LUND UNIVERSITY

A Literature Survey of Assertions in Software Testing

Taromirad, Masoumeh; Runeson, Per

Published in:
8th International Conference on the Engineering of Computer Based Systems

DOI:
10.1007/978-3-031-49252-5_8

2023

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):

Taromirad, M., & Runeson, P. (2023). A Literature Survey of Assertions in Software Testing. In T. Margaria, & J.
Krofron (Eds.), 8th International Conference on the Engineering of Computer Based Systems (Lecture Notes in
Computer Science; Vol. 14390). Springer. https://doi.org/10.1007/978-3-031-49252-5_8

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1007/978-3-031-49252-5_8
https://portal.research.lu.se/en/publications/2951d7c0-d53d-4272-b727-42ebbcd1304d
https://doi.org/10.1007/978-3-031-49252-5_8

A Literature Survey of Assertions in Software Testing

Masoumeh Taromirad Per Runeson
Lund University and Jonkoéping University Lund University
masoumeh.taromirad@cs.lth.se per.runeson@cs.lth.se

August 2023

Abstract

Assertions are one of the most useful automated techniques for checking program’s be-
haviour and hence have been used for different verification and validation tasks. We provide an
overview of the last two decades of research involving ‘assertions’ in software testing. Based on
a term-based search, we filtered the inclusion of relevant papers and synthesised them w.r.t.
the problem addressed, the solution designed, and the evaluation conducted. The survey ren-
dered 119 papers on assertions in software testing. After test oracle, the dominant problem
focus is test generation, followed by engineering aspects of assertions. Solutions are typically
embedded in tool prototypes and evaluated throughout limited number of cases while using
large—scale industrial settings is still a noticeable method. We conclude that assertions would be
worth more attention in future research, particularly regarding the new and emerging demands
(e.g., verification of programs with uncertainty), for effective, applicable, and domain-specific
solutions.

keywords. assertions, testing, literature survey.

1 Introduction

While there is abundance of research regarding the selection of test inputs and execution conditions,
the assessment of expected results is less covered. Research on the expected results of test cases is
often framed as “the oracle problem”, with Weyuker as an early contributor, observing 1982 that
“la]lthough much of the testing literature describes methodologies which are predicated on both
the theoretical and practical availability of an oracle, in many cases such an oracle is pragmatically
unattainable” [82].

Barr et al. [6] surveyed the research literature related to oracles and classified oracles into
specified, derived, implicit, and no automatable ones. Among the concepts identified in their
survey are ‘assertions’, defined as “a boolean expression that is placed at a certain point in a
program to check its behaviour at runtime”. Despite being dated back to Turing and integrated
into programming languages, testing tools and practices of today, they only found a few pieces of
work specifically focused on assertions [16]. As our current research develops around assertions, we
decided to survey the existence of assertions, for testing purposes, in more recent research.

Our research goal is to provide an overview of existing research literature on assertions in soft-
ware testing, to provide a basis for further research. As our research “aims to improve an area of

practice”, we choose the design science paradigm as a lens for this literature survey, as proposed by
Engstrom et al. [25]. We search for literature that uses assertions or addresses problems with asser-
tions in software testing. In line with design science elements, we catalogue the problems addressed
in relation to assertions, the solutions designed to address the problems with or using assertions,
and the types of evaluation, assessing the strength and relevance of the contributions.

We present existing literature surveys on testing in Section 2. Our methodology is outlined
in Section 3, followed by the main results — the literature overview and synthesis in Section 4.
We discuss our findings in Section 5, report limitations in Section 6, and conclude the paper in
Section 7.

2 Background and Related work

Assertions are used to check program’s behaviour at runtime: when an assertion evaluates to true
(false), the program’s behaviour is regarded “as intended” (“as erroneous”) at the point of the
assertion. They have gained significant attention and been used as a measure for code quality.
Most dominantly, program assertions are used either to check the behaviour of the program, e.g.,
Blasi et al. [8], or to specify and check the contracts within the design by contract development.

Test oracle assertions (test assertions for short) are also used to specify and check the expected
output of test cases [6]. Test assertions differ from program assertions as they check the expected
output for one specific test case, while program assertions are typically located in the source code
of the program, predicate on its variables, and return true or false throughout all its executions.
Nevertheless, in many studies, program assertions and test oracle assertions are considered very
closely or even interchangeably, e.g., Terragni et al. [74].

Specification assertions are also used to document programmers intent [16], i.e. modules are
annotated with pre/post-conditions or invariants, e.g., JML. Specification assertions are basically
non-executable and hence are inherently different from the other two types of assertions, although
they seamlessly can be exploited at various stages of development for verification [54]. Our study
basically focuses on test oracle assertions, yet designed to be inclusive of other types of assertions
when they relate or contribute to testing.

Assertions (and their application) in software testing have been mostly studied under surveys on
the test oracle problem, e.g., [6,55,61]. Among the 101 secondary studies, identified by Garousi and
Maéntyla [32], only one is related to assertions, namely the one by Barr et al. [6] which reports on
the roots of assertions, and existing support in languages and tools to use them for testing purposes.
Surveys on automatic test generation techniques also consider assertions. Patel and Hierons [59]
discuss the effectiveness and usability of assertions — among others — in testing non-testable systems.
In a mapping study on software test-code engineering, Garousi et al. [29] identify oracle assertion
adequacy as a criterion of test-code quality assessment. In a survey on software testability [30],
adding assertions is identified as an approach to improve testability. Winkler et al. [83] identify
assertions as one of the factors affecting test code readability and understandability.

In summary, there are many secondary (and even tertiary) studies on software testing, but to
our knowledge, there is no study specifically focusing on assertions used in software testing, and
thus our survey fills a gap here.

=
(&) M=) Evaluations

Title &
A Yooz | =0 Q s -_ . EXE puctinivary) Problems
T oa= foding _/ 5] Solutions

“assertion” AND ~173 000 hits ~380 pﬂpers
“softwarc” AND > %] Detailed
(" test” OR “testing") X Secondary Studies Classification
470 papers
LUB ‘/2 Empirical Studies -——
] Relevance =5 =S T
rch y — = =
search Yowouns | =" Q sovetus , E V5. Seudics on Testing ;%]
“assertion” in Title —
ot in Abstract 2300k ~85 papers >§ Program Assertions // v 119 papers
AND Taxonomy
Software Testing . Assertion-based Verification
— € Search S Screening €5 Classificaion — €3 Synthesis 3

< <

Figure 1: Overview of the research method.

3 Research method

This study provides an overview of research involving (different types of) assertions used in the
context of software testing. We follow similar research procedures as used in the literature surveys
conducted by Harman et al. [4,6], namely a term-based search in Google Scholar, followed by a
filtering process, and finally synthesized in a qualitative analysis. This type of reviews, i.e., semi-
systematic reviews, is proposed by Snyder [69], in particular, for a non-homogeneous concept (similar
to the target of our survey), where systematic literature reviews would be too strict, and a narrative
approach is more feasible. Kitchenham et al. [38] label a similar process mapping study that “may
be auditable but not necessarily complete”; that they should have transparent procedures but the
search scope may be limited. In this paper, we aim to “map a field of research, synthesize the state
of knowledge, and create an agenda for further research” [69].

