirements. If possible, the designer should strive for port
impedances with a positive resistive part, i.e., stay within the stable regions
bounded by the stability circles for all frequencies. If this is not possible, the
designer should try to obtain a positive loop resistance.

8.6 Designing for Gain with S-Parameters

This section deals with the design of amplifiers with respect to gain using
lossless (mis)matching networks to obtain the desired result. Typically, the
source and the load that we want to connect to the two-port are fixed. If you
would connect them directly to the two-port you would not get the desired
gain, noise or whatever the design criteria was. Instead, (mis)matching net-
works are connected between the source and the two-port and between the
load and the two-port, respectively, as shown in figure 8.25. Note that in this
case we must make a distinction between the actual source and load and the
source and load that the two-port sees. As illustrated in figure 8.25  and

 refer to the reflection coefficients as seen by the two-port whereas the
actual source and load reflection coefficients are denoted  and .
The design methodologies described below determine the values on  and

 to obtain the desired gain but not how the matching networks should be
realised.

Figure 8.25  Two-port with source, load and matching networks.

Different methods must be applied depending on the characteristics of the
two-port that will be used and whether we design for maximum gain or not.
All three power gain definitions that were introduced previously will be used.
Below, formulas are given for these power gains using S parameters. These
formulas can be derived using Mason’s rule. Note the partitioning of the for-
mulas. They all contain three factors, one that represent the input side and one
that represent the output side and finally one factor that equals forward scat-
tering parameter, , squared.
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Operating Gain:

(8.53)

Transducer Gain:

(8.54)

Available Gain:

(8.55)

Here,  and  are given by (8.43) and (8.44), respectively. For the
transducer gain we note that if both the input and the output are terminated
with 50Ω the gain becomes equal to .

8.6.1 Design Methodologies

All in all there are four different cases that must be treated separately depend-
ing on whether the two-port can be considered to be unilateral or not and
whether we design for maximum gain or for a specific gain, see figure 8.26.
Design methodologies for these four cases will now be described in detail but
first as a support for the unilateral cases the unilateral figure of merit will be
defined. 

Figure 8.26  Four design cases where gain is the only design criteria.
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8.6.1.1 Unilateral Figure of Merit

Before we start to present the various cases and their respective design meth-
odologies we present a method to decide whether a two-port can be consid-
ered to be unilateral or not. You will hardly find a two-port with  being
exactly zero but you may find a two-port where  is small enough to justify
an approximation. The error introduced by the approximation is defined as
the ratio of the bilateral transducer gain to the unilateral transducer gain and it
can be shown that we can write this as

(8.56)

where

(8.57)

We see that the ratio is bounded by

(8.58)

If we design for maximum gain we would chose  and . In
this special case the ratio becomes

(8.59)

where

(8.60)

This boundary is known as the unilateral figure of merit.

Example 8.2 Calculating unilateral figure of merit

Investigate if the transistor BFR520 (same as in example 8.1) with
 and  can be considered as unilateral at

300MHz and 2GHz, respectively. The S parameters are
300MHz:

S12
S12

GT

GTU
---------- 1

1 X– 2
------------------=

X
S12S21ΓSΓL

1 S11ΓS–( ) 1 S22ΓL–( )
--------------------------------------------------------=

1

1 X+( )2
-----------------------

GT

GTU
---------- 1

1 X–( )2
----------------------< <

ΓS S11
*= ΓL S22

*=

1

1 U+( )2
--------------------

GT

GTU
---------- 1

1 U–( )2
--------------------< <

U
S12 S21 S11 S22

1 S11
2–( ) 1 S22

2–( )
-----------------------------------------------------=

IC 20mA= VCE 6V=

S11 0.34 82.4– °∠=
S21 14.18 110.6°∠=

S12 0.043 68.6°∠=
S22 0.50 33.4– °∠=
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2GHz:

Calculate  (8.60) for 300MHz:

Use (8.59) to calculate the unilateral figure of merit

 or 

Calculate  (8.60) for 2GHz:

Calculate the unilateral figure of merit

 or 

Thus, we see in this case that the difference between the unilateral
gain and bilateral gain is much larger for 300MHz than for 2GHz.
As a rule of thumb a few tenths of dB in error is reasonable because
we can hardly build an amplifier with higher accuracy anyway.

8.6.1.2 Case A: Unilateral Two-Port and Maximum Gain

Maximum power transfer and therefore also maximum gain is obtained with
conjugate matching of the input and the output ports, i.e.,  and

. Substituting  with  and  with  in (8.54) gives:

Maximum Unilateral Transducer Gain:

(8.61)

Conjugate matching of the ports works under the assumption that  and
. When this is not the case the design becomes somewhat more com-

plicated. We do not have the option to alter the load or the source impedance
in such a way that the magnitude of  and  becomes less than unity
because they are fixed and given by  and . This means that we must
accept a negative port resistance and instead ensure that the loop resistance is
positive. However, in this case there is no well-defined maximum gain. Theo-
retically the gain goes to infinity when the loop resistance goes to zero. While

S11 0.10 163.6°∠=
S21 2.57 65.1°∠=

S12 0.22 69.6°∠=
S22 0.34 33.4– °∠=

U

U 0.043 14.18 0.34 0.5

1 0.34 2–( ) 1 0.5 2–( )
--------------------------------------------------------- 156 3–×10= =

0.748
GT

GTU
---------- 1.405< < 1.26dB–

GT

GTU
---------- 1.48dB< <

U

U 0.22 2.57 0.1 0.34

1 0.1 2–( ) 1 0.34 2–( )
-------------------------------------------------------- 22.0 3–×10= =

0.958
GT

GTU
---------- 1.045< < 0.19dB–

GT

GTU
---------- 0.19dB< <

ΓS S11
*=

ΓL S22
*= ΓS S11

* ΓL S22
*

GTUM
1

1 S11
2–

--------------------- S21
2 1

1 S22
2–

---------------------⋅ ⋅=

S11 1<
S22 1<

ΓIN ΓOUT
S11 S22



8.6 Designing for Gain with S-Parameters

183

this might sound as an interesting amplifier scheme one should keep in mind
that the Q-value of the circuit also goes to infinity and consequently the band-
width goes to zero, i.e., such an amplifier will not be able to amplify a modu-
lated signal with a certain bandwidth. The reader might already have
concluded that what we really get is an oscillator. So, in practice the design
involves compromising between gain and bandwidth. Since the maximum
gain is not well-defined we consider this to be a case of designing for a spe-
cific gain, i.e., case B that is treated below.

Example 8.3 Maximum gain of unilateral two-port

In example 8.2 it was demonstrated that the BFR520 transistor
could be considered as being unilateral at 2GHz with an error of
around 0.2dB having conjugate match of both ports.
Calculate the maximum unilateral gain and determine the reflection
coefficients for the source and the load. Also calculate the bilateral
gain using (8.54) to verify size of the discrepancy. The S parameters
are

The maximum unilateral gain is given by (8.61):

The reflection coefficients for the source and the load are the conju-
gates of  and , respectively, i.e.,  and

.
Use the following expression to calculate the bilateral gain (8.54):

we note that we have to calculate  first. Equation (8.43) gives

and finally the bilateral transducer gain becomes

As expected the difference between the  and  is the same as
we calculated in example 8.2.

S11 0.10 163.6°∠=
S21 2.57 65.1°∠=

S12 0.22 69.6°∠=
S22 0.34 33.4– °∠=

GTUM
1

1 S11
2–

--------------------- S21
2 1

1 S22
2–

---------------------⋅ ⋅=

1

1 0.10 2–
------------------------ 2.57 2 1

1 0.34 2–
------------------------⋅ ⋅ 7.54 8.8dB≈ ≈=

S11 S22 ΓS 0.10 163.6– °∠=
ΓL 0.34 33.4°∠=

GT
1 ΓS

2–

1 ΓINΓS– 2
----------------------------- S21

2 1 ΓL
2–

1 S22ΓL– 2
----------------------------⋅ ⋅=

ΓIN

ΓIN S11 S12S21
ΓL

1 S22ΓL–
-----------------------+ 0.313 166.6°∠= =

GT
1 0.102–

1 0.031 3.0°–∠– 2
---------------------------------------------- 2.572 1 0.342–

1 0.116– 2
---------------------------⋅ ⋅=

7.90 9.0dB≈ ≈

GT GTU
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8.6.1.3 Case B: Unilateral Two-Port and Specific Gain

When we want to design for a specific gain (less than maximum gain, see
case A) we must introduce mismatch at least at one of the ports to reduce the
gain. To begin with we will assume  and . The transducer
gain is given by (8.54) and for a unilateral two-port the transducer gain can be
written as:

Unilateral Transducer Gain:

(8.62)

It is readily seen that the expression contains one factor that is associated
with the input port and another factor that is associated with the output port.
For convenience, we introduce the following notation:

(8.63)

where  and  corresponds to the first and third factor in (8.62), respec-
tively. Also, from (8.61) we have that

 and .

Thus, we can rewrite the transducer gain as

(8.64)

where  and . This means that we can relate our design
goal to the maximum transducer gain, which is easily calculated, and appor-
tion the gain backoff,  and , to the ports. One question remains, when

 and  have been calculated how do we go by to determine the values for
 and ? By solving  and  for  and , respectively we obtain

circles in the -plane and the -plane that satisfy fixed  and . These
circles are given by:

S11 1< S22 1<

GTU
1 ΓS

2–

1 S11ΓS– 2
---------------------------- S21

2 1 ΓL
2–

1 S22ΓL– 2
----------------------------⋅ ⋅=

GTU αS S21
2 αL⋅ ⋅=

αS αL

max αS( ) 1

1 S11
2–

---------------------= max αL( ) 1

1 S22
2–

---------------------=

GTU
αS

max αS( )
--------------------- max αS( ) S21

2max αL( )
αL

max αL( )
---------------------⋅ ⋅=

αS

max αS( )
--------------------- GTUM

αL

max αL( )
---------------------⋅ ⋅=

gS GTUM gL⋅ ⋅=

0 gS 1≤ ≤ 0 gL 1≤ ≤

gS gL
gS gL
ΓS ΓL gS gL ΓS ΓL

ΓS ΓL gS gL
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Radius of input gain circle:

(8.65)

Centre of input gain circle:

(8.66)

Radius of output gain circle:

(8.67)

Centre of output gain circle:

(8.68)

For a given circle, higher gain is obtained if you choose a point within the cir-
cle and consequently less gain is obtained if a point outside the circle is cho-
sen. 
In the beginning of this section we introduced a restriction;  and

. When the magnitude of at least one of  and  is larger than
unity there is no well-defined maximum gain to relate to. As a matter of fact,
the maximum gain goes to infinity. This is easily understood from (8.62)
where we see that the gain factors associated with the input and the output,

 and , goes to infinity when 

(8.69)

and

(8.70)

respectively. In terms of impedances, these relations basically state that the
resistive part of the source and load equals the magnitude of the negative
resistive parts of  and , respectively. Thus, we should consider the
loop resistance instead. Since the loop resistances should be positive the sta-
ble regions are given by

(8.71)

rS
1 gS– 1 S11

2–( )

1 S11
2 1 gS–( )–

---------------------------------------------=

ΓSO
gS S11

1 S11
2 1 gS–( )–

----------------------------------------- e
j S11

*( )arg
⋅=

rL
1 gL– 1 S22

2–( )

1 S22
2 1 gL–( )–

----------------------------------------------=

ΓLO
gL S22

1 S22
2 1 gL–( )–

----------------------------------------- e
j S22

*( )arg
⋅=

S11 1<
S22 1< S11 S22

αS αL

ΓS 1 S11⁄=

ΓL 1 S22⁄=

S11 S22

Re ZS[ ] Re ZIN[ ]>
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and

(8.72)

It is fairly easy to mark the stable regions in the Smith-chart even if we think
in terms of reflection coefficients. The question is how we go by to mark 
or  in a regular Smith-chart, which only covers positive resistances.
Actually, it is possible to use the normal Smith-chart even for reflection coef-
ficients with a magnitude larger than unity. By locating  (i.e. invert the
magnitude and negate the phase) in the normal Smith-chart the resistance cir-
cles are interpreted as negative as the reactance circles as labelled. This is
easy to derive. Assume that  is associated with a normalised impedance

 where  is negative. Then we can write

(8.73)

where  has the reactance as  but the opposite sign of the resistance.  is
the corresponding reflection coefficient. Thus, when, lets say,  is plot-
ted in the Smith-chart the stable region for  is given by the inner side of the
resistance circle which  lies upon, see figure 8.27. Of course, the same
reasoning holds for .

Figure 8.27  Stable and unstable regions for  when .

So far only the stability issue has been addressed for this case. When it comes
to designing for a specific gain it can be shown that the gain circles defined
by (8.65) to (8.68) can be used without modifications.

Re ZL[ ] Re ZOUT[ ]>
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z r jx+= r
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------ z 1+
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Example 8.4 Amplifier with specific gain using unilateral approximation

Design an amplifier with 12dB gain at 1GHz using the BFR520
transistor with  and . We will assume that
we can use the unilateral approximation, i.e., set  to zero. The S
parameters are

Since  and  the transistor is unconditionally stable
(assuming ).
Begin by calculating the maximum unilateral gain:

Now we have the freedom to apportion the excess gain of 2.3dB to
the input and output ports. Since we do not have any additional cri-
teria that restrict the design we can do as we please. Lets say that
we divide the gain reduction equally between the ports, i.e., 1.15dB:

From these quantities we can calculate the gain circles for the input
and output using (8.65) to (8.68):
Input gain circle:

centre: 
radius: 

Output gain circle:
centre: 
radius: 

These circles are shown in the Smith-chart in figure 8.28. To be able
to design matching networks we have to choose one point from
each gain circle. There are no general rules that we can apply to
choose the “right” points. Points can be selected so that a certain
matching network topology can be used or such that a certain band-
width is obtained etc. 
Assume that we choose the points as marked in the Smith-chart
below (under what circumstances are these points practical?), i.e.,

 or 
 or 

Now, since we have specific values on  and  we can verify if
it is feasible to use the unilateral approximation or not. Use (8.57)
and (8.58) to calculate the error:

 and thus

IC 20mA= VCE 6V=
S12

S11 0.135 137.3– °∠=
S21 4.799 83.4°∠=

S12 0.114 73.2°∠=
S22 0.365 30.5– °∠=

S11 1< S22 1<
S12 0=

GTUM
1

1 S11
2–

--------------------- S21
2 1

1 S22
2–

---------------------⋅ ⋅ 27.06 14.3dB≈ ≈=

gS gL 1.15dB– 0.767= = =
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rS 0.4759=
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ΓS 0.4336 115.6°–∠= zS 0.5198 j0.5008–=
ΓL 0.1827 101.0°–∠= zL 0.8760 j0.3251–=

ΓS ΓL

X
S12S21ΓSΓL

1 S11ΓS–( ) 1 S22ΓL–( )
-------------------------------------------------------- 0.0206 j0.0351+= =

1

1 X+( )2
-----------------------

GT

GTU
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1 X–( )2
----------------------< < 0.35dB–

GT

GTU
---------- 0.36dB< <→
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Figure 8.28  Gain circles for unilateral stage.

8.6.1.4 Case C: Bilateral Two-Port and Maximum Gain

When the two-port cannot be considered as unilateral the design procedure is
somewhat more complicated. Due to the bidirectional coupling between the
input port and the output port we cannot alter the conditions for one port
without affecting the other port. In the case of maximum gain we know that
we have to fulfil

(8.74)

and

(8.75)
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Due to the dependency between the ports this design requirement is referred
to as simultaneous conjugate match and  and  must be determined
simultaneously.
Substituting  and  with (8.43) and (8.44), respectively we get

(8.76)

and

(8.77)

Thus, these two equations must be solved simultaneously. The solution is
given by

(8.78)

and

(8.79)

where

(8.80)

(8.81)

(8.82)

(8.83)

It can be shown that simultaneous conjugate match is only possible if the
two-port is unconditionally stable, i.e.,  and  must be fulfilled. It
can also be shown that, under these conditions, the maximum transducer gain
is simply given by

(8.84)
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-----------------------+⎝ ⎠
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2––
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-------------------------------------------=
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∆ 1< K 1>

GTM
S21

S12
---------- K K2 1––( )=



Chapter 8 Amplifier Design Using Two-Port Network Representation

190

From this expression we can derive another important quantity, namely the
maximum stable gain which is equal to  with  set to 1, i.e.,

(8.85)

For a conditionally stable two-port this quantity is a figure of merit that repre-
sents the maximum value that  can have with proper resistive loading,
i.e., the two-port is forced to be unconditionally stable by tapping some per-
formance from the amplifying device. It can be shown that by having a shunt
or series resistor on either or both ports it is possible to alter the value of  in
(8.84) without changing the value of .
In the event that we have a conditionally stable two-port there is no such
thing as maximum gain, instead as we increase the gain we will get closer to
the unstable region and finally end up with an oscillator. A pragmatic
approach is used in this case. We start by calculating the maximum stable
gain for the conditionally stable two-port using (8.85). From this gain we
back off a few dB or so and design for that lower gain. Thus, we will design
for a specific gain rather than for maximum gain that is not defined for this
case. Therefore, when we have a conditionally stable two-port we should use
the method described in the next section.

Example 8.5 Amplifier with maximum gain

Determine the source and the load reflection coefficients for maxi-
mum gain using the transistor configuration in example 8.4
(BFR520, 1GHz, 6V, 20mA). Also calculate the value of the maxi-
mum gain.
The S parameters are

Start by checking the stability properties to ensure that maximum
gain (simultaneous conjugate matching of input and output) is
achievable. We get

 and 
Since  and  the transistor is unconditionally stable
although  is very close to unity.
Equations (8.78) and (8.79) gives

 and

The maximum gain is given by (8.84):

GTM K
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----------=

GTM

K
S21 S12⁄

S11 0.135 137.3– °∠=
S21 4.799 83.4°∠=

S12 0.114 73.2°∠=
S22 0.365 30.5– °∠=

∆ 0.5078= K 1.0112=
∆ 1< K 1>

K

ΓSM 0.7181– j0.2629+ 0.7647 159.9°∠= =

ΓSM 0.6632 j0.4843+ 0.8236 36.4°∠= =

GTM
S21

S12
---------- K K2 1––( ) 36.25 15.6dB= = =



8.6 Designing for Gain with S-Parameters

191

8.6.1.5 Case D: Bilateral Two-Port and Specific Gain

We saw previously that to design for a specific gain in the unilateral case we
introduce more or less mismatch at the ports to meet the gain specification.
This is simple because we start by calculating the maximum gain. Then, the
difference between the wanted gain and the maximum gain (gain reduction)
is apportioned as desired to both the ports. Finally, the matching networks for
each port is designed separately. However, this is not possible with a bilateral
two-port because of the coupling between the ports.
For bilateral two-ports the most common methods are based on using either
the operating gain or the available gain definitions as a starting point because
these are only dependent on what is connected to one of the ports (the load
impedance for the operating gain ( ) and the source impedance ( ) for the
available gain). Now, typically the specified gain is given as transducer gain,
not operating or available gain. So what is the rationale in using operating
gain or available gain when we want transducer gain? The answer to that is
that these methods assume that mismatch is only introduced at the port con-
sidered in the gain definition (only one of  and ). The other port is
assumed to be matched. This makes the operating and available gain equal to
the transducer gain in the end.
Lets say that we design with operating gain, . Since we
assume power matching of the input port the delivered power will be equal to
the available power from the source, i.e.,  and consequently

. The same reasoning holds for available
gain.
We will now describe the methods in more detail. To begin with, consider the
operating gain given by

As concluded earlier the operating gain is not dependent on  and we can
rewrite and expand the expression in the following way:

(8.86)

Thus, we set the operating gain to the specified gain and since  is fixed
we can calculate , which is dependent on the known S parameters as well
as the reflection coefficient for the load, . At this stage we are used to cir-
cles in the Smith chart and this case is no exception. The set of  values that
satisfies a given  forms a circle in the -plane given by
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Radius of operating gain circle:

(8.87)

Centre of operating gain circle:

(8.88)

where

(8.89)

Once the circle has been calculated a value for  is chosen from that circle.
Next, the input reflection coefficient, , can be calculated and the source
reflection coefficient is chosen to be .
Similarly, if we decide to have the mismatch at the input we should use avail-
able gain to determine the reflection coefficient for the source. The available
gain can be written as

(8.90)

The procedure is equivalent to the case with the operating gain above in that
we calculate a parameter,  in thus case, as the ratio of the wanted gain
(available gain in this case) to the forward S parameter, . Once  is
known we obtain a set of  values that satisfies a given  that forms a cir-
cle in the -plane given by

Radius of available gain circle:

(8.91)

Centre of available gain circle:

(8.92)

where

rL
1 2K S12S21 gP– S12S21

2gP
2+

1 gP S22
2 ∆ 2–( )–

-------------------------------------------------------------------------------=

ΓLO
gPCL*

1 gP S22
2 ∆ 2–( )+

------------------------------------------------=

CL S22 ∆S11
*–=

ΓL
ΓIN

ΓS ΓIN
*=

GA S21
2 1 ΓS

2–

1 S22 ∆ΓS–
1 S11ΓS–
-----------------------

2
–⎝ ⎠

⎛ ⎞ 1 S11ΓS–
2

------------------------------------------------------------------------⋅ S21
2gA= =

gA
S21

2 gA
ΓS gA

ΓS

rS
1 2K S12S21 gA– S12S21

2gA
2+

1 gA S11
2 ∆ 2–( )–

-------------------------------------------------------------------------------=

ΓSO
gACS*

1 gA S11
2 ∆ 2–( )+

------------------------------------------------=
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(8.93)

So far we have not discussed how we should deal with the stability properties
of the two-port. When the two-port is unconditionally stable we can design an
amplifier using the method above without restrictions. However, when the
two-port is only conditionally stable we know that there is no well-defined
maximum gain and  and  cannot be chosen arbitrarily because they
must stay within the stable regions.
For a conditionally stable two-port we start by calculating the maximum sta-
ble gain  given by (8.85). The realisable gain is a few dB or so below

 so we have to make sure that the required gain is less. Depending on
our preferences we choose to design for mismatch at either the output or the
input as described above. In the case of mismatch at the output port we
should choose a point, , on the gain circle that lies in the stable region and
not to close to the boundary of the stable region. After that,  is calculated
and from that we get , i.e., conjugate match of the input port.
Finally, we must make sure that  also lies in the stable region. If it does
not, a new point from the -gain circle is chosen and the procedure is
repeated. If this does not work either the gain must be reduced or another
device must be considered for the design.

Example 8.6 Amplifier with specific gain

Determine the source and load reflection coefficients for an ampli-
fier to obtain 16dB gain at 500MHz using the BFR520 transistor
with  and . Apply mismatch at the output
port and conjugate match at the input port.
According to data sheets the S parameters are

We should verify that 20dB gain can be obtained by calculating
maximum stable gain, , if the transistor is conditionally sta-
ble or the maximum gain, , if the transistor is unconditionally
stable. Therefore, begin by checking the stability properties. Using
the S-parameters above we get

 and 
Since  the transistor is only conditionally stable and thus we
should calculate the maximum stable gain

This means that there is some headroom from the 16dB that we
want. The next step is to draw the stability circles using equations
(8.49) to (8.52):
Input stability circle:

centre: 
radius: 

CS S11 ∆S22
*–=

ΓS ΓL

GMSG
GMSG

ΓL
ΓIN

ΓS ΓIN
*=

ΓS
ΓL

IC 5mA= VCE 3V=

S11 0.473 84.8– °∠=
S21 7.1790 112.0°∠=

S12 0.0760 59.6°∠=
S22 0.5950 34.7°–∠=

GMSG
GMAX

∆ 0.5161= K 0.6310=
K 1<

GMSG
S21

S12
------- 94.5 19.75dB= = =

ΓSO 6.181 j10.518– 12.200 59.6°–∠= =
rS 12.806=
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Output stability circle:
centre:
radius: 

The stability circles are shown in the Smith-chart below. Since
 and  we know that the centre of the Smith-chart

is stable both for the input and the output.
now when we know what areas to avoid in the Smith-chart we
should calculate the gain circle that gives 16dB total gain.
Finally, we should calculate the gain circle. Since we will control
the gain by applying mismatch at the output port we should use the
operating gain circle given by equations (8.87) and (8.88). The gain
parameter , see equation (8.86), is obtained from

 i.e. 
and the gain circle becomes

centre:
radius: 

We can choose any reflection coefficient for the load, , that lies
in the stable region and in this case we can for example choose the
point marked in the Smith-chart below in figure 8.29, i.e.,

 or 
Assuming that the load that is to be matched to the transistor output
is 50Ω the matching network will only consist of an capacitor or a
shunt stub (acting as an capacitor at 500MHz).
The final step is to choose the reflection coefficient for the source,

. The method implies that the input side should be conjugately
matched when the output side is mismatched. Since  has been
determined we can calculate  using (8.43) and we get

Thus, conjugate match means as far as
reflection coefficients are concerned.

ΓLO 3.638 j5.859+ 6.897 58.2°∠= =
rL 6.222=

S11 1< S22 1<

gP

GP S21
2gP= gP GP S21

2⁄ 39.81 51.54⁄ 0.772= = =

ΓLO 0.2307 j0.3715+ 0.4373 58.2°∠= =
rL 0.753=

ΓL

zL 0.6860 j0.4635–= ΓL 0.3202 108.7°–∠=

ΓS
ΓL

ΓIN

ΓIN 0.1245 j0.3443– 0.3661 70.1°–∠= =
ΓS ΓIN

* 0.3661 70.1°∠= =
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Figure 8.29  Gain circle and stability circles for bilateral stage.

8.7 Noise

One very important application for small-signal high frequency amplifiers is
the first amplifier stage of a radio receiver. This amplifier must be designed to
handle both strong signals and very weak signals. The capability to handle
strong signals is limited by the linearity of the amplifier. If the input signal is
sufficiently strong the amplifier will generate intermodulation distortion that
will interfere with the desired signal. The capability to handle weak signals is
limited by the noise generated by the amplifier itself that also will interfere
with the desired signal. Below a method for designing low noise amplifiers is
described. Linearity properties is discussed in the chapter on power amplifi-
ers. 

0.1

0.1

0.
1

0.2

0.2

0.
2

0.3

0.3

0.
3

0.4

0.4

0.
4

0.
5

0.
5

0.
5

0.
6

0.
6

0.
6

0.
7

0.
7

0.
7

0.
8

0.
8

0.
8

0.
9

0.
9

0.
9

1.
0

1.
0

1.
0

1.
2

1.
2

1.
2

1.
4

1.
4

1.
4

1.
6

1.
6

1.
6

1.
8

1.
8

1.
8

2.
0

2.
0

2.
0

3.0

3.0

3.
0

4.0

4.0

4.
0

5.0

5.0

5.
0

10

10

10

20

20

20

50

50

50

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1.0

1.0

1.
0

1.
0

20
−20

30
−30

40
−40

50

−50

60

−60

70

−70

80

−80

90

−90

100

−100

110

−110

120

−120

130

−130

14
0

−1
40

15
0

−1
50

16
0

−1
60

17
0

−1
70

18
0

±

90
-9

0
85

-8
5

80
-8

0

75
-7

5

70
-7

0

65
-6

5

60
-6

0

55
-55

50
-50

45

-45

40

-40

35

-35

30

-30

25

-25

20

-20

15

-15

10

-10

0.0
4

0.0
4

0.0
5

0.0
5

0.0
6

0.0
6

0.07

0.07

0.08

0.08

0.09

0.09

0.1

0.1

0.11

0.11

0.12

0.12

0.13

0.13

0.14

0.14

0.15

0.15

0.16

0.16

0.17

0.17

0.18

0.18

0.19
0.19

0.2
0.2

0.21
0.21

0.22
0.22

0.23
0.23

0.24

0.24
0.25

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.3

0.3

0.31
0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.4

0.4

0.41

0.41

0.42

0.42

0.43

0.43

0.4
4

0.4
4

0.4
5

0.4
5

0.4
6

0.4
6

0.
47

0.
47

0.
48

0.
48

0.
49

0.
49

0.
0

0.
0

ANG
LE O

F TRANSM
ISSIO

N CO
EFFICIENT IN DEG

REES

ANG
LE O

F REFLECTIO
N CO

EFFICIENT IN DEG
REES

–>
 W

AV
EL

EN
G

TH
S 

TO
W

AR
D 

GE
NE

RA
TO

R 
–>

<–
 W

AV
EL

EN
GT

HS
 T

O
W

AR
D 

LO
AD

 <
–

IN
DU

CT
IV

E 
RE

AC
TA

NC
E 

CO
MPO

NEN
T (

+jX
/Zo),

 OR CAPACITIVE SUSCEPTANCE (+jB/Yo)

CAPACITIVE REACTANCE COMPONENT (-j
X/Zo),

 O
R IN

DUCT
IV

E 
SU

SC
EP

TA
NC

E 
(-j

B/
Yo

)

RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo)

output stability circle input stability circle

gP 0.772=

stable region, ΓS

stable region, ΓL

unity conductance circle

ΓL

ΓS



Chapter 8 Amplifier Design Using Two-Port Network Representation

196

8.7.1 Noise in a Two-Port Network

Consider the two-port network in figure 8.30. Signal power, , generated
by the source enters the two-port together with the noise power, , also
generated by the source. The ratio of the signal power to the noise power is
referred to as signal-to-noise ratio, SNR. SNR is obviously a measure of the
signal quality. We want the desired signal  to be sufficiently large com-
pared with the noise  so that whatever information that is carried by the
desired signal it should be possible to retrieve it without significant loss of
information. 
The signal and the noise enter the input of the two-port network and are
amplified with the same gain, , before they reach the output load, . For a
given source impedance the two-port network will also add a certain amount
of noise power, , to the output signal. Thus, the noise level increases
more than the signal level and consequently the SNR will decrease.

Figure 8.30  Noisy two-port network with noisy source.

The noise power, , could be a useful measure of the noise performance
for the two-port network but it is never used in practice. Instead the noise fig-
ure, denoted , is used to characterise the noise properties of a two-port net-
work. The noise figure is defined as the ratio of the total available noise
power at the output of the two-port network to the available noise power at
the output due to thermal noise from the source resistor having a specific tem-
perature .
The thermal noise arises due to thermal motions of the electrons. It is white in
its nature, i.e., the spectral density is constant. This is true for frequencies
below Hz or so. The thermal noise can be modelled as a voltage source
in series with the resistor or as a current source in parallel with the resistor as
shown in figure 8.31.

Figure 8.31  Modelling of the thermal noise in a resistor.

The rms value of the noise voltage is given by

(8.94)

PSi
PNi

PSi
PNi

G ZL

PNo

G

PNo
ZL

PSi PNi+ GPSi GPNi PNo+ +

ZS

PNo

F

T0 300°K=

1013

Rnoisy

Rnoiseless
Rnoiseless

VN

IN≡ ≡

VN 4kTBR=
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where  is Boltzmann’s constant,  the temperature in the resistor and  is
the noise bandwidth. The equivalent rms noise current is given by

(8.95)

The maximum available noise power from a source impedance with a resis-
tive part, , is transferred to a load if the load is conjugately matched. Thus,
the maximum available noise power is given by

(8.96)

, i.e. the maximum available power is not dependent on the value of the resis-
tor.
As we saw above the thermal noise is directly coupled to the physical temper-
ature of the resistor. However, the temperature term is also used in a more
wider and abstract sense to quantify any noise source. We then refer to the
effective noise temperature. This will be a fictitious temperature, not neces-
sarily equal to any physical temperature within a given circuitry. Once the
noise voltage, current or available noise power is known the effective noise
temperature can be calculated from equations (8.94) to (8.96), respectively.
So, the noise figure is a ratio that describes how many times the noise power
increases assuming a predefined noise source. As such the noise figure cannot
be used directly to calculate the noise power at the output for an arbitrary
source noise power simply by multiplying the source noise with the noise fig-
ure. For example, if the resistor temperature is  instead of .the
source noise power will be ten times lower whereas the noise contributed by
the two-port network itself is still equal to the noise figure times the noise
from a given resistor with a temperature of . 
Maximum available noise power or equivalent noise temperature is used to
specify the noise properties of a source. It is therefore natural to also use this
quantity when we investigate the noise behaviour when we connect one or
more stages in cascade with the source. That is we would like to be able to
calculate the maximum available noise power at the output of the final stage.
Consider the cascade of two two-port networks in figure 8.32.

