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PREFACE

This thesis is mainly a result of work in the project Constitutive Parameters and
Calculation Methods for Elastomeric Materials. (In Swedish: “Materialparametrar
och berdkningsmetoder for komponenter av gummimaterial” ). The project started
in July 1993 and ended in June 1996. It was financed by NUTEK-the Swedish
National Board for Industrial and Technical development.

The project involved Structural Mechanics in Lund and the rubber manufac-
turers Forsheda, Skega and Trelleborg. The corporate research institutes IVF -the
Swedish Institute of Production Engineering Research- and IFP -the Swedish Insti-
tute for Fibre and Polymer Research- were also connected to the project.

The focus was on mechanical behavior of elastomeric materials and computer
methods applicable to design of elastomeric units. The activities were concentrated
on elastic properties in the first part of the project, and the second part of the project
was devoted to dynamic material properties. Constitutive models, experimental
procedures, methods for evaluation of test data, and computational methods have
been investigated.

The background of the project was a cooperation with Skega AB (today: Svedala-
Skega AB) rubber company that started on a small scale in 1990. The cooperation
developed during 1991 and 1992 and plans for an extended cooperation in a for-
mal project were outlined in an application to NUTEK. It was the intention of the
NUTEK committee that the project should also involve the other two large rubber
manufacturers in Sweden; Forsheda AB and Trelleborg AB. ( Trelleborg AB is Swe-
dens largest rubber manufacturer.) The corporate research institutes IFP and IVF
were also financed by NUTEK and coordinated to the project.

1 wish to express my gratitude to the participants of the project for their interest
and cooperation. A special appreciation is directed to Erik Ostman and Sture
Persson, Svedala-Skega rubber company, for their devotion, valuable discussions
and help with the rubber specimens for the laboratory tests.

Part of the results in the project are three completed master thesis works that
I very much enjoyed supervising. The works [35], [1] and [47] in the bibliography,
have been the final efforts for M.Sc’s Kristian Lonngvist, Anders Thelin, Aylin Ali,
and Martin Pilcher in their education at Lund Institute of Techunology, and I wish
to express my gratitude for their work. Martin Pilcher was also employed for some
months at the department, and during that time he contributed to the project by
report [48] and to the content of Chapter 6. It should also be mentioned that Section
7.2 is largely based on the work of Aylin Al [1].



Much of the work, and an important part of it, is of experimental character.
Bertil Enquist and Rizalina Brilliante are responsible for the function and handling
of the laboratory equipment at the department. Their skillful aid in the laboratory
tests is greatly appreciated and very important for the thesis.

The contact-free strain measurement was carried out together with Anders Hey-
den at the Department of Mathematics and I greatly appreciate that cooperation.
I also want to thank Dr Tamas Pritz for interesting discussions on dynamic prop-
erties of elastomers, Dr Mats Berg for valuable discussions concerning modeling of
damping in rubber springs, and Dr Matti Ristinmaa and Dr Christer Nilsson for
valuable discussions on constitutive modeling.

Professor Hans Petersson established the contact with Erik Ostman and Sture
Persson at Svedala-Skega. The connection to “the real world” through the rub-
ber companies gave me a focus in my work, and this was very important for my
motivation.

Finally I wish to thank associate Professor Géran Sandberg for his encourage-
ment and stimulating discussions during the course of this work and for his aid in
the contacts with NUTEK.

Per-Erik Austrell, Lund, March 1997



ABSTRACT

Elasticity and damping are significant properties of rubber, taken advantage of in
engineering applications. It is therefore important that the constitutive model ac-
curately captures these aspects of the mechanical behavior.

In the first part of the thesis a description of theory and experiments for deter-
mination of hyperelastic parameters required for finite element analysis is provided.
Test specimens and corresponding stress-strain relations for calibration of the hy-
perelastic models are discussed. Mechanical conditioning procedures are compared
and fitting of the models are discussed, with special emphasis on a “cubic I1” model
proposed by O.H. Yeoh. A strain energy plot to check the quality of the fitted model
is presented, which reveals whether the model is valid for use in finite element anal-
ysis. The accuracy of existing test specimens, and a new axisymmetric combined
compression and tension specimen proposed here, are investigated by finite element
analysis. A modified hardness test for evaluation of hyperelastic constants is pre-
sented and evaluated by finite element analysis. Moreover, a method for contact-free
strain measurement for evaluation of surface strain fields is presented. Experimental
deformation gradients can also be obtained by this method.

The second part of the thesis concerns modeling of dynamic material properties
of filled rubbers. Experiments show that constitutive models available in commercial
finite element codes are not able o model the behavior of filled rubber vulcanizates in
dynamic applications. One-dimensional models are used to examine the mechanisms
of damping in these rubbers. The ability of the models to capture the frequency
and amplitude dependence of the dynamic modulus and equivalent phase angle is
investigated. The microstructure and the experimental results support a model
with nonlinear elastic, viscous (rate-dependent) and frictional (rate independent)
elements connected in parallel. A generalization of this one-dimensional viscoplastic
model to multiaxial and large strains is proposed and evaluated in simple shear and
uniaxial stress.

KEY WORDS:

hyperelasticity, carbon-black-filled rubbers, strain energy plot, mechanical condi-
tioning, solid dumbbell test specimen, modified hardness test, contact-free strain
measurement, rheological models, amplitude dependence, multiaxial viscoplastic
model
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1. INTRODUCTION

This introduction presents the background and objective of the present work, a
brief description of the molecular structure and manufacturing process for rubber
vulcanizates, various mechanical properties, the general procedure in computer aided
design of rubber units, and a discussion of constitutive models. Finally, this chapter
also presents an overview of the contents of the thesis and some reading suggestions.

1.1. Background

The unique properties of elastomeric materials are taken advantage of in many
engineering applications. Elastomeric units are used as couplings or mountings
between stiff structures. Examples are shock absorbers, vibration insulators, flexible
joints, sealings and suspensions.

The development of computers and analysis programs has given engineers a new
tool in design and construction of elastomeric components. Computer simulation
by finite element analysis have become increasingly important. The mechanical be-
havior for complicated geometries and loading cases can be evaluated. Both static
and dynamic aspects can be analyzed by computer simulations. This has been rec-
ognized by the manufacturers of rubber products and their customers. The benefits
are shorter time for product development and also quality improvements.

However, the possibilities available in the use of elastomers in construction, with
less complicated technical solutions at a lower cost, are not fully utilized. Rubber
components could be used more frequently in constructions if more engineers were
familiar with the material.

Part of the problem lies in education and information. The material and its
properties are not very well known among engineers working with design and con-
struction. Courses on the mechanics of polymers are very limited at schools and
universities. The skillful engineers in this field have usually acquired their know-
ledge through many years of experience and not from formal education.

Moreover, the complicated nature of the material behavior makes it difficult to
devise general design rules and design tools. It was only recently that computers
and programs became powerful enough for analysis of nonlinear elastic problems
with large strains.

Nevertheless, it is essential for the manufacturers, in order to be competitive
in high-tech applications, to acquire knowledge of the computer methods, material
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models and test methods available. This is necessary to meet the demands from cus-
tomers who want to use the available tools, in for example the automotive industry
or in the off-shore industry.

This development has focused on the lack of relevant material data for computer
analysis. The design tools rely on the available material models and on relevant test
data for calibration of these models. In many cases the only information available
for the analysis is a value of the rubber hardness.

The wide variety of rubber compounds is a problem. Characterization of the
different materials is costly and time consuming. Hence, there is a need for simple
and reliable methods to characterize the different vulcanizates.

1.2. Objective

Elasticity and damping are characteristic properties of rubber, and it is therefore
important that the constitutive model accurately capture these aspects of the me-
chanical behavior. The purpose of the thesis is to shed some light upon these aspects
of constitutive modeling and to examine experimental procedures and test specimens
for calibration of the models. The discussion is focused mainly on filled rubbers,
since these are by far used most in technical applications.

A good description of the elastic behavior is essential, since design of rubber
units usually starts with some form of static elastic analysis, with the purpose of
deriving either a particular load-deflection curve or checking the stress levels in the
unit. Well-established so-called hyperelastic constitutive models, derived from a
strain energy function, are implemented in many commercial finite element codes.
The first part of the thesis concerns these elastic models and the calibration to
experiments.

With regard to dynamic applications, commercial finite element codes rely on
viscoelastic constitutive models, which essentially are generalizations of linear vis-
coelasticity to large strains. These viscoelastic models are well suited for unfilled
rubbers. However, rubbers in engineering applications are, as mentioned, usually
loaded with fillers, giving mechanical properties that deviate from the properties of
the pure rubber base. Viscoelasticity is not suitable for these rubbers, especially
for highly filled materials. The deviations from viscoelasticity and aspects of the
nonlinear dynamic behavior that are introduced by adding filler are discussed in the
second part of the thesis.
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1.3. Material properties

Here follows a brief description of molecular structure, manufacturing process and
mechanical properties that can be found in general textbooks, for example in the
comprehensive book by Freakly and Payne [16]. Other less extensive texts on en-
gineering with rubber have been written by, for example, Gébel [24] and Lindley

[33].

1.3.1. Molecular structure and manufacturing process

Rubber is a collective name for a broad group of materials with different chemical
composition but similar molecular structure and mechanical properties. The word
“rubber” originates from the pencil lead erasing property of natural gum rubber.
The fact that all rubber materials are highly elastic polymers is the origin of the
alternative and more descriptive name elastomer.

There are elastomers made from a wide variety of organic substances, but they
are all polymers with very long molecular chains. The raw elastomeric material can
be either natural or synthetic. Latex, the sap of a tropical “rubber” tree, coagulated
in thin sheets and compressed into bales, is the raw material in natural rubber. The
basic organic substance, the monomer, consists mainly of isoprene. There are no
chemical bonds between the molecular chains, and as a consequence the raw material
is of a soft and plastic consistency.

Natural rubber was used in the first elastomeric units manufactured, and it is
still the most common material in general purpose applications. The most common
synthetic rubber is made with butadiene as a base, and the main application is in
car tires, because of the good abrasion resistance.

Figure 1.1: Molecular structure for a carbon-black-filled rubber vulcanizate. Carbon
particles, polymer chains and crosslinks are schematically dlustrated.

The important process of vulcanization, that was discovered by Charles Goodier
in 1839, converts the plastic raw elastomeric material into a solid and elastic con-
sistency. Vulcanization is a chemical process where the long molecular chains are
linked together and thereby form a stable and more solid molecular structure. The
cross linking is enabled by a small amount of sulfur that is mixed with the plastic
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raw material. When the mixture is heated to about 170°C the vulcanization process
starts and crosslinks are formed, connecting the molecular chains.

Fillers such as carbon-black are added in order to increase the stiffness of the
material or, for some applications, to increase the resistance to wear. Carbon-black
consists of very small particles of carbon (20nm - 50um) that are mixed into the
raw rubber base before vulcanization. The filler and the elastomeric material are
not chemically joined; they are separate phases in the vulcanized rubber connected
only by the crosslinks. The rubber phase forms a continuous network, and the
filler material forms agglomerates inside the rubber network. The material is thus
a two-phase material made from constituents with completely different mechanical
properties. Figure 1.1 shows schematically the structure on a molecular level of a
carbon-black-filled vulcanizate. The polymer chains are shown as solid lines and
crosslinks are shown as dashed lines.

Vulcanization and shaping are combined in the so-called moulding process. The
rubber-filler mix is inserted into the mould cavity and heated to the appropriate
temperature, and the vulcanization starts. The curing time is dependent on the
temperature, the size of the unit and on how well heat is transferred to the unit.

Elastomeric units in technical applications are often composed of both rubber
and steel. The attached steel parts are used to connect the rubber unit to other
structures or to increase the stiffness of the unit. It is possible to attach steel parts
to the rubber material in the moulding process. The steel parts are bonded, very
efficiently, to the rubber. The bond is stronger than the rubber material itself in the
sense that a rupture in a properly manufactured rubber-steel unit usually occurs in
the rubber and not at the bonding surface between rubber and steel.

1.3.2. Mechanical properties

The main specific properties of elastomeric materials taken advantage of in engi-
neering applications are the ability to sustain large straining without permanent
deformation, the vibration damping property and the resistance to lubrication.

The elastic property is the most prominent characteristic feature of vulcanized
rubber. The ability to store large amounts of strain energy and to release most
of it in unloading is a primary function. The molecular structure enables it to
undergo large deformations and recover almost completely in unloading. However,
the material becomes less elastic and more leathery as more filler is mixed in to the
compound.

The elasticity of rubber is due to the long tangled molecular chains and their
ahility to stretch and orient themselves in the direction of straining. This is possible
because the repeated molecular units in the polymer can rotate freely about the
bonds joining the units. Elongations of several hundred percent are possible.

Another characteristic feature of rubber is the large difference between the shear
modulus and the bulk modulus. A typical carbon-black-filled rubber vulcanizate
for technical applications has a shear modulus of about 1MPa and a bulk modulus
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of about 2000 MPa (Freakly and Payne [16] p. 32). The large volumetric stiffness
compared to the shear stiffness indicates a nearly incompressible behavior. In many
applications complete incompressibility is a good assumption.

Although rubber is a highly elastic material it is not perfectly elastic. A difference
is always observed between the loading and the unloading curves in a stress-strain
diagram. This phenomenon is referred to as hysteresis, and it is illustrated in Figure
1.2 for a carbon-black-filled rubber in planar tension. (Typical values of stress and
strain will be given below for tension/compression and shear.) In cyclic loading
there is thus always a part of the energy that is not recoverable. The area enclosed
by the loading and unloading curves represents energy dissipated mainly as heat.
In free vibrations this causes the amplitude of the vibrations to decrease, and this
material property is therefore termed damping. Adding fillers to the rubber com-
pound increases the damping. The origin and modeling of damping will be discussed
further in the second part of the thesis.

Stress softening or Mullin’s effect [42] is another phenomenon which has to be
considered. This decrease in stiffness by straining is seen in Figure 1.2. If a previ-
ously unstrained rubber specimen is exposed to cyclic loading up to a specific strain
level, the maximum stress and the distance between the loading and unloading
curves will decrease in the first few load cycles. After about three to five load cycles
a steady state will be reached at this specific maximum strain level. If the specimen
is exposed to a new set of cyclic straining to a higher strain level, there will be a



6 CHAPTER 1. INTRODUCTION

70

%

50 60
IRHD or SHORE units

Figure 1.3: Relationship between the shear modulus G and the hardness in IRHD or
SHORE units.

new decrease in stress and hysteresis until a new steady state is reached. The strain
softening behavior originates from a gradual breakdown of molecular crosslinks and
to configurational changes in the rubber network, with increasing strain.

In order to get stationary values in the testing of rubber specimens it is thus
necessary to pre-strain the specimens before conducting the actual recording of
corresponding force-displacement values. This is called mechanical conditioning.

The filler phase has a very small stress carrying capacity as compared to the
rubber phase. The filler particles can be regarded as rigid inclusions embedded in
the rubber matrix. Consequently the stress and strain in the rubber phase will reach
higher levels in elastomeric units with filler added than will an equally loaded and
identical unfilled unit. The filler will also affect the maximum elongation (at break),
which is lowered by adding fillers. This effect of the filler on the rubber phase is
called strain amplification.

Stiffness of a rubber vulcanizate is classified by a value of hardness. It is measured
by an indentation test with a ball or needle with a spherical tip. A constant force
is applied and the indentation depth is measured. There are two methods, the
IRHD test (International Rubber Hardness Degrees) which is also the ISO standard
test, and the Shore Hardness test. The scales of the tests are almost identical for
rubbers in the range of 30-80 IRHD where most rubber mixes belong. The hardness
test gives an indirect measure of the elastic modulus. This is sometimes the only
value available for the modulus of the material. The relationship between the shear
modulus G and hardness is indicated in Figure 1.3. The diagram is constructed
from Lindley [33] (Table 3, p. 8). An extension of the hardness test is discussed in
Chapter 7.

Simple shear is more linear than other homogeneous modes of deformation. The
shear modulus is quite independent of the shear strain and it can therefore be re-
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Figure 1.4: Homogeneous deformations of a 60 IRHD rubber. Left: Uniazial state
of stress. Right: Simple shear.

garded as a material constant at least for moderate strains. This is not the case
for Young’s modulus as can be seen in Figure 1.4, where loading curves in compres-
sion/tension and simple shear are shown for a 60 IRHD carbon-black-filled natural
rubber vulcanizate. (The curve illustrating the uniaxial state of stress is composed
of a tension test and a compression test.) The behavior of rubber in compression is
progressive. For tension and simple shear the behavior is first digressive and then
progressive for large strains.

Some dynamic properties will also be discussed briefly here, although this is
mainly the concern of the second part of the thesis.

Dynamic tests, performed in simple shear with unfilled rubber vulcanizates for
small amplitudes, yield lineer dynamic response, a behavior characterized by sinu-
soidal response to sinusoidal excitation. The response is of the same frequency as
the excitation. However the response is shifted by a phase angle §.

Picturing the stress-strain loop yields an elliptic path, according to Figure 1.5.
(The static load is assumed to be applied slowly.) The elliptic hysteresis is associated
with dissipated energy. The energy loss for a strain cycle U, is related to the phase
angle 6 according to U, = mrkgsind, with 79 and ko being the shear stress and
strain amplitudes respectively. The expression will be derived in connection with
linear viscoelastic models in Chapter 9.

The use of rubber components often involves both static and dynamic properties.
Cyclic straining in combination with a static preload is a common load case. The



8 CHAPTER 1. INTRODUCTION

X
Figure 1.5: Static and dynamic stress and strain.

static and dynamic shear moduli are defined as

Gstat = z-i Gdyn = 19"
K Ko
according to Figure 1.5. The dynamic modulus is always larger than the static
modulus, as indicated in the figure.

The dynamic properties of rubber change with the influence of temperature and
frequency. The dynamic modulus and the phase angle are frequency and temper-
ature dependent. Increased temperature has a softening effect, and increased fre-
quency has a stiffening effect. The dependence however, is quite weak [33] for
frequencies below 1000 Hz and temperatures from 0 to 50°C, for commonly used
natural rubber vulcanizates.

Nonlinearities in the dynamic behavior appear as a distortion of the hysteresis
loop. These nonlinearities are due to nonlinear elasticity of the rubber network,
and, for filled rubbers, also due to the filler structure breakdown and reforming.
The filler induced nonlinearity appears as a decrease of the dynamic shear modulus
with increasing amplitude. Linear and nonlinear dynamic properties of rubber will
be discussed further in the second part of the thesis.
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1.4. Modeling

This section contains a brief discussion of design and modeling of elastomeric com-
ponents. Finite element analysis and models describing the mechanical behavior of
rubber materials are discussed.

Figure 1.6: Material characterization, finite element analysis, and comparative test-
ing.

The design of elastomeric components is mainly based on a static analysis with
the purpose of deriving a particular load-deformation characteristic. This is achieved
either by hand calculation methods or by computer calculation methods such as
the finite element method. For rubber units with complex geometry, the hand
calculation methods are of limited value and computer methods have to be used.

1.4.1. Design of elastomeric units

Design of rubber units relies on three essential constituents, illustrated in Figure
1.6, i.e.

o Laboratory tests of rubber specimens.

e Determination of parameters in the mathematical model of the particular elas-
tomeric material.

e Geometric modeling and simulation of the unit’s mechanical behavior.

The first item concerns the experimental stress-strain values for the particular
elastomeric material. Test specimens, made of the same material as the rubber unit
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to be designed, are manufactured and tested in the laboratory. The obtained pairs
of measured stress-strain values are then used to calibrate the constitutive model,
i.e. the mathematical model connecting stress and strain.

