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1 Thesis at a glance 

Osteoarthritis (OA) is more than just a medical condition; it's a life-altering disease 
that affects millions globally, causing pain, reduced mobility, and a decrease in 
quality of life. The economic toll is substantial, with escalating healthcare costs due 
to frequent medical visits, long-term medication, and surgical interventions like 
joint replacements. These costs are compounded by lost productivity and the 
emotional toll on patients and their families. 

Figure 1. A visual synopsis of key themes and papers of this thesis. 

In this context, this thesis focuses on addressing the challenge of understanding OA 
through the development and application of proteomic analysis methodologies 
(Figure 1). The work introduces two computational tools: the ProteoMill portal, an 
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integrated platform for omics data analysis, and proteasy, a specialized tool for 
mapping proteolytic events. These tools aim to facilitate more efficient and accurate 
analyses, addressing critical gaps in the field. 

The works of this thesis also include a series of studies that delve into the molecular 
mechanisms of OA. In paper II we perform a peptidomic analysis of synovial fluid 
(SF) from OA patients, identifying key actors involved in enzymatic degradation 
that may contribute to the disease's progression. In paper III we establish a human 
meniscus ex vivo model to explore the effects of cytokine treatments on meniscal 
tissues, revealing increased catabolic processes that may contribute to OA 
development. Paper IV employs a comprehensive proteomic platform to analyze SF 
in the early stage of OA, identifying a range of proteins and sub-networks that are 
implicated in the early pathogenesis of the disease. This paper also introduces 
Gaussian Graphical Models (GGMs) to analyze protein interactions, offering novel 
insights into disrupted joint homeostasis in OA. 

Collectively, the thesis combines a robust combination of practical tools and novel 
insights that enriches our understanding of OA, and provides a foundation for future 
research in the field. 
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2 Populärvetenskaplig 
sammanfattning 

Knäartros är en av de vanligaste formerna av ledsjukdom och drabbar varje år 
miljontals människor världen över. Det är en degenerativ sjukdom som oftast 
drabbar äldre, och kännetecknas av nedbrytning av brosk i leden, vilket leder till 
smärta, svullnad och minskad rörlighet. Sjukdomen är inte bara en medicinsk 
utmaning utan innebär också en omfattande socioekonomisk belastning. Den leder 
ofta till långvarig arbetsfrånvaro och höga vårdkostnader, vilket påverkar både den 
enskilda individen och samhället i stort. 

Trots sin omfattning är de underliggande molekylära mekanismerna som driver 
utvecklingen av artros delvis okända, vilket också gör att effektiva 
behandlingsalternativ saknas. För att förstå mer om knäartros har jag i mitt 
doktorandprojekt använt mig av tekniker inom området proteomik. Detta är studien 
av alla proteiner som produceras vid en viss tidpunkt, och masspektrometri-baserad 
proteomik är en teknik som tillåter oss att identifiera och kvantifiera tusentals 
proteiner samtidigt. 

Bioinformatik är viktig komponent i detta arbete. Det är en disciplin som 
kombinerar biologi, dataanalys och statistik för att tolka stora mängder biologiska 
data. I mitt första delarbete har jag utvecklat ett webb-baserat verktyg som är särskilt 
applicerbart vid proteomikstudier i explorativ fas. Detta verktyg gör det möjligt för 
forskare att snabbt och intuitivt analysera komplexa biologiska system, utan att 
kräva programmeringserfarenhet. 

I de efterföljande delarbetena har jag fokuserat på att använda dessa tekniker för att 
utforska de molekylära mekanismerna vid knäartros. Genom att jämföra 
proteomikdata från individer med och utan knäartros har jag identifierat proteiner 
och peptider som är över- eller underrepresenterade hos de drabbade individerna. 
Dessa molekyler kan vara inblandade i sjukdomens utveckling och kan potentiellt 
vara mål för nya behandlingsstrategier. 

Sammanfattningsvis kan mitt arbete bidra till en djupare förståelse för de 
molekylära mekanismerna bakom knäartros. Detta kan i sin tur leda till utveckling 
av effektivare behandlingsmetoder och bidra till att förbättra livskvaliteten för de 
miljontals människor som lever med denna sjukdom.  
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4 Abbreviations 

A1CF APOBEC1 complementation factor 
A2M Alpha-2-macroglobulin 
ACAN Aggrecan core protein 
ACBD6 Acyl-CoA-binding domain-containing protein 6 
ACL Anterior cruciate ligament 
ACTB Actin 
ACTN2 Alpha-actinin-2 
ADAMTS A disintegrin and metalloproteinase with thrombospondin motifs 
ADH1C Alcohol dehydrogenase 1C 
AHSG Alpha-2-HS-glycoprotein 
ALB Albumin 
APOA1 Apolipoprotein A-I 
APOB Apolipoprotein B 
AWS Amazon Web Services 
BIC Bayesian Information Criterion 
C3 Complement C3 
CFB Complement factor B 
CLUAP1 Clusterin-associated protein 1 
COL1A1 Collagen alpha-1(I) chain 
COL2A1 Collagen alpha-1(II) chain 
COMP Cartilage oligomeric matrix protein 
CRP C-reactive protein 
CRTAC1 Cartilage acidic protein 1 
CXCL7 Platelet basic protein 
DCN Decorin  
DDA Data-dependent acquisition 
DHX8 ATP-dependent RNA helicase DHX8 
DIA Data-independent acquisition 
DNAJB2 DnaJ homolog subfamily B member 2 
ECM Extracellular matrix 
ELMO1 Engulfment and cell motility protein 1 
FBLN5 Fibulin-5 
FGA Fibrinogen alpha chain  
FN1 Fibronectin 
GGM Gaussian Graphical Model 
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GPD1 Glycerol-3-phosphate dehydrogenase 1-like protein 
H1-10 Histone H1.10 
HIBCH 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial 
HRG Histidine-rich glycoprotein 
IL Interleukin  
ITIH1 Inter-alpha-trypsin inhibitor 
ITIH2 Inter-alpha-trypsin inhibitor 
JAK-STAT Janus kinase-signal transducer and activator of transcription 
KNG1 Kininogen-1 
LC-MS Liquid chromatography–mass spectrometry 
m/z Mass-to-charge ratio 
MAPK Mitogen-activated protein kinase 
MAR Missing at Random 
MCAR Missing Completely at Random 
MMP Matrix metalloproteinase 
MMP1 Interstitial collagenase 
MNAR Missing Not at Random 
MVK Mevalonate kinase 
MYOC Myocilin 
NF-kB Nuclear factor-kappa B 
NMT1 Glycylpeptide N-tetradecanoyltransferase 1 
OA Osteoarthritis 
OATP Organic anion transporting polypeptide 
OSM Oncostatin M 
PADI4 Protein-arginine deiminase type-4 
PCA Principal Component Analysis 
PEBP1 Phosphatidylethanolamine-binding protein 1  
PGS2 Decorin 
PHF3 PHD finger protein 3 
PLG Plasminogen 
PPBP Platelet basic protein 
PTM Post-translational modification 
PTPN11 Self-ligand receptor of the signaling lymphocytic activation 

molecule family member 5 
SAA1 Serum amyloid A-1 protein 
SERPINA3 Alpha-1-antichymotrypsin  
SF Synovial fluid 
sIL6R Soluble IL6 receptor 
SLCO5A1 Solute carrier organic anion transporter family member 5A1 
SOCS3 Suppressor of cytokine signaling 3 
SOD3 Extracellular superoxide dismutase 
SWATH Sequential windowed acquisition of all theoretical fragment ion 

spectra 
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TAILS Terminal amine isotopic labeling of substrates 
TCN2 Transcobalamin-2 
TNF Tissue necrosis factor 
TPM3 Tropomyosin alpha-3 chain   
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5 Introduction 

5.1 Bioinformatics  

5.1.1 Bridging the gaps 
Bioinformatics stands at a crossroads of biology, computer science, statistics, and 
engineering, and serves as a bridge between these disciplines. Bioinformaticians can 
be in a sense be thought of as translators, working to establish common data 
standards and formats, converting raw biological data into meaningful insights, and 
communicating concepts between researchers from different fields. 

A more traditional definition of bioinformatics is as the discipline dedicated to 
leveraging computational resources to interpret biological data1. This broad 
definition leaves room for multiple interpretations and ambitions for the field, but 
also underscores its multifaceted nature. In most definitions, bioinformatics also 
involves the problems of designing and sharing software, storing, and organizing 
data in databases, and focus on conducting reproducible experiments2–4.  

5.1.2 Reproducible research 
Reproducible research is the principle that scientific results should be independently 
verifiable by other researchers using the same data and methods5. Reproducibility 
is important for several reasons: it increases the trust in scientific findings, it enables 
the verification and validation of results, it facilitates the comparison of results 
between studies, it encourages reuse and extension of existing data, and it promotes 
transparency and accountability of one's research4,6. 

Bioinformaticians play an important role in ensuring the reproducibility of research 
by developing and implementing standardized protocols, workflows, and data 
management practices, and they create robust computational tools and pipelines that 
can be used by other researchers to reproduce analyses and validate results7–10. 
Ensuring that data is annotated consistently necessitates standardized vocabularies 
for describing biological entities (such as genes or proteins) and their relationships. 
Here, ontologies play an important role, as formal representations of the concepts 
and relationships in a domain of knowledge11. For example, the Gene Ontology 
(GO)12 provides a controlled vocabulary for describing the molecular function, 
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biological process and cellular component of gene products across different species. 
The Proteomics Standards Initiative (PSI)13 develops ontologies for various aspects 
of proteomics, such as protein identification, quantification, interaction and 
modification. Ontologies help improve reproducibility by providing a common 
vocabulary and knowledge integration for bioinformatics data and methods14. This 
way, ontologies can help standardize the terminology, format, metadata, and the 
annotation of bioinformatics data across different platforms and databases. 

Technologies like containerization and hashing enhance reproducibility by 
providing consistent computational environments and validating data identity15. 
Efficient data storage solutions preserve and share data, aiding in bioinformatics 
data management. Containers provide consistent and controlled environments for 
running bioinformatics software tools and workflows across different platforms and 
systems. Moreover, containers can help to simplify the installation, configuration, 
deployment, execution, and sharing of bioinformatics software tools and 
workflows.16 Hashing can help to validate the storage, retrieval, comparison, and 
sharing of bioinformatics data and software17. One example of a hash function 
commonly used in bioinformatics is MD518, which is a hash function that generates 
a 128-bit hash from any input data. In ProteoMill (paper I)19, MD5 is used to keep 
track of project settings, and allowing users to generate a “reproducibility token”.  

5.1.3 Exploratory analysis of the proteome 

5.1.3.1 Functional analysis of omics data 
Appending "-omics" to a biological term implies the comprehensive assessment of 
a set of biological components. Similarly, the “-ome” suffix represents the complete 
set of that biological entity20. In functional analyses of omics data, we aim to 
understand the full picture: the complete set of genes or gene products, expanding 
the scope from studying individual genes, transcripts, or proteins to a system-wide 
approach21. In proteomics, functional analysis is often used to describe the 
molecular function, biological process and cellular component of sets of proteins12, 
and to characterize their involvement in the pathways and molecular processes that 
are associated with the pathogenesis of the disease (Figure 2)22,23. 
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Figure 2. From knee joint sample to interpretation of exploratory analysis results. 

5.1.3.2 Normalization, scaling, and batch effect 
Normalization is a process of adjusting the peptide abundance values in proteomics 
data to reduce the technical variation and to make the samples more comparable24. 
The benefit of improving the sensitivity and accuracy of downstream analysis 
should be weighed against the risk of introducing new biases or removing 
biologically relevant variation. The idea of normalization, in other words, is to 
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ensure that the observed variation is due to the biological differences and not 
because of the experimental procedure or technical artifacts. 

Standardization is the process of transforming data to a common scale. This is useful 
when the data from different experiments or instruments have different units.25 One 
commonly used method for standardization is the Z-score26. It is calculated by 
taking the difference between a value and the mean of all values, and then dividing 
by the standard deviation of all values, as expressed in the following formula: 𝑍 =  𝑥 − 𝜇𝜎  

For example, if one instrument measures protein abundance in arbitrary units and 
another in intensity counts, standardization can transform these values, so they are 
on a common scale. The goal is essentially to ensure that the data from various 
sources or experiments can be combined or compared without introducing biases. 

Batch effects are systematic non-biological differences between or groups of 
samples in an experiment. These could be introduced during sample collection, 
preparation, or data acquisition, for instance if samples are processed on different 
days or by different instruments.27 

5.1.3.3 Dimensionality reduction 
Dimensionality reduction techniques are methods that reduce the number of 
variables or features in a high-dimensional data set, while preserving the essential 
information. These techniques are useful for handling problems when analyzing 
proteomics data, such as noise, redundancy, multicollinearity, and computational 
complexity.28 One commonly used method is Principal Component Analysis (PCA). 
PCA transforms the original variables into a set of linearly uncorrelated variables 
called principal components, which capture the maximum variance of the data. PCA 
can be used to visualize the structure and variability of omics data, identify outliers 
and clusters, and reduce the dimensionality for downstream analysis.29 

5.1.3.4 Clustering 
Cluster analysis is a data exploration technique that aims to group data based on 
their similarity30. It can for example be performed on proteins, samples, or time 
variables31. Within these clusters, proteins can then be functionally annotated 
through the principle of "guilt by association" - which assumes that proteins in the 
same cluster are likely to share functional characteristics32–34. Cluster analysis can 
help us to discover patterns, trends, and relationships in the data, and to evaluate the 
effects of different factors or interventions. Most clustering algorithms used in 
analysis of high-throughput biological data are distance-based, having the 
advantages of being relatively simple to implement, but may be sensitive to noise 
and outliers35–37. 
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Hierarchical clustering is a method that builds a hierarchy of clusters by either 
successively merging or dividing groups of data points. In the agglomerative 
approach, the algorithm starts with each data point as a separate cluster and then 
merges the closest clusters into larger ones. Alternatively, in the divisive approach, 
it starts with one large cluster and divides it based on some criterion. The process 
continues until only a single cluster remains or some other stopping criterion is met. 
One of the advantages of hierarchical clustering is that it doesn't require the number 
of clusters to be specified a priori. Another advantage is that hierarchical clustering 
can be visualized as a dendrogram.38–42   

k-means clustering is a partitioning method that divides a dataset into k distinct,
non-overlapping subsets, or clusters. The algorithm starts by choosing k initial
centroids, either randomly or based on some criterion. Each data point is then
assigned to the nearest centroid, becoming a member of that cluster. The centroids
are updated as the mean of all the data points in each cluster, and the process is
repeated until the centroids no longer change.30,43–46

Hierarchical clustering and k-means commonly use Euclidean distance or other 
simple metrics that do not account for temporal alignment47–51. In time series 
clustering, our aim is to identify groups of proteins with similar expression patterns 
over time49. Time series clustering assigns data points, protein abundances, to 
groups or clusters based on patterns and trends in the data. This may help us to 
identify groups of proteins that have similar characteristics and to evaluate an effect 
over time. 
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Figure 3. Comparison of three methods for estimating the optimal number of clusters (k) in cytokine-
treated (IL1) versus control meniscus explants over multiple timepoints. The methods include the 
Elbow method (k=4), Silhouette method (k=3), and Gap statistic (k=6). The vertical blue dashed line in 
each subplot indicates the optimal k value as per the respective method. 

Simply put, the objective of clustering is to form clusters wherein proteins have 
maximum similarity with other proteins within the cluster, but minimum similarity 
with proteins in other clusters. Based on these similarities, we must find a way to 
decide how many clusters the proteins should be divided into. There is no standard 
approach to this problem, and finding the appropriate number of clusters to be 
generated is subjective52. One commonly used method is the “elbow method”, 
which involves plotting the relationship between the number of clusters and Within 
Sum of Squares (WSS) or the total variance explained by the clusters (Figure 3)53. 
The optimal number of clusters is the value of k at the “elbow” point of the plot, 
where the change in WSS begins to level off. Another is to use statistical methods 
such as “gap statistic” to estimate the number of clusters by comparing intra-cluster 
variation for different numbers of clusters, selecting aggregations that are the least 
uniformly distributed (Figure 3)54. While these methods can offer a standardized 
approach to finding the, these methods are heuristics and do not guarantee us finding 
the optimum. It is therefore a good idea to try multiple methods and then comparing 
the results. Perhaps the most useful approach is by visual methods like generating 
and visually inspect a dendrogram using hierarchical clustering (Figure 4), to see if 
there is a clear partitioning of branches. 
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Figure 4: Dendrograms representing hierarchical clustering of proteins in meniscus explants subjected 
to IL1 and control treatments over multiple timepoints. The dendrogram is color-coded to indicate 
clusters formed at different numbers of clusters (k = 2, k = 4, k = 6). This offers a visual approach to 
assess the quality of the clustering results. 

5.1.3.5 Missing data 
In proteomics studies, it is common to encounter missing values, i.e. instances where 
a protein's abundance is not recorded in a given sample55. While statistical methods 
exist for handling missing data, their validity and reliability often depend on 
understanding the source of missingness. In many practical scenarios involving 
liquid chromatography–mass spectrometry (LC-MS) data, this source is not 
determinable, making traditional methods questionable and necessitating a careful 
consideration of alternative approaches. 

Missing data in statistical analyses are commonly categorized as Missing 
Completely at Random (MCAR), Missing at Random (MAR), or Missing Not at 
Random (MNAR)56. The strategy for handling missing data often depends on the 
missingness mechanism. However, when the source of missingness is unknown, 
there is a risk of introducing bias by imputation57,58. It is important to remember that 
imputation cannot add new information to the data59. As stated by Dempster and 
Rubin (1983)60: 

k = 2 k = 4 k = 6
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“The idea of imputation is both seductive and dangerous. It is seductive because it 
can lull the user into the pleasurable state of believing that the data are complete 
after all, and it is dangerous because it lumps together situations where the problem 
is sufficiently minor that it can be legitimately handled in this way and situations 
where standard estimators applied to the real and imputed data have substantial 
bias.” 

In the context of statistical modelling, data is considered informative when it 
contributes to the precision or validity of the model estimates. Data with extensive 
missing values can be less informative and may introduce ambiguity in the 
interpretation of the model. For LC-MS data, where the source of missingness is 
often unclear, it becomes challenging to determine when data should be considered 
informative enough for inclusion in the model. Simply removing proteins with 
missing values can result in the loss of potentially meaningful information. On the 
other hand, including proteins with frequent missing values might introduce noise 
or bias, thereby reducing the overall informativeness of the data for the intended 
analyses. 

5.1.3.6 Differential abundance analysis 
Proteomics experiments often rely on estimating a protein’s abundance in one 
condition relative to another to understand biological processes or disease 
conditions61. The complexity of this analysis often arises from the need to account 
for multiple sources of variability, such as biological replicates and technical noise. 

Linear mixed effects models have become increasingly useful in this context, as 
they can model both fixed effects, which are consistent across all observations, and 
random effects, which are specific to particular subgroups or conditions62,63. This 
flexibility allows for more accurate estimation of protein or peptide abundance 
changes across different conditions or time points61,64–66. 

The use of linear mixed effects models is especially beneficial when the data 
structure is hierarchical or when observations are correlated. These models provide 
a way to partition the observed variance into its different components, thereby 
offering a nuanced understanding of the factors contributing to differential 
abundance. 