.

Figure 8.32  Cascade of two noisy two-port networks.

Assuming a  noise source the noise figure for the first stage can be
written as

k T B

IN 4kTB R⁄=

R

PN
VN

2

4R
------- kTB= =

30°K 300°K

300°K

ZS ZL

GA1

PNo1

PNi GA1PNi PNo1+ GA2 GA1PNi PNo1+( ) PNo2+GA2

PNo2
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(8.97)

where  is the available output noise generated by the first stage and
 the available output noise generated by the source. Exploiting the

fact that the available gain is given by

(8.98)

where  is the available output signal power and  the available
source signal power, we can rewrite (8.97) as

(8.99)

This means that the noise figure can also be defined as the reduction in signal-
to-noise ratio from the input to the output side of a two-port network.
Continuing with the cascade circuit in figure 8.32 we have that the total avail-
able noise power at the output of the first stage equals  and
similarly the total available noise power at the output of the second stage
equals . From this we can write the total noise
figure as

(8.100)

In the two last terms in this expression there is a ratio of the available noise
generated by a two-port network (  and , respectively) to the availa-
ble noise of the source . This indicates that we can write (8.100) as a
function of the noise figures for the individual two-port networks:

(8.101)

where

(8.102)

and
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(8.103)

In a generalised form equation (8.101) is known as Friis’ formula and for 
stages the formula can be written as

(8.104)

8.7.2 Design Methodology

The noise figure for a two-port network varies with the source impedance. So
does the gain of course. Unfortunately, maximum gain is seldom obtained for
the same source impedance that gives the minimum noise figure. It can be
shown that the noise figure for a two-port can be written as

(8.105)

where ,  and  are parameters for a given two-port network. 
is the minimum noise figure that is obtained when the source admittance 
is chosen to be . A larger noise figure is obtained if . The equiv-
alent noise resistance  determines how much the noise figure increases
with the difference between  and . Equation (8.105) can also be writ-
ten using normalised quantities:

(8.106)

where ,  and . From here it easy to
express the noise figure in terms of reflections coefficients instead. We know
that the relation between a given normalised admittance and its correspond-
ing reflection coefficient is given by . Thus (8.105)
becomes

(8.107)

,  and  are noise parameters that are usually given by transistor
manufacturers. These parameters varies both with frequency and operating
point of the device.
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None of the equations (8.105) to (8.107) are suitable for design purposes.
Since we usually want to design for a specific noise figure rather than for a
specific source impedance we want to know what source impedances that sat-
isfies a desired noise figure. Similar to the analysis behind the stability circles
and the gain circles we can derive expressions for the set of source imped-
ances that gives a certain noise figure, and of course, these sets are given by
circles in the -plane:

Radius of noise circle:

(8.108)

Centre of noise circle:

(8.109)

where

(8.110)

From the discussion above it is obvious that when we have a certain noise fig-
ure as our main design goal we will introduce more less mismatch in terms of
gain at the input port. Since we want to keep track of the gain as well we can
use the design methodologies in case B (unilateral, specific gain) or in case D
(bilateral, specific gain) above. We can draw noise circles and gain circles in
the same Smith-chart ( -plane). We will then be able to find intersections
between the two that correspond to good compromises between noise and
gain.

Example 8.7 Noise properties of a transistor

Draw the 1.5, 2 and 3dB noise circles in a Smith chart for the
BFR520 transistor at 1GHz with  and . Also
mark the centres for the circles as well as the reflection coefficient
that gives the minimum noise figure. The following noise parame-
ters are provided by the manufacturer:

, , 
The noise circles are calculated using equations (8.108) to (8.110):
Noise circle for :

centre:
radius: 

Noise circle for :
centre:
radius: 

ΓS

rS
Ni

2 Ni 1 Γopt
2–( )+

1 Ni+
----------------------------------------------------=

ΓSO
Γopt

1 Ni+
--------------=

Ni F Fmin–( )
1 Γopt+ 2

4rN
------------------------=

ΓS

IC 5mA= VCE 3V=

Fmin 1.15dB 1.30= = Γopt 0.336 49.0°∠= rN 0.250=

F 1.5dB=
ΓSO 0.1884 j0.2167+ 0.2872 49.0°∠= =
rS 0.3623=

F 2.0dB=
ΓSO 0.1533 j0.1764+ 0.2337 49.0°∠= =
rS 0.5297=
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Noise circle for :
centre:
radius: 

The circles are shown in the Smith-chart below. Note that the cen-
tres of all circles has the same argument, i.e., they lie on the same
radial line as shown below.

Figure 8.33  Reflection coefficient for optimal noise and noise circles for 
various noise figures.

8.8 Complete Design Example

This chapter ends with a design example that considers stability analysis,
designing for specific gain and noise, broadband analysis and realisation of
matching networks.

F 3.0dB=
ΓSO 0.1062 j0.1222+ 0.1619 49.0°∠= =
rS 0.7000=
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Example 8.8 Design of low noise amplifier

Design an amplifier with at least 18dB gain and a noise figure no
higher than 1.3dB. Use the BFR520 transistor at 1GHz with

 and . The terminating source and load are
assumed to be purely resistive 50Ω, see figure 8.34 below. Design
the matching networks using transmission line structures assuming
lossless transmission lines. Also assume that we cannot consider the
transistor to be unilateral.

Figure 8.34  Amplifier topology to be designed for low noise.

The following noise parameters are provided by the manufacturer:

, , 
The fact that the noise figure should be less than 1.3dB suggests
that we must cater for mismatch at the input since the source reflec-
tion coefficient affects the noise performance of the amplifier. This
implies that we should design with available gain, i.e., mismatch is
introduced at the input to comply with the noise and the gain speci-
fication and then the output is conjugately matched so that the trans-
ducer gain will be equal to the available gain.
The first thing to do is to check the stability properties of the tran-
sistor. We get  and .
Since  the transistor is only conditionally stable and thus we
should calculate the maximum stable gain to ensure that the transis-
tor is capable of providing the gain that was specified above

This means that there is some headroom from the 18dB that we
want. The next step is to draw the stability circles using equations
(8.49) to (8.52):
Input stability circle:

centre: 
radius: 

IC 5mA= VCE 3V=

ZS ′ 50Ω= ZL ′ 50Ω=

BFR520
Input

matching net-
work

Output
matching
network

ΓS ΓIN ΓOUT ΓL

S11 0.473 84.8– °∠=
S21 7.1790 112.0°∠=

S12 0.0760 59.6°∠=
S22 0.5950 34.7°–∠=

Fmin 0.90dB 1.23= = Γopt 0.400 26.0°∠= rN 0.250=

∆ 0.5161= K 0.6310=
K 1<

GMSG
S21

S12
------- 94.5 19.75dB= = =

ΓSO 6.181 j10.518– 12.200 59.6°–∠= =
rS 12.806=
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Output stability circle:
centre:
radius: 

The stability circles are shown in the Smith-chart below. Since
 and  we know that the centre of the Smith-chart

is stable both for the input and the output.
There is one additional check that we must perform before we con-
tinue with the design. We must verify that we can comply with the
gain and noise requirements at the same time using the same source
reflection coefficient. Thus, we should calculate the noise circle for
a noise figure of 1.3dB and the available gain circle for 18dB gain.
If no part of the noise circle is within the gain circle we will not be
able to fulfil the specification. In practice this means that we should
choose another transistor with better performance or loose the spec-
ification if possible. The noise and gain circles become:
Noise circle for : (equations (8.108) to (8.110))

centre:
radius: 

Available gain circle for :
( , equations (8.91) and (8.92))
centre:
radius: 

As can be seen from the Smith-chart below the 1.3dB noise circle is
partly within the 18dB gain circle which means that we can con-
tinue with the specified transistor. 
We are now at a stage where we can select a point for  such that
the specification will be fulfilled. This example does not specify
whether it is the noise or the gain that is the most important param-
eter so we can select the point arbitrarily within the intersection of
the two circles. In this case we can actually select  which gives
minimum noise, i.e., 

 or 
With this reflection coefficient the available gain and the noise fig-
ure become  and , respectively.
Now we should verify that the output can be conjugately matched
to obtain a transducer gain equal to the available gain that we
headed for above. If this is not the case we can tolerate some degree
of mismatch to obtain at least 18dB gain. The output reflection
coefficient becomes  and thus the load
reflection coefficient should be  for conjugate
match and as can be seen in the Smith-chart this point is in the sta-
ble region for  but we also note that it is not far away for the sta-
bility circle. A practical design may possibly become too sensitive
under these conditions. However, more information is required to
analyse the stability under worst-case conditions. In this example
we stick to the value that was calculated above.

ΓLO 3.638 j5.859+ 6.897 58.2°∠= =
rL 6.222=

S11 1< S22 1<

F 1.3dB=
ΓSO 0.2940 j0.1434+ 0.3271 26.0°∠= =
rS 0.3981=

GA 18dB=
gA 1.2243=

ΓLO 0.3401– j0.5788+ 0.6713 120.4°∠= =
rL 0.8194=

ΓS

Γopt

ΓS Γopt 0.400 26.0°∠= = zS 1.9049 j0.7953+=

GA 18.1dB= F Fmin 0.9dB= =

Γout 0.4478 55.6°–∠=
ΓL 0.4478 55.6°∠=

ΓL
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Figure 8.35  Compromise between high gain and low noise.

The reflection coefficients for the source and the load are now
determined and the realisation of the matching networks remains.
The topology chosen for the matching networks is shown in the fig-
ure below. The transistor is connected to 50Ω series transmission
lines that moves the admittance to the unity conductance circle.
Short-circuited 50Ω stubs are used to eliminate the remaining sus-
ceptance. The dimensioning of the transmission lines are shown in
the Smith-chart below.

Figure 8.36  Matching networks for the amplifier.
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Figure 8.37  Design of matching networks.

For the physical realisation of the transmission lines with respect to
geometry and material please refer to earlier chapters on these top-
ics.
This design was carried out for one frequency only (1GHz). As
matter of fact, we do not no much about the behaviour of this
amplifier at other frequencies than in the neighbourhood of 1GHz.
With access to computer based mathematical tools or simulation
tools it is possible to handle the whole set of S parameters for dif-
ferent frequencies in one shot and recalculate the effect of the
matching network at these frequencies. Thus, we can analyse but
not synthesize the behaviour of the amplifier at other frequencies.
We can for example plot the gain as a function of frequency to
ensure enough suppression of unwanted signals at frequencies other
than 1GHz. We can also characterise stability properties by calcu-
lating the input and output reflection coefficients for the transistor at
different frequencies. We could go even further by applying the
inverse Fourier transform on the complex-valued gain transfer func-
tion to obtain the impulse response. This would provide us with
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information on the behaviour of the amplifier in the time domain. A
slowly decaying and oscillating impulse response indicates stability
problems.
Below the calculated gain is shown as a function of frequency. The
21 points of S parameter data available from the manufacturer were
used to calculate the gain. The wanted gain of 18dB is indeed
achieved at 500MHz but over a broader frequency range the gain
varies between -26 to +25dB.

Figure 8.38  Gain as a function of frequency.

The input and output reflection coefficients have also been calcu-
lated and the result in shown in figure 8.39. Here, it is readily seen
that we have a stability problem at lower frequencies. The input
reflection coefficient is close to unity at lower frequencies and even
worse, the output reflection coefficient larger than unity. 
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Figure 8.39  Input and output reflection coefficients.

Even though it is not a desirable situation the amplifier might still
work. We should therefore investigate the loop impedance. The
impedances corresponding to  and  can be calculated and
added together to obtain the total loop impedance. The result is
illustrated below. The criterion for oscillation is not fulfilled but a
negative loop resistance is observed at lower frequencies. At these
frequencies the stub at the output port will act more or less as a
short-circuit to ground and the total load resistance will not be large
enough to give a positive loop resistance. 

Figure 8.40  Loop resistance and reactance as a function of frequency.
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Chapter 9

Transistor Biasing

The biasing circuitry forces a device into a desired operating point in terms of
DC terminal voltages and currents. It is a very important part of the design
because the desired properties of a device, given as S parameters for instance,
can only be kept if the biasing circuitry can maintain the operating point inde-
pendent of temperature and aging. However, one should remember that far
from all properties of a device become constant just because the operating
point is kept steady. Temperature and aging will still have some influence on
the behaviour although the effects will be moderate.
In previous chapters only small-signal properties of transistors were consid-
ered either in terms of hybrid-π models (or the FET equivalent) or complex-
valued parameter sets, i.e., z parameters, S parameters etc. Such a small-sig-
nal description assumes a certain operating point and temperature. Once the
parameter set has been chosen matching networks can be designed to obtain
the desired gain, noise figure etc. After that, the biasing circuitry is designed
to obtain the desired voltages (typically  or ) and currents (typically

 or ) associated with the parameter set chosen. However, the biasing
circuitry must be designed in such a way that it does not change gain, noise
figure and stability of the design. If it is anticipated that it will have some
impact it must be taken into account from the very beginning when designing
the matching networks.
A biasing circuitry around a transistor consists of a few resistors in its most
simple form but complex designs based on transistors or operational amplifi-
ers for active biasing might prove to be necessary in some cases. This chapter
deals with both.
BJTs and FETs are very different with respect to biasing. BJTs are very sensi-
tive to variations in temperature and FETs suffer from inaccurate parameters.
Therefore, both require a more or less advanced biasing circuitry to compen-
sate for temperature drift or inaccuracy. Most of this chapter is devoted to
BJTs because they can be used to illustrate a larger set of biasing techniques
compared with FETs. However, some biasing solutions for BJTs can be trans-
ferred to the FET case and a brief discussion on FET biasing is also given.
Finally, means of isolating the biasing circuitry from the signal circuitry is
exemplified.

VCE VDS
IC ID
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9.1 Biasing of Bipolar Transistors

In principle, there are two ways to control the operating point of a bipolar
device, either by applying a voltage across the base-emitter or by feeding a
current into the base. These two options are discussed below.

9.1.1 Base-Emitter Voltage Drive

A bipolar transistor can approximately be modelled by the well-known expo-
nential relationship between the base-emitter junction voltage  and the
collector current  that is given by [1]

(9.1)

where  is the thermal voltage and  the saturation current. The
latter one depends on the device properties and has roughly an exponential
growth with the temperature [2].
As mentioned above it is the collector current and the collector-emitter volt-
age that constitutes the operating point that must be kept steady. For example,
the collector current controls the transconductance of the device as well as the
input and output impedances and the collector-emitter voltage controls the
junction capacitance between the base and the collector.
Now, (9.1) indicates that we should apply a fixed voltage across the base-
emitter of the device to get the desired collector current as shown in figure 9.1
- the force and the action. However, this is not such a good idea for a few rea-
sons. To begin with, the saturation current  varies from device to device and
even worse, it is strongly dependent on the temperature. Finally, with a fixed

 we will also suffer from the temperature dependency of , see equa-
tion (9.1). An increase of one degree Celsius results in roughly 10% lower
collector current due to the influence of .

Figure 9.1  Setting the operating point with a fixed base-emitter DC voltage.

It is out of the scope in this chapter to deal with the temperature dependency
of  in detail. However, a typical characteristic for  is illustrated in figure
9.2 where  at . Over the given range from

 to  the saturation current changes with a factor of more than 1
million. As a rule of thumb the saturation current increases with about 10%
per degree Celsius.
As mentioned earlier it is not only the saturation current that controls the tem-
perature dependency of the collector current. The thermal voltage found in
equation (9.1) to some extent counteracts the temperature dependency of the
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saturation current. If we combine the result in figure 9.2 and equation (9.1)
we can plot the collector current as a function of temperature, see figure 9.3.
Again we have chosen  at  and also

 that gives a collector current equal to 1mA at 
Compared with the saturation current the temperature dependency of the col-
lector current is more relaxed but still varies with a factor of 100 or so over
the given range.

Figure 9.2  Typical characteristic of saturation current as a function of 
temperature.

Figure 9.3  Typical characteristic of collector current as a function of 
temperature with a fixed base-emitter voltage.
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It readily seen that it is not such a good idea to use a fixed  to obtain a
certain operating point. Instead, we should try to measure the collector cur-
rent and adjust  accordingly to obtain the desired operating point. In
other words, accurate biasing is obtained by means of feedback.

9.1.2 Base Current Drive

The second approach to obtain a desired operating point is to force a current
into the base as illustrated in figure 9.4. This is quite different from the volt-
age driven configuration presented in the previous section. Of course, equa-
tion (9.1) still holds but the base-emitter voltage is of secondary importance.
Instead, the primary relation is given by the ratio between the collector DC
current and the base DC current, i.e., the DC current gain . As a first order
approximation  is typically assumed to be constant although is varies quite
significantly from one device to another, say from 100 to 200 for an NPN
device. A more elaborate model of the current gain shows that it is dependent
not only on the temperature but also on the collector current. Again, it is out
of the scope to investigate these relations in detail here but a typical tempera-
ture coefficient is +0.7% per degree Celsius.

Figure 9.4  Setting the operating point with a fixed base current.

In figure 9.5 a typical characteristic of the temperature dependency of the cur-
rent gain is shown. The current gain is equal to 100 at . Over the
given temperature range the current gain varies from about 70 to 140 which is
much less than the what we saw for the saturation current and the collector
current with a fixed base-emitter voltage. In the event that we would like to
reduce the temperature dependency by means of feedback as discussed above
we conclude that a base current control can do with more relaxed require-
ments on the feedback circuit. One final remark should be given on the base
current control. Even though some applications could do with the moderate
variations in current gain as shown in figure 9.5 it is still recommended that
feedback is applied or else thermal runaway might destroy the device. This is
due to the positive feedback in the bipolar transistor itself. Let us assume that
we have a very small collector resistor connected to the supply voltage. This
means that a change in collector current will result in negligible change in
collector voltage which can be considered to be constant. Then, if the collec-
tor current increases, then the temperature will increase which will increase
the current even further and so on. Thus, the power dissipation will increase
accordingly and if the collector resistor is not large enough and there is no
feedback to counteract this behaviour the device might be destroyed. 
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Figure 9.5  Typical characteristic of current gain as a function of temperature 
with a fixed base current.

9.2 Passive Biasing Circuits

A reliable biasing circuit is based on feedback where the collector current is
measured to control either the base-emitter voltage or the base current. To
measure the collector current we can put a resistor in series with either the
collector or the emitter. By doing so the voltage over the resistor will be a
measure of the current. This voltage can be fed back to the base and a few cir-
cuit solutions are shown in figure 9.6.

Figure 9.6  Various passive biasing circuits.

It is easy to realise how these circuits work qualitatively. Any increase in col-
lector current will be counteracted by a reduction in base-emitter voltage or
base current and consequently collector current. To realise how effective
these compensation techniques are some insight into feedback systems is
required. Basically, the suppression of an error, in this case the temperature
dependency of the collector current, is reduced roughly by an amount equal to
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the loop gain of the feedback system. This topic as well as other design con-
siderations will be dealt with below by investigating three design examples,
one for each circuit topology. The following specification is given:

• Wanted collector current: 
• Wanted collector-emitter voltage: 
• Available supply voltage: 
• Transistor DC current gain: 

Example 9.1 Current Driven Biasing I

Since both the supply voltage and the collector voltage is specified
the voltage across  is also fixed. If the base current is negligible
(which is true in this case since the current gain is high) the current
through  is equal to the collector current. Thus, there is only one
possible value for , namely

The voltage across the second resistor between the collector and the
base is also fairly well defined. The collector voltage is 3V and we
can assume that the voltage at the base is in the neighbourhood of
0.7V or so. To be able to determine the resistor value we need an
estimate of the current, the base current to be precise. The base cur-
rent is given by . Unfortunately, the current gain varies
from device to device from 100 to 140 as specified above. If we
assume a current gain of 100,  becomes

If the current gain is 140 instead of 100,  will be 40% larger. If
we design  with the “wrong” current gain it can be viewed as an
error in collector current just like the effect of temperature. The
feedback circuit will compensate for this error just like any other
error in collector current.
To investigate the dependency of temperature on collector current
and collector voltage we should write the large-signal relationships
for these quantities. But before we do that we should investigate
whether this configuration is base current driven or base-emitter
voltage driven. When the collector current varies the collector volt-
age will vary accordingly due to  whereas the base-emitter volt-
age will be more or less constant, i.e., in the neighbourhood of 0.7V.
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VCC 12V=
β0 100 to 140=
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IB
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VCE 3V=

Figure 9.7  Simple passive biasing
of BJT using shunt feedback.
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Thus,  acts as a voltage-to-current converter because the current
through , i.e. the base current, will vary proportionally to the col-
lector voltage. We conclude that this is a base current driven config-
uration.
The collector voltage is given by  and the base
current is given by  Combined, we
get an expression for the collector voltage as a function of the cur-
rent gain that is dependent on temperature,

or as an explicit expression for the collector voltage,

An initiated reader will identify this as a typical expression for feed-
back systems where we find the loop gain to be equal to .
To be useful, the loop gain has to be large but at the same time we
know from the discussion above that we do not really have any free-
dom in choosing arbitrary values on ,  and . They are all
tightly connected to each other once the collector voltage, collector
current, supply voltage and current gain have been determined.
Anyway, in this example the loop gain becomes

Thus, the improvement in operating point stability should be in this
range. Below, the collector current is plotted as a function of tem-
perature based on the expression for collector voltage above and the
temperature dependency on the current gain in figure 9.5. Also, the
collector current influenced by temperature through  but without
feedback is shown for comparison. It can be seen that the improve-
ment is close to the loop gain. We also note a small discrepancy
from the anticipated collector current at . Is is mainly
due to the fact that we have neglected the base current through 
and that we have assumed 0.7V base-emitter voltage.
The loop gain can be derived by inspection of the circuit schematic.
Assume that we have an error in the collector current, . This is
transformed into a voltage by ,  (we assume
that  is much smaller than ). Now,  more or less acts as a
voltage-to-current converter so the collector voltage  is trans-
formed into a base current,  and finally the base
current is amplified with the current gain,  in the transistor. Thus,
all together the loop gain becomes . Note that the loop
gain becomes higher for higher temperatures since  increases
with temperature.
This design was based on a specific current gain, . How-
ever, anything between 100 and 140 could be expected according to
the specification. The effect of having a current gain of 140 instead
of 100 is equivalent to the effect if the temperature would alter the
current gain with the same amount. Thus, we can consult figure 9.5
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where we see that at  the current gain happens to be around
140. The actual collector current with feedback at this temperature
is around 1.06mA. Without feedback the collector current would
become 1.4mA. Thus, if the current gain would be equal to 140 at

 instead of 100 the collector current would be around
1.06mA. Obviously, the optimal value for  should be calculated
from a current gain in the middle of the two extremes. In this exam-
ple 120 would be a good choice.
We conclude that we do not have much freedom in choosing the
resistor values for the two-resistor biasing circuit. Both  and 
are fully determined by four parameters; the supply voltage, the col-
lector voltage, the collector current and the current gain. If higher
loop gain is required at least one of these quantities must be altered.
For example, we could increase  or reduce 

Example 9.2 Current Driven Biasing II
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The first topology relied on a given current gain and thus a base cur-
rent that produced a desired voltage drop from the collector to the
base. Clearly, such a solution quite strongly depends on the current
gain. This problem is solved with this topology that has a voltage
divider from collector to base. The current through the voltage
divider must be much larger than the base current so as to not intro-
duce any influence from a poorly defined current gain. The base
resistor has the same function as in the previous circuit, i.e., to act
as an voltage-to-current converter. There is an option to leave it out
completely in which case we can consider the transistor to be base-
emitter voltage driven rather than base current driven. This of
course requires that the base does not load the voltage divider sig-
nificantly.
To determine the collector resistor  we must consider the influ-
ence of the voltage divider,  and .The voltage divider cur-
rent cannot be arbitrarily small because it has to supply a base
current that in turn must not load the voltage divider. This means
that there is a limited headroom for choosing the current in the volt-
age divider. A practical approach to the problem is to partition the
current gain of the transistor as  and .
So, if  is 100 then  and .
Now we can determine the value for , namely

To determine  and  we must know the desired value . If
it is chosen to be close to  the circuit will collapse to a circuit
similar to the first biasing circuit. On the other hand if  is chosen
to be very close to the base-emitter voltage the transistor will be
voltage driven instead of current driven. Thus, to gain anything
from this solution we should chose a voltage over  that is much
less than  but not to close to . It is out of the scope to
investigate what is optimal in detail. Instead, as a rule of thumb it is
appropriate to let  become 10% to 20% of  but not less than
2 . In this design example the latter limit applies and thus we
should chose . So, now we know everything to deter-
mine ,  and :

The first biasing circuit was considered as a purely base current
driven solution. The objective of the current circuit is also to have it
base current driven but since the voltage over  so small we can-
not consider this design as purely current driven, i.e., we must be
more careful in our assumption about the circuit. Therefore, to be
accurate we should include equation (9.1) and take into account the
temperature dependency of ,  and . The analysis becomes
quite tedious and we leave it out for the sake of clarity and only
present the results, see figure 9.10. 
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By inspection we find that the loop gain is equal to

where we have assumed that  and . Using the num-
bers in this exercise the loop gain becomes 5.84, i.e., somewhat
higher than for the first biasing solution. Even though the loop gain
is higher the result does not differ much from the first circuit. It can
be proven that the circuit cannot be considered as purely current
driven and thus there will be a major influence of  and  which
will degrade the performance. Instead, the main advantage with this
biasing circuit is that is gives lower resistor values which makes it
suitable for thin- and thick-film implementation. 
The reader is encouraged to investigate this circuit as a voltage
driven configuration with  short-circuited.

Example 9.3 Voltage Driven Biasing

The third topology, shown below, is a classical configuration that is
very popular in low-frequency applications. As far as microwave
applications is concerned, is it appropriate with a warning. For
higher frequencies this circuit have stability problems. The emitter
resistor is always bypassed for higher frequencies using a capacitor
from emitter to ground to avoid waste of gain (these issues will be
discussed in section 9.5). This approach introduces a parasitic
inductor in series with the emitter that may have a serious impact on
stability properties. Otherwise, as we will see, as a biasing circuit it
is excellent.
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In low-frequency applications the collector resistor  affects the
voltage gain of the amplifier. As far as biasing is concerned it is not
needed at all, it has no influence on sensitivity in the biasing circuit.
The collector could just as well be connected directly to the supply
voltage. This is exactly what we can do for high frequency applica-
tions because the collector can be isolated, at high frequencies, from
the power supply line using for example an inductor (see section
9.5). So, from now on we choose

.
The purpose of the voltage divider.  and , is to provide a
well defined voltage for the transistor base. There is only one
important design criteria related to the voltage divider - . We
conclude that the transistor is base-emitter voltage driven in this
configuration.
Finally, we have the emitter resistor, , which happens to be the
key component in this circuit. The emitter resistor provides current-
to-voltage feedback. The collector current is converted to a voltage
and fed back to the base-emitter. The loop gain is simply given by

.
Since  we have 

For simplicity we choose  and thus

The temperature sensitivity of this circuit is shown in the plot
below. Again, we do not present the analysis for the sake of clarity.
The transistor has been assumed to be purely voltage driven and
therefore the temperature dependency of ,  and  has been
taken into account.
It is clear from the plot that this circuit provides the best biasing sta-
bility even though it is voltage driven which means that this result
should be compared with figure 9.3. Evidently, the loop gain is very
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high; . There is an offset from the 1mA that was antici-
pated for . The cause is that we assumed 0.7V base-
emitter voltage which is not the actual value. 

Below, we summarise the properties of the three different biasing schemes.
Properties of current driven biasing I

• Moderate bias stability
• Sensitive to variations in current gain
• Requires high resistor values, not good for

thin- and thick-film implementation
• Loop gain given by 
• High loop gain obtained if  large

Properties of current driven biasing II
• Moderate bias stability
• Less sensitive to current gain compared with

first scheme
• Not purely current driven
• Does not require high resistor values

• Loop gain given by 

• High loop gain obtained if  large
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Properties of voltage driven biasing
• Excellent bias stability
• Not sensitive to current gain
• Loop gain given by 
•  can be replaced with an RFC, see section 9.5
• Not suitable for higher frequencies, say in the

GHz-range due to stability problems

9.3 Active Biasing Circuits

In cases where passive biasing networks does not give the desired accuracy it
is possible to increase the loop gain with an amplifier in the feedback path
and thereby reduce the errors even further.
There are two principles for active biasing - with direct and indirect feedback
of some quantity related to the operating point. Direct feedback is equivalent
to the passive solutions above where the collector current is measured by
means of a component in series with the current whereas indirect feedback
means estimating the operating point from other measures like the tempera-
ture of the device.
A simple design for active biasing with direct feedback is shown in figure
9.13. This circuit also has a resistor in series with the collector as was the
case for the passive biasing circuits described above. However, a PNP-tran-
sistor (T2) has been added to act as a current follower (common-base stage)
which provides a low input impedance at the emitter (T2), Note that the base
voltage of T2 is assumed to be constant and thus the emitter voltage will be
fairly constant. Consequently, since the collector resistor for the device to be
biased (T1) is shared with the biasing-device (T2) an increase in collector
current in T1 will result in an equal decrease in current in T2 and vice versa.
The output of T2 directly drives the base of T1 with a current. Thus, a collec-
tor current error in T1 will be fed back directly to the base of T1 but with
opposite sign. We could let the complete collector current of T2 drive the
base of T1. However, this base current is fairly small, and if a larger current is
desired through T2 a collector resistor, , must be inserted to sink that cur-
rent, see figure 9.13. Although, this is not advantageous in terms of biasing
stability since  will have a lower resistance than the base of T1 which
means that the T1 will be voltage driven rather than current driven.
We will investigate the performance of this circuit by considering an example
with the same specification as for the examples based on passive biasing cir-
cuits, namely

• Wanted collector current: 
• Wanted collector-emitter voltage: 
• Available supply voltage: 
• Transistor DC current gain: 
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Example 9.4 Design of Active Biasing Circuit

Determine resistor values for the circuit below and investigate the
performance in terms of temperature sensitivity of the collector cur-
rent in T1 Consider two cases. First, without  to have T1 purely
current driven. Secondly,  chosen such that the collector current
for T2 is 10 times the base current of T1, . 

Begin by considering the first case where there is no . Also, for
simplicity assume 1mA in the voltage divider that provides current
to the base of T2. The resistor values can be calculated directly.
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Figure 9.13  Active biasing using a PNP-transistor.
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A plot with collector current in T1 versus temperature is shown
below. The temperature dependency in T2 has also been taken into
account.

The biasing stability is better than the passive biasing circuits that
are based on a base current driven transistor. In this configuration
the loop gain is roughly equal to the current gain of T1. However, it
is on par with the passive biasing circuit based on a voltage driven
base-emitter. The main disadvantage with the latter one is the RC
circuit between the emitter and ground which may cause instability.
This problem is not present in this active biasing scheme.
The second case meant that we should allow for a collector current
in the feedback transistor T2 that was 10 times larger than the base
current of T1. Thus, we need  to sink this current. The reader
might suspect that the performance will be degraded because a large
part of the current that was previously fed to T1 directly will now go
through  instead and result in a voltage over . In other
words, T1 will not be purely current driven any more. We will con-
tinue by calculating the resistor values and finally the collector cur-
rent versus temperature will be plotted for this case.
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 and  will be the same as in the first case.The plot is shown
below and a degradation in performance is clearly seen.

