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Abstract

High-order harmonic generation is a highly nonlinear, though inherently inefficient, pro-
cess which can lead to emission of coherent, broadband extreme ultraviolet radiation in
the form of attosecond pulses. Attosecond pulses are crucial for experiments investigat-
ing photoionization dynamics on the femto- and attosecond timescales. As attosecond
research tends towards increasingly complex light-matter interactions, demands on high
flux attosecond sources grow. This thesis deals with light-matter interactions in the non-
perturbative and perturbative regimes. Optimal generation of high-order harmonics in
gases is studied, and the attosecond pulses are applied in two-photon pump-probe pho-
toelectron interferometry schemes to unravel photoionization dynamics on the intrinsic
timescales of the electron.

The first part of this thesis focuses on optimization of the conversion efficiency in high-
order harmonic generation in gases, with emphasis on macroscopic phase-matching ef-
fects. We explain the large variety of gas target designs in the literature through an analytic
model. The model predicts, independently of the driving laser focusing geometry, that
efficient high-order harmonic generation is possible for a wide range of densities and me-
dium lengths, if these follow a hyperbolic relation. The model suggests the existence of two
phase-matching regimes with similar efficiency but different spatial and temporal charac-
teristics of the emitted extreme ultraviolet radiation. We verify the model for a wide range
of generation parameters experimentally and using numerical simulations.

The second part of this thesis concerns the application of attosecond pulse trains, consisting
of high-order harmonics, to infer information about electron correlations in atoms. Pho-
toionization dynamics occurring on the femto- and attosecond timescales are probed by
measuring the amplitude and phase of oscillations in the photoelectron signal, induced by
path interference of two-photon transitions. Two interference techniques are used: First,
Reconstruction of Attosecond Beatings By Interference of Two-photon transitions (RAB-
BIT) is used to study (i) photonionization time delays across the 4d giant dipole resonance
in xenon, (ii) resonant below-threshold two-photon ionization of the 1s3p, 1s4p and 1s5p
Rydberg states in helium and (iii) autoionization dynamics from the 3s13p64p Fano res-
onance in argon. Secondly, to fully characterize mixed photoelectron quantum states, a
quantum state tomography protocol for photoelectrons (KRAKEN) is developed theoret-
ically and tested experimentally for non-resonant photoionization of helium and argon.
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Populärvetenskaplig Sammanfattning

Ljus som ett verktyg för att mäta ultrakorta tidsskalor

För att mäta längden på ett objekt behöver du en linjal med en skala som är mindre än
objektet du vill mäta. För att fånga ett händelseförlopp behöver du på ett liknande sätt en
tidsskala som är kortare än händelsen. I till exempel en kamera bestäms denna tidsskala av
den kortaste tid som du samlar in ljus, det vill säga den kortaste ljuspuls som du belyser
objektet med. När man studerar objekt med mindre storlek så sker vanligtvis dess rörelse
på en allt kortare tidsskala. Exempelvis tar det 1 sekund = 100 sekund för ett hjärta att slå
ett slag, och 1millisekund = 0.001 sekund = 10−3 sekund för ett bi att slå ett vingslag.
Dessa tidsskalor kan uppfattas av människans öga eller en vanlig kamera. För att uppfatta
elektroners rörelse krävs dock extremt korta ljuspulser. I Niels Bohrs berömda atommodell
tar det endast 150 attosekunder för en elektron i en väteatom att kretsa kring atomkärnan.
En attosekund är en miljarddels miljarddel av en sekund (1 attosekund = 10−18 sekund).
I den här doktorsavhandlingen presenteras en modell för hur man på ett effektivt sätt
kan producera ljuspulser på attosekundstidsskalan. Attosekundspulserna används för att
studera hur elektroner beter sig i olika atomer på attosekundsskalan.

Allt ljus runtomkring oss består av elektromagnetisk strålning med olika våglängder. Vi
uppfattar de olika våglängderna som olika färger, där rött ljus har en längre våglängd än
blått ljus. Alla elektromagnetiska vågor är dock inte synliga för oss människor. De flesta
våglängder är faktiskt utanför det synliga spektrat, vilket visas i Fig. 1. För varje våglängd av
ljus är den kortaste ljuspulsen som kan skapas begränsad av hur lång en våglängd är, samt
vågens hastighet – den konstanta ljushastigheten. För en våglängd på 800 nanometer är
den här gränsen 2700 attosekunder, medan för ultraviolett ljus med 30 nanometer vågländ,
är gränsen 100 attosekunder. Det är tydligt att man därför vill ha kortare våglängder för
att studera snabba händelseförlopp. Lasrar som producerar ljus med korta våglängder, i det
ultravioletta spektralområdet, är dessvärre inte tillgängliga. Däremot finns det en process
som kallas övertonsgenerering som kan användas istället.

Du kanske känner till övertoner, eller harmonier, från musikinstrument där det helt enkelt
är en frekvsen som är en multipel av en grundfrekvens. Uttryckt i våglängder, om grund-
frekvensen har våglängden L, så har den tredje övertonen våglängden L/3. När du spelar
på en sträng på till exempel en violin så vibrerar strängen med en viss frekvens. Strängen vi-
brerar dock inte bara med grundfrekvensen, utan även med flera andra övertonsfrekvenser
samtidigt. På samma sätt kan ljus med korta våglängder genereras som övertoner av en lång
våglängd. Detta kan åstadkommas genom att fokusera en laserpuls i en liten punkt i en
gas. Gasen i det här fallet agerar som strängen på violinen, och laserpulsen är stråken.

I båda fallen ovan beror styrkan hos övertonen på hur mycket kraft man tillför strängen
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Figure 1: Elektromagnetiska spektrumet. [Adapted from Philip Ronan, Gringer under CC-BY-
SA-3.0]

(eller gasen), men typiskt minskar styrkan väldigt snabbt för högre övertoner. Genom att
tillföra mer kraft, det vill säga använda en starkare laserpuls, kan man öka styrkan på över-
tonen. Däremot är effektiviteten, hur stark överton du får ut relativt till hur mycket kraft
du tillför, densamma. När man genererar höga övertoner i gaser så kan en bra effektiv-
itet vara så låg som 0.001%, och mycket arbete har lagts ner på att öka effektiviteten. En
del av min avhandling har fokuserat på det här problemet. Vi har utvecklat en modell
baserad på datorsimuleringar, och verifierad genom experimentella mätningar, som säger
hur gasmediet ska utformas för att generera attosekundspulser med hög effektivitet.

De korta våglängderna som fås då höga övertoner genereras kan användas för att studera
hur elektroner beter sig i atomer. Ljus som har en kort våglängd är mer energirikt, vilket
visas i Fig. 1. Då ljuspartiklar, fotoner, med tillräckligt hög energi kolliderar med en atom
kan de knuffa ut en elektron i en process som kallas den fotoelektriska effekten, eller fo-
tojonisering. Då detta händer kommer de andra elektronerna i atomen att omfördela sig
mycket snabbt, på attosekundstidskalan. Den joniserande elektronen fortsätter att känna
av de andra elektronernas rörelse samtidigt som den lämnar atomen. Genom att studera
den joniserande elektronen kan man därför få viss information om omfördelningen av de
andra elektronerna. I den andra delen av min avhandling har vi studerat fotojonisering från
olika atomer med en tidsupplösning på attosekundsskalan. Den här typen av fundamental
forskning kan förbättra vår förståelse för, och modeller av, naturens mest grundläggande
byggstenar. Att förstå hur elektroner beter sig i atomer och molekyler är det första steget för
att lära sig kontrollera deras rörelse. Ett långsiktigt mål inom fältet attosekundsforskning är
att kunna kontrollera elektroners rörelse i kemiska reaktioner på deras naturliga tidsskalor.
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Popular Science Summary

Light as a tool for measuring ultrashort timescales

To measure the length of an object, you need a ruler with a scale smaller than the object
of interest. In a similar way, to capture the evolution in time of some event, you need
to use light flashes which are shorter than the event itself. When the weight of an object
gets smaller and smaller, its motion typically occurs on shorter and shorter timescales. For
example the human heartbeat is roughly 1 second = 100 second, and the wing flap of
a bee is around 1millisecond = 0.001 second = 10−3 second. These timescales can be
captured by the human eye, or a normal camera. Recording electron motion on its natural
timescale, however, requires extremely short pulses of light. In Niels Bohr’s famous atomic
model, the electron in a hydrogen atom orbits the nucleus in a mere 150 attoseconds, where
one attosecond is a billionth of a billionth of a second (1 as = 10−18 s). In this thesis,
a model is developed describing how to efficiently produce light pulses on the attosecond
timescale. The attosecond pulses are applied to study, with attosecond time resolution, the
behavior of electrons in different atoms.

All light around us consists of electromagnetic radiation of different wavelengths, which we
perceive as different colors, with red light having a longer wavelength than blue light. How-
ever not all electromagnetic waves are visible to us. In fact, most wavelengths lie outside
the visible spectrum, as shown in Fig. 2. For any color of light, the shortest pulse duration
is limited by the length of a single wavelength, and the speed of the wave – the constant
speed of light. For a wavelength of 800 nanometer this limit is 2700 attoseconds, while for
extreme ultraviolet light of 30 nanometer wavelength the limit is 100 attoseconds. Clearly,
one would like short wavelength light to study fast events. Lasers producing wavelengths
in the extreme ultraviolet region of the spectrum are unfortunately not readily available.
Luckily, a process known as harmonic generation can be used instead.

You might know harmonics, or overtones, from musical instruments, where it is simply a
frequency multiple of some fundamental frequency. Expressed in wavelengths, if the fun-
damental wavelength is of length L, then the third harmonic has a wavelength of L/3, and
so on. When playing the string on, for example, a viola, you are not only making the string
vibrate at the fundamental frequency. Rather, it vibrates at a range of harmonic frequen-
cies simultaneously. In the same way, light of very short wavelengths can be produced as
harmonics of a longer wavelength. This can be done by focusing a laser pulse into a small
volume in a gas. Here, the gas acts as the string on the viola, and the laser pulse is the bow.

In both cases, the strength of the harmonics depends on the force applied to the string (or
gas), but typically it falls off rapidly as the harmonic order increases. Applying more force,
i.e. a stronger laser pulse, increases the strength of the harmonic, but the efficiency, the ratio

v
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Figure 2: Spectrum of electromagnetic radiation. [Adapted from Philip Ronan, Gringer under
CC-BY-SA-3.0]

of the energy you put in to what you get out, remains the same. In high-order harmonic
generation in gases, a good efficiency may be as low as 0.001%, and much effort has been
devoted towards increasing it. One part of my thesis work has focused on this aspect. In
particular, we have developed a model based on computer simulations, and verified through
experimental measurements, which tells how the gas medium should be designed to obtain
a high efficiency.

The short wavelength light obtained through high-order harmonic generation can be used
to study electron behavior in atoms. As shown in Fig. 2, a short wavelength corresponds
to high energy light. When particles of light, photons, with high enough energy collide
with an atom, they may kick out an electron in a process called the photoelectric effect, or
photoionization. When this happens, the remaining electrons rearrange themselves inside
the atom on the attosecond time scale. As it is ejected from the atom, the ionizing elec-
tron continues to interact with the remaining electrons. The electron motion inside the
atom taking place on the attosecond timescale can be inferred from the imprint that this
interaction leaves on the ionizing electron. In the second part of my thesis work, we have
performed studies of such photoionization events in different atomic species. This type of
fundamental research aims at improving our understanding and models of natures most
basic building blocks. Understanding how electrons behave in atoms and molecules is the
first step towards learning how to control their motion, and one long-term goal of the at-
tosecond research community is to be able to reliably control electron motion in chemical
reactions on their natural timescale.
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CHApTER 1
Introduction

1.1 Photoelectron Spectroscopy

Light has been used to infer the properties of matter since the birth of the field of spectro-
scopy in the 17th century due to Newton, at a time when neither the structure of matter nor
the wave-particle duality of light was known. The first quantum revolution at the turn of
the 20th century, including Bohr’s atomic model and the explanation of the photoelectric
effect by Einstein [1] completely changed the understanding of light-matter interactions,
and laid the groundwork for new spectroscopic techniques.

Photoemission spectroscopy, or photoelectron spectroscopy of core electrons was pioneered
in the 1950s by Kai Siegbahn using X-rays [2]. The principle of photoelectron spectro-
scopy is simple, and directly related to the photoelectric effect. The binding energy Ip,
which provides information about the electronic structure, is related to the difference of
the photon energy and the kinetic energy of the ionized electron,

Ip = ℏω − Ekin (1.1)

where ℏ is Planck’s reduced constant, ω is the angular frequency of the light, and Ekin is
the kinetic energy of the photoelectron.

The light sources used for this type of spectroscopy range from continuous light from the
sun or flames, at the time of Newton, to X-ray tubes, discharge flash lamps and high bril-
liance synchrotrons producing tunable light bursts with pulse durations down to 0.1 to
10 ns [4]. Because of their temporal properties, these sources were used primarily to probe
electronic structure, transition amplitudes and transient decays in the nanosecond to mi-
crosecond range. Ultrafast time-resolved spectroscopy aims to probe dynamics on much
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Figure 1.1: History of light pulses. Focused laser intensity (yellow) assuming a beam size on the
order of 1 cm2, and shortest light pulse duration (red). Major milestones leading to
increased intensities or shorter pulses are indicated. [Adapted with permission from
Ref. [3]].

shorter timescales. Chemical reactions and electron motion occur on the femtosecond
(10−15 s) and attosecond (10−18 s) timescales, which can be understood heuristically from
the Heisenberg uncertainty relation

∆τ∆E ≥ ℏ
2
, (1.2)

where ∆τ is a time interval¹, and ∆E is e.g. the energy difference between two atomic
levels. For atoms, the minimum energy required for ionizing the ground state is in the 3
to 25 eV range, which by the above relation gives 10 as ≤ ∆τ ≤ 110 as.

Clearly, shorter pulses are needed to resolve dynamics on this timescale. The first laser built
in 1960 by Maiman [6] initiated a rapid development towards shorter optical pulses. A
timeline including some major breakthroughs is given in Fig. 1.1. The Q-switching [7],
and especially the mode-locking [8] techniques, have been essential to this development.
In mode-locking, a broad range of cavity modes are phase-locked, leading to constructive
interference of all the frequency components. The average power of the otherwise Con-
tinuous Wave (CW) laser is then contained in a short pulse, hence a more or less direct
relation between the peak intensity in the pulse and its duration can be seen until the
mid 1980s. Due to the high intensities, damage thresholds of gain media hampered fur-
ther development. The invention of the Chirped Pulse Amplification technique (CPA) [9]
(see Sec. 2.1.1), and Kerr-Lens Mode-locking (KLM) [10], has led to intense laser pulses of
femtosecond duration.

¹A more rigorous interpretation consistent with quantummechanics is theMandelstam-Tamm uncertainty
relation [5], where ∆τ should be understood as the shortest time interval during which the expectation value
of an observable changes by its standard deviation.
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1.2 Ultrafast Spectroscopy

Femtosecond pulses were the catalyst for the field of femtochemistry, beginning with a
1988 paper by Ahmed Zewail [11], where chemical reactions, e.g. chemical bond breaking,
was studied on their natural timescale. The attosecond pulses needed to resolve electron
dynamics in atoms are, however, unobtainable with conventional lasers due to the limit
imposed by the single-cycle duration of the available laser wavelengths. Indeed, a femto-
second plateau can be seen in Fig. 1.1 during the 1990’s. In parallel with the application
of femtosecond pulses to probe molecular dynamics, the peak electric field amplitudes ob-
tained with CPA based lasers reached the level of the Coulomb potential of bound electrons
in atoms, opening up the door to many new nonlinear optical phenomena. High order-
Harmonic Generation (HHG), which was discovered by strongly focusing picosecond laser
pulses in gases and plasmas [12–14], greatly benefited from CPA, and it was subsequently
demonstrated that this process generated trains of attosecond pulses [15].

Because electronic devices are not fast enough to directly capture the attosecond electron
dynamics, measurements of processes occurring below the picosecond timescale are com-
monly performed using two-photon pump-probe spectroscopy. In this thesis, one such tech-
nique called Reconstruction of Attosecond Beatings By Interference of Two-photon trans-
itions (RABBIT) is utilized [15]. The Extreme UltraViolet (XUV) radiation of the Atto-
second Pulse Train (APT) initiates the dynamics, acting as the pump, and an InfraRed
(IR) femtosecond pulse with a variable delay probes the system at different times. Initially
the technique was used to characterize the APT itself, however, knowing the structure of
the APT, the RABBIT technique has been utilized to measure the spectral amplitude and
phase of Electron Wave Packets (EWPs) photoionized from atoms [16–19], molecules [20]
and solids [21]. In contrast to synchrotron experiments, where the spectral amplitude is
measured, the additional access to spectral phase information provides information about
the temporal dynamics of the photoionization process [16, 22].

1.3 Quantum Coherence in Attosecond Science

In the past few decades, quantum technologies have attracted a lot of interest, marking
the start of a second quantum revolution [23, 24]. For any technological application of a
quantum system, the quantum coherence, a measure of the “quantumness” of the system, is
vital. The interest in coherence has also reached the field of attosecond science [25], where
loss of coherence may occur due to incomplete measurements of entangled states, or due
to coupling to environmental degrees of freedom. In contrast to the previously described
RABBITmeasurements, which assume a wave function formalism, the characterization of a
quantum state requires the measurement of its full density matrix. Newmethods have been
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developed in attosecond science to this end. A quantum state tomography (QST) protocol
has been applied to the reconstruction of the density matrix of a photoelectron ionized
by an APT [26]. Using an APT and a time-delayed IR probe, control of the degree of
entanglement between an H+

2 ion and photoelectron, and as a consequence the vibrational
coherences in the ion, has been studied [27].

1.4 Introduction to High-order Harmonic Generation

From the previous discussion, it should be clear that the light source is often the enabling
technology for time-resolved spectroscopic techniques. At the heart of attosecond science is
the HHG process², which provides a table-top source of spatially and temporally coherent,
broadband XUV radiation. However, HHG is by nature a highly inefficient process, which
sets limits on the experiments that can be performed.

Depending on the experiment, two complementary scaling directions can be taken [29].
(i) Loose focusing of high pulse energy, low repetition rate driving lasers are used when
generating harmonics to explore phenomena which depend nonlinearly on the XUV in-
tensity [30]. (ii) High repetition rates and consequently low pulse energies, requiring tight
focusing, is beneficial to improve statistics in experiments where e.g. multiple ionization
fragments are detected in coincidence [31, 32]. In both cases, the efficiency of the HHG
process is key to enable novel experiments to be performed.

Recently, scaling laws for HHG were described by Heyl et al. [33], demonstrating that the
propagation equation in the generating medium is invariant under changing focusing con-
ditions if the pulse energy of the driving field and the length and density of the gas medium
are scaled appropriately. The scaling laws furthermore show that the same Conversion Ef-
ficiency (CE) can be achieved in vastly different focusing conditions [34], which explains
the successful application of HHG in both the loose and tight focusing schemes described
above.

1.5 Motivation

This thesis aims to further improve our knowledge in two directions:

(i) Optimization of the conversion efficiency in HHG. In particular, the scaling laws de-
scribed above do not make any claims about how the focusing geometry and generating
medium should be chosen for the efficiency to be optimized. In the literature, the charac-

²Free Electron Lasers (FELs) also produce ultrashort x-ray pulses for the study of ultrafast dynamics. The
pulse duration has been pushed down to attoseconds at LCLS [28].
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teristics of the generating medium can vary strongly while still achieving similar efficien-
cies, even for similar driving field parameters and focusing conditions. In this thesis, we
develop a general, scaling invariant model predicting the laser focusing geometry and me-
dium density and length that should be used for optimal CE, given a driving pulse energy
and duration. The model suggests that a high CE can be achieved in a large range of gas
densities and medium lengths given that these follow a hyperbolic relation. This conclusion
is also verified by experimental results.

(ii) High spectral resolution attosecond interferometry of photoelectrons. Motivated by
challenges posed by measurements in xenon, carried out at the start of this thesis, in spec-
trally congested regions and with low statistics, we upgraded the laser repetition rate and
built a new setup with improved resolution and temporal stability, which also offers more
flexibility in two-pulse pump-probe schemes. With the improved capabilities of the setup,
we uncover new information in high-resolution RABBIT measurements. We also move
towards complete characterization of mixed quantum states by developing a QST protocol
for photoelectrons called KRAKEN³ (quantum state tomography of attosecond electron
wavepackets). The protocol is verified by measuring the density matrix of photoelectrons
ionized by APTs in argon and helium.

1.6 Papers and Outline

This thesis is based on 9 papers, which can broadly be partitioned into two categories,
(i) optimization of high-order harmonic generation and (ii) attosecond photoionization
studies in noble gases using pump-probe photoelectron spectroscopy.

In papers I and II we study optimal conditions for high-order harmonic generation in gases
theoretically and experimentally. A simple, scalable, analytic model is developed, predict-
ing that efficient phase-matching of high-order harmonic generation in gases is possible
over a wide range of pressures and medium lengths if these follow a certain hyperbolic
relationship. The model is validated using numerical simulations, and shown to be, to
a large degree, independent of focusing geometry, driving pulse duration, intensity, har-
monic order and atomic species. Experimental measurements performed at ELI-ALPS (Ex-
treme Light Infrastructure-Attosecond Light Pulse Source) Szeged, Hungary, further verify
the hyperbolic relationship maximizing the conversion efficiency. In paper III a collinear
pump-probe delay line for photoelectron-photoion coincidence spectroscopy is implemen-
ted and characterized in the group of Giuseppe Sansone at the University of Freiburg. The
divergence of harmonic radiation generated in gas jets and gas cells is explored and com-
pared to simulations performed in Lund.

³The acronym comes from the Swedish “KvanttillståndstomogRafi av AttoseKundElektroNvågpaket”.
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In paper IV we describe an ultra-stable and versatile Mach-Zehnder interferometer for atto-
second pump-probe photoelectron interferometry. The interferometer is actively stabilized
directly to the phase relation of the pump and probe femtosecond laser pulses, which allows
us to implement separate spectral shapers in both the pump and probe beams, and to easily
switch between the RABBIT and KRAKEN schemes.

In paper V we study photoionization time delays from the xenon 4d shell in the 70 to
100 eV range. Combining coincidence spectroscopy and attosecond interferometry us-
ing the RABBIT technique allows us to disentangle the different ionization channels. By
performing time-frequency analysis, we identify the interference of two ionization mechan-
isms: a broad giant dipole resonance, and a narrow resonance close to threshold exhibiting
spin-flip dynamics.

In papers VI and VII we study resonant photoionization using the RABBIT technique
in helium and argon. In particular, we study angle-resolved and high resolution angle-
integrated photoionization from the helium 3p, 4p, 5p Rydberg series. With the help of
theoretical calculations we explain the observed phase jumps both as a function of angle
and photoelectron energy. In argon we study the 3s13p64p Fano resonance with ultra-high
energy resolution, resolving the spin–orbit split components. We explore the effects of
coupling of the two-photon ionization to resonances in the final continuum.

In paper VIII we develop a new protocol for continuous variable quantum state tomo-
graphy of pure and mixed photoelectron states, called KRAKEN. A bichromatic infrared
probe pulse consisting of two narrowband components spaced by a variable frequency is
used to interfere different spectral parts of a photoelectron wave packet, ionized by an XUV
harmonic. By varying the delay betweenXUV and IR, and the bichromatic probe frequency
difference, both amplitude and phase of the density matrix are extracted. In paper IX we
experimentally verify the KRAKEN protocol for pure photoelectron states in helium, and
mixed states in argon.

The topics above are all connected through basic underlying principles, in particular through
interference of waves, be it light- or matter-waves, with well defined phase relations. The
following chapters of this thesis attempts to demonstrate precisely these relations. The thesis
structured as follows: Chapter 2 gives an introduction to femtosecond laser pulse genera-
tion and their application to attosecond pulse generation through the process of high-order
harmonic generation, in the single atom picture. Chapter 3 introduces the most important
macroscopic concepts in high-order harmonic generation, and discussed how to optimize
the conversion efficiency taking both microscopic and macroscopic concepts into consider-
ation. Chapter 4 deals with the theory of attosecond pulse trains applied to photoelectron
spectroscopy, using the RABBIT and KRAKEN techniques, and the experimental meth-
ods used. Chapter 5 presents the main experimental results of the photoionization studies.
We conclude in Chapter 6 with a summary and an outlook.
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CHApTER 2
Introduction to Attosecond

Pulse Generation

The experimental studies of attosecond photoionization dynamics in this thesis rely on the
controlled, efficient generation of XUV attosecond pulses. The generation of these atto-
second pulses is a highly nonlinear process, driven by the interaction of intense femtosecond
laser pulses with matter. Efficient generation of attosecond pulses depends, in general, on
two things, (i) the nonlinear response of a single atom to an intense laser field and (ii) the
degree of coherence of the simultaneous emission of many atoms in the generating me-
dium. This chapter introduces the relevant methods of producing intense femtosecond
laser pulses, and the single atom aspects of attosecond pulse generation.

2.1 Femtosecond Pulses

An optical pulse can in general be described by its complex representation

Ẽ(t) = |E(t)| exp [i(ω0t+ ϕ(t))] , (2.1)

where ω0 is the carrier frequency and ϕ(t) is the temporal phase. Re{Ẽ(t)} is the real
valued electric field, and |E(t)| is the amplitude of the complex envelope. Here, and in the
following, a ∼ will be used to indicate any rapidly oscillating function.
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Figure 2.1: Principle of wave interference. Waves of low frequency are shown in red, and higher
frequencies in yellow. The black curve shows the resulting intensity of the sum of all
waves. (a) All frequencies are in phase, indicated by the straight black line, such that
the maxima coincide in time. (b) A quadratic chirp is present, indicated by the black line.
Different frequencies have maxima off-set in time with respect to each other, leading
to partial destructive interference, and a less intense and longer pulse. The gray line
indicates the phase in (a) for reference.

Ẽ(t) is related to its spectral counterpart through a Fourier transform,

Ẽ(ω) =
1√
2π

∫ ∞

−∞
dt Ẽ(t) exp [−iωt] = |E(ω)| exp [iΦ(ω)] , (2.2)

where Φ(ω) is the spectral phase, and |E(ω)|2 is the spectral intensity.

The Heisenberg-Gabor limit states that a function and its Fourier transform cannot both
have finite domains. More generally, it means that there is an inverse relationship between
the duration of a pulse and its spectral width. This relation is succinctly summarized by the
Time-Bandwidth Product (TBP)

∆τ∆ν ≥ ΓTBP, (2.3)

where ∆τ and ∆ν are the Full-Width at Half-Maximum (FWHM) of the temporal and
spectral intensities (ν = ω/2π), respectively, and ΓTBP, is a factor determined by the pulse
envelope. For Gaussian pulses it is given by ΓTBP,= 2 ln 2/π ≈ 0.44.

Ultrashort optical pulses, on the femtosecond timescale, thus require a spectrum which is
very broad. The reverse is however not necessarily true, as a broad spectrum may still lead
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to a long pulse in time due to variations of the temporal phase ϕ(t). The influence of the
temporal phase is illustrated in Fig. 2.1. To the left, the phase difference between consecut-
ive frequency components is constant, which results in a linear temporal phase, and peak
amplitudes of all frequency components coinciding at some time t. All frequency com-
ponents constructively interfere, leading to a Fourier transform limited pulse of duration
∆τ = ΓTBP/∆ν.

A relative phase difference of any higher order will result in a change over time of the
instantaneous angular frequency, defined as

ω(t) = ω0 +
∂ϕ(t)

∂t
. (2.4)

The case where ϕ(t) ∝ t2 is shown on the right in Fig. 2.1. It leads to an angular frequency
with a linear time dependence, ω(t) ∝ ω0 + bt, such that the peak amplitude of different
frequencies arrive at different times and the result is a pulse which is chirped. Here, the
chirp parameter is b = ∂2ϕ

∂t2
.