The R package limma has been widely adopted for differential abundance analysis 
in proteomics67,68. It was originally designed for microarray data and uses an 
empirical Bayes approach to shrink the sample variance towards a pooled estimate, 
increasing the stability of the inference when the number of samples is small68. 
While limma is not inherently a mixed effects model, it has gained popularity for 
use in proteomics data analysis due to its robustness and computational efficiency. 
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5.1.3.7 Pathways 
Biological pathways are series of interactions among molecules in a cell that lead to 
a certain product or a change in the cell. Pathways are involved in various biological 
processes, such as metabolism, gene regulation and signal transduction, and analysis 
of pathways is important in understanding the mechanisms of diseases.69–71 

Pathway analysis is a technique to identify pathways that are altered in a given 
proteomics dataset, such as proteins that are differentially expressed between two 
conditions. Pathway analysis can help interpret the biological meaning and 
implications of proteomics data, as well as discover novel pathways or interactions 
that are relevant to the experimental context.72,73 

There are different methods and tools for performing pathway analysis of 
proteomics data. Some common methods include over-representation analysis, gene 
set enrichment analysis and topology-based analysis74. These methods use different 
statistical tests and assumptions to evaluate the enrichment of pathways in a 
proteomics dataset. Pathway analysis tools use different databases and formats of 
pathway gene sets, as well as different visualization and reporting features.75,76 

Gene set analysis methods are easy to implement and widely used, but they ignore 
the structure and interactions of the pathways, which may limit their biological 
relevance and accuracy. Topology-based analysis methods incorporate the pathway 
topology or network information into the analysis, and may use mathematical 
models to score and rank the pathways based on their impact or deregulation in the 
proteomics dataset23. Topology-based analysis methods have the potential to better 
capture the complexity and dynamics of biological systems, but they also face 
several challenges, such as data integration, model selection, and result validation. 
Another challenge is the lack of consensus in the definition of a pathway77.  

Some pathways that have been identified to be associated with OA using functional 
analysis includes the MAPK78,79, NF-kB79–81, transforming growth factor-β 
(TGFβ)82,83, and Wnt83,84 signaling pathways. MAPK induces chondrocyte 
differentiation, synthesis of matrix metalloproteases (MMPs) and production of pro-
inflammatory cytokines85. 

5.1.3.8 Protein-protein interaction networks 
Protein complexes are molecular machines by which many biological functions are 
conducted86. They are formed when two or more proteins bind together by protein–
protein interactions (PPIs) to perform a function in a specific biological context87,88. 
PPIs play an important role in many cellular processes such as signal transduction, 
gene regulation, metabolic pathways, and disease mechanisms89. We study PPIs to 
understand the molecular functions of proteins, their interactions with other proteins 
and molecules, and their involvement in complex biological systems90,91. 
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There are many different databases that store PPI data derived from experimental 
and computational methods92,93. Some of the popular databases for PPIs are 
STRING94, BioGRID95, IntAct96, MINT97. These databases allow for searching, 
browsing, visualizing, analyzing, and downloading PPI data. 

PPI networks are graphical representations of PPI data, where nodes represent 
proteins and edges represent interactions. To highlight certain proteins of particular 
interest, we can study the topological properties of the PPI network, such as degree 
distribution, clustering coefficient, betweenness centrality, and modularity.92,98–100  

These approaches can also be used to identify functional modules or complexes of 
proteins that work together to perform a specific biological function or process. PPI 
networks can also be used to identify key proteins or “hubs” that have high 
connectivity or centrality in the network101,102. Hub proteins are often essential for 
the network integrity and functionality and may be involved in regulating cellular 
dynamics and responses, and tends to carry important biological information103–105. 

5.1.3.9 Correlation, co-expression, and conditional dependence 
Correlation measures the strength and direction of a linear relationship between two 
variables, such as the expression levels of two proteins106. The most commonly used 
metric is Pearson’s correlation coefficient, which ranges from -1 to 1. A value of 1 
indicates a perfect positive correlation, meaning that the variables increase or 
decrease together. A value of -1 indicates a perfect negative correlation, meaning 
that one variable increases as the other decreases. A value of 0 indicates no linear 
correlation between the variables. However, Pearson’s correlation assumes that the 
variables have a normal distribution and a linear relationship, which may not be true 
for omics data*. Therefore, robust correlation methods are sometimes preferable. 
One example is Spearman correlation, which ranks the values of the variables before 
calculating the correlation. This method is less sensitive to outliers and does not 
require a linear relationship. 

Co-expression refers to the phenomenon where two or more proteins have similar 
expression patterns across different conditions or samples. Co-expression can imply 
a functional relationship between the proteins, such as being part of the same 
biological pathway, participating in the same cellular process, or being regulated by 
the same set of transcription factors107–109. Co-expression analysis can help identify 
novel gene functions, gene-gene interactions, and gene set topology. 

Conditional dependence is a concept that extends beyond correlation and co-
expression. It captures the dependence between two variables given the information 

 
* Mass spectrometry-based proteomics data, like microarray-based transcriptomics data, tends to be 

approximately log-normally distributed278. RNA-seq data are discrete counts of reads that can be 
modelled by the Poisson distribution or its extensions, such as the negative binomial distribution 
or the generalized Poisson distribution279,280. 
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from other variables. For example, two proteins may be correlated or co-expressed 
in general, but not when another protein is present or absent. This can indicate a 
more direct or specific interaction or association between the proteins. 

One way to infer conditional dependencies from proteomic data is to use Gaussian 
Graphical Models (GGMs)110. They represent the variables as nodes and the 
conditional dependencies as edges in a network. While correlation matrices capture 
all pairwise linear associations, GGMs only retain the edges that indicate 
conditional dependencies among variables, given all other variables in the network. 
This makes the network sparser and more informative for inferring direct 
interactions or associations. 

5.1.3.10 Visualization and interpretation 
Proteomics studies produce massive, high-dimensional datasets that represent a 
snapshot of the cellular environment at a given time or condition. Visualizing and 
interpreting this data is both an art and a science, where the aim to extract 
meaningful information requires careful navigation. It has, for instance, been shown 
that nonsense data could yield “significant” biological predictions for canonical 
pathways, by chance111. There are a multitude of tools and pipelines for visualizing 
and interpreting omics data. A general assumption should be that all tools return 
their own outputs, which represent their frame of reference, but lack the perspective 
of other tools112. 

Transformation of data from numerical matrices into more tangible representations 
lets us comprehend and interpret our findings. While there can be countless 
variations of visual representations of omics data, some important principals for data 
visualization are to have simple figures with detailed captions, to include measures 
of uncertainty, and to include meaningful geometry and colors113. Visual 
representations, such as network graphs and heatmaps, can derive narratives about 
biological processes, molecular functions, and cellular dynamics. This, in turn, 
guides us to further investigations, and sparks new scientific inquiries. 
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5.2 Knee osteoarthritis 
Knee osteoarthritis (OA) is a chronic joint disease that affects the whole joint, 
including the articular cartilage, subchondral bone, synovium, menisci, and 
ligaments114. It is characterized by joint pain, stiffness, swelling, crepitus, reduced 
range of motion, and functional impairment115. Knee OA is also associated with 
structural changes in the joint, such as cartilage loss, bone remodeling, osteophytes, 
subchondral cysts, and meniscal damage (Figure 5), which can be detected by 
radiographic or magnetic resonance imaging (MRI) techniques116. However, there 
is often a poor correlation between the clinical symptoms and the radiographic 
findings of knee OA115,117. The diagnosis of knee OA is based on a combination of 
history, physical examination, and imaging tests, depending on the context and 
purpose of the assessment115. The etiology of knee OA is multifactorial and involves 
both genetic and environmental factors that interact to initiate and progress the 
disease114. 

5.2.1 Prevalence and socio-economic burden 
OA is the most common form of arthritis and one of the leading causes of chronic 
pain and disability worldwide118,119. According to the Global Burden of Disease 
Study, the number of prevalent cases of OA affected 528 million people in 2019, 
more than doubling from 248 million cases in 1990 and making it among the most 
prevalent diseases globally120,121. The prevalence of OA varies by geographical 
region, age, sex, and joint site. The highest prevalence of OA is found in Western 
Europe, North America, and Australasia, while the lowest prevalence is found in 
sub-Saharan Africa and South Asia122. The prevalence of OA increases with age, 
reaching a peak in the 55-64 years age group for both sexes122. Women have a higher 
prevalence of OA than men, especially after the age of 50 years123,124. The most 
commonly affected joints by OA are the knee, hip, and hand, with knee OA being 
the most prevalent and disabling form of OA118,121,122. In Sweden, the prevalence of 
OA was reported to be 26.6% among adults aged 45 years and older between, with 
a higher prevalence among women (30.5%) than men (22.4%)125. 

OA imposes a significant socio-economic burden on individuals, health systems, 
and society. The direct costs of OA include medical expenses for diagnosis, 
treatment, and management of the disease, such as consultations, medications, 
surgery, rehabilitation, and assistive devices126. The indirect costs of OA include 
productivity losses due to sick leave, early retirement, or disability119. 
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5.2.2 Risk factors and symptoms 
OA is a multifactorial disease that results from the interaction of genetic and 
environmental factors that affect the joint structure and function114. The most 
important person-level risk factors for OA are older age, female sex, obesity, genetics, 
and systemic diseases, such as diabetes, gout, or hemophilia 114,115,123,127–129. 

Older age is associated with cumulative exposure to mechanical stress, oxidative 
damage, cellular senescence, and reduced regenerative capacity of the joint 
tissues114,130. Obesity is a major modifiable risk factor for OA, especially in the knee, 
as it increases the mechanical load on the joint and induces metabolic and 
inflammatory changes that affect the joint homeostasis114,129. However, OA in joints 
not typically exposed to mechanical loading, such as hand-OA, is more prevalent in 
obese individuals131,132, suggesting OA is not only mechanically induced through 
obesity, but is also influenced by systemic factors (and could therefore be affected 
by metabolic diseases such as diabetes)133. Genetic factors can influence the risk of 
OA and may affect risk factors such as obesity and bone mass (although these 
mechanisms have not been well studied)134. While hip arthroplasty is strongly 
influenced by genetic factors, knee arthroplasty depends more on modifiable factors 
like BMI135. Several genes have been identified that influence the susceptibility and 
severity of OA, such as those involved in cartilage metabolism, bone formation, 
inflammation, and pain perception129. Systemic diseases can predispose to OA by 
altering the joint metabolism, immunity, or vascularization114. 

The most common joint-level risk factors for OA are joint injury, repetitive joint 
use, and joint malalignment114. Joint injury, which may account for 12% of all OA 
cases136 can result from trauma or inflammation that disrupts the integrity and 
stability of the joint structures114. Joint malalignment can increase the stress 
concentration on certain areas of the joint and accelerate the cartilage wear and 
tear114. 

The main symptoms of OA are pain, stiffness, swelling, crepitus (i.e. the popping, 
clicking, or crackling sound and sensation that occurs in the joint), reduced range of 
motion, and functional impairment115. Pain is usually intermittent and worsened by 
activity or mechanical loading123. Functional impairment can affect the mobility, 
independence, and quality of life of people with OA. OA can also cause 
psychological distress, such as depression or anxiety, due to chronic pain and 
disability115. 

5.2.3 Anatomy of the knee joint 
The knee joint is the largest and one of the most complex joints in the human 
body137. It consists of three bones: the femur, the tibia and the patella, which are 
connected by ligaments, tendons and muscles137. The joint surfaces are covered by 
articular cartilage, which has friction-reducing and load-bearing functions, offering 
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structural support and acts as a cushion between the bones to absorb shock137,138. 
Between the femur and tibia, there are two menisci, which are fibrocartilaginous 
discs that also act as shock absorbers and stabilizers of the joint137,139. The knee joint 
also contains a synovial membrane, which produces synovial fluid (SF) that 
lubricates and nourishes the joint tissues137. 

 

Figure 5. Illustration of a knee joint in health (left) and OA (right). 

5.2.4 Pathogenesis 
OA is a complex and heterogeneous disease that involves multiple biological 
processes and pathways that affect the whole joint140. The current understanding of 
OA pathogenesis is that it is initiated by a combination of mechanical and molecular 
factors that trigger a cascade of events that lead to joint damage and dysfunction141. 
The main events that occur during OA pathogenesis are inflammation, cartilage 
degradation, bone remodeling, synovial changes, and meniscal damage140,142,143. 

Inflammation is a key feature of OA that contributes to both the initiation and 
progression of the disease136,144. Inflammation can be triggered by mechanical stress, 
cartilage breakdown products, cytokines, chemokines, adipokines, or danger-
associated molecular patterns (DAMPs) that activate the innate immune system and 
induce the production of pro-inflammatory mediators, such as interleukin-1 beta 
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(IL-1β), or tumor necrosis factor alpha (TNF-α).144–146. These mediators can further 
amplify the inflammatory response and cause pain, swelling, and joint damage144. 

Cartilage degradation is a hallmark of OA that results from an imbalance between 
the anabolic and catabolic activities of the chondrocytes, the cells that maintain the 
cartilage matrix127,147. Cartilage degradation can be caused by mechanical stress, 
inflammation, oxidative stress, or enzymatic cleavage by MMPs or 
aggrecanases127,148. Cartilage degradation leads to the loss of proteoglycans and 
collagen fibers that provide the cartilage with its resilience and strength127. Cartilage 
degradation also exposes the subchondral bone to increased mechanical load and 
stimulates bone remodeling127. 

Bone remodeling is another important process in OA pathogenesis that involves the 
formation and resorption of bone tissue by osteoblasts and osteoclasts, 
respectively149,150. Bone remodeling can be influenced by mechanical stress, 
inflammation, growth factors, hormones, or cytokines149,151. Bone remodeling can 
result in subchondral sclerosis, osteophyte formation, subchondral cysts, or bone 
marrow lesions (BMLs) that affect the joint structure and function149. Subchondral 
sclerosis is the thickening and hardening of the subchondral bone plate that reduces 
its shock-absorbing capacity and increases the stress on the cartilage149. Osteophytes 
are bony outgrowths at the joint margins that can limit the joint range of motion and 
cause pain or nerve compression149. Subchondral cysts are fluid-filled cavities in the 
subchondral bone that can cause pain or fracture149. BMLs are areas of increased 
signal intensity on MRI that reflect bone edema or microdamage that can be 
associated with pain or cartilage loss149. 

Synovial changes are also common in OA and involve the inflammation, 
hypertrophy, fibrosis, or angiogenesis of the synovial membrane that lines the joint 
cavity144. Synovial changes can be induced by mechanical stress, cartilage 
fragments, cytokines, chemokines, or growth factors that stimulate the synovial cells 
to produce pro-inflammatory mediators, such as IL-1β, TNF-α, IL-6, or 
prostaglandin E2 (PGE2)144. These mediators can cause synovitis, SF accumulation, 
or synovial hyperplasia that contribute to joint pain, stiffness, or damage144. 

Another common condition affecting the knee joint is meniscal injury, which can 
be classified into traumatic or degenerative types152,153. Traumatic tears occur when 
a normal meniscus is subjected to an abnormal force, usually during sports or 
accidents that involve twisting or pivoting of the knee152,154,155. Traumatic tears are 
more common in younger individuals and often involve other structures of the knee, 
such as ligaments or cartilage152,154,155. Degenerative lesions occur when a weakened 
meniscus is subjected to a normal or near-normal force, usually due to aging or 
underlying OA152,154–156. Degenerative lesions are more common in older individuals 
and often affect both knees152,154–156. Meniscal injuries can cause symptoms such as 
pain, locking, clicking or catching of the knee, and can increase the risk of 
developing or progressing OA152,154–157. 
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5.3 Proteomics 
Proteins are the main functional components of biological systems, as they carry out 
most of the biochemical reactions and interactions that underlie cellular processes 
and functions158. To understand the molecular mechanisms and pathways that 
govern life, we need to measure and characterize the proteins that are present in a 
given biological sample, such as a tissue, a cell, or a biofluid. This is the aim of 
proteomics, the large-scale study of the protein content and composition of a 
sample159. 

5.3.1 From genes to proteins 
Proteins are encoded by genes, which are segments of deoxyribonucleic acid (DNA) 
that store the genetic information of an organism (Figure 6). DNA is organized into 
chromosomes in the nucleus of eukaryotic cells160, and consists of a long chain of 
four types of nucleotides: adenine (A), thymine (T), cytosine (C), and guanine (G). 
The sequence of nucleotides in a gene determines the sequence of amino acids in a 
protein, according to the genetic code161. Amino acids are the building blocks of 
proteins, and there are 20 different types of amino acids that can be combined in 
various ways to form different proteins. 

The process of protein expression involves two main steps - transcription and 
translation (Figure 6). Transcription involves the synthesis of RNA from DNA by 
RNA polymerases. Different types of RNA, like mRNA, tRNA, rRNA, and ncRNA, 
perform different functions in the cell162. mRNA transports genetic information 
from DNA to the ribosomes, where translation occurs. Ribosomes facilitate peptide 
bond formation between amino acids, while tRNAs recognize specific mRNA 
codons and add the corresponding amino acids to the growing peptide chain. As the 
ribosome moves along the mRNA, it matches each codon with its complementary 
anticodon on tRNA, and adds the amino acid carried by tRNA to the growing 
peptide chain160. 
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Figure 6. Central dogma of molecular biology. 

5.3.2 Beyond translation 
The peptide chain produced by translation is not yet a functional protein. It needs to 
undergo several modifications and interactions before it can perform its biological 
role. First, the peptide chain needs to fold into a specific three-dimensional shape 
that determines its function. The folding process is assisted by molecular 
chaperones, which are proteins that help other proteins to fold correctly and prevent 
aggregation163. Second, the peptide chain may need to be cleaved or spliced to 
remove or rearrange some segments. For example, many proteins have a signal 
peptide at their N-terminal end that directs them to their proper cellular location, 
such as the plasma membrane or extracellular environment. This signal peptide is 
usually removed after translation by signal peptidases164. Third, the peptide chain 
may need to be modified by adding or removing chemical groups or molecules165. 
These modifications are called post-translational modifications (PTMs), and they 
can affect the activity, localization, or interactions of proteins166. There are hundreds 
of different types of PTMs that have been identified in proteomics studies, such as 
phosphorylation, acetylation, methylation, glycosylation, ubiquitination, and 
proteolysis165. Fourth, the peptide chain may need to interact with other peptide 
chains or molecules to form complexes or assemblies167. Many proteins function as 
part of larger structures that consist of multiple subunits or domains that can be 
either identical or different. 
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5.3.3 Degradomics 
The ECM is constantly remodeled by proteases, which are enzymes that cleave 
peptide bonds in proteins. In OA, dysregulated proteolysis destabilizes the structural 
integrity of the ECM and generates pro-catabolic fragments.  

Degradomics is an emerging sub-discipline within proteomics that seeks to decode 
the interplay between proteases and their substrates, and understanding the catalytic 
mechanisms of proteases. 

In peptidomics*, enrichment protocols designed to enhance the detectability of 
specific classes of peptides, whether they are biologically active fragments like 
hormones and cytokines or biomarker-type peptides indicative of disease states. 
Commonly used enrichment protocols for such studies include ultracentrifugation, 
filtration, precipitation or other type of small peptide fragment enrichment168. The 
enrichment techniques are typically designed to target peptides with specific 
physiochemical properties, and are not equally suitable for all peptide classes. These 
protocols enhance the detection of smaller peptides, generally enabling detection of 
up to a thousand peptides. 

One such method is the terminal amine isotopic labeling of substrates (TAILS), 
which allows the selective capture and identification of N-terminal peptides. TAILS 
can reveal the endogenous peptidome and the proteolytic events in a given sample. 
For example, TAILS has been applied to investigate the degradome of knee OA 
cartilage169. 

In paper II, we used a protocol that eliminates enrichment selection of a specific 
subgroup of peptides. By studying the fragments/peptides of the of the proteins that 
remain in the pellet after ethanol precipitation, we were able to identify a larger 
number of peptides that was not cleaved by trypsin. 

