

LUND UNIVERSITY

Airborne SARS-CoV-2 RNA collected during childbirth and autopsy

Thuresson, Sara; Alsved, Malin; Medstrand, Patrik; Löndahl, Jakob; Fraenkel, Carl-Johan

2023

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Thuresson, S., Alsved, M., Medstrand, P., Löndahl, J., & Fraenkel, C.-J. (2023). Airborne SARS-CoV-2 RNA collected during childbirth and autopsy. Abstract from European Aerosol Conference (EAC) 2023, Malaga, Spain.

Total number of authors: 5

Creative Commons License: CC BY-NC-ND

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

- or research.
- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Airborne SARS-CoV-2 RNA collected during childbirth and autopsy

S. Thuresson¹, M. Alsved¹, P. Medstrand², J. Löndahl¹, CJ Fraenkel^{3,4}

¹ Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University
² Department of Translational Medicine, Lund University
³ Department of Infection Control, Region Skåne, Lund, Sweden
⁴ Division of Infection Medicine, Department of Clinical Sciences, Lund University

Keywords: bioaerosols, SARS-CoV-2, childbirth Associated conference topics: Special session: "Generation, analysis, detection and collection of aerosolized virus particles", 4.4, 4.10. Presenting author email: sara.thuresson@design.lth.se

Airborne SARS-CoV-2 is considered to play a major role in covid-19 transmission, and several studies have reported its presence in hospital environments, including corridors, patient rooms, cohort rooms and ICUs (Dinoi *et al.*, 2022). The risk of airborne virus have been associated with a number of factors, such as low ventilation, high patient viral load and in some cases, certain medical procedures (Thuresson *et al.*, 2022).

However, specific medical situations still deserve further investigation. One such situation of interest is childbirth, as respiratory emissions, which could contain virus, are increased due to heavy breathing during labor (Mok *et al.*, 2021). Moreover, patients rarely use face masks in these situations due to the exertion of pushing during delivery. To date, published studies only include small numbers of air samples (<25) from childbirth. Air samples have been collected with both passive and active air samplers, but most fail to detect airborne SARS-CoV-2 RNA (Hawks *et al.*, 2023, Hermesch *et al.*, 2020, Schoen *et al.*, 2022).

Another situation with potential risk for airborne SARS-CoV-2 is autopsy. As many cases of Covid-19 are asymptomatic, there is a risk of unknown infection in the deceased, and many autopsy procedures are potentially aerosol-generating, such as sawing of the skull. At least one study found airborne SARS-CoV-2 during a minimally invasive autopsy expected to generate less aerosols (Amato-Lourenço *et al.*, 2021). Many hospitals followed specific guidelines, or even ceased autopsy of covid-19 patients during the pandemic, due to the unknown infection risk to the personnel.

The aim of the current study was to further explore the presence of airborne SARS-CoV-2 RNA during childbirth and autopsy.

Method

Air was sampled before, during and after childbirth in rooms where the women giving birth had tested positive for covid-19, or during and after autopsy of a deceased patient with confirmed covid-19 at the time of death.

Sampling was done using a liquid cyclone (Coriolis μ , Bertin Instruments, France), operating at 200 L min-1 for 10 min, with 15 mL of phosphate-buffered saline

solution as collection liquid. The collection liquid was concentrated using Amicon Ultra-15 centrifugal filter units (50 kDa cutoff, Merck Millipore) and stored at -80 °C until analysis. SARS-CoV-2 RNA was detected by real time reverse transcription polymerase chain reaction (RT-qPCR).

Results and discussion

In total, 56 air samples were collected, whereof 44 during six childbirth occasions and 12 during two autopsies. Six (14%) of the samples collected during childbirths were positive for SARS-CoV-2 in RT-qPCR. Positive air samples were found both before, during and after delivery. One (8%) sample from autopsy was positive. Overall, the concentrations of RNA were low, with Ct values between 37.7 and 40.

These results can increase our understanding about the risk of covid-19 transmission by aerosols at delivery wards and during autopsy, even though the sample material is small. Reports of airborne SARS-CoV-2 in hospital environments contribute to improving guidelines for protective equipment for healthcare personnel working with such patients.

This work was supported by AFA Insurances and the Swedish Research Council FORMAS.

- A. Dinoi et al., (2022), Science of The Total Environment **809**, 151137.
- S. Thuresson *et al.*, (2022), *Clinical Infectious Diseases* In press.
- T. Mok et al., (2021), Obstet Gynecol 138, 616-621.
- R. J. M. Hawks et al., (2023), American Journal of Obstetrics & Gynecology MFM 5.
- A. C. Hermesch *et al.*, (2020), *Obstet Gynecol* **136**, 827-829.
- C. N. Schoen *et al.*, (2022), *Frontiers in Public Health* **10**.
- L. F. Amato-Lourenço et al., (2021), Scientific Reports 11, 21284.