2.1.1 Chirped Pulse Amplification

As discussed in the introduction, mode-locked laser oscillators with broadband gain me-
dia supporting femtosecond pulses are commercially available. However, the pulse ener-
gies are relatively low, which becomes a limitation for applications in extreme, nonlinear
light-matter interaction. To increase the pulse energy, amplification is performed through
stimulated emission in a population inverted gain medium. Direct amplification of these
femtosecond pulses tends to be unsuitable, as the peak intensity of the amplified pulse will
quickly lead to unwanted nonlinear effects or optical damage in the gain medium. Simply
expanding the involved beams and optics also quickly becomes untenable. Instead, the
solution is to use the 4th dimension, stretching the pulse in time by using the concept of
chirp discussed in the previous section.

To increase the duration and hence reduce the peak intensity during amplification, the
pulse is chirped intentionally in a technique referred to as chirped pulse amplification.
This technique was developed by Donna Strickland and Gérard Mourou in 1985 [9], who
subsequently were awarded the 2018 Nobel prize in physics for their work. The principle
is sketched in Fig. 2.2, where in the first step, an oscillator producing a femtosecond laser
pulse is sent into a stretcher. While in the original 1985 paper a 1.4 km fiber was used for
stretching¹, here, the most common method using a pair of gratings is shown. Due to
technical reasons related to the recompressability, the choice is usually a positive dispersion

¹In combination with a grating compressor, it achieved a 100-fold increase in peak power, but produced
unwanted pre- and post-pulses after compression.
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Figure 2.2: Principle of chirped pulse amplification. In the first step, the pulse is chirped in the
stretcher. Shorter wavelengths present in the broadband pulse travel a longer distance
inside the stretcher, here in a Martinez configuration [35]. The resulting pulse has a
much lower peak intensity. In the next step, the chirped pulse is amplified. After the
amplifier the pulses are still long, but with a much higher pulse energy. The final step
is temporally compressing the pulse, shown here in the Treacy configuration [36]. The
output is an ultrashort, high energy pulse.

configuration, which requires the use of additional imaging optics, here in the form of a
pair of lenses [35]². Depending on the desired amplification, the pulse is stretched from
femtoseconds to picoseconds. After the pulse has been chirped, it is amplified by overlap-
ping it in time and space with a pump laser pulse in a gain medium. Finally, the pulse is
recompressed by compensating for the positive dispersion of the stretcher. The compressor
in Fig. 2.2 is again shown using two gratings, but in a negative dispersion configuration.
The output is a femtosecond pulse with high pulse energy.

2.1.2 Nonlinear Response of Matter to Electromagnetic Fields

The response of a dielectric medium to an external electric field is described by the density
of induced dipole moment in the medium, or polarization, P̃(t). The field of nonlinear
optics concerns the nonlinear polarization response of an optical medium in the presence of
an external optical field. In the nonlinear regime, the optical properties of the medium are
modified as a function of the applied field strength, and may in turn change the behavior
of the driving field itself.

²See Ref. [3] for a detailed review.
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Figure 2.3: Sketch of relative intensity of optical harmonics. Based on data from one of the
first experimental verifications of high-order harmonics by Ferray et al. [14], generated
with a 1064nm Nd:YAG laser in argon. Three regimes are indicated: the perturbative
below threshold regime, the high-harmonic plateau, and the high-harmonic cut-off re-
gion. The 13th harmonic is missing due to a high cross section of 5d photoexcitation at
81.9 nm, leading to reabsorption of the harmonic radiation in the medium.

Some nonlinearities due to high intensity light had been observed already in the 1940s [37],
but with the demonstration of the first laser by Maiman in 1960 [6], a light source capable
of reaching the field amplitudes required for a plethora of new nonlinear effects became
available. Already one year later, in 1961, Franken et al. showed the existence of optical
second harmonic generation in solids [38], after which the discovery of many other non-
linear optical phenomena followed in quick succession.

To describe the nonlinear polarization response, the polarization is in general expanded in
Taylor series in the external electric field strength as [39]

P̃(t)ϵ−1
0 = χ(1)Ẽ(t)︸ ︷︷ ︸

Linear

+χ(2)Ẽ(t)2 + χ(3)Ẽ(t)3 + ...︸ ︷︷ ︸
Nonlinear

, (2.5)

where χ(q) is the qth order susceptibility and ϵ0 is the vacuum permittivity. The electric
field is assumed to be linearly polarized so that all quantities are scalar quantities. It is
important to note that the above expansion assumes that the external electric field can be
treated as a perturbation to any internal fields of the medium.

As the driving field is varying in time, so will the induced dipole density. From this con-
sideration, it is easy to see that the qth order nonlinearity generates a field oscillating at
frequency qω

Ẽ(t)q ∝ exp [iωt]q = exp [iqωt] . (2.6)

These harmonics, when the Taylor expansion in Eq. (2.5) is valid, are expected to decrease
exponentially in strength as the order q increases.
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As laser technology improved, the intensities reached in the medium also increased drastic-
ally. When generating high-order harmonics from intense laser interaction with noble
gases [13, 14], high density plasmas [12], solids [40] and liquids [41], the relative harmonic
intensity is not well described by the perturbative expansion in Eq. (2.5). Rather than an
exponential decrease in harmonic intensity as a function of harmonic order, a plateau of
many high-order harmonics, of nearly equal intensity, is observed. Fig. 2.3 shows a sketch of
the perturbative regime, plateau and return to exponentially decreasing harmonic intensity
in what is called the cut-off regime [see Sec. 2.2.1].

For the extremely high intensities in these experiments, the perturbative Taylor series expan-
sion no longer necessarily converges, since the laser field strength may reach or even greatly
exceed the strength of the internal fields of the material. For the ground state in hydrogen
this corresponds to approximately³ 5×1011Vm−1 or an intensity of 3.5×1016Wcm−2.
Non-perturbative models are required to treat the light-matter interaction at these intens-
ities.

2.2 Attosecond Pulses

A simple semiclassical model by Kulander et al. [42] and Corkum [43] was developed soon
after the discovery of high-order harmonics. While semiclassical, the model could, among
other things, explain not only the existence of the plateau but also reproduce the position
of the transition to the cut-off regime discovered by Krause et al. using numerically calcu-
lations [44]. A range of quantum mechanical descriptions were also developed in the early
90s [45, 46]. The semiclassical model, also known as the simple man’s model or, as it will be
referred to here, theThree Step Model (TSM), remains a surprisingly powerful tool to gain
insight into the HHG process. As the name suggests, the model is based on three steps,
which are outlined below.

2.2.1 Three Step Model

In step (i) of the TSM, the combined potential of the atom and the interaction with a
strong, low frequency electric field leads to the formation of a potential barrier during the
peak of the electric field. An electron may then partially tunnel ionize through the barrier,
as sketched in Fig. 2.4(a). The TSM does not provide any details on the tunnel ionization
probability itself, but considering the electron as a wave function rather than a classical
particle, some further insight can be gained. The probability of tunnel ionization is directly
linked to the width of the barrier, inside which the wave solution has an exponentially

³Based on the ratio of the ionization potential and the Bohr radius.
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Figure 2.4: Sketch of the semiclassical three step model. (a) Step I occurs every half cycle at
the peak amplitude of a strong, low frequency, laser field (red). The atomic potential is
maximally bent by the presence of the external field. The effective potential (black solid
line) exhibits a potential barrier, through which the electron (blue) can tunnel ionize. (b)
In step II the electron is accelerated away from, and then back towards, the parent ion,
while gaining kinetic energy and spreading spatially. (c) In step III the electron has a
chance to recombine with the parent ion, emitting a high energy photon (purple).

decaying form. Thus, stronger fields, or lower ionization potentials, increase the rate of
electrons released in this step.

In step (ii), the electron is accelerated in the presence of the laser field, shown in Fig. 2.4(b).
The dynamics are well described by the classical Newton’s equations of motion for a charged
particle in a time-varying electric field if the interaction with the parent ion is assumed to
be weak. The electron is accelerated away from the ion, and as the laser field changes sign,
back towards the ion. Again, considering the electron as a wave packet, as it propagates in
the presence of the laser field, it also diffuses in space. A longer driving wavelength (i.e.,
longer cycle length) results in a wave packet which diffuses more before returning.

Finally, in step (iii) shown in Fig. 2.4(c), when the electric field has changed sign and pushed
the electron back towards the parent ion, the electron wave packet interferes with the part
remaining in the ground state of the atom [47, 48]. This rapid interference results in a
dipole oscillation at a frequency corresponding to the difference in energy of the bound and
continuum state, emitting light of very high frequency in the process. The diffusion in step
(ii) limits the wave function overlap in step (iii), reducing the recombination probability
and the final efficiency of XUV generation. Longer driving wavelengths are known to
drastically reduce the conversion efficiency [49–52], scaling roughly as λ−5.5 [53].

The dynamics of step (ii) can be described by solving Newton’s equations of motion for
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a charged particle influenced by the Lorentz force. If the driving laser field is assumed
to be linearly polarized⁴, Ẽ0(t) = Im{Ẽ(t)} = E0 sin(ω0t), where E0 is the field peak
amplitude, the motion is limited to a single dimension and described by

me
∂2

∂t2
x(t, ti) = eE0 sin(ω0t), (2.7)

where me and e are the electron mass and charge, and ti is the time of ionization. Integ-
rating twice with respect to time, and assuming that the electron ionizes to the continuum
at the origin with zero kinetic energy, x(t = ti) = ∂

∂tx(t = ti) = 0, an expression for
the displacement of the free electron relative to its parent ion as a function of time and
ionization time is obtained,

x(t, ti) =
eE0
meω2

0

[sin(ω0t)− sin(ω0ti)− ω0(t− ti) cos(ω0ti)] . (2.8)

For recombination to occur in the third step, the electron must return to its parent ion,
assumed stationary at x = 0, at some later time defined as the return time tr. Eq. (2.8) is
a transcendental equation and cannot be solved analytically. However, zero-crossings can
be found numerically. Three groups of trajectories can be found, which depend on the
ionization time, as shown in Fig. 2.5. For ionization times 0 < t < T/4, where T is the
laser period, the electron is accelerated to a too high kinetic energy before the field changes
sign, and it will never return to its original position and recombine. Electrons which ionize
at times T/4 < t < T/2 will recombine at times T/2 < t < 5T/4. The excursion times
of the returning electrons vary depending on the ionization time, and can in general be
divided into two classes of trajectories. These trajectories, henceforth referred to as the long
trajectory and short trajectory, were experimentally verified in 1998 by Bellini et al. [57]. The
characteristic times of the different trajectories are summarized below.

Trajectory Tunneling time (T ) Recombination time (T )
Non-returning 0 < t < 1/4 −

Long 1/4 < t < 1/3 19/20 < t < 5/4
Short 1/3 < t < 1/2 1/2 < t < 19/20

Since the returning electrons ionize at the peak of the absolute value of the field amplitude,
the emission process will repeat itself twice per laser cycle, which is also indicated in Fig. 2.5.
For an isotropic generation medium the dynamics are identical up to a sign change when

⁴HHG from circular polarized driving fields was for a long time believed unfeasible due to the addi-
tional transverse momentum acquired by the EWP, prohibiting it from overlapping the ion. Using two
counter-rotating circularly-polarized driving fields, generation of bright, circularly polarized harmonics has
been demonstrated [54–56].
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Figure 2.5: Electron trajectories in the TSM. Excursion distance of electrons tunnel ionizing at
different times during the driving field cycle. Gray lines indicate electrons which do not
return to their parent ion, while the colormap shows the return kinetic energy of those
electrons which do return, with long and short trajectories outlined with a black solid
line, and the re-scattered long trajectories outlined with a dashed black line. The driving
field amplitude is shown in red.

introducing a π phase shift of the driving field. Given a many-cycle driving laser, the T/2
repetition rate leads in the frequency domain to odd harmonics of the fundamental⁵, spaced
by 2ω0. Even longer trajectories are possible [59], indicated in Fig. 2.5 by the colored region
with a dashed black border. These originate from electrons which return to the parent
ion, rescatter, and subsequently go through additional cycles of acceleration away from,
and back to the ion. The maximum return energy for higher order returns is lower, and
due to the diffusion of the wave packet the recombination probability is low [60]. Longer
trajectories may however noticeably contribute to the final harmonic emission, in particular
for longer driving wavelengths [53, 61, 62].

The return kinetic energy Ek of the electron can be shown to be given by

Ek(ti, tr) = 2Up [cos(ω0tr)− cos(ω0ti)]
2 , (2.9)

where Up is called the ponderomotive energy. It is the cycle-averaged quiver energy of the

⁵Using two-color (ω–2ω) driving fields both odd and even harmonics can be generated. Such schemes can
also increase the total conversion efficiency of the generation [58].
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free electron in the laser field, given by

Up =
e2E02

4meω2
0

∝ λ2I, (2.10)

where λ is the wavelength of the laser field and I is the field intensity related to the electric
field by I = cϵ0|E0|2/2, with c being the speed of light. The ponderomotive energy is
proportional to the square of the wavelength, and linearly proportional to the intensity of
the driving field.

From Eq. (2.9) the TSM successfully predicts the maximum kinetic energy of electrons at
the time of recombination, as approximately 3.17Up. The recombination leads to emission
of photons with energies corresponding to the sum of the ionization energy of the atom
and the kinetic energy of the electron. The harmonic cut-off energy is then given by⁶

Ecut-off ≈ Ip + 3.17Up, (2.11)

where Ip is the ionization energy. By increasing the intensity, the cut-off energy can be
extended [see Eq. (2.10)] since the free electron experiences a stronger acceleration due to
the Lorentz force. This scaling is limited both by depletion of the single-atom ground state
and, as will be seen in Chapter 3, by macroscopic effects related to the increased ionization
of the medium. Increasing the wavelength instead, the length of the electron trajectory also
increases, which allows it to gainmore kinetic energy. Extension of the cut-off energy in this
way is not as fundamentally limited as in the case of intensity scaling. While the previously
mentioned increased diffusion of the electron wave packet results in an approximatelyλ−5.5

scaling with wavelength of the single atom generation efficiency, this type of wavelength
scaling provides a means of generating very high energy photons, reaching into the water
window [63, 64], with potential applications in e.g. X-ray microscopy [65, 66], or even to
harmonics with energies higher than 1 keV [67].

Figure 2.6 shows how the return kinetic energy in Eq. (2.9) varies as a function of ti and
tr, respectively. Apart from at the cut-off at 3.17Up, there are two ionization and recom-
bination times corresponding to the same return kinetic energy for every possible energy.
These times are associated with the previously mentioned long (red line) and short (yellow
line) electron trajectories. Due to the dependence of the recombination energy on the re-
combination time, the emitted XUV radiation exhibits a nonlinear spectral phase relation.
This phase, stemming from the different trajectories in the presence of the laser field, is
usually called the intrinsic, or dipole phase [68].

For the plateau harmonics, the time-dependent harmonic frequency can be approximated

⁶When accounting for the electron not ionizing at the origin the cut-off law readsEcut-off ≈ F (Ip/Up)Ip+
3.17Up, with F (Ip/Up) ∼ 1.32 [46].
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Figure 2.6: Return kinetic energy of electrons. (a) as a function of the ionization time and (b) as
a function of the recombination time. The amplitude of the driving laser field is indicated
by the dashed red line, and the maximum kinetic energy predicted by the semiclassical
TSM is indicated by the dashed black line. Apart from the cut-off at 3.17Up, there
are two ionization and recombination times corresponding to the same return kinetic
energy for every possible energy. These times are associated with a long (red line) and
short (yellow line) electron trajectory. The solid black lines show an approximate linear
relation between the recombination time and return kinetic energy.

by a straight line [69], indicated by the black line for the long and short trajectory. Follow-
ing the derivation in Ref. [70], the linear equation can be inverted and interpreted as the
harmonic group delay. Integration with respect to time yields an approximate expression
for the spectral phase as

Φi(Ω) ≈ αiI + tp,i (Ω− Ωp) +
γi
I
(Ω− Ωp)

2 , (2.12)

where i = s, ℓ for the short and long trajectory, Ω = qω0 and Ωp = Ip/ℏ are the fre-
quencies of the harmonic and the threshold harmonic, respectively, where ℏ is the reduced
Planck constant, αiI is the intensity and trajectory dependent dipole phase of the threshold
harmonic, tp,i is the approximate threshold harmonic return time, and γi is given by

γi =

(
tc,i − tp,iπc

2me

)
3.17αFSλ2

≈

{
−0.19 cme

αFSλ
, i = ℓ

0.22 cme
αFSλ

, i = s
(2.13)

where tc,i is the approximate cut-off harmonic return time and αFS is the fine-structure
constant. The constant αi is approximately zero for the short trajectory, reflecting the brief
time in the continuum of the shortest short trajectory. For the long trajectory it is given
by αℓ = −0.16αFSλ

3/(c3me). The approximate dipole phase obtained above from the
TSM is compared to a quantum mechanical model in the next section, and its effect on the
temporal properties of the emitted harmonics is discussed further in Sec. 2.2.3.
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2.2.2 The Quantum Mechanical Picture

While providing an intuitive explanation, the semiclassical model above is unable to pre-
dict certain important quantum aspects of HHG, such as the dipole amplitude, wave
packet diffusion and interference effects [71]. Hence, theories which attempt to solve
the full Time-Dependent Schrödinger Equation (TDSE) of the atom and laser field, were
developed [44, 46, 72]. In papers I and II, to simulate harmonic generation including
propagation effects, we use the single atom dipole amplitude and phase at harmonic fre-
quencies of the fundamental, multiplied by the atomic number density, as a source term
for the harmonic radiation.

The basic assumption in these solutions is to use a Single Active Electron (SAE) approxima-
tion, where the active electron interacts with the laser field and the mean field of the remain-
ing nucleus and other electrons. For a linearly polarized driving field in the z-direction,
the TDSE takes the form

iℏ
∂

∂t
|Ψ(r, t)⟩ =

[
− ℏ2

2me
∇2 + V̂ (r)− eẼ0(t)z

]
|Ψ(r, t)⟩ , (2.14)

where |Ψ(r, t)⟩ is the wave function of the active electron, ∇2 is the Laplacian, V̂ is the
effective atomic potential and Ẽ0(t) is a real-valued oscillating electric field.

The time-varying field induces a time-varying dipole, d(t) = ⟨Ψ| ẑ |Ψ⟩, from which the
single-atom emission spectrum, |d(ω)|2, can be calculated through the square of the Fourier
transform of the time-averaged induced dipole [73, 74],

|d(ω)|2 =
∣∣∣∣ 1

t− t′

∫ t

t′
dt′′ exp

[
−iωt′′

]
d(t′′)

∣∣∣∣2 . (2.15)

In practice, the time-varying field is modeled using a sinus modulated slowly varying envel-
ope starting with a ramp function of 5 cycles, followed by a constant amplitude for another
15 cycles [45]. The Fourier transform is performed over the last 5 cycles, at which point any
transient excitations have decayed.

In Fig. 2.7(a) the dipole amplitude, in atomic units, as a function of the peak intensity of
the driving field is shown for two different harmonics in argon and neon. The intensity
dependence in the cut-off region is characterized by a rapid exponential increase (black
dashed line), while the exponent for the harmonics in the plateau region, averaged over the
interference fringes as discussed below, is considerably smaller, around 2.6 for argon and
5.5 for neon (black solid line)⁷. In argon, intensities larger than 4 × 1014Wcm−2 display

⁷These exponents can in principle be used to estimate the dipole amplitude assuming a simple power law
Iq = Ip, with p < q [75, 76].
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a decreasing dipole amplitude due to depletion of the ground state in the first 15 cycles.

To capture the complete picture requires taking into account the many different possible
return trajectories, including higher-order returns. The Single Atom Response (SAR) is
the interference of the contributions of all such trajectories [71]. Since the phase of these
contributions depends strongly on intensity [77], the dipole amplitude and phase of any
given harmonic order will exhibit rapid oscillations as a function of the driving field peak
intensity (see Fig. 2.7). This intensity dependent interference can, due to the intensity
variations over time and space of the driving field, lead to effects such as spatio-spectral
fringes in the far-field beam profile of individual harmonics [78, 79].

Shortly after the full TDSE describing the laser-atom system was solved, another quantum
mechanical model was suggested. The Lewenstein model [46], or Strong Field Approxim-
ation (SFA), attempts to solve the same equation as above, but under the approximations
that

i Only the ground state contributes to the evolution of the system

ii Depletion of the ground state is neglected⁸

iii After ionizing, the free electron is assumed to interact with the laser field only, neg-
lecting the influence of the atomic potential V̂ (r)

Condition (iii) assumes that the laser field is strong compared to the potential of the atom,
and gives the model its name. From the full TDSE calculation in Fig. 2.7 condition (ii) is
seen to clearly be violated in argon above 4× 1014Wcm−2.

Solving Eq. (2.14) for a linearly polarized electric field with the above approximations,
and making use of a saddle-point method⁹, one can show that the equation for the time-
dependent dipole becomes [46]

d(t) ≈ i

∫ ∞

0
dtr d∗p(t)︸ ︷︷ ︸

step (iii)

ζ(tr) exp [−iSp(t, tr)]︸ ︷︷ ︸
step (ii)

Ẽ0(t− tr)dp(t− tr)︸ ︷︷ ︸
step (i)

+c.c., (2.16)

which can be interpreted as a quantum formulation of the semiclassical TSM [82]. Reading
right to left, the first step is ionization into a continuum momentum state p at time t− tr,
where tr is the return time, under the influence of the electric field, expressed by the product
Ẽ0(t−tr)dp(t−tr). In the second step, the electron wave packet propagates in the external

⁸This approximation can in general be relaxed by taking into account the depletion, which is discussed
already in the original publication, and is often done today, see Ref. [80] for a review of commonly used
methods.

⁹The saddle-point method leads to a qualitatively similar result as the full SFA, but leads to a rescaling of
the dipole amplitude which depends on e.g. the wavelength, see Ref. [81] for a comparison.
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Figure 2.7: Quantum models of high-harmonic generation. (a) Amplitude of dipole strength
for the 23rd harmonic in argon (blue) and 69th harmonic in neon (red) as a function of
driving field intensity, obtained using full TDSE single atom calculations. (b) Comparison
of derivative of spectral phase with respect to intensity obtained using the SFA (yellow)
and using Eq. (2.12) (red) in argon, with a driving field intensity of 2.5×1014 Wcm−2 and
(c) in neon using an intensity of 5 × 1014 Wcm−2. Calculations for the short trajectory
are shown as solid lines, and long trajectory are shown as dashed lines. Figure adapted
from paper I.

field, which is described by ζ(tr) exp [−iSp(t, tr)], where ζ(tr) is a function taking into
account the quantum diffusion of the electron wave packet, and Sp(t, tr) is the quasi-
classical action, containing information about the phase accumulated by the electron during
its trajectory. The third and final step is recombination at time t, expressed by the conjugate
of the transition matrix element d∗p(t).

The usefulness of the SFA when there was already a working quantum mechanical model
with fewer approximations was discussed by Lewenstein et al. [46]. The full quantum
model, i.e., solving the TDSE, is exact within the single-active electron approximation
but is computationally much more expensive. In addition, the SFA provides a useful link
between the intuitive TSM and the full quantum mechanical model. One advantage of
the full TDSE solution, is that it directly provides the dipole amplitude, with no assump-
tion made on relative strengths of intra-atomic forces and electron-laser interactions [45].
For this reason the TDSE is used to calculate the dipole amplitude and phase used in the
propagation simulations in Chapter 3.

For the macroscopic effects of HHG introduced in the next chapter, the phase accumulated
by electrons during the acceleration in the laser field plays a major role. From the TSM
an approximate expression for this phase is given in Eq. (2.12). To validate the use of this
equation for our 1-Dimensional (1D) phase-matching model in paper I and II, we compare
∂Φi
∂I as a function of harmonic order calculated within the SFA solving the saddle-point
equations, with calculations using the approximate expression in Eq. (2.12) in Fig. 2.7(b,c).
The good agreement motivates the use of the simple analytic expression for describing the
effect of the dipole phase.
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Figure 2.8: Sketch of the time-frequency representation of harmonic radiation. The Fourier
transform relates frequency to the reciprocal variable time. (a) A single high harmonic
of a femtosecond IR pulse corresponds to a femtosecond XUV pulse. (b) A frequency
comb of phase locked harmonics corresponds to a train of attosecond pulses. (c) A
broad continuum of frequencies in the high-order harmonic range corresponds to an
isolated attosecond pulse.

2.2.3 Time-Frequency Representation of High-order Harmonics

The Heisenberg-Gabor limit already discussed for femtosecond pulses in Sec. 2.1 must also
apply to the radiation obtained from the HHG process. After the experimental discovery
and theoretical description ofHHG, it was realized that if the different harmonics are phase-
locked, the extremely broad bandwidth of the harmonic comb would support pulses of
attosecond duration [83, 84]. The harmonic comb generated by a multi cycle femtosecond
driving field was theoretically shown to represent a train of attosecond pulses, repeating
every half cycle of the driving field [85]. This was verified experimentally in 2001 by Paul et
al. [15].

After the generation of attosecond pulse trains, schemes for the generation of single Isolated
Attosecond Pulses (IAPs) were developed [86]. IAPs are in general more challenging to
generate than APTs, as they are either achieved by pushing the duration of the driving field
towards the single-cycle limit, where control of the Carrier-Envelope-Phase (CEP) becomes
important [87, 88], in combination with spectrally or temporally gating the generation [86,
89–91], or by angularly streaking the attosecond pulses in a train [92, 93].
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The Fourier transform relation between the harmonic spectra and the temporal structure
of the pulses is sketched in Fig. 2.8. In (a) a single harmonic order has been isolated in the
frequency domain. Since each harmonic is generated every half cycle of the driving field, the
single harmonic in the time domain is of femtosecond duration. In (b), the phase-locked
generation and interference of harmonics every half cycle of the driving field results in a
comb of odd-order harmonics in the frequency domain, and an APT in the time domain.
Finally, in (c), the use of time-gated generation, or few-cycle driving fields, results in an
IAP. In the frequency domain it is represented by a broadband continuum spectrum.

The dipole phase in Eq. (2.12) plays a non-negligible role in the temporal structure of the
attosecond pulses [68], and as seen in Fig. 2.6, it is inherent to the HHG process. Being of
approximately second order in frequency in the plateau, it leads to a chirp of the generated
attosecond pulses. Since it is present across a broad frequency range, the effect in the
temporal domain is a chirp of the individual attosecond pulses in the APT. This chirp is
called the attochirp [94]. Using Eq. (2.12) it can be described by the second order derivative
of the spectral phase with respect to frequency, as

∂2Φi

∂Ω2
=

2γi
I

(2.17)

This chirp is intensity dependent, which is easily understood since the slope in Fig. 2.6
depends on the intensity through Up. It leads to a stretching in time of the attosecond
pulses, but is typically small enough that the pulses are still of attosecond duration.

Another important effect comes from the slowly varying envelope of the driving field, giving
rise to a chirp of individual harmonics called the femtochirp [94]. As the dipole phase and
amplitude depend on the intensity, and the intensity depends on time, the highest order
harmonics are generated mostly at the peak of the driving field. This results in spectrally
broader harmonics close to the cut-off, and a broadening in time of the attosecond pulses
at the wings of the pulse train. These effects become more pronounced for shorter driving
pulses, since the intensity variation becomes more rapid in that case.

2.3 The Lund Attosecond Laboratory Beamline

The laser and beamline described below were used in the experiments carried out in paper
IV, the angle integrated measurements in paper VI, and papers VII and IX. The meas-
urements for paper V, and the angle-resolved measurements in paper VI were performed
before the upgrade of the laser and of the attosecond setup. The previous setup will not be
discussed in this thesis.
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Figure 2.9: Sketch of themost important components of the laser system used in this work.

2.3.1 The Infrared Laser Source

The Lund attosecond laboratory laser system, sketched in Fig. 2.9, is based on a Laser
Quantum venteonCEP5 Kerr-lens modelocked Titanium-Sapphire (Ti:Sa) [95] oscillator with
a central wavelength of 800 nm and an output spectrum covering 650 to 950 nm, produ-
cing < 6 fs, 3 nJ pulses at a repetition rate of 80MHz. Amplification is performed using
the CPA technique as described in Sec. 2.1.1. Here, stretching is done using a single grating
and a retroreflector in an abberation free Öffner triplet configuration [96, 97].

