
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Faunus - a flexible framework for Monte Carlo simulation

Stenqvist, Björn; Thuresson, Axel; Kurut Sabanoglu, Anil; Vacha, Robert; Lund, Mikael

Published in:
Molecular Simulation

DOI:
10.1080/08927022.2013.828207

2013

Link to publication

Citation for published version (APA):
Stenqvist, B., Thuresson, A., Kurut Sabanoglu, A., Vacha, R., & Lund, M. (2013). Faunus - a flexible framework
for Monte Carlo simulation. Molecular Simulation, 39(14-15), 1205-1211.
https://doi.org/10.1080/08927022.2013.828207

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1080/08927022.2013.828207
https://portal.research.lu.se/en/publications/e2c2c310-387e-4797-bc82-f7e5c233bb96
https://doi.org/10.1080/08927022.2013.828207


August 2, 2013 12:7 Molecular Simulation fau˙revised1

Molecular Simulation
Vol. 00, No. 00, Month 2013, 1–10

RESEARCH ARTICLE

Faunus – A Flexible Framework for Monte Carlo Simulation

Björn Stenqvista, Axel Thuressona, Anıl Kuruta, Robert Váchab, and Mikael Lunda∗

a Department of Theoretical Chemistry, Lund University, POB 124, SE-22100 Lund, Sweden; bNational

Centre for Biomolecular Research, Faculty of Science and CEITEC - Central European Institute of Tech-

nology, Masaryk University, Kamenice 5, 625 00 Brno-Bohunice, Czech Republic

(August 2, 2013)

Faunus is a set of building blocks or “statistical mechanical Lego” for constructing molecular simulation
programs to study complex solutions including proteins, polymers, salts, phospholipid membranes, surfaces,
and/or rigid macro-molecules. Current focus is on Metropolis Monte Carlo (MC) algorithms with support
for anisotropic particles (multipolar, polarisable, sphero-cylindrical) and a flexible Hamiltonian. The design is
inherently modular and it is trivial to extend functionality to cover new interaction potentials, geometries or
moves. In this paper we present basic features, C++ design principles, and review selected applications. The
latter includes splined pair potentials, two-dimensional parallel tempering of protein mixtures, and MC swap
moves for modelling ion specific effects without ions.

Keywords: Metropolis Monte Carlo, Coarse Graining, C++ scientific programming.

1 Introduction

Faunus is an application programming interface (API) for building molecular simulation pro-
grams. It is written in C++, uses an object oriented design and aims to be flexible in terms of
force fields, atom types, Monte Carlo (MC) moves, and simulation geometries.

It is an alternative to precompiled simulation packages and the end user will typically need
some programming skills, albeit at an abstract level. A number of example programs for common
simulation tasks are provided and minor modifications are often sufficient to get started.

We believe an API approach, also taken up by others [1–5], is beneficial since the user (i) is
in control of the entire program flow, (ii) needs to understand the simulation steps, and (iii)
can modify to accommodate new scenarios. In a teaching context these factors are especially
important as students gain fundamental insight into simulation techniques. In our experience,
letting students develop their own simulation programs leads to better understanding of the
underlying theory and physical mechanisms. It can for example be a rewarding experience to
discover that thermodynamic entropy enters a MC program with a single line of code! 1

Let us briefly compare with the opposite but completely possible scenario, where a simulation
package is used without appreciation of, say, statistical thermodynamics. While this may be a
productive study, there is a distinct risk that either input, output or both is misinterpreted. By
building the simulation by hand – although not necessarily from scratch – we argue that this
risk can be lowered since (a) the user designed the program and is aware of all steps, and (b)

∗Corresponding author. Email: mikael.lund@teokem.lu.se

1Namely the Metropolis acceptance criterion. [6]
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code, input, and output are specific and minimalistic (see Listing 1). The trick is to find an API
with a balanced abstraction level, i.e. in between low level programming and the “black-box”
scenario described above. Faunus aims at precisely that.

Listing 1 Minimal C++ program for simulating charged Lennard-Jones particles in a periodic, cubic simulation box using the

minimum image convention.