5.3.4 Challenges in proteomics 
The complexity and diversity of proteins in biological samples pose challenges for 
proteomics. Proteins vary greatly in size, structure, charge, hydrophobicity, 
abundance, and modifications, and they can interact with each other and with other 
molecules in dynamic and context-dependent ways170. For example, in cartilage 
tissue, different types of collagens and proteoglycans have different molecular 
weights, structures, functions, and binding affinities171. Collagens and 
proteoglycans can also interact with each other and with other ECM components or 

 
* Peptidomics and degradomics are closely related fields within proteomics. Degradomics focuses on 

the system-wide study of proteases, substrates, and their resulting cleavage fragments. It aims to 
understand how proteolysis contributes to physiological processes and diseases. Peptidomics 
focuses more broadly on the identification and characterization of peptides that may or may not 
be the result of proteolysis. 
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signaling molecules in various ways that affect the mechanical and biological 
properties of the tissue172. Protein content and composition of a sample can change 
over time and in response to different stimuli or conditions, such as development, 
differentiation, disease, or treatment170. For example, in cartilage tissue, the 
expression and modification of collagens and proteoglycans can change during 
endochondral ossification or in response to mechanical loading or inflammation127. 
Therefore, proteomics requires advanced techniques and methods to separate, 
identify, quantify, and characterize proteins in a comprehensive and accurate 
manner. One of the most powerful and widely used techniques for proteomics is 
mass spectrometry (MS), which can measure the mass-to-charge ratio (m/z) of ions 
in a gas phase173. However, MS also generates large and complex datasets that 
require sophisticated data analysis, computational methods, software, and/or 
accessible analysis platforms and tools for researchers in proteomics. Data analysis 
involves several steps, such as preprocessing, peak detection, alignment, 
normalization, feature selection, identification, quantification, annotation, and 
interpretation174. Computational methods in proteomics span a range of algorithms, 
from statistical techniques that assess data quality to machine learning models that 
enable analysis of mass spectrometry results.175. Accessible analysis platforms and 
tools are the online or cloud-based resources that offer data storage, processing, 
sharing, visualization, and integration for proteomics research176,177. In the next 
sections, I will describe the fundamental concepts of MS and how it can be applied 
to different types of proteomics workflows. 

5.3.5 Mass spectrometry 
Mass spectrometry is an analytical technique that measures the m/z of ions in a 
sample. MS can provide information about the identity, quantity, structure, and 
interactions of molecules, such as proteins, peptides, metabolites, etc. MS is widely 
used in proteomics, as it can identify and quantify thousands of proteins and PTMs 
in a single experiment170. Bottom-up proteomics is a common approach used in 
proteomic research that involves breaking down proteins into smaller fragments 
called peptides, usually through enzymatic digestion, before they are analyzed178. 

5.3.5.1 Protein extraction 
Proteins are isolated from a biological sample, such as a cell, tissue, or fluid. Protein 
extraction can be performed using various methods, such as mechanical disruption, 
chemical lysis, or enzymatic digestion. Protein extraction can also be combined with 
fractionation or enrichment techniques, such as gel electrophoresis, 
chromatography, or immunoprecipitation, to reduce sample complexity and 
increase protein coverage179. 
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5.3.5.2 Protein digestion 
This is the process of breaking down proteins into smaller fragments, called 
peptides, using enzymes, such as trypsin, chymotrypsin, or Lys-C. Protein digestion 
can increase the solubility and ionization efficiency of proteins, as well as to 
generate peptides with specific termini that can be recognized by MS180. 

5.3.5.3 Liquid chromatography (LC) 
LC works by separating peptides based on their physicochemical properties, such 
as hydrophobicity, charge, or size. LC can improve the sensitivity and resolution of 
MS, as well as to reduce ion suppression and co-elution effects. LC can be 
performed using various modes and columns, such as reversed-phase (RP), ion-
exchange (IE), or hydrophilic interaction (HILIC) chromatography181. 

5.3.5.4 Ionization and fragmentation 
Peptides are then converted into gas-phase ions and generating smaller fragments 
from them. Ionization and fragmentation can be performed using different methods, 
such as electrospray ionization (ESI), matrix-assisted laser desorption/ionization 
(MALDI), collision-induced dissociation (CID), electron transfer dissociation 
(ETD), and electron-capture dissociation (ECD).182 

5.3.5.5 Acquisition methods  
Depending on the type of information and analysis required, different acquisition 
modes of mass spectrometry can be used. Data-dependent acquisition (DDA) is also 
known as shotgun proteomics, because it randomly selects the most abundant 
precursor ions (peptides) in each scan and fragments them to generate MS/MS 
spectra183. This mode is useful for identifying and quantifying as many peptides and 
proteins as possible in a complex sample, but it may miss low-abundant or co-
eluting peptides184. DDA data can be analyzed by matching the MS/MS spectra to a 
database of known peptide sequences or by using spectral libraries or de novo 
sequencing methods. Data-independent acquisition (DIA) is also known as 
sequential windowed acquisition of all theoretical fragment ion spectra (SWATH), 
depending on the instrument configuration. This mode aims to acquire MS/MS 
spectra for all possible precursor ions in a predefined mass range, regardless of their 
abundance or detection185. This mode is useful for generating comprehensive and 
consistent data sets that can be queried for any peptide of interest, but it requires 
high-resolution and high-speed instruments and sophisticated data analysis 
methods. DIA data can be analyzed by searching the raw or demultiplexed MS/MS 
spectra against a database or a spectral library, or by extracting the fragment ion 
chromatograms using targeted extraction methods186. 
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5.3.5.6 Computational analysis 
The spectra generated by MS are rich with information. Interpreting the spectra 
generated by MS is necessary to extract meaningful information from them which 
can eventually lead to biological insights. Computational analysis can involve 
various tasks and tools, such as spectrum deconvolution, peak picking, peptide 
identification, protein inference, quantification, PTM analysis, protein-protein 
interaction analysis, etc.158. 

5.3.6 Biomarkers 
Biomarkers are measurable indicators of a biological state or condition, such as a 
disease, a response to a treatment, or a risk factor. Biomarkers can be derived from 
various sources, such as genes, transcripts, proteins, metabolites, etc. Biomarkers 
can have applications in biomedical research and clinical practice, such as diagnosis, 
prognosis, prediction, monitoring, and stratification.187 

Proteomics is a powerful tool for biomarker discovery and validation, as it can 
identify and quantify proteins (and PTMs) that are associated with a biological state 
or condition. Proteomics can also provide information about the function and 
interactions of biomarkers, as well as their potential mechanisms of action. 
Proteomics can be applied to different types of biological samples relevant for 
biomarker research, such as serum, plasma, urine, saliva, and SF.188. 

Proteomics has been used to identify and validate biomarkers for knee OA, which 
can provide insights into the molecular mechanisms and clinical outcomes of the 
disease. Some well-studied biomarkers for knee OA are: 

Collagen Type I (COL1A1) 

Collagen type I is a major structural component of the meniscus in the knee joint, 
among other tissues189. The levels of COL1A1 fragments in SF can be an indicator 
of meniscal degradation as well as overall joint tissue remodeling. 

Collagen Type II (COL2A1) 

Collagen type II is the main form of collagen found in cartilage and is essential for 
cartilage integrity. In OA, cartilage breaks down, leading to the release of collagen 
type II fragments into the SF and bloodstream. These fragments serve as specific 
markers for cartilage degradation and can help in the assessment of disease severity 
and progression. 

Aggrecan (ACAN) 

ACAN is a large proteoglycan that provides the cartilage with its load-bearing 
properties190. Degradation of ACAN is one of the early events in OA development. 



39 

Monitoring the levels of aggrecan fragments in SF and serum could provide 
information on disease activity and progression191. 

Cartilage oligomeric matrix protein (COMP) 

This is a structural protein that is involved in the assembly and maintenance of 
cartilage matrix192. COMP is released into the SF and serum as a result of cartilage 
degradation. COMP levels are elevated in patients with knee OA compared to 
healthy controls or patients with other joint diseases193,194. 

Matrix metalloproteinase 3 (MMP-3) 

This is an enzyme that degrades various components of cartilage matrix, such as 
COL2A, ACAN, and proteoglycans. MMP-3 is produced by chondrocytes, 
synoviocytes, and inflammatory cells in response to mechanical stress or cytokines. 
MMP-3 levels are increased in the SF and serum of patients with knee OA compared 
to healthy controls or patients with other joint diseases. MMP-3 levels are also 
associated with disease activity, inflammation, and cartilage loss195. 

C-reactive protein (CRP) 

CRP is an acute-phase protein that is produced by the liver in response to 
inflammation or infection. CRP is a marker of systemic inflammation and increased 
CRP levels have been demonstrated as a disease progression predictor of knee 
OA196,197. 

Interleukin 6 (IL-6) 

IL-6 is produced by chondrocytes, synoviocytes, macrophages, and adipocytes in 
response to mechanical stress or cytokines. IL-6 levels are increased in the SF and 
serum of patients with knee OA compared to healthy controls or patients with other 
joint diseases198. IL-6 levels are also linked to disease activity, inflammation, 
cartilage degradation, bone remodeling, and metabolic disorders199. 

Tumor necrosis factor alpha (TNF-α) 

TNF-α is produced by chondrocytes, synoviocytes, macrophages, and adipocytes in 
response to mechanical stress or cytokines. TNF-α levels are elevated in the SF and 
serum of patients with knee OA compared to healthy controls or patients with other 
joint diseases. TNF-α levels are also connected to inflammation, cartilage 
degradation, bone remodeling, and metabolic disorders200–203. 

Circulating Cartilage Acidic Protein 1 (CRTAC1) 

Two recent large-scale studies have identified CRTAC1 as a predictor of OA 
progression204,205. Styrkarsdottir et al. identified the potential novel biomarker and 
found associations with both advanced OA, and future total joint replacement. 
CRTAC1 is a glycosylated ECM protein primarily produced in chondrocytes206. 
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5.3.7 Role of proteomics in OA research 
The pathogenesis of OA is affected by biological processes such as inflammation, 
matrix degradation, oxidative stress, cell death, and angiogenesis. To understand the 
molecular basis of OA and to discover biomarkers for its diagnosis, prognosis, and 
treatment response, it is important to analyze proteins from different sources that 
reflect the disease state and progression. 

One of the most commonly used tissues for proteomic analysis in OA is articular 
cartilage, which is the main target of OA damage. Articular cartilage consists of 
chondrocytes embedded in ECM rich in collagen and proteoglycans. As previously 
mentioned in this thesis, the degradation of this matrix by proteases such as MMPs 
and ADAMTS is a hallmark of OA. Proteomic analysis of articular cartilage can 
reveal the changes in the composition and turnover of the matrix components, as 
well as the activation of signaling pathways and inflammatory mediators in 
chondrocytes. Articular cartilage sampling can be performed by biopsy or 
arthroscopy, but both methods are invasive and may cause damage to the tissue. 
Articular cartilage sample preparation for proteomic analysis involves several steps, 
such as homogenization, solubilization, reduction, alkylation, digestion, and peptide 
extraction.207 

Another important tissue for proteomic analysis in OA is subchondral bone, which 
lies beneath the articular cartilage and provides mechanical and nutritional support 
to it. Subchondral bone undergoes structural and metabolic alterations in OA, such 
as sclerosis, cyst formation, and osteophyte growth. These changes affect the 
biomechanical properties of the bone and its interaction with cartilage, leading to 
increased mechanical stress and cytokine production. Proteomic analysis of 
subchondral bone can reveal the changes in bone remodeling processes, such as 
osteoclast and osteoblast activity, mineralization, angiogenesis, and innervation. 
Subchondral bone sampling can be performed by biopsy or arthroscopy, but both 
methods are invasive and may cause complications such as bleeding or infection. 
Subchondral bone sample preparation for proteomic analysis involves similar steps 
as articular cartilage, but with additional challenges due to the presence of calcium 
phosphate minerals that interfere with protein extraction and digestion.208 

The synovial membrane is a soft tissue that lines the joint cavity and produces SF, 
a viscous liquid that lubricates and nourishes the joint surfaces. The synovial 
membrane is involved in the inflammatory response in OA, characterized by 
synovial hyperplasia, fibrosis, vascularization, and infiltration of immune cells. The 
SF reflects the changes occurring in the synovium and other joint tissues, as it 
contains proteins derived from cartilage degradation, synovial inflammation, and 
blood leakage. Synovial membrane sampling can be performed by biopsy or 
arthroscopy and sample preparation for proteomic analysis involves similar steps as 
articular cartilage and subchondral bone.209 
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The meniscus is a fibrocartilaginous structure that acts as a shock absorber and 
stabilizer between the femur and tibia. The meniscus is prone to injury and 
degeneration in OA, resulting in tears, calcifications, and loss of function. The 
meniscus also contributes to the production of SF and participates in joint 
homeostasis. Proteomic analysis of the meniscus can reveal the changes in 
extracellular matrix (ECM) organization, biomineralization processes, and crosstalk 
with other joint tissues. Meniscus sampling can be performed by biopsy or 
arthroscopy, but both methods are invasive and may cause damage to the tissue or 
affect its biomechanical properties. Meniscus sample preparation for proteomic 
analysis involves similar steps as articular cartilage, subchondral bone, and synovial 
membrane.210,211 

The cruciate ligaments are collagenous connective tissues that connect the femur 
and tibia in the intercondylar area of the knee. They provide stability and balance to 
the joint during movement. Injury to the anterior cruciate ligament (ACL) is a 
common cause of post-traumatic OA, regardless of surgical reconstruction. The 
cruciate ligaments are also affected by degenerative processes in OA, such as 
collagen degradation, fibrosis, and vascularization. Proteomic analysis of the 
cruciate ligaments can reveal the changes in ECM organization, development of 
joint tissues, and biomechanical properties. Cruciate ligament sampling can be 
performed by biopsy or arthroscopy, but both methods are invasive and may cause 
complications such as bleeding or infection. Cruciate ligament sample preparation 
for proteomic analysis involves similar steps as articular cartilage, subchondral 
bone, synovial membrane, and meniscus.212 

Biofluids are important sources of proteins for proteomic analysis in OA. Blood 
(plasma or serum) is easily obtained by minimally invasive procedures213. Another 
common source is SF, which is in direct contact with many of the tissues and cells 
of the knee joint, and thus may contain specific biomarkers that are not detectable 
in blood214. However, SF sampling is more invasive than blood sampling and 
requires clarification by centrifugation to remove contaminating cells and 
hyaluronic acid before proteomic analysis215,216. SF also has a high dynamic range 
and inter-individual variability, which require adequate sample preparation and 
normalization217. The secretome, i.e. the proteins secreted by a tissue, is another 
potential source for biomarker discovery because secreted proteins are released into 
the extracellular space and may be detectable in body fluids218. The secretome can 
be derived from cartilage, chondrocyte, or meniscus explants that are stimulated by 
various factors related to OA pathogenesis, such as cytokines (paper III), 
mechanical stress, or oxidative stress219–221. The secretome can provide information 
about the protein processing, modification, interaction, and function that occur in 
response to these stimuli. 
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6 Aims 

Understanding the disease mechanisms that drive OA poses a considerable 
challenge that calls for a comprehensive and multifaceted approach to data analysis. 
Addressing this challenge, proteomics serves as a suitable approach, as it provides 
a “snapshot” of the proteome at a particular timepoint. 

This thesis focuses on the development and application of proteomic data analysis 
methods to explore the OA proteome. The overarching aim of this thesis is to 
develop and apply proteomic analytical methods to systematically explore 
proteolytic activity, protein abundance, and protein interactions across 
different stages of the disease. 

To achieve this aim, the following four key objectives were identified: 

I. Develop a comprehensive and user-friendly bioinformatics tool to streamline and
enhance the analysis of proteomics data in OA research.

II. Explore the proteolytic activity in synovial fluid of OA patients, highlighting
proteolytic enzymes' role in the disease and providing a deeper understanding of the
degradome's role in OA progression.

III. Establish an ex vivo model to elucidate early events in OA development,
particularly focusing on the role of cytokine-mediated proteomic alterations in the
meniscus tissue, thereby providing a functional understanding of the disease's
pathogenesis.

IV. Perform a comparative analysis of protein dependencies in SF among different
stages of OA to identify key proteins and subnetworks that play critical roles in
disease progression, thereby contributing to the identification of potential
biomarkers for OA.
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7 Results and Discussion 

7.1 Paper I - A platform for exploratory omics analysis 
A common requirement for performing downstream proteomic analyses is having 
knowledge of using a programming or scripting language, and having the 
computational experience to convert between data formats. ProteoMill offers 
codeless analysis of protein expression datasets and is designed to be an easy to use 
alternative to script-based analyses for life science researchers. The tool is a web-
based application that integrates data-upload, identifier conversion, quality control, 
differential expression, and network-based functional analysis into a single fast, 
interactive easy to use workflow.  

7.1.1 Core functionality and architecture 
The ProteoMill portal is developed using R Shiny222. It is hosted using Amazon Web 
Services (AWS), due to its capibility to adjust the server capacity depending on user 
activity. The AWS server instance used is EC2 of type t3.medium. The application 
was deployed to the server using R Shiny Server. 

A common problem with omics analysis tools is outdated annotation data223. In the 
current software, annotation data sources are automatically maintained and kept up 
to date. Annotation is available for multiple model organisms (Figure 7).  

7.1.2 User interface 
The user interface consists of a left-hand menu through which the user navigates 
through the analysis workflow. The data-upload section lets the user upload the 
main dataset and optional annotation data with a single click. Throughout the 
analysis, a task menu is dynamically updated with feature documentation and hints 
to progress. Additional documentation available at 
https://bookdown.org/martin_ryden/proteomill_documentation/. 
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7.1.3 Reproducibility 
Proteomill supports the use reproducibility tokens as a simple way to load the 
settings and database versions used in a previous experiment (Figure 7). When a 
user wants to save the settings used in an analysis, so that they or other researchers 
(who have access to the input file used) can reproduce the experiment, they may 
generate a unique key that allows to recover the current state and settings of the tool 
and its dependencies. 

Figure 7. The initial step of data import in Proteomill, showing organisms for which annotation data is 
available, and the reproducibility token field which allows users to recover settings from previous 
analyses. 

7.1.4 Differential expression analysis 
Two R-packages, limma and DESeq2 are implemented for differential expression 
analysis. Differential expression analysis is conducted by specifying two contrasts 
and choosing a paired or non-paired design. 

7.1.5 Visualization and functional analysis 
The development of ProteoMill was driven by the need to make proteomics data 
analysis accessible to a wider scientific community. ProteoMill offers multiple 
possibilities for reducing data complexity. The implemented PCA plots (Figure 8) 
and pathway-based categorizations (Figure 9) are effective for distilling large 
datasets into more manageable and interpretable formats. 

The sets of up- and downregulated proteins generated from differential expression 
are used to explore which pathways the proteins are over-represented in. The results 
are displayed as two separate tables for up- and down-regulation, both containing 
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the over-represented pathway name, its corresponding top-level pathway in the 
hierarchy, and a description of the relevance of the pathway. 

 

Figure 8. Principal component analysis (PCA), visualized as a three-dimensional plot (top), and scree 
plot, revealing the percentage of the total variance in the data that is accounted for by each principal 
component (bottom).  