The constitutive model is fitted to the experimentally obtained stress-strain re-
lation, and the parameters in the model are determined by some fitting procedure,
for example the method of least squares.

The first two items above, which are also the main subjects of the thesis, result
in a set of parameters defining the constitutive model of the elastomeric material.
These parameters, together with a geometric description and a specification of the
loads, provide the input to the computer simulation in item three above.

The most versatile and successful computational method in solid mechanics is the
finite element method. Tt provides a systematic procedure for analysis of structures
of different types of material and arbitrary geometric form. The structure to be
analyzed is divided into smaller parts, elements, connected in nodal points. The
force-displacement relation for a particular element, i.e. the connection between
nodal forces and displacements, can be obtained only if the relation between stress
and strain in the element is known. This relation is provided by the constitutive
model. The hierarchical construction of the finite element model is illustrated in
Figure 1.6.

The well-known books of Zienkiewicz and Taylor (vol.l and 2) [68] give a com-
prehensive treatment of several aspects of finite element analysis. An introduction
to the finite element method can be found in e.g. [44].

An example of the capabilities provided by finite element analysis is shown in
Figure 1.7. A simulation of mounting and compression of a sealing for concrete pipes
has been carried out as a M.Sc. thesis work [47]. Rigid elements are used in the
mounting and compression steps. The analysis involves several intricate features of
finite element analysis, such as large strains, nonlinear material behavior, contact
conditions, and nearly incompressible behavior. The analysis can, among other
things, reveal whether the contact pressure between the pipe and the sealing is large
enough.

The handling of incompressible material behavior is a specific problem in finite
element analysis. A large difference between deviatoric (shear) and volumetric stiff-
ness tends to make ordinary elements far too stiff, and even complete “locking” can
be encountered. Special “hybrid” elements have been developed that can circumvent
the locking phenomena.

Several general purpose finite element codes are available. Examples are ABAQUS,
ANSYS, and NASTRAN, to mention some of the best known.
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Figure 1.7: Ezample: Analysis of a sealing by computer simulations by the finite
element method.
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1.4.2. Constitutive models of rubber

A general overview of constitutive models and stress and strain measures is presented
in books on continuum mechanics; see for example Malvern [37]. The discussion here
will concern the rheological model in Figure 1.8. Modeling of elasticity and damping
will be discussed briefly here in terms of the one-dimensional model.

(¢

~QO 0O
Iy
L

Figure 1.8: One-dimensional mechanical analog of filled-rubber behavior.

The elastic behavior is provided by the spring element, which is assumed to
be nonlinear. Damping is provided by a rate-dependent viscous damper and a
rate-independent element. The rate-independent part is symbolized by a frictional
element, consisting of two blocks with sliding contact between the surfaces. The
elastic, viscous, and frictional stresses act in parallel, and the sum of the stresses is
added to the total stress, i.e.

0 =0+ 0, + 0y,

where o, is the nonlinear elastic stress, o, is the viscous stress, and o is the frictional
stress.

If the model is subjected to loading followed by unloading, the response in a
stress-strain diagram will exhibit behavior as shown in Figure 1.8, giving a difference
between the loading and unloading paths. The elastic response, i.e. the nonlinear
spring characteristic, is indicated by the dotted line. The viscous part of the stress
will gradually vanish if the strain rate is approaching zero. This is a reasonable
assumption for rubbers without fillers. However, for filled rubbers there will always
be a difference between the loading and unloading curves even if the strain rate
is approaching zero. A rate-independent frictional stress component is therefore
necessary to model the behavior of filled elastomers.

The model is consistent with the microstructure of a filled rubber as shown in
Figure 1.1. The elastic stress and the rate-dependent resistance are due to the
rubber network, and the rate-independent stress is due to the filler. The forces that
develop in the rubber network and between the filler particles act in parallel. The
damping due to the filler will add to the damping in the rubber network.

The model incorporates some important aspects of the mechanical behavior of
filled rubbers. It provides a qualitative and conceptual understanding of proper-
ties such as frequency dependence, effects of static load on the dynamic modulus,
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distortion of the hysteresis loop, and amplitude dependence. However, it has some
apparent nonphysical properties, and it should not be interpreted as an exact quan-
titative model of elastomeric materials. For example, the stress response can be
discontinuous even if the strain is continuous and the model does not incorporate
relaxation behavior. However, the sketched model is a starting point for modeling
of elasticity and damping mechanisms in filled rubbers, and developments of it will
be discussed further in the second part of the thesis.

A general constitutive model should be able to handle multiaxial stress and
strain. Established models applicable to the behavior of rubber are nonlinear elastic
models and viscoelastic models.

A theory of rubber elasticity based upon the molecular structure of the chain
network, called the statistical theory, was developed by Treloar [63] and others. This
theory led to a strain energy expression containing only one material parameter
that can be identified as the shear modulus. Mooney [39] and Rivlin [51] developed
the phenomenological theory of rubber elasticity. Mooney initiated the work and
Rivlin developed a general theory. The basis of the phenomenological theory is a
strain energy expression, postulated without molecular considerations. The elastic
properties are determined by choosing a suitable strain energy expression. The first
part of the thesis concerns applications of this theory.

Viscoelasticity provides a way to take into account time and frequency depen-
dent properties of rubber behavior. A simple one-dimensional viscoelastic model
is obtained by connecting a spring and a viscous damper in parallel. This specific
model is known as the Kelvin-Voigt model.

The general theory of linear viscoelasticity was derived by applying Boltzmann’s
superposition principle to creep and relaxation behavior.

Connecting the rate-independent frictional element to the Kelvin-Voigt model
yields a viscoplastic model. One-dimensional models, often expressed in terms of
force-displacement relations, incorporating rate-independent damping, have been
proposed as models of rubber components, for example in vehicle dynamics or earth-
quake protection applications. However, there seem to be no three-dimensional vis-
coplastic large strain models describing the behavior of filled rubbers. These models
have so far mainly been applied to metals.

Most commercial finite element codes available for nonlinear analysis can handle
nonlinear elastic problems by using hyperelastic constitutive models. However, in
order to handle dynamic problems involving damping, only a few codes have this
ability. The constitutive models in these codes combine hyperelasticity and vis-
coelasticity. These visco-hyperelastic models are modified linear viscoelastic models
for large strains, with purely rate-dependent damping. Some commercial codes [26]
include options for steady-state dynamic problems considering small viscoelastic
vibrations overlaid on a large static elastic deformation.
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1.5. Overview

This thesis can, of course, be read in many different ways. The abstract and this
introduction is one level. The introduction to rubber elasticity (Chapter 2), the
introduction to damping mechanisms (Chapter 8), and the summary in Chapter 14
is a second level. These parts give an overview without complicated mathematics
and should be readable by non-specialists as well. There is also a description of
basic concepts, such as strain and stress measures, provided in the Appendix.

The thesis is presented in two parts. The first concerns elastic properties, and
the second concerns damping and dynamic properties.

The first part treats hyperelastic constitutive models and the correlation of these
models to experiments. Chapter 2 gives an introduction to nonlinear elasticity and
fit to test data. Hyperelastic models and the strain energy density are discussed in
Chapter 3. Test specimens and corresponding stress-strain relations are discussed in
Chapter 4. Mechanical conditioning and fit to test data are discussed in Chapter 5.
Special emphasis will be on a three-parameter model proposed by O.H. Yeoh. The
quality of the fitted model is checked by use of a strain energy piot. The ability of
the models in fittings to test data for carbon-black-filled natural rubber vulcanizates
is also investigated.

The accuracy of different test specimens, i.e. the deviation from the ideal homo-
geneous states of strain, are analyzed in Chapter 6.

Alternative test specimens and methods are discussed in Chapter 7. A new test
specimen is proposed that can replace the standard dumbbell specimen, a method
that uses a modified form of the hardness test to extract hyperelastic constants is
presented, and a method for contaci-free strain measurement is also presented in
this chapter.

The second part concerns dynamic properties, with a discussion of damping
mechanisms in filled elastomers. The ability to model the dependence of the dy-
namic modulus on frequency and amplitude is discussed. The introduction to this
part {Chapter 8) gives an overview of experimental results and a brief discussion of
dynamic material models. These models are discussed in more detail and compared
with experiments in subsequent chapters.

Linear viscoelasticity is discussed in Chapter 9. Basic features such as the heredi-
tary integral, relaxation modulus, and complex modulus are defined and specific
models are illustrated by use of rheological models. ‘

Rate-independent damping is discussed in Chapter 10 in terms of one-dimensional
elasto-plastic models. A combination of rate-independent and rate-dependent damp-
ing is studied and compared with experiments in Chapter 11.

Models available in commercial finite element codes for dynamic behavior of
rubber are modified linear viscoelastic models that take large strain into account.
These models are the subject of Chapter 12.

Finally, in Chapter 13, a possible multiaxial large strain generalization of the
one-dimensional viscoplastic model is discussed.
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ELASTIC PROPERTIES
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2. INTRODUCTION TO RUBBER ELASTICITY

This chapter serves as an introduction to nonlinear elastic material models. Hy-
perelastic models defined from a strain energy density function are used in finite
element codes to define nonlinear elastic behavior. Basic concepts like the strain
energy density, stress-strain relations, and least square fit to experimental data are
introduced by use of a one-dimensional example. Incompressibility is also discussed.
The subjects touched upon in the introduction are developed further, with the gen-
eral hyperelastic constitutive model as a base, in subsequent chapters.

2.1. Nonlinear elastic bar

Figure 2.1: Nonlinear elastic bar loaded by force P.

The concept of hyperelasticity will be illustrated by a nonlinear elastic bar (cf.
Figure 2.1. The simplest possible hyperelastic constitutive model, the one-parameter
Neo-Hooke model, will be derived from the strain energy density W(X), with W the
strain energy per undeformed volume of the bar and X the stretch, defined as the
length ratio of the deformed and the undeformed bar.

The uniaxial stress-stretch relation will be derived for the bar and an example
of fit to experimental compression/tension data will be shown for the Neo-Hooke
model.

Consider the nonlinear elastic bar, illustrated in Figure 2.1, with original length
I and cross-section area A. The force P causes the displacement u at the end of
the bar and increases its length to I giving the stretch A = [/L.

The total strain energy U is computed by multiplying the strain energy density
with W the volume, i.e.

U=ALW())

17
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The incremental work done by the external force P should be equal to the increment
in total strain energy. Hence, the energy balance is stated as

Pdu=dU , (2.1)

and the increment in total strain energy can be expressed by use of W as

U = AL AW = AL%dA. (2.2)
The displacement increment can also be written in terms of stretch by using
u=]—-L=(A-1)L.
Differention yields
du = LdA. (2.3)
Inserting (2.3) and (2.2) into the energy balance equation (2.1) yields
aw
PLdA = AL —dX .
dA
Simplifying the expression gives
P 4w
— = 2.4
A d)\’ (24)

where P/A is the nominal stress, i.e. force per original cross section area, derived
from the strain energy function.

It is seen from this one-dimensional example that the stress can be obtained
directly from the strain energy density function. In the general multiaxial case, that
will be dealt with in Chapter 3, the stresses are found in a similar manner from the
strain energy density function.

2.2. The Neo-Hooke material

The strain energy function W ()) has to fulfill some general conditions:
e W(1) =0 for XA = 1, i.e. the strain energy is zero in the unloaded case.

e W()\) — oo for A — 0 and for A — o0, i.e. the strain energy should increase
for increasing compression and tension.

e dW/d\ =0 for X =1, the nominal stress has to be zero in the unloaded
state.
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Figure 2.2: Strain energy function W(\) constructed from a simple choice of func-
tions.

A strain energy function can be constructed from a simple choice of functions by
using 1/) and A2 according to Figure 2.2. A function that satisfies these conditions
is given by

| ]

WA =CA+<-3). (2.5)

>~

Inserting (2.5) into (2.4) results in

P 1
— =200 = 53),

(2.6)
where C is an arbitrary material constant. Equation (2.6) is the nominal stress in
the so-called Neo-Hooke material, which is the simplest possible hyperelastic model,
with only one material parameter.

Before looking at the fit to experiments we note that the initial Young’s modulus
Ey for the Neo-Hooke material can be derived according to

d P

E = — =
T Al

6C . (2.7)

The Neo-Hooke material model has been shown to give quite good agreement
with experiments of rubber in compression and moderate tension [16].

2.3. Fit to test data

In order to illustrate the fitting procedure and to prepare for the discussion in
Chapter 5, the elastic parameter C' in the Neo-Hooke model will be obtained here
from experimental data by a least squares procedure. The experimental data in
Figure 2.3 are nominal compression/tension stress values for a 65 IRHD carbon-
black-filled rubber vulcanizate.
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exp
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Figure 2.3: Test data from compression and tension fest.

The nominal stress-stretch relation (2.6) should give a close fit to the experimen-
tal data points. Hence, the conditions to be fulfilled as closely as possible, for all
data points, are

Sleer () = S5 i=1.n, (2.8)
where n is the number of data points. The tension and a compression stress-stretch
relation S is defined by (2.6) as

co P; 1
Setting up the (approximative) equalities (2.8) at every experimental point yields
1
e; = 2(/\z - V)C - Sie:lxp s (29)

where e; is the error between theory and experiment. Equation (2.9) can be ex-

pressed in matrix format as
e=alC—b

where e, a, and b are n by 1 matrixes with
a; = 2(/\1 - 1/A12> and bl = Siemp‘

In the method of least squares the “closest fit” is defined as the minimum of the sum,
over all data points, of the square of the errors between theory and experiments i.e.

k1 n
=3 (S —57)2 =) el = ele.
i=1 i=1
The nominal stress obtained from theory Sf¢" depends on the unknown elastic
parameter contained in the strain energy function W(X). Minimizing ¥ with respect
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to the unknown parameter yields a value of the elastic parameter giving the best fit
in the least squares sense. The explicit expression for ¥ is

¥ = ele = (aC — b)T(aC - b) = aTaC? — 2aTbC + b"b .
Finding the minimum of ¥ by

A
2 =92a%aC —2a¥b =
iC a*aC —2a"b 0~
yields the solution

C=a"b/a%a .

The values of a and b are obtained by the experimental data in Figure 2.3 giving
C = 0.632 and thus an initial modulus Ey = 3.79 M Pa.

Af (MPa)

Figure 2.4: Fit of the Neo-Hooke model to test data from compression and tension
test.

The fit is illustrated in Figure 2.4. It can be seen that the fit is good in com-
pression but not so good in tension. The Neo-Hooke model is unable to capture the
upturn of the experimental data in tension. Including more constants in the strain
energy density function enables a closer fit in tension.

2.4. Incompressible behavior

It was mentioned in the introduction that the ratio between the bulk and shear
modulus is approximately 2000 for a natural rubber vulcanizate, i.e. the material is
almost incompressible. An example of the limiting case, complete incompressibility,
will be shown here. _
Suppose that a body of an incompressible material is only subjected to a hydro-
static pressure. In this case no strains develop in the body. Likewise, superposition
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of hydrostatic compression or tension on a state of stress in an incompressible ma-
terial will not change the strains. Hence, the state of stress is not unique for a
given state of strain. The hydrostatic pressure is not connected to the strains and
is therefore an independent variable.

Figure 2.5: Conversion of compression to equibiaxial tension by adding hydrostatic
tension.

An example is shown in Figure 2.5, where a compressive stress is converted into
an equibiaxial stress by adding hydrostatic tension. This has implications for testing
of rubber specimens because the example shows that different loading conditions in
testing can give equivalent deformations.

2.5. Hyperelastic characterization

Hyperelastic characterization involves choice of strain energy function, type of test
specimens, and test procedure. These subjects will be discussed in subsequent chap-
ters. A review of methods to characterize the elastic behavior of rubber is given by
Charlton and Young [11]. Discussions on characterization of rubber can also be
found in documentation to finite element programs, see for example [26].

The characterization starts with a choice of strain energy density function. A
large number of strain energy density functions for different types of rubbers have
been proposed, with validity dependent on the strain range. Several choices with
different numbers of constants are discussed by for example Charlton and Young,
and Finney and Kumar [15], and Treloar [63]. Models suitable for carbon-black-
filled natural rubbers are discussed by Yeoh [65] [66] and Davies et al. [13]. Some
of these hyperelastic models are discussed in Chapter 3.

Test specimens and applicable analytical strain-stress expressions can be found
in several sources; see for example [11] [63] [26]. A number of test specimens and
corresponding analytical expressions are presented in Chapter 4. The accuracy of
some specimens compared to the analytical expressions is the subject of Chapter 6.

The test procedure involves mechanical conditioning in order to avoid softening,
and to achieve stationary test values. Procedures for conditioning are discussed in
James and Green [28] and Yeoh [65]. This is also a subject discussed in Chapter 5.
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The constitutive equation for a hyperelastic material is discussed in this chapter. It
is defined as a relationship between total stress and total strain. We will start by
recalling the concept of strain energy in connection with the simple one-dimensional
example in the introduction. The strain energy plays a central role in defining a
the constitutive relation. Stresses are determined by derivatives of the strain energy
function. Stress and strain measures used in this chapter are discussed in Appendix.

3.1. The strain energy function

A material whose stresses can be defined by a strain energy function is termed a
hyperelastic material. The strain energy function can be regarded as a potential
function for the stresses. The strain energy per unit volume in the reference config-
uration W and its dependence on the strain measure is the subject of this section.
The strain measure used here is the left Cauchy-Green deformation tensor B. A gen-
eral assumption is that W depends on all of the components of the strain measure,
giving
W =W(B).

The state of deformation however, is fully determined by the principal stretches and
the principal directions. The strain energy function can therefore equivalently be

expressed as
W= W(}\17)\2,)\3,n1,n2,n3) .

If the material is assumed to be isotropic, there will be no directional dependence
and W is a function of the principal stretches only i.e.

W = W(Al,)\g,Ag) .

To obtain the principal stretches we have to find the roots of the characteristic
polynomial of B. It is, however, easier to obtain the coefficients of the characteristic
polynomial, i.e. the strain invariants (cf. Appendix). Instead of using the principal
stretches we could therefore express W as a function of the strain invariants

W= W(Ila I2a IS)

23



24 CHAPTER 3. CONSTITUTIVE LAW

with the strain invariants
I = tr(B) = A% + A% + As?
L = L(tr(B)? — tr(B?)) = M2A% + M2hs% + A2 )57 (3.1)
Iy = det(B) = A% )2 052

In the case of an incompressible material there is no dependence on the third
strain invariant, because this invariant expresses the volume change, giving

The form (3.2) of the strain energy density function will be used in the constitutive
law described in the next section.

Expression (3.2) seems to indicate that all values of I; and I, are possible. How-
ever, the values of I; and I, are restricted due to the condition of incompressibility.
If we consider principal directions we can use the condition I3 = 1 to eliminate one
of the principal stretches in the expressions of I, and I;. The third principal stretch
can be expressed as

1
A3 = . 3.3
=3 (3.3)
Inserting (3.3) into (3.1), yields
2 2 1
L= XM“4+ X" + —5Tg
A1 e (3.4)
1 1 )
L= A12>\22 + j\g + ’X%“

The values of A; and A2 can now be chosen independently. The possible values
of the invariants I; and I, for all choices of A\; and Ay are shown as the shaded area
in Figure 3.1.

3.2. Constitutive model

The constitutive law for a class of incompressible nonlinear elastic material will be
stated next.