This survey was conducted in four major steps which were iterated in several cycles (demon-
strated in Fig. 1). The first author was the main driver of the work, while the second author
primarily took a validation role at each step.

1. Search To include also grey literature, Google scholar was used as the primary search en-
gine [31], with a query defined as: “assertion” AND “software” AND (“test” OR ‘“testing”). We
limited the search in time to the 2000-2023 to get an overview of modern research on assertions,
still partially overlapping with earlier surveys to ensure consistency (e.g. Barr et al. covered 1978—
2012 [6]). The initial search rendered about 173 000 hits.

2. Screening The titles and abstracts were screened to find papers on assertions, although being
inclusive when in doubt. After about 5 000 titles, no more relevant papers where found among the
last dozens of titles. The screening resulted in a set of about 380 papers before further classification
of the papers. To validate the search and screening, we used the same query in our university’s
library search portal, limiting the search to title and abstract within the context of software testing.
The results were further screened for relevance and overlap resulting in 86 additional papers, and
hence, the initial pool of about 470 papers.

3. Classification We then performed a preliminary coding of the papers, based on the type
of the study and then the type of assertion, resulting in five categories: 1) secondary studies, 2)
empirical studies, 3) studies explicitly on testing, 4) studies involving program assertions, and 5)
studies on assertion-based verification. Firstly, we filtered out category 1 studies, as they were
already considered under the related work. We also excluded the papers in category 5, since they
are fundamentally related to hardware. Moreover, throughout the preliminary coding, we found
out that the studies in category 4 are divided into two groups of 1) studies totally separate from
testing, and 2) studies that are related to testing, and hence, we excluded the first group from the
further classification. Accordingly, we came up with 119 papers on assertions related/contributing
to testing. We further classified the remaining papers according to the design science elements of
problem, solution, and wvalidation.

4. Synthesis Finally, we synthesised the research from the perspectives of 1) the problems
addressed, 2) the solutions presented, and 3) how they are evaluated. The design science perspectives
are motivated by earlier research, concluding that this frame is feasible for software engineering
research [25]. The results are presented in Section 4 accordingly. The complete listing of the
synthesis (including 119 papers) is available as complementary material at https://shorturl.at/
ruCHL.

4 Results

This section presents the results of reviewing the studies through characterising three aspects of
each study: the addressed problem (Section 4.2), the main proposed solution (Section 4.3), and how
the proposal was evaluated (Section 4.4). It also outlines the type of assertions considered in the
studies (Section 4.1). Throughout a few iterations over the studies, these aspects were narrowed
down using more fine-grained and consistent taxonomy (presented in Figure 2), that provides a
comprehensive picture of the existing research on assertions in testing.

4.1 Assertion Types

Among our collection of studies, the three types of assertions are identified, which are considered for
different purposes in the context of testing. Evidently, most of the studies deal with test assertions,
where assertions are manipulated as the result of performing other tasks, such as automatically
generating assertions [90] or improving their effectiveness [18]. Empirical studies (e.g., [41, 68])
also focus on test assertions investigating them from different perspectives. Program assertions are
also found among the studies for testing purposes — rather than just program verification. In such
studies, program assertions are employed as part of the solution in order to fulfill a goal, such as
generating test data (e.g., [87,92]). Specification assertions are also employed for generating tests
(e.g., [23,43]).

4.2 Assertion Problems

The problem aspect looks into the principal focus of the research. The problems, addressed by the
collected studies, include test oracle, test generation, test regression, test smells, specific applications

Assertion in Software Testing Lack of Specification
Assertion Recommendation
Specification-based Oracle

Test Assettion — %\
Program Assertion : ‘ “ Effective Assertion Oracle

Specification Assertion - Run-time Assertion Checking

| Test Oracle Misc.

Generating More Tests
Assertion-based Test Data
Specification-Based Tests

Prototype —_ - F
Tool Chain %)—Tool Support Y)

Commercial Tool " |
/] |
I ML-based Test Generation

| Test Generation

Domain/Language” / |
/ | . . .
Technique’ | Specific Application Specialised Assertions
Learning & Evolution —* | Specific Purposes
Static Analysis — /N ,‘I .
/ w Test Regression Test Repair

Specific-purposed Assertions —"/ |

Test Execution/Dynamic Analysis Effects on Quality

Misc. ~~ Evaluation Test Smells Detection & Fix
Limited Experiments —]é Comparison
Many/Large Experiments — Engineering Aspects Impacts & Importance

Benchmark — Best Practices

Empirical & Judgement

Figure 2: Overview of the resulting taxonomy of the literature synthesis.

(e.g., Mobile Apps, GUI, ML), and test improvements. Note that these classes recognise the most
distinguishing problem addressed by a piece of research, and hence, they are not necessarily disjoint.

4.2.1 Test Oracle
While assertions are useful for specifying test oracles, writing and generating effective assertions are
yet challenging [6]. Test oracle problem has been considered from different perspectives, including
lack of specification, automatic generation of assertions statements, improving assertion oracles
and assertions based on specifications.
Specification of the intended behavior of the software under analysis is essential for assertion
oracles. The lack of such specification has led to different techniques to capture the software
behavior, and then generate assertions accordingly. Given an automatically generated test suite
with no assertions, Ostra [86] collects objects’ states, exercised by the test suite, and augments
the test suite with new assertions specifying the behavior of a method. Zamprogno [91] propose to
automatically generate assertions for a given test case, based on its previous executions and feedback
of the developer. EvoSpex [52] uses genetic algorithms to automatically produce a specification of
the method’s current behavior, in the form of postcondition assertions. Mesbah et al. [48] use a
crawler to infer a state-flow graph of user interface states and then identify AJAX-specific faults and
DOM-tree invariants that can serve as oracles. TOGA [22] is a unified transformer-based neural
approach to infer both exceptional and assertion test oracles for a focal method, that in particular
handles units with ambiguous or missing documentation.
Assertion recommendation focuses on automatic generation of candidate assertion statements
Agitator [9] applies software agitation to facilitate test automation and recommends assertions

based on observations of a code’s behaviour. DODONA [44] ranks program variables based on
the interactions and dependencies, and accordingly proposes a set of variables to be monitored
within test oracles. Pham et al. [33] generate candidate assertions based on test cases and then
apply active learning techniques to iteratively refine them. DSpot [18] takes developer-written test
cases as input and synthesizes improved versions of them by triggering new behaviors and adding
new assertions. Valueian et al. [79] employ an Artificial Neural Network to construct automated
oracles for low observable software based on tests inputs and verdict. Abdi et al. [1] address test
amplification for dynamically typed languages (e.g., Pharo), and exploit profiling information to
infer the necessary type information creating special test inputs with corresponding assertions.

OASIs [34] is a search-based tool for improving oracle, using test case generation and mutation
testing to reveal false positives and false negatives, respectively. Given a set of assertions and
a set of correct and incorrect program states, GAssert [74] employs a co-evolutionary algorithm
that explores the space of possible assertions to identify oracle with fewer false positives and false
negatives. Xie et al. [87] propose a mutation analysis approach for strengthening the assertions
of parameterised unit tests. Fraser and Zeller [28] present a mutation-based assertion generation,
within EvoSuite [27], optimised towards satisfying a coverage criterion. ATLAS [80] is a deep
learning (DL)-based approach to generate meaningful assert statements for test methods based on
existing unit tests. Yu et al. [90] introduce an IR-based assertion retrieval technique and a technique
to adjust the assertions based on the context, that are more effective in generating a long sequence
of tokens comparing to ATLAS. Tufano et al. [77] propose an approach to generate accurate and
useful assertions using transformer model finetuned on the task of generating assert statements for
unit tests.