In the very beginning of this section two concepts for active biasing was
introduced. The second one, indirect feedback, is based on that a quantity not
directly related to the operating point is measured to obtain an estimate.
The main advantage with this approach is that we do not need a resistor in
series with the transistor collector or emitter. This feature is good for power
amplifiers in particular where unnecessary power dissipation cannot be toler-
ated due to limited supply voltage, limited power consumption or due to heat-
ing problems.
One practical solution is to have a sensing device such as a diode or a transis-
tor with good thermal coupling to the transistor to be biased. Figure 9.17
illustrates a simple solution which basically resembles a current mirror. A
fixed current, , is forced into the diode and thus as the temperature is
changing the voltage over diode will change rather than the current (with
roughly ). The same voltage appears over the base-emitter of the
transistor device which then “mirrors” the current  to the collector current

 with some scaling factor. The scaling factor, or the ratio between these
two currents is determined by individual parameters for each device but also
the difference in the voltages  and . This is also where the problems
with this technique manifests themselves. If the transistor and the sensing
device are not matched each amplifier must be trimmed separately to obtain a
certain operating point (ratio between  and ). Moreover, they will not
track over a wider temperature range because of different temperature coeffi-
cients. If both components are matched or even better, being part of the same
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chip die, the sensing device will track the biased transistor for all tempera-
tures with a good matching, i.e., the relation between the currents in the two
components will be fixed and well defined. If the diode is implemented with a
diode coupled transistor of the same type as the main device the /  ratio
will roughly be equal to 1. As a first order approximation the /  ratio will
equal to the ratio between the saturation currents for each device. Reference
diodes are built into some RF power transistor for the purpose of biasing.
If  is made small compared with  in the circuit shown in figure 9.17 by
having a scaled down version of the main device as sensing device the base
current of the main device must be taken into account in the calculations or
other circuit solutions should be considered to avoid the dependency on the
base current.

Figure 9.17  Simple circuit example with thermal feedback biasing
(current mirror).

9.4 Biasing of Field Effect Transistors

The temperature sensitivity of FET devices is fairly small compared with
BJTs. For that reason, FET-based amplifier may not need a feedback-based
biasing to maintain the operating point because of temperature drift. Further-
more, whereas the BJT can be considered both as voltage and current driven
FETs are solely voltage driven which simplifies the discussion.
For the biasing circuits that have been discussed above we rely more or less
on the fact that the base-emitter voltage is almost constant for a fixed operat-
ing point. The temperature coefficient is only some  and the varia-
tion from one transistor to another is also small. The FET, however, has a very
inaccurate threshold voltage. The spread in threshold voltage may very well
be specified as a max-min range from, say, 1V to 3V.
The passive biasing circuits presented in figure 9.6 are not as attractive for
FETs as for BJTs. Some FETs simply cannot be biased similar to BJTs since
the operating point might require for example a negative gate-source voltage.
Bipolar voltage supplies might be required. The large inaccuracy in threshold
voltage also makes it more difficult to use the passive structures. We will
illustrate that by assuming a FET that operates with a positive gate-source
voltage. The first passive circuit, see figure 9.6a, is considered to be current
driven for BJT devices. For a FET device the gate will have the same poten-
tial as the drain. It can be shown that if the loop gain is high the drain current
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will still vary in proportion to  where  is the supply
voltage connected to the drain resistor,  the drain voltage and  the
maximum expected deviation from a nominal threshold voltage . Thus,
to guarantee an accurate biasing point the voltage across the drain resistor
must be much larger than the variation in . The second passive topology,
shown in figure 9.6b, has a voltage divider that introduces an offsets between
the drain and the gate. This adds another degree of freedom but also reduces
the biasing loop gain. Finally, the last passive topology is based on series
feedback with a resistor between source and ground. Again the spread in 
must be much smaller than the voltage across the resistor. One advantage with
this scheme is that it can be configured for a negative gate-source voltage.
The active biasing network described for the BJT is very useful for FET
devices, see figure 9.18. It is flexible and, for example, can be configured to
provide a negative gate-source voltage. The collector resistor, , was found
to degrade the performance when biasing BJTs (see example 9.4). This is not
the case for FETs that are purely voltage driven. A large  will result in a
large loop gain.

In practice it is important to take actions to prevent transient burn-out of the
FET as the circuit is turned on. For example, the Schottky junction in a MES-
FET must not be momentarily forward-biased. This is solved either by having
separate supplies for the gate and the main supply that are turned on in an
appropriate sequence or by having different time constants associated with
each pin.

9.5 Isolating Bias Design from Signal Design

So far we have only considered the biasing circuitry by itself. The problem is
that we do not want it to affect the signal design that was dealt with in previ-
ous chapters. This section deals with various solutions to isolate the bias
design from the signal design.
Obviously, we want a low-impedance DC path from the biasing circuit to the
device. At the same time this path should isolate the device from the biasing
circuitry at high frequencies. In this context we usually refer to a radio-fre-
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quency-choke (RFC) that complies with our requirements. The RFC can be
implemented in many ways. In figure 9.19 it is shown how it is used to isolate
the signal design from the bias design using a passive biasing circuit. The
schematic symbols indicate that the RFC is an inductive element which is one
way of providing a high impedance path at high frequencies. In addition to
the RFC a low impedance path to ground is sometimes required to prevent
high frequencies from propagating through the biasing circuitry and into
other parts in an electronic system. This is also shown in figure 9.19 where
the capacitors ground the nodes between the RFCs and the biasing circuitry.

Figure 9.19  Passive biasing with RFCs.

At lower frequencies, say up to 100MHz, the RFCs can be realised with coils
with ferrite cores. At higher frequencies, say to 1GHz or so, coils with air
cores should be used. A coil, not matter how it is realised behaves like a par-
allel LC circuit due to distributed capacitance between turns. Thus, a coil
exhibits a self-resonance frequency above which its impedance is capacitive.
Consequently, an RFC coil must be designed such that the frequency of oper-
ation is below the self-resonance frequency. 
A parallel LC circuit that is used to tune an amplifier will also be a good RFC
even though the reactance of the inductive element does not provide suffi-
ciently high impedance by itself. The impedance of the complete resonance
circuit is typically very high (equal to the equivalent parallel resistance) close
to the resonance frequency. 
Transmission lines should be used in the GHz-range. Transmission lines can
provide high impedances over a limited frequency band similar to a reso-
nance circuit as has been demonstrated in earlier chapters. The most common
method is to connect a biasing node to the desired terminal of a device
through a  transmission line, see figure 9.20. In this case it is particularly
important that this node is properly signal-grounded with a capacitor or the
transmission line will not transform this to a high impedance. Typically, the
characteristic impedance for these transmission lines are chosen much higher
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than the rest of the system so as to transform the signal ground to a very high
impedance. An alternative is to exploit existing stub lines that should be con-
nected to ground anyway.

Figure 9.20  Passive biasing with transmission lines acting as RFCs
(not to scale).

The grounding capacitor that was mentioned above should typically have
values in the nF range to ensure stable operation over a wide range of fre-
quencies. However, capacitors of this size may have large parasitics and a low
resonance frequency. For this reason smaller capacitors in the pF-range (typi-
cally ceramic capacitors) are good and a necessary complement to the larger
capacitors.
If the frequency of operation is some ten GHz or so the effect of parasitics in
the grounding capacitors will have a large influence and implementing the
capacitors directly on the printed circuit board might prove to be a more feasi-
ble solution. In figure 9.21, an example of such a solution is given that
besides the PCB-capacitor also utilise a rat-race-like ring structure to improve
the isolation even further.

Figure 9.21  Biasing isolation without lumped circuit elements for isolation.

RCRB1

RB3

RB2

VCC

signal out

signal in

RC

C1

C2

λ 4⁄

λ 4⁄
Z0  large

Z0  large

RB1

RB3

RB2

VCC

signal out

signal in

RC

λ 4⁄

λ 4⁄
λ 4⁄

λ 4⁄

3λ 4⁄
3λ 4⁄



9.6 References

229

9.6 References

[1] P. R. Gray and R. G. Meyer, Analysis and design of analog integrated
circuits, 3rd edition, John Wiley & Sons, 1993.

[2] G. Massobrio and P. Antognetti, Semiconductor device modelling with
Spice, 2nd edition, McGraw-Hill, 1993.



Chapter 9 Transistor Biasing

230



231

Chapter 10

Oscillators

10.1 Black’s Feedback Model

To be able to analyse the oscillating conditions Black’s feedback model is
used. Here the oscillator is split into two blocks. One amplifier which is con-
sidered to be wideband and one feedback network that is usually frequency
selective. 

Figure 10.1  Black feedback model for oscillator.

The transfer function for the amplifier with feedback can be calculated using
equation (10.1) 

(10.1)

One may observe that the denominator becomes zero if the demands in equa-
tions (10.2) and (10.3) are met. The feedback gain  then becomes infinite.
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These equations are called the Barkhausen oscillation criteria. Assume that
the loop is opened between the feedback output and the amplifier input and a
voltage source is connected to the amplifier input. Each time the signal passes
through the loop it is amplified with a factor A and decreased with a factor 
before returning to the insertion point. If the former demands are met this
implies that the output of the feedback network will be identical according to
phase and amplitude. The feedback output can be connected to the amplifier
input and the signal source can be removed. The system will be self-generat-
ing and we will perform continuous oscillation. 
This would imply that as soon as we want to start an oscillator we need to
connect a signal source? Well, literarily speaking yes and that is why a real
oscillator is designed with a loop gain  larger than unity. The presence
of noise at the amplifier input will excite the loop and cause a forever grow-
ing signal at the frequency where the oscillation demands are met. The signal
will continue to grow until something in the loop is limiting. Often this is the
amplifier that has a voltage or current supply that limits the magnitude of the
amplifier output signal. Note that the Barkhausen criteria do not say anything
about the magnitude of the oscillator signal, the equations only establish
when oscillation is possible based on phase and gain. 

10.2 Oscillator Analysis

The oscillator can be modelled as in figure 10.2 with the amplifier having
high input and output impedance, i.e. a voltage controlled current generator.

Figure 10.2  A basic model of an oscillator with reactive feedback.

From the amplifier input node to ground a reactance  is connected along
with  from output to ground and  from output to input. The Barkhausen
criteria can now be translated into the following criteria derived from Appen-
dix A

(10.4)
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Equation (10.4) can be interpreted as that there must exist reactance of oppo-
site signs, one can not make an oscillator using solely capacitors or inductors.
Equation (10.5) is the voltage division from amplifier output back to its input.
Combining this with the first equation yields the final result. Here it is also
established that A must have the same sign as . If  and  are reactances
of the same type then an inverting amplifier must be used to ensure oscilla-
tion.

Figure 10.3  Oscillator configurations: (a) Colpitt (b) Hartley (c) Clapp.

There are some standard types of oscillators depending on how the feedback
is arranged. One of the most common oscillator arrangements found is the
Colpitts oscillator with its feedback path through a capacitive voltage divider,
see figure 10.3.a. The feedback can also be through a inductive tap as in fig-
ure 10.3.b. This configuration is called a Hartley oscillator. The third circuit is
a Clapp oscillator and looks at a first glance much like the Colpitts oscillator.
The difference is that there is a small capacitor in series with the inductor.
This has two benefits. First, the inductive branch can be connected to any DC
voltage without affecting the quiescent point. Secondly, by making the series
capacitor much smaller than  and , say ten times, the influence from

 and  in equation (10.4) will be very small. Thus it is easy to make a
tuneable oscillator with a large frequency range using the Clapp configura-
tion.
In schematics from real life we do often not find oscillators as well structured
and consistent as the previous examples. In figure 10.4, parts of an oscillator
found in a commercial home stereo receiver is depicted.

Figure 10.4  Local oscillator for home stereo FM receiver.
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We start by analysing the configuration of the amplifier. Since one of the
capacitors, , is much larger than the others, it is likely to assume that it is
an AC short-circuit and not directly crucial in determining the frequency
selective feedback. The resistors  form the bias network. It would be
possible to place a bypass capacitor between the collector and ground but
then the AC feedback would be lost for the amplifier. This leaves us with
some options on amplifier configuration. 

From table 10.1 a very helpful conclusion regarding oscillator amplifiers can
be drawn: the collector is never the amplifier input and the base is never
the output. There might be other odd networks configured that way but then
they are not amplifiers.
Analysing the circuit of figure 10.4, one can see that the amplifier configura-
tion is common collector with input on the base and output on the emitter. For
a common collector amplifier, A is positive and the reactances  and 
must therefore be of opposite sign. We find that  is the capacitor  and

 is the capacitor , This means that  must be an inductance and in this
case it is not a single component but a full network consisting of  and

. Observe the two tuning capacitors where one is to set the frequency
offset and the other one (dashed) is the one connected to the frequency dial on
the receiver front panel. The equivalent reactance is

(10.6)

By choosing  and  properly the second denominator becomes small
and a very large tuning range of the inductive part can be achieved even
though  varies only a couple of pF. This fits the application well since the
FM band is fairly wide (usually about 20MHz). The capacitor  is small to
reduce the effects from pulling, i.e. frequency variations due to the load from
the following stage. Thereby it has very little impact on the frequency of the
oscillator.

Table 10.1  Amplifier configurations.

Type Input Output

Common Emitter (CE) base collector

Common Base (CB) emitter collector

Common Collector (CC) base emitter
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Example 10.1 Oscillator analysis

What kind of reactance is  and what is its value if the oscillator
is supposed to run at 300 MHz? (bias network omitted)

Since the transistor is connected in a CC configuration we know that it is a
non-inverting amplifier with voltage gain approximately 1. With the input on
the base and the output on the emitter  will be the coil reactance and 
the capacitor. 

For  to be positive, X must be either an inductance, or a capacitance with
. If  is chosen to be an inductance we will have  smaller than one

and oscillation is thereby impossible. Equation (10.4) gives that the sum of all
 must be zero at the given frequency. The reactance and thus component

value can then be calculated as 

10.3 Oscillator Noise

According to the previous analysis we would expect the signal from the oscil-
lator to be a peak at a certain frequency (and perhaps harmonics of this) when
viewed by a spectrum analyser. If the span is low enough combined with high
resolution we will however see a peak with increased noise levels close to the
peak, see figure 10.5.
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Figure 10.5  Oscillator noise density versus frequency, .

These “skirts” are called phase noise and can be regarded as the oscillator jit-
tering somewhat in phase. Since it is mainly white noise that causes the phase
jittering we will not see any peaks in the side bands, merely a degrading noise
level the further we move away from the peak. Assume that we have a noisy
amplifier with noise figure F as active element in the oscillator according to
figure 10.6. 

Figure 10.6  Noise model of oscillator.

The circuit can be seen as a wideband amplifier with a frequency selective
feedback network providing positive feedback. The gain of the amplifier with
feedback is, as derived previously but with  frequency dependent
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If  is chosen to be 10 and  shows bandpass characteristics with a maxi-
mum of 0.1 making the loop gain exactly unity at , we will obtain oscilla-
tion. If we observe  close to, but not exactly at,  there is a decrease in 
to for example 0.09. At this point the feedback gain will be 
which is larger than the open loop gain . This further implies that any noise
that is present at the amplifier input will be heavily amplified as we approach

 and thus causing the behaviour observed in figure 10.5. Assuming that the
feedback circuit is a first order resonator with resonant frequency  and Q
being the loaded Q-value of the resonator, the spectrum can be calculated
[3][4] to be according to figure 10.7 where G and F are the amplifier power
gain and noise figure,  is the centre frequency and  is the output
power of the oscillator. The noise far away from the centre frequency is the
same as for an amplifier with no feedback

(10.10)

At the corner frequency  the feedback becomes significant and an increase
of noise density with 6dB per octave can be observed. The noise density is
now 

(10.11)

The parameter  is included to limit the output power. The integral of the
noise density will thus have a power equal to .

(10.12)

This is the full noise spectrum consisting of both AM and PM noise. If the
oscillator signal is limited, the AM noise is suppressed and only the PM noise
becomes relevant. This results in a 3 dB decrease of the noise. If the oscillator
signal is down converted to DC as in demodulation, we will have a folding of
the noise spectrum around DC resulting in a 3dB increase. One differs
between these by referring to the noise as single sideband or dual sideband
noise power.
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Figure 10.7  Single sideband noise spectrum of oscillator with first order 
bandpass feedback.

It should be carefully noted that the noise level beside the centre frequency is
not determined by the oscillator power. By increasing the available power to
the amplifier in the circuit, we get a higher  for the oscillator
To minimize phase noise there are several possibilities

• Increase the Q value of the resonator.
• Use an amplifier with low noise figure.
• Have the oscillator running at high output power.
• Keep amplifier gain as low as possible.

The first and last point are somewhat incompatible since a resonator with
high Q often implies high loss and thereby a need for higher gain to keep loop
gain at or above unity. On the other hand, since the noise is proportional to

, there is still a merit in increasing  despite the fact that gain has to be
increased. Observe that increasing Q only lowers the noise close to the centre
frequency. Further away the feedback is negligible and the output noise is
equal to that of the amplifier itself. 
Using the equations in figure 10.7, the 3dB bandwidth can be calculated. This
is not the same as the feedback network bandwidth even though they are
related through the equations
The 3dB break point occurs when , this will yield a bandwidth equal-
ling . For a 1mW 900MHz oscillator with a Q of the
feedback network equalling 30 and an amplifier noise figure of 4 (or 6dB) the
3dB bandwidth will be 7.3 mHz and that is milli Hertz, not Mega Hertz. This
corresponds to a Q value of , a multiplication of  due to
the positive feedback.

Example 10.2

What is the adjacent channel selectivity (25 kHz channel separa-
tion, 16kHz bandwidth) if one has an 900 MHz oscillator with the
following parameters
G=10dB, F=3dB, =10dBm, Q=30
Solution:
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Since  the influence from  can be neglected. Using
equations from figure 10.7 one gets 

and the noise will be on the 6dB slope.
The oscillator noise power in the adjacent channel bandwidth will
be 

Assuming multiplicity in the mixer, i.e. the wanted signal (C for
carrier) is multiplied with the oscillator and the interferer (I) in the
adjacent channel with the oscillator noise, the selectivity becomes

if a signal-interferer ratio of 1 is accepted at the mixer output. This
is not very good and can be blamed on the low Q value of the reso-
nator. In case one has to improve the adjacent channel selectivity
one should first try to replace the resonator. Observe that the adja-
cent channel selectivity is not dependent on how the IF filter sup-
presses the adjacent channel since this is mixed with the noise to the
centre frequency of the IF filter. This phenomenon is called recipro-
cal mixing.

To make a more thorough and exact analysis of the phase noise, the 
noise of the amplifier should also be considered. This is however mostly a
problem when the oscillator signal is demodulated and for very low baseband
frequencies. In case such an analysis is still needed can it be found in [1]

10.4 Oscillator Design

The nonlinear behaviour of the oscillator due to compression in the amplifier
makes it very hard to design for a certain output power without using simula-
tion tools like HP-MDS by Hewlett-Packard or JOmega by EESof. Because
of this it is not covered in this chapter. Designing to meet frequency and
oscillation conditions is however feasible with relatively straightforward
methods.
The first step towards a functioning oscillator is to see that the Barkhausen
criteria are met, i.e. determine either a feasible  or  and thereby getting
the other from equation (10.3). 
For a fixed feedback factor , there will always be a corresponding gain, i. e.
output power that maintains a stable oscillation amplitude. In figure 10.8 the
output power for an amplifier is plotted versus the input power for the funda-
mental, second order and third order harmonic. Observe that since the scales
in the intercept diagram are in dB relating to power instead of amplitude, so
are also references to gain  and feedback .
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(10.13)

Figure 10.8  Intercept diagram of amplifier with 15 dB gain.

Depending on the feedback factor there will be a  with a
 corresponding to . In case the loop gain is larger

than unity the oscillator signal amplitude will increase up to a point where the
relation between  and  is exactly . If, for some reason like tem-
perature variations, the feedback factor is changed, the output signal will
change as well until the Barkhausen criteria again are met. Another point that
should be noted is the magnitude of the harmonics. Suppose we have
designed an oscillator with a  and  i.e.
loop gain  equal 2.8. With a loop gain this high the output signal will
rise until the loop gain in some way is decreased. From the intercept chart one
can see that above  the fundamental tone deviates from the ideal line
due to compression. At  the output is not +15dB as
should be the case but  due to this compression of the amplifier. At
this point the harmonics are 12 and 21 dB below the wanted signal. If the
feedback factor is decrease to a more proper  the loop gain will
be  and the amplifier is less into compression. 
The bottom line is that the chart can be used to find where on the fundamental
curve that the dynamic gain times the feedback factor must always equal one.
At this point the level of the harmonics can be derived from the intercept
chart.
A reasonable question is now: why not design for a loop gain of unity? 
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By designing for a loop gain slightly more than unity, you run the risk that
component spread and variations in the surroundings (temperature, supply
voltage etc.) will yield an actual loop gain of less than unity and the oscillator
will never start. On the other hand, as previously stated, using too large loop
gain only causes lots of harmonics and unnecessary power consumption. As
an example, in a portable receiver as a mobile telephone, up to 20% of the
power consumed when the telephone is in receiving mode is due to the local
oscillator. Keeping the oscillator power low is therefore a crucial point in get-
ting long battery-time in the receiver. In some TDMA systems like GSM the
oscillator is shut down during the slots used by other receivers and started
again in time to receive the bits of the wanted slot properly.

10.5 Negative Resistance Oscillators

In microwave frequency applications the design procedure of an oscillator is
somewhat different. The task is still to calculate how the feedback should be
applied to ensure oscillation, but since many of the feedback paths are either
unknown or at least hard to specify at several GHz a different approach is
needed. From the amplifier theory we know that from the S-parameters a sta-
ble and instable region can be calculated both for the input and output of the
transistor. This implies that if we can place the source and load impedances in
this unstable region, we will have an oscillator. That much is true but the
problem still exist on how to determine the oscillating frequency and to
ensure that the oscillation is present even when the output is loaded resis-
tively.
If we for a short while return to the Colpitts oscillator with its feedback
through a capacitive tap, we can calculate the impedance on the collector
(where we will later replace the RFC for the actual coil but we leave that for
the time being).

Figure 10.9  Measuring output node impedance of the Colpitts oscillator.

For calculating the input impedance in a node there are several possibilities.
One can set up an equation system based on Kirchoffs voltage and current
laws and solve the system by brute force. Other methods are using the indefi-
nite admittance matrix (see Appendix A) or the superposition method [2]. The
input impedance can be calculated as in equation (10.14). The term  is the
admittance for the transistor parameters as used in chapter 6.4.2 and 
refers to the impedance between nodes 2 and 0.
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(10.14)

Multiplying with the conjugate of the denominator gives a real denominator
and a real part of the numerator equalling

(10.15)

If we assume that  and  is negligible (for the time being) this
equation reduces to 

(10.16)

We can have a negative real part of the output impedance of the circuit if the
component values are chosen properly. One can also see from equation
(10.15) that if  is large i.e. the load impedance is small on the output we
will instead get a positive real part and oscillation will be impossible. 
When calculating the imaginary part of the numerator one will find that it is
negative regardless of operating point or magnitude of the resistive load. 

(10.17)

This is accurate since we what is missing to make the oscillator complete is a
coil to tune out the negative imaginary part. It can be seen that the magnitude
of the reactance is dependent not only on the values of the capacitors but also
on the conductive terms ,  and  making the oscillator frequency
load sensitive.

10.5.1 Negative Resistance vs. Reflection Coefficient

A node having a negative resistance together with a reactance of arbitrary
sign can also be represented as a reflection coefficient with magnitude greater
than unity. That means that each reflected wave is larger than the incoming
wave and the node behaves as a generator. This representation of a system
able to perform oscillation is rather favourable at microwave frequencies
where each feedback element in the simplified oscillator model may be hard
to determine. By adding an element that cancels out the reactive part of the
negative impedance node at a certain frequency we will get oscillation at that
particular frequency.
The conditions for oscillation can be expressed in three equations
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(10.18)

(10.19)

(10.20)

Equation (10.18) says that the transistor must be potentially unstable to be
able to use in an oscillator, i. e. by putting a certain passive circuit on the
input and the output the transistor becomes unstable. The two equations
(10.19) and (10.20) are really different representations of the same phenome-
non since if the former is true so is also the latter and vice versa [5]. The
equations state that the reflection factor on the load and source must be cho-
sen so the input and output are resonated by their respective terminations and
the magnitude must equal one. If  it will cause an infinitely grow-
ing signal that in practice will be limited by the amplifier’s available power,
just as in the negative impedance case. If it is smaller than unity and or the
phase is not exactly zero, oscillation will not occur.
Equation (10.19) can also be written on impedance form

This is valid when the following relations apply

(10.21)

(10.22)

Example 10.3

The transistor NE856 has the following S parameters at an operating
point of , , .

Calculating the K and  value of the transistor at the specified
point gives 
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which renders the transistor being potentially unstable.
Plotting the output stability circle shows that due to the large K-
value, only a small part of the Smith chart is in the unstable region.
It will therefore be hard to transfer the load impedance, typically

, to the desired . In this case it is better to use the same tran-
sistor in a common base configuration. By transferring S parame-
ters to Y, calculate the Y-parameters for common base and return to
S parameters give

The K factor is now -1.02 and the output stability circle is now
completely inside the Smith chart and closer to the  point. This
implies that even a low  network will transfer the load to a point
where oscillation is possible

Figure 10.10  Output stability circles for common emitter and common base 
coupling of transistor NE856. 

Start by picking a feasible point inside the unstable area, for exam-
ple . This is translated into an impedance of

which can be realised by a load in series with a 16nH induct-
ance at the chosen frequency. Connecting this to the amplifier out-
put gives  which shows that oscillation is
possible since the magnitude is greater than unity. Left is now to
calculate the load impedance on the input, the emitter, of the ampli-
fier. Since the oscillator demand is  that further implies
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. It was stated earlier that the loop gain must be
larger than unity to ensure oscillation even with spread in compo-
nent values. To accomplish this, the input impedance must be calcu-
lated

Equations (10.21) and (10.22) can now be used to determine a
proper tuning network under the demands that  and

There is no need of including an additional resistance in the source
network. It is mentioned in literature [6] that choosing

 is suitable for a high success rate. In this example
the resistive part is omitted. For the reactive part

The final oscillator configuration will therefore look like this (with
bias network omitted).

Figure 10.11  AC equivalent of 1 GHz negative resistance oscillator.

10.6 Voltage Controlled Oscillator

As seen in the previous chapters, the oscillator resonant frequency is depend-
ent of the reactances in the surrounding network. By making either of these
voltage controlled one will get an oscillator with an output frequency propor-
tional to the control voltage, a voltage controlled oscillator (VCO). 
The most common procedure is to replace one of the capacitors with a volt-
age controlled capacitor, a varicap or varactor. By changing its value the fre-
quency that is changed to keep the reactance sum in equation (10.4) equal to
zero. One problem that might occur is that by changing the capacitance, the
demands for oscillation might not still be fulfilled and the signal disappears.
It is therefore crucial to have negative impedance/  on the tuning
node over the full tuning area. 
A popular oscillator configuration for VCO:s is the Clapp oscillator, figure
10.12. A varicap  is added to the capacitor  in series with the coil and
by the relation between  and  one can determine the sensitivity, the
number of “MHz/volt” of the VCO.
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Figure 10.12  Voltage controlled Clapp oscillator.

The varicap is a diode that is optimised to behave as a standard capacitor
when reverse biased. In this condition a depletion layer will occur between
the p and n layers of the diode. This layer will not permit any current flow and
can be regarded as a dielectric area between the two conducting p and n lay-
ers respectively. By this we will have a diode behaving like a capacitor. 

Figure 10.13  The varicap diode in forward and reversed bias.

When changing the reverse voltage on the varicap, the width of the depletion
layer changes and thereby the distance between the “capacitor plates”. 
The capacitance of the diode is calculated using equation (10.23) where the
variables are those used in the simulation software SPICE model of the diode.

 is the reverse bias voltage.  is the junction potential, usually around
0.8V.  is the zero bias junction capacitance and  is the grading coeffi-
cient (0.1-1.1, typical 0.5). All these parameters are often supplied with the
data sheets for each specific device.

(10.23)

With the oscillator having a resonance frequency of  the
sensitivity of the oscillator can be calculated as in equation (10.24). 
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If the oscillator is of Clapp type, the change in total capacitance can be
regarded as the same as the change in the varicap if the varicap value is cho-
sen much smaller than the other capacitors in the circuit. The sensitivity is
then as stated in equation (10.25) provided that 

(10.25)

This means that to get a sensitive oscillator the reverse voltage of the varicap
should be low. On the other hand, this will cause a nonlinear relation between
frequency and voltage. Again, it is the application and its demands that deter-
mines the choice.
The VCO can be regarded as a contradiction in itself. The first demand on an
oscillator is that it is frequency stable and is not influenced by changes in
load, temperature and supply voltage. These are wanted properties for the
VCO as well but with the addition that you want to be able to tune it over a
large bandwidth and have a short settling time when changing the frequency.
To combine all these features one usually has to place the VCO in a phase
locked loop (PLL) where a very stable reference frequency is used. The draw-
back of this method is that the frequency must be set in discrete steps.

10.7 Resonators

For many applications the accuracy and phase noise in a LC-oscillator is not
sufficient for the demands put on a local oscillator in modern radio applica-
tions. Often the capacitors are temperature sensitive and the coils have low Q-
values. The spread in component values can also be a major drawback of
these otherwise simple and cheap items.
The first attempt in enhancing the oscillator accuracy performance is to
replace the coil with some other high Q resonator arrangement. There are var-
ious resonators of different material that can be used depending on the fre-
quency range and if the oscillator must be tuneable, like a VCO.

10.7.1 Microstrip Resonators

A transmission line of the electrical length  with a short circuit termina-
tion can be modelled a a parallel resonant circuit with resonant frequency

. By making the resonator somewhat shorter we get a inductance
with very nice features like high Q-value where the strip inductance

.
Microstrip resonators are especially attractive when realising small induct-
ances with high Q value. Implementing an inductance as a microstrip strip on
a Teflon circuit board value will easily achieve Q-values>100. Realizing the
same inductance as a wound coil would give a Q value in the area of 10-15.
At high frequencies where the wavelength is short it is definitely worth mak-
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ing small inductances using a transmission line. In the chapter on transmis-
sion lines the actual design and implementation of microstrip resonators is
described in detail.
Since the field pattern in and around the strip is rather complex so will the
formulas be describing the electric properties of the strip. For many of the
structures there are special cases where certain approximations may be used
and one soon ends up with a huge amount of equations, each with their own
application area. In recent years simulation programs like HP-MDS have
been completed with packages that calculate for example the microstrip
impedance from the physical dimensions of the board and strip. Using these
software that actually solves Maxwell’s equations for the strip is of course
convenient in that you can use very complex structures. It is though hard to
check the validity of the result by other means than implementation. Deter-
mining the parameters  and  for the conductor and dielectric is also
a difficult task. The manufacturer often provides figures but the spread can be
large between batches.

10.7.2 Coaxial Resonators

One major problem with the microstrip resonators is the radiation from the
strip. When putting the resonator in a shielded box the metal surrounding
change the electric field and thereby  and  for the strip. A better solu-
tion in then to use a structure where the ground plane covers the strip. It gives
a more homogenous field around the strip and radiation is minimised.

Figure 10.14  Coaxial cable with characteristic impedance.

A coaxial cable can be used in the same way as the microstrip, the difference
is that the dimensions are often fixed and one has to settle for a limited selec-
tion of . Calculating the Q-value is done in a similar way as for the micro-
strips. One should be careful and make sure that the resistances in both the
outer and inner conductor are included since these are regarded as finite
structures. The  equals  for a coaxial cable since the field runs fully in
the dielectric.
The coaxial resonator can also be a ceramic filled transmission line with a
reflecting termination. by using a ceramic dielectric material it is possible to
achieve high  and thereby a shorter physical length of the resonator. 
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The procedure for designing a coaxial resonator can in short be described as
• Determine the desired inductance and frequency
• Select a coaxial cable with low loss at the frequency with given .
• Use the Smith chart or  to determine . Observe

that the wavelength is the wavelength in the dielectric of the coaxial
cable.