According to the discussion in Chapter 2 there will be no strains developing in
an incompressible body, only subjected to a hydrostatic pressure. Likewise, to a
general state of stress we could add an arbitrary hydrostatic pressure without any
corresponding strains developing. The only part of the stress that causes strain in
an incompressible body is therefore the deviatoric part.

The constitutive law for a hyperelastic, isotropic and incompressible material is
derived in a similar way as in the introductory example i.e. by use of an energy
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Figure 3.1: (I1,I;) diagram restricted to incompressible deformation.

principle. The derivation is, however not carried out here. See for example [37] or
[6]. The constitutive law is given by

ow i aw) O
o, ' 1ol aL,

o= 2= B?+p1 (3.5)

where o is the Cauchy stress tensor, B = FFT is the left Cauchy-Green deformation
tensor and p is the pressure stress defined as

1

5(0'11 + 022 + 0'33) . (36)
It is clearly seen, by subtracting the pressure stress from both sides of (3.5), that
the constitutive relation is expressed in terms of the deviator stress

p:

s=0-pl.

The constitutive model (3.5) depends entirely on the specific form of the strain
energy density function.

The stress-strain relationships that will be derived in Chapter 4, are obtained
from the general constitutive relation (3.5) in the cases of deformation without shear
and simple shear. These special cases of (3.5) will be discussed next.

3.2.1. Principal directions; Rivlin’s relations

Rivlin [51] showed that the differences in the principal stresses can be expressed
without involving the unknown pressure stress. These relations are derived from
the general expression (3.5) by eliminating the pressure stress.
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Principal directions and the deformation gradient F for this case are discussed
in Appendix. The left Cauchy-Green deformation tensor can be expressed as

X oo o0 Moo oo
B=FFT=| 0 X 0 B:=| 0 X 04 _ (3.7)
0 0 X 0 0 X

Inserting the value of the first invariant (3.1), and (3.7) into (3.5), yields

ow ., W o 1o 5 Y

7= 255 M+ 25 (O +5+ 00X -2 +
oW ow

— % 2 2 2 2 g__ 4

09 a]'l A.. + 6[2 ((/\1 +A2 -+ /\3)A~ /\2)+p
ow c‘?W

where o; is the principal Cauchy stress and ); is the principal stretch in direction 4.
Subtracting equation two from one, three from one and three from two eliminates
the pressure and Rivlin’s relations are obtained

g1 — 09 5W ow

=9
TRl AR & %)

01 — 03 ow ow

—_ 2
v x - 2an t R g (3.8)
Oy — 03 6W 2 %
)\2 )‘2 2(8—I1+ 1 6]2)

with the unknown pressure eliminated.

3.2.2. Simple shear

The state of deformation in simple shear cf. Figure 3.2 is obtained from the de-
formation gradient F (derived in Appendix). The left Cauchy-Green deformation
tensor B and B? is in this case given by

1+k2 0 & 1432 +k* 0 26+ &3
B=FF'= 0 10 B’ = 0 1 0 (3.9)
k 01 2% + K° 0 1+ k2

where k = tanf, with 8 defined in Figure 3.2.
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Figure 3.2: Simple shear.

The strain invariants are

{Il=tT(B)=3+fC2

(3.10)
I = i(tr*(B) — tr(B?)) = 3 + &

Hence, the invariants are equal in the simple shear deformation.

Inserting (3.9) and (3.10) into (3.5) yields

2
011 012 013 OW oW 1+« 0 k
091 029 023 =2(EI—+(3+R2) ol ) 0 10
031 032 O3 ! ? £ 01

1+3:2+k* 0 26+ %3 100
——2%TW 0 1 0 +pi 01 0.
2 26 + K3 0 142 00 1

Observe that, in contrast to small strain linear elasticity, normal stresses are present
in all three directions. The only shear stress different from zero is 7 = 013 = 031
The shear stress 7 is found to be

ow oW

A + 7972) k with s =tanf. (3.11)

=2
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3.3. Strain energy functions

Two general strain energy function formats will be discussed here; the polynomial
form and the Ogden form. These functions are expressed in terms of invariants
and principal stretches respectively. Several other strain energy formats have been
proposed. A discussion of strain energy density functions can be found in [11] and
[15].

The polynomial form contains the elastic constants in a linear dependence while
the Ogden form, with constants as exponents, gives a non-linear dependence of the
constants. This makes it more complicated to fit the latter model to experiments.
On the other hand, the advantage of the Ogden model is that in general a more
stable and better fit to experimental data is obtained.

However, it will be shown in Chapter 5 that a special choice with three param-
eters in the polynomial form gives an accurate and stable fit to experimental data
for natural rubber vulcanizates.

3.3.1. Polynomial form

A general form of the strain energy density function W, implemented in most of the
general finite element programs capable of handling hyperelastic materials, is given
by the series expansion

W= > Cyli-3)(L~-3) (3.12)
§=0,7=0

where Cj; are unknown constants. The sum is formally written as a sum to infinity
but normally only a few terms are used.

The reason for writing the series in terms of (I; — 3) and (I; — 3) is that these
terms are zero in the undeformed state, thereby giving W = 0 in the undeformed
state, if we also require that Cyp = 0.

The explicit version of (3.12), with the terms having an index sum less or equal
to three, is written as

W = Cio(I1 — 3) + Co1 (L2 — 3)
+Cao(Iy — 8)2 + Cy1 (I — 3)(I3 — 3) + Coa(I — 3)°
+C50(I; — 3)% 4 Cor(I1 — 3)2(I2 — 3) + Cra(I1 — 3)(I — 3)* + Cos(I — 3)®
Fore s ’
Taking only the first term in the series yields the neo-Hooke material, i.e.

W = Co(l; — 3) . (3.13)
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The neo-Hooke model was first derived from statistical mechanics [33], by consid-
ering the molecular structure of rubber. Although this model only contains one
parameter it has been shown to give very good agreement with experiments in com-
pression and moderate shear [16]. These are the two most important modes of
deformation in engineering applications of rubber units. The first constant Cjg in
the series is therefore the most significant parameter.
The famous Mooney-Rivlin material is obtained by taking the first two terms in
the series, giving
W = 010(11 — 3) + 001(.[2 - 3) . (314)

The model shows good agreement with experiments on natural gum rubber, and it
has been widely used in various applications. However, it is of more limited value
for carbon-black-filled rubbers [65].

Another way of selecting terms in the series is by counsidering the so-called order
of deformation. The logic in this characterization is derived from the order of the
polynomial in A% that is obtained by substituting the invariants with the correspond-
ing expressions in principal stretches (3.1). The first invariant is expressed as a sum,
I, = ¥ )2 , which is of the first order in A%. The second invariant is expressed as a
sum, I, = Y A?A% (i # j ), which is of the second order in A\*.

The first order of deformation material is the Neo-Hooke material. The second
order of deformation material is found by taking terms that include I, I} and I,
ie.

W - 010(11 - 3) + O()l(_[z - 3) + 020(.[1 - 3)2 (315)

a model with three parameters. The third order of deformation material is found by
taking terms that include I3, IZ, I, I and I I, i.e.

W = Cyo(I; —3)+Cor (I3~ 3) + Cag (11— 3)* + C11 (I; — 3) (I, — 3) + Cao (11 —3)* (3.16)

a model with five parameters.

Yeoh [65] found that the dependence on the second invariant is very weak for
carbon-black-filled natural rubbers. This has been verified by others, see for example
Davies et al. [13].

By leaving out terms in (3.16) that include I» Yeoh obtained a model with
three parameters that gave a good fit to experiment carried out on filled rubbers.
Consequently, this strain energy function is written as

W - 01()(]1 - 3) + 020(.[1 - 3)2 + 030(11 - 3)3 . (317)

Apart from being a fairly simple model (i.e. only three parameters) and giving a
good fit to experiments on carbon-black-filled rubbers, is it also possible to obtain
the parameters from a shear test ounly. This is not possible for general choice of
parameters.



30 CHAPTER 3. CONSTITUTIVE LAW

3.3.2. Ogden model

The strain energy density is generally written
2/“'2 (a4 o4 [a2
W = Z A1+)\'+)\'—~) (3.18)

The Ogden model [43] can generally not be compared with the polynomial form,
except for specific choices of the constants. For N = 1 and ; = 2 the Neo-Hooke
model is obtained. For N = 2 and a7 = 2 and ay = ~2 the Mooney-Rivlin model is
obtained.

The stress-stretch relationships are obtained from the general constitutive equa-
tion (3.5). This equation requires derivatives with respect to the invariants. How-
ever, the Ogden model is expressed in terms of principal stretches. The derivatives
with respect to the invariants can de derived by use of the chain rule. If incompress-
ibility. is assumed i.e. W = W (Iy, I»), the chain rule yields

oW [ OL OLyrow
O\ | | O 0N ol
ow || on on | |ow |- 1)
O, 02 OAg oI,
The desired derivatives are found by inversion of (3.19)
ow | L o Wil
OL | _(Oh0L _OLOL .| 8 Ok || 0N (3.20)
OW | T0M 0N 0N 0N oL 8L aw ‘
0l ‘ AN 0N OXe

The expressions should be evaluated considering incompressibility. This means that
(3.4) should be used for the invariants and that A3 = 1/A{), is inserted into (3.18)
before evaluating the derivatives.
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3.4. Strain energy density plot

The strain energy function can be expressed in terms of principal stretches by in-
serting the invariants (3.4) Le.

1
L =M +N+——
1 1+2+>\12>\22
1 1

L=MMN+S5+—
2 12+>\%+/\%

This yields a function depending on two principal stretches
W = W()\]_., )\2)

defined for all values of A\; and Ap. ( The third stretch invariant is determined by
the incompressibility constraint.)

q
3

2.5F

D.g.

15
lambdal

Figure 3.3: Neo-Hooke model W (1, As).

The Neo-Hooke material expressed in terms of A\; and ), is shown as an example
in (3.21)

W = 010(/\12 -+ )\22 + — 3) . (321)

A2 g’

A contour plot of this strain energy function, with Cyo = 0.5, is shown in Figure
3.3. The Neo-Hooke strain energy function has only one minimum W = 0 occurring
at Ay = X = 1, and the strain energy increases in all directions, starting from
the undeformed state. This bowl-shaped strain energy function corresponds to a
reasonable physical behavior for all choices of positive values of Co.



32 CHAPTER 3. CONSTITUTIVE LAW
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Figure 3.4: Second order of deformation model W (A, As).

If more terms in the series (3.12) are included, a reasonable behavior is not
guaranteed. Consider as an example the second order of deformation material shown
in Figure 3.4. The values of the constants in the example are Cig = 0.5, Cp; = —0.05
and Cy = —0.05. This choice of parameters yields negative values of the strain
energy and local extremum points are present. This example calls for some caution
in the choice of constants in the series (3.12).

The contour plot of W (A1, A2) serves as a “fingerprint” of the hyperelastic model.
It is useful for determining if a model obtained from a fit to experiments has good
behavior for all values of A; and A, i.e. not only for those used in the testing. The
strain energy plot will be discussed further in Chapter 5.



4. TEST OBJECTS AND STRESS-STRAIN
RELATIONS

In the following sections specific tests will be described. These are the tension, com-
pression and equibiaxial tests, the pure and simple shear tests and the independent
biaxial test. The accuracy of the tests will be evaluated in Chapter 6.

Discussions concerning different tests for evaluation of elastic properties can also
be found in [11] and [26].

4.1. General considerations

Tests for determination of hyperelastic parameters are usually designed to yield
homogeneous states of deformation. All the tests described here, except tests using
simple shear deformation, are also designed to have fixed principal directions during
the deformation.

b
T i) / Shear

(compr ,sgio

"
Equibiaxial

3

3 4 5 6 7

Figure 4.1: Paths in the (Iy,I5) plane.

From a known state of homogeneous deformation it is possible to calculate the
stress by use of the constitutive relation (3.5). The calculated stress is compared

33
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with the experimentally obtained values. Use of a fitting procedure makes it possible
to assign values to the elastic parameters in the constitutive relation.

The tests are based on simple states of deformation and complete incompress-
ibility is assumed, which makes it possible to obtain analytical expressions for the
stress-stretch relations.

There are four states of deformation used in the tests described here. These are
equibiaxial deformation, pure shear, simple shear and general biaxial deformation.

Three tests use the equibiaxial state of deformation, the tension test, the com-
pression test and the equibiaxial test. The pure and simple shear tests are shown
to give equal values of the strain invariants. The independent biaxial test is also
discussed. The different tests leave different paths in the (I3, I;) plane, cf. Figure
4.1. ‘

The tension, compression and equibiaxial test objects are all designed to give
an equibiaxial deformation. The differences between the tests are in the states of
stress applied to the specimens, (that can be different even if the state of strain is
the same cf. Chapter 2).

Pure shear and simple shear are essentially the same state of deformation, but
the test specimens are quite different in their design. The true biaxial test is the
most general, but also the most complicated test to perform.

An ordinary uniaxial mechanical testing system usually has the capability of
recording force and displacement between the loading heads. Some of the tests
require measurement of the displacements in a defined zone. This is the case in
the tension, the equibiaxial and the independent biaxial tests. These tests need
extra equipment, like some form of extentiometers or optical methods, for measuring
displacements, while for the rest of the tests loading head displacement is sufficient.

Some of the test objects are described in the International Standards (ISO)
recommendations. The ISO norm containg a description of a tension, compression
and simple shear specimens. The objects included in the ISO standard are adopted
here.

4.2. Equibiaxial deformation

In the equibiaxial deformation two principal stretches are equal and the other stretch
is determined from the condition of incompressibility.

4.2.1. Tension and compression test

The tension specimen according to ISO 37-1977 consists of an hourglass shaped
membrane, a so called dumbbell test piece, as illustrated in Figure 4.2.

The dumbbell specimen according to ISO is a weak specimen, with forces nor-
mally less than 100N, which requires a load cell for small forces. Moreover, the
displacement should be measured within the zone where the predicted relations are
valid. This requires clip gauges or other methods. Alternatively, a conversion curve
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12.5mm

115 mm

Thickness 2 mm ?

Figure 4.2: Tension and compression specimens

could be established giving a correction between loading head displacement and
elongation of the homogeneous zone. A disadvantage is the difficulties in getting a
slip-free connection to the specimen.

The compression specimen according to ISO 7743:1989 consists of a cylinder
with a diameter of 20mm and a height of 12.5mm cf. Figure 4.2. The cylinder
is compressed between two parallel highly polished flat metal plates. In order to
accomplish the required homogeneous state of deformation the surfaces have to
be lubricated with silicon grease. Deviation from the ideal homogeneous state of
deformation appears in a barrel shape of the loaded specimen.

The displacement is measured directly from the loading head displacement.

1 P

Figure 4.3: Tension and Compression tests.



36 CHAPTER 4. TEST OBJECTS AND STRESS-STRAIN RELATIONS

In the tension and compression tests one stretch ) is determined by the prescribed
displacement. It is calculated as

_L+6
L

where L is the original length in the tension or compression specimen and § is the
prescribed displacement. The two other stretches are equal and determined by the
condition of incompressibility, giving

Az = A
A1=)\2=

A

R (41)
VA

The condition of incompressibility is fulfilled because A\; XAz = 1. (A > 1 corre-
sponds to tension and A < 1 to compression.)

The values of the invariants are found by inserting (4.1) into the general expres-
sion for the strain invariants, giving the invariants for the equibiaxial case

2

I1='/\*+A2
\ . (4.2)
I2='/\“§+2/\

They can be represented as a curve in the (I3, [;) plane as illustrated in Figure 4.1.
Note that the curve representing the equibiaxial deformation is equivalent to the
boundary curve in the (I3, I3) plane, for the possible values of the invariants, when
incompressibility is considered. Compression is represented by the upper boundary
curve and tension is represented by the lower boundary curve. (The undeformed
state gives I; = I, = 3.)

The tension and compression tests have only one nonzero principal stress com-
ponent. If we choose the third principal direction to be the loaded direction (cf.
Figure 4.3), then the Cauchy stress tensor is written as

0 060
c=]000 with o = P/a . - (4.3)
00 ¢

P is the force that develops in direction three and a is the deformed cross section
area perpendicular to the loaded direction. This area can be calculated from the
state of deformation according to (4.1), giving a relation between the deformed and
undeformed cross section area,

1
a—xA

The stress component ¢ can be expressed by the force and the undeformed cross
section area as P

=2, 44

E (44

g
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Rivlin’s relations can now be used to obtain a predicted stress-stretch relation
for tension and compression. Use of the second or third equation in (3.8) with the
the stretch (4.1) and stress (4.3) yields

P oW 10w 1

1 =2(—<?7;+X5};)( - 3\5) (4.5)

by use also of (4.4). This is the predicted uniazial stress-stretch relation used in the
tension and compression tests.

It is obvious from (4.5) that a constant Young’s modulus can not be defined
for an incompressible hyperelastic material. It has to be considered as a function of
stretch. However, the initial Young’s modulus Fqy can be calculated from the formula
(4.5) by considering the slope at unit stretch,

o P 66W ow

Ey = }\Ln} EX(Z) ('517 + '5]—2)11=12=3 :

(4.6)

Evaluating (4.6) for the strain energy function as the general series (3.12) yields
the initial Young’s modulus
Eo = 6 (010 -+ 001)

i.e. only the first two constants have influence on the initial modulus.

4.2.2. Equibiaxial test

T rF

5

Figure 4.4: Equibiazial test object.

The equibiazial test object is a quadratic membrane with a series of small holes
punched along the edges according to Figure 4.4. The membrane is connected to
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A3
3
ON
L 7] 2

Figure 4.5: FEquibiazial test

two rigid frames by small hooks which slide freely along the frames. The membrane
is loaded diagonally in an ordinary uniaxial testing machine. The force F' recorded
from the load cell has to be converted according to the equilibrium relation

P=F/V2,

where P is the force acting perpendicular to the sides of the membrane. The hooks
and the holes yield nonhomogeneous deformation along the sides of the specimen, so
displacements have to be measured in a marked square inside the edges. Displace-
ment should be measured in the two perpendicular directions. It is reasonable to
use the mean value of the two displacements. So the pair of force and displacement
data which are compared with the predicted values are the above force P and the
mean displacement in the homogeneous zone.

Clearly this test is complicated to set up and to perform. It requires a quite
complicated construction and the displacement has to be measured separately. The
test is not an ISO standard test.

Another way of creating an equibiaxial state approximately equal to the one
described is by inflation of a circular membrane by pressurizing one side so that it
forms a spherical shape.

The equibiaxial test is also based upon the equibiaxial state of deformation, but
the prescribed displacements are not the same as in tension and compression. In
the equibiaxial test the two equal stretches are controlled. By slightly changing the
notation in (4.1) we can get a notation suitable for the equibiaxial test that indicates
the prescribed stretches. If these stretches are denoted by A, the principal stretches
considering incompressibility become

/\1 = AlQ = )\b )
_ 1 (4.7
As ¥

In practice it is only possible to obtain values of A, > 1, due to the design of the test .
specimen. We can therefore only obtain the compression curve in the (I3, ;) plane
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cf. Figure 4.1, and the equibiaxial test is therefore equivalent to the compression
test. The values of the invariants expressed with A\, become

L=2)+ —1;1—
2
I = 4 —
= At + ¥

The relation between A, and X in compression /tension is

1
VA
Equation (4.8) makes it possible to compare the compression test with the equibi-
axial test.

The biaxial state of stress has two equal nongzero principal stress components

cf. Figure 4.5. Directions one and two are chosen as the loaded directions and the
Cauchy stress tensor is written as

Ay = (4.8)

c 00
c=|0 o 0 with o= PJa, (4.9)
0 0O

where it is assumed that the cross section areas perpendicular to directions one
and two are equal, thus giving the same force in the two directions. P is the
force that develops in directions one and two and ¢ is the deformed cross section
area perpendicular to the loaded directions. This area can be calculated from the
state of deformation according to (4.7), giving a relation between the deformed and
undeformed cross section area. 4

Ap
The stress component o can now be expressed in terms of the force and the original
cross section area as

aQ

P

Rivlin’s relations are used to obtain the predicted stress-stretch relation for the
equibiaxial test. The second or third equation in (3.8) with stretch and stress ac-
cording to (4.7) and (4.10), yields

P OW  ,0W 1
i 2 (‘8—11— + A7 ol )(Ab - -/—\—g;) . (411)

This is the predicted stress-stretch relation for the equibiazial test.
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4.3. Shear deformation

The shear deformations termed pure shear and simple shear are treated in the same
section because they have equal values of the strain invariants (I, I). In that sense
the state of deformation is the same in pure shear and simple shear.