Specification-based assertions can effectively reveal faults, up to their limit [17], and hence have
been employed in specifying test oracle. Xie and Memon [85] automate GUI test oracles by inserting
“assert” statements in test cases based on the formal specifications, i.e., pre/postconditions of GUI
events. Zhao and Harris [94] introduce an approach to generate assertions directly from the natural
language specifications employing semantic analysis of sentences in the specification document.
Franke et al. [26] propose a method that identifies life cycle dependent properties in the application
specification, and derives test cases for validation. MeMo [8] automatically derives metamorphic
equivalence relations from natural language documentation (given in Javadoc comments), which
are then used as oracles in automatically generated test cases.

Runtime assertion checkers transparently ensure that the specification assertions hold during
program execution [16]. JML (or an extension of JML) and its runtime assertion checker(s) are
notably employed for testing in different context, such as testing conformance of safety-critical
systems [73], specifying metamorphic relations [54], testing services in the Home Automation Sys-
tem [62], testing concurrent object-oriented software [5]. Cheon and Leavens [13, 14] propose to
use a specification language’s runtime assertion checker (e.g., JML) to decide whether methods
work correctly, and hence automating the test oracles. Pastore et al. [58] introduce CrowdOracles,
exploiting CrowdSourcing idea in the context of test oracle problem, and demonstrate that Crow-
dOracles are a viable solution to automate the oracle problem, yet taming the crowd to get useful
results is a difficult task.

In summary, the studies in the test oracle category focus on how to generate assertions, what
(kind of) information can be used for generating assertions, how to automate or augment the
assertion generation process to have more effective assertions.

4.2.2 Test Generation

Assertions have been considered in the context of test generation addressing different challenges
including generating either complete tests or part of a test, such as test data and input/output
pair. Mirshokraie et al. [51] leverage existing DOM-dependent assertions in human-written Ul-
based test cases to automatically generate assertions for unit-level testing of JavaScript code.
TESTILIZER [50] learns from existing human-written assertions to generate assertions for unchecked
portions of the web application.

In Assertion-based Testing, program assertions are combined with automated test (data) gener-
ation in order to find assertion violations effectively. Zeng et al. [92], automatically convert program
dynamic invariants into program assertions, which are then used to direct the test generation pro-
cess. Mayer [47] develops an assertion-based testing framework and a tool to generate runtime
checks based on the specification annotations, for the Go programming language.

Specification assertions are also used as the basis to automatically generate tests. Korat [10]
uses a method precondition to automatically generate all test cases up to a given size and the
method postcondition as a test oracle. Similarly, Jarteg [56] randomly generates test cases for
Java classes specified in JML, which are used to eliminate irrelevant test cases and serve as a
test oracle. Sgndergaard et al. [73] use JML annotations to model conformance constraints — in a
safety-critical system — in order to generate JUnit tests as well as runtime assertion checks. Higher-
level specification languages (and their assertions) are also employed for test generation. Li and
Sun [43] translate Z formal models into their UML/OCL counterparts and JUnit tests (containing
assertions). TestEra [37] generates test inputs based on Alloy specifications using Alloy SAT solver.
Stoyanova et al. [72] introduce a test generation process based on WS-BPEL, having assertions at
different levels (HTTP, SOAP and BPEL variable), for testing web services. Drusinsky et al. [23]
propose an automatic, JUnit-based, white-box testing of statechart prototypes augmented with
statechart assertions.

Using more recent ML-based techniques, A3Test [2| presents a DL-based test case generation
approach that uses a pre-trained language model of assertions to improve test case generation from
language models (e.g., AthenaTest).

In summary, different types of assertions have been basically employed to direct test generation
in order to generate complete tests or part of them, such as test data and test oracle.

4.2.3 Specific Applications

Specialised assertions — in contrast to general-purpose assertions — have been introduced addressing
special requirements in particular domains. For multi-agent system development, Tiryaki et al. [75]
introduce a specialized assertion method for agent level verification. Delamare et al. [21] extend JU-
nit with new types of assertions to specify the expected joinpoints in aspect-oriented programming
using AspectJ. Chang et al. [76] introduce visual assertions to verify whether certain GUI interac-
tion generates the desired visual feedback. Koesnander et al. [40] introduce web macro assertions
to encode the expectations and assumptions of a website developed by non-technical users.
Verification and validation of applications with inherent, uncertain outcomes (e.g., machine
learning programs) requires new types of assertions. Dutta et al. [24] present FLEX which uses
approximate assertions to compare the actual and expected values, while systematically identify
the acceptable bound between the actual and expected output which minimizes flakiness. Kang et

al. [36] introduce model assertions — that could be ‘exact’ or ‘soft’, which adapts the classical use
of program assertions as a way to monitor and improve ML models.

Assertions are also adapted for specific purposes, in addition to typical testing, such as fault
localisation, detecting merge conflicts, and test-suite reduction. Salehi Fathabadi et al. [64] use a
formal model of the APIs of independently developed components to generate a set of assertions
embedded in the implementation. Xuan and Monperrus [88] present spectrum-driven test case
purification for improving fault localization, that generates purified versions of failing test cases,
which include only one assertion per test. Sequeira [66] provide an automated technique to de-
termine the DOM dependencies for each test assertion (on DOM), so that assertion failures are
connected to the underlying JavaScript code which help finding the cause of failures. Pariente and
Signoles [57| propose a method to trigger security counter-measures, based on static detection and
runtime assertion checking of program weaknesses. Knauth et al. [39] recommend assertion-driven
development instead of test-driven development and introduce meta-mutations at the code level to
simulate common programmer errors. An assertion-aware test-suite reduction technique has been
proposed by Chen et al. [12]. Messaoudi et al. [49] use assertion-based backward slicing to decom-
pose complex system test cases into smaller, separate ones. Petke and Blot [60] suggest to consider
the output of test case assertions in fitness functions for test-based program repair using genetic
algorithms. Fang and Lam [95] introduce assertion fingerprint to identify suitable candidates in
refactoring test suites. TOM [35] is a tool that detects merge conflicts with the help of assertions
that are defined on the variables that have different values.

In summary, the specific applications category demonstrates that assertions are useful for many
different purposes. With specialised syntax and semantics, assertions may support specific prob-
lems more effectively.

4.2.4 Test Regression

Regression tests can fail not only due to faults in the program but also due to obsolete tests which
do not reflect the behavior of the updated program. Moonen et al. [53] introduce “test-driven
refactoring” in that general code refactorings are induced by (re)structuring tests, for example to
remove assertion roulette. Sakakibara et al. [63] develop an assertion-based mechanism to eliminate
unnecessary dependencies between test code and objects in order to decrease invalidated tests due to
changes in a code. ReAssert [19] automatically repairs broken unit tests by for example changing
assertion methods. ReAssert combines analysis of a test’s dynamic execution with analysis and
transformation of the static structure of test code. WATER [15] suggests repairs for web application
test scripts (test assertions), employing differential testing in that the behavior of tests on two
successive versions of the application are compared and analysed. Xu et al. [89] introduce TestFix
to fix broken JUnit test cases by synthesizing new method calls. TestFix regards the assertion of
a broken test as a constraint and relies on the information about changes between versions of the
software to guide the search of method-call sequences that meet the constraint.