Following the stretcher, the pulses are sent into a Fastlite Dazzler [98], or Acousto-Optical
Programmable Dispersive Filter (AOPDF), which allows shaping of the spectral amplitude
and phase of the pulses. By reducing the bandwidth, the central wavelength of the laser may
be tuned from 780 to 820 nm. TheDazzler is also used to compensate for dispersion caused
by propagation in air from the laser to the application chambers by adding an additional
negative dispersion.

The amplification is done in four stages in Ti:Sa crystals pumped by frequency doubled
(527 nm central wavelength)Neodymium-doped Yttrium-Lithium-Fluoride (Nd:YLF)Con-
tinuum Terra lasers. The first stage is a multipass “Booster” amplifier, after which a Pockels
cell is used as a pulse picker, selecting pulses at a repetition rate of 1 kHz/3 kHz before the
next amplifier. The second stage is a regenerative amplifier containing a second AOPDF,
a Fastlite Mazzler, to counteract gain narrowing [99]. The Mazzler is programmed for gain
equalization by introducing a loss at frequencies in the pulse spectrum or Ti:Sa gain me-
dium with strong peaks, resulting in a flatter, broader output spectrum. The third stage
is another multipass amplifier, and the final stage is a three-pass amplifier cryogenically
cooled to −175 ◦C to avoid thermal lensing effects and thermal damage [100].
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Figure 2.10: The high-order harmonic beamline in the attolab. The IR pulses are focused by a
dielectric Focusing Mirror (FM) into a gas cell, where HHG takes place. The remaining
infrared is filtered out by a metallic filter. The harmonics are focused by a gold coated
Toroidal Mirror (TM) into the interaction region of a Chamber for Atomic and Molecu-
lar Physics (CAMP). A gold coated concave grating images the harmonic focus on a
MicroChannel Plate (MCP). A Phosphor Screen (PS) is mounted behind the MCP, and
a camera behind the PS finally detects the spatially and spectrally resolved harmonic
signal.

After the four amplification stages, pulse energies up to 7.5 to 10mJ are achieved. Com-
pression to near-Fourier transform limited pulses (≥ 22 fs duration) is done using two
reflective holographic gratings. Due to the efficiency of the gratings (≈ 65%) the final
output pulse energy is reduced to 4.5 to 6.5mJ¹⁰. In addition, a weak reflection of the
compressed pulse is sent to a Fastlite Wizzler, providing single shot measurements of the
spectral intensity and phase [102, 103]. TheWizzler is used in a feedback loop together with
the Dazzler for optimization of the spectral phase of the compressed output pulses.

2.3.2 The Extreme Ultraviolet Light Source

The output pulses above are used to drive HHG in various targets. A sketch of the XUV
beamline used during the course of this work is shown in Fig. 2.10. First, since the distance
between the laser compressor and the XUV beamline is several meters, a TEMMesstechnik
Aligna beam-pointing stabilization system is used to correct for long-term thermal drifts.
The pulses are focused by a 50 cm focal length dielectric mirror into a vacuum chamber
where high-order harmonics are generated. The HHG takes place in gas cells of 6 to 8mm
length and 500 μm hole diameter, which is placed slightly after the focus to preferentially
emit the short trajectory [104] (see Sec. 3.2). The gas is supplied through a MassSpecpecD
AmsterdamPiezoValve high frequency valve operating at 1 kHz/3 kHz¹¹ [105]. Various noble
gases, such as argon, krypton, xenon and neon are used for generation, with backing pres-
sures varying from 2 to 6 bar. The pressure inside the gas cell is much lower, and can be
estimated by interferometric measurements. In optimal phase-matching conditions the

¹⁰Holographic gratings have comparatively low efficiency, but provide superior spatial quality due to not
displaying periodic errors typical for ruled gratings, see e.g. Ref. [101] for an illustration of this advantage.

¹¹The valve supports DC to 5 kHz repetition rate.
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pressure inside the cell is estimated to be in the range of 20 to 300mbar depending on
the gas used. These values roughly correspond to the expected phase-matching pressures
discussed in Chapter 3. The gas cell is mounted on a 5-axis XYZθXθY stage which allows
alignment relative to the laser beam in all directions except rotation about the cylindrically
symmetric laser propagation axis.

After the generation chamber, a differential pumping hole separates the chamber from the
recombination chamber to reduce residual gas reabsorption of the generated harmonics.
Various 100 to 200 nm thick metallic filters, such as aluminum and germanium, are used
to filter out the remaining IR radiation. Additionally, these filters partly compensate for the
attochirp inherent to the HHG process [106], and may be used in combination to select
different regions of harmonic orders due to their often sharp transmission windows.

The XUV radiation is refocused into the application chamber (CAMP)¹² by a gold coated
toroidal mirror (f = 30 cm) at grazing incidence in a 2f-2f configuration. After the applic-
ation chamber, an in-house built flat-field aberration corrected XUV spectrometer based
on a gold coated, grazing incidence typeHitachi concave grating is used to characterize the
XUV radiation [107]. The grating directs the first diffraction order onto a MicroChannel
Plate (MCP), spectrally and spatially resolving the harmonics. A phosphor screen (PS) is
placed behind the MCP, and a camera is used to image the response of the PS.

¹²Described further in experimental methods (see Sec. 4.4).
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CHApTER 3
Macroscopic Effects in

High-order Harmonic

Generation

In the previous chapter, the discussion on HHG and attosecond pulse generation was fo-
cused mainly on the microscopic single atom response. To completely understand and
explain experimentally observed HHG spectra one must take into account macroscopic as-
pects of the generation process. These effects include propagation of the fundamental beam
in a partially ionized medium, and the collective response of many single atoms emitting
harmonic radiation with varying phases, i.e., phase-matching. In paper I an analytic model
for optimization of the conversion efficiency is developed based on these macroscopic ef-
fects. This chapter begins with an overview of the numerical methods used in papers I, II
and III. The basic underlying principles and limitations of phase-matched HHG are intro-
duced, and the model is compared to numerical calculations from paper I and experimental
results from paper II.

3.1 Wave Propagation in a Dielectric Medium

In order to investigate HHG numerically, the scalar wave equation in a dielectric medium
is considered following Ref. [75, 108]. Neglecting the magnetic field and assuming linear
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polarized light, the inhomogeneous wave equation can be described as[
∇2 − 1

c2
∂2

∂t2

]
Ẽ(r, t) = µ0

∂2

∂t2

[
P̃L(r, t) + P̃NL(r, t)

]
, (3.1)

where µ0 is the vacuum permeability and P̃L = ϵ0(χ
(a) + χ(e))Ẽ is the linear polarization

response to the electric field, which depends on the atomic susceptibility¹χ(a) and electronic
susceptibility χ(e). The nonlinear correction to the polarization density [see Eq. (2.5)] is
denoted P̃NL. As will be discussed later, for efficient HHG, the ionization degree in the
medium is usually limited to below a few percent, so that the contribution of free currents
J̃ have been neglected in the above equation.

In dispersive media, the wave equation must be solved for every frequency in the pulse.
For many-cycle driving pulses, the spectrum of the total electric field in HHG is well rep-
resented by a Fourier series of odd orders of the driving field frequency ω0. Furthermore,
The polarization of the medium is mainly driven by the fundamental field, at the same
frequency ω0, so that the electric field and nonlinear polarization can be expanded as

Ẽ =
∑∞

q=1 Eqe−iqω0t, (3.2a)

P̃NL =
∑∞

q=1 PNL
q e−iqω0t. (3.2b)

Inserting the above equations in Eq. (3.1) yields a system of coupled equations

∞∑
q=1

[
∇2 + k2q

]
Eq =

∞∑
q=1

−µ0ω
2
qP

NL
q , (3.3)

where ωq = qω0 is the harmonic frequency, and kq = nqkq,0 is the harmonic wavenum-

ber, nq =

√
1 + χ(a)

q + χ(e)
q is the refractive index at frequency qω0, and kq,0 is the vacuum

harmonic wavenumber. For ℏω > Ip the refractive index is complex, withRe{n} describ-
ing dispersion, and Im{n} describing absorption in the medium.

The above equation can be further simplified by invoking the paraxial approximation, us-
ing either the slowly-varying envelope approximation, or the more rigorous split-operator
method. Following the derivation using the split-operator method in [110, 111], each com-
ponent of Eq. (3.3) can be written as[

∂2

∂z2
+∇2

⊥ + k2q − P̂q

]
Eq = 0, (3.4)

¹Here, we neglect the contribution from the ions, which can become important for strongly, multiply
ionized media [109].
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where ∇2
⊥, refers to double differentiation with respect to the transverse directions x and

y. The propagation direction is chosen along z, and P̂q defines an operator, which when
acting on the electric field returns the function−µ0ω

2
qP

NL
q . Defining the operators T̂ and

Q̂ as

T̂ 2 = ∂2

∂z2
, (3.5a)

Q̂2 = ∇2
⊥ + k2q − P̂q, (3.5b)

and factorizing yields{(
T̂ + iQ̂

)(
T̂ − iQ̂

)
+ i

[
T̂ , Q̂

]}
Eq = 0, (3.6)

where the commutator
[
T̂ , Q̂

]
≈ 0 if variations of the refractive index and polarization

density along the propagation directions are sufficiently small on length scales on the order
of the wavelength². When this approximation holds, couplings between backward and
forward propagating waves can be neglected. Considering the forward propagating wave,
i.e., the T̂ − iQ̂ term above, and performing a Taylor expansion of Q̂, results in the paraxial
inhomogeneous Helmholtz equation³

(
2ikq,0

∂

∂z
+∇2

⊥ − k2q

)
Ēq = −µ0ω

2
q P̄

NL
q e−i∆kqz, (3.7)

where the difference in wavenumber between the generated harmonic field and the polar-
ization induced at frequency qω0 is∆k = qk1−kq. Here, the slowly varying electric field
and polarization are given as Eq = Ēqe

ikqz and PNL
q = P̄NL

q eiqk1z , respectively.

Note that for the fundamental field, the nonlinear term of the polarization can be assumed
to be weak compared to the polarization induced by the propagating fundamental field
[PNL ≪ ϵ0(χa + χe)E1]. The equation reduces to the homogeneous paraxial Helmholtz
equation, of which one solution is the Gaussian beam. In the following, the fundamental
beam is always assumed to be a Gaussian beam unless otherwise specified.

In the simulations of HHG in this work, the propagation equation is solved numerically
under the above approximations. The propagation is modeled using a finite difference
propagation code in cylindrical coordinates, assuming cylindrical symmetry, based on a
Crank-Nicholson algorithm [75, 108]. While Eq. (3.7) does not explicitly contain any time
variable, time-dependence is included by constructing time slices of a pulse intensity en-

²This is similar to the slowly-varying envelope approximation, but more rigorous, as it gives explicit con-
ditions on the relation between the slowly varying quantities and the wavelength.

³This assumes that the transverse wavenumber is small compared to the total wavenumber, i.e. paraxial
waves, and that the nonlinear polarization correction is small compared to the electric field.
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velope, and propagating them separately, while keeping track of the free electron density
in the medium. The generation of harmonics enters through the nonlinear polarization
PNL
q , for which intensity dependent single-atom dipole amplitudes and phases, and ioniz-

ation rates, are calculated by solving the time-dependent 3-dimensional (3D) Schrödinger
equation assuming the SAE approximation (as described in Sec. 2.2.2). The accuracy of
the model is limited to long pulses due to the assumptions of a slowly varying refractive
index and source term. For methods⁴ going beyond the slowly-varying approximations see
Ref. [113–115].

3.1.1 Scaling Laws

In the decades since HHG was first realized, the diversity in available laser sources, and
as a consequence HHG sources, has increased. Today, characteristic parameters of HHG
sources, such as peak power and repetition rate, may vary by several orders ofmagnitude [116].
Efficient generation of high-order harmonics is routinely demonstrated using high-average-
power, low pulse energy (Ep ∼ μJ) lasers, based on parametric amplification [31, 32, 117],
or post-compressed, ytterbium-doped femtosecond lasers [118, 119], or using Ti:Sa lasers
with low repetition rate, and pulse energies of up to hundreds of mJ [30, 120–123].

Irrespective of the differences in available laser sources, optimization of HHG has long
been explored both experimentally and theoretically by scaling the pulse energy, average
power, focal length and medium length [124–126], while reaching similar conversion ef-
ficiencies [29, 31]. The apparent invariance of HHG in such vastly different generation
conditions was explained and experimentally verified by Heyl et al. [33]. The proposed
scaling laws describe how the driving pulse focusing, and the characteristics of the gen-
eration medium, should be scaled to reach the same CE when the input pulse energy is
scaled.

For electromagnetic wave propagation in vacuum, scaling invariance under the transform-
ation (x, y, z)→ (ηx, ηy, η2z), where η is a scaling parameter, can be easily verified for a
general paraxial wave equation, [

∂

∂z
− i

2k
∇2

⊥

]
Ẽ = 0. (3.8)

If the electric field Ẽ(x, y, z, ω) is a solution, then so is Ẽ(ηx, ηy, η2z, ω).

For equations describing paraxial waves in dielectric media, such as Eq. (3.7)⁵, the density
of the nonlinear medium and the energy of the input pulse must also be scaled appropri-

⁴See Ref. [112] for a useful guide to different laser pulse propagation methods.
⁵Note that these scaling laws are valid also for the case of broadband pulses.
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Figure 3.1: Scaling of wave-propagation in nonlinear media. High-order harmonic generation
in (a) loose focusing regime and (b) tight focusing regime.

ately [33]. In Eq. (3.7), the third term on the left hand side, and the nonlinear polarization
depend linearly on the density⁶, requiring that the density is scaled as ρ → ρ/η2. Non-
linear optical phenomena also depend on the intensity in the medium, which affects the
nonlinear polarization PNL. To counteract the change in intensity when scaling the size of
the beam requires to also scale the input pulse energy as Ep → η2Ep.

Figure 3.1 illustrates the scaling of HHG between loose and tight focusing. Interestingly,
because the pulse energy scaling keeps the local intensity invariant, the dipole phase en-
tering phase-matching of HHG remains invariant as well. Furthermore, the constant
pressure–length product ensures that reabsorption of the generated harmonics is also in-
variant, which leads to a harmonic pulse energy scaling following directly the input energy
scaling, and thus to scale-invariance of the conversion efficiency. Because of this, a general
scale-invariant description will be employed in the following discussion, by scaling relevant
parameters by the Rayleigh length zR.

3.2 Phase-matching

In Sec. 2.1 the interference of waves of different frequencies with non-zero phase offsets
was shown to result in a lower peak intensity through destructive interference. In phase-
matching of HHG, waves of the same frequency, generated with different phases and at
different positions in a macroscopic medium, interfere. To maximize the constructive in-
terference requires to match the relative phases of the radiation emitted by adjacent atoms,

⁶This is true for HHG in gases and many other nonlinear optical phenomena, see Ref. [127].
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Figure 3.2: Illustration of phase-matching. (a) Sketch of harmonic generation in the case of
perfect phase-matching and imperfect phase-matching. (b) Build-up of harmonic signal
Iq with the propagation lengthL for the perfectly (solid) and imperfectly (dashed) phase-
matched case.

which is called phase-matching. Phase-matching in HHG is usually described using a k-
vector approach. For the long-wavelength, many-cycle pulses considered here, this reduces
to a phase velocity mismatch between the harmonic fields and the fundamental driving
field. In HHG using few-cycle pulses or short driving wavelengths, the group velocity mis-
match or “CEP-slip” can also become significant [128, 129]. The wave vector mismatch
between the generated harmonic and the polarization induced at frequency ωq is given by
[Cf. Eq. (3.7)]

∆k = qk1 − kq. (3.9)

By considering propagation along a certain direction, e.g., z, the wave vector mismatch
can be related to the accumulated phase-mismatch by ∆kz = ∂

∂z∆Φ. Ignoring off-axis
emission and transverse variations of the fundamental, that is, assuming a 1D model, and
assuming for now there is no reabsorption (discussed further in Sec. 3.3.4), the harmonic
intensity as a function of the propagation length can be written as

Iq ∝
∣∣∣∣∫ L

0
dz dqρ exp [i∆kz]

∣∣∣∣2 , (3.10)

where PNL ∝ ρdq was used, where ρ is the density of the gas medium, dq is the single
atom dipole amplitude from Sec. 2.2.2 and |∆k| = ∆k. The above equation represents
the coherent addition of all emitters along the propagation length.

If the density is assumed to be constant, and generation in a small volume is considered,
such that variations in the dipole amplitude and wave vector mismatch are small, the above
equation simplifies to the well known form [130]

Iq ∝ ρ2|dq|2L2sinc2
(
∆kL

2π

)
, (3.11)
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which shows that the harmonic signal can be written as a product of a microscopic single
atom response and macroscopic phase-matching function as Iq ∝ |dq|2Sq(∆kq, L).

Figure 3.2(a) shows a sketch of perfectly and imperfectly phase-matched generation. The
total signal as a function of the propagation distance, L, is shown in Fig. 3.2(b). The
intensity in the perfectly phase-matched case, where all atoms in the medium emit in phase,
corresponding to∆k = 0, grows asL2. In the imperfectly phase-matched case, (∆k ̸= 0),
the intensity oscillates, as the generated field and induced polarization periodically dephase
and rephase. The oscillation is described by sinc2(L/2Lc), where Lc = π/∆k is the
coherence length, a measure of the length across which constructive interference occurs. For
medium lengths L < Lc the phase-mismatched case grows approximately quadratically.

The above example illustrates the importance of coherence control in HHG [68], which
essentially means minimizing the wave vector mismatch. In HHG in gases, the wave vector
mismatch can be described by a sum of four terms as [113, 131]

∆k = ∆kat +∆kfe +∆kfoc +∆ki, (3.12)

where∆kat arises from the dispersion in the neutral medium and∆kfe from the dispersion
due to the free electrons present in the medium. Phase variations due to the laser focusing
are included in∆kfoc, and finally,∆ki is the dipole phase, due to the trajectory dependent
(short or long) microscopic single atom response [77], described in Sec. 2.2.2. The reason
it appears in the macroscopic description of HHG is because of its strong dependence on
intensity, which is a macroscopically varying parameter in typical HHG relying on strongly
focused lasers pulses. The four contributing terms are expressed in more detail below.

∆kat The dispersion relation of a neutral dielectric medium leads to a phase-velocity mis-
match between the fundamental and harmonic fields, which can be described in a
free focusing geometry⁷ through the wave vector mismatch

∆kat = (n1 − nq)
qω0

c
, (3.13)

where n1 and nq are the refractive indices at frequencies ω0 and qω0. At the funda-
mental frequency, n1 > 1, whereas at the harmonic frequencies above the ionization
threshold nq < 1, so that this contribution is positive. The refractive index of the
fundamental and harmonic field can be related to the dynamic polarizability, αq,
through

nq =
√

1 + χ =

√
1 +

ραq

ϵ0
≈ 1 +

ραq

2ϵ0
, (3.14)

⁷In propagation in e.g. hollow core capillary or other guided geometries, the effect of the mode dispersion
in the wave guide should also be taken into account [132].
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which leads to an approximate expression for the wave vector mismatch

∆kat =
qω0ρ

2ϵ0c
(1− ηfe) (α1 − αq) ≈

qω0ρ

2ϵ0c
(α0 − αq) , (3.15)

where the factor in the first parentheses takes into account a finite ionization degree,
ηfe. The polarizability at the fundamental wavelength can be approximated by the
static polarizability (α0, tabulated in for example Ref. [133]), at long wavelengths.
The polarizability at harmonic frequencies can be obtained from tabulated refractive
index data [134], or when such data is unavailable, be calculated using for example
random phase approximation methods (see Ref. [135] and references therein).

∆kfe Similarly to ∆kat above, the dispersion due to free electrons can be expressed as

∆kfe = (ne
1 − ne

q)
qω0

c
, (3.16)

where ne
1 and ne

q are the plasma refractive indices at frequencies ω0 and qω0. These
follow the inequality ne

1 < ne
q < 1, so that this contribution is negative.

The plasma refractive index ne
q is given by

ne
q =

√
1− ρe

ρc
, (3.17)

where ρe = ρηfe is the free electron density and ρc(ω) = ϵ0meω
2/e2 is the critical

density, at which the frequency ω equals the plasma frequency and the plasma be-
comes opaque. The free electron density in gases is typically much lower than the
critical density, so that the wave vector mismatch can be expanded as

∆kfe = −qω0ρ

2ϵ0c

ηfee
2

me

(
1

ω2
0

− 1

q2ω2
0

)
≈ − qρ

2ϵ0c

ηfee
2

meω0
. (3.18)

Since ionization is a prerequisite of HHG, the free electron density necessarily varies
in time and space during the HHG process. Because the ionization rate is a highly
nonlinear function of the driving field intensity, this variation is typically the limiting
factor in coherence control of HHG. Several methods for calculating the ionization
rate exist, which are discussed in further in Sec. 3.3.1.

∆kfoc When a laser beam goes through a focus, there is an additional phase advance com-
pared to plane wave propagation. For a Gaussian beam the phase variation is the
Gouy phase shift [136]. The on-axis contribution of the Gouy phase is given by
ζ(z) = − tan−1(z/zR). Because of the inverse dependence of the Rayleigh length
on the wavelength, the contribution of the harmonic Gouy phase is typically an or-
der of magnitude smaller than the fundamental contribution, and it is hence often
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Figure 3.3: Wave vector mismatch. Contributions of the wave vector mismatch across the fo-
cus of a Gaussian beam for the 23rd harmonic in argon (colorscale) due to: (a) Neutral
atoms∆kat. (b) Free electrons∆kfe. (c) Gouy phase∆kfoc. Dipole phase for (d) the long
trajectory ∆kℓ and (e) the short trajectory ∆ks. Total (absolute) wave vector mismatch
for (f) the short trajectory and (g) the long trajectory. The ionization rate is calculated
using the the Perelomov–Popov–Terent’ev (PPT) model [see Sec. 3.3.1], and the ioniza-
tion degree is taken at the peak of the pulse for a Gaussian pulse of τ = 22 fs FWHM
duration, with peak intensity I0 = 2 × 1014 Wcm−2. The pressure in the medium is
constant, at 30mbar and zR = 0.014m.

neglected. The wave vector mismatch due to the focusing of a Gaussian beam is then
given by

∆kfoc(r, z) = −q
∂

∂z

[
ζ(z)− kr2

2R(z)

]
r,z→0−−−−→= − q

zR
, (3.19)

where the second term in the brackets is an off-axis component due to the radius of
curvature of the wavefronts at z, with R(z) = z(1 + z2R/z

2). This contribution is
negative. For a guided geometry ∆kfoc is equal to zero.

∆ki The dipole contribution arises from the phase accumulated by the electron as it ac-
celerates in the continuum in the presence of a laser field (step (ii) of the TSM). An
approximate expression for this dipole phase was given in Eq. (2.12) [70]. The de-
pendence ofΦi with intensity, and therefore with z, leads to a wave vector mismatch

∆ki =
∂Φi

∂I

∂I

∂z
. (3.20)
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The derivative of the phase with respect to intensity becomes

∂Φi

∂I
= αi − γi

(
qω0 −

Ip
ℏ

)2 1

I2
, (3.21)

with the variables defined as in Eq. (2.12). For a Gaussian beam Eq. (3.20) becomes

∆ki = − 2zβi(z)

z2 + z2R
, (3.22)

where
βi(z) = αiI(z)−

γi
I(z)

(
qω0 −

Ip
ℏ

)2
< 0, (3.23)

and I(z) describes the intensity variation of a Gaussian beam along its propagation
direction. The sign of∆ki changes across the focus, being negative when z < 0 and
positive when z > 0. Close to the focus the contribution is negligible.

Based on the signs of the contributions above, phase-matching at or before the focus of the
fundamental beam is accomplished by compensating the negative contribution of the free
electrons, the dipole phase, and the fundamental Gouy phase by the positive contribution
from the neutral medium, ∆kat = |∆kfe| + |∆kfoc| + |∆ki|. When generating after the
focus, where the dipole phase is positive, phase-matching is instead achieved when∆kat +
∆ki = |∆kfe|+ |∆kfoc|. As discussed in connection to the free electron contribution, the
wave vector mismatch is a function of both the time and the spatial coordinates, which is
true also for the dipole contribution and atomic dispersion (except under the assumption
that ηfe ∼ 0). Meanwhile, the focusing term is a function of the spatial coordinate, and
is time-independent if reshaping of the fundamental beam is kept small. Based on this, it
is clear that fulfilling the condition ∆k = 0 across the entire generation volume for the
duration of the driving field is not trivial, or even possible, and phase-matching in practice
is limited to minimizing ∆k across a small volume for a limited duration of time. To
illustrate this, Fig. 3.3 shows how the different terms, and the total wave vector mismatch,
vary across the focus assuming a medium of constant density, for both the long and short
trajectory. Note that even here, this is just a snapshot in time, corresponding to the peak
of a 22 fs pulse with peak intensity I0 = 2 × 1014Wcm−2. At the given moment, the
ionization degree in the medium varies from roughly 0 to 6%. The small variation in the
neutral atom contribution is seen in Fig. 3.3(a), and the rather large difference in the dipole
contribution for the two trajectories is clear when comparing Fig. 3.3(d) and (e). Another
important effect, which comes from the difference in dipole phase and can be observed
by comparing the total wave vector mismatch of the short and long trajectory, is that the
two trajectories can be selectively phase-matched by changing the generation position. The
short trajectory, which can be selected by generating after the focus, is often preferred due
to its better spatial qualities [68].
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3.2.1 Pressure-induced Phase-matching

In the above example in Fig. 3.3, two important tuning parameters for minimizing the
wave vector mismatch were mentioned: the pressure⁸, and the ionization degree, which is
controlled through the intensity. These are also the parameters which are often most easily
tuned in experiments.

The approximately linear dependence of both the refractive index and plasma refractive
index on density [see Eq. (3.15) and Eq. (3.18)], allows the definitions∆κat = ∆kat/ρ and
∆κfe = ∆kfe/(ρηfe) to be made. Isolating the density from the total wave vector mismatch
under the assumption of perfect phase-matching ∆k = 0 yields [29, 137]

ρmatch = − ∆kfoc +∆ki
∆κat + ηfe∆κfe

, (3.24)

which defines a phase-matching density as a function of the ionization degree. This equa-
tion states that, given some ionization degree, perfect phase-matching can be obtained if
the density of the neutral medium is chosen appropriately [138]. The equation diverges
when the ionization degree increases and the denominator approaches zero, which defines
a critical ionization degree⁹, above which perfect phase-matching on axis is not possible.
The critical ionization degree is given by [132, 139]

ηmac
fe = −∆κat

∆κfe
=

meω
2
0

e2
(α0 − αq) . (3.25)

Using Eq. (3.25) and the ideal gas law, where kB is the Boltzmann constant and T is the
temperature, the phase-matching pressure becomes

pmatch(z)zR =
2meω0ϵ0ckBTfi(z)

e2(ηmac
fe − ηfe)

, (3.26)

where

fi(z) =
z2R

z2 + z2R

(
1 +

2zβi(z)

qzR

)
, (3.27)

is a geometric factor originating from the Gouy phase and dipole phase and hence depends
on the trajectory. At the focus fi = 1, resulting in the same phase-matching pressure
for both trajectories. The phase-matching pressure variation with the ionization degree is
shown for a few harmonics in argon and neon in Fig. 3.4(a,b) assuming a medium position

⁸The pressure and density will be used interchangeably in the following, by assuming a constant temperature
and that the ideal gas law holds.