4.3.1. Pure shear test

2 mm

Steel — 20 mm

Rubber—~ 20 mm

20 mm

180 mm |

!

Figure 4.6: The pure shear test specimen.

The pure shear specimen is usually made of a thin rectangular strip of rubber con-
nected to rectangular strips of metal according to Figure 4.6. The pure shear test is
not included in the ISO standard. The requirements on the dimensions of the spec-
imen are that it should be sufficiently wide compared to the height so that the end
effects do not have too much influence. Ideally there should be a force perpendicular
to the loading direction that maintains the constant width of the specimen during
the deformation according to (4.16). This force is not present if a uniaxial testing
machine is used and it is therefore required to keep the height small compared to
the width.

The recorded values in the test are the force and the loading head displacements.

The pure shear deformation is arranged to have one principal value held fixed
equal to one, during the deformation. The second principal direction is chosen to
be the fixed and the third direction to be the direction with the prescribed stretch
A > 1..The state of deformation is illustrated in Figure 4.7 and the principal values
are

-
N=1 (4.12)
s = A

The strain invariants are equal, as mentioned above, and the value expressed in the
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Figure 4.7: Pure shear test.
known stretch value A is 1

There are two nonzero principal stress components in the pure shear test cf.
Figure 4.7. The Cauchy stress tensor is

0 0 O
oc=10 09 0 . (414)
0 0 Js

P, and P, are the forces that develop in directions two and three, and ay and
as are the deformed cross section areas. The relation between deformed and unde-
formed cross section area is

a2=A2 and a3=—§:A3.

The stress components o and o3 can now be expressed by the force and the unde-
formed cross section areas as

oy = B and o3 = —%-é
2=, 8= 4,
The predicted stress-stretch relations for the pure shear test are also obtained by
Rivlin’s relations. Use of the first and the second equation in (3.8) with the stress

and the stretch according to (4.15) and (4.12) respectively, yields
P, ow 10w 1
£ =2 (— —_—¥1 - —
4~ 2 twan T w)

P,
As

(4.15)

(4.16)

1
on T

These are the predicted pure shear stress-stretch relations. Observe that in practice
A > 1 and that only the second relation is used for evaluation of laboratory tests.
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4.3.2. Simple shear test

The simple shear test can be performed with at least two different test objects.

25mm

Figure 4.8: Simple shear specimen; quadruple shear.

Oune is the quadruple shear test according to ISO 1872-1976, illustrated in Figure
4.8. The quadruple shear specimen is made of four rectangular blocks of rubber,
connected to metal. The force recorded is twice the shear force acting on each block
and the loading head displacement is twice the deformation of each block.

The other is the so-called double shear test according to Figure 4.9 (not an
ISO standard test). Two rubber cylinders are connected to metal cylinders. The
force recorded is thus twice the shear force on each cylinder, and loading head
displacement is the deformation of each cylinder.

P 1

=25 mm

[ ]
6 mm i 6 mm
Figure 4.9: Simple shear specimen; double shear.

There is a difference in the loading of the two specimens. The height (i.e. per-
pendicular to the loading direction) is not fixed in the quadruple shear test and there
will be no normal forces developing on the rubber surfaces connected to metal. In
the double shear test, on the other hand, the height of the rubber cylinders is kept
fixed and therefore normal forces develop perpendicular to the loaded direction.

Both tests show deviations from the ideal simple shear deformation because the
theory predicts shear forces on the surfaces which are tilted by the deformation. The
absence of correct forces on these surfaces result in an s-shape of the free surfaces
and not a straight line as in ideal simple shear.

A relationship between the shear angle f in simple shear and the stretch A in
pure shear can be obtained by comparing the strain invariant expressions (3.10) and
(4.13) i.e.

1
20 12
3+tan6—)\ +1+F
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Figure 4.10: Simple shear test.

and solve for the shear angle giving

6 = arctan(y/\? + % -2). (4.17)

From (4.17) we find the shear angle that produces the same strain invariants in
simple shear as in pure shear, given a specific stretch A in pure shear.

Pure shear and simple shear yield a straight line in the (I3, ;) plane as shown
in Figure 4.1.

The shear stress according to (3.11) was found to be

ow oW . .
(—51:1— + 6‘—12) Kk with k=tan8. (4.18)

T =

The shear force P is acting on the area A perpendicular to the third axis as illustrated
in Figure 4.10. The area is not affected by the deformation, and the shear stress is

P
=, 419
The shear displacement § and the height H yield
k=tanf = b (4.20)
H

where & is called the direct shear strain. Inserting (4.19) and (4.20) into (4.18) gives
P 9 ow oW, 6

(4.21)

i TR A
which is the relation between shear force and shear displacement in the simple shear
test.
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An interpretation for the case of small strains, of equation (4.18) is provided if
we let the shear angle approach zero i.e. k& = fan 6 =~ 6 = 13, where 73 is the shear
strain used in the linear theory of elasticity. Comparison with the linear relation,
013 = (G 13, where G is the shear modulus, shows that initial shear modulus Gy can
be obtained from (4.18) by considering the slope at zero shear angle

G, = lim or ow oW

i 5% = 2050 T 37, Jammms - (4.22)

The expressions (4.22) and (4.6) are consistent with Ey = 3Gy for an incom-
pressible linear elastic material.
Evaluating (4.22) for the strain energy function as the general series (3.12) yields

the initial shear modulus
Go=2 (Cm + 001) (4.23)

where it is again observed that only the first two constants have influence on the
initial modulus.

4.4. Independent biaxial deformation

Uniaxial tests and shear tests are simple to perform in an ordinary uniaxial test
device. However, these tests can only produce specific paths in the region of possible
invariant values. The independent biaxial test is the only test described here that
fully covers the region of possible values of the invariants I; and I,.

1

Jatt

3 4 5 6 7

Figure 4.11: Mapping from the (A1, As) plane to the (I, I3) plane.

In order to cover the whole region, as illustrated in Figure 4.11, a true biaxial
state of deformation has to be employed and the two principal values of stretch are
then chosen independently.
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The values of the strain invariants are given by

1

1 1
according to (3.4), where the condition of incompressibility has been used to elimi-
nate the third principal stretch component.

4.4.1. Independent biaxial test

Independent biaxial testing has been performed (see for example [27]), on quadratic
membranes with a test equipment that resembles the equibiaxial rig shown in Figure
4.4, but with independent displacement control in two directions.

3
3
O
Ly I3 / 5
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Figure 4.12: Independent biazial test.

There are two nonzero principal stress components in the independent biaxial
test as illustrated in Figure 4.12. Directions one and two are chosen as the loaded
directions with A; > 1 and Ay > 1. The Cauchy stress tensor is

(o451 0 0
o=|0 o, 0 (4.24)
0 0 0

where the stress components are related to the forces and original areas.

P, and P, are forces in directions one and two, and a; and a; are the deformed
cross section areas perpendicular to directions one and two. Assuming equal un-
deformed cross section areas, i.e. the test object is originally quadratic, yields
A; = Ay, = A. The relations between deformed and undeformed cross section
areas are

A
a) = )\3)\214 = }\—1
A
a9 = Ag)\lA =

As
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The stress components o; and ¢, can now be expressed by the force and the unde-
formed cross section areas as

P P
0’1 = ~a—1- = A
(4.25)
P _ P
2= [25) - A

Rivlin’s relations are again used and the second and the third equation in (3.8)
with the stress according to (4.25), yields

P OW  0W 1

5 =2 (37—1 + Azﬁ;)(h - -——-/\%)\%) as0)
P, _OW  ,0W 1 ’
1 —2(E+)\18—IZ)(>\2 —/\f)\g)

the predicted stress-stretch relations for the independent biazial test.

4.5. Volumetric deformation

In some cases, when a rubber part is fully or partially enclosed in a stiff structure, the
volumetric behavior is important. For a finite element analysis of such a component,
the ordinary hyperelastic constants do not sufficiently describe the material. In
such cases the volumetric behavior, expressed by the bulk modulus of the material,
is of central importance. The nearly incompressible hyperelastic material models
implemented in finite element codes include the bulk modulus [26].

4.5.1. Bulk modulus test

The bulk modulus test specimen consists of a rubber cylinder that is placed in a
hole in a metal fitting. The diameter of the hole is slightly larger than the diameter
of the rubber cylinder. A plunger that fits snugly in the hole is lowered into the
hole and thus compresses the rubber cylinder, see Figure 4.13. The surfaces of the
rubber specimen should be sufficiently lubricated in order to ensure a homogeneous
state of strain.

Initially the state of strain of the rubber cylinder will be similar to an ordinary
compression test. After contact between the rubber specimen and the edges of the
hole the curve will become much steeper and the slope will here represent the bulk
modulus.
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Figure 4.13: The bulk modulus test specimen.

The relation between the hydrostatic stress p and the volumetric strain AV/Vp
is given by the bulk modulus K, according to

The hydrostatic stress is p = P/A when the cylinder comes into contact with the
hole. The volumetric strain can be expressed by Vo = A- H and AV = A-AH in
terms of the reduction in height, giving AV/Vy = AH/H. Hence

P AH
3= Kﬁij’ , (4.27)

where A denotes the cross section area and H denotes the height of the cylinder.
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4.6. Summary

The theoretical relations derived for different states of deformation and stress are
summarized here. Relations valid for tests with fixed principal directions are given
in the table below.

Test method Stretch I, I, expressions Nominal stress relation(s)
Tension and || ¢=A | =3+ P_,0W oW, 1,

i = m ——— 1 A 2
Compression A=A 7 I = = P A I, )\ 81> A
Equibiaxial M=Xd=X L=+ 5 A% P_ -9 (BW +A )(,\4 )
tension As =1/A2 =t 2 A 81 b A2

X
A =1/A
Pure _ _ 2 1 P OW W
shear i‘?:}\ h=L= /\+1+F AT (BI +BI ) _:\E)
3=
1 P 1
=2 1 )2 P, W 0

Independent A1 h=Ad+x+ A2 A 2( + 2250, 81, )()\1 A2 )
biaxial Ao
tension A =1/A1A9 I = A2 B ?KV_ s OW _

2= 2+ AZ +A‘7 A _2(011 +/\1 BIQ, )(}‘2 A%Ag)

The nominal stress relation for simple shear is

P ow oW &

Z 2(811+6 )f“u with Il _[2——3+ and fu—-ﬁ:.
Compression, tension and shear was found to yield curves on the border and in

the center of the region of possible values in the (Iy, I5) plane.

All the states of deformation discussed here are homogeneous. It is, however,
also possible to use nonhomogeneous states of deformation, if analytical relations
for the force-deformation expressions are available. Nonhomogeneous independent
biaxial testing, with analytical expression for the force-displacement relations, can
be performed by using a combination of tension/compression and torsion of rubber
cylinders [52].




5. TESTING AND EVALUATION OF TEST
RESULTS

This chapter concerns the choice of the hyperelastic model and the fitting procedure,
where the theoretical stress-stretch relations from Chapter 4 are fitted to test data.
The abilities of the hyperelastic models to.give a reasonable stable physical behavior
are also discussed in this chapter.

Some of the inelastic effects in the mechanical behavior of rubber was discussed in
the introduction (Chapter 1). These properties has to be accounted for in testing of
rubber specimens. Carbon-black-filled rubber is, as mentioned in the introduction,
not a completely elastic material. The main deviation from elasticity shows in strain
softening (or Mullins’ effect) and hysteresis. The use of an elastic material model
o describe the mechanical behavior of rubber will therefore lead to inconsistencies,
since it can not capture these effects. The elastic models have to be fitted to data
from properly pre-strained test specimens.

5.1. General considerations

This section contains a discussion of general considerations in testing of rubber units
such as pre-stretching, deformation level and rate dependence.

5.1.1. Mullins’ effect

Cyeclic straining of a rubber specimen will cause a successive decrease in stiffness and
also in the distance between the loading and unloading curves, i.e. the hysteresis.
The breakdown is, however, limited for each value of maximum stretch and stability
is reached after about four to eight cycles. If the stretch is increased there will be
further breakdown and a new stationary curve will be obtained. This curve passes
below the previous stationary curve, i.e. the stiffness of the material has decreased
cf. Figure 5.2 b.

Mullins [42] observed that if strain amplification (cf. Chapter 1) is taken into
account, very small differences in softening between gum and filled vulcanizates are
observed. He therefore concluded that the softening with deformation at strains
larger than 0.1% is mainly due to effects in the rubber network and not due to
interaction with the filler. The recovery from softening is however slower in filled
vulcanizates. Mullins attributes this to the hindering effect of the filler.

49
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He also concludes that only the unrecoverable part of the softening is due to
breakdown of cross-links, while the recoverable part of the softening (after about 24
hours) is due to configurational changes in the rubber network.

Softening for strains below 0.1% is attributed to breaking of filler aggregates.
This softening at very small strains due to the filler is to a large extent immediately
recoverable according to Payne [45].

A proper treatment of the strain softening is of importance in testing of rubber
specimens. The usefulness of obtained test data depends on how the pre-stretching
or mechanical conditioning has been performed.

5.1.2. Mechanical conditioning

A rubber unit in working condition is subjected to stress softening and creep/relax-
ation phenomena. Models that take all the inelastic effects into account are not
available in commercial codes. However, constitutive models that account for soft-
ening have been developed by Simo [54] and Godvinjee and Simo [18], although
these models are not generally available in finite element codes.

Models for static analysis found in commercial codes are usually purely elastic.
Laboratory tests designed to determine the elastic properties thus have to account
for inelastic effects and stress softening in particular. It is relevant to perform some
kind of pre-straining of the test specimens, because most rubber units in engineering
applications are exposed to some form of periodic loading giving stress softening in
operating conditions.

A rubber unit in operating conditions is also subjected to a nonhomogeneous
state of deformation. That is, points at different geometric locations are subjected
to different stretch levels as illustrated in Figure 5.1. This implies that different
points are conditioned differently in the rubber unit under working conditions.

If the test specimen is pre-stretched to a maximum level of stretch selected to
cover the stretch levels occurring in the applications, then test data will be too weak
for all stretch values below the maximum stretch, because the essential volume of
the unit considered is probably subjected to stretch levels far below the chosen
maximum level.

This rises the question of how the mechanical conditioning influences test data
for evaluation of hyperelastic constants.

Influence of the mechanical conditioning procedure

An investigation was carried out to determine the influence of the mechanical con-
ditioning procedure. Pure shear specimens with dimensions according to Figure
4.6 were used in a test involving three different mechanical conditioning procedures.
The procedures are illustrated in Figure 5.2. First cycle data were also recorded and
compared with the conditioning procedures. Two of the three different conditioning
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|

Figure 5.1: Rubber unit subjected to nonhomogeneous deformation.

procedures studied here take into account the differences in conditioning levels. The
mechanical conditioning procedures studied here are discussed in [11], [65] and [28].

A total of nine pure shear specimens, divided into three groups, were used in
the laboratory tests. Each of the conditioning procedures was performed on three
pure shear specimens and the steady state values at eight levels were recorded.
The nominal stress and the stretch were then computed for each specimen and
experimental data from the three specimens in each group were averaged.

The maximum stretch level used was the same in all three procedures, and it
was set to A = 2, i.e the maximum direct nominal strain used in the tests was 100 %
corresponding to a displacement of 20 mm, cf. Figure 4.6. The tests with multiple
conditioning levels used eight levels at equal intervals with AX = 0.125. The stretch
rate was set to 50%/min = 8.3 - 107%/s which corresponds to a deformation rate of
10mm/min for the pure shear specimens used in the tests. The stationary nominal
stress (force / original area) at these levels was determined. First cycle data were
also evaluated from the first cycle in the one-level conditioning procedure. The tests
were carried out with an MTS tensile testing machine, and the temperature was
kept at 23.5 +£0.5°C.

The pure shear specimens were made from a carbon-black-filled natural rubber
vulcanizate with a nominal hardness of 60 IRHD, moulded from the same rubber
mix by Svedala-Skega. The carbon-black content was 30 phr (parts per hundred of
rubber by weight) of type N550 according to ASTM (American Society for Testing
and Materials).

The variations in the manufactured test specimens were small and it was there-
fore decided that three specimens for each method of mechanical conditioning should
be sufficient. The dimensions of the specimens were individually measured to ac-
count for the small deviations in dimensions.

The first method uses only one level of stretch in the conditioning procedure and
it is also the maximum level of stretch used in the test. This method is illustrated in
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Figure 5.2 a) for the pure shear test and it is here termed one-level conditioning. The
one-level procedure is the experimentally simplest procedure. Constant loading rate
was used and the specimens were loaded to only one predetermined level according
to Figure 5.2 a). Data from the first cycle were also recorded for the three specimens
investigated in the one-level procedure. The resulting data points are displayed in
Figure 5.3.

A disadvantage of this method, as discussed previously, is that it tends to lower
the stiffness of the vulcanizate too much in regions of small stretch values. To over-
come this drawback mechanical conditioning on different levels has to be performed.
This is done in the other two procedures used in this study.

The second procedure is called progressive conditioning. The load is applied by
constant rate load cycles between zero and a number of fixed stretch levels. The
cycling on each level is continued until a steady state is reached at that level. Figure
5.2 b) illustrates this. The peak values in each of the steady state load cycles are
recorded as the experimental data points displayed in Figure 5.3.
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Figure 5.3: Stationary average loading values for the three different conditioning
procedures and first cycle data.

The third procedure is called intermittent conditioning. The test specimen is
loaded at constant speed to predetermined stretch levels where the stretch is kept
constant until the stress has relaxed to a steady state value. This value is recorded
for each of the predetermined stretch levels up to the maximum stretch level. (The
same procedure was repeated in unloading for the same stretch levels.) A typical
curve obtained in pure shear with this method is shown in Figure 5.2 c).
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The intermittent conditioning procedure require a time delay on each level. The
time delay to reach a stationary stress is dependent on the level of stretch in this
relaxation process in the virgin material. The highest level A = 2 required six
minutes to obtain stationary value of stress, whereas the lowest level A = 1.125 only
required a delay of two minutes. The stationary data points in loading are shown
in Figure 5.3.

Comparison of the methods

The results displayed in Figure 5.3 show the significant differences obtained between
the different mechanical conditioning procedures.

The question of which of the procedures to prefer is difficult to answer. However,
some conclusions can be made from the previous discussion and Figure 5.3. The
one-level procedure can in general not be recommended because it tends to lower
the stiffness of the material too much. The intermittent conditioning procedure, on
the other hand, seems to be a strong candidate because conditioning by creep or
relaxation due to a large static load (with or without a superimposed vibration) is
common in applications. The nonhomogeneous state of stress caused by the static
load yields creep or relaxation phenomena and conditioning to different levels in
different parts of the unit. These aspects are covered in the intermittent conditioning
procedure.