#include <faunus / faunus . h>
using namespace Faunus ; // Faunus namespace
typedef Space<Geometry : : Cuboid> Tspace ; // s imu la t i on geometry (” Space ”)
typedef Po ten t i a l : : CoulombLJ Tpair ; // pa i r p o t e n t i a l
int main ( ) {

atom . i n c l u d e f i l e ( "minimal.json" ) ; // load atom p r o p e r t i e s
InputMap in ( "minimal.input" ) ; // load user input
Energy : : Nonbonded<Tspace , Tpair> pot ( in ) ; // non−bonded i n t e r a c t i o n s , only
Tspace spc ( in ) ; // p a r t i c l e s and geometry s to r ed here
Group s a l t ( spc , in ) ; // group ( range ) conta in ing a l l p a r t i c l e s
s a l t . addPar t i c l e s ( spc , in ) ; // i n s e r t p a r t i c l e s accord ing to input f i l e
Move : : AtomicTranslation<Tspace> mv( in , pot , spc ) ; // p a r t i c l e move c l a s s
mv. setGroup ( s a l t ) ; // move ac t s on s a l t group
mv. move(1 e5 ) ; // move randomly 100000 t imes
std : : cout << spc . i n f o ( ) + pot . i n f o ( ) + mv. i n f o ( ) ; // p r i n t f i n a l in fo rmat ion

}

2 Main Features

2.1 Flexible Hamiltonian

Faunus is designed to handle custom force fields including arbitrary pair potentials, external
potentials and many-body interactions. This is managed in a modular Hamiltonian class where
terms are added as needed. Consider for example a particle system in the isothermal-isobaric
ensemble (NpT ) with bonded and non-bonded interactions. The corresponding Hamiltonian
class is constructed by the following statement,

auto pot = Bonded() + Nonbonded() + ExternalPressure();

where the auto keyword (C++11) conveniently determines the resulting often nested and tem-
plated type. The first two terms should be self-explanatory while the last adds pV terms. A MC
move that changes the simulation volume thus needs no information about pressure, p, as this
is handled not by a move-specific acceptance criterion, but by the system Hamiltonian and will
automatically be part of the calculated energy difference. This is particularly useful in connec-
tion with parallel tempering – more on this later in the text – where the full state energy must
be deduced to exchange configurations.

2.2 Monte Carlo Moves

In contrast to Molecular Dynamics, particle propagation in MC is manually imposed using moves
obeying the detailed balance criterium [6, 7]. Table 1 shows a selected list of available moves,
following the common sequence: (i) trial move, (ii) energy change, (iii) Metropolis criterion, (iv)
sample statistics. Each move is implemented as a polymorphic class with the items above as
replaceable functions. Thus, new moves can be constructed either from scratch, or – via inher-
itance – by extending an existing move. The trial energy is calculated the system Hamiltonian
as explained above. Since a MC move commonly involves only a subset of particles, the Hamil-
tonian provides fine grained control of the energy evaluation to increase run-time performance.
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Table 1. Illustration of selected Monte Carlo moves available in Faunus.

Crankshaft Pivot Reptate Monomer Translate

Translate Cluster Translate Rotate Cluster Rotate

Volume Scale Parallel Temper Particle Swap

H1 H2

A B

2.3 Pair Potentials

Pair-wise, additive particle potentials all have a common interface and can be arbitrarily com-
bined. For example, the following creates a new pair potential function by adding Coulomb to
Lennard-Jones:

auto CoulombLJ = Coulomb() + LennardJones();

double uij = CoulombLJ(particle[i], particle[j], rij);

In turn this new potential can be added to another and so forth. In contrast to similar function-
ality in scripting languages, the above is implemented using generic programming techniques,
i.e. templates [3, 8], that essentially eliminates the combination overhead at compile time. In the
example above the plus operator is overloaded to generate a combined function object using a
class template taking the parent pair potentials as template arguments.

Besides arbitrary pair potential combinations, Faunus has a general framework for automatic
spline tabulation of one-dimensional functions. This can be used for a constant time-evaluation
of complex potentials involving eg. root finding or trigonometric functions. So far the method of
Andrea et al. [9] along with Hermite cubic and linear splines [10] are implemented. One line of
code suffices to spline an existing pair potential,

PotentialTabulate<CoulombLJ> CoulombLJ_tab();

The potential and hence the table may depend on the particle type (charge, sizes etc.). This is
automatically handled by the tabulation template that will create and store table data for each
encountered pair of particles.