 

Figure 9. Visualization of a protein-protein interaction network (left) and volcano plot (right). Both plots 
are annotated with pathway data from Reactome. A selection tool is used to inspect a smaller group of 
proteins in the volcano plot. This selection is mirrored in the network plot. 
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7.1.6 Case study 
We demonstrated the software’s capabilities on a previously published dataset that 
contained 638 proteins. Out of 638 initial proteins in the original dataset, 12 proteins 
had obsolete identifiers which were substituted to their updated equivalents. Data 
inspection revealed that the B3 samples clustered together, separate from B1 and 
B2. The results are in line with the findings by Folkesson et al. characterizing the 
same dataset224. 
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7.2 Paper II - Analysis of the SF degradome 
Degradomics is the study of the breakdown products of proteins, such as peptides, 
that result from the activity of proteases, which are enzymes that cleave proteins225. 
This field can provide insights into the molecular mechanisms and biomarkers of 
various diseases. SF is a lubricating fluid that fills the joint cavities and reflects the 
metabolic and inflammatory changes in the joint tissues. In this study, we performed 
a peptidomic analysis of SF from knee OA patients and healthy controls, using LC-
MS and DIA. 

We identified and quantified endogenously cleaved peptides that were differentially 
abundant between the two groups, and mapped them to potential cleaving proteases 
using the MEROPS database226 and an R-package we developed called proteasy227. 
We also performed pathway and network analysis to explore the functional 
implications of the differentially cleaved peptides and proteases. 

The results of this study reveal the complexity and diversity of the proteolytic 
activity in SF of knee OA patients versus controls. The identification and 
quantification of endogenously cleaved peptides from 69 host proteins suggest that 
OA is associated with increased degradation of not only ECM components, but also 
plasma proteins involved in various biological functions. The pathway analysis of 
the host proteins of differentially abundant peptides indicated that OA protein 
activity affects processes such as immune system, transport of small molecules, and 
hemostasis. 

7.2.1 An R-package for retrieving cleavage data 
Protease cleavages affect many vital physiological processes, and dysregulation of 
proteolytic activity is associated with a variety of pathological conditions. proteasy 
is an R-package available on Bioconductor, and allows for batch identification of 
possible proteases for a set of substrates (protein IDs and peptide sequences). This 
tool may be useful in peptide-centric analyses of endogenously cleaved peptides. 

This package utilizes data derived from the MEROPS database226, a manually 
curated knowledgebase with information about proteolytic enzymes, their 
inhibitors, and substrates. 

7.2.1.1 Using proteasy 
A fast way to find which possible proteases, if any, are annotated as cleaving actors 
for a substrate is by using the function searchSubstrate. Using the parameter 
summarize will return only a vector of reviewed proteases (if true), a table with 
details about each cleaving event (if false). A corresponding function, 
searchProtease, exists to find which (if any) substrates a protease cleaves. The 
function findProtease automatically maps the peptide sequences to the full-length 
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protein sequence and obtains the start- and end-positions for the peptide. Then, the 
positions are searched against the MEROPs database and matches are returned. The 
function browseProtease takes a UniProt or MEROPS ID and opens the MEROPS 
summary page which corresponds to that ID in a web browser. 

7.2.2 Main results and discussion 
One of the main findings of this study is the increased abundance of cleaved peptides 
from HRG, AHSG, and APOA1 in OA SF. These are plasma proteins that have 
multiple roles in inflammation, bone metabolism, and lipid transport, 
respectively228–231. The increased cleavage of these proteins may reflect a loss of 
their regulatory functions or a response to inflammation in OA. For example, HRG 
has been shown to modulate the complement system, coagulation cascade, and 
cytokine production229,232. AHSG is known to inhibit hydroxyapatite formation and 
bone mineralization233. APOA1 is the major component of HDL and plays a role in 
reverse cholesterol transport234. The degradation of these proteins may affect the 
homeostasis of the joint and contribute to OA pathogenesis. 

We also found an increased abundance of cleaved peptides from C3, FN1, and 
KNG1 in OA SF. These are proteins that are involved in complement activation, 
ECM remodeling, and regulation of serum peptides, respectively235–238. The 
cleavage of these proteins may indicate an enhanced inflammatory and catabolic 
activity in OA. For example, C3 is a key mediator of the complement system, which 
can induce cartilage damage, synovitis, and pain in OA239,240. FN1 is a glycoprotein 
that interacts with various ECM components and cell surface receptors, and 
modulates cell adhesion, migration, and differentiation241,242. KNG1 is a precursor 
of bradykinin, a potent vasodilator and pro-inflammatory mediator that can 
stimulate nociceptors and increase vascular permeability243,244. The degradation of 
these proteins may affect the structure and function of the joint tissues and may 
exacerbate OA symptoms. 

We identified 192 potential proteases that could cleave the differentially abundant 
peptides in our dataset, 11 of which were also detected in SF. The main protease 
families that accounted for most of the proteolytic events were metalloproteinases, 
cathepsins, and caspases. These proteases have been implicated in OA pathogenesis, 
as they can degrade the ECM of cartilage and other joint tissues, as well as modulate 
inflammatory and apoptotic pathways. We also found other proteases, such as 
chymase, elastase, granzyme, and plasminogen activator, that could cleave plasma 
proteins involved in hemostasis, coagulation, and fibrinolysis. These proteases may 
affect the vascularization and fibrin deposition in OA245,246. 

We performed pathway analysis of the host proteins of differentially abundant 
peptides and found 65 pathways with three or more differentially abundant proteins 
in each set. These pathways were mainly related to immune system (particularly 
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complement activation), transport of small molecules (especially lipoproteins), and 
hemostasis. These results suggest that OA protein activity affects not only the ECM 
of the joint tissues, but also the homeostasis of plasma proteins. The complement 
system is a key mediator of inflammation and tissue damage in OA. The lipoprotein 
metabolism is altered in OA and may contribute to lipid accumulation and oxidative 
stress in the joint. The hemostasis system is involved in angiogenesis and fibrin 
deposition in OA. 
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7.3 Paper III - An ex vivo explant model of the human 
meniscus 

The main objective of this study was to establish a human meniscus ex vivo model 
to study the meniscal response to cytokine treatment using a proteomics approach. 
We found that different cytokine treatments had effects on the release of proteins 
involved in inflammation, ECM degradation, and catabolism. We also observed 
zonal differences in the protein release profiles between the inner and outer regions 
of the meniscus. 

The most prominent effect of interleukin-1 beta (IL1) treatment was the 
upregulation of several inflammatory mediators, such as interleukin-6 (IL6), 
interleukin-8 (CXCL8), growth-regulated alpha protein (CXCL1), C-X-C motif 
chemokine 6 (CXCL6), and neutrophil gelatinase-associated lipocalin (LCN2). 
These proteins are known to play important roles in the recruitment and activation 
of immune cells, such as neutrophils and macrophages, which can further amplify 
the inflammatory response and contribute to tissue damage. IL1 also increased the 
release of MMPs, such as MMP1, MMP2, MMP3, and MMP9, which are involved 
in the degradation of ECM components. However, we did not observe a strong 
increase in the release of ECM proteins in response to IL1 treatment, suggesting that 
IL1 alone may not be sufficient to induce a strong catabolic effect in healthy human 
menisci explants. 

In contrast, we found that treatment with oncostatin M (OSM) + tumor necrosis 
factor alpha (TNF) or TNF + IL6 + soluble IL6 receptor (sIL6R) resulted in a 
marked increase in the release of ECM proteins (such as collagens, integrins, 
prolargin, tenascin, and versican). These proteins are essential for maintaining the 
structural integrity and biomechanical properties of the meniscus. The increased 
release of ECM proteins indicates that these cytokine combinations can induce a 
more pronounced catabolic effect than IL1 alone. This is consistent with previous 
studies showing that OSM and TNF can synergistically stimulate cartilage 
degradation and MMP expression in vitro and in vivo. Similarly, TNF and IL6 have 
been shown to cooperate in inducing cartilage catabolism and inflammation. The 
mechanisms underlying the synergistic effects of these cytokines may involve the 
activation of multiple signaling pathways, such as nuclear factor-kappa B (NF-kB), 
Janus kinase-signal transducer and activator of transcription (JAK-STAT), and 
mitogen-activated protein kinase (MAPK), which can regulate the expression of 
genes involved in inflammation and ECM metabolism. 
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7.3.1 Zonal differences 
We also observed zonal differences in the protein release profiles between the inner 
and outer regions of the meniscus (Figure 10). The inner region represents the 
avascular zone, while the outer region is vascularized. The inner region is more 
cartilage-like and has a higher content of proteoglycans, while the outer region is 
more fibrous and has a higher content of type I collagen. These differences may 
affect the susceptibility and response of the meniscus to cytokine stimulation. We 
found that some cytokine treatments had a stronger effect on the inner region than 
on the outer region, such as TNF + IL6 + sIL6R, which induced a higher release of 
ECM proteins and proteases in the inner region. Conversely, some cytokine 
treatments had a stronger effect on the outer region than on the inner region, such 
as OSM + TNF, which induced a higher release of inflammatory mediators and 
protease inhibitors in the outer region. These results suggest that different regions 
of the meniscus may have different regulatory mechanisms and feedback loops that 
modulate the cytokine-induced effects. 

 

Figure 10. Venn diagram illustrating the number of differentially abundant proteins estimated in 
treatments oncostatin M (OSM)+ tumor necrosis factor (TNF) and TNF+IL6+ soluble IL6 receptor 
(sIL6R). The figure represents comparisons of treatment versus controls in the MEX-3 experiment. 
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7.3.2 Time-series clustering 
We studied the time-dependent effect of treatments using time-series cluster analysis 
and found a reoccurring pattern of peak release on Day 9 in multiple treatments 
(Figure 11-12). This effect was not found to the same extent in the control group. 

Figure 11. Release profiles for upregulated proteins by cluster for treatments interleukin-1 (IL1) and the 
respective release patterns for control group. The highlighted line indicates the mean standardized 
abundance for proteins within a cluster. 
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Figure 12. Circular heatmap illustrating the standardized abundance of temporal inflammatory markers 
(represented on the radial axis) over four timepoints (represented as concentric rings). The markers are 
grouped based on their temporal expression clusters (identified through time-series analysis), with 
each cluster represented by a distinct color. The innermost ring represents a hierarchical tree, 
demonstrating the proximity of markers within each cluster. 

In summary, we have established a human meniscus ex vivo model to study the early 
events in OA development by proteomics. We have demonstrated that different 
cytokine treatments can induce different effects on the release of proteins involved 
in inflammation, ECM degradation, and catabolism. We have also revealed zonal 
differences in the protein release profiles between the inner and outer regions of the 
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meniscus. Our findings provide new insights into the molecular mechanisms 
involved in OA initiation and progression and may help identify potential 
biomarkers and therapeutic targets for OA. 

7.4 Paper IV - The interactome of early OA 
We performed a differential abundance analysis of SF proteins from healthy, mildly 
degenerated, and late-stage OA knees using the SOMAscan assay, which enabled 
us to measure over 6000 proteins in a single assay. We found 583 proteins that were 
upregulated in the late-stage OA group compared to the controls, including MMP1, 
MMP13, and IL6, which are known to be involved in cartilage degradation and 
inflammation in OA247–249. We also found several proteins that were downregulated 
in the late-stage OA group, such as NQO1, and ALDH2, which are involved in 
antioxidant defence and metabolism250–252. These results are consistent with 
previous studies that reported oxidative stress and metabolic dysregulation in OA 
joints253–255. Interestingly, we also identified some proteins that have not been 
previously associated with OA, such as ADH1C and GPD1, which are involved in 
alcohol metabolism and glycerol metabolism, respectively256,257. These proteins may 
represent novel biomarkers or therapeutic targets for OA. 

To explore the protein interactions and networks in SF from healthy and mildly 
degenerated knees, we applied GGMs to a subset of 760 proteins that had the largest 
absolute fold changes between these two groups. We identified 102 proteins that 
were involved in GGMs networks, which revealed the conditional dependencies of 
proteins given all other proteins. We observed that the network complexity was 
reduced in the mild degeneration group compared to the controls, suggesting a 
disruption of joint homeostasis and protein interplay in early OA. We also identified 
several proteins and subnetworks that had unique edges in either group, indicating 
differential connectivity. 

Among the proteins with unique edges in the healthy group, we found SLCO5A1, 
which is a member of the OATP family of solute transporters258. SLCO5A1 had the 
highest betweenness centrality score in this group, indicating its importance for the 
flow of information through the network. SLCO5A1 has not been previously linked 
to OA, but it may play a role in transporting substances that affect joint function and 
health, such as chemokines and metabolites. The downregulation of SLCO5A1 in 
the mild degeneration group may reflect impaired transport and signalling within 
the joint. Further studies are needed to elucidate the role of SLCO5A1 and other 
OATPs in OA. 

Among the proteins with unique edges in the mild degeneration group, we found 
four potential bottleneck proteins with high betweenness centrality scores: HIBCH, 
DHX8, A1CF, and PHF3. These proteins had an influence on the network structure 
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and function by mediating information between other proteins. HIBCH is involved 
in valine catabolism, DHX8 is involved in splicing events, A1CF is involved in 
RNA editing, and PHF3 is involved in transcription and RNA processing259–265. 
These proteins may reflect altered gene expression and regulation in early OA 
pathogenesis. To our knowledge, these proteins have not been previously reported 
to be associated with OA and warrant further investigation. 

We also detected several ECM proteins that were differentially abundant or 
connected between the healthy and mild degeneration groups. ECM proteins are 
expected to be prominent in OA due to their involvement in tissue degradation and 
remodelling. For example, we found ACAN, FN1, HAPLN1, and VWF to be 
downregulated in the mild degeneration group compared to the controls. These 
proteins are important for maintaining the structure and function of cartilage and 
meniscus266–271. We also found FBLN5 to have unique edges in the healthy group. 
FBLN5 is an ECM glycoprotein that modulates cell adhesion, migration, and 
differentiation272–274. FBLN5 may play a role in regulating joint homeostasis or 
inflammation in OA. 

In summary, we have performed a comprehensive proteomic analysis of SF from 
healthy and early-stage OA knees using the SOMAscan assay and GGMs. We have 
identified several proteins and networks that are differentially abundant or 
connected between these two groups, suggesting potential mechanisms for early OA 
pathogenesis. Our study provides new insights into the complex and dynamic nature 
of protein interactions in OA joints and may pave the way for better understanding 
and treatment of this disease. 

  



56 

7.5 Limitations 
This thesis covers a wide exploration of the molecular mechanisms underlying OA, 
and while each paper contributes a unique angle, there are important limitations that 
must be acknowledged. 

The methodologies involved in paper I have a strong focus on P-value estimation 
and thresholding. P-values are based on the assumption that the null hypothesis is 
true, which is often implausible in real world scenarios*. A more informative 
approach to express uncertainty is to use confidence intervals, which giving us a 
range within which the true value is likely to lie, thereby providing more context to 
the point estimate.275,276 

Paper II and paper III dealt with the issue of missing data in mass spectrometry 
analyses. While our approach attempted to maximize the use of available data 
(particularly the “qualitative analysis” in paper II), we recognize that this might 
introduce an arbitrary bias in the peptide/protein ranking. 

The sample sizes, particularly in paper III, are notably small. In paper IV, we made 
use of regularization and stability selection procedures to minimize this limitation. 

Mechanical loading is an important element in understanding the biomechanical 
aspects of OA277. While this was outside the scope of paper III, we acknowledge 
that the lack of this element was a limitation of the model. 

As discussed in paper II, the representation of biological pathways through 
differential peptides/proteins is both abstract and subject to interpretation, 
potentially not capturing the complexity of underlying biology. In an attempt to 
circumvent these limitations in paper IV, as well as to address known biases in 
pathway databases toward more commonly studied diseases at the expense of less-
explored areas like musculoskeletal diseases such as OA, we adopted a completely 
data-driven approach for this study. 

* The null hypothesis that there is no difference between two treatments or no effect of an
intervention is rarely true in a strict sense. There are usually many factors that influence the
outcome of interest, and for two treatments or interventions to be exactly identical in is unlikely; 
there is always some difference or effect, even if it is very small or negligible. 
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8 Concluding remarks 

Osteoarthritis remains a leading cause of disability and reduced quality of life 
worldwide. The disease affects an aging population, which becomes a growing 
challenge for our healthcare systems. Current therapies can only provide 
symptomatic relief, and there is no available cure. Furthermore, there are no reliable 
methods for early diagnosis and targeted treatment of OA, which underscores the 
need for a comprehensive understanding of its underlying mechanisms. 

Despite the promise of proteomics for unravelling the complex biological processes 
that drive OA, its application to OA research is still limited. Gaps in the availability 
of comprehensive bioinformatics tools, insights into early OA events and stage-
specific proteomic changes hamper the progress of OA research and prevent the 
development of effective diagnostic tools and treatments. 

To address these gaps, the present thesis aimed to make contributions to the field of 
computational proteomics in OA research. It developed a comprehensive 
computational framework tailored for OA, explored the understudied area of 
proteolytic enzymes, created a novel ex vivo model to study early OA, and identified 
potential biomarkers and therapeutic targets through comparative analyses. 

8.1.1 Contributions to the Field 
The work of this thesis introduces valuable tools for proteomics data analysis, 
provides new insights into the molecular mechanisms of OA, and offers 
methodological advancements that can serve as a foundation for future studies in 
the field. 

The first paper developed a comprehensive and user-friendly bioinformatics platform 
specifically designed for the streamlined analysis of proteomics data in OA research, 
filling a critical gap in the existing computational tools. In the the second paper, we 
presented a novel peptidomic analysis of SF in OA patients, identifying key proteases 
and their substrates. In the third paper, we establish a human meniscus ex vivo model 
to explore cytokine-induced catabolic processes. Lastly, in paper fourth paper, we 
used GGMs to identify proteins and subnetworks involved in early OA pathogenesis, 
including several proteins not previously associated with the disease. 

Collectively, the thesis offers both practical tools and novel insights that advance 
the field. 
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8.1.2 Future Perspectives 
The works in this thesis have provided new knowledge about the proteome and 
suggested potential biomarkers which will require further validation. The 
identification of key enzymes involved in the proteolytic degradation of SF proteins 
opens an opportunity for therapeutic intervention. Designing targeted inhibitors 
against these enzymes could be evaluated as potential treatments for OA. A 
modified implementation of the ex vivo model developed in this thesis can serve as 
a preliminary platform for testing the efficacy of these inhibitors. Further studies 
will be needed to assess the safety and specificity of these targets before advancing 
to clinical trials. 

Multi-omics data integration, involving genomics, transcriptomics, and 
metabolomics, together with proteomics data, could offer a holistic view of OA 
disease mechanisms and reveal novel targets. The ProteoMill portal, with its 
capabilities for analysing omics data, could be further improved to integrate multi-
omics datasets. Such an integrative approach would provide a more comprehensive 
view, potentially allowing us to reveal novel interactions and regulatory networks 
that may have been overlooked in these and other studies focused on single omics. 
Future versions of ProteoMill could also integrate more robust uncertainty measures 
such as confidence intervals and Bayesian methods, to provide a fuller picture of 
the data's variance and bring more nuance to the analytical findings. 

The introduction of GGMs in paper IV highlights the potential of computational 
models in understanding complex protein interactions. Future research could 
explore machine learning techniques such as deep learning models for identifying 
non-linear relationships in proteomics data. 

8.1.3 Conclusions 
This thesis lays the foundation for a multi-faceted approach to understanding OA 
through computational proteomics. It provides both functional insights and practical 
tools that future research may build upon. 
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Abstract

Summary: Functional analysis has become a common approach to incorporate biological knowledge into the ana-
lysis of omics data, and to explore molecular events that govern a disease state. It is though only one step in a wider
analytical pipeline that typically requires use of multiple individual analysis software. There is currently a need for a
well-integrated omics analysis tool that performs all the steps. The ProteoMill portal is developed as an R Shiny ap-
plication and integrates all necessary steps from data-upload, converting identifiers, to quality control, differential
expression and network-based functional analysis into a single fast, interactive easy to use workflow. Further, it
maintains annotation data sources up to date, overcoming a common problem with use of outdated information
and seamlessly integrates multiple R-packages for an improved user-experience. The functionality provided in this
software can benefit researchers by facilitating the exploratory analysis of proteomics data.