In summary, the studies in test regression category largely address test obsolescence as the most
known reason for test evolution, and introduce automatic test repair techniques that mostly
focus on changing assertions and use assertion-based mechanisms.

4.2.5 Test Smells

Test smells, poorly designed tests, negatively affect the comprehensibility and the maintainability
of the test code [7], and therefore, they have been investigated and considered in many studies,
e.g, [71] [20]. Assertion Roulette (i.e., several assertions with no explanation within the same test
method) is found as the most frequent and riskiest test smell [84]. RAID [65] provides automated
detection of lines of code affected by test smells, namely Assertion Roulette and Duplicate Assert,
and a semi-automated refactoring for Java projects using JUnit. Soares et al. [70] present a set of
refactorings — exploiting specific features of JUnit 5 — that help to remove test smells.RTj [46] is
a framework for detecting and refactoring rotten green test cases, i.e., tests that pass but contain
assertions that are never executed, using static analysis and dynamic analysis. Vahabzadeh et
al. [78] recognise incorrect and missing assertions as the dominant root cause of silent horror test
bugs, i.e., those test that pass, while the production code is incorrect. Wei et al. [81] introduce an
ML-based approach for labelling unit tests according to the AAA pattern (i.e., the Arrangement,
Action, and Assertion), as a best practice towards better code comprehension and less maintenance
effort.

In summary, the studies in the test smells category largely aim to prevent test quality degradation
due to badly designed tests and hence, introduce techniques to automatically detect test smells,
in particular assertion roulette.

4.2.6 Engineering Aspects

There are many studies that focus on, so-called, engineering aspects of using assertions in software
development, including the impact of using assertions, comparison between different techniques or
types of assertions, and good practices in using assertions. These studies consider assertions in a
more general context in comparison to the aforementioned problems.

The application of assertions as test oracles is empirically investigated by Shrestha and Ruther-
ford [68]. Li and Offutt [42] investigate the ability of test oracles (that vary in amount and frequency
of program state checked) to reveal failures. The adequacy of assertions in test suite, particularly in
the context of automated test generation has been investigated in several studies, e.g., [96] [67] [3].
Zhang and Mesbah [93] find a strong correlation between the number of assertions in a test suite
with its effectiveness. The relation between developers’ experience and assertion density is then
investigated by Catolino et al. [11], showing that such experience is a significant factor in effective
testing.

The effect of fluent assertions on comprehensibility of tests is investigated by Leotta et al. [41],
demonstrating that adopting AssertJ (a fluent assertion library in JUnit) has no significant effect on
the level of comprehension, though it significantly improves the efficiency in their comprehension.
Ma’ayan [45] studied the quality of real world unit tests and reported that they don’t follow the
well-known good patterns (in particular using the right assertions) for writing tests.

In summary, the studies of the engineering aspects category tend to empirically investigate the
application of assertions in software development in order to provide rigorous evidence of the
benefits developers gain by using assertions and/or discover the best practices in the context.

4.3 Solutions

In order to a have an expressive view over the proposals in our collection, the solution of each study
is characterised by 1) the main technique(s) that specifies the essence of the proposal, 2) the target
domain/language for that the solution is ultimately actualised and implemented (if applicable), and
3) the tooling support which could be either a prototype implementation or within an existing tool.
Note that the studies considering the engineering aspects are excluded herein, since they inherently
do not provide any particular solution, in the way it is investigated in this section, except very few
of them. Also, the information was collected based on the papers as the only source of our survey,
and is hence limited to what is explicitly provided.

4.3.1 Technique

By technique, the very core idea of the proposed solution is determined. While the technique(s)
are (have to be) eventually implemented and hence, shaped within a context (e.g., language and
domain) considering all of its restrictions and capabilities, herein we abstract from such details and
tend to provide a high-level view of the techniques within limit. The main classes of techniques,
identified throughout our survey, are summarised in this section.

Learning and evolutionary algorithms have been used in several studies, particularly among the
ones on assertion generation. Pham et al. [33] use active learning techniques to generate assertions.
A combination of evolutionary and learning based techniques have been applied in EvoSpex [52]
to automatically generate specifications. GASSERT [74] applies a co-evolutionary algorithm that
explores the space of possible assertions to improve test oracles. Valueian et al. [79] employ an Neural
Network algorithm to construct automated test oracles for low observable software. A3Test [2] uses
a pre-trained language model of assertions to generate assertions in test case generation process.

The application of static analysis is considered as a promising technique in the literature, in
different context. Zeng et al. [92] automatically generate assertions based on program invariants.
Pariente and Signoles [57] generate runtime assertions checks based on static detection of CWEs!.

A number of studies exploit test execution in generating or improving test oracles. Xie [86] adds
assertions based on the object states collected throughout previous test executions. Employing a
search-based algorithm for improving assertions, Jahangirova [34] combine test case generation to
reveal false positives and mutation testing to reveal false negatives. Test case execution logs are
used in DS3 [49] to determine dependencies among test slices. Mutation analysis has been also
used by Fraser and Zeller [28] to improve the fault detection capability of test oracles, by Knauth
et al. [39] to assess the quality of the assertions, and by Xie et al. [87] for analyzing PUTs written
by developers and identifying likely locations in PUTs for improvement.

In several studies, a specific-purpose assertion is introduced, that is typically defined on top of
an existing assertion language/construct, through an extended syntax and semantics, and a novel
assertion evaluation technique. Corduroy [54] introduces metamorphic assertions, built on top of
Java Modelling Language (JML). Model assertions [36] adapt the classical use of program assertions,
tailored to the specific needs of ML programs, in particular uncertainty in output.

LCommon Weakness Enumerations — https://cwe.mitre.org

10

Table 1: Evaluation Methods vs. Assertion Problems

Evaluation Method

Problem Limited | Many/Large | Benchmark | Empirical
Test Oracle 16 18 2 3
Test Generation 12 4 1 -
Specific Application 6 5 1 3
Test Regression 4 1 - -
Test Smells 2 1 - 13
Engineering Aspects 3 1 1 17
Total 43 30 5 36

4.3.2 Domain/Language

A wide range of domains and languages are considered by the collected papers, though with dif-
ferent density. In addition to solutions for general and typical programs, that are the target of
many studies, the proposed solution in many studies are applicable to specific types of programs,
e.g., Machine Learning programs [24] [36], web/mobile applications [26], and GUI [85].

The solutions can also be characterised regarding the language for which the solution is in-
troduced. While the most common language is Java (e.g., [86] [34] [33] [74] [52]), a variety of
other general-/specific-purpose languages have been covered, including JavaScript/TypeScript [91],
Go [47], and Pharo Smalltalk [1]. Other solutions (e.g., [79] [49]) are not limited to a specific pro-
gramming language and are applicable to programs in different languages. For example, Valueian
et al. [79] demonstrate the application of their solution on programs in Java, C, C++, Verilog, and
VHDL. There are also a number of studies that consider a higher level of abstraction and introduce
their solutions for specific types of models, such as UML statecharts [23], Alloy models [37], Z
Specification [43], WS-BPEL [72], and Machine Learning models [36].