Depending on the algorithm used, a precision tolerance must be set on the energy and the force
which is also tabulated. Fig. 1 shows a Weeks-Chandler-Andersen/Cosine squared attraction
pair potential and the corresponding absolute tabulation error. To fulfill the specified energy
and force tolerances of 0.001 kBT and 0.001 kBT/Å, the Andrea and Hermite cubic spline
methods [9, 10] require 13 and 19 knots, respectively. Given a certain tolerance, the number of
knots usually decrease with increasing degree of the polynomial. Finding the correct knot for an
arbitrary distance is therefore faster, while evaluation of the polynomial is slower. For optimal
performance the choice of tabulation method hence depends on the problem.

In many scenarios it is convenient to specify different potentials between different particle
indexes. Consider for example a three-bead, coarse grained lipid [11] with the following internal
bonds,

PotentialMap pot;

pot.add(0, 1, Potential::FENE() );
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Figure 1. Pair potential tabulation error using Andrea et al. (full line) and Hermite cubic splines (dotted line) with
βutol = 0.001. The original Weeks-Chandler-Andersen pair potential combined with a cosine squared attraction is shown in
the inset.

pot.add(1, 2, Potential::FENE() );

pot.add(0, 2, Potential::Harmonic() );

where the numbers refer to particle index. During simulation, the pair potential call is determined
at run-time which may affect performance due to lack of function inlining. In contrast, a splined
potential share a common function call – known at compile time – and only data differs between
each particle pair. Inline optimisation is therefore at least theoretically possible and may lead
to faster execution depending on table lookup overhead and pair potential complexity. Table 2
shows benchmarks of MC simulations of a bilayer formed using the above lipid model [11] as well
as of an isotropic liquid where atoms interact via a Yokawa/Buckingham potential. The latter
involves two exponentials, one square root, and one division.

Table 2. Relative speedup using splined pair potentials in MC sim-

ulations. The tabulated energy tolerance is 0.001 kBT , resulting in

a typical knot ratio of 1:2:40 between the three spline methods.

Benchmark performed on a x86-64 CPU using double arithmetic

precision.

System Base Andrea Hermite Linear
3-bead lipid bilayera 1.0 1.2 1.3 1.0
Isotropic liquidb 1.0 1.5 1.4 1.0

a100 lipid molecules, isotension ensemble.

b2500 particles, canonical ensemble.

2.4 Anisotropic Particles

In addition to isotropic particles commonly used in molecular simulations, Faunus supports
anisotropic particles where the interaction potential is orientational dependent. Particle here
refers to the smallest, indivisible building block. All such particles are implemented using a
matrix template library [12] and the multipole expansion below is for example coded directly
using the elegant tensor form. In addition to expressive vector manipulation, the matrix library
provides quaternions and transformation matrices used for geometric operations.

2.4.1 Multipoles

In addition to a centro-symmetric monopole, particles in Faunus can have dipolar and
quadrupolar moments. A well-known example is the Stockmayer fluid, consisting of point dipolar
Lennard-Jones particles [13]. Using atomic units and Einstein summation notation, the inter-
action energy between two charge distributions, A = [ri, qi] and B = [rj , qj ], is given by a
multipole expansion,

U =

NA∑
i=1

NB∑
j=1

qiqj
|R+ rj − ri|

(1)
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U = TRq
AqB + T αR(qAµBα − µAαqB) + T αβR

(
1

3
qAθBαβ − µAαµBβ +

1

3
θAαβq

B

)
+ . . . (2)

T
(n)
R = ∇n

(
1

|R|

)
(3)

where the Taylor expansion is valid when the internal distances, |ri| and |rj |, are much smaller
than the separation between the expansion centers, R.

The first term in Eq. 2 is the ion-ion interaction, the second is the ion-dipole, and the third term
accounts for dipole-dipole and ion-quadrupole interactions. In the case of charged particles, both
ion-dipole and ion-quadrupole should be included as they are of equal order, i.e. they decay with
the same distance dependence. While isotropic particle force fields by far dominate published
molecular simulation studies, a number of multipolar force fields are being developed [14–16].

2.4.2 Polarisation

Particles may become anisotropic by acquiring an induced dipole moment when exposed to
an electric or magnetic field. This is implemented with an iterative scheme where the induced
moments of all polarisable particles are updated self-consistently. The field on the i’th particle
with polarisability tensor αi is

Ei =

N∑
j 6=i

(
−T (1)

Rij
qj + T

(2)
Rij
µj

)
(4)

and the induced moment becomes µi,ind = αiEi. The particle polarisability is implemented in
such a way that both isotropic and anisotropic values can be used, i.e. αi can be either a scalar
or a matrix.