Availability and implementation: ProteoMill is available at https://proteomill.com.

Contact: martin.ryden@med.lu.se

1 Introduction

The large amounts of data generated from omics experiments have
stressed the need for methods to reveal and extract critical compo-
nents of dynamic biological systems in a readable manner, which
connects to the specific study question. Expression data that are
derived from high throughput analysis have multiple levels of bio-
logical features connected to it. In a real biological environment, the
physical, genetic, regulatory and functional properties of a molecu-
lar set work together in a response to environmental stimuli.
Holistically evaluating these attributes is a way to reveal the inter-
communication between these properties and to provide a biological
context. However, this task encompasses some impending chal-
lenges, including differences in biomolecule identification, data
dimensionality reduction, biological contextualization, statistical
analysis and data visualization and this differs among the various
types of individual datasets.

Existing omics analysis tools are typically specialized for individ-
ual parts of the analysis workflow and differences in data format
standards means the tools do not integrate well when used as part of
an analysis workflow. This requires the researcher not only to have
knowledge of the different individual software, but also knowing
how to format the generated output from one software for use in the
next software. This often poses a time-consuming task, particularly

for researchers with little computational experience or little experi-
ence with the software(s) in question and is prone to errors.

Omics analysis platforms such as Perseus (Tyanova and Cox,
2018) and Qlucore (Qlucore, 2021) offer thorough analytical and
explorative features, but require users to download and install their
software and is not open source. While there are many existing web-
based omics tools which are able to perform individual parts of an
analysis workflow (Efstathiou et al., 2017; Kuleshov et al., 2016;
Luo et al., 2017; Merico et al., 2010; Perlasca et al., 2019;
Schweppe et al., 2017; Zheng and Wang, 2008), many lack the abil-
ity to perform complete pipelines in fast, interactive web-environ-
ments. Reimand et al. lists the protocols and time consumption for
popular enrichment software, with the time expense ranging from
minutes to several hours (Reimand et al., 2019). In contrast, the run
time for ProteoMill functions are a few seconds at the most, as
described in Table 1.

Another important but often overlooked aspect for generating reliable
and biologically relevant results is the quality of annotation data, and, by
extension, a tool’s ability to maintain annotation data sources up to date.
Lina Wadi et al. reported that 67% of publications in their survey refer-
enced software using outdated annotation data (Wadi et al., 2016). Web-
based tools have an inherit advantage in that back-end data sources can
be dynamically updated without requiring manual action by the user
(such as downloading and installing software).
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Analysis of proteomic data faces additional challenges (Kirik
et al., 2012). Different gene- and protein level identifier types are
utilized in the various omics tools, which often require the research-
er to convert between identifier types before proceeding to the next
step of the analysis. This can result in loss of data since there can
exist one-to-many mappings between two identifier types or that an
identifier cannot be mapped between two identifier types (Reimand
et al., 2019). Furthermore, a frequent concern in mass spectrometry-
derived data is the abundance of missing values (Lazar et al., 2016;
Wang et al., 2017).

Thus, a tool that could help to transform the biological research
into integrated framework is preferred. The aim of this study is to de-
scribe a newly developed software that addresses many of the existing
shortcomings. The fundamental concepts of this software are to pro-
vide sets of well-integrated, easy-to-use and to a large extent auto-
mated functions for exploratory analysis of proteomic data.

2 Materials and methods

2.1 Architecture
ProteoMill runs as a web application using Shiny Server and is
hosted on Amazon Web Services. The software is developed in R
(version 3.6.1) and the interface was created using the R-package
Shiny (Chang et al., 2021) and shinydashboard (Chang and Ribeiro,
2018) (version 0.7.1) with a customized CSS theme. Animations
were created using jQuery and the library animejs. Plotly (Plotly
Technologies Inc., 2015), ggplot2 (Wickham, 2009), heatmaply
(Galili et al., 2018), networkD3 (Allaire et al., 2017) and
visNetwork (Almende et al., 2019) were used for plotting.

2.2 Identifier conversion
The Bioconductor packages AnnotationDbi (Pagès et al., 2020) and
ensembldb (Rainer et al., 2019) was used for converting between
identifiers. The identifier type of the user’s uploaded data is auto-
matically recognized and converted to four different identifier types
(where applicable). This way, the user can choose to display protein
labels as any of the five identifier types, but do not need to worry
about manually converting between identifiers.

2.3 Data quality control
Principal component analysis (PCA) was implemented using the R-pack-
age stats. Another package, mixOmics, was used for multilevel PCA.

2.4 Differential expression analysis
Two R-packages, limma (Ritchie et al., 2015) and DESeq2 (Love
et al., 2014) were implemented for differential expression analysis.
Each package is commonly used for fitting gene-wise linear models
to expression data. limma was originally developed with a primary
focus on the analysis of microarray data, while DESeq2 for the ana-
lysis of RNA-seq data and is based on the negative binomial
distribution.

Differential expression analysis is conducted by specifying two
contrasts and choosing a paired or non-paired design. The results
are evaluated by inspecting the table in the ‘Differential expression’
tab.

The results are displayed as estimated by the specific software,
using the software’s default settings for shrinkage parameters, cor-
rection for multiple testing, significance level and etc. For example,
the correction for multiple testing is done using the Benjamini–
Hochberg method and is applied to the tests performed within one
run of the analysis and not with respect to all tests performed within
one family of hypotheses in a study, which sometimes may be mis-
leading (Ranstam, 2016). The user needs to verify if these setting are
appropriate for the specific analysis done.

2.5 Functional enrichment and network analysis
The hypergeometric distribution was used to calculate the probabil-
ity of protein list overlap.

P ¼
ðM

x
ÞðN �M

n� x
Þ

ðN
n
Þ

(1)

In this formula, N is the total number of proteins in the back-
ground distribution, M is the number of proteins in the background
distribution annotated to a pathway, n is the total number of
selected proteins of interest and x are the proteins of interest anno-
tated to a pathway.

Pathway data and interaction data are dynamically collected
from Reactome (Fabregat et al., 2018) and STRING (Szklarczyk
et al., 2015) (https://reactome.org/download-data). MD5sum hashes
are used to ensure that the local database is up to date.

For each entry in the main pathway data file, the top-level parent
pathway was annotated. This was done by creating a directed acyclic
graph object using the R-package igraph (Csárdi and Nepusz, 2006).

2.6 Data sources
An important aspect of this software is to maintain data sources up
to date. This is done by using an automated workflow at a bi-
monthly interval. Data are collected from the two primary data
sources, Reactome (Fabregat et al., 2018) for pathway data and
STRING (Szklarczyk et al., 2015) for protein interaction data.
These data are then structured to a predefined format, making it
possible to integrate them in the analysis.

3 Results

The presented software, ProteoMill, proposes a unique approach to
conducting explorative analysis of proteomics data. The data visualiza-
tion capabilities present in this software are designed to make it possible
even for researchers without any particular computational training to
gain insights about the biological meaning of their data. Many of the
graphical components are interactive, which is a useful feature for ana-
lysing protein interactions and selecting subnetworks of interest.

A common goal in many of ProteoMill’s functionalities is to re-
duce data complexity, and to provide a framework for extracting
elements of biological relevance. PCA reduces a dataset of hundreds
or thousands of expression datapoints into a single datapoint for
each condition, plotted in 2–3 principal components, which in turn
describes the dimensions with largest variability. The datapoints
cluster together based on the similarity of their expression profiles.

Categorizing proteins into biological entities, described as path-
ways, is another way to reduce complexity and make sense of one’s
data. Network graphs produced from interaction data can be diffi-
cult to interpret. In ProteoMill, pathways are used to categorize and
label groups of interacting proteins, and as a way to inspect subnet-
works based on these common biological themes.

The integrated enrichment- and network analysis provides a
way for users to simultaneously explore functional analysis output
and interaction data, and this feature has been specifically designed
to easily identify and select subnetworks of interest for further ana-
lysis.

3.1 Reproducibility
ProteoMill supports the use of reproducibility tokens as a simple
way to load settings and database versions from a prior session. The
token contains information about all user defined settings that affect
the outcome of the analysis—every statistical result and its graphical
representations. The token also contains an MD5sum hash for the
uploaded dataset and warns the user if the uploaded file is not iden-
tical to the file used in the previous session.

3.2 Performance
To assess the performance of ProteoMill, we measured the execution
speed of its most prominent functions directly on the server (Table 1),
using a publicly available dataset consisting of 12 samples and 12 320
proteins (Wertheim et al., 2009). The time elapsed for rendering plots
depends on the client-side machine and browser. The column labeled
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‘Exec. Time’ describe the elapsed time of server-side calculations/data
sub-setting operations and the column ‘Total time’ also describes the
rendering time as measured on a 2018 MacBook Pro (2.2 GHz 6-
Core Intel Core i7).

4 Discussion

The integrated features in this software provide powerful visualiza-
tion strategies for the exploration of omics data, with a particular
focus on the management and manipulation of proteomics data. By
using this platform, researchers can expect to discover biologically
relevant rendering of their data through results aggregated from reli-
able and up-to-date data sources.

The software offers innovative strategies to interactively explore
quantitative proteomics data in a comprehensive workflow from
data-upload to network analysis. It has a strong focus on well-main-
tained data sources, computational efficiency and user-friendliness.

Importantly, ProteoMill utilizes many existing R packages for
statistical analysis and pathway annotation that are standard in the
field. However, these methods are strongly focused on estimation of
P-values and classifications of results based on P-value thresholds.
This is an unfavorable approach to use of statistical methods and
there is a need to move further in better estimation methods and
expressing uncertainty (Benjamin et al., 2018).
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(Vetenskapsrådet), grant number 542-2014-2348’ and ‘Kockska stiftelsen för

medicinsk forskning (Fromma)’.

Conflict of Interest: none declared.

Data availability

The tool itself is available on https://proteomill.com/. All demonstrational

data can be downloaded directly from the website by clicking Demo data,

selecting a dataset and clicking ‘Download’.

Code availability

The source code is available at https://github.com/martinry/ProteoMill/.

References

Allaire,J.J. et al. (2017) NetworkD3: D3 JavaScript network graphs from R.

Last accessed 23 April, 2021.

Almende, B.V. et al. (2019) visNetwork: network visualization using ‘vis.js’ Library.

Last accessed 23 April, 2021.

Benjamin,D.J. et al. (2018) Redefine statistical significance. Nat. Hum.

Behav., 2, 6–10.

Chang,W. et al. (2021) Shiny: web application framework for R. Last accessed

23 April, 2021.

Chang,W. and Ribeiro,B.B. (2018) shinydashboard: create dashboards with ‘Shiny’.

Last accessed 23 April, 2021.

Csárdi,G. and Nepusz,T. (2006) The igraph software package for complex

network research.

Efstathiou,G. et al. (2017) ProteoSign: an end-user online differential proteo-

mics statistical analysis platform. Nucleic Acids Res., 45, gkx444.

Fabregat,A. et al. (2018) The Reactome pathway knowledgebase. Nucleic

Acids Res., 46, D649–D655.

Galili,T. et al. (2018) Heatmaply: an R package for creating interactive cluster

heatmaps for online publishing. Bioinformatics, 34, 1600–1602.

Kirik,U. et al. (2012) Multimodel pathway enrichment methods for functional

evaluation of expression regulation. J. Proteome Res., 11, 2955–2967.

Kuleshov,M.V. et al. (2016) Enrichr: a comprehensive gene set enrichment

analysis web server 2016 update. Nucleic Acids Res., 44, W90–W97.

Lazar,C. et al. (2016) Accounting for the multiple natures of missing values in

label-free quantitative proteomics data sets to compare imputation strat-

egies. J. Proteome Res., 15, 1116–1125.

Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome Biol., 15, 550.

Luo,W. et al. (2017) Pathview Web: user friendly pathway visualization and

data integration. Nucleic Acids Res., 45, W501–W508.

Merico,D. et al. (2010) Enrichment map: a network-based method for gene-set

enrichment visualization and interpretation. PLoS One, 5, e13984.

Pagès,H. et al. (2020) AnnotationDbi: manipulation of SQLite-based annota-

tions in Bioconductor. Last accessed 23 April, 2021.

Perlasca,P. et al. (2019) UNIPred-Web: a web tool for the integration and visu-

alization of biomolecular networks for protein function prediction. BMC

Bioinformatics, 20, 422.

Plotly Technologies Inc. (2015) Collaborative Data Science. Montréal, QC:
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bUsing 1356 nodes and 17 718 edges.
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Abstract

Synovial fluid (SF) may contain cleavage products of proteolytic activities. Our aim

was to characterize the degradome through analysis of proteolytic activity and dif-

ferential abundance of these components in a peptidomic analysis of SF in knee

osteoarthritis (OA) patients versus controls (n = 23). SF samples from end-stage knee

osteoarthritis patients undergoing total knee replacement surgery and controls, that

is, deceased donors without known knee disease were previously run using liquid

chromatography mass spectrometry (LC-MS). This data was used to perform new

database searches generating results for non-tryptic and semi-tryptic peptides for

studies of degradomics in OA.We used linear mixed models to estimate differences in

peptide-level expression between the two groups. Known proteolytic events (from the

MEROPS peptidase database) were mapped to the dataset, allowing the identification

of potential proteases andwhich substrates they cleave.We also developed a peptide-

centric R tool, proteasy, which facilitates analyses that involve retrieval and mapping

of proteolytic events. We identified 429 differentially abundant peptides. We found

that the increased abundance of cleaved APOA1 peptides is likely a consequence of

enzymatic degradation bymetalloproteinases and chymase.We identifiedmetallopro-

teinase, chymase, and cathepsins as themain proteolytic actors. The analysis indicated

increased activity of these proteases irrespective of their abundance.
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degradomics, osteoarthritis, peptidomics, proteomics, synovial fluid
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1 INTRODUCTION

Osteoarthritis (OA) is a degenerative joint disease and a common

cause of joint damage. It is especially common in middle-aged and

elderly people and is estimated to affect more than 25% of adults

[1]. Currently there are no therapies which can cure or prevent the

disease. The pathological changes that characterize knee osteoarthri-

tis (OA) are typically the gradual breakdown of articular cartilage,

low-grade inflammation of the synovium, bone alterations, and menis-

cus degeneration [2]. Although many factors contribute to the dis-

ease progression, proteases, and inflammatory cytokines are consid-

ered a main contributor to the catabolic processes of OA, including

interleukin 1𝛽 (IL-1𝛽), tissue necrosis factor-𝛼 (TNF-𝛼), IL-6, IL-12,

IL-15 contributing to the increased expression of matrix metallo-

proteinases (MMPs), which in turn drive extracellular matrix (ECM)

degradation [3–6].

Using targeted approaches limited to specific proteases have pre-

viously been reported to be involved in the progression of OA [4, 7].

However, a screening approach that analyses all the active proteases

has to the best of our knowledge not been reported. Thus, the rela-

tive abundance of peptides in OA and its associated protease activity

remains understudied. Further research in this area is needed to better

understand the role of proteases in OA disease progression.

Synovial fluid (SF) is in direct contact with cartilage, synovium, and

meniscus in the joint cavities where it acts like a lubricant by reducing

friction and has additional metabolic and regulatory functions [8].

Changes in SF composition has previously been described to be

associated with joint disease [9–11] but only few proteomics studies

comparing SF composition in kneeOA patients versus healthy controls

exist [12–17].

Peptidomics can provide information regarding the proteolytic

activity that generated the observed endogenously cleaved protein

fragments [18]. The use of quantitative peptidomics allows studies

on relative peptide levels as a result of an increased or decreased

proteolytic activity. The standard peptidomics approach is to isolate

peptides from the rest of the protein bulk, for example, by ethanol pre-

cipitation, where smaller peptides stay in the supernatant while larger

peptides and proteins end up in the protein pellet, or by ultrafiltration

where the filtrate contains the peptidome. This usually results in very

few stable peptides that could be further used in a quantitativemanner

[19, 20]. Studying the cleaving sites of relatively intact proteins may be

seen as a lost treasure that is usually overlooked in proteomics due to

the need for artificial cleavages, usually by trypsin, to be able to detect

peptides with a bottom-upmass spectrometry (MS) method.

We hypothesized that endogenously cleaved protein fragments in

SF could reflect the changed protease activity and provide impor-

tant new insights about the OA disease process. Thus, our aim was to

characterize the degradome of human knee SF in knee OA versus con-

trols. Specifically, we aimed to (1) identify and quantify endogenously

cleaved peptides potentially involved in the OA process, (2) identify

proteases whose proteolytic activity may impact the host proteins of

these peptides.

Significance of the Study

This study provides a broad array of differentially abundant

endogenously cleaved peptides and their potential cleaving

actor in human SF. This study demonstrates that the pro-

teolytic activity of the predicted proteases extends beyond

the extracellular matrix of the surrounding tissues and can

also affect factors such as chylomicron assembly potentially

leading to a hampered homeostasis.

2 MATERIALS AND METHODS

2.1 Human synovial fluid samples

In this study we reused the raw MS data files from a previous study

[14] to extract semi- and non-tryptic peptide data. Briefly, the raw files

were generated fromSFobtained fromend-stagemedial compartment

kneeOApatients undergoing knee arthroplasty in the year 2017 in the

Skåne region, Sweden, (n = 11, age range 55–80 years, eight women

and three men) and deceased (between year 2017 and 2018, from the

same geographical area as the patients) human donors without known

chronic knee disease (n = 12, age range 19–79 years, five women and

seven men) [14]. The latter group will hereafter be referred to as con-

trols. Informed consent has been obtained for all samples included in

this analysis. The sample collection and analysis have been approvedby

the ethical review committee of Lund and have been carried out in

accordancewith relevant guidelines and regulationsby theDeclaration

of Helsinki principles. Only SF samples in which we did not detect visi-

ble blood contamination were included. One of the original 13 control

samples was discarded due to a random error during the identification

search in Peaks Studio X.

2.2 LC-MS/MS proteomics

The samples were analyzed using a nanoLC-system (EASY-nLC 1000)

coupled to a mass spectrometer (Thermo Scientific Q-Exactive HFX™)

using data-independent acquisition (DIA) [14]. The raw MS files has

been deposited to ProteomeXchange Consortium via the PRIDE part-

ner repository with the dataset identifier PXD023708. In the refer-

enced study we reported analysis of proteomics composition based

on tryptic peptides. In the current study, we focus on a new aim, tar-

geting endogenously cleaved peptides, that is, semi- and non-tryptic

peptides only. For this purpose, we reused the raw MS data and

searched it with no enzyme specification so that semi-tryptic and non-

tryptic peptides could be extracted. The MS data was searched in the

Peaks Studio X software with non-specific cleave sites specified, and

post-translational modifications carbamidomethylation (C), oxidation

(M), and deamidation (NQ) were selected. Abundances were extracted
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Label-free 
quan�fica�on

OA (n=11)
Control (n=12)

Missing values filtering

Selec�on of 
semi- and non-
tryp�c pep�des

18236 pep�des
(1476 proteins)

12098 pep�des
(1187 proteins)

Protease 
mapping

Differen�ally 
abundant

954 proteoly�c 
events

Quan�ta�ve 
analysis

1008 pep�des
(73 proteins)

Qualita�ve 
analysis

683 pep�des
(115 proteins)

429 pep�des
(69 proteins)

11 cleaved differen�ally 
abundant pep�des 

(whose termini matches 
known cleavages)

Semi-tryp�c: pep�des with one 
tryp�c (R|K) and one non-tryp�c end 
residue. Example:
R.HTFMGVVSL
Q.FEGSALGK

Non-tryp�c: pep�des with two non-
tryp�c end residues. Example:
Q.LNDFLQEYGTQGC

Defini�ons

F IGURE 1 Schematic overview of the study.

usingFDRsettingspeptide−10lgP>=15, protein−10lgP>=20,PTM

Ascore > = 0. Only peptide sequences with one or more non-tryptic

terminus were used (Figure 1). The data were normalized to reduce

technical biases using quantile normalization in the NormalyzerDE

R-package [21].