⁹The critical ionization degree depends on harmonic order and the atomic species, but is typically a few
percent. It is around 6% for the 23rd harmonic in argon, and 1.1% for the 69th harmonic in neon.
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Figure 3.4: Pressure induced phase-matching. Phase-matching pressure (a) for harmonic 19
(red), 23 (orange) and 27 (yellow) in argon and (b) for harmonic 63 (red), 69 (orange)
and 75 (yellow) in neon. (c) Factor fi for the 23rd harmonic in argon (red) and 69th

harmonic in neon (yellow) for the short (solid) and long (dashed) trajectory. The intensity
at the center of the medium is I = 2.5× 1014 Wcm−2, and I = 5× 1014 Wcm−2, for
argon and neon, respectively. Figure adapted from paper I.

at the laser focus. As the medium position is changed, the factor fi leads to a separation
in phase-matching pressure between the long and short trajectory, as shown in Fig. 3.4(c).
When the medium is positioned after the focus, fi becomes negative for the long trajectory,
reflecting the well-known fact that this trajectory in general is not possible to phase-match
after the focus [85]. Based on the scaling laws discussed previously, the pressure is multiplied
by the Rayleigh length and the medium length is expressed in units of the Rayleigh length,
which provides a description that is independent of the focusing geometry of the driving
laser.

From the phase-matching pressure curves some interesting predictions can be made. At low
ionization degrees relative to ηmac

fe the pressure variation is rather small and takes a similar
value for all harmonic orders, which indicates that broadband phase-matching can occur
simultaneously over a rather large volume and time in the generationmedium. On the other
hand, at high pressures, phase-matching is possible for a very narrow range of ionization de-
grees for a given harmonic order. Efficient generation is then limited to short time intervals
and small volumes, similar to ionization gating [140]. While transient phase-matching res-
ults in spectrally broad harmonics, the harmonic order dependent critical ionization means
phase-matched generation takes place at different times for different harmonic orders. This
in turn could affect the attosecond pulse-train, limiting the bandwidth of individual atto-
second pulses in the train.

3.3 Limitations

In the previous sections, phase-matching was described in a mostly idealized manner. Min-
imizing the wave vector mismatch is clearly limited by ionization, however the ionization
degree can also lead to reshaping of the fundamental beam, and act as a limiting factor for
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the range of pulse lengths and intensities for which efficient HHG is possible. Further-
more, reabsorption of the generated XUV, which is the inverse of the ionization process,
also limits the conversion efficiency. This section introduces ionization models used in this
work, and discusses the above limitations due to ionization and propagation in the partially
ionized medium.

3.3.1 Ionization

In Sec. 2.2.1 strong field ionization, being the first step in the TSM, was shown to be a
prerequisite for HHG. The low probability of recombination with the parent ion in the
third step leads to a build-up of free electrons in the medium. In the previous section,
these free electrons were shown to be a limiting factor in macroscopic phase-matching of
HHG.Understanding of the relationship between intensity and the variation of the electron
density is thus important to know under what conditions efficient HHG can be realized.
In part of this work, the Perelomov–Popov–Terent’ev (PPT) model [141], outlined below,
has been used to provide an analytical complement to solving the full 3D TDSE.

Strong field ionization of atoms is often divided into two limiting cases:

i Tunnel ionization, which is assumed for HHG described by the TSM. In this non-
perturbative regime, the field must be strong enough to bend the atomic potential
to a point where the tunneling probability is sufficiently high, and the frequency of
the field must be low enough that the electron has time to tunnel out of the barrier.

ii Multi-photon ionization, valid when the applied laser field can be regarded as a per-
turbation to the atomic potential. In this regime the field is weak, and/or the fre-
quency of the field is high enough that no quasistatic barrier is formed. When more
photons are absorbed than required to overcome the ionization potential this type
of ionization is called Above-Threshold Ionization (ATI).

Ionization in these two limits was described by Keldysh [142]¹⁰, who also formulated a
useful quantity to determine which regime applies in a specific case. The Keldysh parameter
depends on the frequency, ionization potential and electric field strength as

γ ≡
ω0

√
2Ip

E0
, (3.28)

with tunnel ionization valid if γ < 1, and multi-photon ionization takes place when γ ≫
1. In the limit γ ≪ 1 the barrier is suppressed below the ground state energy level of the

¹⁰Keldysh’s paper is famously difficult to read, which has recently motivated the publication of a rederivation
of his work [143].
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Figure 3.5: Photoionization in different regimes. (a) Single photon ionization. (b) Above
threshold ionization and multi-photon ionization. (c) Tunneling ionization. (d) Barrier
suppression ionization. The ionization potential is indicated by the dashed gray line.

atom, leading to all atoms immediately ionizing and to both a single-atom response and
macroscopic phase-matching response which are essentially zero. The different ionization
regimes are illustrated in Fig. 3.5.

Often, the parameters of the driving laser and target atom in HHG places the Keldysh
parameter in the intermediate (γ ∼ 1) regime¹¹. In this intermediate regime, the PPT
model can be successfully applied to calculate ionization rates. The discussion of the PPT
model here will be confined to linear polarization, however it is valid also for the case of
elliptical polarization. The field is assumed to be turned on adiabatically at t0 → −∞, and
the wavelength is much larger than the radius of the atom, so the electric field is treated as
uniform. The method is valid for driving fields where the photon energy is small compared
to the characteristic electron excitation energy, in this case the ionization potential ℏω0 ≪
Ip.

The ionization rateΓPPT
ℓm (E , ω0) from a level with binding energy Ip, orbital ℓ andmagnetic

m quantum number, with the quantization axis chosen parallel to the field polarization, is
given (atomic units are used: ℏ = me = e = 1) by

ΓPPT
ℓm (E0, ω0) =

√
3

2π
|Cn∗,ℓ∗ |2fℓ,mIp

[
2(2Ip)

3/2

E0
√
γ2 + 1

]2n∗−|m|−3/2

×Am(γ, ω0) exp

[
−2(2Ip)

3/2 g(γ)

3E0

] (3.29)

where E0 is the peak electric field, n∗ = Z/
√
2Ip and ℓ∗ = n∗−1 are the effective principal

and orbital quantum numbers andCn∗,ℓ∗ , fℓ,m,Am(γ, ω0) and g(γ) are functions defined
in Appendix A. Most importantly,Am(γ, ω0) contains a sum over many-photon processes

¹¹As an example, in the calculation of ionization degree for Fig. 3.3 the range of the Keldysh parameter is
approximately 0.8 < γ < 1.2.
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horizontal dashed lines indicate the corresponding ionization degrees ηmic
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fe .

Figure adapted from paper I.

of different orders, corresponding to the probability of absorption of increasing number of
photons.

The ionization rate as a function of the driving field intensities calculated using the PPT
model is shown in Fig. 3.6(a) and compared to the results from solving the 3D TDSE, in
both argon and neon. The steps visible in the calculations using the PPT approximation
are due to channel closings, which occur when the increase of the ionization energy due to
the additional quiver energy of an electron in strong laser fields exactly matches the energy
of an additional photon [144]. This leads to a slight reduction in ionization rate as the
intensity is increased. The deviation between PPT and TDSE at high intensity visible for
argon corresponds to depletion, which is not included in PPT. The ratio ΓPPT/ΓTDSE is
shown in Fig. 3.6(b), and compared to unity (black dashed line), showing that for a wide
range of intensities, particularly those applied in HHG, the PPT model gives satisfactory
results.

In the low frequency limit (tunneling regime), the PPT model reduces to the significantly
simpler Ammosov–Delone–Krainov (ADK) approximation [145]. The ionization rates cal-
culated with ADK deviate more than PPT from the TDSE results, for a comparison see
Ref. [146]. As the driving laser pulse length approaches the single-cycle limit, where sub-
cycle dynamics become important [128, 147–149], models which describe sub-cycle ioniz-
ation rate are required. One such model which extends the (cycle averaged) PPT is the
Yudin–Ivanov ionization model [150].

Based on the ionization rates in Fig. 3.6(a), the ionization degree, required to calculate∆k,
can be obtained. The ionization degree at the peak of the pulse, assumed centered at t = 0,
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is given by

ηfe = 1− exp

[
−
∫ 0

−∞
dtΓ[I(t)]

]
. (3.30)

Intensity dependent ionization degrees are shown in Fig. 3.6(c) at the peak of a Gaussian
pulse with 22 fs FWHM pulse duration. These calculations are used to define intensity
windows for efficient HHG in the next section.

3.3.2 Intensity Windows for Efficient Generation

For efficient HHG it is not enough just to have perfect phase-matching, which is evident
when writing the harmonic signal as a product [see Eq. (3.11)]

Iq ∝ |dq|2Sq(∆kq, L), (3.31)

where both the microscopic response |dq| and the phase-matching function Sq depend
nonlinearly on the driving field intensity. The interplay between intensity, SAR and ion-
ization dependent wave vector mismatch leads to intensity intervals within which efficient
generation is possible.

The lower bound on usable intensities is defined by themicroscopic cut-off energy [Eq. (2.11)
and Fig. 2.7], beyond which the dipole amplitude decreases rapidly. The minimum intens-
ity is

Imic =
meω

2
0

3.17× 2πα

(
qω0 −

Ip

ℏ

)
. (3.32)

with the index “mic” indicating a quantity limited by the microscopic single atom response.
From the relationship between intensity and ionization degree, a corresponding ionization
degree ηmic

fe can be defined.

The upper bound is defined by the macroscopic critical ionization degree [Eq. (3.25) and
Fig. 3.4] above which perfect phase-matching is not possible. Because the dipole amplitude
increases with intensity, phase-matching close to the peak of the pulse should in general be
optimal. The upper intensity bound, Imac, with the index “mac” indicating it is limited by
macroscopic phase-matching, is therefore defined by reaching the critical ionization degree
at the moment of the peak of the pulse. The microscopic and macroscopic intensities and
ionization degrees are indicated by the dashed lines in Fig. 3.6(c). Calculating Imac for a
given pulse duration is done by repeated numerical integration of Eq. (3.30) for increas-
ing values of the peak pulse intensity, until the intensity which yields ηmac

fe at the peak of
the pulse is found. Recently, analytic expressions for Imac based on ADK and PPT were
proposed by Minneker et al. [151].

The dependence of the intensity bounds with harmonic order and pulse duration is also im-
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Figure 3.7: Phase-matching windows. (a) Intensity window of efficient generation for the 23rd

harmonic in argon and 69th harmonic in neon indicated by the yellow and red shaded
areas, respectively. The solid line shows the variation of Imac and the dashed line corres-
ponds to Imic. Variation of the phase-matching cut-off in argon (yellow) and neon (red)
with (b) the driving field wavelength and (c) the driving pulse FWHM duration. Figure
adapted from paper I.

portant. For higher harmonic orders, Imac generally decreases, and Imic increases, reducing
the intensity window for efficient HHG. Similarly, increasing the pulse duration, the ion-
ization degree which is obtained at the peak of a pulse increases, which reduces Imac, while
Imic remains unchanged. As a result, for longer pulses or higher harmonic orders, at some
point Imac = Imic, as shown in Fig. 3.7(a). This equality defines a cut-off harmonic [152],
above which efficient HHG is not achievable. By using shorter driving pulses [153, 154], the
phase-matching cut-off can be extended, while simultaneously allowing for higher intens-
ities to be used, increasing the SAR. These limitations have also partly been responsible for
a shift towards longer driving wavelengths¹² [67, 76, 152], where both the cut-off energy
and ionization rate scale favorably, making available harmonic energies in the soft X-ray
region. Figure 3.7(b,c) displays how the phase-matching cut-off harmonic energy scales
with driving wavelength and pulse duration.

3.3.3 Plasma Effects

The time-dependent ionization degree in the generation medium leads to potentially ad-
verse effects also for the propagating fundamental beam. For a beam with a transverse
intensity variation, such as a Gaussian beam, the free electron density in the partially ion-
ized medium will also display transverse variations. A radially decreasing electron density,
and hence radially increasing refractive index, leads to plasma induced defocusing and re-
shaping of the fundamental beam [156]. The defocusing mainly limits the peak intensity
in the medium and leads to an effective focus position which is located before the focus in
absence of a medium.

¹²For long wavelengths (> 3 μm), the often assumed dipole approximation may break down [155].
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For very high laser intensities (I0 > 1015Wcm−2), in what is sometimes called the over-
driven regime, reshaping of the fundamental beam can lead to new, efficient phase-matching
regimes in HHG. In this regime, contributions from the nonlinear refractive index play a
non-negligible role. In particular, self-guiding of the driving field can lead to a spatio-
temporally constant fundamental intensity, which leads to smaller variations of the wave
vector mismatch across the medium [157–159], increasing efficiency. Strong defocusing
can also lead to much higher spatial derivatives of the fundamental intensity, which affect
the dipole contribution ∆ki and can extend the phase-matching cut-off [160]. In general,
HHG in the overdriven regime has been shown to lead to high conversion efficiencies,
but the generated radiation partly or fully loses its harmonic structure, resembling more
a continuum [158, 161–164], making it unsuitable for the RABBIT experiments which are
discussed in the following chapters.

In this work, since we are concerned with conventional phase-matching at ionization de-
grees below ηmac

fe , defocusing is expected to be small. The degree of defocusing can be
estimated with the defocusing length, LD [165–167] as

LD =
πcϵ0meω0kBT

pηfee2
=

πcϵ0meω0σabs
ηfee2

Labs, (3.33)

where Labs is the absorption length, treated in the next section. The defocusing length
describes the propagation distance at which the diffraction limited beam divergence has
increased by a factor of two. For phase-matched HHG at the laser focus, and below the
critical ionization, LD > 17Labs for the 23rd harmonic in argon and> 26Labs for the 69th

harmonic in neon, given an 800 nm fundamental wavelength. As will be shown in the next
section, the medium length is typically much shorter than the above minimum defocusing
lengths. For longer driving wavelengths plasma defocusing is stronger and is more likely to
limit the efficiency in HHG.

3.3.4 Absorption Limited High-order Harmonic Generation

The description of pulse propagation in a dielectric medium [Eq. (3.7)] permits complex
wave vectors when the photon energy of the propagating light is larger than the ionization
potential. In this case, the imaginary part, denoted here as κq, describes the reabsorption
of the XUV light in the medium. Including these effects in Eq. (3.10) gives a modified
phase-matching function so that Eq. (3.11) becomes [168, 169]

Iq ∝ ρ2|dq|2e
− L

2Labs

cosh
(

L
2Labs

)
− cos

(
πL
Lc

)
π2

L2
c
+ 1

4L2
abs

, (3.34)
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Figure 3.8: Absorption limit in HHG. (a) Absorption cross section in argon (yellow) and neon (red).
(b) Variation of the harmonic intensity with the medium length for different coherence
lengths. The dashed black lines indicate the optimal medium length, L ≈ 3Labs, given
a coherence length Lc = 4Labs. Figure adapted from paper I.

where Labs = 1/2κq = 1/ρσabs denotes the absorption length, and σabs is the absorption
cross section at frequency qω0, shown in Fig. 3.8(a) for argon and neon at typical XUV
energies obtained from HHG using near-infrared drivers.

Reabsorption acts to strongly limit the highest harmonic signal which can be obtained, as
is evident from Fig. 3.8(b). For a finite absorption length, indefinite quadratic growth is
not possible even for infinite coherence lengths, as an equilibrium is reached between the
generated and reabsorbed signal. Shorter coherence lengths shifts the point of equilibrium
to shorter medium lengths and consequently lower peak harmonic intensities.

In Ref. [168], Constant et al. define conditions for ensuring a high yield as

Lmed > 3Labs, (3.35a)
Lc > 5Labs, (3.35b)

which corresponds to the top right part in Fig. 3.8(b). These limits loosely define whether
the generation can be considered absorption-limited or coherence-limited. It should be
noted that absorption-limited HHG is not always possible. For harmonics generated close
to the Cooper minimum¹³ in argon, the absorption length becomes very long, while the
phase-matching pressure and wave vector mismatch only change slightly. Even if the co-
herence length could be extended, the role of plasma defocusing of the fundamental may
no longer be negligible.

The model by Constant et al. [Eq. (3.34)] can be extended to include the effects of linear
density gradients at the beginning and end of the generating medium [171], indicating that
steep pressure gradients at the edges of the medium are preferable for CE optimization.

¹³The rapid variation of the cross section in Ar is due to a Cooper minimum at 52 eV [170].

47



3.4 Optimization of High-order Harmonic Generation

The scaling laws by Heyl et al. [33] show how the focusing geometry, medium length and
gas density can be scaled to reach a similar CE when scaling the input pulse energy, but do
not say how these parameters should be chosen to optimize the CE. In current experimental
HHG setups a large variety of medium geometries is used, even for similar laser paramet-
ers. These include generation in high-pressure gas jets [15], low-pressure cells [63], semi-
infinite cells [172] and capillaries [132]. Analytic expressions based on absorption-limited
HHG [168, 173, 174], and to some extent experimental [175] observations suggest that op-
timal CE should occur for a constant pressure–length product, i.e., along a pressure–length
hyperbola.

From Eq. (3.34) [see also Fig. 3.8(b)], for a given coherence length, expressed by the ratio
Lc/Labs = ζ, where ζ is a constant¹⁴, an optimal medium length can be determined. We
express it as a constant multiplied by the absorption length, Lopt

med = ςLabs. In Fig. 3.8(b)
the dashed black lines exemplify this relation for ζ = 4, ς ≈ 3. The constant ς can be
determined from Eq. (3.34) by first rewriting it as

Iq ∝ e
− L

2Labs

[
cosh

(
L

2Labs

)
− cos

(
πL

ζLabs

)]
. (3.36)

The first (nonzero) solution to the derivative of Eq. (3.36) with respect to L/Labs corres-
ponds to the optimal medium length, and gives the value of ς = L

opt
med/Labs as the solution

to the transcendental equation,

e
ς
2

[
2π sin

(
πς

ζ

)
+ ζ cos

(
πς

ζ

)]
= ζ, (3.37)

for which a few values is given in the table below.

ζ 1 2 3 4 5 6 7 8

ς 0.92 1.72 2.45 3.14 3.78 4.40 4.99 5.57

Using the definition of Labs, the optimal medium length can then be written as

L
opt
med = ςLabs =

ςkBT

pσabs
, (3.38)

which defines a hyperbolic relationship between pressure and the optimal medium length.
For optimal (phase-matched) HHG, the pressure should be close to pmatch(z) ≥ p0(z) [see

¹⁴This assumes that both quantities are proportional to the pressure in the following discussion.
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Eq.(3.26)], where p0(z) is theminimum phase-matching pressure, obtained fromEq. (3.26)
for ηfe = 0, and is given by

p0(z)zR =
2ϵ0ckBTfi(z)

ω0(α0 − αq)
. (3.39)

The hyperbolic relationship in Eq. (3.38) can then be reformulated as

(pmatch − p0)L =
ςkBTfi(z)

σabs
, (3.40)

where we have included the dependence on medium position on the r.h.s. by redefining the
phase-matching pressure relative to the pressure at the laser focus (pmatch = pmatch(z)/fi(z)
and p0 = p0(z)/fi(z)).

The hyperbolic equation should be invariant to a high degree under scaling of the focus-
ing conditions or pulse lengths. In extreme cases, at very high intensities and pressures,
where avalanche ionization must be taken into account, the scaling laws in Sec. 3.1.1 may
break down [127]. In such conditions phase-matching is likely already limited by ioniza-
tion or other high pressure effects, including clustering or loss of coherence in the single
atom response due to electron excursion lengths approaching the mean free path in the
continuum [31, 176].

3.4.1 Simulation Results

In this section Eq. (3.40) is compared with simulation results based on themethod discussed
in Sec. 3.1. Simulations of the CE of the 23rd harmonic in argon, as a function of the
medium length and pressure, are shown in Fig. 3.9(a-c) for three different peak intensities
of the driving field for a medium centered around the laser focus.

The peak driving field intensities which lead to the highest CE in the simulations are larger
than those described by Imac, which can be explained by volume arguments. In defining
Imac the peak intensity on axis was assumed, however to reach a high CE requires efficient
generation also at transverse coordinates in the pulse. By using intensities between 2Imic
to 2Imac, efficient generation across a large volume and time is ensured.

The simulations display a region of high CE which follows a pressure–length hyperbola.
The position of the hyperbola is to a large extent independent of the intensity, and agrees
well with the model, indicated by the dashed white line, given a constant ς = 3. It should
be noted that ς is a fitting parameter which depends on harmonic order and absorption
cross section, and it describes a time- and volume-averaged coherence length relative to
absorption length. For higher order harmonics in argon, close to the Cooper minimum,

49



20

10

0 Io
n

iz
at

io
n

 d
eg

re
e 

(%
)

p
z R

 (
m

b
a
r 

cm
)

3

2

1

x 102

2

1.5

1

0.5

x10-6 x10-6 x10-6

Medium length (zR) Medium length (zR) Medium length (zR)

0 5 10
0

1

0.5

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

0.5

-1 10
t (τ)

H
ar

m
. 

In
te

n
si

ty

0

1

H
ar

m
. 

In
te

n
si

ty

6

4

2

6

4

2

θzR
1/2 (mrad cm1/2 )

(a) (b) (c)

(d) (e)

Figure 3.9: The two phase-matching regimes. Simulated conversion efficiency (colorscale) of the
23rd harmonic in argon for a peak intensity of (a) 1.5×1014 Wcm−2 (b) 2.5×1014 Wcm−2

(c) 4.5× 1014 Wcm−2 for a medium centered at the laser focus. The dashed white line
indicates the model prediction [Eq. (3.40)]. (d) Far-field beam profile and (e) temporal
shape of the harmonic in the high-pressure (red) and low pressure (yellow) regime. The
pressure and length used in the two cases is indicated by the circles in (b). The dashed
red and yellow lines in (e) indicate the average on-axis ionization degree and the dashed
black line corresponds to ηmac

fe . Figure adapted from paper I.

a lower value of ς can be expected due to the much lower absorption cross section, hence
longer Labs [this effect is illustrated in Fig. 4 of paper II].

From the hyperbolic model and pressure-induced phase-matching curves in Fig. 3.4 and
Sec. 3.2, two phase-matching regimes, which are connected to the horizontal and vertical
branches of the hyperbola, can be identified:

i In the horizontal branch, the ionization degree is low (∆kfe ≈ 0), and phase-
matching happens close to p = p0 when ∆kat + ∆kfoc + ∆ki = 0. Due to the
pressure dependence of ∆kat, phase-matching is limited to a narrow range of pres-
sures¹⁵. As a result of the low pressure, the absorption length is long, and a long
medium is required for a high CE.

¹⁵This range can become very narrow for higher orders due to a linear dependence of the wave vector
mismatch with harmonic order,∆kq ∝ q, for pressures p ̸= pmatch.
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ii In the vertical branch, the ionization degree is high (ηfe ≈ ηmac
fe ), and phase-matching

requires very high pressures. Consequently, the absorption length is short, and a
short medium must be used. The dipole and focusing contributions to the wave
vector mismatch become small relative to the pressure-dependent atomic and free
electron contributions. Phase-matching happens when ∆kat + ∆kfe ≈ 0, and be-
comes close to pressure-independent.

For the lowest intensity [Fig. 3.9(a)] the high-pressure region displays a comparatively low
CE. This can be explained by the above phase-matching regimes. When the intensity is
low, ionization degrees close to ηmac

fe are either never reached, or not reached until late in
the pulse when the dipole amplitude is small, resulting in a low CE.

While the CE is comparable between the two branches of the hyperbola, the generated
harmonics are not. Both spatial and temporal variations between the two branches can
be rather large, as shown in Fig. 3.9(d,e). Contrary to the well-collimated emission in
the horizontal branch, the vertical branch is associated with strong off-axis emission. This
emission is attributed to off-axis phase-matching of the long trajectory [104, 177], which is
known to result in ring-like structures in the near-field spatial profile of the emission [68].
The temporal shape of the emitted generation shown in Fig. 3.9(e) confirms the predictions
made in Sec. 3.2.1, of a more transient phase-matching at high pressures when ηfe ∼ ηmac

fe .

The slight difference in CE between the two branches is due to several factors. First, in
the horizontal branch, the larger generation volume means that the variations in∆kfoc and
∆ki are more pronounced, which can decrease the overall degree of coherence. Secondly,
the pulse duration in the above simulations may favor the vertical branch, simply because
ηmac
fe is reached closer to the peak of the pulse. In a shorter pulse, if the intensity is not
simultaneously increased, phase-matching of the vertical branch can occur after the peak of
the pulse, resulting in a lower CE.The CE is predicted to scale as τ−1 from recent analytical
predictions [129], however the exact scaling may depend on which branch is considered.

As was shown in Fig. 3.4(c), the model predicts a trajectory-dependent phase-matching
pressure which varies with the relative position of the medium and the fundamental beam
focus. The position of the medium is known to affect the conversion efficiency, especially
for the long trajectory [68, 178], and the position of the harmonic focus [179–181]. The
simulated CE as a function of the medium length is shown in Fig. 3.10(a) for a medium
centered at−1zR, and as a function of the medium position for a medium length of 0.2zR
in Fig. 3.10(b). Themodel correctly describes the splitting in phase-matching pressure of the
two trajectories. In Fig. 3.10(a) there is a discrepancy between the model and region of high
CE for the long trajectory, possibly due to defocusing changing the contributions of ∆ki
and∆kfoc, and/or off-axis phase-matching, leading to an effective phase-matching pressure
which is lower than the prediction. AmaximumCE is observed around z = −0.6zR for the
short and z = −1.1zR for the long trajectory. We believe that at these positions, the dipole
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Figure 3.10: Position of the medium. Simulated conversion efficiency (colorscale) of the 23rd

harmonic in argon for (a) a medium centered at −1zR and (b) a medium of length of
0.2zR. The white solid (dashed) line indicates the model prediction [Eq. (3.40)] for the
short (long) trajectory.

phase-induced wave front cancels the focusing-induced wave front of the laser [179, 180],
leading to optimized generation across the transverse direction. Because the dipole phase
contribution is larger for the long trajectory, this position is located further from the focus
than for the short trajectory.

3.4.2 Measuring the Hyperbola

Experimental optimization studies have often been performed in very limited pressure–
length regions [32, 175, 182, 183], and many times the pressure is simply given as the backing
pressure of the gas supply. In paper II our model is verified experimentally by systematically
scanning a broad range of generation conditions, including the pressure (while measuring
the pressure inside the gas cell), medium length, pulse energy and harmonic order. The
results, shown in Fig. 3.11, were obtained at the gas HHG Sylos Long Beamline at ELI-
ALPS [30, 184], and the Intense XUV Beamline at the Lund Laser Centre [137, 185].

Results from the pulse energy scan indicated in Fig. 3.11(a) confirm the position of the
optimal pressure–length hyperbola and its independence with driving field intensity. In
Fig. 3.11(b), a large pressure range is observed to yield a high CE for a short medium, while
the long medium is much more sensitive to pressure changes. Finally, the spatial quality of
the far-field beam profile is compared to simulations in Fig. 3.11(c), where the high-pressure
regime has larger off-axis contributions. In general, the appearance of the off-axis radiation
depends strongly on the generation conditions and harmonic order [discussed further in
paper II].

To conclude, the hyperbolic model is shown through simulations and experiments to re-
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Figure 3.11: Experimental verification of hyperbola. (a) Simulated conversion efficiency (col-
orscale) of the 23rd harmonic in argon. Markers show the measured pressure corres-
ponding to the highest yield for different medium lengths and pulse energies: 8mJ
(circles), 10mJ (squares) and 12mJ (diamonds). The model is indicated by the dashed
line. (b) Intensity of the 19th harmonic as a function of medium pressure for a short
0.06 zR (yellow) and long 0.85 zR (red) medium. (c) Simulated (solid) and measured
(dashed) far-field profile of the 23rd harmonic for a medium length of 0.06 zR (yellow)
and 1.33 zR (red). The data have been acquired at the gas HHG Sylos Long beamline.
Figure adapted from paper II.

main true for a wide range of focusing conditions, pressures, medium lengths, harmonic
orders, intensities and gas species. The final choice of pressure and medium length depends
on the requirements on spatio-temporal quality of the radiation for a specific application.
In the next chapters, which concernmeasurements of attosecond photoionization dynamics
using attosecond pulse trains obtained from HHG, a superior spatial and temporal quality
is preferred. The generation of high-order harmonics is thus performed in the horizontal
branch, with a medium length of approximately 0.5zR and pressures close to p0.
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CHApTER 4
Attosecond Photoelectron

Interferometry

As mentioned in Chapter 1, the ultrafast temporal dynamics of photoionization processes
is encoded in the spectral phase of the complex amplitude of the EWP. Experimentally,
the observable is the modulus squared of the complex amplitude, hence phase informa-
tion is lost in a direct measurement of photoelectrons. In this work we use the RABBIT
and KRAKEN photoelectron interferometry techniques. These techniques rely on path-
interference induced by two-photon two-colour transitions to retrieve the spectral phase
and amplitude of the wave function, or in the case of KRAKEN, that of the density matrix.
The first part of this chapter briefly introduces the theoretical background of two-photon
transitions. The following sections describe the theory of RABBIT and KRAKEN, in the
case of both broadband excitation of a comb of harmonics, and narrowband excitation
when a harmonic is tuned to an atomic resonance. Lastly, the experimental implementa-
tion of these techniques, as used in this thesis, is discussed.