A disadvantage of both the progressive and the intermittent procedure is the
quite complicated loading scheme required. However, it was found that a very
slow constant rate loading (of a virgin material), with the same total time as in
the intermittent method, produced approximately the same siress values as the
intermittent method (cf. Section 5.5). This procedure is therefore an alternative to
the intermittent method, and is simpler to perform.

As a final remark in this section it should be mentioned that in some applications
there is no conditioning of the rubber unit in the operating condition, i.e uncondi-
tioned test data should be used to define the “elastic” parameters. This is the case
for rubber units, such as fenders for example, that are exposed to single loadings
with long periods of recovery.

5.1.3. Rate of deformation

The rate of loading of the test specimen should be chosen as stretch rate, because
this measure is independent of the size of the specimen, in contrast to displacement
rate. The stretch rate is calculated as
_dL+6 §
“dt L L
where § is the increase in distance in the homogeneous zone.

Loading rate is important for the one-level and the progressive conditioning
procedures mentioned in the previous section. It was also mentioned above that the

A
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stress values obtained by the intermittent method can be obtained alternatively by
a continuous stretching at a very low loading rate. Which loading rate should be
used?

The rate of loading of the specimen should be chosen sufficiently low so that
the stresses originating from viscous effects are minimized. Yeoh [65] recommends
a stretch rate of 50%/min “for reasons of expediency”. However, according to the
previous discussion the first cycle test with a stretch rate of 50%/min = 8.3-107%/s
was not low enough to render equal test data compared to the intermittent method.
It will be shown in Section 5.5 that to produce test data by continuous loading equal
to the intermittent method, a stretch rate of approximately 3%/min = 5-107%/s is
required. This is considerably lower than the stretch rate recommended by Yeoh.

5.1.4. State of strain and maximum stretch levels

Which maximum levels of stretch should be used in the different tests and which
are the relevant states of strain? ‘

The strain range should be limited to levels relevant for the actual application
in order to achieve a hyperelastic model with as few constants as possible. This
is obvious since the accuracy of the fit will be affected by the range of strain used
in the fitting. Moreover, in order to minimize time and effort required for testing,
reasonable strain ranges have to be chosen, especially if the lowest rate of strain
mentioned above is used.

The dominant state of strain and strain range required are off course dependent
on the application, and it is difficult to give general guidelines. However, excessive
straining of tension test specimens to several hundred percent appears to be less
relevant for most engineering applications, where moderate loading in compression
and shear is dominant.

Gobel [24] states some allowable stress and strain values based on “existing
practical experience”. The values given suggest that the compressive strain should
not exceed 25% and that the shear strain should be less than 50%. Davies et al. [13]
investigated filled rubbers for strain ranges in tension and shear less than 100% and
state that this covers the strains of major concern in most engineering applications.

Another reason to avoid excessive testing and limit the range of strain is that
even if local large strains can appear in smaller regions of a moderately loaded
component, is it more important that the hyperelastic model is accurate for the
predominant strain level in the component.

The levels believed to cover most enginering applications that are used in this
chapter, in Chapter 6, and in Chapter 7 are

05 <X <25 and k<20

for the tension/compression test and simple shear. This corresponds to a maximum
value of I; — 3 = 4.
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The value of first invariant I; can be used to compare different tests in order to
obtain comparable strain ranges, because the strain energy density depends strongly
on this invariant, especially for filled rubbers. The most reasonable way to compare,
for example, a pure shear test with a tension test is to choose the maximum stretch
level so that the maximum strain energy is equal in the different tests. This is
approximately equal to perform tests (on filled rubbers), with equal values of the
first invariant I5.

5.1.5. Influence of temperature

The statistical or molecular theory of rubber elasticity predicts a proportionality
of the modulus to the absolute temperature. This is usually referred to as the
Gough-Joule effect and has been confirmed experimentally for unfilled rubbers.

The force at constant length in a rubber specimen at constant stretch increases
linearly with temperature, in accordance with the theory, provided that the stretch is
above the so-called thermoelastic inversion point ([63] pp. 25-26). At this stretch the
thermal expansion exactly balances the Gough-Joule effect, giving a constant force
with respect to temperature. Below this stretch the force decreases with temperature
due to the thermal expansion. For a natural gum rubber in tension the thermoelastic
inversion occurs at a stretch of approximately 10 %.

Treloar (p. 249) also shows the behavior of 8W/8I; and OW/OI, for an unfilled
natural rubber vulcanizate. The behavior of 9W/81; is proportional to temperature
according to the Gough-Joule effect, while 8W /81, is shown to be constant. The re-
ported change in OW/d1I4 is small, with a value of approximately 4-107* M Pa/K for
a value of OW/0I; ~ 0.15M Pa at room temperature. This corresponds to a change
of 0.3% per degree of temperature. (Note the connection to hyperelastic constants,
for example; the Mooney-Rivlin model yields 0W/8I; = Cyo and OW/8Iz = Cy,.)

The discussion above concerned unfilled rubbers. Fillers can change the behavior
considerably, giving a falling modulus with increasing temperature according to
Lindley [33] (p. 15).

The standard laboratory temperatures recommended in the ISO regulations are
23 £ 2°C or 27 £ 2°C.
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5.2. Choice of hyperelastic model

The Mooney-Rivlin model with two parameters Cyg and Cp; is widely used in rubber
elasticity, and it has been successfully fitted to experimental data of unfilled rubber
vulcanizates.
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Figure 5.4: The Mooney-Rivlin model compared to actual behavior of carbon-black-
filled rubber in compression/tension and simple shear.

However, rubbers in engineering problems are often carbon-black-filled vulcan-
izates of hardness 40-80 IRHD. For these rubbers the agreement with experiments
is poor for this simple model. Figure 5.4 shows a comparison of the two-parameter
Mooney-Rivlin model and actual behavior of a carbon-black-filled rubber of hard-
ness about 65 IRHD. The Mooney-Rivlin model is linear in tension for large values
of stretch, cf. Figure 5.4, where the actual behavior of a carbon-black-filled rubber
specimen is progressive. There is also a deviation in simple shear according to Figure
5.4, where the Mooney-Rivlin model shows a linear behavior in simple shear.

The three-parameter model (3.17) proposed by O.H Yeoh [65] shows the quali-
tative behavior of a carbon-black-filled rubber vulcanizate. This model seems to be
a good compromise between correct physical behavior and mathematical simplicity.
However, it requires one more parameter than the Mooney-Rivlin model, but the
gain is better agreement with the behavior of carbon-black-filled rubbers.
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5.3. Fit to test data

The parameters in the hyperelastic model are obtained from experimental data by
a fitting procedure, described in this section. The procedure is illustrated with the
three-parameter Yeoh model and experimental data in compression/tension for a 65
IRHD carbon-black-filled rubber vulcanizate.

S=P/A

o experimental data
— fitted curve

0 05 1o 15 20 25
Figure 5.5: Fit of the model to test data.

Consider Figure 5.5 where the experimental data points and the stress-stretch
relation from theory are shown schematically. The small circles correspond to the
(A, S;) values ¢ = 1,...,n, where J; is the stretch and S; is the nominal stress,
obtained from experiments and n is the number of data points. The stress-stretch
relation obtained from the constitutive model should closely fit the experimental
data points, and the conditions to be fulfilled as close as possible, for every data
point are

Sfeor 4 S5 - (5.1)
This “closest fit” has to be defined in some way. In the method of least squares
the “closest fit” is defined as the minimum of the sum, over all data points, of the
square of the errors between theory and experiments i.e.

. :
U =" (5fr — §7F)2, (5.2)
i=1
Relation (5.1) can be written alternatively as

Siteor/ Siemp ~1 (53)

and the corresponding sum of squares is written as

& =3 (5Pm 5 — 1) (5.4)

i=1
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where the sum is expressed by the relative error. The form (5.4) is a normalized
version of (5.2). The absolute error puts more emphasis on the higher stress values
where the absolute error is higher, while the relative error gives equal weight to the
data points.

The nominal stress obtained from theory 5" depends on the unknown elastic
parameters in the strain energy function W (I, ;). Minimizing ® with respect to
the unknown parameters yields a system of equations. The solution to the system
is the elastic parameters giving the best fit in the least squares sense. The equation
system is linear, if the polynomial form of strain energy function is used.

5.3.1. Example; Fit of the Yeoh model

The least square fitting procedure will be illustrated by use of the compression and
tension experimental data given in Figure 5.6.
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Figure 5.6: Test data from compression and tension test (stress in MPa).

In the general expression for the polynomial form, the strain energy function is
given by the series (3.12). The first nine terms in this expression are

W = Cio(l1 — 3) + Cor (I — 3)
+Co0(I1 — 3)* + Cra(I1 — 3)(Iz — 3) + Coo(I2 — 3)?

5.5
+Cao(l1 — 3)3 + Cor (I — 3)2(12 - 3) + 012(11 - 3)(12 — 3)2 + Cos(I — 3)3 ( )

The cubic I1 model according to Yeoh [65], is used here to illustrate the least
squares fitting procedure. The strain energy expression is

W = 010(11 - 3) + 020(11 - 3)2 + 030(11 - 3)3

with three hyperelastic constants.
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5.3.2. The over determined system of equations

The experimental data points, the S values and corresponding stretches J;, are
given in Figure 5.6.

The tension and a compression stress-stretch relation ST is defined by (4.5)
giving
ow 10w 1
an taen M T w)
where A is the stretch in the loaded direction. In order to evaluate (5.6) we have to
determine partial derivatives OW /81, and W /8I,. The general expression for the
derivative with respect to the first invariant I is

ow

gteor — o (5.6)

5“[: = 01() +0
+2C20(L —3) + C11(I; - 3) + 0 (5.7)
+3030(I1 —_— 3)2 -+ 2021([1 — 3)(]2 - 3) + 012(.[2 - 3)2 +0
+.o
and the general expression for the derivative with respect to I is
ow
6—1,2 =0 + 001
+0 + Ci1(I1 — 3) + 2Cpa (L, — 3) (5.8)

40 + Oy (I; — 3)2 + 2C15(I — 3)(In — 3) + 3Cs(Iz — 3)?

The expressions for the derivatives are inserted into (5.6).
We also have to express the invariants in terms of A for compression and tension

as
2

Ilz“x+/\2
, i " (5.9)
Z—X,_;-F

according to (4.2). These values are used in (5.7) and (5.8). Observe that the so
obtained expression for 5% is linear in the coefficients Cj;.
The uniaxial relation (5.6) with the three parameters according to Yeoh is

1
§*" = 2(Cho + 20n(1y ~ 3) + 3Co( Lz — 3)(A = 53) (5.10)

From (5.9) we get the first invariant I; expressed in terms of A. Inserting (5.9)
into (5.10) yields
1

2 2
§'" = 2(Cho + 20 (5 + X = 3) +3Cu(5 + X ~ ) (A~ 33) (5.11)



5.3. FIT TO TEST DATA 61

Setting up the (approximative) equalities at every experimental point conse-
quently yields a linear system of equations. Normally the number of experimental
points exceeds the number of coefficients, thus yielding an overdetermined linear
system of equations. The experimental data points from a tension and a compres-
sion test given in Figure 5.6 are listed in the table below. These values are used in
the relative error format of (5.3) and (5.11) is set up in each of the experimental
points. The equations take the form

A Se*P (M Pa)

06 5788 r 1.5623  2.1663  2.2530 ri
0.64 ~2.30 1.5664 1.6748  1.3431 1
0.68 -1.904 1.5574  1.2570  0.7610 1
0.72 -1.564 1.5461 0.9158 0.4069 1
0.76 ~1.976 1.5224  0.6369  0.1998 1
0.8 -1.02 1.4951 0.4186 0.0879 1
0.84 -0.792 1.4577 0.2523  0.0328 i
0.88 -0.576 1.4282 0.1346  0.0095 1
0.92 -0.376 1.3908  0.0565 0.0017 1
0.96 -0.18 1.3897  0.0137  0.0001 1
1.1 0.378 1.4474 0.0816  0.0034 1
1.2 0.630 1.6049 0.3424  0.0548 C1o 1
1.3 0.814 B 1.7403 0.7952 0.2725 [ Cap :I = 1
1.4 0.98 1.8159  1.4112  0.8225 Cso 1
1.5 1.130 1.8682 2.1796 1.9072 1
1.6 1.258 1.9227  3.1148  3.7844 1
1.7 1.380 1.9623  4.1854 6.6955 1
1.8 1.536 1.9419  5.2474 10.6347 1
1.9 1.684 1.9275  6.4096 15.9852 1
2.0 1.852 1.8898 7.5594 22.6782 1
2.1 2.056 1.8222  8.6096 30.5086 1
2.2 2.306 1.7289 9.5056 39.1978 1
2.3 2.648 1.5944 10.0751 47.7495 1
2.4 3.002 1.4401 10.3495 55.7838 1
2.5 3.604 L 1.2669 10.2620 62.3419 | 1 1

This overdetermined system of equations can be written in matrix form as
Ac=b, (5.12)

where A is a 25x3 matrix corresponding to the 25 experimental points, ¢ is a 3x1
matrix with ¢; = Cio, c2 = Cay, ¢s = U3 and b is a 25x1 matrix.

The overdetermined system (5.12) can not be solved in the ordinary way because
there is no unique solution to this system of equations. It has to be solved by a
minimization procedure described in the next section.

5.3.3. Minimization of the residual

Inserting a trial solution ¢* in (5.12) will always yield a difference between the left-
and the right-hand side. This difference is expressed by the residual

e=Ac" ~b

which is a vector containing the relative error in each data point. We want to find a
solution ¢* that minimizes the residual. The size of the residual e must be measured
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in some vector norm. Use of the Ly-norm of the residual

llell; = eTe
ylelds an expression precisely equal to the sum of the squares of the relative error
between theory and experiments, i.e
n
@ = [lell} = (Ac — b)7(Ac—b) = 3 (/55 — 1)2

i=1
Minimizing ® is equivalent to finding the solution to the equations

0% .
e 0 1=1,2,..9. (5.13)

Index notation yields

—_— k] — e._..
- = &t
BCj BCj BCj

od _ 862 9 867;

and
6€i 0
—(—9—(—:‘; = a—cj(Aika - bz) = Aik5kj = Aij .

With these expressions (5.13) becomes
AijAger, = Aijbs
which can be written in matrix form as
ATAc=A"b. (5.14)

Expression (5.14) is an ordinary linear system of equations with the same number
of unknowns as the number of equations.

Applying (5.14) to the overdetermined system of equations yields an ordinary
system of equations with three equations and three unknowns i.e.

67.92 147.44 48711 Cho 40.8894
147.44 64947 2717.13 Cy | = | 87.6551 | . (5.15)
487.11 2717.13 12699.74 Cso 303.5157

Solving (5.15) yields
Cro = 0.6803 MPa Cy = —0.0982 MPa sy =0.0188 MPa, .

We can conclude that in order to obtain the unknown elastic parameters we have
to set up the matrices A and b and solve (5.14). The solution obtained in this way
is the “closest fit” to experiments in the sense that the sum of the squares of the
errors for all experimental points is minimized.
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Figure 5.7: Fitting of the three parameter model to ezperimental data.
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Figure 5.8: Behavior in simple shear for the fitted three-parameter model.

The experimental data points and the fitted curve are shown in Figure 5.7. The
fitting to the experimental points is good, and the fitted curve is progressive outside
the interval of experimental data. For this choice of parameters the least squares
procedure generates a model with a good fit and reasonable behavior outside the
interval of fitted points.

The behavior in simple shear shown in Figure 5.8 is also reasonable, with an
increasing curve with the same characteristics as an experimentally obtained curve.

The strain energy plot in Figure 5.9 shows the strain energy function W(A1, As)
as a physically reasonable bowl shaped function that is monotonically increasing.
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Figure 5.9: Strain energy function for the three-parameter model.

5.4. Stability of the fitted model

The good behavior of the fitted model in the previous section is not obtained auto-
matically. Other sets of data and other choices of parameters can yield completely
unsatisfactory behavior outside the fitted interval, as will be shown next.

S=P/A
Sl - i e s
o experimental datq
B T R ﬁrted'curve ............... -
0
: : A
-}l - ,...'? Cires e s ed drese egsrecsipan ew aan . ; s e I e e e
[+] ots 1 1:5 é 25 3

Figure 5.10: Fitting of the five-parameter model to experimental data.

The same experimental data were used to fit a model with the parameters Cyg,
001, 020, 011 and 002 i.e. the first five in (55)
An equivalent overdetermined system according to (5.15) was established. Solv-
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Figure 5.11: Behavior in simple shear for the five-parameter model fitted to com-
pression/tension data.

ing for the five constants yields

010 = 0.5259 M Pa 001 = (.1583 M Pa
Coo = 0.3300 M Pa (4 = —0.8154 MPa Cpy = 0.3453 M Pa .

Az

Figure 5.12: Strain energy function for the five-parameter model.

The experimental data points and the fitted curve are shown in Figure 5.10.
It can be seen that the fitting to the experimental points is good in compression
and tension, and the fitted curve is progressive outside the interval of experimental
data. However, the behavior in simple shear according to Figure 5.11 is completely
unsatisfactory, and this hyperelastic model can not be used in finite element analysis.
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This unrealistic behavior can be revealed by looking at the strain enmergy plot in
Figure 5.12. The strain energy plot shows the overall behavior of the model, and
the deviation from the bowl shape shows that the model can not be used in finite
element analysis. :

5.5. Characterization of some vulcanizates

Hyperelastic constants for some filled natural rubber vulcanizates of nominal hard-
ness between 40 and 78 IRHD have been evaluated by fit to test data obtained
from shear and compression tests. The specimens were manufactured by the rubber
companies Forsheda, Svedala-Skega and Trelleborg.

Intermittent conditioning was chosen for the test procedure, i.e. relaxed data for
successively higher strain have been used. Hyperelastic constants were evaluated by
a least squares fit according to the procedures described in Section 5.3.

5.5.1. Testing

Compression and the double shear specimens according to Figure 5.13, were used in
the tests.

=25 mm 12.5 mm

f

Figure 5.13: Double shear and compression specimens.

Nominal dimensions of the cylindrical compression specimens were height 12.5mm
and diameter 29mm. Nominal dimensions of the two cylindrical rubber discs in the
double shear specimen were thickness 6mm and diameter 25mm. Dimensions were
checked individually and measured dimensions were used for calculation of stress
and strain.

Testing was performed with relaxation at one millimeter intervals with succes-
sively longer relaxation times. The relaxation time for 1mm deformation was 30s
and the relaxation time was increased by 30s for each mm of deformation. The
compression specimens were tested to a maximum compression of 7mm and the
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Company | IRHD | compression | shear
Forsheda AB 40 2 2
50 2 2
Skega AB 50 3 3
Trelleborg AB 71 0 1
78 0 1

Table 5.1: Specimens and nominal hardness used in the testing.

shear specimens were tested to 11mm displacement. The temperature was held at
23.5 £ 0.5°C

An overview of the tested materials and the number of test specimens are given
in Table 5.1. All materials are carbon-black-filled natural rubber vulcanizates.

A summary of experimental shear moduli evaluated as the secant moduli for
100% shear strain, and the estimated hardness values obtained from the diagram in
Figure 1.3, are given in Table 5.2.

Company i nominal IRHD | Ge*? (MPa) | estim. IRHD
Forsheda AB 40 0.46 40.6

50 0.57 46.7
Skega AB 50 0.78 54.3
Trelleborg AB 71 1.13 61.2

78 1.90 71.9

Table 5.2: Nominal hardness and estimated hardness from experimentally evaluated
shear moduli.