2.3 Statistical (quantitative) analysis

The inclusion criterion for the quantitative analysis was for a peptide

to be quantified in at least seven samples in each group. After filter-

ing for missing values, 1008 peptide sequences remained and were

included in the quantitative analysis (Figure 1). We conducted the sta-

tistical analysis using mixed linear regression models in R using the

lme4 package on base-2 log-transformed intensity as the response.

A separate model was fitted to each protein, including all peptides

from this protein. Age, sex, disease status, and peptide were used

as fixed effects terms with interactions between disease status and

peptide. The subject was included as random effects term. Contrasts

between groups (OA vs. controls) were specified using the emmeans

package and are reported with 95% confidence intervals based on

restricted maximum likelihood estimates using the Kenward-Rogers

method for estimation of degrees of freedom. Peptides that had a 95%

confidence interval of the base 2 log fold-change not spanning zero

were considereddifferentially abundant.Although the comparisonwas

made on the peptide level, much of the biological meaning is found on

the protein level. Therefore, we mainly describe and emphasize the

“host protein,” that is, the annotated protein representing a peptide

used in the analysis. Given the exploratory nature of the study and

the use of mixed models that minimize the multiplicity problem [22],

we did not apply any further corrections for multiplicity, but rather

we report all derived estimates to inform future studies and meta-

analyses.

2.4 Qualitative analysis

In the set of peptide sequences with fewer than seven quantified

samples in either group, we identified 683 peptides (115 proteins) of

interest that were used in a qualitative analysis (Figure 1). The pep-

tides were ranked based on the difference in the number of samples

they had been quantified in, that is, having a non-missing value. For

example, a sequence quantified in eleven OA samples and only in one

control sample, or vice versa, would have a high rank. Host proteins

of peptides with an absolute difference in the number of quantified

samples greater than or equal to seven were defined as qualitatively

differentially abundant.

2.5 Protease mapping

We used the protease database MEROPS [23] to identify proteolytic

cleavage sites in the dataset. The entire set of SQL statements used

to construct the MEROPS database was downloaded from https://ebi.

ac.uk/pub/databases/merops/current_release/meropsweb121.tar.gz

on April 10, 2022. We exported the SQL table Substrate search in text

format. Only human entries were kept, totaling 5188 rows of prote-

olytic events, 1678 unique proteases, and 15168 unique substrates.

We mapped MEROPS IDs to Uniprot accessions and Gene names

using the human reference proteome downloaded from the Uniprot

website (https://www.uniprot.org/proteomes/UP000005640) on

April 13, 2022. In the SF dataset, for each peptide sequence, the

residue numbers (start and end position) of the protein sequence

where cleaving occurred was annotated. 12,098 peptide sequences

were used as input. The start and end cleavage positions were further

mapped to the residue number of known cleavage sites in theMEROPS

database. That resulted in a dataset containing information on the

substrates, proteases, cleaved residue and their position, and the

 16159861, 2023, 15, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/pm

ic.202300040 by M
artin R

ydén - L
und U

niversity , W
iley O

nline L
ibrary on [06/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 11

peptide sequences. The MEROPS substrate names were converted to

UniProt IDs and annotated as reviewed (UniProtKB/Swiss-Prot) or

unreviewed (UniProtKB/TrEMBL), referring to their level of curation

and annotation in the UniProt knowledgebase. The proteases that

were extracted from the MEROPS database were further searched

against the current dataset to be able to identify which proteases that

actually could be detected in this cohort. These proteases will be from

here on referred to as “found in SF.”

2.6 R package “proteasy”

To facilitate the workflow and reproducibility of this and future analy-

ses, the first author (MR) developed an R-package, which is available

on GitHub (https://github.com/martinry/proteasy) and was accepted

to Bioconductor on June 28th, 2022. Themain function, findProteases,

takes a set of UniProt accessions, peptide sequences, and name of

studied organism as input, and outputs the equivalent of Tables S1–S3

of this manuscript, detailing the proteases, substrates, and cleavages

of potential relevance for the input. Full documentation of the pack-

age is available in the package manual, with examples provided in the

accompanied vignette.

2.7 Pathway and network analysis

Functional analysis of pathways was conducted using a local database

containing pathway data from REACTOME [24] and using a cus-

tom script for pathway analysis from a previously published study

[25]. Inclusion criteria for pathway analysis was host proteins whose

peptides were differentially expressed, as previously defined. The

“background proteome” was set to host proteins of all identified pep-

tides in the dataset. Only sets of differentially abundant proteins larger

than three were included.

Proteases and substrates were also visualized as an interaction net-

work using the igraph [26] library in R. Here, we included all proteases

found in SF in the current dataset, the substrates they cleave, andanno-

tated (where applicable)whether the protein’s abundance increased or

decreased, according to the definitions stated above.

3 RESULTS

3.1 Quantitative analysis

Usingourdefinitions for determiningdifferential abundance,wherewe

aggregated the results of quantitative andqualitative analysis,we iden-

tified 429 peptides (from 69 host proteins) as differentially abundant

(Figure2, Table S4andS5). In thequantitative analysis 271peptides (59

proteins) were differentially abundant between OA and normal group

(Table S4). In this set, 162 peptides (37 proteins) were increased, and

109 peptides (30 proteins) were decreased (Figure 2). Host proteins of

the most increased peptides (log 2 FC > = 2.5) were histidine-rich gly-

coprotein (HRG), alpha-2-HS-glycoprotein (AHSG), and apolipoprotein

A1 (APOA1). Another set of host proteins of highly increased pep-

tides (2 < log 2 FC < 2.5) were fibronectin (FN1), kininogen-1 (KNG1),

Inter-alpha-trypsin inhibitor (ITIH1), Apolipoprotein B (APOB), and

complement C3 (C3).

3.2 Qualitative analysis

In the qualitative data analysis, the largest differencewas observed for

HRG, plasminogen (PLG), FN1, AHSG and inter-alpha-trypsin inhibitor

(ITIH2) that were found in OA but not control samples, and decorin

(DCN) and extracellular superoxide dismutase (SOD3) found in control

samples but not in OA samples (Table S5).

3.3 Protease mapping

We identified entries corresponding to 954 proteolytic events (Table

S3) based on our mapping of peptide ends to the MEROPS database.

A majority, 736 cleaved at the N-terminal position. One hundred

ninety-two proteases (57 reviewed) were identified as potentially

cleaving actors (Table S2). Out of those, 11 proteases were also found

in SF (Figure 2), one of which complement factor B (CFB) contains

peptides increased in both the quantitative and qualitative analysis.

Fifty-seven proteases (corresponding to 243 proteolytic events) had

status “reviewed.” The cleaving activity of these proteases were anno-

tated for 61 substrates (Table S1). Theprotease families that accounted

for most of the 243 proteolytic events were metalloproteinases (56

events—about 23%), cathepsins (15 events—about 6%), and caspases

(10 events—about 4%).

We found 33 reviewed proteases potentially acting on substrates

of differentially abundant peptides (Table S7). Among these were

metalloproteinases—MMP1, MMP2, MMP3, MMP7, MMP9, MMP8,

MMP11, MMP12, MMP14, MMP26, and ADAMTS5 (ADAMTS5);

caspases—CASP3, CASP4, and CASP6; cathepsins—CTSB, CTSD,

CTSE, and CTSG; calpains—CAPN1 and CAPN2; carboxypeptidases—

CPN1, CPB2, and CPM. Additional proteases were CELA1, CFB,

CMA1, ELANE, GZMB, KLK1, MEP1A, MEP1B, PLAU, and PREP. No

cleaving proteases were found acting on the most highly increased

host proteins HRG or AHSG. Cleaving proteases acting on APOA1

were chymase (CMA1), macrophage metalloelastase (MMP12) and

matrilysin (MMP7), but neither of these proteases were found in

SF. C3 was cleaved by nine proteases, four of which were detected

in SF. FN1 was cleaved by 20 proteases, one of which, MMP2

was detected in SF. KNG1 was cleaved by 35 proteases, three

of which; cathepsin D (CTSD), carboxypeptidase N catalytic chain

(CPN1), and carboxypeptidase B2 (CPB2) were detected in SF

(Figure 3).

The qualitatively increased proteins with annotated cleaving events

were FN1 (75 events mainly involving ELANE, MMP2, MMP8, MMP9,

MMP12, A disintegrin and metalloproteinase with thrombospondin

motifs 5 but also multiple instances of unreviewed proteases highly
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F IGURE 2 Differentially abundant peptides (based solely on the quantitative analysis), with 95% confidence intervals, aggregated on protein
level (y-axis), and sorted bymean estimate of peptides within host protein. Only peptides with confidence interval not spanning zero included.
Blue: differentially abundant peptides more abundant in OA group, Red: differentially abundant peptides more abundant in Control group.
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F IGURE 3 Interaction network of proteases found in SF, and cleaved substrates, annotated by increased or decreased differential abundance
in OA versus controls.

similar to neutrophil collagenase), CFB (a protease cleaving C3, see

Figure 3), C3, KNG1, FN1, alpha-2-macroglobulin (A2M). The qual-

itatively decreased proteins with annotated cleaving events were

aggrecan core protein (ACAN), alpha-1-antichymotrypsin (SERPINA3),

fibrinogen alpha chain (FGA) and phosphatidylethanolamine-binding

protein 1 (PEBP1) (Table S7).

3.4 Pathway analysis

Pathway analysis of host proteins of peptides with increased lev-

els in OA group resulted in 65 pathways with three or more dif-

ferentially abundant proteins in each set (Table 1). These results

suggested OA protein activity predominantly in pathways related

to immune system (particularly complement activation), transport of

small molecules, and hemostasis. The pathways with complete over-

lap between differentially abundant proteins and background sets

were “Terminal pathway of complement” and “Alternative complement

activation.”

3.5 Comparison with tryptic data

Weassessedwhether increased levels of a peptidewas due to elevated

enzymatic degradation of its host-protein in OA or greater abundance

of the intact host-protein inOA, by contrasting our quantitative results

with our previous study that compared the same late-stage OA and

healthy controls [14], but in which protein abundances were calcu-

lated from intensities of tryptic peptides (Figures S1 and S2).We found

that 49 host-proteins of differentially abundant semi- and non-tryptic

peptides in the current study were not differentially abundant in the

previous study (Tables S4 and S5). For example, proteins APOA1, ITIH1

and C3 were not differentially abundant in the previous study but are

host-proteins of highly increased peptides in the current analysis.

4 DISCUSSION

In this study of endogenously cleaved peptides in human end-

stage knee OA versus knee-healthy controls, we identified 69 host
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TABLE 1 Pathway results for host proteins of differentially abundant peptides.

Pathway Category Ratio

Terminal pathway of complement Immune system 8/8 (100%)

Alternative complement activation Immune system 4/4 (100%)

Activation of C3 and C5 Immune system 6/7 (86%)

Chylomicron remodeling Transport of small molecules 5/7 (71%)

Dissolution of Fibrin Clot Hemostasis 4/6 (67%)

Integrin signaling Hemostasis 4/6 (67%)

GRB2:SOS provides linkage toMAPK signaling for Integrins Hemostasis 4/6 (67%)

p130Cas linkage toMAPK signaling for integrins Hemostasis 4/6 (67%)

MyD88 deficiency (TLR2/4) Disease 4/6 (67%)

IRAK4 deficiency (TLR2/4) Disease 4/6 (67%)

MyD88:MAL(TIRAP) cascade initiated on plasmamembrane Immune system 4/6 (67%)

MAP2K andMAPK activation Signal transduction 7/11 (64%)

Signaling by high-kinase activity BRAFmutants Disease 7/11 (64%)

Regulation of TLR by endogenous ligand Immune system 5/8 (63%)

Chylomicron assembly Transport of small molecules 5/8 (63%)

Amyloid fiber formation Metabolism of proteins 13/22 (59%)

Signaling bymoderate kinase activity BRAFmutants Disease 7/12 (58%)

Paradoxical activation of RAF signaling by kinase inactive BRAF Disease 7/12 (58%)

Signaling downstream of RASmutants Disease 7/12 (58%)

Retinoidmetabolism and transport Metabolism 10/18 (56%)

Peptide ligand-binding receptors Signal transduction 5/9 (56%)

Signaling by RAF1mutants Disease 6/11 (55%)

Regulation of complement cascade Immune system 22/43 (51%)

Clathrin-mediated endocytosis Vesicle-mediated transport 8/16 (50%)

Signaling by BRAF and RAF1 fusions Disease 7/14 (50%)

Antimicrobial peptides Immune system 6/12 (50%)

Cargo recognition for clathrin-mediated endocytosis Vesicle-mediated transport 5/10 (50%)

Platelet degranulation Hemostasis 26/58 (45%)

Intrinsic pathway of fibrin clot formation Hemostasis 8/18 (44%)

Common pathway of fibrin clot formation Hemostasis 7/16 (44%)

ER-phagosome pathway Immune system 5/12 (42%)

Post-translational protein phosphorylation Metabolism of proteins 19/54 (35%)

Regulation of Insulin-like Growth Factor (IGF) transport and

uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)

Metabolism of proteins 21/63 (33%)

G alpha (i) signaling events Signal transduction 4/10 (40%)

Iron uptake and transport Transport of small molecules 4/11 (36%)

Scavenging of heme from plasma Vesicle-mediated transport 6/20 (30%)

Initial triggering of complement Immune system 5/20 (25%)

Degradation of the extracellular matrix Extracellular matrix organization 5/23 (22%)

Integrin cell surface interactions Extracellular matrix organization 8/38 (21%)

ECMproteoglycans Extracellular matrix organization 5/29 (17%)

Neutrophil degranulation Immune system 22/129 (17%)

Note: Ratio is the ratio of proteins in the set of host proteins of differentially abundant peptides overlapping with the background proteome set. All host

proteins of peptides (non-tryptic, semi-tryptic, and tryptic) identified in SF were used as background proteome, and only pathways with more than three

proteins in a set were included.
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proteins of 429 differentially abundant semi- or non-tryptic peptides,

amajority of whichwere increased inOA, suggesting an increased pro-

teolytic activity of the proteases that potentially cleave these peptides.

Strongest support for such cleaving event to have happened exists

for those proteases that we also could identify in SF (Figure 3). The

majority of these proteases were metalloproteinases, cathepsins, and

carboxypeptidases.

To facilitate retrieval of cleavage sites, we developed an R-package

namedproteasy. Similar toexisting tools suchasTopFindandProteasix,

proteasy exists for the purpose of retrieving data about proteases by

mapping peptide termini positions to known sites where a protease

cleaves. The main function of proteasy, findProteasy, works similarly

to the “observed” finding mode of Proteasix, but with some impor-

tant differences. Proteasix makes use of additional knowledgebases to

MEROPS, but a largeoverlapbetween these is tobeexpected. Proteasy

only returns proteases from the same organism as input whereas Pro-

teasix also returns proteases for multiple species. Proteasy searches

only the exact endopeptidase whereas Proteasix searches a window

of the endopeptidase + 1, 2, and 3 AA. Differences between the

methods may also be attributed to use of different versions of the

MEROPS database. The proteasy R-package utilizes data derived from

the MEROPS database, and is limited to the entries therein. The

MEROPS database is a manually curated knowledgebase with infor-

mation about proteolytic enzymes, their inhibitors and substrates.

The main function in the package allows for batch identification

of possible proteases for a set of substrates (protein IDs and pep-

tide sequences), and may serve as a useful tool in peptide-centric

analyses.

In both the qualitative and quantitative comparisons, we found pep-

tide levels of HRG to differ the most between the OA and the control

group (Table S5 and S6). HRG has been reported to be increased in OA

in previous proteomics studies [27, 28]. HRG is an abundant protein in

plasmaandhasbeen referred toas “theSwiss armyknife” of plasmadue

to its involvement in many biological processes and ability to interact

with multiple ligands simultaneously [29]. We also observed increased

protease activity of AHSG, another glycoprotein, known to influence

the mineral phase of bone [30]. The extensive proteolysis these pro-

teins undergomay negatively impact the regulatory functions they are

involved in. These two proteins, together with KNG1, form the type 3

subgroup within the human cystatin superfamily of cysteine protease

inhibitors [31]. This subgroup has been implicated in angiogenesis [32],

the formation of new blood vessels and may be useful in treatment

of diseases with extensive angiogenesis. In OA progression, vascular

growth is increased in the synovium, osteophytes and menisci which

contributes to the development of synovitis, osteochondral damage,

osteophyte formation andmeniscal pathology [33].

We examined whether increased levels of a peptide was due to

elevated enzymatic degradation of its host-protein in OA, or if the

increase was a result of greater abundance of the intact protein in

OA, by contrasting our results with a previous study conducted on the

same samples, butwhere quantificationwasdone solely on tryptic pep-

tides. We hypothesized that a protein which is increased/upregulated

in OA versus controls in both studies is likely due to greater quanti-

ties of the intact protein, while an increase of semi- and non-tryptic

peptides alone is likely a consequence of degradation. We found that

one such protein, APOA1, was not upregulated in the study based

on tryptic peptides, but the semi-tryptic peptides for which it was

annotated in the current study were highly increased. Further, we

foundCMA1as apossible cleaving proteasematchingAPOA1peptides

(Table S7).

The two largest subnetworks from the 32differentially cleaved host

proteins belongs to lipoprotein particles complexes, such as VLDL and

LDL and the complement factor cascade. We found the proteases and

substrates acting on the lipoprotein particle complexes and comple-

ment cascade to be important factors in OA development (Table 1).

Two pathways with involvement in transport of small molecules; “Chy-

lomicron remodeling,” “Chylomicron assembly” ranked highly due to

the high representation of apolipoproteins. The proteases that poten-

tially cleaved these apolipoproteins were MMP7 and MMP12 (Table

S6) that are commonly known to cleaveECMproteins.MMPshave pre-

viously been shown to be able to inhibit apolipoproteins functionality

by cleaving them [34]. This suggests that the MMPs do not only act

as degrading enzymes of the surrounding tissues but could also inhibit

the lipid metabolism in that environment [34, 35]. Chymase has also

been identified to be an important protease cleaving apolipoproteins

[36]. The main producer of chymase is mast cells [37]. Mast cells have

previously been detected to be in a higher range in synovium of OA in

comparison to RA [38] and to be associated with radiographic damage

in OA [38]. These findings suggest an increased proteolytic activity not

just against the surrounding tissues but also plasma proteins that are

essential to maintain the homeostasis of the joints.

Most of the differentially cleaved proteins (Table S6) were proteins

involved in theextracellular cellularmatrix assembly; fibronectin, carti-

lage acidic protein 1 (CRTAC1), clusterin (CLUAP1), aggrecan and actin

(ACTB). Also plasma proteins; C3, albumin (ALB) were differentially

cleaved. Proteases that were found to actively cleave some of these

proteins were MMPs, chymase, caspase, elastase, granzyme, but no

known cleaving site was detected for CRTAC1 [39]. CRTAC1 is known

to be abundant in cartilage and CRTAC1 as a protein of an interest to

be detected both in early and late-stage OA that have showed a trend

of increase in late-stage OA [39]. The semi-tryptic peptides that were

found to be differentially expressed in this study are fragments from

the same part of CRTAC1, whichmeans a potential tomultiple cleaving

activities in this specific region of the protein.