4.1 Two-photon Transitions

Photoionization was already discussed in Sec. 3.3.1 when driven by strong fields. In the
following treatment and in the RABBIT and KRAKEN experiments performed here, only
one- and two-photon ionization is considered. The field intensities are thus kept low (IIR ≈
1011Wcm−2). Ionization is initiated by a bound electron absorbing a high energy XUV
photon (ℏΩ > Ip, where Ω is the harmonic photon angular frequency) after which it
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Figure 4.1: Two-photon transitions. Energy diagrams of two-photon ionization schemes studied
in this thesis. (a) Broadband RABBIT used for extracting time delays in paper V. (b)
Narrowband resonant energy-resolved below-threshold RABBIT used in paper VI. (c)
Narrowband resonant energy-resolved RABBIT used to study Fano resonances in paper
VII. (d) Ionization by a broad, single harmonic, as used in the KRAKEN protocol in papers
VIII and IX. Purple (red) arrows denote XUV (IR) absorption. Bound and quasi-bound
states are represented by solid black lines, while dashed and dot-dashed lines represent
continuum states.

absorbs or emits an additional IR photon¹. In the following the XUV photon is assumed
to always be absorbed first. The reverse is possible, but the corresponding cross section is
very small since the IR photon excites virtual states far from any resonance [186].

Both the XUV and IR fields are assumed to be linearly polarized along ẑ. Based on second
order perturbation theory the two-photon transition matrix element going from an initial
bound state |g⟩ to a final continuum state |fk⟩, characterized by a momentum k, is [16]

M
(±)
g→fk

(Ω) ∝ lim
ϵ→0+

∑∫
i

⟨fk| ẑ |i⟩ ⟨i| ẑ |g⟩
Eg − Ei + ℏΩ+ iϵ

, (4.1)

where the energies of the initial and intermediate states areEg andEi, respectively, and the
integral sum runs over all continuum and discrete intermediate states |i⟩. The ± denotes
that the IR transition can occur through either absorption (+) or stimulated emission (−).
Energy diagrams of the two-photon pathways for the different cases studied in this thesis
are shown in Fig. 4.1, and discussed in more detail in the following sections.

¹In the resonant below threshold RABBIT (ℏΩ < Ip) in Sec. 4.2.3 the ionization is initiated by the
absorption of an additional IR photon.
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The final two-photon transition amplitude depends on the amplitudes of the XUV and IR
fields. For ultrashort pulses, the finite duration, and hence broad bandwidth of the XUV
and IR fields means that every final state energy can be reached by several pairs of XUV
and IR photon energies. The possible pairs must fulfill the energy conservation relation
ℏΩ + ℏω0 = Efk − Eg = ℏΩfkg. This leads to a convolution over the XUV and IR
bandwidths, so that the transition amplitude is given by [187, 188]

A
(±)
g→fk

(Ωfkg, τ)=− ie2

ℏ

∫ ∞

0
dΩEIR(Ωfkg−Ω)ei(Ωfkg−Ω)τEXUV(Ω)M

(±)
g→fk

(Ω). (4.2)

Note that the amplitude depends on the delay between the XUV and IR fields, since chan-
ging the delay alters the phase relation between the different contributions to the final
state transition amplitude. The effect of the convolution of XUV and IR bandwidths on
the transition amplitude and phase is explored experimentally in paper VII, and discussed
further in Sec. 5.3.

4.2 Reconstruction of AttosecondBeatingBy Interference of Two-
photon transitions (RABBIT)

In the RABBIT technique [15], an attosecond XUV pulse train consisting of odd-order
harmonics of an IR field of frequency ω0 leads to a PhotoElectron Spectrum (PES) with
peaks spaced by 2ℏω0. A weak, phase-locked copy of the IR field is spatially and temporally
overlapped with the APT, leading to two-photon transitions and additional peaks in the
PES called SideBands (SBs). The SBs are reached by two possible paths, absorption of
harmonic HHq−1 plus absorption of an IR photon, or absorption of harmonic HHq+1

plus stimulated emission of an IR photon, as shown in Fig. 4.2(a). The interference of the
two quantum pathways is sensitive to phase variations in the XUV and IR fields. By tuning
the relative delay of the XUV and IR fields the intensity of SBq oscillates as [189]

Iq =
∣∣∣A(+)

q−1

∣∣∣2 + ∣∣∣A(−)
q+1

∣∣∣2 + ∣∣∣A(+)
q−1

∣∣∣ ∣∣∣A(−)
q+1

∣∣∣ cos(2ω0τ −∆Φ), (4.3)

where A(±)
q∓1 are two-photon transition amplitudes for absorption of harmonic q ∓ 1 and

the superscript (±) indicates that an additional IR photon is absorbed (+) and emitted (-).
An example of a RABBIT delay scan is shown in Fig. 4.2(b). The SB phase is given by
∆Φ = ∆ΦXUV + ∆ΦA, where the former is related to the XUV group delay τXUV, i.e.,
the spectral integral of the attochirp in Eq. (2.17), given by

∆ΦXUV = arg [EXUV(Ωq+1)]− arg [EXUV(Ωq−1)] ≈ 2ω0τXUV, (4.4)
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Figure 4.2: Principle of RABBIT. (a) Temporally overlapping XUV APT (purple) and femtosecond IR
pulse (red) ionize electrons by two-photon transitions. The odd high-order harmonic
(HH) comb leads to a photoelectron spectrum with peaks spaced by 2ℏω0. Absorption
or emission of an additional IR photon leads to formation of sidebands (SB). (b) RABBIT
trace showing photoelectron peaks at the harmonic and SB energies, oscillating as a
function of the XUV–IR delay τ .

and the latter is the atomic phase difference

∆ΦA = arg
[
M

(−)
g→fk

(Ωq+1)
]
− arg

[
M

(+)
g→fk

(Ωq−1)
]
, (4.5)

which contains information about the electron dynamics of the ionization process.

By fitting the SB oscillations visible in Fig. 4.2(b) to the form given in Eq. (4.3) it is then
possible to determine the relative phase of the different quantum paths. If the atomic phase
is assumed small, which is a good approximation in a featureless continuum, the XUV
group delay can be extracted, and the average temporal profile of the pulses in an APT can
be reconstructed as demonstrated by Paul et al. in 2001 [15]. On the other hand, if the
XUV phase is well known, ionization dynamics can be inferred from the spectral variation
of the atomic phase. This has been the main application of the RABBIT technique in the
past two decades.

4.2.1 Measuring Photoionization Time Delays using RABBIT

The theory of photoionization time delays has been studied extensively, in for example
Ref. [190–192], and will not be covered in detail here. Instead, the basic idea is presented
below.

When a bound electron is ionized by a broadband pulse, such as an XUV harmonic comb
as shown in Fig. 4.1(a), a broad EWP is emitted. As the EWP propagates away from its
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Figure 4.3: Scattering time delays. (a) Comparison of propagation of a free electron wave (yel-
low) to a wave scattering off an attractive potential (red). (b) Photoionization of an
electron corresponding to a half-scattering event. The potential is shown in black. The
phase of the scattering electron varies more rapidly close to the potential, leading to a
phase advance, ∆Φ, compared to the free electron.

parent ion, it is affected by the radially varying attractive ionic potential, leading to an
energy-dependent phase shift and a group delay of the EWP. The theory of such phase
shifts was first developed for scattering processes by Eisenbud, Wigner and Smith [193]. It
has since been extended to the case of photoionization [22], which can be regarded as a
half-scattering process as illustrated in Fig. 4.3, with half the phase shift, since the electron
in the case of ionization propagates starting from r = 0.

In the case of ionization to a single continuum channel, the atomic phase difference ap-
pearing in the SB oscillation in Eq. (4.3) can be related to a Wigner-like scattering time
delay, τW, by decomposing it as ∆ΦA = ∆η + ∆Φcc, where ∆η ≈ 2ω0τW is the differ-
ence in scattering phase between the absorption and emission path, and ∆Φcc ≈ 2ω0τcc
is an additional “continuum-continuum” phase difference due to the interaction with an
additional IR photon. Inserting these expressions in the expression for Iq in Eq. (4.3), the
oscillating term becomes proportional to cos [2ω0(τ − τW − τcc − τXUV)].

A relative Wigner time delay can then be extracted from a RABBIT spectrogram given
the elimination, or prior knowledge, of τcc and τXUV. In practice this can be achieved
by comparing two simultaneous measurements in, e.g., different gases [194, 195], or from
different ionization processes [16, 22], where one of the measurements acts as a phase refer-
ence. Furthermore, if one of the two measured processes is known to high accuracy from
theoretical calculations, an approximate absolute time delay of the other process can be
extracted [196]. In paper V we measure absolute ionization time delays in xenon by using
neon as a reference.

59



4.2.2 Rainbow RABBIT

In the original application of the RABBIT technique to the reconstruction of the temporal
profile of attosecond pulses, and in the measurements of ionization time delays, the spec-
tral phase is assumed to take a single value for each SB. This is equivalent to integrating the
photoelectron signal across the spectral width of each SB. Using high-resolution photoelec-
tron detectors the spectral phase across a SB can be resolved, and a cosine fit can be made
to each energy bin in a SB. This technique, dubbed “rainbow” RABBIT was introduced by
Gruson et al. [19]. It can be particularly useful to study sharp spectral features appearing
within a SB due to resonances in the intermediate state in the two-photon transition.

4.2.3 Resonant RABBIT

In the section on time delays, creation of an EWP through photoionization was considered
in the case with no bound states, or resonances, in the intermediate and final continua.
In that context, ionization time delays are well defined. In conditions when there is a
sharp resonance which is coupled to the final continuum, the resulting rapid variation in
spectral phase can lead to strong reshaping of the EWP. In such conditions the Wigner-like
delay is no longer well defined [197]. Nevertheless, valuable information about electron
correlations and even the full temporal build-up of the EWP through the resonance can
still be extracted [19].

If the phase induced by the resonance is dominant, it can be extracted from interfer-
ence with a non-resonant quantum path, as shown for two different RABBIT schemes
in Fig. 4.1(b,c). The attochirp and the non-resonant path scattering phases entering ∆Φ
are approximately constant across the narrow spectral widths considered [19], however the
femtochirp must sometimes be taken into account. In particular when harmonics have
been generated in the presence of plasma blue-shifting [198], or, as will be shown in the
discussion of KRAKEN measurements in Sec. 5.4, when the probe IR frequency differs
from the central IR frequency in the HHG process.

The first example of resonant RABBIT in Fig. 4.1(b), called “below-threshold RABBIT”,
corresponds to the case when the energy of the harmonic in the absorption path is below the
ionization threshold, and tuned to be resonant with a Rydberg state of the atom. The pres-
ence of the dressing IR field leads to ionization by absorption of an additional IR photon.
The theory of below-threshold RABBIT is described in detail in paper VI. The experiment
consists in measuring the π-phase jumps when the denominator in Eq. (4.1) goes to zero
at resonance, and when the numerator changes sign in between two Rydberg states. In the
second example, illustrated in Fig. 4.1(c), the resonance is located above the first ionization
threshold and can decay by autoionization to the continuum. This case is investigated in
paper VII and treated in detail below.
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4.2.4 Fano Resonances

When the ionizing photon energy is tuned to a quasibound state which is coupled to an
open ionization channel, the excited bound state can decay through autoionization to the
continuum. This leads to two possible quantum paths to the same final energy, as sketched
in Fig. 4.4(a). The resulting interference of the autoionizing and direct ionization channels
can be observed as a characteristic asymmetric Fano lineshape, named after Ugo Fano who
described it theoretically [199].

Following the Fano formalism [199], the eigenstates of the one-photon interaction can be
partitioned into a sum of the bound state |α⟩ and continuum states |β⟩ as

|ΨE⟩ = α |α⟩+
∫

dE′ βE′ |βE′⟩ , (4.6)

The one photon dipole transition amplitude from a ground state |g⟩ to the eigenstate |ΨE⟩
can then be expressed as

⟨ΨE | ẑ |g⟩ = ⟨βE | ẑ |g⟩
q + ϵ

ϵ+ i
, (4.7)

where ϵ = 2(E−Eα)/Γ is the reduced energy, Eα is the resonance energy, Γ = 2π|VE |2
is the width of the resonance and VE describes the configuration interaction between the
bound and continuum states. The Fano q-parameter is a real number which depends on
the relative strength of the resonant excitation and direct ionization paths and is given by

q =
⟨α| ẑ |g⟩

πV ∗
E ⟨βE | ẑ |g⟩

. (4.8)

The fraction on the right hand side in Eq. (4.7) is called the resonance factor, R(ϵ) =
(q+ϵ)/(ϵ+i), and defines the amplitude and phase variation across the resonance assuming
that the other quantities vary slowly with the energy. In the presence of a Fano resonance
the non-resonant absorption cross section σ0 is modified by the absolute square of the
resonance factor resulting in the Fano profile,

σ(ϵ) = σ0
(q + ϵ)2

ϵ2 + 1
. (4.9)

To extract information about temporal dynamics also requires the phase to be measured.
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Figure 4.4: Fano resonances. (a) Energy diagram of a quasi-bound state |α⟩ embedded in the
continuum |βE⟩. A high energy photon (purple) prepares the system in a superposition
of discrete and continuum states, which are coupled through the configuration inter-
action V . (b) Squared amplitude (red) and phase (yellow) of the Fano resonance factor
R(ϵ) for q = −0.25 and Γ = 76meV.

The phase of the resonance factor is

arg[R(ϵ)] =
π

2
+ arctan ϵ− πΘ(ϵ+ q), (4.10)

whereΘ is the Heaviside function. The absorption cross section and phase of the resonance
factor are shown in Fig. 4.4(b) for q = −0.25 andΓ = 76meV, representing the 3s13p64p
(denoted 3s−14p in the following) Fano resonance in argon. The resonance is a window
resonance, with a cross section which drops to zero at ϵ = −q. The phase slowly increases
from zero, until ϵ = −q, at which point it displays a sharp −π phase jump, followed by a
slow increase back to zero.

In the above, a single interacting continuum is assumed. In paper VII, we study the 3s−14p
Fano resonance in argon, which is characterized by autoionization into two continua, an
s- and a d-channel. In that case, it is possible to describe the continuum states in Eq. (4.6)
as a sum of an interacting and a non-interacting continuum. The two-photon transition
matrix element going from the ground state to a resonant sideband [Cf. Fig. 4.1(c)] then
takes the form [18, 199]

Mg→fk = M (i)
g→fk

q + ϵ

ϵ+ i
+M (n-i)

g→fk
, (4.11)

where the first term multiplied by the resonance factor describes the interacting part and
the second term adds a background. The phase variation is contained in the first term, as
the background term phase is flat.
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Figure 4.5: Principle of KRAKEN. (a) An EWP is created by a fs XUV pulse of width δΩ. A bichro-
matic probe of frequencies ω1 and ω2 spaced by δω interferes the EWP with itself. (b)
Simulated photoelectron spectra for different values of δω as a function of the XUV–IR
delay. Figure adapted from paper VIII.

4.3 Quantum State Tomography of Attosecond Electron Wave
Packets

In the previous examples of applications of the RABBIT technique, a single channel was
assumed when expressing phase variations. However, when multiple channels are present
and cannot be disentangled, the PES is the result of an incoherent sum of the different
channels. In that case, the measured phase cannot be related to individual channels, unless
one channel is dominant [200–202]. In the above, the first case corresponds to an EWP
described by a pure quantum state, while the second case describes a mixed state. Mixed
quantum states can result from decoherence processes such as interactions with the envir-
onment, or from measurements which by design do not measure all degrees of freedom.
On the atto- and femtosecond timescales considered here, couplings to the environment
are typically small. However, in a photoionization event, if the ion is not measured and
ionic and electronic degrees of freedom are entangled, the measured reduced system of the
photoelectron is described by a mixed state.

The reliance of the RABBIT technique on a wave function description generally makes
it insufficient for mixed states, where a density matrix formalism of the quantum state
is needed. To reconstruct the density matrix of a mixed state requires Quantum State
Tomography (QST) techniques. Such techniques have recently been developed and applied
in attosecond science [26, 27, 203]. In paper VIII a continuous variable QST protocol for
photoelectrons is developed. This protocol, called KRAKEN, is summarized in this section.

The KRAKEN scheme, illustrated in Fig 4.5(a), is conceptually similar to RABBIT (Cf.
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Fig. 4.2). Instead of interfering two consecutive harmonics in a sideband, a femtosecond
XUV pulse from a single harmonic is temporally and spatially overlapped with a bichro-
matic IR probe. The broadband XUV creates an EWP with spectral width δΩ and the
bichromatic probe, consisting of two narrow peaks with central frequencies ω1 and ω2

(where δω = ω2 − ω1), leads to two quantum paths to the same final state |ϵf ⟩. In-
formation about the coherences of the EWP is contained in the delay sensitive oscillations,
induced by quantum path interference, of the photoelectron signal. The photoelectron sig-
nal oscillates with the frequency δω when the delay τ between the bichromatic probe and
XUV pulse is changed, as shown in Fig. 4.5(b).

In density matrix notation the signal at a final energy ϵf following a two-photon XUV+IR
transition is expressed as S(ϵf , τ, δω) = ⟨ϵf | ρ̂XUV+IR(τ, δω) |ϵf ⟩, where ρ̂XUV+IR is the
photoelectron density operator after absorbing an additional IR photon. In general, we
are interested in the density matrix after absorption of just the XUV. It can be shown (a
detailed derivation is given in paper VIII) that the signal can be approximated in terms of
the single-photon XUV density matrix as

S(ϵf , τ, δω) ≈
∣∣Mϵf ,ϵ1

∣∣2 ρXUV(ϵ1, ϵ1) + ∣∣Mϵf ,ϵ2

∣∣2 ρXUV(ϵ2, ϵ2)
+eiδωτMϵf ,ϵ1M

∗
ϵf ,ϵ2

ρXUV(ϵ1, ϵ2)

+e−iδωτMϵf ,ϵ2M
∗
ϵf ,ϵ1

ρXUV(ϵ2, ϵ1),

(4.12)

where Mϵf ,ϵi (i = 1, 2) are dipole transition matrix elements between |ϵi⟩ and |ϵf ⟩. The
first two terms correspond to diagonal elements of the density matrix, i.e. populations, and
the last two terms are off-axis elements corresponding to the coherences. The exponential
term which multiplies the coherences represents an oscillation at frequency δω when the
XUV–IR delay is changed. The coherences can then be isolated by performing a Fourier
transform along the delay axis and selecting components at ±δω. By repeating delay scans
for multiple values of 0 < δω < δΩ the full density matrix can be reconstructed.

The results of the KRAKEN protocol are compared to direct calculations of the density
matrix around the 3s−14p Fano resonance in argon in Fig. 4.6(a-d). Destructive interfer-
ence from the resonance is observed as a cross in the amplitude and phase, and the presence
of two spin–orbit (S–O) split continua (2P1/2 and 2P3/2) produces two shifted copies of
the Fano resonance in the density matrix.

In the above case of argon the two S–O split final ionic states leads to entanglement between
the photoelectron and photoion. Because the ion is not measured, and the ionic state is
entangled with the photoelectron, the reduced densitymatrix of the photoelectron describes
a mixed state. The electron density matrix is ρelectron = p1/2ρ1/2 + p3/2ρ3/2, with pi the
probability amplitudes of the S–O components (p1/2 = 1/3 and p3/2 = 2/3). To quantify
to what extent a state is mixed the measure of purity is often used. The purity of the S–O
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Figure 4.6: Density matrix reconstruction and ion-electron entanglement. Amplitude and
phase of the density matrix of the 3s−14p Fano resonances in argon from (a,b) direct
calculations and (c,d) KRAKEN. (e) Purity (yellow) and concurrence (red) from direct cal-
culations (lines) and from KRAKEN (crosses). (f-h) Amplitude of the density matrix for
XUV bandwidths 0.14 eV 0.21 eV and 0.35 eV. Figure adapted from paper VIII.

split state is

γ = tr[ρ2electron] = p21/2 + p23/2 + 2p1/2p3/2tr[ρ1/2ρ3/2], (4.13)

where the last term depends on the spectral overlap integral of the two S–O components.
This overlap depends on the bandwidth of the XUV pulse and on the S–O splitting, which
in argon is relatively small (∆ϵS–O = 177meV). For a bipartite system, if all other sources
of decoherence are negligible, the purity is related to a quantity called the concurrence [204]

C =
√
2(1− tr[ρ2XUV]), (4.14)

which is a measure of the degree of entanglement. By changing the XUV bandwidth the
degree of purity, or equivalently entanglement, can then be controlled, which is shown
in Fig. 4.6(e). In Fig. 4.6(f-h) the density matrix amplitude for three XUV bandwidths is
shown. When the bandwidth is small, there is no spectral overlap between S–O compon-
ents, and the coherences decay rapidly on the diagonal. This corresponds to a maximally
entangled state. The KRAKEN protocol is implemented experimentally in paper IX and
covered further in Sec. 5.4.
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4.4 Experimental Methods

Measuring a RABBIT trace experimentally requires the PES to be recorded for many differ-
ent values of the pump–probe delay τ using an optical interferometer. The 2ω0 oscillation
period of the sideband signal for an 800 nm fundamental wavelength is roughly 1.33 fs. To
resolve the oscillations and collect enough data requires fine control of the pump–probe
delay on the attosecond timescale, corresponding to a relative path length difference on
the nanometer scale, often for several hours. Both collinear [205, 206] and noncollin-
ear [207, 208] interferometer designs have been successfully implemented with attosecond
stability. Collinear interferometers, such as the one implemented in paper III, are intrins-
ically stable because the pump and probe share the same propagation path. Noncollinear
interferometers can be more versatile, and offer longer delay scan ranges, but are prone
to delay jitter due to vibrations and drifts which negatively affects the RABBIT measure-
ments [209]. This problem is solved by active stabilization of the path length difference of
the interferometer arms.

During the scope of this work, the laser and XUV beamline (disscused in Sec. 2.3) were
upgraded from 1 kHz to 3 kHz. In parallel with this, a new interferometer design was
also implemented, to provide better long-term stability of the setup. The setup was used
for the high-resolution RABBIT measurements in papers VI and VII and the KRAKEN
measurements in paper IX. Below follows a description of the new setup. A detailed char-
acterization is presented in paper IV. The old setup, described further in Ref. [210], was
used in paper V and for the angle-resolved measurements in paper VI.

4.4.1 Setup: RABBIT

A sketch of the new optical interferometer and photon and electron detectors is shown
in Fig. 4.7. The setup is based on a Mach-Zehnder interferometer, starting with a Beam
Splitter (BS) which transmits 60% of the energy to the probe arm, and reflects 40% to the
pump arm. The pump arm contains a Motorized Stage (MS) for coarse delay adjustment
on the femtosecond timescale. A holey mirror removes the central part of the beam. The
outer part is focused (f = 50 cm) into a gas cell in the generation chamber to drive HHG²,
as described in Sec. 2.3.2. The probe is focused by a 50 cm focal length mirror to match the
wavefront of the pump arm at the common refocusing optic, a gold coated toroidal mirror
(f = 30 cm), which focuses both the probe and XUV beams, in a 2f -2f configuration,
into the interaction region of a photoelectron detector, here a Magnetic Bottle Electron
Spectrometer (MBES). The focusing mirror in the probe arm is mounted on a piezoelectric
stage (AS) for control of the pump-probe delay with attosecond precision.

²Conditions correspond to the horizontal branch of HHG, with Lmed ≈ 0.5zR and pressures close to p0.
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Figure 4.7: Schematic of the experimental setup used in RABBIT measurements. A beam
splitter (BS) transmits 60% to the probe (yellow) and reflects 40% to the pump (red)
arms. The XUV is shown in purple. MS, femtosecond scale motorized delay stage; AS,
attosecond scale piezoelectric stage; GC, gas cell; FW, filter wheel; RM, recombination
mirror; PM, pick-up mirror; C1, C2, C3 cameras; S1, S2, IR spectrometers. Some ele-
ments of the active stabilization scheme are presented in more detail in Fig. 4.8. Figure
adapted from paper IV.

A detailed view of the recombination step and active stabilization scheme is presented in
Fig. 4.8(a). In the pump arm, the remaining central part of the IR, not cut by the holey
mirror, is blocked by a metallic foil mounted on a holey fused silica plate in a Smaract
rotation wheel [Fig. 4.8(b)]. The outer part of the pump IR pulse is transmitted through
the fused silica plate while the XUV pulse train is transmitted through the metallic foil,
inducing an optical path length difference, indicated by the delay ∆τ1. The pump and
probe IR pulses and the XUV pulse train are recombined on a Recombination Mirror
(RM) mounted in a Polaris mirror mount with piezoelectric adjusters. When the metallic
foil is rotated out, the central part of the pump and outer part of the probe can either be
reflected onto a spectrometer (S1) by inserting a pick-up mirror (PM), or be allowed to
propagate through the interaction chamber and be focused onto a camera (C2) when the
concave grating used for the XUV spectrometer, is moved out of the beam path. In the first
case, using the coarse motorized stage, the resulting spectral interference fringes can be used
to find the temporal overlap (τ = 0) in the application chamber³. In the latter case, the
spatial overlap of the pump and probe beam foci in the interaction region are monitored

³Down to an error of∼ 100 as resulting from the optical path length difference between XUV propagating
through the metallic foil and in vacuum. In practice a quick delay scan is then used to find the τ = 0.
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Figure 4.8: Detailed sketch of the active stabilization of the Mach-Zehnder interferometer.
(a) Optical setup with pump and probe IR beams shown in red and yellow, respectively.
The XUV is shown in purple. FW, filter wheel; RM, recombination mirror; UVFS, UV
fused silica block; λ/2, half-waveplate; FL, focusing lens; WP, wedge pair; LP, linear
polarizer; NF, narrowband filter; PM, pick-up mirror; C1, camera; S1, spectrometer. (b)
Sketch of metallic filter mounted on holey fused silica plate. (c) Spatial fringes recorded
on C1. (d) FFT of spatial fringes. Figure adapted from paper IV.

on C2 and fine-tuned using the piezoelectric adjusters of the RM⁴.

The part of the pump which is reflected by the RM, and the transmitted part of the probe,
are then used to actively stabilize the interferometer. The thickness of the RM,LRM, results
in an additional path length difference between the pump and probe beams in the stabiliza-
tion arm, equal to 2

√
2LRM and consequently a delay∆τ2. This delay, and the delay from

the fused silica plate, are compensated by a block of UV fused silica in the pump beam
and a wedge pair in the probe beam. Furthermore, the filter wheel consists of two separate
rotation stages, and by tuning the wedge pair thickness the final delay can be tuned to ac-
count for either one or two filters being used. After the RM, the pump and probe beams
are shifted transversely, so that when they are focused by a lens (FL) onto a camera (C1),
they give rise to spatial fringes, as shown in Fig. 4.8(c). To optimize the fringe contrast,
the probe beam polarization is rotated by a λ/2-plate, and a Wollaston prism (LP) is used
to control the relative intensity of the pump and probe. The spatial frequency and phase
is identified through a fast Fourier transform [Fig. 4.8(d)], and a PID-controller is used to
feedback an error signal, i.e. the difference in the measured phase and the desired phase, to
the piezoelectric translation stage (AS in Fig. 4.7). The stability of the interferometer has
been measured to around 13 as Root-Mean-Square (RMS) error over several hours. Finally,

⁴In reality it is of course the XUV, rather than the pump IR, one would like to overlap with the probe.
With proper alignment the XUV and pump IR beams are, however, propagating collinearly.
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a 10 nm narrowband filter (NF) is used to extend the pulse overlap duration, which gives
a delay scan range of up to 400 fs.