Table 5.2 shows a substantial difference in shear modulus for materials with the
same nominal hardness, and that highly filled materials can be difficult to evaluate
by the hardness test.

Comparison of intermittent and slow continuous loading

Tests in compression and shear with very slow continuous loading were carried out
and compared with the intermittent method. Previously unstrained 50 IRHD spec-
imens from Skega according to Table 5.1 were used in the tests. The criterion for
the continuous test was that the test should be conducted with a loading speed
corresponding to the same total time as for the intermittent test. This corresponds
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to a shear strain rate of 1-107%/s and a compression stretch rate of 5-107*/s. The
outcome of the test is shown in Figure 5.14, where the dotted line is the continuous
loading and the circles are intermittent test values for three test specimens (the
same as in Figure 5.17).

H i
0.6 07 a8

Figure 5.14: Comparison of the intermittent method and a very slow continuous
loading, with the same total time. Left: Shear stress (MPa) versus direct shear
strain. Right: Compression; nominal stress (MPa) versus stretch.

It can be seen that the continuous straining yields almost the same stress values
as the intermittent method.
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5.5.2. Evaluation of Yeoh constants

Yeoh'’s model was fitted to intermittent data according to the fitting procedure
outlined in section 5.3. The intermittent data are shown as circles in the figures
below. There is one circle for each specimen at each value of stretch. The solid line
is the fitted hyperelastic model. It can be seen that the scatter in experimental data
is small for these specimens. This is because the specimens were manufactured from
the same batch and their dimensions were individually measured.

Forsheda

The fits to Forsheda’s materials with nominal hardness 40 and 50 IRHD are shown in
Figure 5.15 and Figure 5.16 respectively. Two shear specimens and two compression
specimens were tested for each material. The diagrams to the left in the figures show
the fit to double shear data and the diagrams to the right show the fit to compression
data.

L
T

o °
o =
L
in
T

Shear stress (MPa}
Nominel stress {MPa)

)
~
T

o
8]

H H i i H i L " i H 1 i i
0 a2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 0.4 0.5 0.8 0.7 08 0.9
Direct shear strain Stretch

Figure 5.15: Fit of Yeoh’s model to Forsheda 40 IRHD material.

The hyperelastic constants for the 40 IRHD material (cf. Figure 5.15) are
Cho = 0.2885 Cag = —0.0394 U3 = 0.0074 (MPa).

The fit of Yeoh’s model to the second material from Forsheda, i.e. the 50 IRHD
material, is shown in Figure 5.16 for shear and compression.
The constants for the 50 IRHD material are

Cio=0.3493  Chy=—0.0363  Cs =0.0069  (MPa).

Skega

The fit of Yeoh’s model to the other material with a nominal hardness of 50 IRHD
from Skega is shown in Figure 5.17. Three shear specimens and three compression
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Figure 5.16: Fit of Yeoh’s model to Forsheda 50 IRHD material.

specimens were tested. The diagram to the left shows the fit to double shear data
and the diagram to the right shows the fit to compression data.
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Figure 5.17: Fit of Yeoh’s model to Skega 50 IRHD material.

The hyperelastic constants are

010 = 05079 Cgo = —(.0593 030 = ().0086 (MP(Z)

Trelleborg

Finally a fit to Trelleborg’s shear specimens was conducted according to Figure 5.18,
with the 71 IRHD material to the left and the 78 IRHD material to the right. These
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fits are very accurate due to the absence of compression data.
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Figure 5.18: Fit of Yeoh’s model to shear data only for Trelleborg 71 and 78 IRHD

material.
The constants for the 71 IRHD material are
Cho = 0.6598 Cy = —0.0723 Cyo = 0.0162 (MPa)
and for the 78 IRHD material
Cho = 1.0543 Cy = —0.0779 Cy = 0.0241 (MPa).

Summary

All the fitted models were stable according to the strain energy plot.

A summary of the hyperelastic constants for the tested materials is given in

Table 5.3.
‘ Company | IRHD || 010 l 020 I 03() ‘
Forsheda AB 40 0.2885 | -0.0394 | 0.0074
50 0.3493 | -0.0363 | 0.0069
Skega AB 50 0.5079 | -0.0593 | 0.0086
Trelleborg AB 71 0.6598 | -0.0723 | 0.0162
78 1.0543 | -0.0779 | 0.0241

Table 5.3: Hyperelastic (Yeoh) constants and nominal hardness for five carbon-black-

filled natural rubbers.
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6. EVALUATION OF TEST SPECIMENS

In order to evaluate the different commonly used rubber test specimens, a number of
finite element analyses have been performed. The force-displacement relationships
obtained from these analyses have been compared with the corresponding analytical
expressions for the ideal states of deformation. In general, very good accuracy has
been found for the test pieces. However, some improvements are proposed for some
of the specimens in order to increase the accuracy of the tests.

The material model generally used here (the Yeoh model) is only dependent
on the first strain invariant I;. Therefore some analyses have been performed on
the quadruple shear specimen with the Mooney-Rivlin material, with hyperelastic
constants that also give a dependence on the second strain invariant I.

6.1. Introduction

Computer aided design of rubber units by means of the finite element method re-
quires constitutive parameters obtained from experimental data. Rubber manu-
facturers usually have many different recipes for rubber vulcanizates of different
stiffness to be used in different environments. Characterization of different materi-
als requires a lot of laboratory testing, and the choice of test specimens to use is an
important topic.

A general rule can be that the predominant state of deformation of the products
to be analyzed should be represented in the material tests. le. if the products are
mainly loaded in compression and shear, some compression and shear test pieces
should be used in the material tests. It is also important that the test specimens
have a roughly similar material distribution; if the products consist of solid sections
of rubber then solid test pieces should also be used. Moreover, material testing is
costly and time consuming. The material tests should therefore be chosen so that
they are easily perfornied.

The state of strain in the test pieces should be as close as possible to the ideal
homogeneous analytical state of strain. A number of different test pieces will be
discussed, and primarily the accuracy of tests. The deformation of the test pieces
has been simulated by finite element analysis using ABAQUS [26], and the force-
displacement relationships obtained from these analyses have been compared with
the corresponding analytical expressions.

Modifications are proposed for some of the test specimens. The purpose of these
modifications is to improve the accuracy of the material tests, to receive stress-

73
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stretch relations that are closer to the analytical relations. The proposed improve-
ments are all relatively simple to implement.

The finite element method only produces an approximation of the actual force
deformation relationships. Therefore convergence analyses have been performed in
order to ensure that the approximation does not affect the results.

6.2. Hyperelastic constants

The hyperelastic Yeoh constants used in the following analyses are shown in Table
6.1. The constants are determined from carbon-black-filled natural rubbers. The
materials are listed in order of increasing nominal hardness. The 40, 50, 65 and 78
IRHD materials are the same as in Chapter 5.

[IRED [ Ciy | Caw | Cwo |
40 | 0.2885 | —0.0394 | 0.0074
50 | 0.3493 | —0.0363 | 0.0069
65 | 0.6803 | —0.0982 | 0.0188
78 | 1.0543 | —0.0779 | 0.0241

Table 6.1: Hyperelastic constants used in the analysis.

The Yeoh material model, generally used in this chapter, only takes the first
strain invariant into account. Therefore some analyses have been performed on the
quadruple shear specimen with the Mooney-Rivlin material model. By varying the
material parameters for this material model, the effect of the second strain invariant
can also be accounted for.

6.3. Shear test specimens

Pure shear and simple shear specimens are analyzed in this section, with dimensions
according to Chapter 4. :

6.3.1. Finite element models

The finite element model of the pure shear specimen according to Figure 4.6, with
thickness 2mm, height 20mm, and width 180mm, is shown in Figure 6.1. Three
symmetry planes have been used, a displacement boundary constraint has been
applied to the top surface. The total reaction force in the vertical direction on the
lower symmetry plane is registered. Due to the symmetry the applied deformation
should be half of the desired displacement and the reaction forces will be a quarter
of the total reaction force for the complete model. The nominal stress is obtained
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Figure 6.1: Finite element model of pure shear specimen.

by dividing the total reaction force with the cross-sectional area of the undeformed
rubber membrane.
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Figure 6.2: Finite element model of quadruple shear specimen (left) and double shear
specimen (Tight).

The finite element model of the quadruple shear specimen according to Figure
4.8 is shown to the left in Figure 6.2. One of the four rectangular blocks of rubber,
with dimensions height 4mm, width 25mm, and depth 20mm, is modeled. A stiff
section models the metal plate at the top of the shear specimen. This section is
moved in the horizontal direction in order to obtain the desired deformation d, and
it is allowed to move freely in the vertical direction. The bottom plane of the rubber
specimen is constrained in all directions and the total reaction force in the horizontal
direction is registered.

The shear stress is expressed similarly to the pure shear specimen as the total
reaction force in the loaded direction divided by the area of the cross section.

The double shear specimen is shown to the right in Figure 6.2. The deformation is
imposed on the right surface in the vertical direction. This surface is also constrained
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in the horizontal direction. The left surface is constrained in all directions and the
total reaction force in the vertical direction is registered.

6.3.2. Results for shear test specimens

The correspondence between the finite element solution and the theoretical expres-
sions for pure shear and simple shear is studied here for the 65 IRHD material (cf.
Table 6.1). From Figure 6.3 it can be seen that the test piece that has the best corre-

'=Ana1yn‘ca1 pure shear

P =Analytcal simple shear.%. -

+++ +=Quadruple shear FEA 35 " 00 0o0=Pure shear FEA
0 0 0 0=Double shear FEA : : :

P/A[MPa]

Figure 6.3: FE simulation and analytical relations for shear deformations. Left:
Simple shear and quadruple shear; shear stress versus direct shear strain. Right:
Pure shear; nominal stress versus stretch.

spondence with the analytical expression for the shear deformation is the quadruple
shear specimen, even if the difference between the quadruple shear and the double
shear specimen is very small. The quadruple shear specimen is simpler to use in
an ordinary tensile test machine as compared to the double shear specimen that
requires arrangements to fix the specimen (perpendicular to the loading direction).
A disadvantage of the quadruple shear specimen is that it is more complicated to
manufacture.

6.3.3. Dimensions of the pure shear specimen

There are two main deviations of the actual pure shear specimen from the ideal pure
shear state of strain. Firstly, the horizontal force that should keep the vertical edges
straight is missing, giving an hourglass shape in the width direction. Secondly, the
thickness of the specimen will not be constant over the height. At the top and the
bottom the rubber is fixed to the metal strips and the cross section will therefore
become hourglass shaped also in the thickness direction.

Fortunately these two deviations affect the stiffness in opposite directions, and
the accuracy of the specimen can be controlled by varying the height to width
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Figure 6.4: Accuracy of the pure shear specimen with respect to the height. Nominal
stress versus stretch.

ratio. A stress-stretch relationship very close to the analytical can be obtained.
This is shown in Figure 6.4, where results from finite element analyses are presented
for three different heights of pure shear specimens with a width of 180mm and a
thickness of 2mm. It should be noted that the ideal height is determined for the 65
IRHD material and might be different for other rubber materials.

6.3.4. Effect of different materials

As mentioned earlier, the material model used in all the analyses of the test speci-
mens is the Yeoh model, dependent only on the first strain invariant.
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Figure 6.5: Strain energy density plots for two different Mooney-Rivlin materials,
010 = O; 001 =0.5 (leﬁ) and 010 = 05, 001 =0 (’I’Zght)
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In order to evaluate the effect of the second strain invariant, three (constructed)
sets of material constants, for the commonly used Mooney-Riviin material model,

W = Cio(fy — 3) + Cor (I — 3)

are used with varying dependence on the two strain invariants.
The shear modulus is G = 2(Cip + Co;) according to (4.23) and three sets of
Mooney-Rivlin constants with the same shear modulus are used.

1. Cyg = 0.5; Cy; = 0, dependent on I; only.
2. Cip = 0.25; Cy; = 0.25, dependent on both I; and Is,
3. Cy9 = 0; Cyy = 0.5, dependent on I, only.

The strain energy density function is visualized for the first and the third material
in Figure 6.5.

Two simulations were performed with the quadruple shear model for each of
these three sets of material constants. In one simulation the height of the rubber
section is allowed to vary, i.e. similar to the standard quadruple shear analyses, and
in the other the height of the specimen is held fixed, with the purpose of simulating
a state of strain similar to the double shear test. The deformed specimens for these
analyses are shown in Figure 6.6.

Variable height, C10=0.5 C01=0.0 Fixed height, C10=0.5 C01=0.0

Figure 6.6: Deformed finite element models for quadruple shear with different mate-
rials, with variable height (left) and fized height (right).

From Table 6.2 it can be seen that the height H of the quadruple shear specimen
will be approximately constant, if a material model that is only dependent on the
first strain invariant is used. However, if the material model is also dependent on
the second strain invariant, the height of the rubber specimen will increase during
shear deformation.
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Figure 6.7: Accuracy for quadruple shear specimen using the Mooney-Rivlin material
model with varying dependence on the second strain invariant with free height (left)
and fized height (right). (Shear stress versus direct shear strain.)

I Height ’ Cuo | Co I ) ' AH t Fs ’ Fy |
Variable | 0.5 | 0.0 |4 | —1.8-107% | 492.1 0
Variable | 0.25 | 0.25 |4 | 5.1-107% | 483.2 0
Variable | 0.0 | 0.5 | 4 0.13 455.6 0
Fixed 0.5 00 |4 0 492.4 | —38.33
Fixed 0.25 025 | 4 0 486.0 | 104.7
Fixed 0.0 05 |4 0 471.4 | 250.7

Table 6.2: Table showing data from quadruple shear analyses with different sets of
material constants. Fg is the shear force, and Fy is the resulting normal force on
the upper surface.

Plots showing the relations between stress and direct shear strain x for the
quadruple shear test are shown in Figure 6.7. From these plots it can be seen that
a specimen highly dependent on the second strain invariant will be relatively weak
in shear compared with the ideal analytic solution. It can also be seen that for
this type of material a simple shear test specimen with the height held constant
gives a better correspondence to the analytical relations. However, a material only
dependent on the second strain invariant is a strange material hardly encountered
in practice.
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6.4. Tension and compression test specimens

The finite element models of the tension and compression specimens are shown in
Figure 6.8. The dumbbell specimen is modeled with three dimensional solid elements
(cf. Figure 6.8), with two symmetry planes.

The total reaction force and the deformation at a reference node corresponding
to the measuring length are registered.

57.5 mm

H=12.5 mm

2

R=14.5mm

Figure 6.8: Finite element models of the dumbbell test specimen (left) and an azi-
symmetric ISO standard compression test specimen (Tight).

The ISO standard compression test is modeled with axisymmetric elements and
the displacements are applied to the model using rigid surfaces and contact elements,
see Figure 6.8. This was necessary as one of the purposes of these analyses was
to study the effect of friction between the compressing surfaces and the rubber
specimen. From these analyses the total reaction force is registered for the bottom
surface of the compression specimen.

6.4.1. Results for the tension specimen

The accuracy of the dumbbell tension test specimen is shown in Figure 6.9. It was
analyzed with hyperelastic constants according to the 65 IRHD material in Table
6.1. Stresses for six different measuring lengths from the finite element analyses are
plotted as circles together with a curve showing the analytical solution. The six
measuring lengths are: [ = 13.1, 17.5, 21.9, 26.3, 30.6, and 35 mm, with [ according
to Figure 6.8. The difference is small between the different lengths and the circles
almost coincide in Figure 6.9. The relative error, calculated as the difference in stress
divided by the analytical stress, for the shortest measuring length is also shown in
Figure 6.9 (right).
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Figure 6.9: FE simulations and analytical curve for dumbbell specimen (left) and
relative error for the shortest measuring length (right).

6.4.2. Results for compression specimens
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Figure 6.10: Stress-stretch relations; compression specimens. Left: Effect of friction
for the ISO standard specimen. Right: Effect of doubling the specimen height.

The ISO standard compression specimen is, unless otherwise specified, analyzed
here with hyperelastic constants obtained for the 50 IRHD material (cf. Table 6.1).
Effects of specimen height, friction, and shape of the compressing rigid surface will

be studied.

Preliminary tests [47] of rubber to metal friction, with the surfaces lubricated
by silicon grease, for compressions up to 50% have shown coefficients of friction p
in the interval 0.05 < g < 0.15. The coefficient will vary with the contact pressure.
A large contact pressure will lead to a large coefficient of friction.
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The effect of friction on the siress-stretch relationship is shown in Figure 6.10
(left). It can be seen that increasing friction leads to decreasing accuracy of the test,
due to a nonhomogeneous state of strain, that can be seen as a barrel shape of the
specimen.

In order to make the state of strain more homogeneous and thereby increase
the accuracy, a test specimen with a height that is double the standard height
(h=2x12.5=25 mm) is proposed. In Figure 6.10 (right) the stress-stretch curve for
the high specimen is shown together with the standard specimen. It can be seen
that the accuracy of the specimen has improved, although the analysis results for
compression greater than 35% are not quite reliable since the finite element model
is a bit weaker than the analytical solution.
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Figure 6.11: Above: Deformed finite element models of compression test specimens
with varying geometry of compression surfaces for different coefficients of friction,
A = 0.5. Below: Influence of compression surfaces and coefficients of friction com-
pared to the analytical solution (solid line with no markers). The right graph is an
enlargement of the marked section in the left graph.
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Another method to increase the accuracy of the compression test specimen could
be to modify the compressing surfaces so that they are slightly curved. This should
somewhat decrease the effects of the frictional forces acting on the end surfaces
of the rubber specimen. A radius of curvature of approximately 1200 mm on the
compressing surfaces has been found to give good results. Figure 6.11 shows the
deformed mesh of compression specimens for straight and curved surfaces and for
two different coefficients of friction. The hyperelastic constants in these analyses are
according to the 40 IRHD material in Table 6.1. It can be seen that the introduction
of a small curvature of the compression surfaces gives a more homogeneous state of
deformation for the same value of the coefficient of friction.

From Figure 6.11 it can also be seen that a stress-stretch response very close to
the analytical can be obtained for the 40 IRHD material and a coefficient of friction
of 0.05, if the compression surfaces are curved with a very large radius (1200 mm).
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Figure 6.12: Data from finite element analyses of compression test specimens with
straight compression surfaces and no friction, and with curved compression surfaces
with friction.

An additional analysis has been performed for a rubber material with a signif-
icantly larger hardness, i.e. the 78 IRHD material according to Table 6.1. The
stress-stretch curves for this material are shown in Figure 6.12. It can be seen that
the curvature of the rigid surface improves the accuracy also for this material.

The introduction of a small curvature of the rigid surface would seem to be an
improvement of this material test. However, the sensitivity to geometrical modifi-
cations of the compressing surfaces is disturbing. A small error in the alignment of
the compressing surfaces can have a considerable influence.
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6.5. Summary

In general, the quadruple shear specimen is both the simplest to use and most ac-
curate shear specimen. It can be used with ordinary tensile test equipment without
complicated fittings. Moreover, it does not require any special equipment o reg-
ister the deformations, and it is shown to be close to the analytical solution. The
quadruple shear specimen is included in the ISO standard.

If the pure shear specimen is to be used the height of the specimen should be
taken into consideration. Figure 6.4 shows that the correspondence between test and
theory is dependent on the height of the test specimen if the width and thickness
are held constant.