2.4.3 Spherocylinders

The main body of this particle type is a spherocylinder, i.e. a cylinder with hemispherical caps
at both ends, thus providing a smooth rod-like particle with a variable aspect ratio [17, 18] –
see Figure 2A. An attractive angular wedge can be added to the side, creating a patchy sphero-
cylinder (PSC). This patch can either run along the whole axis including the ends, or it can be
limited to the cylindrical part (Fig. 2A and B). Used in implicit solvent, the attractive interaction
should include all effective interactions between the studied particles including hydrophobic in-
teractions, hydrogen bonds, salt bridges, charges, etc. The repulsive interaction is described using
an isotropic Weeks-Chandler-Andersen potential which is a Lennard-Jones potential shifted and
truncated at the minimum. The attractive interaction is determined from overlapping segments
of the two PSC patches and has a cosine squared distance dependency. It is possible to further
tune a switch range (distance from the potential minimum to the cutoff). The step change of
the interaction at the side of the patch is smoothed by linear transition region (typically 5◦).

This particle model was developed to study amphiphilic prolate objects such as helical peptides
and protein fibrils. For more details see ref. [19].

2.5 Simulation Boundaries

Since we always simulate a finite system size, particles are confined in a simulation container with
particular boundary conditions and shape. A number of such containers – here called geometries –
are supported as shown in Table 3. The geometry handles (i) distance calculations, (ii) boundary
conditions, and (iii) volume scaling. This task distribution makes it easy to implement any
geometry without modifying code, nor obstruct run-time efficiency.
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Figure 2. (A) Spherocylinder with isotropic repulsion, (B and C) spherocylinder with an attractive stripe that runs along
the main axis. In (C) only the cylindrical part is attractive (light gray), while in (B) the patch is on the cylindrical part as
well as on the hemispherical caps.

Table 3. Simulation geometries. Peri-

odic boundaries can be applied in 3D

(cuboid), 2D (slit), 1D (open cylinder)

or not at all (sphere, closed cylinder).

Cuboid Slit

Open cylinder Closed cylinder

Sphere

3 Selected Applications

3.1 Rare events – Parallel Tempering

Parallel tempering, or “replica exchange”, is a powerful technique to sample regions of coordinate
space separated by large energy barriers [7, 20–23]. Although the majority of reported tempering
studies are done via temperature, any parameter in the Hamiltonian can be used. In Faunus,
tempering is implemented in a general way allowing the full Hamiltonian to exchange between
replicas. Tempering in the grand canonical ensemble is, however, not yet supported.

We have previously used parallel tempering in the isothermal-isobaric ensemble (NpT ) to
construct phase diagrams of protein mixtures, where the gas-liquid transition is investigated as
a function of salt concentration [24]. Since the studied proteins are oppositely charged, strongly
bound aggregates form and the system tends to sample only high density configurations. To
improve sampling of the dilute phase we used a two-dimensional array of NpT simulations at
different pressures (p) and salt concentrations (proportional to κ). Parallel tempering was then
used to exchange configurations according to the following acceptance criterion [25],

acc[(i, j)→ (j, i)] = min
{

1, exp
(
− β[U(κi, rj) (5)

+U(κj , ri)− U(κi, ri)− U(κj , rj)

+piVj + pjVi − piVi − pjVj ]
)}

= min
{

1, exp
(
− β[∆U + ∆pV ]

)}
1/β = kBT is the thermal energy, κ is inverse Debye screening length, V is volume, U is the
Hamiltonian. As already discussed, the system Hamiltonian in Faunus returns the full energy,
including pV and other possible term(s) whereby no move-specific acceptance criteria for tem-
pering is needed. This design makes it trivial to temper in any energy field parameter.
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The exchange events between three selected replicas and the resulting Gibbs free energies are
shown in Fig. 3. The choice of both pressure and salt concentration as tempering parameters
is in this case particularly advantageous as a scan of these parameters is regardlessly needed to
construct the phase diagram. Thus, in addition to much improved sampling, tempering offers a
convenient way of parallelising serial MC code [22]. In contrast to MD, where all pair interactions
are evaluated in each time step, a typical MC move updates only a subset of particles and
the relative communication overhead between parallel runs may obstruct runtime performance.
Parallel tempering offers an elegant solution around this issue.
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Figure 3. Top: Simulation box size probability profiles for a mixture of 40 coarse grained proteins obtained by simultaneous
tempering in osmotic pressure, p, and salt concentration [24]. Bottom: Exchange events as a function of MC steps.