By stabilizing directly to the phase relation of the pump and probe femtosecond laser pulses,
as opposed to using a copropagating CWHeNe laser [208], the above scheme is more versat-
ile. In resonant RABBIT experiments, such as those performed in paper VII, an additional
10 nm narrowband filter is placed in the probe arm before the focusing mirror. The narrow
bandwidth of the probe leads to a reduction of mixing of different spectral components in
the sideband signal, greatly improving the spectral phase resolution in rainbow RABBIT
measurements [202].

4.4.2 Photoelectron Detectors

The XUV pulse train and IR probe pulse are focused into a gas target, where one- and two-
photon ionization events occur. Detection of the resulting photoelectrons is done using
photoelectron spectrometers. In this work, two types of photoelectron spectrometers are
used, a magnetic bottle electron spectrometer [211], and a Velocity Map Imaging Spectro-
meter (VMIS) [212]. These detector types have different, complementary, strengths and
weaknesses. The MBES provides a high signal and superior energy resolution at the cost of
loss of angular information of the photoionization event, while the VMIS has much worse
energy resolution, but is able to angularly resolve the photoelectron emission. Here, a brief
description of these two detectors is provided.

Magnetic Bottle Electron Spectrometer

An MBES is a Time-of-Flight (ToF) spectrometer, relying on measuring the time it takes
for electrons to travel a certain distance. A schematic of the MBES used in this work is
shown in Fig. 4.9(a). Photoionization occurs in a continuous effusive gas jet in the overlap
region of the XUV and IR probe foci. Photoelectrons are guided into a flight tube by a
combination of strong and weak magnetic fields. A conically shaped NdFeBmagnet placed
close to the gas jet generates a strong, inhomogenous, magnetic field (100 to 1000mT) in
the interaction region, acting as a magnetic mirror, reflecting electrons and parallelizing
their trajectories towards the flight tube and provides 4π sr collection efficiency. A solen-
oid wrapped around the flight tube produces a weak, homogenous, magnetic field (0.1 to
10mT depending on the application) along the length of the 2m long tube. The combined
fields force the electrons into helical trajectories around the magnetic field lines, which run
parallel to the flight tube, thus guiding the electrons to the MCP detector. A mu-metal
casing around the flight tube shields the electrons from disturbances caused by the earth’s
magnetic field.
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Figure 4.9: Sketch of the photoelectron spectrometers used in this work. (a) Magnetic Bottle
Electron Spectrometer (MBES), used in papers IV, V, VI, VII, IX. (b) Velocity Map Ima-
ging spectrometer (VMIS), used in paper VI. Figure adapted from paper VI.

Tomeasure the ToF, a photodiode at the laser output generates a start signal. When an elec-
tron hits the MCP detector, it is multiplied through a cascade of collisions. The resulting
signal, sent to a data acquisition card, acts as the stop signal, and the time difference gives
the ToF⁵. Since XUV radiation generated through HHG is typically well below the keV
range⁶, electrons ionized by APTs can be treated classically. The flight time of an electron
can then be used to extract the kinetic energy, Ek, through

Ek =
me

2

(
L+ γ

tToF

)2

, (4.15)

where L is the length of the flight tube, γ is a calibration parameter and tToF is the time-of-
flight. The sampling rate of the data acquisition card, fDAQ = 1/δt, sets a lower limit on
the time difference between two electrons impacting the detector which can be measured
separately. This in turn leads to a limit of the energy resolution of the MBES, which can
be expressed as δE ∝ L2t−3

tof δt. From this expression, it is clear that a longer flight tube
increases the energy resolution, and that the resolution varies with the ToF, and hence with
Ek. A commonmeasure of the resolution of anMBES is given by δE/E ∝ δt/tTOF, which
describes how the resolution varies with the kinetic energy. Since the resolution is higher
for lower kinetic energies, a variable retarding potential is applied along the flight tube, to
slow down fast electrons. The MBES used in this work has a resolution of δE/E ≈ 2%
at 1 to 2 eV, at which point the integration of electrons ionized from a finite interaction
volume starts to limit the resolution. At higher energies, the resolution is further limited
by the interaction of the electrons with the strong magnetic field in the interaction region.
Two electrons ionized with the same kinetic energy, with one traveling in the direction
of the tube, and one in the opposite direction, towards the magnet, result in a significant

⁵After accounting for any additional electronic signal delays.
⁶Recent work has however demonstrated up to 5 keV harmonics generated from multiply ionized plas-

mas [213],
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flight time difference due to the extra time it takes for the latter electron to be repelled by
the magnet and guided into the flight tube. This leads to an apparent spread of electron
kinetic energies, which becomes larger for higher kinetic energies. These limiting effects
are collectively described by the Point Spread Function (PSF) of the detector.

Velocity Map Imaging Spectrometer

The collection and parallelization of electrons in the flight tube of an MBES necessarily
leads to integration over all angular degrees of freedom. To fully characterize photoelec-
tron emission, including the angular momentum channel interferences [201], requires the
angular channels to be resolved. This can be achieved by using a VMIS. A schematic of
a VMIS used in paper VI is shown in Fig. 4.9(b), where gas is supplied through an Even
Lavie valve positioned between two electrodes (a repeller and extractor). The electrodes
push electrons from the interaction region towards an MCP detector at the end of a short
flight tube (≈ 35 cm). Contrary to the MBES, the voltages on the electrodes in a VMIS
allow the Photoelectron Angular Distribution (PAD) to expand freely in space, so that the
3-dimensional momentum distribution is projected on the 2-dimensional (2D) phosphor
screen placed behind the MCP. The 2D image on the phosphor screen is then imaged by
a CCD camera.

Because of the free expansion, photoelectrons with kinetic energy Ek form a disk of radius

r =

√
L2Ek

eV
, (4.16)

where L is the length of the flight tube and V is the difference in voltage between the
electrodes. To retrieve the 3D PAD requires to use an inverse Abel transform algorithm.
In paper VI the cylindrical symmetry of the PAD around the polarization axis allows for
a method known as pBASEX [214] to be used. The pBASEX method exploits the prop-
erty that any cylindrically symmetric angular distribution can be decomposed as a sum of
Legendre polynomials as

dσ

dΩ
=

σ0
4π

[
1 +

∞∑
i=1

βiPi(cos θ)

]
, (4.17)

where σ is the photoelectron differential cross section, Ω is the solid angle, σ0 is the total
cross section, βi are the asymmetry parameters, Pi is the ith order Legendre polynomial
and θ is the polar angle.

71



Figure 4.10: Sketch of the experimental setup used in KRAKEN measurements. A beam
splitter (BS) transmits 60% to the probe (yellow) and reflects 40% to the pump (red)
arms. The XUV is shown in purple. MS, femtosecond scale motorized delay stage; AS,
attosecond scale piezoelectric stage; GC, gas cell; FW, filter wheel; RM, recombination
mirror; PM, pick-up mirror; C1, C2, C3 cameras; S1, S2, IR spectrometers; HOWP,
high-order waveplate; WP, wedge pair; LP, linear polarizer. Some elements of the
active stabilization scheme are presented in more detail in Fig. 4.8. Figure adapted
from paper IV.

4.4.3 Setup: KRAKEN

The setup used for the KRAKEN measurements in paper IX is to a large extent the same
as that described in the previous sections. The notable difference is the requirement to be
able to separately shape the spectrum of the pump and probe beams. In the probe beam, a
bichromatic narrowband spectrum, tunable over a large bandwidth, is crucial to extract the
full density matrix. In the pump beam, control of the central wavelength and bandwidth is
important for the same reasons as in the RABBIT scheme, namely to tune the wavelength
to hit, and resolve, narrow resonances.

TheKRAKEN setup is shown in Fig. 4.10. Two pairs of mirrors on flip-mounts (not shown)
allows us to change from the RABBIT to the KRAKEN scheme. In the KRAKEN scheme,
the flip mirrors direct the probe and pump beams to two separate spectral shapers. In the
probe arm, a 4f -shaper is used, consisting of flat in- and out-coupling mirrors, two Spec-
trogon 1200 lines/mm reflective diffraction gratings and two 50 cm focal length spherical
mirrors. After the first grating diffracts the beam, it is focused by the spherical mirror on
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Figure 4.11: Characterization of the 4f-shaper (a) Spectrum of the probe beam before the 4f-
shaper (yellow) and example spectrum after the 4f-shaper with two 3mm slits placed in
the Fourier plane (red). Measured d-scan trace, based on second harmonic generation,
(b) before and (c) after the 4f-shaper. Figure adapted from paper IV.

a line where two 3mm wide slits are mounted on linear translation stages. The two slits
select the narrowband (approximately 8 nm FWHM) bichromatic probe components, as
shown in Fig. 4.11(a). By tuning the position of the slits along the Fourier plane, differ-
ent bichromatic probe spectra are obtained. After the Fourier plane, the diverging beam
is collimated and compressed by the second spherical mirror and grating. Figure 4.11(b,c)
show dispersion-scan (d-scan [215, 216]) measurements of the beam before and after the
4f -shaper, respectively. The d-scan traces, recorded with no slits present in the Fourier
plane, show that the pulses are to a large degree recompressed after the 4f -shaper, apart
from a small increase of third order dispersion indicated by the tilt above 400 nm.

In the pump arm, a 4f -extension is included to match the path length increase due to the
4f -shaper in the probe arm. In the 4f -extension a spectral filter capable of tuning both the
central wavelength and bandwidth is included. The filter, which is similar to a Lyot filter,
consists of a high-order waveplate (HOWP) at a 45◦ angle to the incoming polarization,
and a linear polarizer. The wavelength dependent phase retardation imparted to the beam
by the waveplate, in combination with the linear polarizer, leads to a sinusoidal transmission
spectrum. Tuning of the central wavelength and width of the sinusoidal peaks is achieved
by varying the insertion of a pair of anti-reflection coated quartz wedges. The combined
wedge pair and HOWP allows tuning of the waveplate order from approximately 5 to 15.
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CHApTER 5
Photoionization Studies

This chapter presents recent results of time-resolved photoionization experiments performed
at the Lund Attosecond Laboratory. The results are based on papers V, VI, VII and IX and
cover the topics of the previous chapter, i.e., attosecond photoionization time delays, angle-
integrated and angle-resolved resonant photoionization, and quantum state tomography of
photoelectron wave packets.

5.1 Giant Dipole Resonance in Xenon

Photoionization from the 4d inner shell in xenon is studied in paper V in the 70 to 100 eV
photon energy range. This energy range is characterized by several interesting phenom-
ena. Dynamical electron correlations in the 4d shell lead to a collective oscillation, which
presents itself as a spectrally broad enhancement in the photoabsorption cross section, called
a giant dipole resonance [217–219], with a maximum around 100 eV. Photoionization of
core electrons can also result in a process known as Auger decay, illustrated in Fig. 5.1(b). In
Auger decay, the core hole left after ionization is filled by an outer electron, and the excess
energy can be transferred to another electron which ionizes, forming Xe2+ ions¹. Finally,
relativistic effects can be quite strong in the threshold region (70 to 75 eV), with the two
spin–orbit split 2D3/2 and 2D5/2 final ionic states displaying anomalous branching ratios
due to jj–LS coupling changes [220].

The combination of spin–orbit split ionic states separated by 2 eV and Auger decay from
the 5s and 5p shells leads to a complex, congested PES. To resolve it, and to be able to

¹Fluorescence is also possible, and becomes the dominant relaxation process in heavy atoms.
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(green) of xenon 4d. (b) Energy diagram of Xe and intermediate Xe+ and final Xe2+

states. Figure adapted from paper V.

correlate Auger electrons with the respective 4d ionization event, RABBIT measurements
are performed using coincidence spectroscopy of photoelectrons detected with an MBES.
In the coincidence technique, the XUV photon flux and target gas density are reduced
to the point where less than one ionization event occurs per shot. In such conditions,
double electron detection events can be assumed, to high accuracy, to originate from the
same ionization event, and in the spectral range investigated, originate from Auger decay
following single photoionization.

A two-electron coincidence map is shown in Fig. 5.2(a) for ionization in the presence of
only the XUV field. In general photoelectrons from the 4d shell have higher energies than
Auger electrons. These two classes of electrons are henceforth denoted fast electrons and
slow electrons, respectively. Furthermore, the fixed energy differences between the outer
and inner shells involved in the Auger decay means that the Auger electron kinetic energy
is independent of the photon energy of the ionizing radiation. Projecting the spectrum
on the fast electron energy axis within an energy interval (e.g. 10 to 10.4 eV) then allows
us to isolate the photoelectron spectrum measured in coincidence with 4d−1(2D3/2) →
5s−2(1S0) Auger decay, as shown in Fig. 5.2(c). Similarly, projection on the slow electron
energy axis shows how Auger decay from different Xe+ states can be disentangled. The
case when both XUV and IR are overlapped in the target is shown in Fig. 5.2(b,e), where
sidebands are visible between the harmonic peaks. Comparing the projections on the slow
electron energy axis for the XUV only and the XUV+IR case reveals a small difference in
spectral intensity from Auger electrons which absorb or emit an additional IR photon.

By fitting the sideband oscillations in different electron energy regions the time delays of
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Figure 5.2: Two-electron coincidence spectra. Two-electron coincidence amplitude (colorscale)
obtained from (a) XUV only and (b) XUV+IR. Projection of the fast electron energy axis (c)
without and (d) with IR present. The projection is the sum over energies 10 to 10.4 eV
corresponding to photoelectrons measured in coincidence with the 4d−1(2D3/2) →
5s−2(1S0) Auger electron. (e) Projection of the slow electron energy axis with (red) and
without (blue) IR field. Figure adapted from paper V.

different ionization channels can be determined, as discussed in Sec. 4.2.1. Different Auger
decay channels are observed to have no effect on the oscillation phase, so that the signal
can be averaged over these channels. To take into account the influence of the XUV group
delay τXUV and isolate the interesting atomic delay τA, alternating measurements in xenon
and neon are performed, and the time delay difference is calculated. By using neon 2p as
a reference, absolute time delays in xenon can be inferred with reasonable accuracy. This
is because neon 2p time delays are very small in the energy region of interest, and can be
calculated with high accuracy [222].

The difference in time delays between xenon and neon, corresponding to absolute time
delays of Xe(4d3/2) and Xe(4d5/2), are shown in Fig. 5.3(a,b) as a function of photon en-
ergy. Their difference τA[Xe(4d3/2)] − τA[Xe(4d5/2)] is shown in Fig. 5.3(c). For high
energies (80 to 100 eV) the time delay measured for the two final ionic states is similar,
around 40 as, with a slight decrease for higher energies. For low energies (< 80 eV) there
is a rapid change in time delay in opposite direction for the two channels. The difference
between the two reaches almost 100 as at 75 eV. Theoretical calculations based on Relativ-
istic Random Phase Approximation (RRPA) agree quantitatively for both ionic states at
high energy, and qualitatively close to threshold. Below 75 eV, time delays could not be
extracted from experimental data due to spectral overlap with double Auger decay. Fur-
thermore, the branching ratios calculated within the RRPA model are shown in Fig. 5.3(d),
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Figure 5.3: Channel resolved time delays. Absolute time delays (a) τA[Xe(4d3/2)]− τA[Ne(2p)]
(b) τA[Xe(4d5/2)] − τA[Ne(2p)]. (c) Difference between the two, τA[Xe(4d3/2)] −
τA[Xe(4d5/2)]. Experimental data are in red. (d) Branching ratios of photoabsorption
cross section (yellow) from Ref. [221]. Black lines indicate theoretical calculations using
RRPA. Figure adapted from paper V.

showing excellent agreement with previous experiments [221].

By studying the RRPA transition matrix elements closer, we note that photoionization is
dominated by the 4d→ ϵf transition, which includes contributions mainly from 4d3/2 →
ϵf5/2 and 4d5/2 → ϵf7/2 at high energies. At low energies the 4d5/2 → ϵf5/2 channel
which implies a spin-flip also contributes, indicating the importance of the relativistic ef-
fects close to threshold. In the low energy region rapid oscillations in the energy-dependent
time delays of the three channels are observed. These oscillations are due to quantum in-
terference between the pure dipole transitions and the additional spin–orbit enabled non-
dipole transition, explaining the anomalous branching ratio in Fig. 5.3(d).

5.2 Rydberg States in Helium

In paper VI we study two-photon resonant ionization of helium from the 1snp1P1 Ry-
dberg series (n = 3 to 5) using the rainbow RABBIT technique [223, 224]. By tuning the
wavelength of the driving field used for HHG, the 15th harmonic resonantly excites either
the 1s3p, 1s4p, or a coherent superposition of 1s4p and 1s5p states. The excited states are
then ionized by the overlapping IR probe field, referred to as “below-threshold RABBIT”.
Figure 5.4 presents the excitation and ionization scheme, including the different angular
momenta involved. The additional IR photon can bring the photoelectron into either an s
or p angular momentum state with the same final energy, but with different angular prob-
ability distributions, which are indicated in the figure.

As mentioned before, in angular integrated measurements this leads to an incoherent sum
of the different ionization channels. In some cases, like in xenon, a dominant channel
can be identified, however this is not the case here. Furthermore, previous angle-resolved
measurements have shown that the phase may not only change with the energy, but also
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Figure 5.4: Resonant two-photon ionization of helium. Energy level diagram and RABBIT ion-
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with the emission angle, and that ionization time delays can vary strongly with the angle
of emission [225, 226]. This behavior is the result of interference of the different contrib-
uting angular channels. To disentangle the different channels we perform angle-resolved
photoelectron measurements using a VMIS spectrometer.

The delay and angle dependent sideband oscillations are modeled using a partial wave ex-
pansion, taking into account finite-pulse effects and an ionization-induced broadening of
the resonance. Two-photon matrix elements are calculated using the Random Phase Ap-
proximation with Exchange (RPAE) [227], which takes into account electron correlation
effects. We extend the RABBIT scheme to below-threshold RABBIT for both the case of
angle-integrated and angle-resolvedmeasurements, and show that in the former, incoherent
addition of the s and d channel leads to an ambiguous phase measurement off-resonance
due to multiple channels contributing, but a well defined phase jump on-resonance. For
the angle-resolved case we show that the measured phase of a sideband at a given angle
can be determined unambiguously, and we derive conditions for angles where phase jumps
should occur.

The results of the angle-resolved measurements around the 4p resonance are presented in
Fig. 5.5(a). The right panel of the figure displays the phase of the photoelectron angular dis-
tribution, and the left panel shows the corresponding theoretical result. Within the limited
region of high signal-to-noise ratio in the experimental data, delimited by the dashed black
line, the similarity with theory is rather high. To understand the phase variations better,
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Figure 5.5: Angle-and-energy-resolved phase of the 4p resonance. (a) Angle- and energy-
resolved phase of sideband 16 (colorscale) calculated using RPAE (left) and measured
(right). The measured region with high signal-to-noise ratio is indicated on both sides
by the dashed black line. (b) Channel resolve theoretical phase for the d contribution
(left) and s contribution (right). Angles are defined with respect to the polarization axis
of the (parallel) XUV and IR fields. Figure adapted from paper VI.

the calculated channel-resolved phases of the s and d partial waves are shown in Fig. 5.5(b).

Close to the 4p resonance, indicated by the red line, both channels present a sharp π rad
phase jump, confirming the above statement that on-resonance, an angle-integrated meas-
urement is sufficient to capture the phase variation. In the d-channel an additional sharp
phase jump can be seen around 25.44 eV, indicated by the green line. In this region, the
phase variation is not due to a resonance, but due to the amplitude of thematrix element go-
ing through a zero and changing sign, called an anti-resonance. In the left part of Fig. 5.5(a)
showing the total phase, this anti-resonance can be seen as a strongly angle-dependent phase
jump, taking place above 25.44 eV for angles smaller than 54.7◦, and below 25.44 eV for
angles larger than 54.7◦. The phase jumps are a result of the change in relative strengths of
the s and d channels in this region. Finally, in the energy range 25 to 25.3 eV a sharp phase
jump is seen close to the magic angle (the angle at where Y20 ∝ P2(cos θ) = 0, which is
θ ≈ 54.7◦). At the place where the amplitude of the matrix element of the absorption path
to the s-state is zero, indicated by the blue circle, this phase jump exactly corresponds to
the magic angle. At slightly higher/lower energies, the phase jump depends on the relative
strengths of the s- and d-channels.

These results indicate that angle-resolved measurements are of significant importance to
completely characterize photoionization of even such simple systems as helium, signifying
its indispensable use in more complex systems like molecules. Furthermore, angle-resolved
measurements can provide a lot of information about not just the position of, and phase
behavior at resonance, but also the relative strengths of different partial waves, and energy-
and angle-resolved positions of sign changes in the matrix element amplitudes.
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Figure 5.6: Argon Fano resonance. (a) Energy level diagram and excitation scheme of the 3s−14p
Fano resonance. The resonant path and additional resonances near the final states
are shown on the left. The direct ionization path is shown on the right. Black arrows
indicate the Coulomb interaction. (b,c) Spin–orbit resolved RABBIT spectrogram around
SB18 and SB16. (d,e) Oscillation amplitude of the 2ω0 component around SB18 and
SB16. Figure adapted from paper VII.

5.3 Fano Resonance in Argon

In paper VII we study the spectral amplitude and phase in vicinity of the 3s−14p Fano
resonance in argon using the rainbow RABBIT technique. An energy levels diagram of the
ionization scheme is shown in Fig. 5.6(a). With the upgraded setup described in Sec. 4.4
we improve on previous studies of this resonance [18, 228]. In particular, the improved
experimental conditions allows us to completely resolve the two spin–orbit components
(∆ϵS–O = 177meV) and resolve the Fano window resonance.

RABBIT spectrograms around the resonant SB18 and SB16 are shown in Fig. 5.6(b,c),
where the S–O components are clearly visible. To isolate the interesting 2ω0 signal, the
amplitudes after Fourier filtering at 2ω0 are shown in Fig. 5.6(d,e). A clear asymmetry in
the oscillation across the resonance is visible when comparing the absorption and emission
paths. The extracted spectral phase and amplitude of the 2ω0 component across the res-
onance are shown in Fig. 5.7(a,b) for a probe bandwidth of 10 nm. In each sideband, the
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Figure 5.7: Influence of probe bandwidth. Measured spectral phase (yellow) and amplitude (red)
across the 3s−14p Fano resonance in (a) SB16 and (b) SB18 using a probe bandwidth of
10 nm, and using a probe bandwidth of 35 nm in (c) SB16 and (d) SB18. (e) Complex
plane representation of the resonance factor R(ϵ) for the cases q = −0.25 (black),
q = −0.25−0.25i (red) and q = −0.25+0.25i (yellow) and (f) the corresponding phase
as a function of the reduced energy ϵ. Figure adapted from paper VII.

phase variation across the two S–O components is similar, confirming the conclusion in
previous work that the signal can be written as a sum of two identical distributions [228],
shifted by∆ϵS–O and scaled according to the sum rule, Stot(ϵ) = S(ϵ)+ 2S(ϵ−∆ϵS–O).

The phase in SB16 shows a variation of almost 2π rad across each S–O component, while
the phase variation in SB18 is approximately 1.4 rad. We also performmeasurements using
a broad 35 nm probe bandwidth. The spectral phase and amplitude in that case are shown
in Fig. 5.7(c,d) for SB16 and SB18. The phase jump in SB16 is considerably smaller than for
the narrowband probe, and the phase reproduces that observed in previous works [18, 228].

This large asymmetry, and the appearance of a phase jump larger than the π-variation pre-
dicted by Eq. (4.10), are possible if the q-parameter is allowed to take complex values. In
the context of RABBIT measurements, this happens because the probing IR field couples
the discrete quasi-bound state with the final sideband continuum states [229, 230] through
absorption/emission of an additional IR photon, indicated by the dashed red arrows in
Fig. 5.6(a), and Coulomb interaction, indicated by the black arrows. This coupling leads
to a broadening of the resonant state, which we include phenomenologically by modifying

82



the reduced energy

ϵ =
2(E − Eα)

Γ
→ 2(E − Eα ± iγ)

Γ
, (5.1)

where ± refers to either absorption or stimulated emission followed by Coulomb interac-
tion. Assuming γ ≪ Γ, this leads to a complex q given by

q → q±eff ≈ q ∓ 2 (1− i)
γ

Γ
. (5.2)

This expression is similar to that of Refs. [18, 188, 228], where the broadening γ is replaced
by a variable describing the relative coupling strength between the IR-induced path from
the discrete state to the final continuum state, and the path representing decay to the in-
termediate continuum followed by absorption/emission of an IR photon.

Our experimental observations can be explained by a complex Fano parameter in combina-
tion with finite-pulse effects in the two-photon transition matrix element in Eq. (4.2). This
is qualitatively illustrated in Fig. 5.7(e), which shows the complex plane representation of
R(ϵ)when including the complex q±eff, and in Fig. 5.7(f ) showing the corresponding spectral
phase arg[R(ϵ)]. First, for the case of no imaginary part (γ → 0), the complex trajectory
of the resonance factor intersects the origin, leading to a sharp −π phase jump. With the
addition of a small negative or positive imaginary part, which corresponds to the emission
and absorption path, the amplitude of the complex trajectory is increased or decreased. In
the emission path, the origin is enclosed by the complex trajectory, leading to a 2π phase
jump, while in the absorption path the trajectory no longer intersects the origin, resulting
in a smaller, smoothed out phase jump.

Secondly, the convolution over bandwidths in Eq. (4.2) due to finite-pulse effects leads to a
smaller matrix element amplitude for short pulses, contracting the circular trajectory, and
conversely a larger amplitude for long pulses, expanding the trajectory. This explains the
abrupt disappearance of the 2π phase jump when increasing the probe bandwidth.

Finally, the strength of the radiative coupling from the discrete state is strongly dependent
on resonances in the final state of the two-photon transition. In argon, strong coupling to
a broad 3s−14s resonance in the emission path and a range of resonances in the absorption
path allows us to observe this asymmetry. In other atoms or final state energies, where the
radiative coupling may be weaker, even small finite-pulse effects are enough to shift R(ϵ)
to the positive half-plane, so that no 2π phase jump is visible [198].

In conclusion, this points to a potentially large observer effect in RABBIT measurements,
where the act of probing the system alters the result. However, using narrowband probes the
RABBIT technique may in that case also be used as a very sensitive tool to probe optically
dipole-forbidden resonances like the 3s−14s resonance.
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Figure 5.8: Experimental KRAKEN in helium. (a) Photoelectron spectrograms for δω =
0, 61, 98, 134meV. (b) Energy-resolved δω-amplitude (red) and -phase (cyan) of the
spectrograms, obtained by a cosine-fit. (c) Sparse density matrix constructed from seven
photoelectron spectrograms with δω = 0 to 134meV. Figure adapted from paper IX.

5.4 Measuring the Quantum State of Photoelectrons

In paper IX we experimentally reconstruct photoelectron quantum states in helium and
argon using the KRAKEN technique. We generate harmonics in argon and photoionize
helium and argon atoms with the 19th harmonic into a flat continuum. The EWP is probed
by absorption of a bichromatic IR field with one wavelength fixed at 770 nm and the other
varying from 770 to 840 nm in steps of 10 nm. To isolate the absorption path of HH19
from the emission path of HH21, a combined germanium-aluminum filter is used, with a
sharp transmission drop above HH19.