10.7.3 Crystals

For many oscillator applications it is crucial to have a very exact frequency
reference. For a 900 MHz radio system with 25 kHz channel separation, a 25
ppm transmitter frequency error would result in transmission on the adjacent
channel. Such high precision is impossible to realise using a coil, coaxial
cable or microstrip along with a capacitance as resonator. One solution to
achieve better frequency accuracy as well as stability is to use a crystal as fre-
quency detemining element. A crystal is a piece of quartz that has been
ground to a certain shape that makes it resonant at a certain frequency. When
applying a signal to the quartz crystal the piezo electric effect causes a
mechanical movement of the crystal. The frequency response of the crystal is
modelled by a serial and parallel resonant circuit as in figures 10.15 and plot-
ted in figures 10.16.

Figure 10.15  10 MHz quartz crystal and its RLC equivalent.

The crystal has one series resonant and one parallel resonant frequency that
are very close together. In between is it inductive with an inductance value
that increases with frequency. This close-to-resonance-phenomenon is actu-
ally a benefit of the crystal.
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Figure 10.16  Impedance and reactance of a crystal. Series resonance is at fs 
and the parallel resonance at fp.

If we look at the Pierce crystal oscillator in figure 10.17 and compare that to
the general oscillator model from figure 10.2, we can see that the crystal must
behave like an inductance. If the temperature changes and along with that the
values of the capacitors this would in the LC-oscillator case cause a perma-
nent frequency drift. But here, if the frequency starts to drift upwards the
inductance value of the crystal will increase and reduce the frequency drift.
When the frequency change from 10MHz to 10.001 MHz the inductance
increase from  to . The oscillator will be “self adjusting”, though
a small frequency error will always be present if conditions are changed.

Figure 10.17  Pierce crystal oscillator.
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If this frequency accuracy is not enough it can be further enhanced:
• The crystal can be placed in an  oven to keep its operating tem-

perature constant. The reason for using this temperature is that crystals
cut in a certain way have minimum temperature sensitivity there.

• The oscillator can have a temperature dependent control system for a
varicap in the crystal oscillator. The varicap voltage is designed to
compensate for the crystals temperature drift.

• Crystals can be pre-aged. Over the first operating time the drift is usu-
ally rather large and by aging the crystal this can be avoided.

Even if it would be desirable, a crystal stamped 10 MHz is not exactly reso-
nant at that frequency. This is because the designer might want to use the
crystals in different oscillating modes and also be able to tune it to exactly
10MHz disregarding spread in the manufacturing.

(10.26)

(10.27)

The tuning is accomplished by adding a small capacitor, either in series to
increase  or in parallel to reduce , see figure 10.18. 

Figure 10.18  Tuning the crystal with an external capacitor.

This will not tune over a very large range and if the capacitors are improperly
chosen the total impedance will show low dependency of the crystal. An
appealing example is if one makes the shunting tunable capacitance too large,
this will result in a bypass of all high frequencies and in the worst case the
oscillator will not run. Even if it will run, it will not be crystal controlled if
the crystal impedance is high compared to the shunting capacitance imped-
ance at the desired frequency.

10.8 References

[1] G. D. Vendelin, Design of Amplifiers and Oscillators by the S-parame-
ter method, John Wiley & Sons Inc. 1982.

[2] J. Davidse, Analog Electronic Circuit Design, Prentice-Hall, 1991.

80°C

fs
1

2πLCs

-------------------- 10MHz<=

fp
1

2πL
CsCp

Cs Cp+
------------------

--------------------------------- 10MHz>=

fs fp



Chapter 10 Oscillators

252

[3] D.B. Leeson, “A simple model of feedback oscillator noise spectrum”, 
Proceedings of the IEEE, pp. 329-330, 1966.

[4] M.J. Underhill, “Fundamentals of oscillator performance”, Electronics
& Communication Engineering Journal, pp. 185-193, Aug. 1992.

[5] S. L. Liao, Microwave circuit analysis and Amplifier Design, Prentice-
Hall, 1987.

[6] G. Gonzales, Microwave Transistor Amplifiers analysis and design,
2nd edition, Prentice Hall, 1997.



253

Chapter 11

Directional Couplers 
and Ferrite Devices

The concept of travelling waves allows us to consider independent waves
travelling in opposite directions along a transmission line. Equally, a port of a
circuit can both receive and emit waves. This is not only useful in analysis
and design of high frequency circuits. Waves propagating in opposite direc-
tions can carry different information and it is clearly seen that circuits that
can couple or isolate waves between ports depending on the direction will be
very useful. Directional couplers constitute one class of such circuits to
which this chapter is mainly devoted. While coupling or distribution of waves
is one important application the circuits may also be used for combining. The
physical realisation to a large extent determines the suitability in this respect.
One basic configuration of a directional coupler is illustrated in figure 11.1
where two microstrip transmission lines are separated with a small slot.
Waves entering port 1 and 2 will be coupled differently to the other ports. The
length of the lines, the width of the slot, the substrate and the frequency deter-
mine the coupling properties.

Figure 11.1  Directional coupler.

Another and important class of circuits is the non-reciprocal ferrite devices.
Here a constant magnetic field is applied to the ferrite material which then
exhibit different permeabilities for oppositely rotating magnetic fields per-
pendicular to the constant magnetic field. This technique can for example be
used to implement devices that permits power flow in one direction only or a
circulator that can be said to act as a commutator for power. Such devices are
described briefly in the end of this chapter.

port 1

port 3

port 2

port 4
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11.1 Directional Couplers

All basic configurations of directional couplers are 4-port circuits. These are
reciprocal devices and they can be used both as power dividers and combin-
ers. A generic symbol as the one shown in figure 11.2 is used to describe the
properties of a 4-port coupler with power coupling and phase given for each
port relative to port 1, the input port.

Figure 11.2  Generic symbol for a 4-port power divider. Power coupling and
phase values are given as an example for an ideal quadrature hybrid (see sec-
tion 11.3.1).

The ports found in figure 11.2 are commonly denoted in the following way:
• port 1 - input port
• port 2 - direct port
• port 3 - coupled port
• port 4 - isolated port.

Here, port 2 is assumed to be the main output port to which most of the power
will be fed if we have unequal power division between ports 2 and 3. Theoret-
ically, the isolated port will not emanate any power at all. Although, in prac-
tice a small amount of power will go through this port as well. This leakage is
due to the non-ideal behaviour of real transmission line structures that origi-
nates from dispersive properties and structural mismatching. In connection
with this discussion it is suitable to define five important quantities in which a
coupler may be specified.

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)
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where  is the power fed to port 1,  is the power reflected back from the
input port and ,  and  are the output power levels from ports 2,3 and
4, respectively.
For an ideal coupler with equal power division we have ,

, ,  and . In practice the isolation will be in
the range from -20dB to -40dB. Another common term is insertion loss that is
the negated value of transmission (in dB).
Directional couplers can be divided into two groups; field-coupled couplers
and branch-line couplers. The former was briefly introduced in the beginning
of the chapter. The coupling effect is obtained through electromagnetic cou-
pling only between closely spaced structures. The latter relies on direct cou-
pling through distributed or lumped circuit elements.
Below a survey of different configurations is presented based both on distrib-
uted and lumped circuit elements. For a more detailed treatment there are
several comprehensive books in this area that include both analysis and
design equations. Two of these are [1] and [2] that mainly deal with distrib-
uted circuit solutions. For lumped circuit solutions refer to [3] or [4].

11.2 Field-Coupled Circuits

Two transmission lines that are brought close to each other will act as a cou-
pling device, see figure 11.3. The coupling factor can hardly reach those of
the branch-line couplers, say equal power division (-3dB), at least not without
special arrangements. Typical values are, say, -5 dB or lower. In figure 11.3 a
typical layout is exemplified with port numbers indicated as defined above. In
this example the length of the coupled lines are given to , which corre-
sponds to maximum coupling with all other parameters fixed.
This kind of device is useful for example in power measurements, SWR
measurements or non-uniform power combining/division. Some general
aspects can be outlined to introduce parameters and relations common for
coupled lines without going into details about realisation which will be indi-
vidual for different transmission line structures. A detailed treatment is out of
the scope for this text.

Figure 11.3  Example of layout for field-coupled circuit (directional coupler) 
and its phase and power relations.

P1 P1'
P2 P3 P4

T 3– dB=
C 3– dB= D 0= L 0= R 0=

λ 4⁄

port 1

port 3

port 2

port 4λ 4⁄

port 1

port 2

port 3

port 4

PIN

1 Cv
2–( )PIN

Cv
2PIN

0°

90°

0°



Chapter 11 Directional Couplers and Ferrite Devices

256

11.2.1 Coupling between Parallel Lines

To appreciate the function of coupled transmission lines it is a common pro-
cedure to investigate two modes of excitation, even-mode and odd-mode
excitation, see figure 11.4. The effect of coupling in the two excitation modes
can be modelled as different characteristic impedances of the line sections
under observation. This is readily understood if we consider the capacitive
coupling between the two lines. From earlier chapters we know that the
capacitance of a transmission line has a large influence on the characteristic
impedance.

Figure 11.4  (a) Parallel-coupled transmission lines with one input signal at 
port 1 (b) even-mode excitation (c) odd-mode excitation.

In even-mode excitation the voltage along the lines will be exactly the same
on both lines and thus there is no capacitive coupling between them. In odd-
mode excitation the voltages along the lines will be equal in amplitude but
with opposite signs and consequently a capacitive coupling will be observed.
Thus, we can define two characteristic impedances,  and  where sub-
script  and  denote the even-mode and odd-mode, respectively. Once 
and  are known it is possible to calculate the voltage coupling to other
ports as was done for the quadrature hybrid and apply superposition to find
the total contribution at the ports when a signal is fed to port 1 only. A deriva-
tion for the coupled transmission lines can be found in [1] and the result is
presented below.
For perfect matching, when a signal is fed to port 1, we require that

 and it can be shown that this condition is satisfied when
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(11.6)

As a matter of fact this relation holds for any length of the coupler. 
The voltage coupling from port 1 to the other ports are given by [5]:

(11.7)

(11.8)

(11.9)

where  is the maximum voltage coupling (from port 1 to port 3) which
occurs for  where  is an integer. It is worth noting that the
input signal is coupled to port 3 which emits a wave in the opposite direction
with reference to the input wave. For this reason it is common to refer to this
structure as a backward-wave coupler. The phase and the power relations are
shown in figure 11.5.

Figure 11.5  Phase and power relations for the backward-wave coupler.

It can be shown that the even-mode and the odd-mode characteristic imped-
ances are related to  such that

(11.10)

In other words  and  together with the length of the coupler com-
pletely determine the electrical properties of the coupler. However, in most
practical cases the length is typically chosen to be  ( ) at mid-
band for maximum coupling or flatness. 
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In summary, to design a backward-wave coupler we have to specify the mid-
band operating frequency, , the port impedance  and the coupling factor
at midband  (  dB). If the length is chosen to be  at mid-
band the even-mode and odd-mode characteristic impedances can be calcu-
lated from

(11.11)

(11.12)

and these are used as input parameters when realising the actual transmission
line structure either by consulting tabulated data as in [1] or by using a dedi-
cated software CAD-tool.

11.2.2 Lange Coupler

To increase the coupling factor beyond what it possible with the basic back-
ward-wave coupler Lange [7] proposed a method where several parallel lines
(4 or more) with alternating lines tied together with bonding wires as illus-
trated in figure 11.6. This technique can reach a -3dB coupling factor or less.
Therefore it can be used for example in balanced power amplifier designs
where the signals from different amplifier stages are combined. One advan-
tage with the Lange coupler over the branch-line couplers described below is
that it has no DC-coupling between ports 2 and 3. For example, if there are
different DC circuits connected to each port for, say transistor biasing, no
additional components will be required for DC isolation. Details on how to
design Lange couplers can be found in [8].

Figure 11.6  Example of Lange coupler structure (not to scale).

11.3 Branch-Line Couplers

To obtain tighter coupling and higher power handling capabilities the ports of
a coupler must be connected together with branches instead of relying solely
on electromagnetic coupling. A number of structures are described below and
these are suitable for power combining and dividing at high power levels.
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11.3.1 Quadrature Hybrid

The quadrature hybrid is a 4-port circuit and the basic structure is shown as a
microstrip layout in figure 11.7. It consists of four  lines, two with the
characteristic impedance  and two with . All ports are typically ter-
minated with . A functional-equivalent layout of the quadrature hybrid is
shown in figure 11.8 to demonstrate that these structures can be altered to suit
specific needs without significantly affecting the functionality.
The phase and power relations are shown in figure 11.9 with a signal fed to
port 1. The output signals appears at ports 2 and 3 in equal portions (-3dB
coupling factor). Port 4 is the isolated port. Since the circuit is reciprocal it is
also possible to feed signals with equal amplitude but with  phase differ-
ence to ports 2 and 3 and obtain a combined signal at port 1 but nothing in the
isolated port. On the other hand if the phase difference between the signals is

 instead the combined signal will appear in the isolated port. If two sig-
nals with equal amplitude are fed to ports 2 and 3 without any phase differ-
ence it is readily understood that due to symmetry the signals will propagate
through the circuit and appear in equal amounts and with equal phase shifts at
ports 1 and 4. Finally, if two uncorrelated signals are fed to ports 2 and 3 they
will be combined and appear in equal portions at ports 1 and 4. In all cases
the port impedances will be equal to  if all ports are terminated with .
In the case where a signal is fed to one port only, as described above, the iso-
lated port does not have to be terminated with  because no signal appears
on that port. Of course, this will no longer be true if there will be mismatch at
the output ports. Such a mismatch will result in reflected waves that must be
absorbed.

Figure 11.7  Microstrip layout of the quadrature hybrid (not to scale).

.

Figure 11.8  Alternative layout of the quadrature hybrid (not to scale).
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Figure 11.9  Phase and power relations for the quadrature hybrid.

The bandwidth of the quadrature hybrid is fixed but it can be extended with
more advanced layouts. Furthermore, non-symmetrical versions can also be
designed to obtain non-uniform power division with preserved port imped-
ances.
In example 11.1 below it is shown how these kind of circuits can be analysed
by exploiting the symmetry.

Example 11.1 Analysis of the quadrature hybrid

Consider the quadrature hybrid in figure 11.10. To analyse this cir-
cuit we will use superposition of two excitation modes that leads to
the case in figure 11.10. These modes are the even-symmetry-mode
where ports 1 and 4 are fed with equivalent sources and the odd-
symmetry-mode where ports 1 and 4 are fed using sources in anti-
phase, see figure 11.11.

Figure 11.10  Power division using a quadrature hybrid.

We start by defining the system characteristic admittance
 because admittances are more convenient in this case.

Because of the symmetry the quadrature hybrid can be considered
as two separate circuits, one between ports 1 and 2 and one between
ports 3 and 4. Furthermore, the branch lines between ports 1 and 4
and 2 and 3, respectively turn into stubs with a length of . For
the even-symmetry mode the stubs are open-circuited which means
that they will have a susceptance equal to . Similarly, for the
odd-symmetry mode the stubs are short-circuited and will have a
susceptance equal to .
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Now, superposition applies to currents and voltages so we need to
calculate the resulting voltages in each port or the current through
the terminating impedances. To do that we need to investigate how
currents and voltages are transformed from a source to load over a
transmission line. Consider the circuit in figure 11.12.

Figure 11.11  (a) even-symmetry-mode (b) odd-symmetry-mode.

Figure 11.12  Schematic to investigate transformation of currents and voltages 
over a transmission line.

The source output voltage  is the sum of the incident and the
reflected wave and these waves in turn can be substituted with
waves at the load end of the circuit as

(11.13)
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We also know that the wave currents and voltage are related through
the characteristic impedance as

(11.14)

and

(11.15)

Thus we have that  and (11.13)
can be rewritten as

(11.16)

which relates the source voltage with the load voltage and current.
We can deal with the source current in a similar manner:

(11.17)

These results will now be used to deal with the even-symmetry
mode in more detail, see figure 11.11a. To equate this circuit and
the one in figure 11.12 we should let the stubs in both ends be
included in the source and load as illustrated in figure 11.13.

Figure 11.13  Equivalent circuit for one branch in figure 11.11a,
even-symmetry mode.

In this special case the electrical length of the transmission line 
equals . By applying (11.16) to this circuit and noting that the
characteristic admittance of the transmission line is  we get
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(11.18)

In the same way we find the voltage at port 2 for the odd-symmetry
mode to be

(11.19)

It is easy to show either analytically or by using a Smith chart that
all ports have the same input admittance, namely . Thus the volt-
age in the ports that are connected to the sources we simply be half
of the internal voltage of the source.
We are now prepared to calculate the port voltages by adding the
contributions from the even-symmetry and odd-symmetry modes.
We begin with port 1:

(11.20)

Similarly, for port 4 we get

(11.21)

In other words, no power is dissipated in the isolation port (4) when
a signal is fed to port 1. For the two remaining ports (11.18) and
(11.19) gives

(11.22)
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(11.23)

Consequently, the voltage coupling factors for ports 2 and 3 with
port 1 as input port become

(11.24)

(11.25)

which confirms the power and phase relations in figure 11.9.

11.3.2 Wilkinson Hybrid

At first sight the Wilkinson hybrid looks like a 3-port circuit, see figure 11.14.
However, a 4th port is present internally in differential form between ports 2
and 3 that acts as the isolated port. Similar to the basic structure of the quad-
rature hybrid the Wilkinson hybrid is fully symmetrical. However, it is also
symmetrical with respect to port 1 which means that a signal that is fed to
port 1 is split in two equal parts that appear at ports 2 and 3 but in contrast to
the quadrature hybrid there is no phase difference, see figure 11.15. Note that
the resistor in the isolated part has no influence as long as the signals are the
same at ports 2 and 3. The Wilkinson hybrid is reciprocal and can be used
both as a power divider and power combiner.

Figure 11.14  Wilkinson hybrid (not to scale).
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Figure 11.15  Phase and power relations for the Wilkinson hybrid.

The layout in figure 11.14 is the common way of drawing the Wilkinson
hybrid for the sake of clarity. However, it is not a practical layout since the
termination resistor for the isolated port is a lumped and very small compo-
nent. In other words, in a practical design the connection points for this resis-
tor must be close and the branch lines from ports 2 and 3 to port 1 must
therefore either be very close to each other or bent as exemplified in figure
11.16.

Figure 11.16  Practical layouts for the Wilkinson hybrid (not to scale).

As was the case for the quadrature hybrid there exist derivatives from the
original structure that provide larger bandwidths and non-uniform power
division. Furthermore, the Wilkinson hybrid can be generalised to have any
number of ports [6].

11.3.3 Hybrid-Ring Coupler

Another common structure is the hybrid-ring coupler, also called rat-race
coupler. For proper operation the characteristic impedance in the ring line
should be . Similar to the quadrature hybrid and the Wilkinson hybrid
this one also performs half-power coupling, for example from port 1 to ports
2 and 3. An incident travelling wave from port 1 will be split in two waves. At
ports 2 and 3 the waves will be recombined in-phase whereas at port 4 they
will be in anti-phase. Thus, no power appears at port 4. The power and phase
relations are shown in figure 11.18. Note that the phase difference between
ports 2 and 3 is .
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Figure 11.17  Hybrid-ring (Rat-Race) coupler (not to scale).

Figure 11.18  Phase and power relations for the hybrid-ring coupler.

11.4 Couplers with Lumped Components

The use of distributed circuit elements for power combiners and dividers pri-
marily manifest itself at microwave frequencies, say above 1GHz. Below
1GHz these line structures tend to become to big for practical designs. How-
ever, in the sub-GHz range lumped circuit elements have acceptable parasitic
components. This suggest that we can realise power combiners and dividers
using lumped components instead. A lumped equivalent to the quadrature
hybrid described in section 11.3.1 is shown in figure 11.19.

Figure 11.19  Lumped equivalent of the quadrature hybrid.

The power and phase relations shown in figure 11.9 for the quadrature hybrid
holds for this circuit as well if it is designed for half-power coupling. The
design equations are as follows.
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(11.26)

(11.27)

(11.28)

where  is the desired frequency of operation.  is the ratio of the power
distribution between ports 2 and 3. In other words this configuration can be
designed for non-uniform power division and still keep all port impedances
equal to .
The Wilkinson coupler can be realised in a similar manner but with less flexi-
bility with respect to the coupling, which in this case is fixed to -3dB. The cir-
cuit is shown in figure 11.20. The design equations for this structure is given
by

(11.29)

(11.30)

Figure 11.20  Lumped equivalent of the Wilkinson coupler.

Another example of a lumped realisation is shown in figure 11.21 that
exploits a transformer with a centre tap. Here two input signals are combined
and fed to the output. Signals in anti-phase will be combined and fed to the
output load whereas signals in phase will be absorbed by the internal termina-
tion impedance. Since we have the freedom to choose the number of turns in
the transformer we can also use this circuit as a wideband impedance trans-
former. If we consider it as a power combiner the input impedance for ports 1
and 2 will be
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(11.31)

and the internal termination impedance should be chosen to be

(11.32)

Figure 11.21  Transformer-based power combiner/divider with source and 
load.

11.5 Ferrite Devices

Ferrite materials are very useful in high frequency applications mainly due to
their non-reciprocal properties. Ferrites are magnetic dielectrics which means
that the have magnetic properties similar to ferromagnetic metals but the high
resistivity of dielectrics. The latter property is important since high resistivity
prevents the generation of eddy currents in contrast to ferromagnetic metals
where these currents increase with increasing frequency.
The magnetic properties of ferrites stem from the electron spin generating
magnetic dipole moments. When the ferrite medium is magnetised, e.g. by
using either a permanent magnet or a electromagnet, the permeability will
turn from a scalar quantity to a tensor. This effectively results in different per-
meabilities in different directions. Thus, the phase velocity given by

(11.33)

will also be different for different directions (  is the free-space velocity of
light,  the dielectric constant and  the relative permeability).
Also, if we consider the polarisation of a electromagnetic wave the permea-
bility will be different depending on whether the wave is right-hand-circular
or left-hand-circular polarised. To understand what happens when a linear
polarised wave enters a magnetised ferrite (see figure 11.22) we can use the
fact that a linear polarised wave can be decomposed into one right-hand-cir-
cular band and one left-hand-circular polarised wave.
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Figure 11.22  Linear polarised wave propagating through ferrite rod with the 
magnetic wave decomposed into two circular polarised waves.

In figure 11.22 we see that the line of polarisation (for the magnetic field) is
shifted. This effect is nonreciprocal and is termed Faraday polarisation shift.
Many of the ferrite components are based on that signals propagate in closed-
boundary waveguides (see e.g. [9] and [10]) where the fields are inside the
waveguide rather than as for open-boundary waveguides/transmission lines
such as microstrip structures where the fields are outside the boundary of the
conductors. As such their use is limited since the dimensions of a closed-
boundary waveguide cross section are on order of the wavelength of the sig-
nal. The circulator is one of the most useful ferrite components and it is
described in the next section. Another example of ferrite components is the
differential phase shifter. This is a two-port device based on Faraday rotation
where the phase shift from one port to the other is different for the two direc-
tions. The gyrator is a special case of a differential phase shifter with a differ-
ential phase equal to 180 degrees. Ferrites can also be used to implement
resonators with very high Q-values (up to 104) and substrates with low loss
for microwave integrated circuits. For a more detailed description of the the-
ory behind ferrites please refer to [9] and [10].

11.5.1 Circulators

A circulator is commutator for power such that an incident wave at one port
will be transmitted only to the next port in the sequence of ports. This is illus-
trated by the circuit symbol for a three-port and a four-port circulator in figure
11.23. Power entering port 1 will be transmitted to port 2, power entering port
2 will transmitted to port 3 etc. Circulators with more ports can easily be
obtained by combining circulators as illustrated in figure 11.24.
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Figure 11.24  Implementation of 6-port circulator using two four-port 
circulators.

One important application for the circulator is found when a receiver and
transmitter chain is to be connected to a common antenna, see figure 11.25.
Here the high power transmitter amplifier produces a signal that should be
forwarded to the antenna but not to the receiver if the both are active at the
same time. Due to the circulator properties the transmitted signal does not
(ideally) reach the receiver port whereas the signal received by the antenna
will. For the same reason the circulator serves as an isolator for the transmit-
ter amplifier such that if there is a mismatch at the antenna the reflected signal
will not return to the amplifier but to the receiver (for which there is no pro-
tection). Thus the amplifier will see a constant impedance even if there is a
mismatch at the antenna port. This is in many cases extremely important
since an unknown load impedance could otherwise force the amplifier into
oscillation.

Figure 11.25  Connecting the transmitter and receiver chain to a common 
antenna using a circulator.
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Figure 11.23  Circuit symbols for a three-port and a four-port circulator.
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In the example above the circulator acts as a isolator for the amplifier and of
course the circulator can be configured as a two-port isolator using a dummy
load at one of the ports as illustrated in figure 11.26. The purpose of the
dummy load is to dissipate any power reflected back to the output port. 

Figure 11.26  Circulator configured as an isolator.

There are several ways to implement circulators. For open-boundary trans-
mission lines (microstrip or stripline structures) the Y-junction circulator is
useful. It is a three port device where the three ports are connected together
with a circular centre conductor plate with a ferrite disc on top for microstrip
structures and ferrites discs on both sides for stripline structures, see figure
11.27.

Figure 11.27  Y-junction stripline circulator.

The principle of this circulator is briefly illustrated in figure 11.28. The ferrite
disc can be excited to resonate in which case a standing wave pattern will
arise in the disc. This is shown in figure 11.28 without and with a constant
magnetic field applied and with an incident wave at port 1. Without the mag-
netic field the standing wave is aligned with input port and part of the signal
will be reflected back and port 2 and 3 will receive equal amounts of power.
The standing wave pattern is generated by two contra-rotating waves. If a
magnetic field is applied perpendicular to the disc plane the two contra-rotat-
ing waves will propagate will different phase velocities and therefore the res-
onant frequencies for the two rotating modes are separated. The effect will be
a rotation of the standing wave ratio and with the magnetic field properly set
the rotation will be 30 degrees which means that there will be no electric field
and no transverse magnetic field at port 3. In practice, though, the isolation is
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limited to 20-40dB. Matching networks are used at each port for optimal cou-
pling between the ports and ferrite discs. A more detailed treatment of the Y-
junction circulator is found in [11].

Figure 11.28  Standing wave pattern in the ferrite disc of a Y-junction 
circulator without (a) and with (b) a constant magnetic field applied.
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Chapter 12

Filters

Signal shaping and signal selection in the frequency domain are performed
by means of filters. Filters are one of the basic building blocks in electronic
systems. They can be used to alter spectral properties of signals or to simply
select some portions of the frequency band and exclude others. In radio com-
munication applications filters are commonly used for removal of strong sig-
nals that otherwise would interfere with wanted (and typically weak) signals.
There are many ways of specifying and implementing filters. This chapter
will serve as a tutorial in classification of filters, filter modelling and filter
implementation for high frequency applications.

12.1 Modelling

This chapter is restricted to filters that can be modelled electrically by a two-
port network terminated with purely resistive source and load impedances,
see figure 12.1. The filter transfers the signal source (port 1) to the load (port
2) with a frequency dependent transfer function both in terms of amplitude
and phase. Theoretically, the filter is lossless, i.e., the filter consists of reac-
tive components only.
The simple matching networks that was described in earlier chapters were
based on achieving conjugate matching for one frequency only and from the
topology chosen it was only possible to conclude its qualitative behaviour,
i.e., if it had a lowpass, highpass or bandpass characteristic (see below), but
the exact properties for other frequencies were not considered at all. In this
context, a filter can be seen as a matching network whose spectral properties
are known and selected beforehand.

Figure 12.1  Filter modelled as a two-port network.
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The filters that are considered here are time-invariant, linear and of finite
order. Such a filter can be described by a transfer function, the quotient of the
output signal and the input signal, given by a rational polynomial in the s-
domain,

(12.1)

where . Assuming a sinusoidal input with frequency  Hz, the
transfer function is given by (12.1) with . The transfer func-
tion has a constant gain factor, ,  zeros and  poles. The number of poles
and zeros and their respective locations in the complex plane determine the
characteristics of the filter. We can classify a filter by investigating the ampli-
tude of the transfer function as a function of frequency, ,
and the phase function, .
In general, poles should be located in the left-half of the s-plane where the
amplitude function, , should be large and zeros should be located on the
imaginary axis where  should be small. Below, the various filter types
are exemplified together with their respective pole-zero placement.

12.1.1 Lowpass Filter

A lowpass (LP) filter passes low frequencies to the load and rejects high fre-
quencies. An example of pole placement and amplitude function for a low-
pass filter is given in figure 12.2.

Figure 12.2  Pole placement and amplitude function for lowpass filter.

The transfer function for the lowpass filter in figure 12.2 is given by

Of course, a LP filter can have zeros as well but since we want 
when  (high frequencies) we conclude that the number of poles must
exceed the number of zeros.
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12.1.2 Highpass Filter

A highpass filter (HP) is the very opposite of a lowpass filter, i.e., low fre-
quencies are rejected and high frequencies passes with minor loss. An exam-
ple of pole-zero placement and amplitude function for a HP filter is given in
figure 12.3.

Figure 12.3  Pole placement and amplitude function for highpass filter.

The transfer function for the high pass filter in figure 12.3 is given by

In a HP filter the number of poles is equal to the number of zeros and there is
at least one zero in the origin.

12.1.3 Bandpass Filter

A bandpass filter (BP) transfers a limited band of frequencies and rejects low
and high frequencies. An example of pole-zero placement and amplitude
function for a BP filter is given in figure 12.4

Figure 12.4  Pole placement and amplitude function for bandpass filter.

The transfer function for the bandpass filter in figure 12.4 is given by

A f( )

f

σ

jω

H s( ) s3

s 1+( ) s 1 i–
2

----------+⎝ ⎠
⎛ ⎞ s 1 i+

2
-----------+⎝ ⎠

⎛ ⎞⋅ ⋅
----------------------------------------------------------------------------=

A f( )

f

σ

jω



Chapter 12 Filters

276

The number of poles exceeds the number of zeros in a BP filter and at least
one zero is located in the origin.

12.1.4 Bandstop Filter

A bandstop filter (BS) rejects a limited band of frequencies and passes low
and high frequencies. An example of pole-zero placement and amplitude
function for a BS filter is given in figure 12.5

Figure 12.5  Pole placement and amplitude function for bandstop filter.

The transfer function for the bandstop filter in figure 12.5 is given by

In a BS filter the number of poles equals the number of zeros. The “sharp-
ness” of the filter is increased by reducing the distance between the zeros and
the poles.
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12.1.5 Allpass Filter

An allpass filter (AP) have a constant amplitude function. An example of
pole-zero placement and amplitude function for a BS filter is given in figure
12.6 

Figure 12.6  Pole placement and amplitude function for allpass filter.

The transfer function for the allpass filter in figure 12.6 is given by

Note that the poles and the zeros are mirrored in the imaginary axis. The pur-
pose of AP filters is to alter the phase function only. The phase function of the
AP filter, , is illustrated in figure 12.7 

Figure 12.7  Phase function for allpass filter.

The allpass filter is a rather special filter that is mentioned here for the sake of
completeness but will not be addressed any further in this chapter.

12.2 Filter Specification and Approximations

When a signal is to be removed by using a filter we can specify this filter with
one or several cut-off frequencies depending on where the unwanted signal is
located relative to the wanted signal. For example if signals are to be removed
above a certain cut-off frequency  we could specify a LP filter as in figure
12.8. Here we have a well-defined passband below  with no attenuation
and a stopband above  with infinite attenuation. 
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Figure 12.8  Ideal LP filter specification.

It is readily understood that we cannot implement such a filter, not even close.
Thus, a more relaxed specification, an approximation of the desired behav-
iour, must be allowed given as boundaries in the amplitude-versus-frequency
plot, see figure 12.9. Here the passband may be defined by the range from 0
to . Similarly, the stopband is specified as ranging from  and upward. In
addition to these we also have a transition band between the two latter bands,
i.e., between  and . In most applications a specification in this form is
available or can be calculated. Sometimes, there is even a specification in the
phase-versus-frequency plot which of course complicates the design proce-
dure.

Figure 12.9  Example of filter specification for a LP filter.