The quadruple shear specimen has been analyzed with the Mooney-Rivlin ma-
terial model and different sets of material constants in order to evaluate the effect
of the second strain invariant I, on the deformation. This was done as the Yeoh
material model otherwise used only takes the first strain invariant I; into account.
It was found that a material that is strongly dependent on the second strain in-
variant will lead to an increasing height of the quadruple shear specimen during
shear deformation. It was also found that this type of material will lead to a less
accurate test and the response is in this case better if the height is held constant.
This indicates that for materials with a significant dependence on the second strain
invariant the double shear specimen should give more accurate results.

The dumbbell tension specimen is very accurate, but it has disadvantages. Some
sort of device (clip gauges or other) has to be used in order to measure the displace-
ment. The loads are also very small and will require a load cell for small forces.
Another disadvantage is the difficulty to get slip-free connections at the ends.

The ISO standard compression specimen has also been analyzed, especially in
order to evaluate the effect of friction between the compressing steel surfaces and
the rubber specimen.

Two modifications of the specimen have been proposed, namely increasing the
height of the rubber specimen and, alternatively, modifying the compressing surfaces
by introduction of a large radius of curvature. It has been found that the higher
model gives a stress-stretch response that is closer to the analytical. The introduced
curvature of the compressing surfaces leads to a stress-stretch response that is very
close to the analytical for carbon-black-filled rubber materials of varying hardness.

However, the analyses have indicated that the results are extremely sensitive
to geometrical changes. An introduction of a radius of curvature of approximately
1200 mm on the compressing surfaces significantly changed the stress-stretch re-
sponse. On the other hand practical tests according to Chapter 5 do not show very
large scatter. The accuracy of the lubricated compression specimen requires further
investigation.

An alternative combined compression and tension specimen will be discussed in
Chapter 7.



7. ALTERNATIVE EXPERIMENTAL METHODS

In the first section, a new test specimen, named solid dumbbell, is presented as
an alternative to the the standard tension and compression specimens. The solid
dumbbell specimen is shown to be accurate, in both tension and compression, and
easy to use.

In the second section, an extension of the standard hardness test is proposed. A
number of indentation depths are chosen and the force for these depths is recorded.
It is shown that by this modification, hyperelastic constants can be derived from
the test. More information can thereby be provided from the test by a small extra
effort.

In the third section, a new method to measure displacements and strains in, for
example, rubber membranes without applying sensors to the specimens is described.
This optical technique uses a CCD camera, a computer with frame grabber board
and image analysis techniques.

7.1. Solid dumbbell test specimen

The solid dumbbell specimen proposed here is an alternative to the ISO membrane
dumbbell test piece and the lubricated cylinder compression test. It is an axisym-
metric specimen cf. Figure 7.1 which can be used for both tension and compression
without changes of the setup in an ordinary tensile testing device.

The solid dumbbell also has the advantage of showing an almost linear relation
between loading head displacement and gauge length displacement for rubber vul-
canizates of widely varying stiffness. This makes it possible to use the test piece
without clip gauges.

Another advantage is that, contrary to the membrane dumbbell specimen, the
solid dumbbell, like many engineering products, consists of a solid piece of rubber.
This means that the heat distribution during vulcanization and the cross-linking
will be more similar to engineering products.

The solid dumbbell specimen is analyzed here by the finite element method in
order to compare the behavior with the theoretical ideal.

Two different lengths of the specimen have been studied by finite element analy-

sis. The longer model was also manufactured by Svedala-Skega in a 60 IRHD black
filled natural rubber.

85
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Figure 7.1: The azisymmetric long solid dumbbell specimen (dimensions in mm) and
the finite element model.

Preliminary tests showed that it was stable to approximately 30% compression.
In order to improve the stability of the specimen, a shorter specimen was also con-
sidered. The shorter model, with a 10mm shorter rubber part (cf. Figure 7.1), was
suspected to give slightly less accurate results, but the benefit would be an ability
to undergo greater compression.

7.1.1. Finite element modeling

The solid dumbbell specimen is modeled with axisymmetric elements and one sym-
metry plane. The 656 IRHD material according to Table 6.1 was used in the analysis
unless otherwise specified. In the finite element analysis the displacements of the
nodes on the horizontal symmetry plane are prescribed. The bottom surface is con-
strained in all directions. Moreover, a node is chosen to represent the “homogeneous
zone”, see Figure 7.1, and the displacement of this node is also registered. The total
vertical reaction force on the bottom surface is also registered. From this the stress
and stretch in the “homogeneous zone”, with length L according to Figure 7.1, can
be calculated.

7.1.2. Long solid dumbbell

Stress-stretch data derived from finite element analysis are shown for a number of
measuring lengths L. When the graphs are studied it is important to remember
that the stability problems that will occur during mechanical testing will not be
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Figure 7.2: FE simulations and analytical curve for long solid dumbbell specimen
(left) and relative error for the shortest measuring length (right).

represented in these axi-symmetric finite element analyses. As mentioned, the long
solid dumbbell has in practical testing been found to be stable for compression values
up to approximately 30%.

Figure 7.2 shows the stress-stretch relationships for the longer model as compared
to the ideal compression/tension curve shown as a solid line (left) and the relative
error (right).

Data for eight different measuring lengths L = 6.25, 12.5, 18.75, 25, 31.25, 37.5,
43.75, and 50 mm are displayed as almost coinciding circles. It can be seen that the
ideal analytical compression/tension curve is followed well for all lengths L.
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Figure 7.3: FE simulations and analytical curve for short solid dumbbell specimen
(left) and relative error for the shortest measuring length (right).

Figure 7.2 also shows the relative error, for the shortest measuring length, be-
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tween the finite element analysis and the analytical expression for compression/tension.
The error in the interval 0.5 < A < 2.5 is less than 1%.

7.1.3. Short solid dumbbell

The rubber part of the finite element model was shortened 10mm to 80mm and the
analysis was repeated. Figure 7.3 shows the stress-stretch relationships from the
finite element analyses of the shorter solid dumbbell specimen, compared with the
analytical expression for compression/tension. The stress-stretch relationships are
displayed for eight different measuring lengths (L according to Figure 7.1), namely
5, 10, 15, 20, 25, 30, 35, and 40 mm. Here too, the ideal compression/tension curve
is followed quite well for all lengths L.

'The relative error between the finite element results and the analytical expression
is shown in Figure 7.3 (right). If this figure is compared with the figure representing
the longer model, Figure 7.2, it can be seen that the shorter model is almost as
accurate as the longer model in tension but less accurate in compression when A
approaches 0.5. :

Gauge length displacement[mm]

~40 20 o 2 0 % % 00
Loading head displacement{mm]

Figure 7.4: Loading head displacement versus gauge length displacement for the short
solid dumbbell test specimen for various material parameters from 40-78 IRHD.

The short solid dumbbell test specimen shows an approximately linear rela-
tion, almost independent of rubber stiffness, between loading head displacement
and gauge length displacement for L = 30mm. Figure 7.4 shows this relation for
the four rubbers specified in Chapter 6 (Table 6.1), with nominal hardness varying
between 40 and 78 IRHD. It can be seen that the four graphs almost coincide. This
is one of the advantages of the specimen, i.e. testing can be performed without clip
gauges (or similar devices) to register the stretch. The curve in Figure 7.4 could
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be used instead, or alternatively a conversion factor could be used to translate the
values for loading head displacements to gauge length displacements.

7.1.4. Summary

A combined tension and compression solid dumbbell test specimen has been eval-
uated by finite element analysis for two different lengths. The longer specimen is
slightly more accurate, while the shorter specimen can undergo greater compression
without loss of stability. These test pieces can be used with ordinary tensile test
equipment. Moreover, in the finite element analysis they show an almost linear re-
lation between loading head displacement and the homogeneous zone displacement
for hyperelastic constants obtained for different carbon-black-filled rubbers of hard-
ness from 40-78 IRHD. The curve in Figure 7.4 can therefore be used as a general
conversion curve, almost independent of the rubber hardness, to translate loading
head displacement into homogeneous zone displacement. Alternatively, but less ac-
curately a conversion factor could be calculated by fitting a straight line to the
average curve in Figure 7.4.
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7.2. Hyperelastic constants from a modified hardness test

A modification of the standard hardness test is proposed in this section. It is shown
that more information can be obtained from the test by a small extra effort. Hyper-
elastic constants can be derived from the indentation forces for a number of fixed
indentation depths. This is in contrast to the standard test, where a constant force
is applied and the depth is measured.

The method relies on an energy balance. The total work done by the exter-
nal force must be equal to the total stored strain energy in the rubber material.
This, together with the restrictions on the strains invoked by the incompressibility
constraint, is the basis for the proposed method. The hyperelastic constants can
thereby be evaluated by use of a tabulated state of strains derived from a finite ele-
ment analysis of the hardness test, performed once but valid for rubbers of different
hardness. The hyperelastic constants are determined by solving a system of equa-
tions with the number of equations equal to the number of hyperelastic constants.
The system matrix is almost independent of the rubber hardness.

7.2.1. ISO hardness test

The hardness test specified in the International Standard (ISO) is based on measure-
ment of the indentation of a needle with spherical tip or a rigid ball with diameter
2.5 mm into a test piece. The standard test piece is a cylinder with smooth and
parallel upper and lower surfaces, with diameters of 50 mm and thickness 10 mm.

The difference § between the depths of indentation into the rubber under a small
contact force (0.3 N) and a larger total force (5.4 N) is measured, cf. Figure 7.5.
From this difference, the hardness in international rubber hardness degrees IRHD is
derived by using a table given in ISO 48-1979(E) that connects indentation depth
to hardness in IRHD. The table is devised so that, for a rigid material, when depth
of indentation § = 0, IRHD=100, while when ¢ is infinitely large, IRHD=0.

7.2.2. Previous work on relationship hardness - modulus

Many analytical expressions connecting results from the hardness test to modulus
have been presented, see [14], [41], [64], and [53]. The ISO standard specifies an
empirical relation derived by Scott [53] connecting the indentation depth § in mm
to Young’s modulus E in M Pa according to

F = 1.9 - 61A35T0.65E ,

with the indenting force F'in N and the indenter radius r in mm.

Lindley [33] gives an empirical relation between hardness and the initial Young’s
modulus. He also relates hardness to shear modulus according to Figure 7.5.

Muhr and Thomas [41] use classical theory of elasticity and an energy balance to
obtain an equivalent average shear strain level by comparing the work input in the
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Figure 7.5: Relation between the shear modulus G and the hardness in IRHD units
according to Lindley.

hardness test with the strain energy associated with simple shear. However, they
do not use this energy equivalence to derive the shear modulus. Instead they use

the formula
G=244.6°7 (7.1)

assuming an indenter force according to ISO 48. G is in Nm™2 and § in meters.
Chang and Sun [10] use nonlinear finite element analysis to show that the linear
elastic Hertz contact solution also is reasonably accurate in describing the hardness
test of rubber vulcanizates.
The method proposed here that combines energy balance and finite element
analysis to-obtain hyperelastic constants seems to be a novel approach.

7.2.3. The basic assumption of the modified hardness test

The method investigated is based on a balance of energy. Stored strain energy
in the rubber material is equaled to work done by the external indenter force. The
hardness test is modified so that, instead of applying a constant force and measuring
the indentation, the forces required for certain fixed indentation depths are measured
cf. Figure 7.6.

A basic assumption is that the state of deformation for a certain indentation
depth is almost independent of the stiffness of the rubber material due to the near
incompressibility of rubber.

Figure 7.6 shows schematically the deformed mesh and the external force P
as a function of the indentation depths. The work done by the external force is
represented by the area under the curve and it can be calculated by integrating
from zero to the depth wu; this external work must be equal to the total stored
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strain energy i.e.
Uk e
[ Pdu= > Wi Vi, (7.2)
0 i=1
where n, is the number of elements in the finite element model, V; is the volume of
element ¢ and W; is the strain energy density for element .

Uy weur Uy

Figure 7.6: Indentation by needle with spherical tip and the external force P as a
function of depth.

Different expressions for the strain energy density can be used. Here the Yeoh
strain energy function (cf. Chapter 5) is used again

W = 010(.[1 o 3) + CZO(Il - 3)2 + 03[](.[1 - 3)3 . (73)

Inserting (7.3) into (7.2) yields

/0 P(uw)du = Cyo(Ii — 3)V; + Cao(Ii — 3)V; + Cao(IF — 3)%V; . (7.4)
i=1

The almost incompressibel behavior of rubber gives reason to assume that the
deformation state for a certain indentation depth is fairly independent of the stiffness
of the rubber material. If it turns out that this assumption is correct, then the
states of strain for each element, in terms of the strain invariants Iy and I, at
each indentation depth can be tabulated. The hyperelastic constants are evaluated
from (7.4) by use of the tabulated invariant values found from the finite element
analysis. Since there are three unknown hyperelastic parameters in (7.4), at least
three equations corresponding to three indentation depths are needed. Here six
indentation depths will be used giving six equations to solve, by a least squares
method, for the three hyperelastic constants.

The advantage of the method is that we need to do only a small number of
(here six) finite element calculations once and for all. The tabulated values of the
strain invariants can then be used to calculate hyperelastic parameters for rubbers
of different hardness.
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7.2.4. Test of the assumption by FE analysis

In order to check the basic assumption, i.e. independence of material stiffness for a
certain indentation depth, finite element analysis for different rubber stiffnesses was
carried out using ABAQUS [26]. Three different materials of nominal hardness 40,
50 and 78 IRHD, with hyperelastic constants given in Table 7.1 were used in the
analysis. The constants were evaluated in Chapter 5 (Table 5.3).

40 IRHD | 50 IRHD | 78 IRHD
Cho 0.2885 0.5079 1.0543
Cyp | -0.0394 | -0.0593 | -0.0779
Cso 0.0074 0.0086 0.0241

Table 7.1: Nominal hardness and hyperelastic (Yeoh) constants used in the analysis.

The symmetry of the rubber piece and the loading conditions test allow modeling
with axisymmetric elements. Incompressibility requires use of hybrid elements. A
model according to Figure 7.7, with 19 x 14 = 266 4-noded (CAX4H) elements of
hybrid formulation were used. The dimensions are in accordance with the standard
ISO test, i.e. the rigid ball has a diameter of 2.5 mm and the test piece has a radius
of 25 mm and a height of 10 mm. Smaller elements were chosen in the area under
the circular indenter, which is modeled by a rigid surface.

Different vertical displacements are applied through the rigid surface and contact
elements (IRS21A). The contact was modeled without friction corresponding to
a lubricated indentation test. Figure 7.7 shows the resulting deformed geometry
predicted by the finite element analysis.

To compare the states of strain for the three different materials, the invariants
I; and I, are plotted as functions of element numbers. I; and I; for the 40 IRHD
material are plotted in Figure 7.8, in order of increasing magnitude. The same order
in element numbers is then used in the corresponding plots for the 50 IRHD and
the 78 IRHD materials. For a closer examination of the assumption, I; and I, for
the most influenced elements are plotted in Figure 7.9.

The curves in Figure 7.8 and Figure 7.9 are very similar for the three rubber ma-
terials, which confirms the assumption that the state of strain for a fixed indentation
depth is almost independent of the stiffness.
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Figure 7.7: Azisymmetric finite element analysis of the ISO hardness test. Rigid
ball; diameter 2.5 mm. Test piece; radius 25 mm and height 10 mm.
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Figure 7.8: I1 and I, for different rubber hardnesses.
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Figure 7.9: I and Is for the most influenced elements.
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7.2.5. Evaluation of hyperelastic parameters

The problem of obtaining the hyperelastic constants will now be formulated as a
matrix problem by using a slightly changed version of the balance equation (7.4). It
was found that an incremental form of (7.4) was more advantageous from a numerical
point of view. Instead of total work and strain energy the additional work applied
when the force increases from P, to Py is equaled to the corresponding increase
in strain energy. Rewriting the expression for differences in applied work and stored
strain energy yields

Up Tee A e X Ne .
/ U P(w)du = CroARTTS (Ii=3) Vit Cap AR S (I —3)2Vi4- Cap AMH S (1i-3)%V;
u, i=1 '

k i=1 i=1
(7.5)
where AP indicates differences in the sum of invariants (it is assumed that ug = 0).
Six different indentation depths were simulated using the FE model in Figure 7.7.
The indentation forces P from the finite element analysis for the 40, 50, and 78
IRHD materials are plotted as functions of the indentation depths in Figure 7.10.
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Figure 7.10: Ezternal force P as a function of the indentation depth.

A third order polynomial was fitted to the computed values. The fitted polyno-
mials are shown with solid lines in Figure 7.10. The total external work done by the
indenter force at a particular depth was integrated from the polynomial. This work
at the six depths is given in Table 7.2.

The number of equations obtained from (7.5), by applying it for the six inden-
tation depths, exceeds the number of hyperelastic constants. Since there are only
three unknown constants, an overdetermined linear system of equations is obtained,
which is solved by the method of least squares (cf. Chapter 5).
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Depth (mm) || 40 IRHD | 50 IRHD | 78 IRHD
0.3 0.0820 0.1424 0.2957
0.6 0.4021 0.7020 1.4642
0.9 1.0345 1.8239 3.8174
1.2 2.0204 3.5763 7.5496
1.5 3.3657 5.9570 12.738
1.8 5.0430 8.8918 19.340

Table 7.2: Total work done by the external force Py ot different depths uy.

The strain invariants in (7.5) were determined from the principal stretches ob-
tained by finite element analysis using the 50 IRHD material parameters in Table
7.1. The first strain invariant for each element according to (7.5) is obtained from
the stretches (I; = A2 + AJ + A%) for six indentation depths.

Equation (7.5) is set up for each of the depths. The overdetermined system can
be written in matrix form as
Ac=b (7.6)

where A is a 6 x 3 matrix obtained from the principal stretches given by finite
element analysis of the 50 IRHD material. ¢ is a 3 x 1 column vector with the
hyperelastic constants. The matrix b is a 6 x 1 column vector containing differences
in the work done by the external force P between the depths (taken from Table 7.2).
A least squares solution is found from the ordinary (3 x 3) system

ATAc=ATb. (7.7)

The matrix A is set up once (using the 50 IRHD hyperelastic parameters) and
the only change for different materials is in the right side, matrix b, that contains
the work required for an increase in indentation.

0.2497 0.0081  0.0005
1.1158 0.1102  0.0206

C’10
2.3050 0.5596 0.2233
A= 36401 16873 1.3063 c= gzﬂ (7.8)
30

5.1895 4.9489  7.1565
6.6290 11.3516 27.6477

The external work matrix b varies with the hardness, and here b40, b50 and
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b78 correspond to 40, 50, and 78 IRHD materials.

0.0820 0.1412 0.2957
0.3201 0.5608 1.1685
0.6326 1.1219 2.3532

b0 =} ) og57 b50 =1 3 704 b78 = | < 7629 (7.9)
1.3453 2.3807 5.1579
16773 2.0348 6.6026

These matrices contain the increase in external work between the fixed depths,
obtained by subtracting consecutive rows in Table 7.2.

Hyperelastic parameters for the three rubber materials were calculated, by (7.7),
with the external work matrices according to (7.9), giving the values in Table 7.3.

40 IRHD | 50 IRHD | 78 IRHD
Cio 0.2859 0.5056 1.0616
Cyp | -0.0413 | -0.0670 | -0.1121
Cao 0.0091 0.0124 0.0302

Table 7.3: Calculated hyperelastic parameters from the matriz form of the balance
of energy.

A comparison in compression/tension and simple shear is shown in Figure 7.11.
The hyperelastic models calculated by the matrix expression (7.7) in Table 7.3 are
compared with the correct behavior of the hyperelastic models given by Table 7.1.
The dashed lines correspond to the hyperelastic models calculated from the modified
hardness test and the solid lines correspond to the hyperelastic models in Table 7.1.
It can be seen that the agreement is good in both shear, compression and tension
up to 100%.