4.3.3 Tool Support

Most of the solutions are embedded in and supported by tool prototypes that are typically available
online. A number of studies use a chain of available tools to implement and demonstrate their
solutions (e.g., [17] [77]). One study [9] introduces its solution as part of a commercial tool (Agi-
tator). Studies in the engineering aspects category and the empirical studies are exempted to have
prototypes or any other implementation support and few papers (e.g., [92] [60]) have not explicitly
mentioned how the solution is implemented.

4.4 Evaluation

Looking into how the proposals of the collected studies have been evaluated, we identified four main
classes of the evaluation methods, namely limited experiments, many/large experiments, bench-
marks, and empirical & judgement, that are described in the following. Note that most of the
studies, excluding the ones looking into the engineering aspects, provide a proof of concept through
developing a prototype of the tooling support for their proposed solutions, which is not considered
herein as evaluation. There are few papers that do not present any evaluation which is however

11

compatible to their types of study, such as short paper (e.g., [60]) or report on ongoing study
(e.g., [87]). Table 1 summarises evaluation methods w.r.t. the assertion problems.

4.4.1 Limited Experiments

This type of evaluation provides preliminary and limited evidence of the application of the proposed
techniques or tools, in that, for example, the effectiveness of the proposals and how the proposal
meets its goal(s), is demonstrated throughout a limited number of case studies (e.g., up to 10 cases),
e.g., [94] [64], or by limited artificial experiments (e.g., by manually generating or adding required
information [68] [39]). In our collection of 119 papers, the evaluation of 43 studies fall into this
category; the studies focusing on test generation and test oracle/assertion generation have the main
portion among this group (28 studies in total).

4.4.2 Many/Large Experiments

Several studies provide more convincing evaluation results by assessing their solutions on many cases
(e.g. > 10) or throughout one or more experiments in an industrial setting. Large, open-source or
public projects or repositories, for example on GitHub, have been used in evaluation experiments
(e.g., [86] [33] [12]), that is, mostly used in the studies that address assertion generation. Some of the
studies use real systems/applications that are under operation to demonstrate the usefulness and/or
the cost-effectiveness of their proposals, such as using an Aircraft e-Maintenance application [57].

4.4.3 Benchmarks

Few studies have used benchmarks to evaluate and demonstrate properties of their solutions. Dif-
ferent sets of benchmarks (e.g., regarding size, application, and domain) were used depending on
the target and context of a study. Messaoudi et al. [49] use a proprietary benchmark of 30 complex
system test cases to assess the effectiveness and efficiency of their solution in slicing system test
cases. The quality of EvoSpex [52] was assessed on a benchmark of open source Java projects in
SF1102. Alagarsamy et al. [2] use Defects4J repository to evaluate A3Test’s performance. Ji et
al. [35] firstly design the benchmark MCon4j and then use it to evaluate the effectiveness of their
solutions.

4.4.4 Empirical & Judgement

Some of the studies investigate and demonstrate empirical evidence regarding a particular research
question or of the use of a technique or tool in practice. They may use surveys or interview among a
certain number of participants (e.g., [91]), or use more formal experimental methods (e.g., controlled
experiment [41]). Most of the studies in this category, look into the engineering aspects of the use
of assertions, that is however obvious considering their intention.

5 Discussion

This section summarizes the research findings following the same structure we used to review our
collection of studies, and synthesise the results.

2https://www.evosuite.org/experimental-data/sf110/

12

Assertion Problems. The dominant problem focus is the oracle problem. About 34% of the
studies (41) address the substantial challenge of specifying the expected output or behaviour in
tests using assertions. They largely investigate different types of information that can be used
for generating or defining test oracle (assertions) and how to automate or augment the assertion
generation process to improve effectiveness, efficiency, and practicality.

Engineering aspects is the second premier focus. About 20% of studies provide empirical ev-
idence of the benefits to gain by using assertions and also point out challenges and obstacles in
effective application of assertions in practice.

The third group of studies (about 15%) employ assertions to direct test generation tasks, such
as generating test data. The use of assertions for specific applications, addressed in 16 stud-
ies, demonstrates that assertions are useful and could support specific problems more effectively.
Among different specific domains, limited studies address uncertainty in outputs, which however,
considering the emerging use of ML, require more research. The same of number of studies focus on
poorly designed tests. Most of these studies investigate how test smells affect test quality, whereas
few of them introduce techniques to detect and fix test smells. Finally, few studies address test
regression due to program evolution which mostly introduce automatic test repair techniques.

Solutions. Most of the solutions are embedded in and supported by tool prototypes that are
generally available online. About 85% of the studies excluding those considering the engineering
aspects, since they inherently do not provide any particular solution.

As described in Section 4.3.1, many and various techniques have been previously introduced in
the literature and therefore, they are not completely categorised. However, a number of techniques
and ideas are more visible among others. Learning and evolutionary algorithms have been used as
a promising technique in many recent studies (20 out of 119 papers), particularly among the ones
focusing on test oracle and test generation. Nearly the same amount of papers suggest integrating
static analysis and dynamic testing to improve the effectiveness of either testing and/or static
program analysis. Defining a specific-purpose assertion language, including syntax, semantics, and
possibly a new assertion checking method, is a common proposal among the studies, e.g., the studies
addressing uncertainty in output.

While a wide range of domains and languages are considered in the collected papers, general
software programs and C/C++ and Java programming languages are the target of the most of the
studies (about 60%). While Java is a broadly used programming language, it is important for the
assertions research to also take other languages into account. For example, in machine learning
applications, Python is frequently used, which may be a specific target for assertions.

Evaluation. As demonstrated in Table 1, the largest set of studies have been evaluated through-
out limited number of cases. The evaluation of 43 studies, out of 119 papers, fall into this category,
where the studies focusing on test oracle and test generation have the main portion among this
group (28 studies in total). Empirical and judgement is the next more common evaluation method,
that is obviously used in the studies that focus on engineering aspects and also the studies on
test smells. A quarter of the studies, largely on test oracle, evaluate their proposals using many
experiments or within large—scale industrial cases. Benchmarks are used in five studies.

To ensure the relevance for practice, research has to go beyond small scale proofs of concept.
Among the surveyed studies, one third are evaluated in more realistic cases, which is promising.
However, for future research, we would like to see even more focus on the scaling and relevance
aspects.

13

6 Limitations

The main issues related to threats to validity of this survey are incomplete set of studies in our
collection and imprecise data extraction that are fundamentally because of the researcher bias
in choosing search terms, the search engine, and the targeted databases, as well as, the exclu-
sion/inclusion criteria. A very basic method to address these issues is to conduct a survey in a
structured way; we accordingly carried out a semi-systematic review throughout four major steps,
which were iterated in several cycles and carefully defined and reported.