To comply with the specification, a filter has to be found in a systematic man-
ner. Of course, we could start by iterating various combinations of pole-zero
patterns but this method is time-consuming because it involves to many vari-
ables to play with. Furthermore, we might end up with pole-zero pattern that
is impractical to realise.
Instead, the most common procedure is to adopt a predefined filter approxi-
mation (described below) with well-defined characteristics and a limited
number of variables than can be altered.

12.2.1 Filter Approximations

There are many predefined filter approximations. These are defined as LP fil-
ters. This is not a restriction since the design of other filters like HP, BP etc.
are based on LP equivalent filters. More on this later. In this section three dif-
ferent filter approximations will be described; Butterworth, Chebyshev and
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Bessel. Many more can be found in books dedicated to filter theory and
design. All filters presented are of all-pole types which means that they have
no zeros in the LP configuration. Furthermore, they can be designed with an
arbitrary order  (number of poles). A higher order means steeper transition
region between the pass band and the rejection band.

12.2.1.1 Butterworth

The most common filter is the Butterworth filter. Its amplitude function fulfils

(12.2)

where  is the order of the filter and  is a normalisation frequency. The
amplitude function is shown in figure 12.10 for various orders  and unity
normalisation frequency, .

Figure 12.10  Butterworth filter amplitude function using (12.2) with .

The Butterworth filter has the following properties:
• Maximally flat around , i.e., the first  derivatives of

 equal to zero at 
• , independent of 
•  is monotonic
•  independent of 
•  decreases with  dB per octave for large 

The complete transfer function can be developed from the amplitude function
and it is straightforward to calculate the poles but usually tables are used
instead either given as expanded denominator polynomials or as poles for
various orders, assuming a unity normalisation frequency, .
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12.2.1.2 Chebyshev

Another LP filter approximation is the Chebyshev filter. Its amplitude func-
tion fulfils

(12.3)

or with normalised frequency, , and :

(12.4)

where  is a ripple factor (see below) that defines the amount of ripple in the
passband.  is the Chebyshev polynomial for order  and is given by

(12.5)

The amplitude function has been plotted in figure 12.10 using (12.4) for vari-
ous orders , ripple factor  and unity normalisation frequency,

.

Figure 12.11  Chebyshev filter amplitude function using (12.4).
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The Chebyshev filter has the following properties (assuming ):
• Ripple in the pass band ( ) between  and 
• , independent of 
• , even 
• , odd 
• For   is monotonic
•  decreases with  dB per octave for large 

It is possible to calculate the poles but it is more common and convenient to
consult tables either given as expanded denominator polynomials or as poles
for various orders and ripple levels, with a unity normalisation frequency, .
Compared with the Butterworth filter we have gained one degree of freedom
with the ripple factor . Ripple in the pass band is not something that we
want but the fact that we can trade ripple with steepness of the transition
region makes this filter approximation very useful in some applications. That
is, for a given filter order the steepness of the transition region will increase
as we allow more ripple in the pass band. On the other hand, the phase func-
tion is not as good as for the Butterworth filter.

12.2.1.3 Bessel

The characteristics of the Butterworth and the Chebyshev filters originate
from a desired amplitude function and the phase function is of little concern.
In some applications, however, it is the phase function that is the most impor-
tant property or the group delay to be precise. The group delay is related to
the phase function as

(12.6)

A linear phase function - that is a constant group delay - will not change the
shape of the signal in the time domain if the amplitude function is constant in
the frequency range occupied by the signal. A group delay that varies with the
frequency typically results in a step-response with overshoot and damped
oscillation. These effects increase with higher order and higher ripple in the
pass band.
The Bessel filter has been developed with constant group delay in mind. It
has a maximally flat group delay in the pass band. Note that this does not
mean a perfectly constant group delay. Since the filter has a limited order it is
only an approximation of the desired property, a true delay . In addition,
the amplitude function will not be as steep in the transition region as for But-
terworth or Chebyshev.
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The amplitude function has been plotted in figure 12.12 for various orders 
unity normalisation frequency, . Note the gentle slope after the nor-
malisation frequency and the fact that it does not change much with increas-
ing order.

Figure 12.12  Bessel filter amplitude function.

There is no general function for the Bessel amplitude function for different
orders as was the case for Butterworth and Chebyshev filters. Tables are com-
monly used to find frequency-normalised poles or polynomial coefficients
from which the amplitude function can be plotted as in figure 12.12. In the
design procedure for the Bessel filters both the amplitude characteristics (fre-
quency ranges for pass band and rejection band) and the deviation from a
constant group delay are considered. For example, a maximum relative delay
error at a given frequency alongside with a maximum amplitude error at
another frequency can be specified. From this information it is possible to use
filter tables to find the minimum filter order. The final filter order is chosen
based on the rejection band specification. Since there is no simple amplitude
function that includes the order of the filter, one filter order at the time must
be investigated to see whether it fulfils the rejection band specification or not.
For comparison, the amplitude, phase and group delay for all three filter
approximations are plotted in figures 12.13 to 12.15 for 4th order configura-
tions with unity 3dB cut-off frequency and 3dB Chebyshev ripple.

Figure 12.13  Amplitude function for 4th order Butterworth, Chebyshev 
(3dB ripple) and Bessel filter.
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Figure 12.14  Phase function for 4th order Butterworth, Chebyshev (3dB 
ripple) and Bessel filter.

Figure 12.15  Group delay for 4th order Butterworth, Chebyshev (3dB ripple) 
and Bessel filter.

12.3 Designing from Specification

In section 12.2 a typical filter specification was shown for a lowpass filter
consisting of three regions, the passband, the transition region and finally the
rejection region. Once the filter approximation (Butterworth, Chebyshev,
Bessel etc.) has been chosen it is possible to decide the order, cut-off (nor-
malisation) frequency and ripple that results in a filter that complies with the
specification. This will be demonstrated below. Also, the procedure for trans-
forming other filter types (HP, BP, BR) to a lowpass equivalent and design
any of the filter types in the lowpass domain is also demonstrated.
Note that finding the order, cut-off frequency and ripple for a given filter
approximation is only the first step in the design procedure. The next step
involves the actual implementation and this topic is treated in section 12.4
and onward.
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12.3.1 Lowpass Filter Design

If the amplitude function, , is given as was the case for Butterworth and
Chebyshev it is straightforward to find a solution that complies with a filter
specification as the one shown in figure 12.16.

Figure 12.16  Simple lowpass filter specification.

A system of equations can be developed based on the amplitude function and
the specification. For example we know that the amplitude at  must
equal or higher than  and at  the amplitude must be equal or lower
than . Thus we get two equations where the order  and the normalisation
frequency are the unknowns to be found. For the Chebyshev filter we can
choose a ripple level that is equal to or less than the allowed gap in the pass
band ( ). If the ripple is chosen to be equal to the gap the normalisation
frequency becomes equal to . 

Example 12.1 Lowpass Filter Design

Determine the order and the normalisation frequency for a Butter-
worth filter and a Chebyshev filter that fulfil the specification in fig-
ure 12.17 below. Chose Chebyshev ripple with the same magnitude
as the gap in the passband. Also, plot the amplitude function for the
filters chosen and compare with the specification.

.

Figure 12.17  Lowpass filter specification for example example 12.1.
(not to scale)
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Since the gain at  is unity (0dB)  must be equal to 1. In the
pass band the amplitude should be equal to or higher than -2dB up
to 1GHz, i.e.,

The rejection band is defined by the -30dB corner at 1.5GHz, i.e., 

Combining the results from the two corners we get  and
since we cannot allow a fractional order it must be rounded to the
nearest higher integer number, i.e., . Now when we know
the order of the filter we should go back to the first corner defining
the pass band (-2dB at 1GHz) and calculate the normalisation fre-
quency using :

From this result it is now possible to write the transfer function or
the individual poles for the transfer function using tabulated data.
Chebyshev:
The ripple should have the same magnitude as the gap in the pass
band, i.e., 2dB. Referring to figure 12.11 we have

In this special case when the ripple is equal to the gap in the pass
band we know that the normalisation frequency is equal to the first
corner, i.e., . Thus, the second corner defining the
rejection region remains to be investigated:
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Thus we select the nearest higher order, . Note that this is
half of the order of the Butterworth filter.
In this case we do not need to go back to the first corner and calcu-
late a new normalisation frequency as was the case for the Butter-
worth filter. In this case the ripple has the same magnitude as the
gap and thus we have a fixed normalisation frequency given by the
first corner, 1GHz. Since the order of the filter chosen is higher than
the calculated filter order we automatically know that this filter will
comply with the specification in thew second corner at 1.5GHz.
This holds because a higher the transition region becomes steeper
for increasing order. The amplitude functions for the two filters cho-
sen are shown in figure 12.18 below.

Figure 12.18  Final result of filter design, example 12.1.

For the Bessel filter and other filters whose amplitude function cannot be
written as a function of the order some iterative work will obviously be nec-
essary to find a solution that complies with a specification. Also, if the filter
specification is more complicated, i.e., more corners in the amplitude func-
tion, group delay specification etc. an iterative approach might also prove to
be necessary whereas in other cases it is possible to utilise tabulated filter
data. However, it is out of the scope of this chapter to deal with all these
cases. Instead we refer to literature dedicated to filter design and theory.
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12.3.2 Highpass Filter Design

The design procedure for a highpass, bandpass or band-rejection filter is per-
formed as a lowpass filter design. The procedure begins by transforming the
original filter specification to a lowpass equivalent filter specification. Then
we design a lowpass filter that complies with our lowpass specification and
finally the result is transformed back to the desired filter type. 
Thus, the basic idea is to find transforms for the frequency axis that makes a
lowpass filter transform into the desired filter type. Moreover, these trans-
forms must be as simple as possible and are restricted to rational polynomials
so that the new transfer function will become a rational polynomial as well.
Finally, the transforms should be simple with respect to realisation so that a
transformed circuit becomes realisable with minimum effort and complexity.
This will be discussed in more detail in section 12.4.
In the case of highpass filters the transform is quite simple, see figure 12.19.
We note that by simply inverting the frequency axis we get the desired prop-
erties.  is an optional frequency scaling that is usually set to unity. Since
the design procedure includes a transformation from HP to LP and back to
HP again  will not affect the design at all. However, it is used here for con-
sistency with other transformation formulas. Also, note the corresponding
transformation in the -domain ( ) that is used to transform a
transfer function. 

Figure 12.19  Transformation of a lowpass to a highpass filter specification.

12.3.3 Bandpass Filter Design

In the case of bandpass filters the transform involves more parameters due to
the two-sided passband and rejection-band regions, see figure 12.20. Also,
the transformation becomes somewhat more complicated than for the high-
pass filter. Note the equality between the frequency products,

. A filter cannot be specified arbitrarily due to this restriction,
which is induced by the specific transformation chosen.
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Figure 12.20  Transformation of a lowpass to a bandpass filter specification.

12.3.4 Bandstop Filter Design

The bandstop filter is similar to the bandpass filter in that it needs four fre-
quency variables that will be transformed to two lowpass filter frequency var-
iables, only the -domain transformation is different, see figure 12.21. As
was the case for bandpass filter the bandstop to lowpass transform also
restricts the possible combinations of frequencies in the band-rejection
domain. 

Figure 12.21  Transformation of a lowpass to a band-rejection filter 
specification.
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12.4 Realisation

So far, we have defined different types of filters, i.e., lowpass, highpass etc.
and their typical placement of poles and zeros. We have also described vari-
ous filter approximations and their properties and we know that we can calcu-
late the poles for these filters or simply look them up in filter tables. The next
and the last step involves realisation. Depending on the frequency band dif-
ferent techniques can be used. In low frequency applications, typically below
1MHz, we can choose from a number of different techniques ranging from
passive filters through active filters using operational amplifiers, switched-
capacitor filters to digital filters. As the frequency increases techniques based
on active circuit elements becomes gradually less attractive for several rea-
sons, mainly due to increased parasitic effects, less linearity, more noise and
more power. However, today there exists techniques for implementing active
filters with fairly high cut-off frequencies (100MHz or so) in silicon without
external components and the frequency limit increases with never-ending
advances in process technology. In radio-frequency applications passive filter
structures are widely used, typically realised with lumped and ideally lossless
circuit elements, i.e., inductors and capacitors. As the frequencies of interest
passes, lets say, 1GHz the parasitic effects in the lumped components, espe-
cially the inductors, becomes more dominant and techniques based on distrib-
uted circuit elements (transmission lines) are ultimately the only choice for
the designer. Below, the realisation of passive filters using lumped and dis-
tributed circuit elements will be discussed in more detail.

12.4.1 Realisation Using 
Lumped and Passive Circuit Elements

This section deals with the implementation of passive filters using reactive
circuit elements (L and C). The ladder topology illustrated in figure 12.22 is
the most common passive filter structure. Its regular structure allows general-
isation of methods for calculating circuit element values or specifying these
values in tabular form for different filter approximations. Tabulated data will
be used here. Each series and shunt element may consist of one single ele-
ment or several elements depending on the filter that will be realised. Also,
depending on the filter order, type etc. the elements at the ends can be either
shunt or series elements.

Figure 12.22  Ladder topology.
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12.4.1.1 Lowpass Ladder Filter

In a lowpass configuration all series elements are inductors and all parallel
elements are capacitors as illustrated in figure 12.23. Moreover, depending on
whether the order of the filter is odd or even the last element is either an
inductor or a capacitor.

Figure 12.23  Lowpass filter topologies for odd and even filters orders. 

Once the filter order, the normalisation frequency and the ripple has been
determined according to the methods in section 12.3, circuit element values
are looked up in tables. Different tables exist for a few different 
ratios, typically 0.1, 0.25, 0.5 and 1. If the ratio is larger than unity the tables
can still be used because of the reciprocity of the filter, i.e., the filter topology
can be flipped between the source and the load. The component values
obtained from the tables are normalised values that should be denormalised
as follows:

• Butterworth and Chebyshev filters
All inductor values should be multiplied by  and all capacitor
values should be multiplied by  where  is the angular
normalisation frequency.

• Bessel filters
All inductor values should be multiplied by  and all capacitor val-
ues should be multiplied by  where  is the delay of the filter
and is equal to , the inverse of the normalisation frequency. Thus
a normalised Bessel filter always has a group delay equal to unity.

The gain of the filter at  is simply determined by the voltage division
between  and . From this we conclude that power matching is only
obtained for .

Given a lowpass filter specification, the design procedure is:
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+

-ES RL

Ln Ln 2– L2
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-
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+

-

i2i1
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+

-ES RL
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1 ω0⁄

f 0=
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1. Find suitable filter approximation and order.
2. Calculate or look up component values for LP ladder filter.
3. Denormalise component values.

Example 12.2 Design of 5th order Butterworth Filter

Design a fifth order Butterworth ladder filter with a cut-off fre-
quency of 1GHz with .
We have an  ratio equal to one. Tabulated data can be found
in appendix B. Since it is an odd order filter the values in the table
applies to the odd order structures in figure 12.23. Thus we get 

and denormalisation gives

The filter is illustrated in figure 12.24 below together with denor-
malised component values.

Figure 12.24  Realisation of 1GHz 5th order Butterworth filter.

The transfer function is shown below. It is exactly the same as the
ideal Butterworth transfer function given as a rational polynomial,
see equation (12.1), i.e., no approximations or deviations are intro-
duced when realising the filter with lumped components.

RS RL 50Ω= =
RL RS⁄

L′1 0.6180=
C′2 1.6180=
L′3 2.0000=
C′4 1.6180=
L′5 0.6180=

RS ω0⁄( ) L′1⋅ 50 2π109⁄( ) 0.6180⋅ 4.91nH= =
1 ω0⁄ RS( ) C′2⋅ 1 100π109⁄( ) 1.6180⋅ 5.15pF= =
RS ω0⁄( ) L′3⋅ 50 2π109⁄( ) 2.0000⋅ 15.9nH= =
1 ω0⁄ RS( ) C′4⋅ 1 100π109⁄( ) 1.6180⋅ 5.15pF= =
RS ω0⁄( ) L′5⋅ 50 2π109⁄( ) 0.6180⋅ 4.91nH= =

RS 50Ω=

+

-vS RL 50Ω=

4.91nH 15.9nH 4.91nH

5.15pF 5.15pF
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Figure 12.25  Transfer function for fifth order Butterworth filter.

12.4.1.2 HP, BP and BR Ladder Filters

Earlier in this chapter we presented frequency transformations to transform a
filter specification for any filter type to a lowpass equivalent. In this lowpass
domain an appropriate filter approximation could be found. The same trans-
formation could be used to transform that filter approximation back to the
original filter type. This transformation technique can be applied directly to
the ladder filter where each component can be transformed to another compo-
nent or several components depending on whether it is a HP, BR or BR filter
that is to be designed. A summary of all frequency transformations are given
in table 12.1.

In summary, the design procedure for a non-LP ladder filter becomes:
1. Transform filter specification to LP filter specification.
2. Find suitable filter approximation and order.
3. Calculate or look up component values for LP ladder filter.
4. Denormalise component values.
5. Transform component values to the desired filter type.

12.4.2 Realisation Using Distributed Circuit Elements

The ladder topology with lumped components that were described above
realises a given filter transfer function exactly, assuming ideal components.
This cannot be done with distributed circuit elements, i.e., transmission lines.
Therefore, the number of possible techniques in the latter case outnumbers
those using lumped components since different techniques will give different
compromises. It is far beyond the scope of this textbook to deal with more
than just a few of these techniques.
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12.4.2.1 LP Filters

The most intuitive way of realising a lowpass filter with transmission lines is
to start from the ladder topology, see figure 12.22. With some limitations it is
possible to implement series inductors and shunt capacitors using transmis-
sion lines. Consider the Smith chart in figure 12.26 below. Here it is shown
how the impedance and the admittance are altered by a series inductor and a
shunt capacitor, respectively. It is also seen that a transmission line in series
with the load will approximately emulate a series inductor if the characteris-
tic impedance of the transmission line is high compared with the load resist-
ance and a capacitor if the characteristic impedance is low. It is readily seen
that the transmission line must not be to long (less than ) or the deviation
between the curves becomes too large. Thus, a sequence of series-connected
alternating high and low  will resemble a filter that will be a approxima-
tion of a LP ladder filter. We will now present how the length of a transmis-
sion line together with the characteristic impedance, , and the propagation
coefficient, , relate to  and .

Table 12.1  Frequency transformations

LP HP BP BR
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ω4 ω3– Ω3=

A f( )

ω
ω3 ω1

ω1ω2 ω3ω4 ωI
2= =

ω2 ω1– ωI
2 Ω2⁄=

ω2 ω4

ω4 ω3– ωI
2 Ω3⁄=

s
ωI

2

s
------ s

ωI
2

s
------+

ωI
2

s ωI
2 s⁄+

---------------------

R R R R

L 1 ωI
2L⁄ 1 ωI

2L⁄ L 1 ωI
2L⁄

L

C 1 ωI
2C⁄

1 ωI
2C⁄

C 1 ωI
2C⁄C

λ 8⁄

Z0

Z0
γ L C



Chapter 12 Filters

294

Figure 12.26  Transmission line acting as a series inductor and series 
capacitor.

It is possible to model a transmission line with a given length in a manner
similar to what was done for an infinitesimal segment of a transmission line
in an earlier chapter. That is, we can relate the properties of the transmission
line to a TEE or PI equivalent circuit as illustrated in figure 12.27. Derivation
of the expressions are given in [1].
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Figure 12.27  Lumped line representation of a short line section (a) transmis-
sion line (b) TEE representation (c) lumped TEE representation for lossless
transmission line (d) PI representation (e) lumped PI representation for loss-
less transmission line.

From now on we will assume lossless lines (line attenuation ) which
means that the model in figure 12.27c applies. From the expressions given in
figure 12.27 we get

(12.7)

and

(12.8)

where  is the line phase coefficient. Similarly, If a PI equivalent is used we
get

(12.9)

and
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(12.10)

We can now substitute , where  is the phase velocity, into these
equations and use the fact that . Then for the TEE equivalent
we get 

(12.11)

(12.12)

and for the PI equivalent

(12.13)

(12.14)

Note that the equations for the TEE and the PI circuits are approximately the
same. To summarise equations (12.11) to (12.14) we have

(12.15)

(12.16)

What these two last equations say are that a short transmission line will have
a large series inductor and a small shunt capacitor if the characteristic imped-
ance is high and vice versa if the characteristic impedance is low. This is in
accordance with the Smith-chart in figure 12.26. Thus, to realise a series
inductor  must be chosen high enough so that the parasitic shunt capaci-
tance given by (12.16) will be negligible. Accordingly, a shunt capacitor must
be realised using a sufficiently low  such that the parasitic inductance
given by (12.15) can be considered negligible.
At this stage two things remain unanswered. How short is a short transmis-
sion line and what is a low and a high characteristic impedance? As for the
length of the transmission line it should not be any longer than  at the
highest frequency of interest, that is the highest frequency where the filter
should operate properly.  is not a strict limit merely a rule of thumb. As
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the length approaches  the filter will deviate more and more from the
ideal behaviour. Figure 12.26 gives the answer to what is low and high char-
acteristic impedance. The impedances loading a transmission line (both ends)
should have a much lower or higher impedance with respect to the character-
istic impedance of the transmission line. Thus, a LP filter realised with this
technique should have  and .

Example 12.3 Design of LP transmission line filter

Implement the filter in example 12.2, a 5th order Butterworth filter
with 1GHz cut-off frequency, using microstrip technology. The fil-
ter should operate accurately up to 2GHz. The microstrip carrier is
an epoxy-laminate with  and h=1.56mm.
There are two limiting factors that we must deal with. First, the
length of each line section should not exceed  for the highest
frequency of interest, in this case 2GHz. However, from (12.15) and
(12.16) we know that for a given inductance and capacitance a
decrease in line length must be compensated by and increase of

 and a decrease of . Furthermore, practical values for
 and  is fairly limited and ranges from say a few Ω to a

few hundred Ω depending on what kind of geometry (i.e. micros-
trip, stripline, coaxial etc.) that is used to realise a transmission line. 
The largest values of the inductors and capacitors results in the
longest line sections. We can use (12.15) and (12.16) to determine
the required  and  if the length should not exceed .
We have

With  at 2GHz,  and 
we get . and . With the given lami-
nate we can calculate the widths of the microstrip structures;

 and . Obviously,  is
much to small. A practical limit for the given laminate is a few
tenths of a millimetre depending on the manufacturing tolerances.
As far as  is concerned it should not be any wider than  at
the highest frequency of interest. In conclusion it appears difficult
to comply with the length condition, , at 2GHz.

We will now take on a pragmatic approach and begin by choosing
some practical values for the characteristic impedances;

 and 

Now the widths become  and .
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In example 12.2 the component values were found to be
, . , 

and . Using (12.15) and (12.16) we get
, , ,  and
 at 2GHz. We note that the line section in the middle

is the longest and is about two times longer than the limit.
The wavelength, , is a function of the characteristic impedance.
We get  and . The actual line
lengths become , , ,

 and . The complete layout is shown
in actual size in figure 12.28 below. 

Figure 12.28  5th order Butterworth filter realised with microstrip lines.

In this design we have neglected all parasitic effects such as the
shunt capacitance in the inductive line, the series inductance in the
capacitive line and the fact that the laminate is far from lossless.
Also, the discontinuity between thin and wide lines introduce para-
sitic effects. All these effects are seldom calculated by hand.
Instead, the designer relies on software tools for design and simula-
tion of distributed circuits that fairly accurately model these effects.
In figure 12.29 the transfer functions are shown for the lumped lad-
der filter, distributed filter without discontinuity parasitics and
losses and finally distributed filter with all parasitics.
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Figure 12.29  Comparison of transfer function for (a) lumped ladder filter (b) 
equivalent distributed filter without discontinuity parasitics and line losses 

(c) equivalent distributed filter with all parasitics and line losses.
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12.4.2.2 Other Filter Types

Before continuing with the HP, BP and BS filters we will summarise some
possible techniques to implement inductive and capacitive elements as well
as combinations of these using transmission lines, see figure 12.30. Here, the
geometry of the transmission line equivalents correspond to the layout of
microstrip or stripline structures. In figure 12.30a and b we have the series
inductance and shunt capacitance as described above. A shunt inductor can
also be realised with a short-circuited stub or the same stub extended with an
open-circuited  transmission line, see figure 12.30c. Combinations lead
to shunt connected series and parallel resonance circuits, see figure 12.30d
and e. Finally, a series  transmission line with low characteristic imped-
ance will act as a parallel resonance circuit as well. In all cases but the last the
lengths of the structures are limited such that  where  denotes the
wavelength for which the transmission line equivalent circuit should model
the lumped circuit accurately.
These structures does not present a complete set of structures to realise other
filter types besides the LP filter. In table 12.1 we see that a series capacitor is
required to implement a HP filter, a series-connected series resonance circuit
to implement a BP filter and a series-connected parallel resonance circuit to
implement a BS filter. That is, all remaining circuits requires a series capaci-
tor.
Series capacitors are far from trivial to implement using transmission line
techniques. For microstrip and stripline structures one possibility is to have a
physical series break of the structure, a gap. Typically, the gap is so small that
it is difficult to obtain good accuracy. Another problem is the fact that the gap
will not act as a pure capacitor. Therefore, if this technique is to be used accu-
rate modelling will be required to be able to take into account the non-ideal
behaviour of the gap at the design stage. Another option is to have a hybrid
with lumped capacitors and distributed inductive structures. This is a viable
technique for frequencies up to several GHz.
More advanced techniques exist to realise bandpass filters that should be con-
sidered when the frequency of operation does not allow the use of hybrid
solutions. One intuitive scheme is based on that a parallel resonance circuit
can be made to behave as a series resonance circuit with impedance inversion
and vice versa, see figure 12.31. The Smith chart reveals that this impedance
inversion can be implemented with a  transmission line. Otherwise, one
of the most popular schemes for bandpass filter realisation is based on field-
coupled lines, so called interdigital filters where the individual characteristic
impedances of the transmission lines as well as the distance between the lines
controls the behaviour of the filter. These techniques requires a more compre-
hensive treatment which is out of the scope in this chapter. Reference 2 is an
excellent design book that deals with most kinds of distributed filters.
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Figure 12.30  Transmission line (microstrip or stripline type) representation
of different lumped elements. Dashed terminations of stubs represent
ground.
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Figure 12.31  The effect of impedance inversion for a resonance circuit.
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Chapter 13

Mixers

So far we have assumed the active components to be linear. In fact, the small-
signal models used in the previous chapters are only valid for weak signal
amplitudes. In this chapter we will explore the nonlinear behaviour of devices
in order to produce new frequencies not present at the input. Such circuits are
termed mixers. The ability to “mix” signals arises either from a nonlinear
characteristic of components or a nonlinear transfer function of a circuit.
Thus mixers may utilise diodes, BJT’s or FET’s. The design choices depends
on considerations of gain, noise figure, stability, dynamic range and possible
generation of undesired frequency components
Mixers are used in a wide range of applications where there is a need to trans-
pose frequencies or frequency bands, as well as creating new frequencies:

• Modulator. In amplitude-modulated systems a mixer is often used to
modulate the carrier frequency.

• Transmitter Converter. If the modulation is carried out at an interme-
diate frequency, a mixer can be used to convert the signal to the desired
carrier frequency.

• Receiver Mixer. In the superheterodyne receiver a mixer is used to
convert the received signal to an intermediate frequency.

• Demodulator. Almost every kind of modulation can be demodulated
by circuits that utilise mixers.

• Phase Detector. In phase-locked loops, operating at high frequencies,
mixers are used as phase detectors.

• Frequency Synthesizers. Mixers are essential parts of the circuitry
used for signal generation where they are used for up or down conver-
sion of frequencies.

This chapter emphasises mixers for receiving circuits, but it should be kept in
mind that mixers also are used for frequency conversion in transmitters and in
instrumentation equipment. The mixer theory also applies to some of the
modulator and demodulator circuits presented in later chapters. 
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13.1 Basic Mixer Theory

When a signal is applied to a nonlinear device, new frequencies will show up
in the output due to the nonlinear transfer function. Only if the device is per-
fectly linear the output signal will contain exactly the same frequencies as the
input signal. However, if the device has a multiplying function, the output will
contain the difference and sum of the input frequencies due to the trigonomet-
rical identities 13.2) and 13.3). In general the nature of nonlinearity will dic-
tate what other frequencies that will be generated [1].

In figure 13.2 the nonlinear device will produce a set of new frequencies.

One way to analyse the behaviour is to express the input-output relationship
in the time domain by a Taylor series:

(13.1)

By use of the trigonometrical identities

(13.2)

(13.3)

f1

f2

f2-f1
f2+f1

Figure 13.1  The schematic symbol of a mixer.
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Figure 13.2  A nonlinear device used as a mixer.
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it is clearly seen that the higher order terms will produce new frequencies that
are multiples or combinations of the input frequencies. The sum and differ-
ence frequencies generated by the squared term in equation (13.1) are called
second-order intermodulation products and those generated by the cubed
term are third-order products.
Usually only the difference-frequency or the sum-frequency output compo-
nent is desired. The DC term, the input frequencies and their harmonics are of
no interest for mixer applications. In practical circuits it may be necessary to
filter them out.
Considering that the second-order products are desirable, a square-law device
is ideal for mixer applications, since the least number of undesired frequen-
cies will be produced. This is one reason why FET’s are commonly used in
simple mixer circuits.

Example 13.1 Deduction of the second-order intermodulation products

Assume that a device has the transfer characteristic

If the input signal consists of two frequencies

the output voltage is

The three first terms represents a DC component and the input fre-
quencies. These are of no interest in the mixer operation.
By expanding the last term the second-order intermodulation prod-
ucts are given by

vo a0 a1 vi( ) a2 vi( )2++=

vi V1 ω1t V2 ω2tcos+cos=
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The first and second term are seen to add some DC voltage and pro-
duce second harmonics of the input signals. The final term is called
the product term and yields the desired output. Note that the sum-
and difference-frequency components are proportional to the prod-
uct  of the input-signal amplitudes.

13.2 Mixer Terminology

Single-ended mixer. Any nonlinear device can serve as a mixer. A transistor
amplifier stage is often used as a mixer in simple consumer receivers, assem-
bled with discrete components. To obtain frequency conversion the magni-
tude of the local oscillator signal should be large enough to drive the stage
into compression.
Single-Balanced Mixer. By the use of two (or more) nonlinear devices and
by a symmetrical connection of one of the signals, this frequency component
and its odd harmonics will be suppressed at the IF output.
Double-Balanced Mixer. At the expense of more complicated circuitry, this
approach has both the LO and RF inputs applied in a differential mode. The
main advantage is that neither signal appears at the other two ports. That is,
the LO signal is suppressed at both the RF and the IF port and so forth. These
circuits generally require well-balanced transformers as well as accurate
matching of the nonlinear-device characteristics.
Conversion Gain is the ratio of the (IF) output signal power to the (RF) input
signal power.
Noise Figure is the signal-to-noise ratio (SNR) at the RF input port divided
by the SNR at the IF output port, assuming an input source noise temperature
of .
Isolation represents the undesired amount of leakage between the mixer
ports. For example, the “fLO at RF port isolation” is the amount the fLO signal
is attenuated when it is measured at the RF port.
Conversion Compression relates to the level beyond where the curve of IF
output power versus RF input power deviates from a linear behaviour.
Exceeding this level, additional increases in RF input level does not result in
proportional rises in output level. Quantitatively, the conversion compression
is the output level reduction in dB below the linear characteristic. Typically,
the level at which the compression is 1 or 3 dB is given in mixer specifica-
tions.
Dynamic Range is the amplitude range over which the mixer can operate
without loss of performance. The lower limit is set by the noise figure and the
bandwidth, and the upper limit is set by the conversion compression point of
the mixer.
Spurious-Free Dynamic Range is the amplitude range over which the mixer
can operate without detectable spurious frequencies. The lower limit is set by
the noise figure and the bandwidth, and the upper limit is set by the intercept
point of the mixer.