A study by Abji et al. examined the proteases present in SF using

flow cytometry [40]. They identified 42 proteases identified in psori-

atic arthritis, rheumatoid arthritis, and OA patients. Comparing these

results to our findings, 11 of these proteaseswere also identified in the

current study, a majority of which wereMMPs.

Several semi-tryptic peptides that are derived from fibronectin

could be found in the MEROPS database to be cleaved by several

proteases, such neutrophile elastase. Neutrophile elastase induces

chondrocytes apoptosis and facilitates the OA occurrence via cas-

pase signaling pathway. Fibronectin, a glycoprotein abundant in normal

cartilage [41], is one of many ECM proteins that may originate from

cartilage degradation.
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Peptides of fibrinogen proteins, fibronectin, actin, and

phosphatidylethanolamine-binding protein contributed to the high

ranking of multiple signaling pathways related to the RAF kinase

family. RAF kinases have been of interest in the study of multiple

diseases, particularly in cancer research [42], and in the case of OA the

Ras/Raf/MEK/ERK pathway has been reported to induce expression

ofMMP13 and association with OA inmice [43].

This study encompasses a broad profiling of endogenous peptides

in synovial fluid. The strengths this study offers are the use of human

SF samples from both OA patients and knee-healthy controls, robust

statistical methodology and advanced bioinformatics operations to

highlight important insights about the actors involved in the endoge-

nous cleaving of peptides, and how they may relate to OA disease

development.

The field of peptidomics focuses on peptides which often display

biological activity, such as hormones, cytokines, toxins, neuropeptides

and alike, which are generated from larger precursors, as well as

biomarker-type peptides that may not have any bioactivity but are

indicative of a particular pathology. Commonly employed enrichment

protocols for such studies include ultracentrifugation, filtration, pre-

cipitation, or other type of small peptide fragment enrichment [44].

A single universal system suitable for extraction and separation of all

classes of peptidomes is yet to be reported. Enrichment techniques

are typically designed to target peptides with specific physiochemi-

cal properties, and are not equally suitable for all peptide classes [45].

These protocols enhance the detection of smaller peptides, generally

enabling detection of a few hundred up to a thousand peptides. To

cover a higher cleaving action usually multiple enrichment protocols

need to be addressed. Therefore, our strategy in this study was to

use a protocol that eliminates enrichment selection of a specific sub-

group of peptides. By studying the fragments/peptides of the of the

proteins that remain in the pellet after ethanol precipitation, we were

able to identify a larger number of peptides that was not cleaved by

trypsin. In our analysis, we identified 12,098 peptides with at least

one non-tryptic end site. Studying a larger set of peptides could then

better reflect the proteolytic activity. This strategy comes at a cost in

that small protein fragments are eliminated during the precipitation

stage. Moreover, endogenous proteases that target tryptic cleavage

sites cannot be distinguished from trypsin.

Missing data on peptide abundance are a known issue in MS anal-

yses. Not to discard these data, we performed a quantitative analysis

based on the patterns of missingness. We acknowledge that our defi-

nition of qualitatively differentially abundant peptides is arbitrary, but

we believe it provides more information than discarding the missing

data. For transparency, we include the information on missing data

pattern for all identified peptides, including those not suitable for sta-

tistical analysis (Table S8). But even with such a drawback still the

amount of quantified semi-tryptic peptides that were detected is to

our knowledge the highest number of identified semi-tryptic peptides

identified differing betweenOA and controls [20].

Some limitations for the pathway analysis are that ranking was

done by presence of differential peptides in relation to annotated pep-

tides in the background set, a metric which does not necessarily take

into account the complex relationships present in biological pathways.

Another limitation is the somewhat abstract concept of a pathway,

which is not always representative of the underlying biology, and is

subject to interpretation [46].

Finally, many cleaved peptides are not identifiable from existing

databases. This may have several explanations. The quality of pep-

tide identification relies on estimating a false discovery rate using

a decoy-target approach, but may still include false positive iden-

tifications. Moreover, incomplete annotation is still a limitation for

protease databases. For each proteolytic event, MEROPS provides a

list of selected references, and currently contains over 10,000 such

references [23]. Inevitably, the cost of avoiding annotation error by

availability of peer-reviewed references limits the coverage of the

knowledgebase.

In summary, we have performed a discovery-based profiling of the

SF peptidome in OA and healthy subjects, and studied the role of pro-

teases and inflammatory cytokines which are the potential cleaving

actors. We developed an R-package to facilitate analyses of proteases

and substrates. Our findings suggest the increased proteolytic activ-

ity associated with OA catabolism is not restricted to the ECM of

the surrounding tissues, but may also implicate homeostasis by exter-

nal factors through mechanisms such as chylomicron remodeling and

assembly.
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Abstract

Degenerative meniscus lesions have been associated with both osteoarthritis

etiology and its progression. We, therefore, sought to establish a human meniscus ex

vivo model to study the meniscal response to cytokine treatment using a proteomics

approach. Lateral menisci were obtained from five knee‐healthy donors. The

meniscal body was cut into vertical slices and further divided into an inner (avascular)

and outer region. Explants were either left untreated (controls) or stimulated with

cytokines. Medium changes were conducted every 3 days up to Day 21 and liquid

chromatography–mass spectrometry was performed at all the time points for the

identification and quantification of proteins. Mixed‐effect linear regression models

were used for statistical analysis to estimate the effect of treatments versus control

on protein abundance. Treatment by IL1ß increased release of cytokines such as

interleukins, chemokines, and matrix metalloproteinases but a limited catabolic

effect in healthy human menisci explants. Further, we observed an increased release

of matrix proteins (collagens, integrins, prolargin, tenascin) in response to oncostatin

M (OSM) + tumor necrosis factor (TNF) and TNF+interleukin‐6 (IL6) + sIL6R

treatments, and analysis of semitryptic peptides provided additional evidence of

increased catabolic effects in response to these treatments. The induced activation

of catabolic processes may play a role in osteoarthritis development.

K E YWORD S

cytokines, explants, meniscus, osteoarthritis, proteomics

1 | INTRODUCTION

Osteoarthritis (OA) is the most common form of arthritis and a major

source of pain, disability, and socioeconomic cost worldwide.1

However, the detailed molecular mechanisms involved in OA

initiation and progression are still poorly understood, there is no

available cure and no biomarkers in use within clinical practice. Knee

OA is often the pathological response of joint tissues to increased

biomechanical stress resulting in thickening of the subchondral bone,

osteophyte formation, inflammation in the synovium, hypertrophy of

the joint capsule, and degenerative changes of articular cartilage,

ligaments, and menisci.2 The degradation of articular cartilage has

J Orthop Res. 2023;1–14. wileyonlinelibrary.com/journal/jor | 1
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been attributed to increased proteolytic activity of matrix‐degrading

enzymes, including matrix metalloproteinases (MMPs), collagenases,

aggrecanases, and proteinases belonging to serine and cysteine

families.2 While previous ex vivo models of OA using cartilage3–7

have provided insights about the disease, studying the degenerative

changes in the extracellular matrix of human menisci may contribute

with valuable new knowledge about the degenerative role of

cytokines in a complex disease affecting the whole joint. The

network of cytokines as key mediators of inflammation and their

involvement in catabolic processes receive increasing attention. It has

been reported that synthesis and mechanisms of cytokines may vary

during the disease process of OA.8 The disruption of homeostasis

that cytokines cause is, particularly in tissues often subjected to high

mechanical load, of key interest when studying OA disease

progression. The progressive degeneration involves processes of

inflammation, degradation, and synthesis, which, together often

result in the loss of joint function and pain.9,10

In vitro and ex vivo models have been extensively used to study

pathological changes, molecular pathways, and the effect and role

of cytokines in certain conditions, and proinflammatory stimulation

of human meniscus has previously been studied using cell

cultures.11 However, no inflammatory disease model has been

established for human meniscus using an explant tissue model.12

Human OA tissue samples are often collected at the end‐stages of

disease, making it difficult to study early changes and factors that

are involved in the disease progression.13 In vitro and ex vivo

models overcome these limitations by offering a controlled

environment in which initial disease mechanisms may be simulated

and studied.

In the current proof‐of‐concept study, we establish a human

meniscus ex vivo model to explore the meniscal response of healthy

human meniscus to cytokine treatment using a proteomics approach

to study and follow the release of matrix proteins.

2 | MATERIALS AND METHODS

2.1 | Explant harvest and treatment

Lateral donor menisci (N = 5, non‐OA, four male and one female, age

range 69–80) were harvested within 40 h postmortem without

known chronic joint disease. The procedure was approved by the

Lund University ethics committee. The meniscus was visually

inspected to be macroscopically intact.

Vertical slices (1 mm wide) were cut radially from the meniscal

body and were divided into an inner (inner 1/3rd) and outer region

(outer 2/3rd). The inner region represents the white/white avascular

region while the outer region is vascularized. Each slice is weighed

(“wet weight,” later used for weight correction in the quantitative

analysis) and placed in medium in a 24‐well plate. Incubation at 37°C,

5% CO2 for 24 h to let the explant slices equilibrate. Medium for

culture with treatment: 500mL Dulbecco's Modified Eagle Medium

(DMEM)/F12 HEPES (SH30023.01), PEST 5mL (1:100), L‐Proline

0.4mM, insulin, transferrin supplemented media (ITS) 5 mL, vitamin C

50 µg/mL + Fungizone (first two time points).

Explants were untreated (controls) or treated with cytokines

(Figure 1, Supporting Information: Table S7) and cultured in

serum‐free DMEM media (supplemented with ITS) for 21 days.

Medium changes were carried out every 3 days and used medium

was collected (96‐deepwell plate) and stored at −20°C until

analysis. Media was then added to the explants (1 mL for outer,

0.5 mL for inner explant wells). We first evaluated treatment with

IL1 in four samples in total (MEX0‐3). Then, we evaluated seven

treatments in sample MEX3. Sample MEX4 was included as a

validation of results in MEX3, without separating inner/outer

zones.

2.2 | Metabolic activity and glycosaminoglycan
(GAG) release

GAG‐release was evaluated in all samples using a 1,9‐

dimethylmethylene blue (DMMB) assay. DMMB solution was

prepared according to Farndale et al.14 A 20 µL of sample was mixed

with 200 µL DMMB‐solution and absorbance was measured at

F IGURE 1 Schematic overview of the study. *Mass spectrometry
analysis was not conducted for time points 6, 12, or 18 for MEX3
and MEX4.

2 | RYDÉN ET AL.
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520 nm. Shark chondroitin‐sulfate (Sigma‐Aldrich) was used as

standard. Wells were washed three times.

Fold‐changes (treatment vs. control) were estimated using mixed

linear regression models in R. Base‐2 log‐transformed GAG‐release

was used as response. Treatment, time point and zone with

interactions between all terms were used as fixed effects, and

subject and zone were used as nested random effects terms for

MEX0‐3, which had multiple biological replicates with repeated

measurements. In MEX3, only zone was used as random effect.

The metabolic activity was evaluated at for time points d0, d6,

d12, and d21, where 400 µL Alamar mix (10% AlamarBlue [BioRad] in

medium without Fungizone and vitamin C) was added to explants

after harvesting the media and incubated for 3 h at 37°C. Samples

were transferred to a 96‐well plate and the absorbance (570/600 nm)

was measured to determine the metabolic activity of the explants.

2.3 | Mass spectrometry (MS) preparation
and identification

Culture medium (50 µL) was prepared for MS analysis as previously

described15: explant culture media (50 µL) was reduced by 4mM

dithiothreitol for 30min at 56°C, alkylated by 16mM iodoacetamide

for 60min in the dark at room temperature, ethanol precipitated (9:1)

and then digested by 0.25 µg trypsin gold (Promega) in 0.1M

ammonium bicarbonate (AMBIC) pH 7.8 for 16 h on a shaker at 37°C.

After drying, samples were resuspended in 100 µL AMBIC with 0.5M

NaCl, run through 30 kDa filter (PALL Life Sciences) and desalted

with reversed‐phase C18 cartridges (AssayMAP, Agilent Technolo-

gies) using a Bravo robot. Discovery MS was performed using a

quadrupole Orbitrap benchtop mass spectrometer (Q‐Exactive HFX,

Thermo Scientific) with prior separation of peptides using a liquid

chromatography system (EASY‐nLC 1000, Thermo Scientific) on an

analytical column (PepMap RSLC C18, 75 µm × 25 cm, Thermo

Scientific) coupled on‐line using a nano‐electrospray ion source with

a column temperature at +45°C (EASY‐Spray, Thermo Scientific)

using a flow rate of 300 nL/min and a 1 h binary gradient. Protein

identification was performed in Proteome Discoverer 2.5 (Thermo

Scientific) using two search engines in parallel: a tryptic search

against the UniProt human (UP000005640 from January 2021)

sequence database combined with an MSPep spectral search against

the NIST_human_Orbitrap_HCD_20160923 library (mass tolerance:

10 and 20 ppm in MS1, MS2 respectively. Other Sequest search

settings were modifications: carbamidomethylation (fixed: C), oxida-

tion (variable: M, P) missed cleavages (max 2), mass tolerance (MS1‐

10ppm, MS2‐0.02Da). Label‐free protein abundance quantification

was obtained by averaging peak area intensities from the top three

unique peptides for each protein. To determine individual peptide

abundances, we performed a semitryptic database search to

enable identification of nontryptic cleavages within the data set.

This was performed using the same combined searches as above but

in series. The protein false discovery rate (FDR) was 0.01 for both

searches.

2.4 | Statistical analysis

Proteins with maximum five missing values per treatment group in

MEX0‐3, and maximum three missing values per treatment group in

MEX3‐4, were considered to have sufficient data points for statistical

analysis. Based on this criterium, MEX0‐3 included 804 proteins,

MEX3 included 822 proteins, and MEX4 included 508 proteins for

statistical analysis.

Statistical analysis was performed using mixed linear regression

models in R, using the lme4 package.16 Three linear regression

models were used for the different data sets. In each model, base‐2

log‐transformed intensity was used as response. Treatment, time

point, and zone with interactions between all terms were used as

fixed effects, and subject and zone were used as nested random

effects terms for MEX0‐3, which had multiple biological replicates

with repeated measurements. Treatment, time point, and zone

(inner/outer) with interactions between all terms were used as fixed

effects, and zone as random effect term were used for MEX3.

Treatment and time point with interactions were used as fixed

effect terms for the MEX4 data set. Contrasts between treatment

and control were specified using the emmeans package17 and are

reported with 95% confidence intervals based on restricted

maximum likelihood estimates using Kenward–Rogers method for

estimation of degrees of freedom. Estimates (base 2 log fold

changes) were extracted as means across time points. Model

diagnostics was conducted to validate model fit. Proteins that had

a 95% confidence interval not spanning zero were considered

differentially abundant. Given the exploratory nature of the study

and use of mixed models that minimize the multiplicity problem,18

we did not apply any further corrections for multiplicity, but rather

we report all derived estimates to inform future studies and meta‐

analyses.

2.5 | Principal component analysis (PCA)

PCA was conducted to examine whether treatment effect and time

effect contributed to clustering of samples, and whether similarity in

release profiles between treatments could be observed. We used the

PCA function in the mixOmics R package,19 which uses multilevel

decomposition for repeated measurements on data which excluded

proteins with any missing values, the outcome was log transformed

(base 2), then scaled and centered using the IMIFA R package.20 PCA

was visualized using the plotly R package.21

2.6 | Analysis of semitryptic peptides

As a possible indicator of degradation and catabolic effect, we

studied the number of semitryptic peptides identified by MS/MS in

the different treatment groups. Tryptic peptides were filtered out and

only peptides identified at FDR < 0.01 in at least two files using

Sequest HT search engine were counted.
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2.7 | Time series clustering

Unsupervised clustering was performed to identify groups of proteins

with similar treatment response profiles over time. We excluded

proteins with any missing values. Protein abundances were standard-

ized to have mean = 0 and SD = 1. Then, for each treatment and time

point, we took the mean value of each protein's replicates. We

calculated pairwise slope distances, and clusters were obtained using

the getClusters function in the R package tscR.22 The number of

clusters for each treatment was decided by visually interpreting

cluster dendrogram of the slope distance. The trajectories were

plotted using the R package ggplot2.23

2.8 | Protein classification and interaction analysis

Differentially upregulated proteins with a log2 fold change >1.5 was

illustrated as interaction networks using the R‐package igraph.24

Interaction data was collected from STRINGdb.25 Community

detection was conducted using the cluster_louvain algorithm to

emphasize dense subgraphs. Nodes were labeled in accordance with

the protein's classification in pantherdb.26 Communities were

colored according to the most common protein class in each

community.

2.9 | Complementary analysis (Western blot,
proximity extension assays [PEAs], and quantitative
polymerase chain reaction [qPCR])

Explant media from outer menisci Days 12 and 21 (MEX3) were

thawed and triplicates from the different days and treatments were

pooled (15 µL each). Samples were run nonreduced on NuPage Bis/

tris gels 4%–12% in MOPS buffer. Western blots (against a COMP

neoepitope fragment27) were run in Tris‐Glycine buffer +10%

methanol and proteins transferred to polyvinylidene difluoride

membranes. Filters were blocked in 3% bovine serum albumin

(BSA) T‐TBS and all antibody incubations were done in 3% BSA

T‐TBS. As substrate Super signal West Dura from Pierce were used.

We used the Olink® Explore 384 inflammation panel (Olink

proteomics AB) to obtain complementary data. Explant culture media

from all time points were pooled for each replicate (n = 3) and region

in the MEX3 experiment using treatments: control, IL1, (oncostatin M

[OSM] + tumor necrosis factor [TNF]) and (TNF + IL6 + sIL6R). Sam-

ples were randomized in order and 40 µL was used for the analysis

and relative quantification performed at Olink. Proteins with linear

normalized protein expression (NPX) greater than or equal to two

times limit of detection was selected for differential abundance

analysis, including 102 proteins. Fold‐changes (treatment vs. control)

were estimated using mixed linear regression models in R. Base‐2 log‐

transformed NPX was used as response. Treatment and zone with

interactions were used as fixed effects, and zone were used as

random effect.

As an additional complementary analysis, we used qPCR to

study expression changes between control and IL1, (OSM + TNF),

or (TNF + IL6 + sIL6R) treatment groups in explant tissue from

Day 21 of MEX4. Briefly, the explant tissue samples were

pulverized in liquid N2 and total RNA extracted and purified

using the RNAqueous kit (Invitrogen, #AM1912). RNA concen-

tration and purity were determined using a NanoDrop spectro-

photometer (Thermo Fisher Scientific) and cDNA was synthesized

from 60 ng of total RNA using the Maxima First Strand cDNA

Synthesis kit (Thermo Fisher Scientific, #K1641). qPCR was

performed with 3 ng cDNA per reaction, and TaqMan Fast

Advanced Master Mix (Applied Biosystems, #4444556)

on an Applied Biosystems StepOnePlus Real‐Time PCR System.

The following TaqMan Gene Expression Assays from Applied

Biosystems were used; ACAN (Hs00153936_m1), CHI3L1 (Hs0-

1072228_m1), COL1A1 (Hs00164004_m1), COL3A1 (Hs00943-

809_m1), MMP1 (Hs00899658_m1), MMP13 (Hs00942584_m1),

TIMP2 (Hs00234278_m1), and IEF3I (Hs01116184_m1). Each

tissue explant sample cDNA was analyzed in duplicate qPCR

reactions and the relative expression levels of each gene were

calculated using the ΔΔCt method28 with IEF3I as endogenous

reference,29 and data presented as base 2 log Fold Change

(i.e., −ΔΔCt).