To reduce the risk of incomplete set of primary sources, Google Scholar was used with a general
search query which would render a large amount of studies, including grey literature, as the initial
pool. To minimise researchers’ bias, the second author took a validation role and double checked the
work done by the first author. Design science paradigm was used as a lens for this survey, that was
motivated by earlier research concluding that this frame is feasible for software engineering research.
In order to ensure conclusion validity, the classification and synthesis were performed repeatedly,
and the outcome of each turn was discussed between the authors to avoid any misunderstanding.

7 Conclusion

In this survey, we provide an overall picture of research work on assertions in software testing,
within the last two decades of research. Using a term-based search, a collection of relevant papers
was selected and then the papers were reviewed and synthesised with respect to the design science
elements, namely the problem addressed, the solution proposed, and the evaluation method. The
synthesis demonstrated that test oracle is the dominant problem focus, followed by engineering
aspects of assertions and assertions in test generation. Solutions include a wide range of techniques
and are typically embedded in tool prototypes. They are mostly consider general applications and
languages, e.g., Java. This however, suggest to consider other languages that are getting attention
more recently (e.g., Python). The proposals are by large evaluated within a limited number of cases
while using large—scale industrial settings is also visible. Nevertheless, in order to support practice,
research has to go beyond small scale experiments since scaling up analyses to large code bases is an
essential challenge. We conclude that assertions would be worth more attention in future research,
particularly regarding the new and emerging demands (e.g., wide-spread applications of software,
verification of applications with uncertain outputs), for effective, applicable, and domain-specific
solutions, as well as more focus on the scaling and relevance aspects.

Acknowledgements. This work is funded by the ELLIIT strategic research area (https://
elliit.se), project ‘A19 — Software Regression Testing with Near Failure Assertions’.

References

[1] M. Abdi, H. Rocha, S. Demeyer, and A. Bergel. Small-amp: Test amplification in a dynamically
typed language. Empirical Software Engineering, 27(6):128, 2022.

[2] S. Alagarsamy, C. Tantithamthavorn, and A. Aleti. A3test: Assertion-augmented automated
test case generation, 2023. arXiv:2302.10352.

14

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Benefelds. An in-
dustrial evaluation of unit test generation: Finding real faults in a financial application. In 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), pages 263-272, 2017.

S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen, W. Grieskamp, M. Harman, M. J.
Harrold, and P. McMinn. An orchestrated survey of methodologies for automated software test
case generation. J. Syst. Softw., 86(8):1978-2001, 2013.

W. Araujo, L.C. Briand, and Y. Labiche. On the effectiveness of contracts as test oracles in the
detection and diagnosis of race conditions and deadlocks in concurrent object-oriented software.
In Proceedings International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 10-19, 2011.

E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle problem in software
testing: A survey. IEEE Trans. Software Eng., 41(5):507-525, 2015.

Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave Binkley. Are test
smells really harmful? an empirical study. Empirical Software Engineering, 20(4):1052-1094,
2015.

A. Blasi, A. Gorla, M. D. Ernst, M. Pezzé, and A. Carzaniga. MeMo: Automatically identi-
fying metamorphic relations in javadoc comments for test automation. Journal of Systems &
Software, 181:N.PAG-N.PAG, 2021.

M. Boshernitsan, R. Doong, and A. Savoia. From daikon to agitator: lessons and challenges
in building a commercial tool for developer testing. In Proceedings of the 2006 international
symposium on Software testing and analysis, ISSTA 06, pages 169-180. ACM, 2006.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on java predicates.
ACM SIGSOF'T Software Engineering Notes, 27(4):123-133, 2002.

G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci. How the experience of development
teams relates to assertion density of test classes. In IEEFE International Conference on Software
Maintenance and Evolution (ICSME), pages 223-234, 2019. ISSN: 2576-3148.

J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, and B. Xie. How do assertions impact coverage-
based test-suite reduction? In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 418-423, 2017.

Y. Cheon, M. Kim, and A. Perumandla. A complete automation of unit testing for java
programs. Technical Report UTEP-CS-05-05, University of Texas at El Paso, 2005.

Y. Cheon and G. T. Leavens. A simple and practical approach to unit testing: The JML
and JUnit way. In Boris Magnusson, editor, ECOOP 2002 — Object-Oriented Programming,
Lecture Notes in Computer Science, pages 231-255. Springer, 2002.

S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. WATER: Web application TEst repair.
In Proceedings of the First International Workshop on End-to-End Test Script Engineering,
ETSE ’11, pages 24-29. ACM, 2011.

15

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime assertion checking in
software development. ACM SIGSOFT Software Engineering Notes, 31(3):25-37, 2006.

D. Coppit and J.M. Haddox-Schatz. On the use of specification-based assertions as test oracles.
In 29th Annual IEEE/NASA Software Engineering Workshop, pages 305-314, 2005. ISSN:
1550-6215.

B. Danglot, O.L. Vera-Pe ‘rez, B. Baudry, and M. Monperrus. Automatic test improvement
with DSpot: a study with ten mature open-source projects. Empirical Software Engineering,
24(4):2603-2635, 2019.

B. Daniel, T. Gvero, and D. Marinov. On test repair using symbolic execution. In Proceedings of
the 19th international symposium on Software testing and analysis, ISSTA 10, pages 207-218.
ACM, 2010.

M. De Stefano, F. Pecorelli, D. Di Nucci, and A. De Lucia. A preliminary evaluation on the
relationship among architectural and test smells. In 2022 IEEFE 22nd International Working
Conference on Source Code Analysis and Manipulation (SCAM), pages 66-70, 2022. ISSN:
2470-6892.

R. Delamare, B. Baudry, S. Ghosh, and Y. Le Traon. A test-driven approach to developing
pointcut descriptors in AspectJ. IEEE IEEE Comput. Soc. IEEE Comput. Soc., 2009.

E. Dinella, G. Ryan, T. Mytkowicz, and S. K. Lahiri. TOGA: A neural method for test oracle
generation. pages 2130-2141, 2022.

D. Drusinsky, M.-T. Shing, and K.A. Demir. Creation and validation of embedded asser-
tion statecharts. In Seventeenth IEEE International Workshop on Rapid System Prototyping
(RSP’06), pages 17-23, 2006. ISSN: 1074-6005.

S. Dutta, A. Shi, and S. Misailovic. FLEX: fixing flaky tests in machine learning projects
by updating assertion bounds. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2021, pages 603-614. ACM, 2021.

E. Engstrom, M. Storey, P. Runeson, M. Hést, and M. T. Baldassarre. How software engineering
research aligns with design science: A review. Empir. Softw. Eng., 25:2630-2660, 2020.

D. Franke, S. Kowalewski, C. Weise, and N. Prakobkosol. Testing conformance of life cycle
dependent properties of mobile applications. In Verification and Validation 2012 IEEE Fifth
International Conference on Software Testing, pages 241-250, 2012. ISSN: 2159-4848.

G. Fraser and A. Arcuri. EvoSuite: automatic test suite generation for object-oriented software.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, ESEC/FSE ’11, pages 416-419. ACM, 2011.

G. Fraser and A. Zeller. Mutation-driven generation of unit tests and oracles. IEEE Trans.
Software Eng., 38(2):278-292, 2012.

V. Garousi, Y. Amannejad, and A. Betin Can. Software test-code engineering: A systematic
mapping. Inf. Softw. Technol., 58:123-147, 2015.

16

[30] V. Garousi, M. Felderer, and F. N. Kiligaslan. A survey on software testability. Inf. Softw.
Technol., 108:35-64, 2019.

