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Abstract—The semiconductor technology development con-
stantly enables integrated circuits (ICs) with more, faster and
smaller transistors. While there are many advantages, there are
also many and new challenges, for example tighter margins, wear-
outs and process variations. To address these challenges, the
traditional approach with external test instruments used at man-
ufacturing test must be complemented with on-chip instruments
to provide possibilities to test for defects that manifest themselves
during the operational lifetime. These on-chip instruments provide,
on one hand, better controllability and observability, which is
helpful for testing purposes. On the other hand, the increased
possibility to control and observable the IC’s internals can be a
security risk. We discuss how to provide access and how to co-
optimize security and accessibility for these on-chip instruments.

I. INTRODUCTION

The semiconductor technology development makes it for
every generation possible to produce integrated circuits (ICs)
with more, faster and smaller transistors. There are many
advantages but also several challenges. The increasing transistor
count puts pressure on development time and integration. Faster
and smaller transistors give tighter margins and new effects, like
process variations and wear-out problems.

The traditional approach with external test instruments used
at manufacturing test must be complemented with on-chip
instruments to provide possibilities to test for defects that man-
ifest themselves during the operational lifetime. In automotive
industry, ISO26262 demands in-field test on a regular basis [1].
An example of work in this direction is that by Tille et al. [2]
where a Digital Twin is used to re-compute Logic Built-In Self-
Test (LBIST) signatures in-field. In addition, there are reports
that hardware in server farms are subject to unexpected errors
during operation [3], [4].

To provide testing in operational life-time, increased control-
lability and observability are needed, typically with the help of
on-chip instruments. However, this increased controllability and
observability can be misused, for example by observing internal
states or controlling the operation.

In this paper we discuss how to provide access to on-chip
instruments and how to co-optimize security and accessibility.
The rest of the paper is organized as follows. In Section II
the need of on-chip instruments is illustrated and existing ways
to access these instruments are introduced [5], [6], [7], [8],
[9], [10], [11]. A way to secure the test access port without
embedding a private key is discussed in Section III. As key
handling can be cumbersome, Section IV discusses how to
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Fig. 1. An typical way to access instruments

Fig. 2. Performance variation (PV) at different Nexys 4 FPGA boards

partition the instruments such that a subset can be accessed
via the functional bus.

II. INSTRUMENTS

Figure 1 shows a typical way to access on-chip instruments
from an external controller. The external controller is connected
to the chip via the test access port (TAP) of IEEE Std. 1149.1,
also known as JTAG [12], [13]. JTAG is connected to an IEEE
Std. 1687 network of test data registers (TDR), which in turn
are connected to instruments [14]. Connecting instruments with
IEEE 1687 enable flexible and dynamically configurable access
[15]. To get a feeling for the need of instruments, Pengxian [16]
developed a method for monitoring performance variation (PV).
The method was applied to Digilent Nexys4 boards equipped
with 28nm XILINX ARTIX 7 XC7A100T FPGAs. Figure 2
shows the variation of clock frequency in a single FPGA device
based on 1400 instruments. Experiments were performed with
20 devices where each showed a unique profile.



(a) Details of the JTAG TAP (b) Overview

Fig. 3. Securing the JTAG port
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Fig. 4. Using Serial Transfer to share a network segment over a system bus

III. SECURING THE TEST PORT

JTAG can be used for attacks such as extracting information
from chips connected to the same JTAG network [17], [18].
Cryptography is a way to provide authentication. While it is
efficient to store private keys in hardware, a danger is that
keys might get lost. We developed a scheme using public keys.
Figure 3 overviews the scheme. A user requests an unlock
and a public key in from of a random sequence is created
by the device. A signed random sequence is then created by
the digital signature server, which keeps the private key. At
the device, the signed random sequence is compared against
the locally generated random sequence. Figure 3(a) shows the
detailed JTAG TAP. The TDRs for Encrypted Random Number
and Random Number are accessible via the Instruction Register
(IR) Decoder. For the implementation, we learned that True
Random Number Generator (TRNG) does not incur much
hardware overhead, but high hardware overhead is needed for
the decryption algorithm (used for verification of the signed
random number).

IV. SHARING INSTRUMENTS

In Section III, access control of the JTAG TAP was dis-
cussed. One short-coming is that access to instruments during
operational lifetime is cumbersome. Zadegan et al. propose a
scheme where some instruments are shared such that they are
accessible from both the test port, like IEEE Std. 1149.1, and
an processor [15]. Figure 4 shows a system where an external
controller can access all instruments in the IEEE Std. 1687
network via the IEEE Std. 1149.1 TAP while the processor only
can access a subset of the instruments. Zadegan et al. analyzed
the requirements and derived some constraints on timing in

respect to test clock (TCK) and system clock (CLK) which must
be fulfilled so that an EDA-tool can be used without explicit
knowledge of the sharing.
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