V1V2

T0 290 K=
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Two-Tone, Third-Order Intermodulation Distortion is the amount of
third-order distortion caused by the presence of a second received signal at
the RF port. Mathematically, the third-order distortion is defined in terms of
the frequency component at , where  is the desired input
signal,  is the second input signal and  is the local oscillator signal.
Usually, the higher the conversion compression or intercept point of a mixer
is, the greater will the suppression of this product be.
Intercept Point is the intersection between the extrapolated fundamental
response and the third-order spurious response curves. The higher the inter-
cept point is, the better will the third-order suppression be.
Desensitisation is the compression at the desired signal frequency caused by
a strong interfering signal at an adjacent frequency.
Harmonic Intermodulation Distortion results from the mixing of mixer-
generated harmonics of the input signals. These distortion products have fre-
quencies  where m and n represent the harmonic order.
Cross-Modulation Distortion is the amount of modulation transferred from
a modulated carrier to an unmodulated carrier when both signals are applied
to the RF input port. The higher the conversion compression or intercept point
of a mixer is, the greater will the suppression of the cross-modulation product
be.
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Figure 13.3  The diagram shows the compression point and the theoretical
third-order intercept point of a hypothetical mixer.
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13.3 General Behaviour of Mixers

Active mixers that have power gain can cause instable operation, as with
amplifiers. However, if the LO port is separated from the RF port and all three
ports are tuned to different frequencies, stability is not hard to achieve. If the
load impedance at each port approximates a short circuit at the other frequen-
cies, the Stern stability criterion indicates that stability will be assured. If the
y parameters are known at all three frequencies, the Stern factor test can be
applied at each frequency to check the possibility of instability.
The mixer is typically the noisiest stage in the receiver front end. In the case
of passive mixers, such as diode mixers, the stage also submits a conversion
loss and the noise generated in the first IF stage may contribute to the overall
noise figure as well. Consequently active mixers that have a conversion gain
are more attractive in this perspective. Another advantage to the active mixer
is lower LO power requirement.
A problem common to all mixer circuits is the spurious response, i.e. the
appearance of outputs at the intermediate frequency  due to signals at fre-
quencies other than the desired received frequency . These other fre-
quency components may be

• coming directly from the antenna, if no RF preamplifier stage is used
• produced by nonlinear behaviour of the RF amplifier
• produced in the mixer itself
• arising from LO harmonics

If any of these frequencies are present in the mixer stage, the result will be
interference with the desired IF signal. Figure 13.4 shows some of these spu-
rious response frequencies.

The desired frequencies are the LO frequency , the RF received fre-
quency  and the intermediate frequency  at the mixer
output.
The major sources of unwanted interference are (numbering as depicted in
figure 13.4)
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Figure 13.4  A series of spurious signals may produce mixer output
at the intermediate frequency.
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1. An input frequency equal to  may be doubled by the mixer and
appear in the output.

2. An input signal at  will appear in the output due to normal ampli-
fier behaviour and poor isolation.

3. An input frequency equal to  may be doubled to  by the
square-law mixer term and the be mixed with  to produce output at

.
4. The image frequency . If a signal of this frequency

reaches the mixer input, it will be mixed with  and a difference-
frequency component equal to  is produced in the output.

5. If the LO output includes a second harmonic at , or if the mixer
generates , this component can mix with the received inputs at

 to produce output at .
All of these possibilities illustrate the need for carefully prefiltering in front
of the mixer stage as well as good linearity in the RF stage to avoid genera-
tion of spurious frequencies at that point.

13.4 Implementation of Mixers

13.4.1 Simple Diode Mixer

A very simple single-ended mixer can be set up as shown in figure 13.5
where both the RF and local oscillator signals are applied to a single diode.
Since the performance of this kind of mixer is very poor, the circuit has only
the value to illustrate the basic principles of mixers. However, the circuit is
frequently used as a diode envelope detector in AM systems which will be
discussed in the next chapter.
 

Among several disadvantages the following may be mentioned:
• a significant conversion loss. That is, the IF signal power output is less

than the RF signal input power.
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Figure 13.5  A simple diode mixer circuit.
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• a poor isolation between the input ports, thus increasing the hazard that
LO signal may be fed into the receiving antenna.

• a relatively large feed-through of LO frequency to the IF port, which
may tend to overload the following IF stage.

• high-order of nonlinearities due to the exponential characteristic of the
diode.

• a relatively high noise figure.

13.4.2 Single-Balanced Diode Mixer

As the diode circuits to be described produce both sum and difference of the
two input frequencies, they are used as amplitude modulators and demodula-
tors as well as mixers. Therefore the terms “balanced modulator” and “bal-
anced mixer” are synonymous.
A typical single-balanced mixer is shown in figure 13.6. The characteristic of
such a mixer is that there is good isolation between the local oscillator and
the RF ports relatable to the inherent circuit balance between the LO and RF.
However, there is no balance between the RF and IF ports. The output spec-
trum is shown in figure 13.8.

RF

LO

VRF

VLO

VIF

Figure 13.6  A single-balanced mixer offers good isolation between the LO
and RF ports, but poor isolation between the RF and IF ports.
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The local oscillator voltage  is assumed to be large enough to turn the
diodes completely on during one of the half-cycles and completely off during
the other. It is also assumed that  is much greater than  so that the
local oscillator controls the diode states all the time. The diodes therefore act
like switches and causing  to be zero when they are open.

VLO

VLO VRF

VIF

VIF

VRF

ILO

Figure 13.7  Waveforms showing the operation of a single-balanced diode
mixer: (a) Output voltage across the resistive load, (b) Input voltage applied at
the RF port, (c) switching function caused by the diodes and the local oscilla-
tor signal.
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Figure 13.8  The IF output spectrum shows that there is good isolation be-
tween the local  osci l lator and the RF ports .   andfRF 15 MHz=
fLO 20 MHz=
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Due to the square shape of the LO signal, all even harmonics of the oscillator
frequency will disappear. Therefore the output spectrum contains only the
odd product terms of  and . Note that the input signal  will also
appear in the output with reduced amplitude. All the components except the
desired frequency at  has to be removed by filtering.
At microwave frequencies the parasitic components, especially in the trans-
former, are hard to avoid. An alternative is to use a microwave coupler as
illustrated in figure 13.9. It is assumed that the RF and LO are close enough
in frequency to allow the quadrature hybrid to function reasonably well for
both signals. The use of open  stubs at the RF and LO frequencies at the
output is an additional measure to ensure that these signals are minimised at
the IF port. An exhaustive description of microwave mixers is found in [2].

13.4.3 Double-Balanced Diode Mixer

The double-balanced mixer in figure 13.11 provides isolation between all the
three ports. The isolation is determined by the balance of the transformer
windings and careful matching of the diode characteristics. This is a common
type of mixer because of its simplicity and because it will work over a wide 
Figure 13.10  Data sheet from Mini-Circuits showing a selection of double-

balanced mixers. (www.minicircuits.com)

frequency range. Primarily the frequency range is limited by the transformers.
However, if toroidal-cored, transmission-line transformers are used, band-
widths of 1000:1 can be achieved. These mixers typically have a conversion
loss of about 6 dB, and a noise figure on the order of 6 to 8 dB. The isolation
of the LO from the RF port is around 60 dB, decreasing at higher frequencies
because of unbalance due to stray capacitances, and so forth. The two-tone,
third order intermodulation products are typically 50 to 60 dB down from the
desired IF components.
Let us examine how balance is achieved. The LO voltage at point A and are
the same as the centre-tap of the transformer or ground. Therefore, there is no
voltage between A and B, and no voltage across the RF or IF ports. Similarly
the isolation between the RF and the IF or LO ports is implied by examining
the RF voltage at point C and D.
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Figure 13.9  Single-balanced microstrip hybrid mixer.
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As in the single-balanced mixer, the local oscillator voltage is assumed to be
large enough to control the on-off cycle of the diodes. That is, the currents
due to the RF signal is small compared with those due to the LO signal. The
waveforms are shown in figure 13.12. 

The IF output spectrum will contain only the frequencies , with n
odd. Neither  nor  appears in the output as shown in figure 13.13 
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The symmetry of a double-balanced diode mixer yields excellent isolation be-

Figure 13.12  The waveforms at the tree ports at a double-balanced diode mix-
er when  and .fRF 15 MHz= fLO 20 MHz=

nfLO fRF±
fLO fRF

0 20 40 60 80 100 120

Figure 13.13  IF output spectrum from a double-balanced diode mixer when
 and fRF 15 MHz= fLO 20 MHz=
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13.4.4 Single Transistor Mixer

The single stage BJT mixer may produce a conversion gain of 30 dB or more.
However, as the BJT has an exponential form of transfer function, the third-
order intermodulation distortion (IMD) tends to be significant. Another draw-
back is the limited dynamic range. An ideal mixer should be able to accept a
wide range of input amplitudes without producing intermodulation and cross-
modulation distortion. This can to a certain extent be carried out by an auto-
matic gain control (AGC) in the RF amplifier. Figure 13.14 shows a typical
single transistor mixer. The LO amplitude should be large enough to ensure
nonlinear operation in the transistor and the collector tank circuit should be
tuned to . 

Obviously the isolation between the ports is poor. Especially care has to be
taken to prevent LO leakage to the receiving antenna by proper filtering in the
RF stage. The local oscillator signal can be injected either at the base as in
figure 13.14a, or at the emitter as in figure 13.14b. Emitter injection yields
slightly lower conversion gain because of the impedance inserted between the
emitter and ground but gives a better isolation between the LO and RF ports.
Field-effect transistors are preferred over BJT’s for high-frequency mixer
applications. Although FET mixers have a lower conversion gain, they pro-
duce less intermodulation and cross-modulation distortion because of the
square-law transfer characteristic. In addition their lower feedback capaci-
tance provides better circuit stability. Both JFET’s and MOSFET’s are used,
with the latter generally showing higher values of transadmittance and more
power gain. With dual-gate MOSFET’s the RF and LO inputs can be con-
nected to separate gates, thus improving the isolation between the input ports.
A dual-gate MOSFET is similar in the structure to a single-gate device,
except that it includes a second gate between the first gate and the drain. This
gate has several effects on the operation. Its primary use is to control the
small-signal transconductance of the first gate. Second, because the second
gate is usually grounded at the RF frequency, it acts as a shield between the
drain and the first gate, reducing the feedback capacitance  to a very low
value. The low value of , typically less than 0.1 pF, ensures good stability
and high maximum available gain.
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(a)   Base injection (b)   Emitter injection

Figure 13.14  Single-ended transistor mixer
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Dual-gate FET’s are usually modelled as two single-gate devices in cascode
as shown in figure 13.15.

As would be expected for a cascode stage, larger gain is provided for signals
at gate 1 than at gate 2. Accordingly the RF signal is connected to gate 1 and
the LO signal to gate 2. Approximately 20 dB of LO-to-RF isolation is
thereby achieved. This kind of circuit can often allow the use of a single-
ended mixer instead of a balanced mixer, or at least simplify the RF input fil-
ter. An example of a single-ended active mixer using dual-gate MOSFET is
illustrated in figure 13.16.

13.4.5 Integrated Mixer

An analog multiplier is a circuit that takes two analog inputs and produces an
output proportional to their product. The emitter-coupled pair [3] meets this
property and can be used as an integrated single-balanced mixer. Integrated
circuits such as CA (or LM) 3028 operates to 120 MHz. As seen schemati-
cally in figure 13.17 it has an emitter-coupled pair with a (normally) constant

Gate 2
Gate 1

Drain

Source

Gate 2

Gate 1

Drain

Source

Figure 13.15  (a) Schematic diagram for the dual-gate MOSFET, (b) an
equivalent representation showing two MOSFETS in cascode connection.

+12 V

IF outLO in

RF in

tuned to RF
tuned to IF

Figure 13.16  Single-ended active mixer using dual-gate MOSFET.
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current source which is controlled by the LO signal. Thus, sum and difference
frequencies are produced. This IC has numerous applications, including AM
modulator and cascode amplifier with AGC. 

The basis for most integrated mixers is the Gilbert multiplier cell shown in
figure 13.18. The series connection of an emitter-coupled pair with two cross-
coupled emitter-coupled pairs produces a particularly useful transfer charac-
teristic. [3]

The lower emitter-coupled pair Q1 - Q2 is operated in linear mode for most
applications. With no emitter degeneration , the maximum input volt-
age for linear operation is approximately . However, by inserting proper
values of R, emitter degeneration can be utilised to increase the linear RF sig-

oscillator

CA3028

+VCC IF out

RF in

Local

Figure 13.17  Emitter-coupled
pair used as mixer.
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Figure 13.18  Gilbert multiplier circuit.
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nal range. Unfortunately, this can not be done with the cross-coupled pairs Q3
- Q6 because the degeneration resistors destroy the required nonlinear relation
between  and  in those devices.
The upper emitter-coupled pairs may be operated in either a linear or a satu-
rated mode:

• For low-level operation, , the IF output will contain sum and
difference frequency components and have an amplitude which is a
function of the product of the input signal amplitudes.

• For high-level operation, , and linear operation at the RF
port, the IF output will contain sum and difference frequency compo-
nents and the fundamental and odd harmonics of the LO frequency.
The output amplitude will be a constant times the RF amplitude.
Thus, any amplitude variations in the LO signal will not appear in the
output.
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Chapter 14

Power Amplifiers

Power amplifiers (PAs) are used when power efficiency and output power are
the main design parameters. Power amplifiers can be designed in many ways
depending on the requirements on efficiency, output power and linearity.
There are nine commonly accepted classes of operation (A, B, C, D, E, F, G,
H and S) that can be found in the literature [1]. What distinguish one class
from another is primarily based on how the transistor is biased but also the
circuit topology. For example, the small signal amplifiers that were consid-
ered in earlier chapters are by definition class A amplifiers. They are biased
such that the operation is always confined to the active region of the transis-
tor. It is readily understood that such an amplifier can be used as a power
amplifier as well even though it might not always be the optimal choice. The
other classes differs from the class A amplifier such that they have biasing or
a circuit topology that has been optimised for power efficiency and output
power. 
Previous chapters have presented amplifier design methodologies based on
linear models. At low frequencies it is appropriate to use a more or less sim-
plified hybrid-π model whereas at higher frequencies it is more convenient to
use for example S parameters. As the signal power that is to be dealt with
increases or the requirements on power efficiency increases these models will
gradually become more and more inaccurate. There are two reasons for that.
Firstly, a transistor is never perfectly linear by itself and the deviation from a
linear behaviour increases with increasing signal levels. In addition to this
inherently nonlinear circuit solutions might be needed to obtain a high power
efficiency. Secondly, the supply voltage and the circuit topology changes the
conditions to optimise gain and output power. 
A transistor in nonlinear operation generates distortion. This can be a serious
problem by itself but unfortunately it is not the only one. Another problem
arises already in the design procedure. There is no point in trying to measure
for example S parameters. The values obtained will only be valid for the
source and load impedances and the input signal power that was used in the
measurement. As a matter of fact, the complexity of a transistor in nonlinear
operation makes it impossible for the designer to apply purely analytical
models of the transistor and from there try to calculate source and load
impedances that result in a certain gain, output power, power efficiency or
whatever the specification might contain. Simulation and measurements are
used to a large extent over analytical methods.
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This chapter begins by discussing two important properties of power amplifi-
ers, namely power efficiency and linearity. This is followed by a survey of
some of the most important classes of transistor operation. Design considera-
tions are also brought up. After that measurement techniques are discussed
and finally amplifier topologies on block level are described.

14.1 Properties of Power Amplifiers

14.1.1 Power Efficiency

The total power consumption increases with increasing output power. High
power consumption is not desired either because of limited battery capacity
in the equipment or problems with generation of heat. Therefore, an impor-
tant parameter for power amplifiers is power efficiency. To be exact, power
efficiency is the ratio of the RF output power to the DC input power, i.e.,

In many cases the gain of a power amplifier is so low that the power of the
input signal will be a significant part of the total power consumption. In this
case it is advisable to refer to the power-added efficiency,

14.1.2 Linearity

Transistors are fundamentally nonlinear, e.g. the bipolar transistor has an
exponential transadmittance (and approximately a linear current gain)
whereas a FET device has a square-law transadmittance. Furthermore, at high
frequencies reactive elements (capacitors) in any transistor will have a signif-
icant impact on the behaviour.
In a more general context, systems that have only one of these two properties
(nonlinear or reactive) are usually possible to deal with analytically. We can
use series expansion of nonlinear systems and from there calculate distortion
products with different input signals. Reactive systems can be manipulated in
the Laplace-domain to obtain the transfer function and, furthermore, they can
be transformed to the time domain to get the impulse response etc. However,
for systems having both these properties the analytical methods are scarce
and difficult to use. Instead it is common to rely on tools based on numerical
methods such as circuit simulation software, e.g. Spice, to investigate the
properties of a system. These tools does not give the insight that purely ana-
lytical methods might give. On the other hand, complete circuits can be simu-
lated and the results will be as accurate as the models of the components.

η RF power delivered to load
DC power delivered to amplifier
------------------------------------------------------------------------------=

PAE RF power delivered to load - RF power delivered to amplifier
DC power delivered to amplifier

----------------------------------------------------------------------------------------------------------------------------------------------------=
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While it might be difficult to consider nonlinearities in the design procedure it
is much easier to model and measure a given nonlinear system. Even though
an amplifier is both nonlinear and reactive it can be modelled as not being
reactive (memoryless) under some circumstances. Basically, if the bandwidth
of the input signal is small enough compared with the assumed carrier fre-
quency the reactive parts of an amplifier will only contribute to a static phase
offset from the input to the output of the amplifier. In other words, the fre-
quency is roughly constant all the time and therefore the impedance of all
reactive elements are constant as well. It is therefore justifiable to recapitulate
how we can model a nonlinear function with polynomial expansion and what
kind of distortion products that come out of it.

14.1.3 Polynomial Expansion

A nonlinear system can be approximated by a polynomial. If  denotes the
input signal the output signal is given by

(14.1)

where more terms increase accuracy. If the system is weakly nonlinear the
terms for higher orders decreases rapidly and in many cases (14.1) can be
truncated after the third-order term. Subsequent analysis is based on that no
higher than third-order products are considered. Three different types of dis-
tortion products can be identified, namely harmonic distortion, intermodula-
tion distortion and spurious products. The two former can be derived from
(14.1) and this will be discussed briefly below. The latter is the result of more
complex processes in a circuit such as parasitic and subharmonic oscillations.
To understand harmonic distortion we apply a single sinusoid

 as input signal to the nonlinear system given by (14.1). The
output is given by

(14.2)

If we expand the trigonometric expressions and approximate by assuming
that  is small we get

(14.3)

This expression shows that we get what we refer to harmonic distortion, sinu-
soids at multiplies of the fundamental frequency . We can disregard the DC
term, , in this particular case since we are only interested in RF signals.
Equation (14.3) can be illustrated with respect to the input signal amplitude
in a dB-dB diagram as shown in figure 14.1. Here the input amplitude is rep-
resented by  and the output amplitude by . The fundamental fre-
quency will have a slope equal to one whereas the second order harmonic will
have a slope of two, the third-order harmonic a slope of three and so on. Thus,
a system that is assumed to be exercised such that this approximation will be
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valid is very simple to characterise. It is common practice to refer to the sec-
ond and third order intercept points,  and , that defines the intersec-
tions between the harmonics and the fundamental frequency as illustrated in
figure 14.1.
Evidently, higher intercept points means better linearity. Note that the inter-
cept points are artifacts as a result of extrapolated characteristics for the fun-
damental signal and its harmonics and the levels of distortion that they
represent cannot be reached. In practice, when the input amplitude is
increased these curves will finally saturate as exemplified in figure 14.1.
Intercept points are either referred to the input or to the output.
The 1dB-compression point is another important quantity which is defined as
the input signal where the actual curve for the fundamental frequency and the
extrapolated curve differs 1dB, see figure 14.1.

Figure 14.1  Intercept points for harmonic distortion.

Harmonic distortion can be reduced by filtering the amplifier output. A reso-
nance circuit, lumped or distributed, is found at the output in many amplifier
designs. This circuit will act as a simple filter that will suppress harmonics, in
many cases to acceptable levels.
A larger problem is the intermodulation distortion (IMD) products that appear
close to the desired RF signal if the RF signal is amplitude-modulated. This
kind of distortion can usually not be filtered because the bandwidth of signal
is much smaller than the carrier frequency. The nature of IMD is best under-
stood by considering an input signal consisting of two sinusoids close to each
other with equal amplitude (a two-tone test). This corresponds to a DSB-SC
(double-sideband-suppressed-carrier) amplitude-modulated signal. If 
denotes the RF carrier frequency and  the modulation frequency there will
be one tone at  and one at . If this signal is fed to a nonlinear
device the output spectrum will expand close to the input signal as well as in
the harmonic zones, see figure 14.2.
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Figure 14.2  Distortion products when the input signal consists of two 
sinusoids with equal amplitude at  and , respectively.

Expressions for each one of all these frequency components can be developed
by applying trigonometric expansion on the polynomial with the input signal,

. This is straightforward to do
but also tedious. Here we restrict ourselves to assert that we can quantify the
IMD products in the same way that we did with harmonic distortion, i.e., we
can introduce intercept points for the IMD products, see figure 14.3. How-
ever, in this case there will only be odd-order products present, i.e., third-,
fifth-order and so on.

Figure 14.3  Intercept points for IMD.

From the diagrams shown in figures 14.1 and 14.3 it is readily seen that the
concept of intercept points provides an easy way to determine distortion
products for a given input or output level, or the other way around, to deter-
mine an input or output level that corresponds to a certain level of distortion
products. Although, one should have in mind that as far as IMD is concerned
the intercept points only provides a coarse estimation. The modulating signal
is typically not a sinusoid but something very different from a sinusoid that
will result in different distortion levels. Still, the two-tone test described
above is well-established and in many cases gives a pessimistic estimations of
distortion levels. 
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14.1.4 AM-to-AM and AM-to-PM Conversion

Intercept points are convenient to use for specifying the performance of mod-
erately nonlinear amplifiers. However, many power amplifiers are deliber-
ately nonlinear to such extent that the approximation which the concept of
intercept points relies upon is not applicable. Moreover, there is a need for
accurate modelling of power amplifiers on system level rather than on circuit
level to be able to evaluate effects of nonlinearities in communication sys-
tems, e.g. the final power amplifier stage in a transmitter.
One practical way of modelling an amplifier is simply by measuring the out-
put power and the phase shift through the amplifier as a function of the input
power with a fixed carrier frequency. This is usually referred to as the AM-to-
AM and AM-to-PM conversion for an amplifier. It is also called baseband
model because in order to simulate intermodulation products there is no need
to calculate the waveform for the modulated carrier signal. The modulating
signals (baseband signals) that control the envelope and the phase of the car-
rier signal are sufficient.
In figure 14.4 below an example of AM-to-AM and AM-to-PM characteris-
tics are shown for a class C amplifier (see section 14.2.2.3) operating at
900MHz. Here the input voltage is the internal peak voltage of the source
which has a 50Ω impedance and the output voltage is the peak voltage over a
50Ω load. The phase shift corresponds to the total phase shift in the amplifier
including matching networks etc. Three regions can be identified in figure
14.4. For low input amplitudes the gain is very low and the phase shift is
approximately constant. The transition to the second region is characterised
by a rapid increase in gain as well as phase shift. The second region has an
almost linear AM-to-AM conversion and the phase decreases with increasing
input amplitude. The last region is characterised by saturation in the AM-to-
AM characteristic. Some of the causes to this behaviour is described in sec-
tion 14.2.2.3 which deals with class C amplifiers.

Figure 14.4  Typical AM-to-AM and AM-to-PM characteristics
for class C amplifier.
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14.2 Amplifier Classes

As mentioned in the beginning of this chapter there are nine different ampli-
fier classes, A, B, C, D, E, F, G, H and S, that are well established. They
resemble a basic set of solutions to amplifier operation with various biasing
levels and circuit topologies. Other classes is often found in the literature but
they are in many cases derivatives of these nine basic classes. Below, the
basic properties of the A, B, and C classes are discussed, class A in particular,
followed by a short survey of the other classes. For a more detailed treatment
please refer to [1].

14.2.1 Operating Regions

To understand the fundamental operation of the various classes we only need
to use a simple and ideal model of an active device. Fortunately, it is not even
necessary to consider bipolar and FET devices separately.
Three operating regions can be defined for an active device, namely linear-
active, cutoff and saturated regions1, see figure 14.5. In other words, in the
active region we assume that a device is a linearly controlled source and the
two other regions together constitute an ideal switch with zero resistance in
the saturated region and infinite impedance in the cutoff region. Saturation
causes the voltage across a device (collector-emitter or drain-source) to take a
limiting value, . In the ideal model this is assumed to be zero if nothing
else is stated. This is of course an extremely simplified picture of a very com-
plex device. The model ignores device capacitors and assumes a perfectly lin-
ear active region. Nevertheless, when the model is applied to the various
classes of operation it will be possible to find the fundamental limit of per-
formance for a given class.

Figure 14.5  Output diagram with the different operating regions.
Terms for quantities are given both for bipolar and FET devices.

1 This is the nomenclature used for bipolar devices. For FET devices the ac-
tive region is termed saturation region and the region for low drain-source
voltages is termed ohmic or triode region.
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14.2.2 Classes A, B and C

Common for the A, B and C classes is that they all use active devices that
operate in their linear-active region for a significant portion of the RF cycle.
High linearity and high efficiency are two conflicting requirements that can-
not be obtained simultaneously. The class A, B and C amplifiers are located
along a line between these two extremes where class A provides a high
degree of linearity, class C high efficiency and class B a little bit of both.
Analysis of the performance of these amplifier classes is straightforward, so
long as they are operated at power levels below those that cause saturated
operation. Saturated operation is more difficult to analyse without resorting to
numerical methods and this topic is not discussed here.

14.2.2.1 Class A

A class A amplifier is biased such that operation is confined solely to the
active region. Therefore, there is no essential difference between a class A
power amplifier and a small-signal amplifier. However, no practical device is
perfectly linear and an amplifier that is operated at PEP (peak-envelope-
power) will have third-order IMD products no better than 30dB below the
desired signal.
A basic common-emitter bipolar class A amplifier for low frequencies is
depicted in figure 14.6a. 

Figure 14.6  Class A amplifier
(a) basic circuit topology (b) class A operation.
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The load is ac-coupled to the device and a high impedance RFC connects the
device to the supply voltage. In addition to this there is an optional parallel-
tuned circuit ( ) that will suppress harmonics generated by the moder-
ately nonlinear device. Note that in this cases the inductor in the tuned circuit
can replace the RFC to provide the supply voltage to the transistor. In figure
14.6b the collector voltage and current for a sinusoid input is shown where

 denotes the output voltage amplitude and  the output current ampli-
tude.
From figure 14.6b it is evident that output voltage amplitude  must be
smaller than  to avoid transistor cutoff. Furthermore, the output current
amplitude  must be smaller than  to avoid saturated operation. The out-
put current and output voltage are related by .and it is of course
desirable that both the output voltage and output current reach there limits for
the same signal amplitude. Thus we can write  that yields the
optimal load resistance for a given operating point for the transistor. Once we
have an optimal load resistance we will also be able to obtain an optimal
power efficiency at peak signal level. The DC input power  is given by

(14.4)

The output RF power is

(14.5)

and hence the instantaneous power efficiency  is given by

(14.6)

In conclusion, if the input signal is a sinusoid and the load is optimised for
maximum output power at PEP the maximum efficiency becomes 50%.
An alternative way of investigating the effect of load resistance is to consider
the load line in the output diagram, see figure 14.7, which also shows the
effect of the saturation voltage. Thus, from figure 14.7 we see that the optimal
load impedance is given by

(14.7)

For higher frequencies the behaviour of a transistor is far from what we have
assumed above, parasitics dominate the performance of the device. In this
case a more pragmatic approach can be used where the optimal source and
load impedances are found by an iterative measurement procedure, see sec-
tion 14.3.
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As far as biasing is concerned a class A amplifier is equivalent to a small sig-
nal amplifier and the techniques described in an earlier chapter are fully
applicable.

Figure 14.7  Output diagram and load line for three different loads.

14.2.2.2 Class B

In class B operation two devices operate in the active region for exactly half
one RF cycle each. When one device operates in the active region the other
device is cutoff. At low- and mid-frequencies two alternating devices can be
used as show in figure 14.8. Here a transformer-coupled “push-pull” circuit is
shown but one can also conceive a version with two complementary devices.
One of the most evident benefits with these approaches is that there will be
virtually no even-order distortion products if the two devices are well
matched. Thus, a tuned circuit might not be necessary and therefore the
amplifier can be realised as a broadband amplifier.
A practical limitation for the push-pull class B amplifier is the RF trans-
former that becomes increasingly difficult to implement due to losses as the
frequency is increased. By using complementary devices the transformer is
avoided but then again complementary devices are typically poorly matched
which can cause crossover distortion as one device starts to conduct at one
half-cycle and the other device will be cutoff. For these reasons a tuned sin-
gle-ended (just one device) version of the class B amplifier is often used at
VHF and above at the expense of broadband operation. The circuit topology
of a single-ended class B amplifier will be the same as for a class A amplifier
with a tuned circuit at the output. The only difference is the biasing level.
In any case, it can be shown that the efficiency of a class B amplifier is given
by [1]

(14.8)

where  is the collector voltage amplitude, see figure 14.8.
As was the case for the class A amplifier the maximum value of  possible
before saturation occurs is equal to the supply voltage, . Thus, the maxi-
mum efficiency becomes  or 78.5% at PEP. Note that there is no optimal
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load impedance as was the case for the class A amplifier which have
restricted output voltage as well as restricted output current. Ideally, the out-
put power is given by

(14.9)

where  denotes the resistance as seen by one device with the other device
open.

Figure 14.8  Transformer-coupled push-pull class B amplifier
(a) circuit topology (b) class B operation.

Linear amplification with class B amplifiers assumes instantaneous transition
between active and cutoff regions of operation. Practical devices cannot
achieve this and the resulting crossover distortion that is introduced has the
effect of reducing the linearity of the amplifier. Crossover distortion is mini-
mised by biasing of the devices. A small quiescent current can be introduced
to reduce distortion products at the expense of power efficiency. This mode of
operation is sometimes referred to as class AB but class B is also used since a
small quiescent current will be needed anyway to have a device conducting in
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the neighbourhood of one-half RF cycle. The amount of quiescent current
required for minimum distortion is most readily determined experimentally,
since theoretical predictions are quite complicated. A quiescent current
between 1 to 10 percent of the peak collector or drain current typically results
in minimum IMD and the value is usually not critical.
In conclusion an ideal class B amplifier offers improved efficiency over class
A operation with preserved linearity. However, in practice the linearity of
class B amplifiers is found to be slightly worse than an equivalent class A
amplifier.

14.2.2.3 Class C

Class C amplifiers offers even higher efficiency compared to class A and B
amplifiers at the expense of linearity. The active device is biased in such a
way that is spends significantly less than half an RF cycle in their active
region that makes the class C amplifier inherently nonlinear. The circuit
topology is the same as for a class A amplifier with a tuned circuit to suppress
harmonics, see figure 14.6. 
The maximum efficiency at PEP for an ideal class C amplifier is found to be
[1]

(14.10)

where  denotes the conduction angle, see figure 14.9. As the conduction
angle approaches zero the efficiency tends to 100%. At the same time the
peak collector (or drain) current tends to infinity to maintain a given output
power.