[31] V. Garousi, M. Felderer, and M. V. Méntyl4d. Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering. Inf. Softw. Technol., 106:101—
121, 2019.

[32] V. Garousi and M. V. Méntyl&. A systematic literature review of literature reviews in software
testing. Inf. Softw. Technol., 80:195-216, 2016.

[33] L. H. Pham, L. L. Tran Thi, and J. Sun. Assertion Generation Through Active Learning.
In Zhenhua Duan and Luke Ong, editors, Formal Methods and Software Engineering, LNCS,
pages 174-191, Cham, 2017. Springer.

[34] G. Jahangirova, D. Clark, M. Harman, and P. Tonella. OASIs: oracle assessment and improve-
ment tool. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, New York, NY, USA, July 2018. ACM.

[35] T. Ji, L. Chen, X. Mao, X. Yi, and J. Jiang. Automated regression unit test generation for
program merges, 2020. arXiv:2003.00154 [cs].

[36] D. Kang, D. Raghavan, P. Bailis, and M. Zaharia. Model assertions for monitoring and im-
proving ML models, 2020. arXiv:2003.01668 [cs|.

[37] S. Khurshid and D. Marinov. TestEra: Specification-based testing of java programs using SAT.
Automated Software Engineering, 11(4):403-434, 2004.

[38] B. A. Kitchenham, D. Budgen, and O. P. Brereton. Using mapping studies as the basis for
further research — a participant-observer case study. Inf. Softw. Technol., 53(6):638-651, June
2011.

[39] T. Knauth, C. Fetzer, and P. Felber. Assertion-driven development: Assessing the quality
of contracts using meta-mutations. In 2009 International Conference on Software Testing,
Verification, and Validation Workshops, pages 182-191, 2009.

[40] A. Koesnandar, S. Elbaum, G. Rothermel, L. Hochstein, C. Scaffidi, and K. T. Stolee. Using
assertions to help end-user programmers create dependable web macros. In Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of software engineering,
SIGSOFT ’08/FSE-16, pages 124-134. ACM, 2008.

[41] M. Leotta, M. Cerioli, D. Olianas, and F. Ricca. Fluent vs basic assertions in java: An
empirical study. In 2018 11th International Conference on the Quality of Information and
Communications Technology (QUATIC), pages 184-192, 2018.

[42] N. Li and J. Offutt. Test oracle strategies for model-based testing. IEEE Transactions on
Software Engineering, 43(4):372-395, 2017.

[43] P. Li, J. Sun, and H. Wang. Formal approach to assertion-based code generation. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 27(9):1637-1662, 2017.
Publisher: World Scientific Publishing Co.

17

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

P. Loyola, M. Staats, I. Ko, and G. Rothermel. Dodona: automated oracle data set selection.
In Proceedings of the 2014 International Symposium on Software Testing and Analysis, ISSTA
2014, pages 193-203. ACM, 2014.

D. D. Ma’ayan. The quality of junit tests: An empirical study report. In 2018 IEEE/ACM
1st International Workshop on Software Qualities and their Dependencies (SQUADE), pages
33-36, 2018.

M. Martinez, A. Etien, S. Ducasse, and C. Fuhrman. RTj: a java framework for detecting
and refactoring rotten green test cases. In IEEE/ACM 42nd International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion), pages 69-72, 2020. Publisher:
ACM.

E. C. Mayer. Assertion-based testing of go programs. Master thesis, Technical University
Munich, 2020.

A. Mesbah, A. van Deursen, and D. Roest. Invariant-based automatic testing of modern web
applications. IEEE Transactions on Software Engineering, 38(1):35-53, 2012.

S. Messaoudi, D. Shin, A. Panichella, D. Bianculli, and L. C. Briand. Log-based slicing for
system-level test cases. In Cristian Cadar and Xiangyu Zhang, editors, ISSTA ’21: 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event,
Denmark, July 11-17, 2021, pages 517-528. ACM, 2021.

A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging existing tests in automated
test generation for web applications. In Proc. 29th ACM/IEEFE International Conference on
Automated Software Engineering, ASE ’14, pages 67-78. ACM, 2014.

S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Atrina: Inferring unit oracles from GUI
test cases. In IEEE International Conference on Software Testing, Verification and Validation
(ICST). IEEE Computer Society, 2016.

F. Molina, P. Ponzio, N. Aguirre, and M. Frias. EvoSpex: An Evolutionary Algorithm for
Learning Postconditions (artifact). In 2021 IEEE/ACM 48rd International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion), pages 185-186, May 2021.
ISSN: 2574-1926.

L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink. On the interplay between software
testing and evolution and its effect on program comprehension. In Tom Mens and Serge
Demeyer, editors, Software Evolution, pages 173-202. Springer, 2008.

C. Murphy, K. Shen, and G. Kaiser. Using JML runtime assertion checking to automate
metamorphic testing in applications without test oracles. In 2009 International Conference on
Software Testing Verification and Validation, pages 436—445, 2009. ISSN: 2159-4848.

R. A. P. Oliveira, U. Kanewala, and P. A. Nardi. Chapter three - automated test oracles: State
of the art, taxonomies, and trends. In Atif Memon, editor, Advances in Computers, volume 95,
pages 113-199. Elsevier, 2014.

18

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

C. Oriat. Jartege: A tool for random generation of unit tests for java classes. In Ralf Reussner,
Johannes Mayer, Judith A. Stafford, Sven Overhage, Steffen Becker, and Patrick J. Schroeder,
editors, Quality of Software Architectures and Software Quality, Lecture Notes in Computer
Science, pages 242-256. Springer, 2005.

D. Pariente and Julien Signoles. Static analysis and runtime-assertion checking : Contribution
to security counter-measures, 2017. 10.5281 /zenodo.820856.

F. Pastore, L. Mariani, and G. Fraser. CrowdOracles: Can the crowd solve the oracle problem?
In Sixth International Conference on Software Testing, Verification and Validation, Software
Testing, Verification and Validation (ICST), pages 342-351, 2013. Publisher: IEEE.

K. Patel and R. M. Hierons. A mapping study on testing non-testable systems. Software
Quality Journal, 26(4):1373-1413, 2018.

J. Petke and A. Blot. Refining fitness functions in test-based program repair. In Proceed-
ings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops,
ICSEW’20, pages 13-14. ACM, 2020.

M. Pezzé and C. Zhang. Chapter one - automated test oracles: A survey. In Atif Memon,
editor, Advances in Computers, volume 95, pages 1-48. Elsevier, 2014.

Ajitha Rajan, Lydie du Bousquet, Yves Ledru, German Vega, and Jean-Luc Richier. Assertion-
based test oracles for home automation systems. In Proc. 7th International Workshop on
Model-Based Methodologies for Pervasive and Embedded Software, MOMPES 10, page 45-52.
ACM, 2010.

M. Sakakibara, K. Sakurai, and S. Komiya. An assertion mechanism for software unit testing to
remain unaffected by program modification - the mechanism to eliminate dependency from/to
unnecessary object. Knowledge-Based Software Engineering, pages 125-134, 2008.