3 | RESULTS

3.1 | Metabolic activity and GAG release

The reduction of AlamarBlue was consistently higher in explant plugs

compared to negative control (Figure 2), suggesting explants were

healthy and viable throughout the experiment. GAG‐analysis by

DMMB assay revealed IL1 had a slightly increased effect on the

release of GAGs than control. Log2 fold‐changes was greater for IL1

Days 6–12 in the inner zone (Supporting Information: Figure S1). The

GAG release for the multigroup comparison is shown in Supporting

Information: Figure S2 showing small differences with various

treatments.

3.2 | Identification and quantification

Across all data sets, a total of 2248 proteins were identified and

quantified in the explant media (1528 in MEX0‐3 inner zone, 1090 in

MEX0‐3 outer zone, 1303 in MEX3 inner zone, 1434 in MEX3 outer

zone, and 1307 in MEX4).

3.3 | PCA

PCA revealed cytokine treatment, and to a lesser extent, release over

time, as the main contributing factors to the observed clustering

effect exhibited in Figure 3.

4 | RYDÉN ET AL.

 1554527x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jor.25633 by M

artin R
ydén - L

und U
niversity , W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.4 | Differentially abundant proteins

Overall, a majority of proteins were upregulated in treatment versus

control. While treatment with IL1 led to upregulation of many

relevant proteins, ex growth‐regulated alpha protein (gene symbol:

CXCL1), interleukin‐8 (CXCL8), interleukin‐6 (IL6), neutrophil

gelatinase‐associated lipocalin (LCN2), C‐X‐C motif chemokine 6

(CXCL6) (Supporting Information: Table ST1), the effect was not as

strong as expected. Thus, in the follow‐up experiment, we expanded

the number of treatments. In this multigroup treatment comparison,

the most notable were comparisons of OSM + TNF versus control

(MEX3), where 215 proteins were upregulated in the inner zone and

261 proteins were upregulated in the outer zone (Supporting

Information: Table ST5). Corresponding comparison of TNF + IL6s +

ILR versus control (MEX3) had 191 upregulated proteins in the inner

zone and 95 upregulated proteins in the outer zone (Supporting

F IGURE 2 Mean reduction of AlamarBlue (metabolic activity) of explant culture in MEX0‐3; treatments interleukin‐1 (IL1) and control. Blue
line: metabolic activity for meniscus plugs. Red line: negative control.
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Information: Table ST5). A majority of highly upregulated (log2 fold

change >3, Figure 4) proteins in OSM+ TNF versus control and

TNF + IL6s + ILR (MEX3 inner and outer zones) had the pantherdb

classification “extracellular matrix protein.” Contrarily, none of the

highly upregulated proteins in IL1 versus control (MEX0‐3 inner and

outer zones) were annotated as ECM proteins according to

pantherdb classification.

4 | ZONAL DIFFERENCES

We selected a set of 33 extensively researched proteins based on

their functional classifications as ECM proteins, MMPs, proteases,

and protease inhibitors. We performed hierarchical clustering on the

mean values of standardized abundances (Z‐score) of these proteins,

which revealed a similar clustering pattern between the inner and

outer zones (Figure 5). In both zones, we found the clusters

consisting of proteins with the highest Z‐score contained the proteins

COL3A1, ACAN, MMP1, and MMP3.

In Supporting Information: Figure S6, a Venn diagram of the inner

and outer meniscal zones illustrates the number of unique and shared

differentially abundant proteins that were identified for OSM + TNF

and TNF + IL6 + sIL6R. The greatest number of unique differentially

abundant proteins were identified in the OSM + TNF treatment in the

outer zone, with 66 unique proteins. We identified 63 proteins which

were differentially abundant in both zones and treatments.

Comparing protein–protein interactions for IL1 versus Control of

the inner and outer zones (Figure 6), the main similarities observed

between the zones were that IL1 induces the release of inflammatory

mediators such as IL6, CXCL1, CXCL6, and CXCL8. Specifically for

the outer zone, our analysis revealed the interaction between IL6 and

superoxide dismutase (SOD2) as well as C‐C motif chemokine 2

(CCL2), along with the interactions between cystatin B (CSTB) and

tumor necrosis factor‐inducible gene 6 protein (TNFAIP6) and

CXCL1.

5 | MENISCAL RESPONSE TO
PROINFLAMMATORY STIMULI

5.1 | Immune system response

The cytokine treatment increased the release of proteins involved in

inflammation, such as interleukins, chemokines, and MMPs. For

example, some of the most upregulated proteins in both inner and

outer zones of the MEX0‐3 replicates were growth‐regulated alpha

protein (CXCL1), interleukin‐8 (CXCL8), IL6, neutrophil gelatinase‐

associated lipocalin (LCN2) and CXCL6 (Supporting Information:

Table ST1).

5.2 | Catabolic effect

While the immune system response was most prominent in the

contrast IL1 versus control (Figure 4), we observed upregulation of

multiple ECM proteins in the contrast OSM + TNF (MEX3 inner zone)

(Figure 6). In both the contrasts OSM+ TNF versus control and

TNF + IL6 + sIL6R versus control we found upregulated ECM proteins

F IGURE 3 Principal component analysis of media proteome (MEX3) in treatments (oncostatin M [OSM] + tumor necrosis factor [TNF] and
TNF + interleukin‐6 [IL6] + sIL6R) for inner and outer zones. There is a clear treatment effect for cytokines versus control particularly in the
inner zone.

6 | RYDÉN ET AL.
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von Willebrand factor and versican interacting with upregulated

cytokines and protease inhibitors. In both the inner and outer zone,

we identified ECM “communities” of primarily collagens with

interactions to proteases such as MMPs and cathepsins. Upregulation

of ECM proteins were also prominent in IL1 +OSM versus control

(MEX3 inner zone). However, besides interleukins, few cytokines

were estimated to be upregulated in this treatment group (Supporting

Information: Table ST2, Supporting Information: Figure S3).

5.3 | Time‐dependent clustering

The time‐dependent effect of treatments was studied by clustering

analysis, performed on standardized release at each time point

(Figure 7). Each set of proteins annotated to a cluster for a specific

treatment was also plotted for control group as reference. For most

treatments, we observed three clusters: one with initial increase from

Day 3, one which displayed peak in release on Day 9, and one where

F IGURE 4 Differentially abundant proteins in MEX3 inner and outer zones. Proteins with a log2 fold change >3 were included.

RYDÉN ET AL. | 7

 1554527x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jor.25633 by M

artin R
ydén - L

und U
niversity , W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



no clear increase occurred. The patterns were not seen to the same

extent in the control clusters.

5.4 | Complementary analysis of catabolic activity

5.4.1 | Release of COMP fragment

Western blot analysis of the COMP neoepitope (QQS77)27 (Support-

ing Information: Figure S5) supported the findings of increased

catabolic effect, compared to the control that showed no fragment

release, particularly by treatments OSM+ TNF and TNF + IL6 + sIL6R

at Day 12 while the release was almost absent at Day 21.

5.4.2 | Analysis of semitryptic peptides

Semitryptic were studied as a possible indicator of induced

catabolism. In Supporting Information: Table ST6, the number of

semitryptic peptides identified in each experiment and treatment

group, as well as the total number of identified peptides in each

experiment. In MEX3 (inner and outer zones), the highest number of

F IGURE 5 Standardized (Z‐score) proteomic abundances of selected proteins in inner and outer meniscal zones (MEX3) across treatments,
color annotated by functional classification. Heatmap shows the standardized proteomic abundances of selected proteins across treatments and
the two meniscal zones (inner and outer). The color scale represents the relative Z‐score (red: high, blue: low). Proteins are annotated by
functional classification.
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F IGURE 6 Protein–protein interaction network for treatment versus control in inner (left) and outer (right) zones. Proteins which had a log2
fold‐change >1.5, annotated by classification. Red lines denote between‐community interactions and black lines denote within‐community
interactions. See additional network figures in Supporting Information: Figure S4.
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F IGURE 7 Release profiles for upregulated proteins by cluster for treatments interleukin‐1 (IL1) and oncostatin M (OSM) + tumor necrosis
factor (TNF) and the respective release patterns for control group in MEX3. The blue line indicates the mean standardized abundance for
proteins within a cluster. Additional cluster figures are found in Supporting Information: Figure S4.
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identified semitryptic peptides was for OSM + TNF. The highest

number of identified semitryptic peptides in MEX3 inner zone was

identified in the group treated with TNF + IL6 + sIL6R, while in both

MEX3 outer zone and MEX4 the largest fractions were identified in

the OSM+ TNF treatment.

5.4.3 | Olink PEA

Differential abundance analysis of Olink was conducted as a

complement to and comparison with the MS results. Differential

abundance of Olink protein data revealed that most upregulated

proteins were in the outer zone. In both the inner and outer zone,

OSM+ TNF versus control and TNF + IL6 + sILR versus control, we

estimated more upregulated proteins than in IL1 versus control. In

the inner zone, the same nine proteins were upregulated in

OSM+ TNF and TNF + IL6 + sILR. Twenty of the proteins in the

outer zone overlapped between OSM+ TNF and TNF + IL6 + sILR.

Eight proteins upregulated in OSM + TNF were not upregulated in

TNF + IL6 + sILR. These were interleukin‐1 beta, placenta growth

factor, matrilin‐2, growth‐regulated alpha protein (CXCL1), SPARC‐

related modular calcium‐binding protein, endothelial cell‐specific

molecule, serpin B8, and toll‐like receptor 3.

Comparing differentially abundant proteins in Olink (Supporting

Information: Table ST4) and MS data (MEX3, Supporting Information:

Table ST2), we found that in the inner zone, the number of

upregulated proteins overlapping between Olink and MS methods

were less than or equal to seven. Eight proteins in the contrast

OSM+ TNF versus control (outer zone) were not identified in any MS

experiment, and included growth factors, cytokines, and signal

receptors (Supporting Information: Table ST1–ST4).

5.4.4 | qPCR

The gene expression results revealed upregulation for MMP1 and

MMP13 in meniscus explant tissue in all three treatments, while the

ACAN, COL1A1, COL3A1, CHI3L1, and TIMP2 genes were down-

regulated in all three treatments (Supporting Information: Figure S7).

The results found by qPCR were consistent with the expression

patterns and differential abundance results of the MS‐proteomics

data for MMPs in the culture medium, while the reverse was found

for most of the ECM proteins. These findings support that the

cytokine treatment have a catabolic effect on the meniscus, resulting

in decreased expression of ECM components and increased expres-

sion of proteolytic enzymes.

6 | DISCUSSION

We have developed a human meniscus degeneration ex vivo model

and studied protein release over time. While treatment with IL1 leads

to increased release of GAG and upregulation of several ECM

proteins, treatment with OSM + TNF or TNF + IL6 + sIL6R appear to

induce the strongest catabolic effect.

Dysregulation of protein homeostasis mediated by mechanical

injury, oxidative stress, and inflammation contribute to ECM

catabolism in OA.30 Damage to the ECM and its association with

joint destruction has been well studied in cartilage,31–33 and while

multiple studies have confirmed the clinical importance of the

meniscus in OA disease,34–37 few have investigated the meniscal

response to cytokine treatment in human tissue. In this study we

used a proteomics approach to study early events of OA in an ex vivo

model, and provide evidence that a catabolic response can be

induced in such explant model.

Type I collagen is the most abundant in meniscus and constitutes

98% of the total collagen content.38 The protein is susceptible to

degradation by multiple collagenases, such as metalloproteinases.

Our data showed upregulation of both MMP1 and MMP2 and several

ECM proteins, particularly in OSM + TNF and TNF + IL6 + sIL6R

treatments (Supporting Information: Table ST2). In MEX4, we found

strong upregulation (log2 fold‐change >3) of MMP1, MMP3, MMP10,

and MMP14. We found the treatments OSM+ TNF and TNF + IL6 +

sIL6R to release matrix proteins and proteases involved in ECM

breakdown (Supporting Information: Table ST2–ST3), suggesting

these treatments can induce catabolic processes in meniscus. The

most highly upregulated proteins released from tissue stimulated

with IL1ß were primarily cytokines, chemotactic factors, and

inflammatory regulators (Supporting Information: Table ST1). The

low catabolic response to IL1 in this study compared to observations

in previous publications39–41 may be attributed to multiple factors,

particularly donor age, or due to dissimilarities between the studies

species.

We studied the time‐dependent effect of treatments using time‐

series cluster analysis and found a reoccurring pattern of peak release

on Day 9 in multiple treatments, but not to the same extent in

controls (Figure 7). Clusters with this pattern was particularly

noticeable for treatments IL1 (MEX0‐3 inner and outer zone),

IL1 + IL17 (MEX3 outer zone), and OSM+ TNF (MEX3 inner and

outer zone). While further research would be needed to confirm

these results, these initial findings suggest these treatments may

have a time‐dependent effect on the release of proteins as previously

shown for articular cartilage.42 Clusters of proteins with high release

at the earliest time point both in treatment group and control may be

an artifact of the meniscus being cut upon harvest or cut into slices.

The inner zone of the meniscus is more cartilage‐like, while the

outer zone, located further to the edge of the joint, is more fibrous in

structure.39,43 The difference in composition of the tissue is reflected

in observed differences in differentially abundant proteins between

the zones. In both zones, IL1 induces the release of inflammatory

mediators such as IL6, CXCL1, CXCL6, and CXCL8, which may play a

role in recruiting immune cells to the site of inflammation.44

Specifically for the outer zone, our analysis revealed interactions

between IL6 and SOD2, a protein involved in oxidative stress

response, and the chemokine CCL2. Additionally, the interactions

between CSTB and TNFAIP6 and CXCL1 were identified for the
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outer zone. CSTB is involved in protease inhibition, which could play

a role in regulating ECM degradation.45,46 While overall there was

many overlapping upregulated proteins between the zones, some

treatments, such as TNF + IL6 + sILR, is seemingly preferably for

inducing release of ECM proteins and proteases particularly in the

inner zone (Figure 6, Supporting Information: Table ST5). However,

the distinction between inner and outer zone is not clear cut and

could contribute to unwanted sample variability. Given the overall

similar response in both zones, studying the whole meniscus (and

thus studying the average response across meniscal zones) may be

the preferable approach.

Semitryptic peptides have been digested by trypsin at one

end and the other terminal by an unknown protease. These

peptides can be used as markers of catabolic processes, or the

breakdown of cellular components.47 The highest ratio of

semitryptic peptides to all identified peptides were found in

treatments TNF + IL6 + sILR (MEX3 inner zone) and OSM + TNF

(MEX3 outer zone and MEX4).

Olink PEA was used both as a way to expand the MS results

using a highly sensitive and targeted proteomics technique, and to

confirm the presence and relative abundance of proteins identified by

MS, in particularly to assess the catabolic effect of treatments IL1,

OSM+ TNF, and TNFIL6sILR compared to controls. One notable

limitation of this method is that only proteins specifically targeted to

proteins in the Olink inflammation panel can be identified and will

thus not provide knowledge about other important proteins. The

Olink technology is optimized for plasma and serum samples while

the performance in explant media is not much explored. In

agreements with the MS results, the highest number of upregulated

proteins were estimated in OSM+ TNF outer zone (Supporting

Information: Table ST4). Seven of these proteins were upregulated

in MEX3 outer zone by MS and eight proteins were only found using

the Olink biomarker panel. These proteins included growth factors,

cytokines, and signal receptor which may contribute to a complex

interplay of proteins contributing to dysregulated proteostasis in a

catabolic state.

In comparison to the proteomics results, the qPCR analysis

displayed similar expression patterns for MMP proteins, while the

reverse pattern was found for most of the ECM proteins. While the

proteomics data showed upregulation of ACAN, COL1A1,

COL3A1, and MMP1 (MMP13 was excluded due to extensive

missing values in control), and downregulation of CHI3L1 in two

out of the three treatments, the qPCR analysis showed down-

regulation of five genes including ACAN, CHI3L1, COL1A1,

COL3A1, and TIMP2. Additionally, while TIMP2 was not differen-

tially abundant in the proteomics data, the qPCR analysis showed

downregulation of TIMP2 in all three treatments. The down-

regulation of ECM genes observed in the qPCR analysis suggests

that cytokine treatment may disrupt the synthesis of ECM

components as previously shown in articular cartilage at protein

level15 and at mRNA level for articular cartilage as well as in

menisci.39 Upregulation of the corresponding proteins in the

proteomics analysis is attributed to the cytokine treatment leading

to breakdown of ECM and release into explant culture media.

The experimental design of ex vivo meniscus explant models

is influenced by existing models using articular cartilage. Cytokine

treatment on nonhuman cartilage explants have been demon-

strated to have an effect of increased release of ECM‐proteins

and proteins involved in catabolic response of cartilage degrada-

tion into the explant culture media when compared to controls.48

Combined mechanical loading and cytokine treatment on porcine

and bovine meniscus was recently reported by McNulty et al. in

which two mechanical treatments were used; cell stretching and

dynamic loading, using transcriptomics.49 The inflammatory

response was highly modulated by mechanical loading. In our

study of menisci, we find release of ECM‐ and catabolic proteins,

although the specific proteins released are to a large degree

different than previous studies using a cartilage model. For

example, in the proteomic study on bovine knee articular

cartilage, MMP13 was selected as a “representative protein” of

the response group “cytokines versus control.”48 By contrast, in

the current study MMP13 had a seemingly negligible effect,

upregulated only in IL1 versus control (MEX0‐3 inner zone) and

with a log2 estimate of 0.69 (lower CL 0.03, upper CL 1.35)

(Supporting Information: Table ST1).

GAG‐analysis may also be less informative, as GAG content in

the meniscus is much lower than in cartilage.39 Thus, it is not

surprising that GAG release was much more modest in our meniscus

model than previously reported for cartilage.48

An important strength of the current report is use of human

tissues. Many previous studies on tissue breakdown were conducted

in bovine cartilage4,5,7,48,50,51 and thus generalizability of results to

humans could be limited, especially given typical ages used but also

different loading patterns in animal versus human joints.52,53 We

examine the effect of multiple cytokine treatments, two of which we

propose as possible triggering agents of catabolism in human

meniscus.

While our model allowed us to examine the effects of

cytokines on the meniscus in a controlled environment, there

are important limitations to consider. Mechanical loading plays a

critical role in the regulatory mechanisms of the function of the

meniscus and ECM remodeling. The absence of mechanical

stimulation in our model limits our ability to fully capture the

complex interplay between cytokine signaling and mechanical

loading. Our sample size is small, but given the novel nature of

the model, we think it still provides important insights into

feasibility of the approach. The meniscus is a complex and

delicate structure, and it can be difficult to cut slices that are

consistently the same size and thickness. This potential

inconsistency may lead to variability in the samples being studied.

To minimize this variability, we randomized the cut‐out slices into

treatments. By doing so, any differences between slices were

assumed to be random rather than systematic. Moreover, the

meniscus is composed of different zones that gradually change

12 | RYDÉN ET AL.
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from peripheral to inner regions which can contribute to

variability in the samples being studied.

7 | CONCLUSIONS

Our analysis substantiates the hypothesis that a catabolic effect of

cytokine treatments on human menisci can be induced in addition to

already well‐documented observations of inflammatory response by

conventional inflammatory cytokines in articular cartilage. Results

from our time‐dependent cluster analysis suggest patterns of

increased meniscus degeneration and release of matrix proteins

peak on Day 9 after applied cytokine treatment. Differential

abundance analysis implies increased release of cytokines from IL1

treatment while further activation of proteases and inhibitors which

may contribute to dysregulated proteostasis was more strongly

induced by OSM + TNF and TNF + IL6 + sIL6R. These findings may be

relevant in the path to clinical therapy for OA through discovery of

new biomarkers for early disease progression.
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