Figure 14.9  Class C operation.
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Class A, B and C amplifiers have one major disadvantage in common. A
device that operates in the active region inevitably dissipates power, a current
flows through the device at the same time as there is a voltage drop across it.
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( ) regions will act as a switch and will therefore ideally not
dissipate any power at all. Therefore, an ideal amplifier of this kind has 100%
power efficiency but it is also grossly nonlinear. The class D, E and S are
based on this technique.
A class D amplifier needs two devices to form a double-pole switch that
defines a rectangular voltage or current waveform. The topology for the
transformer-coupled class B amplifier in figure 14.8 is one possible solution
with the addition of a series-tuned circuit in series with the load that removes
harmonics. The switching action in each device makes this class of amplifier
operation grossly nonlinear and it is therefore not suitable for amplitude mod-
ulated signals. The class E amplifier is a single-ended version of the class D
amplifier.
The class F amplifier utilise a single device operating as a current source
biased as a class B or C amplifier. The load network have resonances at one
or more harmonics as well as at the fundamental frequency. However, only
the fundamental frequency is supposed to reach the load. The other reso-
nances are designed to flatten the voltage at the collector to improve power
efficiency. The class F amplifier can be found in many forms in the literature
and many have their own designated names such as ‘biharmonic’, ‘polyhar-
monic’, ‘class CD’, ‘single-ended class D’, ‘high efficiency class C’ and
‘multi-resonator’. The class F amplifier is inherently nonlinear.
Two or more pairs of devices are needed to form a class G amplifier. Each
pair operates as a complementary class B amplifier. Furthermore, each pair
has its own supply voltage and for low input amplitudes the pair with the
lower supply voltage is active. The low voltage pair is cutoff when the input
amplitude increases beyond the capability of this circuit and a pair with a
higher supply voltage is activated. This technique increases power efficiency.
The class G amplifier operates on the instantaneous level of the signal ampli-
tude to decide which pair to activate. This requires the devices to switch rap-
idly between cutoff and active regions of operation at the signal frequency.
For this reason this class of operation is not applicable to high frequency
designs. 
The class H amplifier consists of a class B amplifier that amplifies the signal.
To minimise power dissipation in the device the supply voltage for the class
B amplifier is maintained just above the instantaneous level of the signal by a
highly efficient, fast and controllable voltage source. This class of operation
is also limited to low frequencies due to speed limitations in the voltage
source.
Class S amplifiers are highly efficient linear switching amplifiers. Two active
devices form a double-pole switch in a similar manner to class D operation
but with a switching frequency much higher than the signal frequency. An
output filter recovers the slowly varying average value of the switching sig-
nal. The average value of the switching waveform is controlled by altering
the pulse duty cycle in accordance with the input signal to create a pulse-
width modulated waveform. Unfortunately, because the switching frequency
needs to be much greater than the signal frequency, practical class S amplifi-
ers are restricted to low frequency applications. 

VCE VSAT 0≈=
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14.3 Measurement Techniques

14.3.1 Measuring Nonlinear Behaviour

Intercept points and AM-to-AM/AM-to-PM conversion represent two ways
to quantify a nonlinearity. The former is measured with a spectrum analyser
and one or two signal generators as shown in figure 14.10, the latter with a
network analyser as illustrated in figure 14.11.

Figure 14.10  Measurement setup to estimate intercept points (a) with one sig-
nal generator for characterisation of harmonic distortion (b) with two signal
generators for IMD characterisation.

Figure 14.11  Measurement setup for characterisation of
AM-to-AM and AM-to-PM conversion.

To estimate intercept points the nonlinear device is exercised with a single
tone for harmonics and two tones with a small separation in frequency for
IMD characterisation, i.e., equivalent to the analysis in section 14.1.3. Levels
of relevant distortion products are measured using a spectrum analyser for
different input signal levels. Finally, intercept points are estimated from these
measurements by extrapolating the values.
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Both measurement setups in figure 14.10 contains a lowpass filter in front of
the device. This filter is needed to suppress harmonics from the signal gener-
ators which would otherwise interfere with the measurements. Furthermore,
if the input impedance of the device is nonlinear there will be an undesired
interaction between the device and the signal generator resulting in new dis-
tortion products. In this case an isolator is required to separate the generator
and the device. An attenuator will be sufficient in many cases. The disadvan-
tage with an attenuator is that the generator power level must be increased
accordingly which leads to increased levels of harmonics from the generator.
If this is a problem a circulator will do better since it provides a high degree
of isolation but low attenuation. For IMD measurements interaction between
the two generators should also be avoided. Another source of error is the
spectrum analyser. Although the spectrum analyser is quite linear it is still not
sufficiently linear to be used without precautions. The instrument specifica-
tion can be used to chose a suitable input power level that will result in distor-
tion products far below those generated in the measured device. In summary,
to be able to succeed with distortion measurements the effects of the measure-
ment system should be verified and compared with the expected behaviour of
the device that is to be measured.
A network analyser is preferably used to measure AM-to-AM/AM-to-PM
conversion. The network analyser should be set to measure the magnitude
and the phase of the complex-gain in power-sweep mode with the desired car-
rier frequency fixed. Figure 14.12 shows that three instrument ports are
required. The source port feeds the device with a test signal and the device
output is measured with one of the input ports. The second input port (Ref.) is
used for calibration purposes to eliminate the influence of cables etc. in the
measurement setup. Typically, network analysers have built-in functions to
facilitate the calibration procedure.

14.3.2 Optimal Loading

As mentioned in the introductory section we cannot measure S parameters for
a transistor in a nonlinear mode of operation. Such a measurement would
only be valid for the specific input power and the specific source and load
impedances used in the measurement. Instead we have to emulate the source
and load impedances that gives the desired properties of the amplifier in
terms of gain, power efficiency, output and maybe also linearity. Such a
measurement system is illustrated in figure 14.12.
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Figure 14.12  Measuring system for large signal parameters. Blocks within 
dashed frame can be replaced by a network analyser.

With this measuring system it is possible to alter both DC biasing, through
bias-TEEs, and impedance levels with tuners, both on the source and the load
side. In addition to this we must be able to alter the input power level. To
obtain a certain output power with a given available source power the proce-
dure is as follows; The output tuning circuit is adjusted so that a certain
power level at the output is obtained (power meter C) and at the same time
the input tuner is adjusted to obtain zero reflected power (conjugate match)
which can be read from power meter B. The incident input power can be read
from power meter A. If other specifications must be met such as power effi-
ciency and linearity the procedure becomes tedious and even more iterative.
Once the desired specification has been met the device is disconnected and a
network analyser is used to measure the output impedance of the source and
the load tuners. Note that a network analyser can replace all blocks within the
dashed frame in figure 14.12 in the tuning procedure described above.
The impedances that were measured should be realised in the design using
matching networks to obtain the desired properties again. Note that this meas-
urement technique applies to any class of amplifier operation. Actually, the
device in figure 14.12 could be single transistor or a more or less complete
design with biasing circuitry etc. whose optimal source and load impedance
should be found.
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14.4 Amplifier Topologies

In high power applications a single transistor device might not be enough to
obtain a certain level of output power. It can also be that a single transistor
amplifier is not the most cost-effective solution due to high cost of high
power devices. Instead we can use several transistors in parallel and we then
have two options. Either we can connect the transistors directly in parallel as
shown in figure 14.13 or use a structure based on hybrid combiners and divid-
ers as illustrated in figure 14.14. The former is theoretically possible to use
but in many cases impractical. As the number of parallel-coupled transistors
are increased the input and output impedances will decrease. This effectively
increases the losses in the matching networks because the equivalent series
resistance of the components in the matching networks will be in the same
order of magnitude as the input resistance of the parallel-coupled transistors.
Another disadvantage is that if one transistor fails the complete amplifier fails
as well. The hybrid approach overcomes these problems.

Figure 14.13  Simple but not always a feasible structure for high-power 
amplifiers.

Figure 14.14  High power amplifier structure based on hybrid combiner/
divider.

The most common arrangement for a power amplifier based hybrid combin-
ers and dividers is the balanced amplifier configuration in figure 14.15. Com-
biner and divider circuits are configured such that the signals are  out of
phase between ports 2 and 3 (i.e. the signals are in quadrature). Furthermore,
if the divider at the input side provides  phase shift for the upper branch
then the combiner at the output will contribute  to the lower branch, i.e.,
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both branches will have equal phase shifts. As we will see later there are good
reasons to have this arrangement. The Lange coupler and the quadrature cou-
pler are two combiner/divider solutions that provide the desired phase rela-
tionships directly but it is also possible to use a Wilkinson coupler where the
signals are in phase at ports 2 and 3. One of the ports of the Wilkinson cou-
pler is then extended with a quarter-wavelength transmission line. The net
effect will be the same as with the previously mentioned couplers.

Figure 14.15  Balanced amplifier configuration

If the amplifiers found in each branch is in figure 14.15 are linear enough to
be characterised by S parameters, we can write the S parameters for the com-
plete amplifier where we assume that there are no additional phase shifts
between the blocks in figure 14.15. The S parameters for the complete ampli-
fier are given by

(14.11)

(14.12)

(14.13)

(14.14)

These expressions are quite intuitive. If the amplifies are identical both
branches will provide the same gain and no reflection at the input and the out-
put. The latter property is an effect of the quarter-wavelength difference
between the branches at the input and output sides, respectively. For example,
consider what happens with a signal that is fed to the input of the complete
amplifier. If each branch amplifier reflects the signal equally the signal in the
upper branch will be half a wavelength delayed compared with the signal in
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the lower branch when they return to the divider again. Due to the phase
properties of the divider these signal will be in anti-phase at the divider input
but in-phase at the isolation port where the signal power will be dissipated. 

Due to the isolating properties of the hybrid combiners and dividers this
arrangement will not fail completely if one device breaks. In a balanced
amplifier structure as the one shown in figure 14.14 there will only be a
reduction in gain.
This amplifier structure can be extended to have more than two branches. For
example, the two outputs of one divider can feed the inputs of two other
dividers to split the signals to four ports. The combining circuitry can be
designed in the same way. In this case it is important to note that the inner-
most dividers/combiners should provide the  phase shift whereas the oth-
ers should be symmetrical in phase. One problem with this scheme is that as
the number of branches increases the power efficiency of the divider and the
combiner circuits will go down.

14.5 References
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Appendix A

Applying the Indefinite 
Admittance Matrix to 
Calculate the Boundaries for 
Oscillation

The indefinite admittance matrix equation is a matrix form for calculating the
transfer function and impedances in an electronic circuit. The circuit is repre-
sented by the admittance between different nodes and the corresponding node
voltages

 

The indefinite matrix, , has some characteristic properties:
1.
2. The sum of the elements in a row equals zero
3. The sum of the elements in a column equals zero 
4. All subdeterminants  are equal, deleting an arbitrary row  or col-

umn  of the matrix does not make any difference to the resulting
determinant.

From linear algebra we also have the following important result:
A determinant of a matrix  that differs from zero, , implies that
the equation  has only the trivial solution . If on the other
hand  there exist non trivial solutions  to 
How does this relate to the indefinite admittance matrix?
If one node, noted , is assumed to be the reference (ground) node, the cor-
responding row and column is deleted from the indefinite admittance matrix
and we get a definite admittance matrix, . If the admittances are chosen so
the determinant of this sub-matrix equals zero

I Y V⋅=
i1

…
ii

y11 … y1j

… … …
yi1 … yij

v1

…
vi

⋅=

Y

det Y( ) 0=
yiji∑ 0=

yijj∑ 0=
Yi

j i
j

A det A( ) 0≠
A X⋅ 0= X 0=

det A( ) 0= X 0≠ A X⋅ 0=

m

Ym
m
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(A.1)

We will have a non trivial solution to the equation . The non
trivial solution  implies that there can exist voltages in the system with-
out having an external current source driving the system i.e. an self generat-
ing circuit. 
If we set up the indefinite admittance matrix for a transistor and three sur-
rounding admittances, see figure A.1, like in the generalized oscillator model
in chapter 10, it will have the corresponding indefinite admittance matrix as
follows:

Figure A.1  Simplified transistor model in oscillator circuit with admittances

Attach a fictitious external current source to the node you want to set up the
Kirchoff current equations for. This to help get all current directions and volt-
age references correct. The current source is not necessary since you can
apply the Kirchoff current law to the node without it but the authors opinion
is that it simplifies the procedure a lot. 

Figure A.2  Fictitious external current source  connected to node 1

The current can then be calculated as 

Extracting the voltages gives us the first row in the matrix 

det Ym
m( ) 0=

Ym
mV I 0= =

V 0≠

y1 y2

y3

3

1 2
gm v1 v3–( )gπ

y1 y2

y3

21

3

gm v1 v3–( )gπ

i1

i1

i1 y1 v1 v3–( ) y3 v1 v2–( ) gπ v1 v3–( )+ +=

Y
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A quick check shows that the rowsum equals zero and the diagonal element
( ) contains all the admittances connected to the node with positive sign.
This is a very convenient way of checking that the matrix has been set up
right.
The second node contains a current generator that draws current from the
node. This should then be subtracted from the external test generator  since
its direction is opposite regarding the node.

The third and final node current is calculated in the same way. Now the cur-
rent generators have the same direction so  and  are added.

This finally yields a full  matrix

A final check that all diagonal passive elements are positive and that each row
and column sum are zero shows that the matrix (most likely) has been set up
correct. This circuit is free-floating and to calculate gain and impedances one
needs a reference node. In this case it is convenient to use node 3, the ground
node, as reference. If node 3 is grounded that means that  and column
3 can be deleted from .

i1 y1 y3 gπ+ + y3– gπ y1––
v1

v2

v3

=

y11

i2

i2 gm v1 v3–( )– y2 v2 v3–( ) y3 v2 v1–( )+=

i2 gm y3– y2 y3+ gm y2––
v1

v2

v3

=

gm v1 v3–( ) i3

i3 gm v1 v3–( )+ y1 gπ+( ) v3 v1–( ) y2 v3 v2–( )+=

i3 y1 g–– m gπ– y– 2 gm gπ y2+ +
v1

v2

v3

=

Y

Y
y1 y3 gπ+ + y3– gπ y1––

gm y3– y2 y3+ gm– y2–
y1– gm– gπ– y2– gm gπ y2+ +

=

v3 0=
Y
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If we connect all the external current generators to the circuit, (A.3, it is nec-
essary that the sum of the incoming currents must equal zero. One current can
be therefore be written as a linear combination of the others. If it is so, the
corresponding row can be deleted from  since it does not contribute any
new information.

Figure A.3  Current sources connected to circuit.

From the statements in the beginning it follows that any row or column can be
deleted if we are only interested in the determinant. Here we eliminate the
reference row (3) and column (3). We have then left the submatrix, denoted

The determinant of  now becomes

If all reactances are considered lossless,  are purely imaginary in an
oscillator. The determinant can now be written as one real and one imaginary
part which both must be zero to ensure oscillation (equation (A.1)).

(A.2)

(A.3)

Y

y1 y2

21

3

gm v1 v3–( )gπ

i1

i3

i2

y3

Y3
3

Y3
3 y1 y3 gπ+ + y3–

gm y3– y2 y3+
=

Y3
3

y1y2 y2y3 gπy2 y1y3 y3
2 gπy3 gmy3 y3

2–+ + + + + +

y1…3

Re det Y3
3( )( ) y1y2 y2y3 y1y3+ + 0= =

Im det Y3
3( )( ) gπ y2 y3 1

gm

gπ
------+⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞

gπ y2 y3 1 β+( )+( ) 0

=

= =
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With  and by dividing the terms in the real part with  this is
now be rewritten as

(A.4)

which is recognised as the criterion for oscillations from chapter 10 Now you
can not only use the formula, you can prove it as well and that may give some
relief and satisfaction.
For the imaginary part,  and therefore 

(A.5)

With a positive  this demands that  and  are of the same type, i.e.
capacitors or inductors and their mutual magnitude is determined by .
As can be seen from these calculations it is easy to use a more complex tran-
sistor model with various capacitors and resistors as well as applying a load to
the oscillator. The problem is that the expressions tend to grow tremendously
if there are more than three nodes in the net and already at five nodes some
kind of computer assistance is absolutely needed.
Another way of calculating oscillation would be to find the impedance of a
node and see if it is negative or calculate the transfer function and see if the
poles are in the right half of the complex plane. More on indefinite admit-
tance matrix and its applications and equations can be found in [1].

A.1 References

[1] H. Floberg, Symbolic Analysis in Analog Integrated Circuit Design,
Kluwer Academic Press, 1997.

x 1 y⁄= y1y2y3
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------------------------ β⇒–
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-----= = = =
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Appendix B

Filter Tables

B.1 Pole Locations for Normalised Filters

Below poles are given for normalised Butterworth, Bessel and Chebyshev fil-
ters. The definition of normalised is unique for each filter approximation. For
the Butterworth filter it means 3dB attenuation at  whereas for the
Chebyshev filters it means that the attenuation is equal to the ripple at

. For the Bessel filter it is completely different, here the poles are
given for unity delay at .

B.1.1 Butterworth Poles

B.1.2 Bessel Poles

1 2 3 4 5 6 7 8 9 10
-1.0000 -0.7071 

±j0.7071
-0.5000 
±j0.8660

-0.9239 
±j0.3827

-0.8090 
±j0.5878

-0.9659 
±j0.2588

-0.9010 
±j0.4339

-0.9808 
±j0.1951

-0.9397 
±j0.3420

-0.9877 
±j0.1564

-1.0000 -0.3827 
±j0.9239

-0.3090 
±j0.9511

-0.7071 
±j0.7071

-0.6235 
±j0.7818

-0.8315 
±j0.5556

-0.7660 
±j0.6428

-0.8910 
±j0.4540

-1.0000 -0.2588 
±j0.9659

-0.2225 
±j0.9749

-0.5556 
±j0.8315

-0.5000 
±j0.8660

-0.7071 
±j0.7071

-1.0000 -0.1951 
±j0.9808

-0.1736 
±j0.9848

-0.4540 
±j0.8910

-1.0000 -0.1564 
±j0.9877

1 2 3 4 5 6 7 8 9 10
-1.0000 -1.5000 

±j0.8660
-1.8389 
±j1.7544

-2.8962 
±j0.8672

-3.3520 
±j1.7427

-4.2484 
±j0.8675

-4.7583 
±j1.7393

-5.5879 
±j0.8676

-6.1294 
±j1.7378

-6.9220 
±j0.8677

-2.3222 -2.1038 
±j2.6574

-2.3247 
±j3.5710

-3.7357 
±j2.6263

-4.0701 
±j3.5172

-5.2048 
±j2.6162

-5.6044 
±j3.4982

-6.6153 
±j2.6116

-3.6467 -2.5159 
±j4.4927

-2.6857 
±j5.4207

-4.3683 
±j4.4144

-4.6384 
±j5.3173

-5.9675 
±j4.3849

-4.9718 -2.8390 
±j6.3539

-2.9793 
±j7.2915

-4.8862 
±j6.2250

-6.2970 -3.1089 
±j8.2327

ω ω0⁄ 1=

ω ω0⁄ 1=
ω ω0⁄ 0=



Appendix B Filter Tables

346

B.1.3 Chebyshev Poles, 0.1dB Ripple

B.1.4 Chebyshev Poles, 0.25dB Ripple

B.1.5 Chebyshev Poles, 0.5dB Ripple

B.1.6 Chebyshev Poles, 1dB Ripple

1 2 3 4 5 6 7 8 9 10
-6.5522 -1.1862 

±j1.3809
-0.4847 
±j1.2062

-0.6377 
±j0.4650

-0.4360 
±j0.6677

-0.4280 
±j0.2831

-0.3395 
±j0.4637

-0.3216 
±j0.2053

-0.2729 
±j0.3562

-0.2575 
±j0.1617

-0.9694 -0.2642 
±j1.1226

-0.1665 
±j1.0804

-0.3133 
±j0.7734

-0.2349 
±j0.8355

-0.2727 
±j0.5847

-0.2225 
±j0.6694

-0.2323 
±j0.4692

-0.5389 -0.1147 
±j1.0565

-0.0838 
±j1.0418

-0.1822 
±j0.8750

-0.1452 
±j0.9018

-0.1844 
±j0.7307

-0.3768 -0.0640 
±j1.0322

-0.0504 
±j1.0255

-0.1184 
±j0.9208

-0.2905 -0.0408 
±j1.0207

1 2 3 4 5 6 7 8 9 10
-4.1081 -0.8983 

±j1.1432
-0.3836 
±j1.0915

-0.5131 
±j0.4377

-0.3535 
±j0.6414

-0.3485 
±j0.2752

-0.2771 
±j0.4539

-0.2630 
±j0.2020

-0.2235 
±j0.3516

-0.2110 
±j0.1600

-0.7672 -0.2125 
±j1.0568

-0.1350 
±j1.0379

-0.2552 
±j0.7517

-0.1918 
±j0.8180

-0.2230 
±j0.5752

-0.1822 
±j0.6607

-0.1904 
±j0.4642

-0.4370 -0.0934 
±j1.0269

-0.0684 
±j1.0200

-0.1490 
±j0.8609

-0.1189 
±j0.8902

-0.1511 
±j0.7231

-0.3076 -0.0523 
±j1.0154

-0.0413 
±j1.0123

-0.0970 
±j0.9111

-0.2378 -0.0334 
±j1.0100

1 2 3 4 5 6 7 8 9 10
-2.8628 -0.7128 

±j1.0040
-0.3132 
±j1.0219

-0.4233 
±j0.4209

-0.2931 
±j0.6252

-0.2898 
±j0.2702

-0.2308 
±j0.4479

-0.2193 
±j0.1999

-0.1864 
±j0.3487

-0.1761 
±j0.1589

-0.6265 -0.1754 
±j1.0163

-0.1120 
±j1.0116

-0.2121 
±j0.7382

-0.1597 
±j0.8071

-0.1859 
±j0.5693

-0.1520 
±j0.6553

-0.1589 
±j0.4612

-0.3623 -0.0777 
±j1.0085

-0.0570 
±j1.0064

-0.1242 
±j0.8520

-0.0992 
±j0.8829

-0.1261 
±j0.7183

-0.2562 -0.0436 
±j1.0050

-0.0345 
±j1.0040

-0.0810 
±j0.9051

-0.1984 -0.0279 
±j1.0033

1 2 3 4 5 6 7 8 9 10
-1.9652 -0.5489 

±j0.8951
-0.2471 
±j0.9660

-0.3369 
±j0.4073

-0.2342 
±j0.6119

-0.2321 
±j0.2662

-0.1851 
±j0.4429

-0.1760 
±j0.1982

-0.1497 
±j0.3463

-0.1415 
±j0.1580

-0.4942 -0.1395 
±j0.9834

-0.0895 
±j0.9901

-0.1699 
±j0.7272

-0.1281 
±j0.7982

-0.1492 
±j0.5644

-0.1221 
±j0.6509

-0.1277 
±j0.4586

-0.2895 -0.0622 
±j0.9934

-0.0457 
±j0.9953

-0.0997 
±j0.8448

-0.0797 
±j0.8769

-0.1013 
±j0.7143

-0.2054 -0.0350 
±j0.9965

-0.0277 
±j0.9972

-0.0650 
±j0.9001

-0.1593 -0.0224 
±j0.9978
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B.1.7 Chebyshev Poles, 2dB Ripple

B.1.8 Chebyshev Poles, 3dB Ripple

1 2 3 4 5 6 7 8 9 10
-1.3076 -0.4019 

±j0.8133
-0.1845 
±j0.9231

-0.2532 
±j0.3968

-0.1766 
±j0.6016

-0.1753 
±j0.2630

-0.1400 
±j0.4391

-0.1332 
±j0.1969

-0.1134 
±j0.3445

-0.1072 
±j0.1574

-0.3689 -0.1049 
±j0.9580

-0.0675 
±j0.9735

-0.1283 
±j0.7187

-0.0969 
±j0.7912

-0.1129 
±j0.5607

-0.0924 
±j0.6474

-0.0967 
±j0.4567

-0.2183 -0.0470 
±j0.9817

-0.0346 
±j0.9866

-0.0754 
±j0.8391

-0.0603 
±j0.8723

-0.0767 
±j0.7113

-0.1553 -0.0265 
±j0.9898

-0.0209 
±j0.9919

-0.0493 
±j0.8962

-0.1206 -0.0170 
±j0.9935

1 2 3 4 5 6 7 8 9 10
-1.0024 -0.3224 

±j0.7772
-0.1493 
±j0.9038

-0.2056 
±j0.3920

-0.1436 
±j0.5970

-0.1427 
±j0.2616

-0.1140 
±j0.4373

-0.1085 
±j0.1963

-0.0923 
±j0.3437

-0.0873 
±j0.1570

-0.2986 -0.0852 
±j0.9465

-0.0549 
±j0.9659

-0.1044 
±j0.7148

-0.0789 
±j0.7881

-0.0920 
±j0.5590

-0.0753 
±j0.6459

-0.0788 
±j0.4558

-0.1775 -0.0382 
±j0.9764

-0.0281 
±j0.9827

-0.0614 
±j0.8365

-0.0491 
±j0.8702

-0.0625 
±j0.7099

-0.1265 -0.0216 
±j0.9868

-0.0171 
±j0.9896

-0.0401 
±j0.8945

-0.0983 -0.0138 
±j0.9915
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B.2 Ladder Filters

In subsequent sections tabulated element values are given for normalised But-
terworth, Chebyshev and Bessel filters. Values are given both for even-order
and odd-order filters in which odd-order filter element symbols are denoted
by  and . Elements are numbered starting at the load as shown figure
B.1. Note that element values are given for normalised frequency and the
load resistance normalised to unity.

Figure B.1  (a) Even-order filter structure (b) odd-order filter structure. 

Different tables exist for a few different source-load resistance ratios ( ); 0.1,
0.25, 0.5 and 1. For even-order filters the ratio is defined as  and
for odd-order filters . If the ratio is larger than unity the tables
can still be used because of the reciprocity of the filter, i.e., the filter topology
can be flipped between the source and the load. One special case is not
defined by figure B.1. If the filter-order is odd and the source resistance is
zero figure B.1b applies with the source resistance omitted and . The
component values should be denormalised as follows:

• Butterworth and Chebyshev filters
All inductor values should be multiplied by  and all capacitor
values should be multiplied by  where  is the angular nor-
malisation frequency.

• Bessel filters
All inductor values should be multiplied by  and all capacitor val-
ues should be multiplied by  where  is the delay of the filter
and is equal to . Thus a normalised Bessel filter always has a
group delay equal to unity.

The gain of the filter at  is simply determined by the voltage division
between  and . From this we conclude that power matching is only
obtained for .

Li′ Ci′

v1

+

-
v2

+

-

i2i1

Port 1 Port 2

r

+

-
vS 1

Ln Ln 2– L2

Cn 1– Cn 3– C1

(a) even filter order

v1

+

-
v2

+

-

i2i1

Port 1 Port 2

1 r⁄

+

-
vS 1

L′n L′n 2– L′n 4– L1′

C′n 1– C′n 3– C2′

(b) odd filter order

r
r RS RL⁄=

r RL RS⁄=

r 0=

RS ω0⁄
1 ω0⁄ RS ω0

RSτ0
τ0 RS⁄ τ0

1 ω0⁄

f 0=
RS RL

RL RS⁄ 1=
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B.2.1 Butterworth Ladder Filters

n
 or  or  or  or  or  or  or  or  or  or 

r=0
1 1.0000
2 0.7071 1.4142
3 0.5000 1.3333 1.5000
4 0.3827 1.0824 1.5772 1.5307
5 0.3090 0.8944 1.3820 1.6944 1.5451
6 0.2588 0.7579 1.2016 1.5529 1.7593 1.5529
7 0.2225 0.6560 1.0550 1.3972 1.6588 1.7988 1.5576
8 0.1951 0.5776 0.9370 1.2588 1.5283 1.7287 1.8246 1.5607
9 0.1736 0.5155 0.8414 1.1408 1.4037 1.6202 1.7772 1.8424 1.5628
10 0.1564 0.4654 0.7626 1.0406 1.2921 1.5100 1.6869 1.8121 1.8552 1.5643

r=1/8
1 9.0000
2 11.9764 0.0939
3 12.4442 0.1735 4.1674
4 12.5685 0.2032 8.9296 0.0493
5 12.6076 0.2169 11.3305 0.1146 2.5343
6 12.6190 0.2243 12.6794 0.1533 6.1898 0.0330
7 12.6199 0.2287 13.5040 0.1778 8.5907 0.0835 1.8121
8 12.6166 0.2314 14.0417 0.1940 10.2279 0.1190 4.6929 0.0248
9 12.6117 0.2333 14.4102 0.2053 11.3856 0.1446 6.8248 0.0653 1.4086
10 12.6064 0.2346 14.6730 0.2135 12.2305 0.1635 8.4293 0.0965 3.7698 0.0198

r=1/4
1 5.0000
2 6.2741 0.1992
3 6.3870 0.3608 2.1699
4 6.3840 0.4180 4.6024 0.1018
5 6.3636 0.4435 5.8036 0.2350 1.2992
6 6.3425 0.4567 6.4673 0.3130 3.1601 0.0675
7 6.3238 0.4641 6.8671 0.3618 4.3727 0.1700 0.9225
8 6.3078 0.4687 7.1244 0.3940 5.1943 0.2417 2.3838 0.0503
9 6.2941 0.4716 7.2984 0.4162 5.7720 0.2932 3.4607 0.1325 0.7143
10 6.2825 0.4735 7.4209 0.4321 6.1916 0.3312 4.2683 0.1955 1.9090 0.0401

r=1/3
1 4.0000
2 4.8284 0.2761
3 4.8473 0.4934 1.6725
4 4.8105 0.5676 3.5233 0.1386
5 4.7743 0.5997 4.4239 0.3186 0.9912
6 4.7446 0.6156 4.9155 0.4233 2.4042 0.0913
7 4.7206 0.6244 5.2085 0.4882 3.3200 0.2294 0.7006
8 4.7012 0.6295 5.3950 0.5308 3.9376 0.3258 1.8075 0.0678
9 4.6853 0.6326 5.5200 0.5601 4.3702 0.3948 2.6209 0.1785 0.5410
10 4.6720 0.6346 5.6071 0.5809 4.6833 0.4454 3.2293 0.2630 1.4445 0.0540

r=1/2
1 3.0000
2 3.3461 0.4483
3 3.2612 0.7789 1.1811
4 3.1868 0.8826 2.4524 0.2175
5 3.1331 0.9237 3.0510 0.4955 0.6857
6 3.0938 0.9423 3.3687 0.6542 1.6531 0.1412
7 3.0640 0.9513 3.5532 0.7512 2.2726 0.3536 0.4799
8 3.0408 0.9558 3.6678 0.8139 2.6863 0.5003 1.2341 0.1042
9 3.0223 0.9579 3.7426 0.8565 2.9734 0.6046 1.7846 0.2735 0.3685
10 3.0072 0.9588 3.7934 0.8864 3.1795 0.6808 2.1943 0.4021 0.9818 0.0825

r=1
1 2.0000
2 1.4142 1.4142
3 1.0000 2.0000 1.0000
4 0.7654 1.8478 1.8478 0.7654
5 0.6180 1.6180 2.0000 1.6180 0.6180
6 0.5176 1.4142 1.9319 1.9319 1.4142 0.5176
7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450
8 0.3902 1.1111 1.6629 1.9616 1.9616 1.6629 1.1111 0.3902
9 0.3473 1.0000 1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473
10 0.3129 0.9080 1.4142 1.7820 1.9754 1.9754 1.7820 1.4142 0.9080 0.3129