Figure 5.8(a) shows measured spectrograms for different values of the bichromatic probe
splitting δω in helium, where the beating is clearly visible and increases in frequency for
larger δω. The spectrograms match well with those calculated from theory in Fig. 4.5(b).
For each spectrogram, oscillations at δω are extracted for each energy bin from a cosine-fit
with a Gaussian envelope along the XUV–IR delay. The extracted amplitudes and phases
are shown in Fig. 5.8(b). The amplitude can be seen to decrease for larger δω, indicat-
ing a lower degree of coherence. Note that to draw this conclusion, the amplitudes are
normalized as

ρnorm(ϵ, ϵ+ δω) =
ρraw(ϵ, ϵ+ δω)

IXUV
√
Sω1Iω1Sω2Iω2

, (5.3)

where IXUV and Iωi are the spectral intensities of the XUV and IR fields, and Sωi is the
spectrometer² response function at the wavelength of the IR probe components. In the
phases shown in Fig. 5.8(b), a linear phase variation which increases with δω can be seen,

²Measured by S2 in Fig. 4.10.
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Figure 5.9: Helium photoelectron quantum state. Density matrix from (a) experiment, recon-
structed using KRAKEN, (b) experiment, reconstructed using KRAKEN, compensating
for the spectrometer PSF, (c) theory, retrieved using KRAKEN and (d) direct theoretical
calculation of one-photon ionization. Figure adapted from paper IX.

which is due to the harmonic femtochirp discussed in Sec. 2.2.3.

The δω-amplitudes are then placed as subdiagonals in a sparse density matrix, shown in
Fig. 5.8(c). Here, the acquired data is mirrored in the anti-diagonal, since the density
matrix is Hermitian. The sparse density matrix is close to circular, which indicates that
the measured state is highly coherent. To obtain the full continuous density matrix from
sparsely acquired data we use a Bayesian estimate based on a Hamiltonian Monte-Carlo
method. The reconstructed continuous density matrix is shown in Fig. 5.9(a), where a
slightly elliptic shape is evident. The ellipticity can be attributed to the long, low-energy tail
in the point-spread-function of the MBES, which induces experimental decoherence [26],
lowering the purity. To eliminate the influence of the MBES, we measure the PSF and
correct for it in the Bayesian optimization algorithm. The result is a more circular density
matrix, displayed in Fig. 5.9(b).

We compare the experimental results to a theoretical KRAKEN scheme based on two-
photon calculations obtained using relativistic RPAE in Fig. 5.9(c) [231], and to direct cal-
culations of the one-photon (XUV only) density matrix, shown in Fig. 5.9(d). The compar-
ison shows excellent qualitative and quantitative agreement with the experimental density
matrix corrected for the MBES response function.

The above described measurements, data analysis and calculations are also performed in
argon in identical conditions to test whether the spin–orbit splitting leads to a faster decay
of the coherences, as discussed in Sec. 4.3. The argon density matrix displays a strong
ellipticity, similar to that in Fig. 4.6(g)³.

Finally, we calculate the purity in both helium and argon using Eq. (4.13) and compare
it to the purity obtained from single-photon relativistic RPAE. In helium we obtain an
experimental purity of γ = 0.94±0.06, while the theory gives a fully pure state γ = 1.00.

³Excluding the effect of the Fano resonance.
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In argon the experimental purity is γ = 0.64±0.02, and theory gives γ = 0.61. The good
agreement for helium indicates that the degree of experimental decoherence is very low,
which validates the experimental KRAKEN technique, and allows us to conclude that the
lower purity obtained in argon is due to decoherence induced by the spin–orbit splitting.
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CHApTER 6
Summary and Outlook

This thesis treats generation of extreme ultraviolet attosecond pulses and their application
to photoelectron interferometry. Scaling invariant rules for efficiency optimization of high-
order harmonic generation in gases are investigated, with an emphasis on phase-matching.
The attosecond pulse trains obtained from high-order harmonic generation are used to
study photoionization dynamics on the femto- and attosecond timescales using a variety of
pump-probe photoelectron interferometry techniques, including angle-resolved and angle-
integrated high-resolution “rainbow” RABBIT, coincidence spectroscopy in combination
with RABBIT, and a new quantum state tomography protocol, KRAKEN.

Optimization of High-order Harmonic Generation

In paper I optimization of the conversion efficiency in high-order harmonic generation
in gases is explored numerically. Two phase-matching regimes yielding similar conversion
efficiency, but different temporal and spatial characteristics of the generated radiation, are
identified: a high pressure, short medium regime, and a low pressure, long medium regime.
The two regimes correspond to asymptotes of a medium pressure–length hyperbola, which
is successfully predicted by a 1D analytic model. In paper II the model and simulations
are tested experimentally using two beamlines in different focusing conditions. The hyper-
bolic relationship is verified for different harmonic orders, focusing conditions and peak
intensities, and the difference in spatial quality of the generated radiation is confirmed. In
paper III the beam divergence of high-order harmonics generated from long, low pressure
gas cells and short, high pressure gas jets is investigated experimentally and numerically. In
the high pressure regime, harmonics are emitted with a larger divergence. These studies,
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in combination with previously formulated scaling laws [33], and recent detailed models of
the effect of linear density gradients on the conversion efficiency [171], can provide valuable
design guidance for future HHG sources.

So far, a systematic study of the pulse duration effect on conversion efficiency has not been
done. The continuous development of new laser sources, and improvements in control of
output pulse duration by post-compression techniques [232], motivates further work in this
direction. The underlying physics of the two phase-matching regimes suggest, however, that
a multi-parameter scan of, e.g., the medium length and density, and pulse peak intensity
should be performed in conjunction with a pulse duration scan. Several other potentially
important parameters for finding a global conversion efficiency optimum exists, such as
the position of the medium relative to the laser focus. Studying the effect of the medium
position on the conversion efficiency and refocusability of the generated harmonics may be
particularly interesting for experiments demanding high XUV intensity on target [179, 181].

Improving the Experimental Setup

An important part of the work has been to build a new, versatile, ultra-stable setup for atto-
second pump-probe photoelectron interferometry, which is described in paper IV. By act-
ively and directly stabilizing to the phase relation of the pump and probe femtosecond laser
pulses, independent spectral shaping of the pump and probe pulses and seamless switching
between RABBIT and KRAKEN experiments, while maintaining a temporal stability as
small as 13 as RMS over several hours, is possible.

The final initially planned upgrade to the setup is the implementation of a faster data ac-
quisition card, which can further improve the spectral resolution. Additionally, the issue
of isolating density matrices from the absorption and emission paths in the new KRAKEN
technique demands a more versatile solution than using combinations of metallic filters.
Potential candidates include generating harmonics with a frequency doubled pump, or
spectrally broadening the IR spectrum to probe with frequencies far from the pump cent-
ral frequency. Lastly, to reduce the time it takes to run a KRAKEN scan (currently each
subdiagonal of the density matrix takes roughly one hour), a set of more than two probe
wavelengths can be used, if chosen cleverly. By using frequencies with a frequency spa-
cing modeled after a Golomb ruler, a set of unique beating frequencies can be obtained
simultaneously.
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High Resolution RABBIT Experiments

In papers V, VI and VII we study electron correlation effects in photoionization using
the RABBIT technique. In paper V, broadband RABBIT measurements are used together
with coincidence spectroscopy to study photoionization time delays from the 4d shell in
xenon. With the help of theory, we disentangle the contributions of a short-lived giant
dipole resonance and a slowly decaying spin–orbit enabled narrow resonance. In paper VI,
we use the energy-resolved “rainbow” RABBIT technique to study resonant two-photon
ionization of Rydberg states in helium. Combining angle-resolving and high-resolution
angle-integrating photoelectron spectrometers with theoretical calculations we explain the
phase jumps occurring as a function of energy and angle. In paper VII we measure the
spectral phase and amplitude across the 3s13p64p Fano resonance in argon. By using the
rainbow RABBIT technique we resolve the close-lying spin–orbit components. When us-
ing a narrow 10 nm probe bandwidth, a strong asymmetry is observed between the absorp-
tion and emission paths in the spectral phase, with a close to 2π phase jump in the emission
path. The results are explained by finite pulse effects and strong radiative couplings of the
intermediate quasi-bound state and final continuum, due to final state resonances.

These measurements demonstrate the importance of a high spectral resolution to resolve
complex ionization dynamics, the results of which can ultimately be used to test theoretical
models of electron correlations. With our improved repetition rate, spectral resolution and
long-term stability, studying more complex atoms and small molecules is now possible.
In combination with a long delay scan range, observations of spectral phase variations as a
function of pump–probe delay may reveal interesting dynamics in resonance build-up [224,
233, 234], or beatings of different spectrally overlapping decay channels [235].

Quantum Light and Attosecond Science

In paper VIII and IX we extend photoelectron interferometry to complete characterization
of mixed states by reconstructing the density matrices of photoelectrons using KRAKEN.
In paper VIII the KRAKEN protocol is developed theoretically. Density matrices in he-
lium and argon are reconstructed by applying the KRAKEN protocol to simulated data,
and are validated by comparing to direct calculations of the density matrices. Using the
KRAKEN protocol we also show it is possible to measure the degree of ion-photoelectron
entanglement due to spin–orbit split ionic states. In paper IX the KRAKEN protocol is
verified experimentally by reconstructing the density matrices of electrons ionized from he-
lium and argon. A reduced purity, in agreement with theory, is measured in argon due to
the entanglement of ion and photoelectron, combined with an incomplete measurement.

Recently, increasing effort is being devoted towards bridging the gap between quantum-
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optics and -information with strong-field attosecond science [25, 236]. Development of
new quantum state tomography techniques for continuum electrons [203, 237], like the
KRAKEN protocol discussed here, is driven by the need to fully characterize mixed states.
Intense laser-atom interactions have also been shown to generate non-classical light states [238],
and the theory of high-order harmonic generation has been extended to the case of a quant-
ized light field [239], with generation of harmonics by quantum states of light leading to a
theoretical enhancement of the cut-off energy [240]. Much like RABBIT was initially used
to retrieve the phase relation of harmonics generated from classical light, the KRAKEN
protocol may provide an experimental tool to characterize high-order harmonic generation
driven by quantum light states.
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Appendix A

PPT Ionization Rate

The functions entering the PPT ionizaiton rate introduced in Sec 3.3.1 are summarized
below [141]. The ionization rate ΓPPT

ℓm (E , ω0) from a level with binding energy Ip, orbital
ℓ and magneticm quantum number, with the quantization axis chosen parallel to the field
polarization, is given (atomic units are used: ℏ = me = e = 1) by

ΓPPT
ℓm (E0, ω0) =

√
3

2π
|Cn∗ℓ∗ |2fℓmIp

[
2(2Ip)

3/2

E0
√
γ2 + 1

]2n∗−|m|−3/2

×Am(γ, ω0) exp

[
−2(2Ip)

3/2 g(γ)

3E0

] (6.1)

where E0 is the peak electric field, n∗ = Z/
√
2Ip and ℓ∗ = n∗−1 is the effective principal

and orbital quantum numbers and

Cnℓ =
22n

nΓ(n+ℓ+1)(n−ℓ) , (6.2a)

fℓm = (2ℓ+1)(ℓ+|m|)!
2m|m|!(ℓ−|m|)! , (6.2b)

where Γ(z) is the gamma function extending the factorial function to the complex num-
bers. The function g(gamma) is given by

g(γ) =
3

2γ

[(
1 +

1

2γ2

)
sinh−1 γ − (1 + γ2)1/2

2γ

]
, (6.3)

which is 1− γ2/10 + 9γ4/280 when γ ≪ 1 and 3/(2γ)(ln 2γ − 1/2) when γ ≫ 1.

The sum over different order multi-photon ionization rates in the PPT model, which also
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leads to the characteristic channel closings in Fig. 3.6, is included in Am,

Am(γ, ω0) =
4γ2√

3π|m|!(1 + γ2)
×

∞∑
n⩾ν

e
−α(n−ν)wm

(√
β(n−ν)

)
, (6.4)

which in turn depends on β = 2γ(1 + γ2)−1/2 and

α = 2

[
sinh−1 γ − γ

(1 + γ2)1/2

]
, (6.5)

which can be approximated as 2γ3/3 for γ ≪ 1 and 2(ln 2γ − 1) for γ ≫ 1. Finally, the
function

wm(x) = e−x2

∫ x

0
dy ey

2
(x2 − y2)|m| =

x2|m|+1

2

∫ 1

0
dt

e−x2tt|m|
(1− t)1/2

. (6.6)

Form = 0 the above function reduces to the Dawson functionD+(x), while form = ±1
it becomes w±1(x) = (2x2 +1)D+(x)/2− x/2. In general the exponential dependence
in Am leads to an ionization rate which is strongly dominated by ionization fromm = 0.
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Author Contributions

Paper I: How to optimize high-order harmonic generation in gases

We study optimal generation of high-order harmonics by simulation of wave propagation in
gases. We identify two different regimes of phase matching, a high pressure, short medium
regime, and a low pressure, long medium regime. The conversion efficiency is found to
be similar in the two regimes, but the spatial and temporal properties of the harmonic
emission vary. A simple analytic model is developed which accurately predicts the regions
of efficient generation.

I performed the simulations, analyzed the results and wrote the manuscript.

Paper II: The two phase-matching regimes in high-order harmonic generation

In this paper, we study experimentally the two different regimes of high-harmonic gener-
ation proposed in paper I. The similar conversion efficiency along a hyperbolic curve in
pressure-length is confirmed. The predicted spatial characteristics are also shown to agree
with numerical simulations. Measurements in two beamlines, in different conditions, con-
firm the independence of the results on focusing geometry, pulse duration and intensity.

I participated in taking the measurements and in the interpretation and discussion of the
results. I also provided comments and feedback on the manuscript.

Paper III: Ultrastable, high-repetition-rate attosecond beamline for time-resolved
XUV-IR coincidence spectroscopy

In this paper, an ultra-stable high-repetition rate attosecond beamline for pump-probe
photoelectron-photoion coincidence spectroscopy is implemented and characterized. Long-
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term stability with an estimated time delay error of 12 as is achieved by combining industrial-
grade lasers with a collinear pump-probe delay line. In particular, a characterization of
different gas targets for HHG is performed. The harmonic dependent divergence is invest-
igated experimentally, and compared to simulations, for gas jets and gas cells of different
lengths.

I performed the simulations of the HHG divergence. I also provided comments and feed-
back on the manuscript.

Paper IV:Ultra-stable and versatile high-energy resolution setup for attosecond
photoelectron spectroscopy

In this paper, we describe an ultra-stable interferometer for attosecond pump-probe pho-
toelectron spectroscopy. By stabilizing the interferometer directly to the phase relation of
the femtosecond pump and probe laser pulses, we obtain advantages in flexibility, allowing
several types of interferometric measurement schemes to be performed easily. We show
that by reducing the probe bandwidth, the resolution in spectral phase measurement of
photoelectrons is enhanced.

I was responsible for building and designing the setup. I also participated in the measure-
ments, and in the writing of the manuscript.

Paper V: Attosecond electron–spin dynamics in Xe 4d photoionization

Photoionization from the 4d shell in xenon is studied by combining attosecond interfero-
metry and coincidence spectroscopy. With the help of calculations using relativistic ran-
dom phase approximation we identify two interfering ionizationmechanisms with different
time delays: a fast decaying giant dipole resonance and a slow decaying narrow resonance
induced by spin-flip transitions.

I participated in the experimental measurements, and in the discussions and interpretation
of the results and provided comments and feedback on the manuscript.

Paper VI: Resonant two-photon ionization of helium atoms studied by atto-
second interferometry

We study resonant two-photon ionization via the 3p, 4p, 5p Rydberg states in helium
using both angle-resolved and angle-integrated RABBIT measurements. Combining the
two experiments with theoretical calculations, we explain the phase variations observed as
a function of photoelectron emission angle and energy.
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I participated in taking the measurements and in the discussions of the results. I also
provided comments and feedback on the manuscript.

Paper VII: The influence of final state interactions in photoelectron interfero-
metric measurements of Fano resonances

In this paper, we performed angle-integrated RABBIT measurements across the spin-orbit
resolved 3s−14p Fano resonance in argon with high spectral resolution. We find that the
phase depends on whether it is measured above or below the resonance, due to the influence
of additional states in the 3s−1 channel. This asymmetry depends strongly on the probe
bandwidth and wavelength. We show that a complex Fano parameter q is required to fully
explain the phase behavior.

I participated in the measurements and analysis. I also provided comments and feedback
on the manuscript.

Paper VIII: Continuous-variable quantum state tomography of photoelectrons

We propose a protocol (KRAKEN) for continuous variable quantum state tomography of
photoelectrons. The protocol uses two synchronized narrowband infrared probe fields at
different frequencies to interfere different parts of a photoelectron wavepacket, which is
ionized by an XUV harmonic. By varying the XUV-IR delay and probe field frequency
difference, the phase and amplitude of the density matrix can be reconstructed. We test
the KRAKEN protocol numerically for the case of pure and mixed photoelectron states, in
the vicinity of autoionizing resonances in helium and argon.

I participated in the discussions during the development of the protocol, and provided
comments and feedback to the manuscript.

Paper IX: Measuring the quantum state of photoelectrons

In this paper, we demonstrate the KRAKEN protocol experimentally. We measure the
density matrix of photoelectrons ionized into flat continua in argon and helium and com-
pare the results to theoretical calculations. The density matrix describing the photoelectron
in helium is that of a pure state, while in argon the state is mixed due to spin-orbit splitting
and ion-electron entanglement.

I participated in taking the measurements and in the interpretation and discussion of the
results. I also provided comments and feedback on the manuscript.
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A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and
F. Krausz. Atomic transient recorder. Nature, 427:817, 2004.

[92] H. Vincenti and F. Quéré. Attosecond lighthouses: How to use spatiotemporally
coupled light fields to generate isolated attosecond pulses. Physical Review Letters,
108:113904, 2012.

[93] C. M. Heyl, S. N. Bengtsson, S. Carlström, J. Mauritsson, C. L. Arnold, and
A. L’Huillier. Noncollinear optical gating. New Journal of Physics, 16(5):052001,
2014.

[94] K. Varjú, Y. Mairesse, B. Carre, M. B. Gaarde, P. Johnsson, S. Kazamias, R. Lopez-
Martens, J. Mauritsson, K. J. Schafer, P. Balcou, A. L’Huillier, and P. Salières. Fre-
quency chirp of harmonic and attosecond pulses. Journal of Modern Optics, 52(2-
3):379–394, 2005.

[95] P. F.Moulton. Spectroscopic and laser characteristics of ti:al2o3. Journal of the Optical
Society of America B, 3(1):125–133, 1986.

[96] A. Offner. Unit power imaging catoptric anastigmat (u.s. patent no. 3,748,015), 1971.

[97] G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro.
Aberration-free stretcher design for ultrashort-pulse amplification. Optics Letters,
21(6):414–416, 1996.

[98] P. Tournois. Acousto-optic programmable dispersive filter for adaptive compensation
of group delay time dispersion in laser systems. Optics Communications, 140:245,
1997.

[99] T. Oksenhendler, D. Kaplan, P. Tournois, G. M. Greetham, and F. Estable. In-
tracavity acousto-optic programmable gain control for ultra-wide-band regenerative
amplifiers. Applied Physics B, 83(4):491–494, 2006.

109



[100] S. Backus, C. G. Durfee, G. Mourou, H. C. Kapteyn, and M. M. Murnane. 0.2-tw
laser system at 1 khz. Optics Letters, 22(16):1256–1258, 1997.

[101] J.-L. Tapie. Ph.D. thesis. PhD thesis, Universite de Paris-Sud, 1991.

[102] A. Moulet, S. Grabielle, C. Cornaggia, N. Forget, and T. Oksenhendler. Single-
shot, high-dynamic-range measurement of sub-15 fs pulses by self-referenced spectral
interferometry. Optics Letters, 35(22):3856–3858, 2010.

[103] T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog,
O. Gobert, and D. Kaplan. Self-referenced spectral interferometry. Applied Physics
B, 99(1):7–12, 2010.

[104] P. Balcou, P. Sali‘eres, A. L’Huillier, andM. Lewenstein. Generalized phase-matching
conditions for high harmonics: The role of field-gradient forces. Physical Review A,
55:3204–3210, 1997.

[105] D. Irimia, D. Dobrikov, R. Kortekaas, H. Voet, D. A. van den Ende, W. A. Groen,
and M. H. M. Janssen. A short pulse (7 us FWHM) and high repetition rate (dc-
5kHz) cantilever piezovalve for pulsed atomic and molecular beams. Review of Sci-
entific Instruments, 80(11):113303, 2009.

[106] K. T. Kim, C. M. Kim, M.-G. Baik, G. Umesh, and C. H. Nam. Single sub-
50-attosecond pulse generation from chirp-compensated harmonic radiation using
material dispersion. Physical Review A, 69:051805, 2004.

[107] N. Nakano, H. Kuroda, T. Kita, and T. Harada. Development of a flat-field grazing-
incidence xuv spectrometer and its application in picosecond xuv spectroscopy. Ap-
plied Optics, 23(14):2386–2392, 1984.

[108] P. Antoine, A. L’Huillier, M. Lewenstein, P. Salières, and B. Carré. Theory of high-
order harmonic generation by an elliptically polarized laser field. Physical Review A,
53:1725, 1996.

[109] D. Popmintchev, C. Hernández-García, F. Dollar, C. Mancuso, J. A. Pérez-
Hernández, M.-C. Chen, A. Hankla, X. Gao, B. Shim, A. L. Gaeta, M. Tarazkar,
D. A. Romanov, R. J. Levis, J. A. Gaffney, M. Foord, S. B. Libby, A. Jaron-Becker,
A. Becker, L. Plaja, M. M. Murnane, H. C. Kapteyn, and T. Popmintchev. Ul-
traviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized
plasmas. Science, 350(6265):1225–1231, 2015.

[110] M. D. Feit and J. A. Fleck. Light propagation in graded-index optical fibers. Applied
Optics, 17(24):3990–3998, 1978.

110



[111] M. D. Feit and J. A. Fleck. Beam nonparaxiality, filament formation, and beam
breakup in the self-focusing of optical beams. Journal of the Optical Society of America
B, 5(3):633–640, 1988.

[112] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and
M. Kolesik. Practitioner’s guide to laser pulse propagation models and simulation.
The European Physical Journal Special Topics, 199(1):5–76, 2011.

[113] M. B. Gaarde, J. L. Tate, and K. J. Schafer. Macroscopic aspects of attosecond pulse
generation. Journal of Physics B: Atomic, Molecular and Optical Physics, 41(13):132001,
2008.

[114] T. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics.
Reviews of Modern Physics, 72:545–591, 2000.

[115] C. Altucci, V. Tosa, and R. Velotta. Beyond the single-atom response in isolated
attosecond-pulse generation. Physical Review A, 75:061401, 2007.

[116] C. M. Heyl, C. L. Arnold, A. Couairon, and A. L’Huillier. Introduction to mac-
roscopic power scaling principles for high-order harmonic generation. Journal of
Physics B: Atomic, Molecular and Optical Physics, 50(1):013001, 2017.

[117] A. Comby, D. Descamps, S. Beauvarlet, A. Gonzalez, F. Guichard, S. Petit, Y. Za-
outer, and Y. Mairesse. Cascaded harmonic generation from a fiber laser: a milliwatt
xuv source. Optics Express, 27(15):20383–20396, 2019.

[118] J. Boullet, Y. Zaouter, J. Limpert, S. Petit, Y. Mairesse, B. Fabre, J. Higuet, E. Mével,
E. Constant, and E. Cormier. High-order harmonic generation at a megahertz-level
repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplifica-
tion system. Optics Letters, 34(9):1489–1491, 2009.

[119] S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak,
J. Limpert, and A. Tünnermann. High photon flux table-top coherent extreme-
ultraviolet source. Nature Photonics, 8(10):779–783, 2014.

[120] H. Coudert-Alteirac, H. Dacasa, F. Campi, E. Kueny, B. Farkas, F. Brunner,
S. Maclot, B. Manschwetus, H. Wikmark, J. Lahl, L. Rading, J. Peschel, B. Major,
K. Varjú, G. Dovillaire, P. Zeitoun, P. Johnsson, A. L’Huillier, and P. Rudawski.
Micro-focusing of broadband high-order harmonic radiation by a double toroidal
mirror. Applied Sciences, 7(11):1159, 2017.

[121] C. Kleine, M. Ekimova, G. Goldsztejn, S. Raabe, C. Strüber, J. Ludwig, S. Yar-
lagadda, S. Eisebitt, M. J. J. Vrakking, T. Elsaesser, E. T. J. Nibbering, and
A. Rouzée. Soft x-ray absorption spectroscopy of aqueous solutions using a table-top

111



femtosecond soft x-ray source. The Journal of Physical Chemistry Letters, 10(1):52–58,
2019.

[122] N. Tsatrafyllis, B. Bergues, H. Schröder, L. Veisz, E. Skantzakis, D. Gray, B. Bodi,
S. Kuhn, G. D. Tsakiris, D. Charalambidis, and P. Tzallas. The ion microscope as
a tool for quantitative measurements in the extreme ultraviolet. Scientific Reports,
6(1):21556, 2016.

[123] Y. Fu, K. Nishimura, R. Shao, A. Suda, K. Midorikawa, P. Lan, and E. J. Takahashi.
High efficiency ultrafast water-window harmonic generation for single-shot soft x-
ray spectroscopy. Communications Physics, 3(1):92, 2020.

[124] A. L’Huillier, K. J. Schafer, and K. C. Kulander. Theoretical aspects of intense field
harmonic generation. Journal of Physics B: Atomic, Molecular and Optical Physics,
24(15):3315–3341, 1991.

[125] K. Midorikawa, Y. Nabekawa, and A. Suda. Xuv multiphoton processes with intense
high-order harmonics. Progress in Quantum Electronics, 32(2):43–88, 2008.

[126] W. Boutu, T. Auguste, O. Boyko, I. Sola, P. Balcou, L. Binazon, O. Gobert, H. Mer-
dji, C. Valentin, E. Constant, E. Mével, and B. Carré. High-order-harmonic gener-
ation in gas with a flat-top laser beam. Physical Review A, 84:063406, 2011.

[127] C. M. Heyl, H. Coudert-Alteirac, M. Miranda, M. Louisy, K. Kovacs, V. Tosa,
E. Balogh, K. Varjú, A. L’Huillier, A. Couairon, and C. L. Arnold. Supplement 1:
Scale-invariant nonlinear optics in gases. 2016.

[128] C. Hernández-García, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Plaja,
A. Becker, and A. Jaron-Becker. Group velocity matching in high-order harmonic
generation driven by mid-infrared lasers. New Journal of Physics, 18(7):073031, 2016.

[129] R. Klas. Efficiency scaling of high harmonic generation using ultrashort fiber lasers. PhD
thesis, Friedrich-Schiller Universität Jena, 2021.

[130] P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage. Effects of dispersion
and focusing on the production of optical harmonics. Physical Review Letters, 8:21–
22, 1962.

[131] S. Kazamias, D. Douillet, F. Weihe, C. Valentin, A. Rousse, S. Sebban, G. Grillon,
F. Augé, D. Hulin, and P. Balcou. Global optimization of high harmonic generation.
Physical Review Letters, 90:193901, 2003.

[132] A. Rundquist, C. G. Durfee, Z. Chang, C. Herne, S. Backus, M. M. Murnane,
and H. C. Kapteyn. Phase-matched generation of coherent soft x-rays. Science,
280(5368):1412–1415, 1998.

112



[133] P. Schwerdtfeger and J. K. Nagle. 2018 table of static dipole polarizabilities of the
neutral elements in the periodic table. Molecular Physics, 117(9-12):1200–1225, 2019.

[134] B. Henke, E. Gullikson, and J. Davis. X-ray interactions: Photoabsorption, scat-
tering, transmission, and reflection at e = 50-30,000 ev, z = 1-92. Atomic Data and
Nuclear Data Tables, 54(2):181 – 342, 1993.

[135] A. L’Huillier, X. F. Li, and L. A. Lompré. Propagation effects in high-order harmonic
generation in rare gases. Journal of the Optical Society of America B, 7:527–536, 1990.

[136] S. Feng and H. G. Winful. Physical origin of the gouy phase shift. Optics Letters,
26(8):485–487, 2001.

[137] P. Rudawski, C. M. Heyl, F. Brizuela, J. Schwenke, A. Persson, E. Mansten,
R. Rakowski, L. Rading, F. Campi, B. Kim, P. Johnsson, and A. L’Huillier. A high-
flux high-order harmonic source. Review of Scientific Instruments, 84(7):–, 2013.