3.2 Particle Swap Moves

Since moves in MC need not follow real-time dynamics, particles can be swapped to mimic
equilibrium processes, for example of the type AB −−⇀↽−− A + B with dissociation constant, Kd.
Describing one of the particles, B, solely by its chemical potential, or activity we construct a
swap move with the following trial energy,

β∆UAB→A = − ln([AB]/[A])

= (pB− pKd) ln 10 + δu (6)

where pB is the minus logarithm of the activity of species B and δu is the energy difference
due to interactions [26, 27]. In Faunus, this equilibrium analysis is implemented as part of the
Hamiltonian, and by simply probing the particle types in the system, the free energy state
is established. Multiple equilibrium processes can compete for binding sites, allowing coupled
equilibrium processes to be solved during simulation. While an analytical solution obviously
exists for the ideal case, the numerical MC approach has the distinct advantage that it can
be extended to any complexity and explicitly capture intermolecular interactions, i.e. activity
coefficients.

We have previously used this implicit titration scheme for constant pH studies of proteins [28]
and for more exotic Hofmeister related effects such as thiocyanate and iodide binding to amino
acid motifs [29]. The latter was done by defining not only proton binding sites, but also specific
thiocyanate binding to the protein backbone and hydrophobic sites using experimental dissocia-
tion constants – see Table 4. Therefore, in this model the protein charge distribution is no longer
a mere function of pH, but also of the salt concentration and type. With the latter we mean the
chemical specificity that for example distinguish thiocyanate and chloride anions.
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Table 4. Binding constants of protons and thiocyante

anions to amino acid motifs [29, 30]. These enters the

MC acceptance criteria for particle swap moves.

Residue pKd,H+ pKd,SCN−

Asp 4.0
Glu 4.4
His 6.3
Tyr 9.6
Lys 10.4
Cys 10.8
Arg 12.0
Ctr 2.6
Ntr 7.5
Ala 0.82
Ile 0.82
Leu 0.82
Met 0.82
Phe 0.82
Pro 0.82
Trp 0.82
Val 0.82
backbone 0.60
backbone (Pro,Gly) 1.30

Using a coarse grained protein representation with two beads per amino acid and implicit
solvent, we have calculated the orientationally averaged interaction free energy between two
γ-crystallin proteins, see Fig. 4. This shows that the proteins attract each other more in a thio-
cyanate solution at low pH, while at high pH chloride causes more attraction. This “Hofmeister
reversal” coincides with experimentally measured osmotic second virial coefficients [31] and can
be explained using electrostatic arguments based on the protein net charge arising from both
protons and bound anions.

Specific ion binding to amino acid motifs is intimately connected with solvent-solvent as well as
solvent-solute interactions and a full description requires an atomistic level model. In the present
case, the MC swap move neatly brings in this information – obtained either from atomistic
simulations or experiment – and thus allows for studies of length scales otherwise impossible
with an all atom model.

20 40 60
r/Å

1

2

3

4

g(
r)

Cl-
SCN-

pH 6

20 40 60
r/Å

pH 10

Figure 4. Radial distribution function, g(r), between two γ-crystallin proteins in aqueous sodium chloride and sodium
thiocyanate solutions. Note the Hofmeister reversal when changing pH. More information can be found in ref. [29].

4 Conclusions and Outlook

A main consideration when developing Faunus was to allow for straightforward implementation
of new functionality, achieved through an object oriented approach with minimal dependencies
between objects. This flexibility is herein illustrated by inclusion of arbitrary particle types,
energy functions and Monte Carlo moves. We find that generic programming is particularly
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useful for obtaining a good balance between flexibility, performance and an intuitive API. This,
however, at the cost of longer compile times and limited support for scripting interfaces.

Near future development will focus on efficient energy summation methods and advanced
moves to improve sampling. The latter is a key advantages of MC over MD and may well
compensate for the difficulties of parallelising the inherently sequential Markov chain beyond
trivial multiple walkers.

5 Availability

Faunus is released under the GNU Public License and is available at http://github.com/

mlund/faunus. Early versions previously described [32] are hosted at http://sourceforge.

net/projects/faunus.
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