C1

L ′1

L2

C ′2

C3

L ′3

L4

C ′4

C5

L ′5

L6

C ′6

C7

L ′7

L8

C ′8

C9

L ′9

L10

C ′10



Appendix B Filter Tables

350

B.2.2 Chebyshev Ladder Filters, 0.1dB Ripple

n
 or  or  or  or  or  or  or  or  or  or 

r=0
1 0.1526
2 0.4215 0.7159
3 0.5158 1.0864 1.0895
4 0.5544 1.1994 1.4576 1.2453
5 0.5734 1.2490 1.5562 1.5924 1.3759
6 0.5841 1.2752 1.5999 1.6749 1.7236 1.4035
7 0.5906 1.2908 1.6236 1.7107 1.7987 1.7395 1.4745
8 0.5949 1.3008 1.6380 1.7302 1.8302 1.8070 1.8163 1.4660
9 0.5978 1.3076 1.6476 1.7423 1.8473 1.8343 1.8814 1.7991 1.5182
10 0.6000 1.3124 1.6542 1.7503 1.8579 1.8489 1.9068 1.8600 1.8585 1.4964

r=1/8
1 1.3736
2 5.9892 0.0567
3 8.9466 0.1403 4.3787
4 10.0512 0.1866 9.8722 0.0733
5 11.1128 0.2008 12.7123 0.1602 4.8368
6 11.2235 0.2179 13.5071 0.2041 10.4600 0.0770
7 11.8455 0.2179 14.5445 0.2153 13.2359 0.1652 4.9726
8 11.6822 0.2287 14.4866 0.2312 13.9349 0.2087 10.6567 0.0783
9 12.1681 0.2248 15.1596 0.2297 14.9251 0.2191 13.4207 0.1672 5.0298
10 11.9040 0.2336 14.8765 0.2401 14.8149 0.2346 14.0887 0.2106 10.7462 0.0790

r=1/4
1 0.7631
2 3.0912 0.1220
3 4.5446 0.2886 2.3272
4 5.0046 0.3815 5.0696 0.1559
5 5.5547 0.4037 6.4880 0.3281 2.5577
6 5.5377 0.4403 6.7916 0.4167 5.3580 0.1632
7 5.8904 0.4353 7.3489 0.4330 6.7472 0.3379 2.6256
8 5.7441 0.4601 7.2417 0.4675 7.0032 0.4258 5.4537 0.1659
9 6.0374 0.4478 7.6338 0.4594 7.5404 0.4404 6.8374 0.3419 2.6542
10 5.8435 0.4690 7.4193 0.4839 7.4072 0.4742 7.0778 0.4295 5.4970 0.1672

r=1/3
1 0.6105
2 2.3497 0.1712
3 3.4253 0.3914 1.8216
4 3.7120 0.5161 3.8671 0.2172
5 4.1422 0.5389 4.9341 0.4442 1.9966
6 4.0823 0.5906 5.1046 0.5639 4.0826 0.2272
7 4.3777 0.5785 5.5512 0.5786 5.1294 0.4572 2.0481
8 4.2247 0.6155 5.4212 0.6284 5.2644 0.5760 4.1536 0.2308
9 4.4804 0.5942 5.7535 0.6119 5.6978 0.5885 5.1967 0.4623 2.0697
10 4.2930 0.6266 5.5455 0.6490 5.5485 0.6374 5.3199 0.5810 4.1857 0.2325

r=1/2
1 0.4579
2 1.5715 0.2880
3 2.2746 0.6035 1.3341
4 2.3545 0.7973 2.6600 0.3626
5 2.6921 0.8042 3.3882 0.6853 1.4572
6 2.5561 0.8962 3.3962 0.8761 2.8071 0.3785
7 2.8260 0.8560 3.7594 0.8685 3.5246 0.7050 1.4932
8 2.6324 0.9285 3.5762 0.9619 3.5095 0.8950 2.8547 0.3843
9 2.8839 0.8762 3.8788 0.9121 3.8660 0.8836 3.5703 0.7127 1.5084
10 2.6688 0.9429 3.6461 0.9887 3.6707 0.9765 3.5472 0.9027 2.8761 0.3870

r=1
1 0.3052
2
3 1.0316 1.1474 1.0316
4
5 1.1468 1.3712 1.9750 1.3712 1.1468
6
7 1.1812 1.4228 2.0967 1.5734 2.0967 1.4228 1.1812
8
9 1.1957 1.4426 2.1346 1.6167 2.2054 1.6167 2.1346 1.4426 1.1957
10
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B.2.3 Chebyshev Ladder Filters, 0.25dB Ripple

n
 or  or  or  or  or  or  or  or  or  or 

r=0
1 0.2434
2 0.5566 0.8499
3 0.6517 1.2198 1.2248
4 0.6891 1.3215 1.5979 1.3003
5 0.6912 1.3538 1.6741 1.6371 1.4480
6 0.7173 1.3868 1.7271 1.7144 1.8105 1.4193
7 0.7234 1.3999 1.7475 1.7450 1.8816 1.7497 1.5323
8 0.7274 1.4083 1.7598 1.7612 1.9099 1.8124 1.8806 1.4647
9 0.7302 1.4140 1.7678 1.7711 1.9248 1.8365 1.9439 1.7927 1.5648
10 0.7322 1.4180 1.7733 1.7776 1.9338 1.8490 1.9676 1.8505 1.9119 1.4864

r=1/8
1 2.1908
2 7.0446 0.0755
3 10.0648 0.1562 5.5746
4 10.4126 0.2051 10.8046 0.0922
5 11.8024 0.2054 13.8236 0.1738 6.0183
6 11.2734 0.2298 13.7315 0.2211 11.3063 0.0958
7 12.3557 0.2179 15.2643 0.2183 14.2825 0.1780 6.1472
8 11.5987 0.2378 14.4405 0.2423 14.0925 0.2250 11.4700 0.0970
9 12.5942 0.2228 15.7237 0.2287 15.6054 0.2214 14.4391 0.1797 6.2011
10 11.7539 0.2414 14.7148 0.2489 14.7268 0.2452 14.2166 0.2267 11.5438 0.0976

r=1/4
1 1.2171
2 3.5907 0.1647
3 5.1234 0.3182 2.9867
4 5.1282 0.4214 5.4989 0.1990
5 5.9266 0.4097 7.0768 0.3529 3.2121
6 5.5080 0.4669 6.8423 0.4540 5.7437 0.2062
7 6.1786 0.4322 7.7470 0.4354 7.3060 0.3611 3.2774
8 5.6503 0.4815 7.1583 0.4930 7.0209 0.4618 5.8228 0.2087
9 6.2867 0.4410 7.9582 0.4543 7.9206 0.4415 7.3830 0.3643 3.3046
10 5.7179 0.4880 7.2798 0.5050 7.3032 0.4989 7.0810 0.4650 5.8583 0.2099

r=1/3
1 0.9737
2 2.6983 0.2337
3 3.8716 0.4279 2.3508
4 3.7640 0.5729 4.1610 0.2812
5 4.4396 0.5433 5.3965 0.4742 2.5236
6 4.0210 0.6299 5.1006 0.6179 4.3438 0.2910
7 4.6162 0.5713 5.8745 0.5783 5.5708 0.4851 2.5735
8 4.1167 0.6480 5.3173 0.6668 5.2361 0.6285 4.4023 0.2945
9 4.6917 0.5822 6.0240 0.6017 6.0086 0.5864 5.6288 0.4893 2.5944
10 4.1620 0.6561 5.4002 0.6817 5.4294 0.6749 5.2808 0.6328 4.4285 0.2962

r=1/2
1 0.7303
2 1.7288 0.4104
3 2.5965 0.6465 1.7402
4 2.2884 0.9039 2.7832 0.4930
5 2.9282 0.7984 3.7341 0.7177 1.8648
6 2.4162 0.9771 3.2941 0.9837 2.9094 0.5100
7 3.0294 0.8341 4.0204 0.8546 3.8585 0.7340 1.9007
8 2.4631 1.0000 3.4072 1.0463 3.3925 1.0015 2.9490 0.5161
9 3.0724 0.8478 4.1088 0.8843 4.1199 0.8670 3.8989 0.7404 1.9157
10 2.4852 1.0100 3.4501 1.0651 3.4927 1.0606 3.4235 1.0085 2.9666 0.5190

r=1
1 0.4868
2
3 1.3034 1.1463 1.3034
4
5 1.4144 1.3180 2.2414 1.3180 1.4144
6
7 1.4468 1.3560 2.3476 1.4689 2.3476 1.3560 1.4468
8
9 1.4604 1.3704 2.3800 1.5000 2.4414 1.5000 2.3800 1.3704 1.4604
10
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B.2.4 Chebyshev Ladder Filters, 0.5dB Ripple

n
 or  or  or  or  or  or  or  or  or  or 

r=0
1 0.3493
2 0.7014 0.9403
3 0.7981 1.3001 1.3465
4 0.8352 1.3916 1.7279 1.3138
5 0.8529 1.4291 1.8142 1.6426 1.5388
6 0.8627 1.4483 1.8494 1.7101 1.9018 1.4042
7 0.8686 1.4596 1.8675 1.7371 1.9712 1.7254 1.5982
8 0.8725 1.4666 1.8750 1.7508 1.9980 1.7838 1.9571 1.4379
9 0.8752 1.4714 1.8856 1.7591 2.0116 1.8055 2.0203 1.7571 1.6238
10 0.8771 1.4748 1.8905 1.7645 2.0197 1.8165 2.0432 1.8119 1.9816 1.4539

r=1/8
1 3.1438
2 7.6905 0.0965
3 11.1053 0.1646 6.8796
4 10.3991 0.2234 11.2532 0.1135
5 12.5367 0.2039 14.9223 0.1801 7.3211
6 11.0346 0.2434 13.5532 0.2386 11.6839 0.1170
7 12.9745 0.2131 16.0900 0.2154 15.3437 0.1837 7.4478
8 11.2694 0.2497 14.0704 0.2556 13.8641 0.2422 11.8216 0.1182
9 13.1608 0.2167 16.4502 0.2230 16.4112 0.2180 15.4833 0.1852 7.5006
10 11.3804 0.2524 14.2670 0.2607 14.3247 0.2583 13.9670 0.2436 11.8832 0.1188

r=1/4
1 1.7466
2 3.8432 0.2145
3 5.6859 0.3308 3.7139
4 5.0293 0.4646 5.6377 0.2504
5 6.3476 0.4023 7.6862 0.3613 3.9411
6 5.2985 0.5009 6.6492 0.4963 5.8461 0.2576
7 6.5476 0.4187 8.2283 0.4252 7.8993 0.3683 4.0061
8 5.3972 0.5122 6.8706 0.5272 6.8027 0.5035 5.9120 0.2602
9 6.6323 0.4250 8.3941 0.4388 8.3940 0.4303 7.9689 0.3710 4.0331
10 5.4437 0.5172 6.9544 0.5364 6.9993 0.5328 6.8522 0.5064 5.9413 0.2614

r=1/3
1 1.3972
2 2.8282 0.3109
3 4.3200 0.4405 2.9371
4 3.6172 0.6399 4.1985 0.3620
5 4.7896 0.5293 5.8898 0.4809 3.1130
6 3.7922 0.6851 4.8770 0.6852 4.3536 0.3722
7 4.9305 0.5495 6.2770 0.5603 6.0535 0.4901 3.1632
8 3.8560 0.6990 5.0230 0.7235 4.9937 0.6953 4.4022 0.3759
9 4.9901 0.5572 6.3947 0.5770 6.4061 0.5671 6.1064 0.4936 3.1841
10 3.8860 0.7051 5.0780 0.7348 5.1229 0.7314 5.0307 0.6993 4.4237 0.3776

r=1/2
1 1.0479
2 1.5132 0.6538
3 2.9431 0.6503 2.1903
4 1.8158 1.1328 2.4881 0.7732
5 3.2228 0.7645 4.1228 0.7116 2.3197
6 1.8786 1.1884 2.7589 1.2403 2.5976 0.7976
7 3.3055 0.7899 4.3575 0.8132 4.2419 0.7252 2.3566
8 1.9012 1.2053 2.8152 1.2864 2.8479 1.2628 2.6310 0.8063
9 3.3403 0.7995 4.4283 0.8341 4.4546 0.8235 4.2795 0.7304 2.3719
10 1.9117 1.2127 2.8366 1.2999 2.8964 1.3054 2.8744 1.2714 2.6456 0.8104

r=1
1 0.6986
2
3 1.5963 1.0967 1.5963
4
5 1.7058 1.2296 2.5408 1.2296 1.7058
6
7 1.7373 1.2582 2.6383 1.3443 2.6383 1.2582 1.7373
8
9 1.7504 1.2690 2.6678 1.3673 2.7239 1.3673 2.6678 1.2690 1.7504
10
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B.2.5 Chebyshev Ladder Filters, 1dB Ripple

n
 or  or  or  or  or  or  or  or  or  or 

r=0
1 0.5088
2 0.9110 0.9957
3 1.0118 1.3332 1.5088
4 1.0495 1.4126 1.9093 1.2817
5 1.0674 1.4441 1.9938 1.5908 1.6652
6 1.0773 1.4601 2.0270 1.6507 2.0491 1.3457
7 1.0832 1.4694 2.0437 1.6736 2.1192 1.6489 1.7118
8 1.0872 1.4751 2.0537 1.6850 2.1453 1.7021 2.0922 1.3691
9 1.0899 1.4790 2.0601 1.6918 2.1583 1.7213 2.1574 1.6707 1.7317
10 1.0918 1.4817 2.0645 1.6961 2.1658 1.7306 2.1803 1.7215 2.1111 1.3801

r=1/8
1 4.5796
2 7.9318 0.1286
3 12.5563 0.1657 8.8038
4 9.9024 0.2517 11.1584 0.1467
5 13.7259 0.1945 16.5650 0.1789 9.2596
6 10.3304 0.2677 12.7878 0.2668 11.5115 0.1503
7 14.0719 0.2009 17.5013 0.2045 16.9660 0.1819 9.3890
8 10.4856 0.2725 13.1313 0.2802 13.0465 0.2701 11.6220 0.1516
9 14.2174 0.2033 17.7827 0.2097 17.8168 0.2066 17.0949 0.1830 9.4427
10 10.5585 0.2746 13.2602 0.2842 13.3503 0.2828 13.1287 0.2715 11.6709 0.1522

r=1/4
1 2.5442
2 3.7779 0.3001
3 6.5048 0.3264 4.7927
4 4.5699 0.5428 5.3680 0.3406
5 7.0522 0.3776 8.6301 0.3520 5.0313
6 4.7366 0.5716 6.0240 0.5764 5.5353 0.3486
7 7.2126 0.3888 9.0689 0.3973 8.8368 0.3577 5.0989
8 4.7966 0.5803 6.1592 0.6005 6.1501 0.5836 5.5869 0.3515
9 7.2800 0.3930 9.2001 0.4064 9.2344 0.4015 8.9024 0.3598 5.1270
10 4.8247 0.5841 6.2098 0.6076 6.2689 0.6063 6.1890 0.5864 5.6096 0.3528

r=1/3
1 2.0354
2 2.5721 0.4702
3 4.9893 0.4286 3.8075
4 3.0355 0.7929 3.7589 0.5347
5 5.3830 0.4915 6.6673 0.4622 3.9944
6 3.1307 0.8287 4.1451 0.8467 3.8812 0.5475
7 5.4978 0.5050 6.9839 0.5177 6.8280 0.4696 4.0473
8 3.1647 0.8395 4.2237 0.8764 4.2404 0.8580 3.9186 0.5520
9 5.5459 0.5101 7.0783 0.5288 7.1141 0.5232 6.8785 0.4724 4.0693
10 3.1806 0.8442 4.2532 0.8851 4.3088 0.8857 4.2691 0.8623 3.9349 0.5541

r=1/2
1 1.5265
2
3 3.4774 0.6153 2.8540
4
5 3.7211 0.6949 4.7448 0.6650 2.9936
6
7 3.7916 0.7118 4.9425 0.7348 4.8636 0.6757 3.0331
8
9 3.8210 0.7182 5.0013 0.7485 5.0412 0.7429 4.9004 0.6797 3.0495
10

r=1
1 1.0177
2
3 2.0236 0.9941 2.0236
4
5 2.1349 1.0911 3.0009 1.0911 2.1349
6
7 2.1666 1.1115 3.0936 1.1735 3.0936 1.1115 2.1666
8
9 2.1797 1.1192 3.1214 1.1897 3.1746 1.1897 3.1214 1.1192 2.1797
10
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B.2.6 Chebyshev Ladder Filters, 2dB Ripple

n
 or  or  or  or  or  or  or  or  or  or 

r=0
1 0.7648
2 1.2441 0.9766
3 1.3553 1.2740 1.7717
4 1.3962 1.3389 2.2169 1.1727
5 1.4155 1.3640 2.3049 1.4468 1.9004
6 1.4261 1.3765 2.3383 1.4974 2.3304 1.2137
7 1.4328 1.3836 2.3551 1.5159 2.4063 1.4836 1.9379
8 1.4366 1.3881 2.3645 1.5251 2.4332 1.5298 2.3646 1.2284
9 1.4395 1.3911 2.3707 1.5304 2.4463 1.5495 2.4386 1.4959 1.9553
10 1.4416 1.3932 2.3748 1.5337 2.4538 1.5536 2.4607 1.5419 2.3794 1.2353

r=1/8
1 6.8830
2 7.2895 0.1875
3 14.9900 0.1541 11.9205
4 8.5051 0.3093 9.9546 0.2088
5 15.9745 0.1729 19.4874 0.1646 12.4250
6 8.7527 0.3224 10.9256 0.3260 10.2196 0.2130
7 16.2581 0.1769 20.2574 0.1811 19.8989 0.1669 12.5671
8 8.8412 0.3263 11.1205 0.3368 11.1251 0.3295 10.3007 0.2144
9 16.3765 0.1784 20.4848 0.1844 20.5920 0.1828 20.0271 0.1678 12.6259
10 8.8824 0.3280 11.1932 0.3399 11.2954 0.3396 11.1858 0.3308 10.3363 0.2151

r=1/4
1 3.8239
2
3 7.9106 0.2955 6.5423
4
5 8.3859 0.3285 10.3300 0.3156 6.8118
6
7 8.5220 0.3354 10.7009 0.3443 10.5472 0.3199 6.8877
8
9 8.5787 0.3380 10.8103 0.3499 10.8798 0.3475 10.6142 0.3215 6.9191
10

r=1/3
1 3.0591
2
3 6.1471 0.3816 5.2161
4
5 6.4974 0.4219 8.0681 0.4076 5.4294
6
7 6.5974 0.4302 8.3415 0.4425 8.2389 0.4131 5.4893
8
9 6.6391 0.4334 8.4220 0.4493 8.4834 0.4467 8.2913 0.4152 5.5141
10

r=1/2
1 2.2943
2
3 4.3975 0.5326 3.9184
4
5 4.6265 0.5835 5.8503 0.5698 4.0790
6
7 4.6917 0.5941 6.0293 0.6136 5.9780 0.5776 4.1242
8
9 4.7187 0.5980 6.0821 0.6220 6.1370 0.6195 6.0168 0.5805 4.1429
10

r=1
1 1.5296
2
3 2.7107 0.8327 2.7107
4
5 2.8310 0.8985 3.7827 0.8985 2.8310
6
7 2.8650 0.9120 3.8774 0.9537 3.8774 0.9120 2.8650
8
9 2.8790 0.9171 3.9056 0.9643 3.9597 0.9643 3.9056 0.9171 2.8790
10
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B.2.7 Chebyshev Ladder Filters, 3dB Ripple

n
 or  or  or  or  or  or  or  or  or  or 

r=0
1 0.9976
2 1.5506 0.9109
3 1.6744 1.1739 2.0302
4 1.7195 1.2292 2.5272 1.0578
5 1.7409 1.2501 2.6227 1.3015 2.1491
6 1.7522 1.2606 2.6578 1.3455 2.6309 1.0876
7 1.7591 1.2666 2.6750 1.3614 2.7141 1.3282 2.1827
8 1.7638 1.2701 2.6852 1.3690 2.7436 1.3687 2.6618 1.0982
9 1.7670 1.2726 2.6916 1.3733 2.7577 1.3827 2.7414 1.3380 2.1970
10 1.7692 1.2744 2.6958 1.3761 2.7655 1.3893 2.7683 1.3774 2.6753 1.1032

r=1/8

1 8.9787
2 6.1219 0.2596
3 17.4070 0.1392 14.8205
4 6.9104 0.3884 8.2760 0.2861
5 18.3377 0.1530 22.4760 0.1481 15.3856
6 7.0661 0.4011 8.8887 0.4087 8.4796 0.2913
7 18.6027 0.1559 23.1920 0.1600 22.9195 0.1499 15.5441
8 7.1213 0.4048 9.0096 0.4190 9.0452 0.4128 8.5411 0.2931
9 18.7129 0.1569 23.4023 0.1623 23.5592 0.1614 23.0554 0.1506 15.6097
10 7.1470 0.4064 9.0546 0.4219 9.1496 0.4223 9.0917 0.4144 8.5679 0.2939

r=1/4
1 4.9881
2
3 9.3059 0.2625 8.1669
4
5 9.7676 0.2866 12.0571 0.2791 8.4724
6
7 9.8986 0.2915 12.4111 0.2998 12.2946 0.2826 8.5581
8
9 9.9530 0.2934 12.5151 0.3037 12.6097 0.3024 12.3669 0.2839 8.5935
10

r=1/3
1 3.9905
2
3 7.2903 0.3358 6.5207
4
5 7.6371 0.3652 9.4808 0.3571 6.7635
6
7 7.7352 0.3712 9.7463 0.3822 9.6687 0.3615 6.8315
8
9 7.7760 0.3734 9.8243 0.3870 9.9043 0.3856 9.7256 0.3632 6.8597
10

r=1/2
1 2.9929
2
3 5.2910 0.4618 4.8991
4
5 5.5259 0.4993 6.9460 0.4917 5.0821
6
7 5.5922 0.5069 7.1256 0.5235 7.0869 0.4979 5.1335
8
9 5.6197 0.5098 7.1785 0.5296 7.2454 0.5282 7.1292 0.5002 5.1547
10

r=1
1 1.9953
2
3 3.3487 0.7117 3.3487
4
5 3.4813 0.7619 4.5375 0.7619 3.4813
6
7 3.5185 0.7722 4.6390 0.8038 4.6390 0.7722 3.5185
8
9 3.5339 0.7760 4.6691 0.8118 4.7270 0.8118 4.6691 0.7760 3.5339
10
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L ′5

L6

C ′6

C7

L ′7

L8

C ′8

C9

L ′9

L10

C ′10
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B.2.8 Bessel Ladder Filters

n
 or  or  or  or  or  or  or  or  or  or 

r=0
1 1.0000
2 0.3333 1.0000
3 0.1667 0.4800 0.8333
4 0.1000 0.2899 0.4627 0.7101
5 0.0667 0.1948 0.3103 0.4215 0.6231
6 0.0476 0.1400 0.2246 0.3005 0.3821 0.5595
7 0.0357 0.1055 0.1704 0.2288 0.2877 0.3487 0.5111
8 0.0278 0.0823 0.1338 0.1806 0.2227 0.2639 0.3212 0.4732
9 0.0222 0.0660 0.1077 0.1463 0.1811 0.2129 0.2465 0.2986 0.4424
10 0.0182 0.0541 0.0886 0.1209 0.1549 0.1880 0.2057 0.2209 0.2712 0.4161

r=1/8
1 9.0000
2 8.6533 0.0433
3 7.1426 0.0615 1.3652
4 6.0700 0.0589 2.3569 0.0127
5 5.3229 0.0535 2.5118 0.0246 0.5401
6 4.7803 0.0484 2.4267 0.0283 1.1309 0.00601
7 4.3691 0.0442 2.2790 0.0288 1.3738 0.0133 0.2881
8 4.0462 0.0407 2.1256 0.0280 1.4536 0.0168 0.6627 0.00350
9 3.7848 0.0378 1.9841 0.0267 1.4558 0.0184 0.8666 0.00830 0.1788
10 3.5682 0.0354 1.8591 0.0254 1.4215 0.0189 0.9718 0.0111 0.4348 0.00228

r=1/4
1 5.0000
2 4.6409 0.0898
3 3.7994 0.1258 0.6973
4 3.2221 0.1198 1.1956 0.0258
5 2.8247 0.1084 1.2690 0.0498 0.2731
6 2.5375 0.0980 1.2231 0.0571 0.5703 0.0121
7 2.3202 0.0893 1.1470 0.0580 0.6915 0.0268 0.1451
8 2.1496 0.0823 1.9689 0.0563 0.7306 0.0338 0.3333 0.00704
9 2.0114 0.0764 0.9973 0.0537 0.7310 0.0369 0.4354 0.0167 0.0899
10 1.8967 0.0716 0.0342 0.0509 0.7132 0.0379 0.4878 0.0224 0.2184 0.00459

r=1/3
1 4.0000
2 3.6330 0.1223
3 2.9601 0.1700 0.5298
4 2.5075 0.1613 0.9046 0.0347
5 2.1981 0.1457 0.9577 0.0669 0.2063
6 1.9750 0.1316 0.9217 0.0765 0.4300 0.0163
7 1.8064 0.1199 0.8636 0.0776 0.5207 0.0358 0.1093
8 1.6740 0.1104 0.8044 0.0753 0.5497 0.0453 0.2509 0.00942
9 1.5667 0.1026 0.7503 0.0718 0.5496 0.0494 0.3275 0.0223 0.0676
10 1.4777 0.0962 0.7027 0.0680 0.5360 0.0506 0.3668 0.0299 0.1642 0.00614

r=1/2
1 3.0000
2 2.6180 0.1910
3 2.1156 0.2613 0.3618
4 1.7893 0.2461 0.6127 0.0530
5 1.5686 0.2217 0.6456 0.1015 0.1393
6 1.4102 0.1999 0.6196 0.1158 0.2894 0.0246
7 1.2904 0.1821 0.5797 0.1171 0.3497 0.0542 0.0735
8 1.1964 0.1676 0.5395 0.1135 0.3685 0.0683 0.1684 0.0142
9 1.1202 0.1558 0.5030 0.1081 0.3680 0.0744 0.2195 0.0336 0.0453
10 1.0569 0.1460 0.4710 0.1024 0.3586 0.0763 0.2456 0.0450 0.1100 0.00925

r=1
1 2.0000
2 1.5774 0.4226
3 1.2550 0.5528 0.1922
4 1.0598 0.5116 0.3181 0.1104
5 0.9303 0.4577 0.3312 0.2090 0.0718
6 0.8377 0.4116 0.3158 0.2364 0.1480 0.0505
7 0.7677 0.3744 0.2944 0.2378 0.1778 0.1104 0.0375
8 0.7125 0.3446 0.2735 0.2297 0.1867 0.1387 0.0855 0.0289
9 0.6678 0.3203 0.2547 0.2184 0.1859 0.1506 0.1111 0.0682 0.0230
10 0.6305 0.3002 0.2384 0.2066 0.1808 0.1539 0.1240 0.0911 0.0557 0.0187

C1

L ′1

L2

C ′2

C3

L ′3

L4

C ′4

C5

L ′5

L6

C ′6

C7

L ′7

L8

C ′8

C9

L ′9

L10

C ′10
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Index

A
ABCD parameters 151
admittance

normalised 37
parameters 150

allpass filter 277
amplifier

cascode 130
class A 326
class B 328
class C 330
common base (CB) 128
common emitter (CE) 125
discrete 123
modules 129
noise 195
power 319
tuned 121
unilateral 117

amplifier classes 325
amplitude

complex 21
amplitude function, filter 274
AM-to-AM conversion 324
AM-to-PM conversion 324
attenuation constant 23
available gain 161
available gain, S parameters 180

B
bandpass filter 275
bandstop filter 276
bandwidth

resonance circuit 5
Barkhausen oscillation criteria 232
Bessel filter 281
biasing

active 221
passive 213
transistor 209

bipolar transistor 138
BJT 138
branch-line coupler 258
Butterworth filter 279

C
capacitor model 52
characteristic impedance 5, 26

microstrip 64
Chebyshev filter 280
circulator 269
class A amplifier 326
class B amplifier 328
class C amplifier 330
class D amplifier 331
class F amplifier 331
class G amplifier 331
class H amplifier 331
class S amplifier 331
coaxial geometry 62
coaxial line 47
complex amplitude 21
compression 240
compression point 322
conditional stability 159
conductivity

metals 60
constant

attenuation 23
phase 21
propagation 23

converter, transmitter 303
coupler

branch-line 258
directional 254
hybrid-ring 265
Lange 258

couplers
field coupled 255

coupling, C 254
crystals 249

D
demodulator 303
desensitisation 307
diode mixer 309
directional coupler 254
directivity, D 254
discontinuities 65
discrete amplifier 123
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distributed circuit 20
double-balanced mixer 306
dynamic range, spurious-free 306

E
effective permittivity 64
efficiency

power 320
power-added 320

electrical length 77
equivalent series resistance 52
ESR 52
even-mode excitation 256

F
feedback 231
ferrite devices 268
FET 140
field-effect transistor 140
filter

allpass 277
amplitude function 274
approximations 278
bandpass 275
bandstop 276
highpass 275
ladder 289
lowpass 274
phase function 274
transmission line 292

frequency
resonance 1
self-resonance 48
transition 142

Friis’ formula 199

G
gain

available 161
available, S parameters 180
circle, available 192
circle, operating 191
circles, unilateral 184
definitions 160
loop 232
maximum stable 190
operating 160
operating, S parameters 180
transducer 160
transducer, S parameters 180

geometry
coaxial line 62
microstrip 63
transmission line 58

group delay 281

H
HBT 139
HEMT 140
heterojunction bipolar transistor 139
highpass filter 275
hybrid-pi, transistor model 116

hybrid-ring coupler 265

I
impedance

characteristic 5, 26
normalised 37
parameters 151
port 158
transformation 32

indefinite admittance matrix 241
inductor model 55
intercept point

mixer 307
intercept points

amplifier 322
intermodulation distortion 322

mixer 307
isolation, L 254
isolator 270

J
JFET 140

L
L network 87
ladder filter 289
Lange coupler 258
Linvill stability factor 158
loop gain 232
lowpass filter 274
lumped circuit 19

M
matching

complex conjugate 86
maximally flat filter 279
maximum frequency of oscillation 142
maximum stable gain 190
MESFET 140
metals

conductivity 60
microstrip 247

characteristic impedance 64
microstrip geometry 63
microstrip line 47
Miller theorem 119
mixer

double-balanced 306
single-balanced 306
single-ended 306

mixer, receiver 303
model

capacitor 52
inductor 55
resistor 49
transistor

hybrid-pi 116
modulator 303
MOSFET 140
multiple reflection 39
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N
negative resistance 157
negative resistance, oscillator 241
neper 23
noise

amplifier 195
circles 200
dual sideband 237
oscillator 235
single sideband 237

noise density, oscillator 237
normalised admittance 37
normalised impedance 37

O
odd-mode excitation 256
operating gain 160
operating gain, S parameters 180
operating point 125
oscillator 231

Clapp 233
Colpitt 233
configurations 233
Hartley 233
noise 235
Pierce 250

P
package

transistor 147
parallel resonance 9
parameters

ABCD 151
admittance (y) 150
impedance (z) 151
S 164

phase constant 21
phase detector 303
phase function, filter 274
phase noise 236
phase velocity 20
phasor 21
Pi network 92
port impedance 158
power amplifier 319
power efficiency 320
power waves 166
power-added efficiency 320
propagation constant 23
pulling 234

Q
Q-factor

inductor 56
transmission line 45

quadrature hybrid 259
quality factor, Q 3
quarter-wave transformer 103

R
reflection coefficient 29
resistor model 49
resonance

parallel 9
series 7

resonance frequency 1
resonant circuit 1
resonant circuits

tapped 12
resonator

transmission line 42
resonators

coaxial 248
microstrip 247

resonators, oscillator 247
return loss, R 254

S
S parameters 164
self-resonance frequency 48
series resonance 7
signal flow graphs 170
simultaneous conjugate match 189
single-balanced mixer 306
single-ended mixer 306
Skin depth 59
Skin effect 59
SMD 48
Smith chart 71
SRF 48
stability 157

circles 174
conditional 159
S parameters 173
unconditional 158

standing-wave pattern 41
standing-wave ratio 41
Stern’s stability factor 159
stub 109
substrate materials 61
surface mount devices 48
SWR 41

T
T network 92
tapped resonant circuits 12
telegrapher equations 24
TEM wave 47
termination

open-circuit 65
transducer gain 160
transducer gain, S parameters 180
transformation

filters 289
impedance 32

transformer 57
quarter-wave 103

transistor
biasing 209
bipolar 138
field-effect 140
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package 147
transition frequency 142
transmission coefficient 38
transmission factor 38
transmission line 20

discontinuities 65
filters 292
geometry 58
Q-factor 45

transmission line resonator 42
transmission, T 254
transmission-line equations 24
travelling wave 20
tuned amplifier 121

U
unconditional stability 158
unilateral amplifier 117
unilateral figure of merit 181

V
varactor 245
varicap 245
VCO sensitivity 245
voltage controlled gain (VCG) 130
voltage controlled oscillator (VCO) 245

W
wavelength 20
Wilkinson hybrid 264

X
X-tal 249

Y
y parameters (admittance) 150

Z
z parameters 151