A. Salehi Fathabadi, M. Dalvandi, M. Butler, and B. M. Al-Hashimi. Verifying cross-layer in-
teractions through formal model-based assertion generation. IEEE Embedded Systems Letters,
12(3):83-86, 2020.

R. Santana, L. Martins, L. Rocha, T. Virginio, A. Cruz, H. Costa, and I. Machado. RAIDE: a
tool for assertion roulette and duplicate assert identification and refactoring. In Proceedings of
the XXXIV Brazilian Symposium on Software Engineering, SBES ’20, pages 374-379. ACM,
2020.

S. Sequeira. Understanding web application test assertion failures. PhD thesis, University of
British Columbia, 2014.

S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri. Do automatically
generated unit tests find real faults? an empirical study of effectiveness and challenges (t). In
30th IEEE/ACM Int. Conf. on Automated Software Engineering (ASE), pages 201-211, 2015.

K. Shrestha and M. J. Rutherford. An empirical evaluation of assertions as oracles. In Ver-
ification and Validation Fourth IEEE International Conference on Software Testing, pages
110-119, 2011. ISSN: 2159-4848.

19

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

H. Snyder. Literature review as a research methodology: An overview and guidelines. J. of
Business Res., 104:333-339, 2019.

E. Soares, M. Ribeiro, R. Gheyi, Guilherme Amaral, and André Santos. Refactoring test
smells with JUnit 5: Why should developers keep up-to-date? ITEFEE Transactions on Software
Engineering, 49(3):1152-1170, 2023.

D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli. On the relation of test
smells to software code quality. In IEEFE International Conference on Software Maintenance
and Evolution (ICSME), pages 1-12, 2018. ISSN: 2576-3148.

V. Stoyanova, D. Petrova-Antonova, and S. Ilieva. Automation of test case generation and ex-
ecution for testing web service orchestrations. In 2013 IEEE Seventh International Symposium
on Service-Oriented System Engineering, pages 274-279, 2013.

H. Sgndergaard, S.E. Korsholm, and A.P. Ravn. Conformance test development with the java
modeling language. Concurrency and Computation: Practice and Experience, 29(22):(32 pp.),
2017.

V. Terragni, G. Jahangirova, P. Tonella, and M. Pezzé. GAssert: A Fully Automated Tool to
Improve Assertion Oracles. In IEEE/ACM 43rd Int. Conf. on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 85-88, May 2021. ISSN: 2574-1926.

A. Tiryaki, S. Oztuna, O. Dikenelli, and R. Erdur. SUNIT: A unit testing framework for test
driven development of multi-agent systems. In Lin Padgham and Franco Zambonelli, editors,
Agent-Oriented Software Engineering VII, LNCS, pages 156-173. Springer, 2007.

C. Tsung-Hsiang, T. Yeh, and R. C. Miller. GUI testing using computer vision. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pages 1535-1544. ACM,
2010.

M. Tufano, D. Drain, A. Svyatkovskiy, and N. Sundaresan. Generating accurate assert state-
ments for unit test cases using pretrained transformers. In Proceedings of the 3rd ACM/IEEE
International Conference on Automation of Software Test, AST 22, pages 54—64. ACM, 2022.

A. Vahabzadeh, A. Milani Fard, and A. Mesbah. An empirical study of bugs in test code. In
2015 IEEFE International Conference on Software Maintenance and Evolution (ICSME), pages
101-110, 2015.

M. Valueian, N. Attar, H. Haghighi, and M. Vahidi-Asl. Constructing automated test oracle
for low observable software. Scientia Iranica, 27(3):1333-1351, 2020.

C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk. On learning meaningful
assert statements for unit test cases. In Proceedings of the ACM/IEEE /2nd International
Conference on Software Engineering, ICSE 20, pages 1398-1409. ACM, 2020.

C. Wei, L. Xiao, T. Yu, X. Chen, X. Wang, S. Wong, and A. Clune. Automatically tagging the
“AAA” pattern in unit test cases using machine learning models. In Proceedings of the 37th
IEEE/ACM Int. Conf. on Automated Software Engineering, ASE ’22, pages 1-3. ACM, 2023.

20

[82]
[83]

[84]

[85]

[36]

[87]

[83]

[89]

[90]

91]

[92]

193]

[94]

[95]

E. J. Weyuker. On testing non-testable programs. Comput. J., 25(4):465-470, 1982.

D. Winkler, P. Urbanke, and R. Ramler. What do we know about readability of test code?
- a systematic mapping study. In 2022 IEEFE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 1167-1174, 2022. ISSN: 1534-5351.

H. Wu, R. Yin, J. Gao, Z. Huang, and H. Huang. To what extent can code quality be improved
by eliminating test smells? In 2022 International Conference on Code Quality (ICCQ), pages
19-26, 2022.

Q. Xie and A. M. Memon. Designing and comparing automated test oracles for GUI-based
software applications. ACM Transactions on Software Engineering and Methodology, 16(1):4—
es, 2007.

T. Xie. Augmenting automatically generated unit-test suites with regression oracle checking.
In D. Thomas, editor, ECOOP 2006 — Object-Oriented Programming, LNCS, pages 380-403.
Springer, 2006.

T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Mutation analysis of parameterized
unit tests. In 2009 International Conference on Software Testing, Verification, and Validation
Workshops, pages 177-181, 2009.

J. Xuan and M. Monperrus. Test case purification for improving fault localization. In Proceed-
ings. 22nd ACM SIGSOFT Int. Symp. on Foundations of Software Engineering, pages 52—63.
ACM, 2014.

Y. Xu, B. Huang, G. Wu, and M. Yuan. Using genetic algorithms to repair JUnit test cases.
In 21st Asia-Pacific Software Engineering Conference (APSEC), volume 1. IEEE Computer
Society, 2014.

H. Yu, Y. Lou, K. Sun, D. Ran, T. Xie, D. Hao, Y. Li, G. Li, and Q. Wang. Automated assertion
generation via information retrieval and its integration with deep learning. In IEEE/ACM 44th
Int. Conf. on Software Engineering (ICSE), pages 163-174, 2022. Publisher: ACM.

L. Zamprogno, B. Hall, R. Holmes, and J. M. Atlee. Dynamic human-in-the-loop assertion
generation. IEEE Transactions on Software Engineering, 49(4):2337-2351, 2023.

F. Zeng, C. Deng, and Y. Yuan. Assertion-directed test case generation. In 2012 Third World
Congress on Software Engineering, pages 41-45, 2012.

Y. Zhang and A. Mesbah. Assertions are strongly correlated with test suite effectiveness. In
Proceedings of the 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 214-224. ACM, 2015.

J. Zhao and I. G. Harris. Automatic Assertion Generation from Natural Language Speci-
fications Using Subtree Analysis. In 2019 Design, Automation Test in Europe Conference
Ezhibition (DATE), pages 598-601, March 2019. ISSN: 1558-1101.

Felix Zheng and P. Lam. Identifying test refactoring candidates with assertion fingerprints. In
Proceedings of the Principles and Practices of Programming on The Java Platform, PPPJ ’15,
pages 125-137. ACM, 2015.

21

[96] J. Zhi and V. Garousi. On adequacy of assertions in automated test suites: An empirical
investigation. In 6th Int. Conf. on Software Testing, Verification and Validation Workshops,
pages 382-391, 2013.

22