[138] S. Kazamias, S. Daboussi, O. Guilbaud, K. Cassou, D. Ros, B. Cros, and
G. Maynard. Pressure-induced phase matching in high-order harmonic generation.
Physical Review A, 83, 2011.

[139] C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C.
Kapteyn. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev.
Lett., 83:2187–2190, 1999.

[140] M. J. Abel, T. Pfeifer, P. M. Nagel, W. Boutu, M. J. Bell, C. P. Steiner, D. M.
Neumark, and S. R. Leone. Isolated attosecond pulses from ionization gating of
high-harmonic emission. Chemical Physics, 366(1):9–14, 2009. Attosecond Molecu-
lar Dynamics.

[141] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev. Ionization of Atoms in an Al-
ternating Electric Field. Soviet Journal of Experimental andTheoretical Physics, 23:924,
1966.

[142] L. V. Keldysh. Ionization in the Field of a Strong Electromagnetic Wave. Sov. Phys.
JETP, 20:1307, 1965.

[143] N. Boroumand, A. Thorpe, A. M. Parks, and T. Brabec. Keldysh ionization theory
of atoms: mathematical details. Journal of Physics B: Atomic, Molecular and Optical
Physics, 55(21):213001, 2022.

[144] R. Kopold, W. Becker, M. Kleber, and G. G. Paulus. Channel-closing effects in
high-order above-threshold ionization and high-order harmonic generation. Journal
of Physics B: Atomic, Molecular and Optical Physics, 35:217, 2002.

113



[145] M. Ammosov, N. Delone, and V. Krainov. Tunnelling ionization of complex atoms
and of atomic ions in an alternating electromagnetic field. Soviet Physics - Journal of
Experimental and Theoretical Physics, 64(6):1191–1194, 1986.

[146] S.-F. Zhao, A.-T. Le, C. Jin, X.Wang, andC.D. Lin. Analytical model for calibrating
laser intensity in strong-field-ionization experiments. Physical Review A, 93:023413,
2016.

[147] M. Geissler, G. Tempea, and T. Brabec. Phase-matched high-order harmonic gen-
eration in the nonadiabatic limit. Physical Review A, 62:033817, 2000.

[148] D. Kroon, D. Guénot, M. Kotur, E. Balogh, E. W. Larsen, C. M. Heyl, M. Mir-
anda, M. Gisselbrecht, J. Mauritsson, P. Johnsson, K. Varjú, A. L’Huillier, and C. L.
Arnold. Attosecond pulse walk-off in high-order harmonic generation. Optics Letters,
39(7):2218–2221, 2014.

[149] P. Rudawski, A. Harth, C. Guo, E. Lorek, M. Miranda, C. M. Heyl, E. W. Larsen,
J. Ahrens, O. Prochnow, T. Binhammer, U. Morgner, J. Mauritsson, A. L’Huillier,
and C. L. Arnold. Carrier-envelope phase dependent high-order harmonic gener-
ation with a high-repetition rate opcpa-system. The European Physical Journal D,
69(3):70, 2015.

[150] G. L. Yudin and M. Y. Ivanov. Nonadiabatic tunnel ionization: Looking inside a
laser cycle. Physical Review A, 64:013409, 2001.

[151] B.Minneker, R. Klas, J. Rothhardt, and S. Fritzsche. Critical laser intensity of phase-
matched high-order harmonic generation in noble gases. Photonics, 10(1), 2023.

[152] T. Popmintchev, M.-C. Chen, O. Cohen, M. E. Grisham, J. J. Rocca, M. M.
Murnane, and H. C. Kapteyn. Extended phase matching of high harmonics driven
by mid-infrared light. Optics Letters, 33(18):2128–2130, 2008.

[153] R. Klas, A. Kirsche, M. Gebhardt, J. Buldt, H. Stark, S. Hädrich, J. Rothhardt, and
J. Limpert. Ultra-short-pulse high-average-power megahertz-repetition-rate coher-
ent extreme-ultraviolet light source. PhotoniX, 2(1):4, 2021.

[154] T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn. The
attosecond nonlinear optics of bright coherent x-ray generation. Nature Photonics,
4(12):822–832, 2010.

[155] A. Ludwig, J. Maurer, B. W. Mayer, C. R. Phillips, L. Gallmann, and U. Keller.
Breakdown of the dipole approximation in strong-field ionization. Physical Review
Letters, 113:243001, 2014.

114



[156] C.-J. Lai and F. X. Kärtner. The influence of plasma defocusing in high harmonic
generation. Optics Express, 19(23):22377, 2011.

[157] H. T. Kim, I. J. Kim, D. G. Lee, K.-H. Hong, Y. S. Lee, V. Tosa, and C. H. Nam.
Optimization of high-order harmonic brightness in the space and time domains.
Physical Review A, 69:031805, 2004.

[158] D. E. Rivas, B. Major, M.Weidman, W.Helml, G.Marcus, R. Kienberger, D. Char-
alambidis, P. Tzallas, E. Balogh, K. Kovács, V. Tosa, B. Bergues, K. Varjú, and
L. Veisz. Propagation-enhanced generation of intense high-harmonic continua in
the 100-ev spectral region. Optica, 5(10):1283–1289, 2018.

[159] B. Major, K. Kovács, V. Tosa, P. Rudawski, A. L’Huillier, and K. Varjú. Effect of
plasma-core-induced self-guiding on phase matching of high-order harmonic gener-
ation in gases. Journal of the Optical Society of America B, 36(6):1594–1601, 2019.

[160] H.-W. Sun, P.-C. Huang, Y.-H. Tzeng, J.-T. Huang, C. D. Lin, C. Jin, and M.-C.
Chen. Extended phase matching of high harmonic generation by plasma-induced
defocusing. Optica, 4(8):976–981, 2017.

[161] K. Cassou, S. Daboussi, O. Hort, O. Guilbaud, D. Descamps, S. Petit, E. Mével,
E. Constant, and S. Kazamias. Enhanced high harmonic generation driven by high-
intensity laser in argon gas-filled hollow core waveguide. Optics Letters, 39(13):3770–
3773, 2014.

[162] B. Major, M. Kretschmar, O. Ghafur, A. Hoffmann, K. Kovács, K. Varjú, B. Sen-
fftleben, J. Tümmler, I. Will, T. Nagy, D. Rupp, M. J. J. Vrakking, V. Tosa,
and B. Schütte. Propagation-assisted generation of intense few-femtosecond high-
harmonic pulses. Journal of Physics: Photonics, 2(3):034002, 2020.

[163] A. S. Johnson, D. R. Austin, D. A. Wood, C. Brahms, A. Gregory, K. B. Holzner,
S. Jarosch, E. W. Larsen, S. Parker, C. S. Strüber, P. Ye, J. W. G. Tisch, and J. P.
Marangos. High-flux soft x-ray harmonic generation from ionization-shaped few-
cycle laser pulses. Science Advances, 4(5):eaar3761, 2018.

[164] B. Major, K. Kovács, E. Svirplys, M. Anus, O. Ghafur, K. Varjú, M. J. J. Vrakking,
V. Tosa, and B. Schütte. High-order harmonic generation in a strongly overdriven
regime. Physical Review A, 107:023514, 2023.

[165] E. E. Fill. Focusing limits of ultrashort laser pulses: analytical theory. Journal of the
Optical Society of America B, 11(11):2241–2245, 1994.

[166] W. P. Leemans, C. E. Clayton, W. B. Mori, K. A. Marsh, P. K. Kaw, A. Dyson,
C. Joshi, and J. M.Wallace. Experiments and simulations of tunnel-ionized plasmas.
Physical Review A, 46:1091–1105, 1992.

115



[167] S. Rae. Ionization-induced defocusing of intense laser pulses in high-pressure gases.
Optics Communications, 97(1):25–28, 1993.

[168] E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. Le Blanc, F. Salin, and
P. Agostini. Optimizing high harmonic generation in absorbing gases: Model and
experiment. Physical Review Letters, 82:1668–1671, 1999.

[169] T. Ruchon, C. P. Hauri, K. Varjú, E. Mansten, M. Swoboda, R. López-Martens, and
A. L’Huillier. Macroscopic effects in attosecond pulse generation. New Journal of
Physics, 10 No. 2:025027, 2008.

[170] J. W. Cooper. Photoionization from outer atomic subshells. a model study. Physical
Review, 128:681–693, 1962.

[171] B. Major and K. Varju. Extended model for optimizing high-order harmonic gener-
ation in absorbing gases. Journal of Physics B: Atomic, Molecular and Optical Physics,
2021.

[172] J. R. Sutherland, E. L. Christensen, N. D. Powers, S. E. Rhynard, J. C. Painter, and
J. Peatross. High harmonic generation in a semi-infinite gas cell. Optics Express,
12(19):4430–4436, 2004.

[173] Y. Tao, S. J. Goh, H. M. J. Bastiaens, P. J. M. van der Slot, S. G. Biedron, S. V.
Milton, and K. J. Boller. Temporal model for quasi-phase matching in high-order
harmonic generation. Optics Express, 25(4):3621–3638, 2017.

[174] A. Nayak, I. Orfanos, I. Makos, M. Dumergue, S. Kühn, E. Skantzakis, B. Bodi,
K. Varju, C. Kalpouzos, H. I. B. Banks, A. Emmanouilidou, D. Charalambidis, and
P. Tzallas. Multiple ionization of argon via multi-xuv-photon absorption induced by
20-gw high-order harmonic laser pulses. Physical Review A, 98:023426, 2018.

[175] A. Comby, S. Beaulieu, E. Constant, D. Descamps, S. Petit, and Y. Mairesse.
Absolute gas density profiling in high-order harmonic generation. Optics Express,
26(5):6001–6009, 2018.

[176] H. Ruf, C. Handschin, R. Cireasa, N. Thiré, A. Ferré, S. Petit, D. Descamps,
E. Mével, E. Constant, V. Blanchet, B. Fabre, and Y. Mairesse. Inhomogeneous
high harmonic generation in krypton clusters. Physical Review Letters, 110:083902,
2013.

[177] P. Balcou, A. S. Dederichs, M. B. Gaarde, and A. L’Huillier. Quantum-path analysis
and phase-matching of high-order harmonic generation and high-order frequency
mixing processes in strong laser fields. Journal of Physics B: Atomic, Molecular and
Optical Physics, 32:2973, 1999.

116



[178] B.Major, O. Ghafur, K. Kovács, K. Varjú, V. Tosa, M. J. J. Vrakking, and B. Schütte.
Compact intense extreme-ultraviolet source. Optica, 8(7):960–965, 2021.

[179] H. Wikmark, C. Guo, J. Vogelsang, P. W. Smorenburg, H. Coudert-Alteirac,
J. Lahl, J. Peschel, P. Rudawski, H. Dacasa, S. Carlström, S. Maclot, M. B. Gaarde,
P. Johnsson, C. L. Arnold, and A. L’Huillier. Spatiotemporal coupling of attosecond
pulses. Proceedings of the National Academy of Sciences, 116(11):4779–4787, 2019.

[180] L. Quintard, V. Strelkov, J. Vabek, O. Hort, A. Dubrouil, D. Descamps, F. Burgy,
C. Péjot, E. Mével, F. Catoire, and E. Constant. Optics-less focusing of XUV high-
order harmonics. Science Advances, 5(4), 2019.

[181] M. Hoflund, J. Peschel, M. Plach, H. Dacasa, K. Veyrinas, E. Constant, P. Smoren-
burg, H. Wikmark, S. Maclot, C. Guo, C. Arnold, A. L’Huillier, and P. Eng-
Johnsson. Focusing properties of high-order harmonics. Ultrafast Science,
2021:9797453, 2021.

[182] J. C. P. Koliyadu, S. Kunzel, T.Wodzinski, B. Keitel, J. Duarte, G. O.Williams, C. P.
Joao, H. Pires, V. Hariton, M. Galletti, N. Gomes, G. Figueira, J. M. Dias, N. Lopes,
P. Zeitoun, E. Plönjes, and M. Fajardo. Optimization and characterization of high-
harmonic generation for probing solid density plasmas. Photonics, 4(2), 2017.

[183] M. Sayrac, A. A. Kolomenskii, S. Anumula, Y. Boran, N. A. Hart, N. Kaya, J. Stro-
haber, and H. A. Schuessler. Pressure optimization of high harmonic generation in a
differentially pumped ar or h2 gas jet. Review of Scientific Instruments, 86(4):043108,
2015.

[184] D. Charalambidis, V. Chikán, E. Cormier, P. Dombi, J. A. Fülöp, C. Janáky, S. Ka-
haly, M. Kalashnikov, C. Kamperidis, S. Kühn, F. Lepine, A. L’Huillier, R. Lopez-
Martens, S. Mondal, K. Osvay, L. Óvári, P. Rudawski, G. Sansone, P. Tzallas,
Z. Várallyay, and K. Varjú. The Extreme Light Infrastructure—Attosecond Light Pulse
Source (ELI-ALPS) Project, pages 181–218. Springer International Publishing, Cham,
2017.

[185] B. Manschwetus, L. Rading, F. Campi, S. Maclot, H. Coudert-Alteirac, J. Lahl,
H. Wikmark, P. Rudawski, C. M. Heyl, B. Farkas, T. Mohamed, A. L’Huillier, and
P. Johnsson. Two-photon double ionization of neon using an intense attosecond
pulse train. Physical Review A, 93:061402, 2016.

[186] J. M. Dahlström and E. Lindroth. Study of attosecond delays using perturbation
diagrams and exterior complex scaling. Journal of Physics B: Atomic, Molecular and
Optical Physics, 47(12):124012, 2014.

[187] A. Jiménez-Galán, L. Argenti, and F. Martín. Modulation of Attosecond Beating in
Resonant Two-Photon Ionization. Physical Review Letters, 113(26):263001, 2014.

117



[188] Á. Jiménez-Galán, F. Martín, and L. Argenti. Two-photon finite-pulse model for
resonant transitions in attosecond experiments. Physical Review A, 93(2):023429,
2016.

[189] V. Véniard, R. Taïeb, and A. Maquet. Phase dependence of (N+1) - color (N>1) ir-uv
photoionization of atoms with higher harmonics. Physical Review A, 54:721, 1996.

[190] J. Dahlström, A. L’Huillier, and A. Maquet. Introduction to attosecond delays
in photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics,
45(18):183001, 2012.

[191] J. M. Dahlström, D. Guénot, K. Klünder, M. Gisselbrecht, J. Mauritsson,
A. L’Huillier, A. Maquet, and R. Taïeb. Theory of attosecond delays in laser-assisted
photoionization. Chemical Physics, 414:53–64, 2013.

[192] R. Pazourek, S. Nagele, and J. Burgdörfer. Attosecond chronoscopy of photoemis-
sion. Reviews of Modern Physics, 87:765–802, 2015.

[193] E. P. Wigner. Lower limit for the energy derivative of the scattering phase shift.
Physical Review, 98:145–147, 1955.

[194] C. Palatchi, J. M. Dahlström, A. Kheifets, I. Ivanov, D. Canaday, P. Agostini, and
L. DiMauro. Atomic delay in helium, neon, argon and krypton. Journal of Physics
B: Atomic, Molecular and Optical Physics, 47(24):245003, 2014.

[195] D. Guénot, D. Kroon, E. Balogh, E. Larsen, M. Kotur, M. Miranda, T. Fordell,
P. Johnsson, J. Mauritsson, M. Gisselbrecht, et al. Measurements of relative photoe-
mission time delays in noble gas atoms. Journal of Physics B: Atomic, Molecular and
Optical Physics, 47(24):245602, 2014.

[196] M. Ossiander, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka, A. Gug-
genmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger, and M. Schultze. Atto-
second correlation dynamics. Nature Physics, 13(3):280–285, 2017.

[197] L. Argenti, A. Jiménez-Galán, J. Caillat, R. Taïeb, A. Maquet, and F. Martín. Con-
trol of photoemission delay in resonant two-photon transitions. Physical Review A,
95:043426, 2017.

[198] D. Busto, L. Barreau, M. Isinger, M. Turconi, C. Alexandridi, A. Harth, S. Zhong,
R. J. Squibb, D. Kroon, S. Plogmaker, M. Miranda, Á. Jiménez-Galán, L. Argenti,
C. L. Arnold, R. Feifel, F. Martín, M. Gisselbrecht, A. L’Huillier, and P. Salières.
Time–frequency representation of autoionization dynamics in helium. Journal of
Physics B: Atomic, Molecular and Optical Physics, 51(4):044002, 2018.

118



[199] U. Fano. Effects of configuration interaction on intensities and phase shifts. Physical
Review, 124(6):1866, 1961.

[200] C. Alexandridi, D. Platzer, L. Barreau, D. Busto, S. Zhong, M. Turconi, L. Neor-
ičić, H. Laurell, C. L. Arnold, A. Borot, J.-F. Hergott, O. Tcherbakoff, M. Lejman,
M. Gisselbrecht, E. Lindroth, A. L’Huillier, J. M. Dahlström, and P. Salières. At-
tosecond photoionization dynamics in the vicinity of the cooper minima in argon.
Physical Review Research, 3:L012012, 2021.

[201] J. Peschel, D. Busto, M. Plach, M. Bertolino, M. Hoflund, S. Maclot, J. Vin-
bladh, H. Wikmark, F. Zapata, E. Lindroth, M. Gisselbrecht, J. M. Dahlström,
A. L’Huillier, and P. Eng-Johnsson. Attosecond dynamics of multi-channel single
photon ionization. Nature Communications, 13(1):5205, 2022.

[202] D. Busto, H. Laurell, D. Finkelstein-Shapiro, C. Alexandridi, M. Isinger, S. Nandi,
R. J. Squibb, M. Turconi, S. Zhong, C. L. Arnold, R. Feifel, M. Gisselbrecht,
P. Salières, T. Pullerits, F. Martín, L. Argenti, and A. L’Huillier. Probing elec-
tronic decoherence with high-resolution attosecond photoelectron interferometry.
The European Physical Journal D, 76(7):112, 2022.

[203] C. Bourassin-Bouchet andM.-E. Couprie. Partially coherent ultrafast spectrography.
Nature Communications, 6(1), 2015.

[204] F. Mintert, A. R. Carvalho, M. Kus, and A. Buchleitner. Measures and dynamics of
entangled states. Physics Reports, 415(4):207–259, 2005.

[205] A. Zaïr, E. Mével, E. Cormier, and E. Constant. Ultrastable collinear delay control
setup for attosecond ir-xuv pump-probe experiment. Journal of the Optical Society of
America B, 35(5):A110–A115, 2018.

[206] H. Ahmadi, S. Kellerer, D. Ertel, M. Moioli, M. Reduzzi, P. K. Maroju, A. J�ger,
R. N. Shah, J. Lutz, F. Frassetto, L. Poletto, F. Bragheri, R. Osellame, T. Pfeifer,
C. D. Schröter, R. Moshammer, and G. Sansone. Collinear setup for delay control
in two-color attosecond measurements. Journal of Physics: Photonics, 2(2):024006,
2020.

[207] M. Chini, H. Mashiko, H. Wang, S. Chen, C. Yun, S. Scott, S. Gilbertson, and
Z. Chang. Delay control in attosecond pump-probe experiments. Optics Express,
17(24):21459–21464, 2009.

[208] M. Sabbar, S. Heuser, R. Boge, M. Lucchini, L. Gallmann, C. Cirelli, and U. Keller.
Combining attosecond XUV pulses with coincidence spectroscopy. Review of Sci-
entific Instruments, 85(10):103113, 2014.

119



[209] M. Isinger, D. Busto, S. Mikaelsson, S. Zhong, C. Guo, P. Salières, C. L. Arnold,
A. L’Huillier, and M. Gisselbrecht. Accuracy and precision of the rabbit technique.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 377(2145):20170475, 2019.

[210] D. Kroon. Attosecond interferometry: techniques and spectroscopy. PhD thesis, Lund
University, 2016.

[211] P. Kruit and F. H. Read. Magnetic field paralleliser for 2π electron-spectrometer and
electron-image magnifier. Journal of Physics E, 16:313, 1983.

[212] A. T. J. B. Eppink andD.H. Parker. Velocitymap imaging of ions and electrons using
electrostatic lenses: Application in photoelectron and photofragment ion imaging of
molecular oxygen. Review of Scientific Instruments, 68:3477, 1997.

[213] J. Gao, J. Wu, Z. Lou, F. Yang, J. Qian, Y. Peng, Y. Leng, Y. Zheng, Z. Zeng,
and R. Li. High-order harmonic generation in an x-ray range from laser-induced
multivalent ions of noble gas. Optica, 9(9):1003–1008, 2022.

[214] G. A. Garcia, L. Nahon, and I. Powis. Two-dimensional charged particle image
inversion using a polar basis function expansion. Review of Scientific Instruments,
75(11):4989–4996, 2004.

[215] M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo. Simultaneous
compression and characterization of ultrashort laser pulses using chirped mirrors
and glass wedges. Optics Express, 20(1):688–697, 2012.

[216] M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier,
and H. Crespo. Characterization of broadband few-cycle laser pulses with the d-scan
technique. Optics Express, 20(17):18732–18743, 2012.

[217] G. Wendin. Collective resonance in the 4d10 shell in atomic xe. Physics Letters A,
37(5):445–446, 1971.

[218] G. Wendin. Collective effects in atomic photoabsorption spectra. iii. collective res-
onance in the 4d10 shell in xe. Journal of Physics B: Atomic and Molecular Physics,
6(1):42, 1973.

[219] E. Crljen and G. Wendin. Many-body theory of effective local potentials for elec-
tronic excitations. iii. application to giant dipole resonances. Physical Review A,
35:1571–1581, 1987.

[220] K. T. Cheng and W. R. Johnson. Orbital collapse and the photoionization of the
inner 4d shells for xe-like ions. Physical Review A, 28:2820–2828, 1983.

120



[221] M. Adam, F. Wuilleumier, S. Krummacher, N. Sandner, V. Schmidt, and W. Mehl-
horn. Recent progress in the study of photoionization processes of atomic species by
electron spectroscopy using synchrotron radiation. Journal of Electron Spectroscopy
and Related Phenomena, 15(1):211–224, 1979.

[222] M. Isinger, R. J. Squibb, D. Busto, S. Zhong, A. Harth, D. Kroon, S. Nandi, C. L.
Arnold, M. Miranda, J. M. Dahlström, E. Lindroth, R. Feifel, M. Gisselbrecht,
and A. L’Huillier. Photoionization in the time and frequency domain. Science,
358(6365):893–896, 2017.

[223] L. Drescher, T. Witting, O. Kornilov, and M. J. J. Vrakking. Phase dependence of
resonant and antiresonant two-photon excitations. Physical Review A, 105:L011101,
2022.

[224] A. Autuori, D. Platzer, M. Lejman, G. Gallician, L. Maeder, A. Covolo, L. Bosse,
M. Dalui, D. Bresteau, J.-F. Hergott, O. Tcherbakoff, H. J. B. Marroux, V. Loriot,
F. Lepine, L. Poisson, R. Taieb, J. Caillat, and P. Salieres. Anisotropic dynamics of
two-photon ionization: An attosecond movie of photoemission. Science Advances,
8(12):eabl7594, 2022.

[225] S. Heuser, A. Jiménez Galán, C. Cirelli, C. Marante, M. Sabbar, R. Boge, M. Luc-
chini, L. Gallmann, I. Ivanov, A. S. Kheifets, J. M. Dahlström, E. Lindroth, L. Ar-
genti, F. Martín, and U. Keller. Angular dependence of photoemission time delay
in helium. Physical Review A, 94:063409, 2016.

[226] C. Cirelli, C. Marante, S. Heuser, C. L. M. Petersson, Á. J. Galán, L. Argenti,
S. Zhong, D. Busto, M. Isinger, S. Nandi, S. Maclot, L. Rading, P. Johns-
son, M. Gisselbrecht, M. Lucchini, L. Gallmann, J. M. Dahlström, E. Lindroth,
A. L’Huillier, F. Martín, and U. Keller. Anisotropic photoemission time delays close
to a fano resonance. Nature Communications, 9(1), 2018.

[227] J. Vinbladh, J. M. Dahlström, and E. Lindroth. Many-body calculations of
two-photon, two-color matrix elements for attosecond delays. Physical Review A,
100:043424, 2019.

[228] M. Turconi, L. Barreau, D. Busto, M. Isinger, C. Alexandridi, A. Harth, R. J.
Squibb, D. Kroon, C. L. Arnold, R. Feifel, M. Gisselbrecht, L. Argenti, F. Martín,
A. L. ’Huillier, and P. Salières. Spin–orbit-resolved spectral phase measurements
around a fano resonance. Journal of Physics B: Atomic, Molecular and Optical Physics,
53(18):184003, 2020.

[229] G. S. Agarwal, S. L. Haan, and J. Cooper. Radiative decay of autoionizing states in
laser fields. i. general theory. Physical Review A, 29:2552–2564, 1984.

121



[230] A. Zielinski, V. P. Majety, S. Nagele, R. Pazourek, J. Burgdörfer, and A. Scrinzi.
Anomalous fano profiles in external fields. Physical Review Letters, 115:243001, 2015.

[231] J. Vinbladh, J. M. Dahlström, and E. Lindroth. Relativistic two-photon matrix
elements for attosecond delays. Atoms, 10(3), 2022.

[232] A.-L. Viotti, M. Seidel, E. Escoto, S. Rajhans, W. P. Leemans, I. Hartl, and C. M.
Heyl. Multi-pass cells for post-compression of ultrashort laser pulses. Optica,
9(2):197–216, 2022.

[233] M. Han, H. Liang, J. bao Ji, L. C. Sum, K. Ueda, J. M. Rost, and H. J. Wörner.
Laser-assisted fano resonance: attosecond quantum control and dynamical imaging,
2023.

[234] J. Su, H. Ni, A. Jaroń-Becker, and A. Becker. Time delays in two-photon ionization.
Physical Review Letters, 113(26):263002, 2014.

[235] B. Doughty, L. H. Haber, C. Hackett, and S. R. Leone. Photoelectron angular dis-
tributions from autoionizing 4s14p66p1 states in atomic krypton probed with femto-
second time resolution. The Journal of Chemical Physics, 134(9):094307, 2011.

[236] U. Bhattacharya, T. Lamprou, A. S. Maxwell, A. Ordonez, E. Pisanty, J. Rivera-
Dean, P. Stammer, M. F. Ciappina, M. Lewenstein, and P. Tzallas. Strong-laser-
field physics, non-classical light states and quantum information science. Reports on
Progress in Physics, 86(9):094401, 2023.

[237] K. E. Priebe, C. Rathje, S. V. Yalunin, T. Hohage, A. Feist, S. Schäfer, and C. Rop-
ers. Attosecond electron pulse trains and quantum state reconstruction in ultrafast
transmission electron microscopy. Nature Photonics, 11(12):793–797, 2017.

[238] M. Lewenstein, M. F. Ciappina, E. Pisanty, J. Rivera-Dean, P. Stammer, T. Lamprou,
and P. Tzallas. Generation of optical schrödinger cat states in intense laser–matter
interactions. Nature Physics, 17(10):1104–1108, 2021.

[239] A. Gorlach, O.Neufeld, N. Rivera, O. Cohen, and I. Kaminer. The quantum-optical
nature of high harmonic generation. Nature Communications, 11(1):4598, 2020.

[240] A. Gorlach, M. E. Tzur, M. Birk, M. Krüger, N. Rivera, O. Cohen, and I. Kaminer.
High-harmonic generation driven by quantum light. Nature Physics, 2023.

122



Part II: Publications







Department of Physics
Division of Atomic Physics

Lund Reports on Atomic Physics, LRAP 593 (2023)

ISBN 978-91-8039-742-1
ISSN 0281-2762 9

7
8
9
1
8
0

3
9
7
4
2
1

N
O

RD
IC

 S
W

A
N

 E
C

O
LA

BE
L 

30
41

 0
90

3
Pr

in
te

d 
by

 M
ed

ia
-T

ry
ck

, L
un

d 
20

23


	Tom sida