7.2.6. Discussion

The state of strain in the finite element model of the hardness test is mainly a state of
compression combined with some shear of the elements. It is therefore not surprising
that the correspondence is best in compression and also good in shear, while the
fits, according to Figure 7.11, deviate more for tensile strains (larger than 100%).
However, combinations of compression and shear are the most common states of
strain in applications and the deviation in tension is therefore not alarming.

The method was evaluated here with hyperelastic models obtained from carbon-
black-filled natural rubber vulcanizates and it was shown that the method is valid
for these rubbers. The question of whether the constraints on the state of strain
imposed by the near incompressibility are strong enough to make the method more
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generally valid deserves further investigation. To assess this, evaluation must also be
carried out for hyperelastic models obtained from other vulcanizates. The principal
stretch values from the finite element analysis are stored, and these tabulated stretch
values can be used for evaluation of other hyperelastic models.

The sensitivity of the method to the number of indentation depths could also be
investigated.

The method should also be verified experimentally. This can be done by manu-
facturing hardness test, compression and shear specimens from the same material
batch and comparing the hyperelastic constants obtained from the compression and
shear tests with the hyperelastic constants obtained from the matrix solution (7.7).

7.2.7. Summary

Rubber components have broad application in industry and finite element analysis
is being used more and more in design and development of these components. The
rubber manufacturers offer a wide variety of rubber compounds for use in different
applications and environments. Manufacturing test specimens, testing them in the
laboratory and evaluating material parameters for finite element analysis is costly
and time consuming. It is therefore necessary to establish simple methods to derive
material parameters for the computer simulations.

The hardness test is a standard test frequently used to classify rubber stiffness.
The proposed method is therefore a rational way to obtain constants for finite ele-
ment analysis from the test by employing a slight modification.

The basic assumption is that the state of strain for a certain indentation depth
is almost independent of the stiffness of the rubber material. This was verified by
finite element analysis for three sets of hyperelastic constants obtained from carbon-
black-filled natural rubber vulcanizates, with nominal hardness from 40 to 78 IRHD.
The method investigated is based on an equivalence of the external work done by
the external force and the strain energy stored in the rubber material. The problem
of determining the hyperelastic constants is transferred into a matrix problem. The
hyperelastic constants are solved from a small system of equations with a system
matrix almost independent of the rubber hardness. This matrix was evaluated from
a tabulated state of principal stretches found from a finite element analysis of the

" hardness test (for the 50 IRHD material), performed once and for all.

In practical application of the method the external experimental force is obtained
for a number of (here six) indentation depths and integrated. The differences ob-
tained in external work between the fixed depths enter the matrix problem as the
vector b in (7.7), while the matrix A is constant due to the restrictions on the state
of strain imposed by the near incompressibility.
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Figure 7.11: Comparison of hyperelastic models from the modified hardness test
(dotted lines) and the hyperelastic models used in the finite element analysis (solid
lines) for 40 (above), 50 (middle), and 78 IRHD material (below). The models are
evaluated here for compression/tension and simple shear.
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7.3. Contact-free strain measurement

Conventional strain and deformation gauges produce recordings only for one or a few
points, and they are very difficult to use when it comes to small specimens or a small
area of one specimen. A new method for measuring displacements and strains in
mechanical test pieces without applying sensors to the specimens is described. This
optical technique uses a CCD camera, a computer with frame grabber board and
image analysis techniques. The displacements and strains at the surface of the test
piece are obtained by analysis of the movements of dots painted on the specimen.
The complete displacement field on the surface can be determined by attaching a
finite element grid to the image and using shape function interpolation. An appli-
cation example is presented. A large strain test performed on a rubber membrane
is analyzed.

The proposed method comprises a CCD camera and image analysis techniques
within MATLAB [36]. This numeric computation and visualization software, is used
to investigate relative displacements and surface strains by use of distinct markers on
the specimen. The proposed optical technique is both full-field measuring and non-
contacting. Other optical techniques that serve these demands have been described
by Gonzales [20], Gasvik [23] and Sjodahl [55].

7.3.1. Experimental setup

F
v Camera
head unit

Specimen s_._

Computer with
frame grabber
board

Camera
control unit

Figure 7.12: The experimental setup.
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The equipment, illustrated in Figure 7.12, comprises a CCD camera, lenses, enlarge-
ment tubes, light equipment, positioning table, a video monitor and a computer with
frame grabber board. Images are captured and stored in the computer with the help
of the frame grabber board to which the analogue monochrome camera (739 x 575
pixels) is connected. The camera head unit, the lens and tube together with fibre
light guides are mounted on top of a positioning table which is manually adjustable
in three directions. Five available lenses with fixed focal lengths combined with
different tube lengths can produce images of objects with heights of 0.8, 2.5, 5, 10,
20, 40 and 60 mm. The image width is about 1.29 times larger than its height.
The test specimen is marked with dots of ink or paint and mounted in the testing
machine. A sequence of images is then captured at intervals depending on time,
force, or displacement. Recordings of force and displacement can be made together
with each image. This is accomplished by program routines linked to the frame
grabber routines that make it possible to receive and capture digital or analogue
signals from the testing machine at the same instant as images are captured.

7.3.2. Program function

User interaction with the graphic interface and the image analysis algorithms are
described in this section. As a general reference to digital image processing, see [20].
One time-saving feature of the algorithm is that the dots that are marked with
a box in the first image in a sequence are tracked through the image sequence, and
their centers of mass are calculated automatically for each image in the sequence.

The implementation is done as a menu-driven process, using MATLAB's graph-
ical interface. When the user starts the program, a menu appears at the top left
of the screen. First the user writes the name of the files containing the images in
pgm-format in an editable text box. Then the first image in the sequence is shown
on the screen.

The next step is to locate the different marked dots on the specimen using the
cursor. Marking the top left and the bottom right corner of a box situated around
the dot makes the program write out the box in the image. The steps described
above are repeated until all dots have been surrounded by boxes.

Finally, the user starts the analysis, and the images in the sequence are treated
one after another. The marked dots are tracked through the sequence and new boxes
need not be entered in the other images. A number of diagrams are shown, giving
the z- and y-displacements of dot number 2, 3 and so on, relative to the first dot.
The z- and y-centroid displacements for all dots and pictures in the sequence are
stored in two matrices.

When a box around a marked dot is entered by the user, the center of mass of
the dot is calculated. First the marked area is picked out, giving a smaller image,
(see the left part of Figure 7.13). Then this new image is inverted if the marked
dot is black against a lighter background, in order to give a white dot against a
black background. To eliminate boundary defects, the new image is thresholded to
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give an image with intensity values zero on the boundaries of the box and larger
intensity values on the actual dot. In this way the image can be regarded as a
surface area with mass distribution given by the image intensities. The fact that
the image intensities are zero at the boundaries makes the program less sensitive to
the placements of the boxes. The output will be the same if the frames of the boxes
are outside the dots and do not contain any other dark areas.

The first order area moments, sy, are calculated using

s = /Q Xw(X)dA = /Q { ;( } w(X,Y)dA = {gl ] (7.10)

where Q denotes the box around the dot, w(X) denotes the image intensity at point
X and dA denotes the area measure. Naturally the integrals are calculated using
finite sums, because the image intensity is a discrete function. This means that

= 3 3 [ wta -] 8], (.11)

I=Tmin J=Ymin

where the lower left corner of the box has coordinates (Zmin, Ymin) and the upper
right corners has coordinates (Zmagz,Ymaez)- Then the coordinates of the center of
mass are calculated as

Xrp = (7.12)

S
M,
where M is defined as

Tmax Ymaz

M=/Qw(X)dA: SO wiig) (7.13)

1=Tmin J=Ymin

Figure 7.13: Graphical illustration of the image intensities around o marked point.
The original image is shown to the left, the inverted and thresholded image to the
right.

The location of the center of mass relative to the lower left corner of the box
is stored for each box. When a new image is considered in the sequence, the new
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center of mass is calculated using the same box, even if the marked dot has moved.
If the dot has moved more than one pixel in any direction, the box is translated so
that the relative position of the center of mass is preserved. If the pixel values at the
boundaries of the box are different from zero when the center of mass is calculated,
a new calculation of the center of mass is done. This process is repeated until the
box surrounds the dot. In most cases this calculation need only be done once for
each image. However, in the last images of a sequence, where the deformations are
large, the calculation may be done several times though usually only twice. In this
way the marked dots are tracked through the sequence.

7.3.3. Surface strain analysis

By combining finite element technique with the centroid displacement information
from the dots, it is possible to extrapolate displacements of the dots and get infor-
mation about the complete experimental displacement field of the surface.

y

Figure 7.14: Finite element mesh attached to the centroids of the dots.

The deformation of the surface is expressed by a mapping, from the undeformed
to the deformed configuration, defined for every point at the surface. The location
of a point in the undeformed configuration is uniquely determined by coordinates
X = (X,Y) and by x = (z,y) for the same point in the deformed configuration.
The mapping is expressed as

[§}=[ﬁ?§H = x=x(X) (7.14)

The convention of using capital letters for quantities referring to the undeformed
configuration and lower case letters for the deformed configuration, is used.

The surface is divided into triangular elements with nodes at centroids of the
dots as illustrated in Figure 7.14. The deformation is described by

x =X +u(X), (7.15)
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Figure 7.15: Triangular element and nodal displacements.

where u is the displacement of a point located at X at the undeformed surface.

The displacements at the nodes are interpolated by linear functions defined for
each element, i.e. linear shape functions are used. This is a standard technique used
in finite element analysis; see [44] for further information. The element displace-
ments, u¢, are interpolated as

u® = N*(X) d°,

where N¢ is the shape function matrix and d¢ is the element displacement vector
given by

N, 0 N 0 Ny 0

N:[OMONjONk

) T
} de=[u,~ v U; V5 o Up ’l}k] y

with the element displacements defined in Figure 7.15. The shape function associ-
ated with node ¢ is expressed as

1
24
where A is the element area and the shape functions N; and Nj, are found by cyclic
permutation of indices.

N; = (Xij—Xk}’j+(§’j—3’k)X+(Xk—Xj)Y) ;

Experimental surface strains can be obtained from the attached finite element
mesh. The deformation gradient defined by F = 9x/0X is the basis for several
definitions of strain used in constitutive theories. For the triangular elements used
here the deformation gradient is constant and expressed by the displacements as

out
X

Fe=1+ (7.16)
by differentiation of relation (7.15).

There are several definitions of strain [37] that can be constructed from the
deformation gradient. The Lagrange strain tensor, defined as F = (FTF —1)/2, is
a commonly used measure of strain. This strain at the surface of a stretched rubber
membrane is obtained in the application example below.
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7.3.4. Application example

Evaluation of surface strains were performed on a series of images from a stretched
rubber membrane according to Figure 7.16. The specimen consists of a membrane
of original dimensions 10 x 10 x 2 mm bonded to steel plates. The loading head
on the right hand side was displaced by 10 mm. Twenty images were captured with
two images at each millimeter of displacement.

50

100

Figure 7.16: The deformed membrane and mesh at mazimum displacement. The
strain in the z-direction is also displayed for the deformed membrane.

A finite element mesh was constructed from centroid data, for the dots marked
with a frame in Figure 7.16. Equivalent ellipses were drawn to indicate the deformed
dots together with two reference nodes on the steel plates, marked with circles, in
Figure 7.16.

The Lagrange surface strains were evaluated for each element, and the variation
of the strain component E,, (z in horizontal direction) is indicated in Figure 7.16
by a grey scale, with white for the largest strain value and black for the smallest
strain value within the mesh.
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7.3.5. Discussion

One drawback of this implementation is that the user has to mark the dots with
boxes before they can be processed. It would be fairly easy to write a program that
automatically detects the dots and then track them through the sequence, if there
is some a priori information available of what the dots look like.

In the present implementation it is only possible to treat white dots against black
background or black dots against white background at the same session. A simple
extension would be to have a new menu where the user can select white or black dot
after the box has been marked. This could also be done automatically if the dots
were detected automatically.

Another drawback is that it is necessary to paint small dots on the specimens. If
the specimens had some texture, it would be possible to estimate local deformations
using correlation techniques. This texture could be made, for example, by spraying
ink on the specimen, giving a large number of small dots and other textures. Using
this texture, it is possible to correlate different areas in subsequent images.

7.3.6. Summary

A robust and straightforward non-contacting method for experimental deformation
analysis has been described. Distinct dots are applied to the test specimen. The
image analysis algorithm makes it possible to automatically track the motions of
the dots and compute their centroid coordinates in a sequence of images. A method
to interpolate displacements and compute surface strains has also been devised, by
the use of finite element shape functions. The analysis procedure can be developed
further. An automatic procedure for detection of the dots on the first image would
be time saving.
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8. INTRODUCTION TO DAMPING MECHANISMS

This part concerns dynamic properties of rubber with special interest in filled rub-
bers and modeling of the amplitude dependence. Experiments and models of the
dynamic behavior are discussed. One section in this chapter describes experiments
carried out at the departmental laboratory. The experimental findings are compared
with viscoelastic and viscoplastic models in subsequent chapters. Rate-dependent
and rate-independent damping are discussed in terms of one dimensional and mul-
tiaxial models. The limitations of existing viscoelastic models are discussed.

In Chapter 9 linear viscoelasticity is discussed, and some important subjects are
considered such as the relaxation function and the complex modulus. The linear
viscoelastic models are purely rate-dependent models with linear dynamic behavior.
These models are well suited for unfilled rubbers, but they can not explain some
important properties of filled rubbers. Examples are the rate-independent character
of damping required to explain the hysteresis in quasi-static loading and the ampli-
tude dependence of the dynamic modulus in harmonic loading. Rate-independent
damping is discussed in Chapter 10 in terms of one-dimensional elasto-plastic mod-
els. It is shown that these models are able to capture the amplitude dependence
of filled rubbers in harmonic loading. A combination of rate-independent and rate-
dependent damping is studied and compared with experiments in Chapter 11. The
one-dimensional model used is a model with viscoelastic and elasto-plastic stress
contributions added. Models available in commercial finite element codes for dy-
namic behavior of rubber are modified linear viscoelastic models to take large strain
into account, and the subject of Chapter 12. Finally in Chapter 13 a possible
generalization of the one-dimensional viscoplastic model to the multiaxial case is
discussed.

8.1. Definition of dynamic modulus and damping

Steady state harmonic excitation is an important loading case, and the dynamic
modulus and damping have to be defined for the nonlinear case as well. A general
definition is required because the response to a sinusoidal excitation is not perfectly
simusoidal when nonlinearities are present even for small vibrations. Figure 8.1
shows two hysteresis loops for a sample subjected to a pure sinusoidal strain. The
left path is elliptic, corresponding to linear dynamic (viscoelastic) behavior. The
right path is a more general hysteresis where nonlinearities are present. The stress
response contains higher harmonic components, i.e. multiples of frequency of the

111
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strain input.

Figure 8.1: Linear viscoelastic and general hysteresis loop for harmonic ezcitation.

In Chapter 1 the dynamic modulus and phase angle were defined for linear dy-
namic behavior. The dynamic modulus was defined as Egyn = 0o/€. The damp-
ing, expressed by hysteresis work, was connected to the phase angle § according to
U, = mopepsin 6. (This will be shown in Chapter 9.)

Definitions consistent with linear viscoelasticity for the dynamic modulus Eg,
and normalized damping d are

09

U
Eyp = — d=

€ TTp€y

(8.1)

The definition of dynamic modulus is the same used in linear viscoelasticity and
the definition of normalized damping coincides with the phase angle at moderate
damping, i.e. d = 6.

If the nonlinearities are not too severe, i.e. the deviation from the sinusoidal
shape is small, then a least squares fit, of an harmonic function with the same
fundamental frequency as the input, to the response will give approximately the
same dynamic modulus and phase angle as the definition above. This can be viewed
as an equivalent viscoelastic damping.

8.2. Microstructure and dynamic properties

The origin of the damping property of rubber can be understood from the molecular
structure of the material. Vulcanized rubber is made up of very long cross-linked
polymer molecules. The damping is increased when filler, usually carbon-black, is
added to the rubber compound. Carbon-black consists of very small particles of car-
bon (20nm - 50pm), which are mixed into the raw rubber base before vulcanization.
The material is thus a two-phase material made up of constituents with completely
different mechanical properties. Figure 8.2 shows schematically the structure at a
molecular level of a carbon-black-filled vulcanizate. The cross-links are shown as
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Figure 8.2: Molecular structure for a carbon-black-filled rubber vulcanizate. Carbon
particles, polymer chains (solid lines) and crosslinks (dashed lines) are schematically
illustrated.

dashed lines and the carbon particles forms agglomerates inside the rubber network
(solid lines).

The damping property of filled rubbers, i.e. the ability to dissipate mechanical
energy into heat, is mainly due to two kinds of mechanisms. One is of viscous
character - the origin of the viscous damping being the resistance in reorganization
of the molecular chains within the rubber phase. This reorganization of the long
molecular chains can not occur instantaneously, giving a rate dependent resistance of
a viscous character. The other mechanism is due to the filler; damping is increased
by adding fillers to the rubber compound. The filler particles can be regarded as rigid
compared to the stiffness of the rubber matrix. The filler particles, as mentioned
above, form agglomerates and these build a filler structure [60] inside the rubber
network. When the composed rubber material is being deformed there will be forces
developing in the filler interfaces and the filler structure will break. The increased
damping must therefore be attributed to a resistance in the rubber-carbon interfaces
and in the carbon-carbon interfaces. It will be argued that this part of the damping
is rate-independent and responsible for the nonlinear dynamic behavior of filled
rubbers that appears as amplitude dependence of the dynamic stiffness and phase
angle.

The dynamic properties of rubber are dependent on frequency, temperature,
static load and amplitude.

Figure 8.3 shows the frequency dependence of the dynamic modulus and phase
angle for a filled rubber. The dynamic shear modulus and phase angle are shown
as functions of frequency. The effect of changing the temperature is also shown in
the figure. The values given are approximate and strongly dependent also on the
amplitude, which will be discussed below.

Figure 8.4 shows the temperature dependence of the dynamic shear modulus and
phase angle for a filled rubber. Values given are approximate and dependent also on
the amplitude. The dynamic modulus decreases, with increasing temperature. The
effect of changing the frequency is also shown in the figure. The general behavior
shown in Figure 8.4 is the same for all rubbers, although the temperature scale can
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Figure 8.3: Frequency dependence of dynamic shear modulus and phase angle for a
filled natural rubber. Influence of temperature is also shown.

be shifted by additives in the rubber compound.

Three temperature regions are indicated. The first is the glassy region where the
thermal motion of the polymer molecules is reduced. In this range almost no inter-
molecular motion is possible and the material is glass-like and brittle. Mechanical
behavior of rubber in this temperature range is dependent on the interatomic bonds.
The modulus is therefore considerably high (~1 G Pa) in this region, while damping
represented by the phase angle is low. The second region is the transition region,
with a drastic drop in dynamic modulus and maximum damping shown as a peak
in the phase angle. The third temperature region is the rubbery region with a
considerably low dynamic modulus (=1 MPa). Rubbers in working conditions
must be in the end of the transition region or in the rubbery region in order to have
rubber-like properties.

The indicated shift of the modulus and phase curves in Figure 8.4 is a general
property valid for a variety of polymers over a wide frequency and temperature range.
The frequency-temperature correspondence has been summarized by Williams, Lan-
del, and Ferry [62] in an empirical universal function valid for amorphous polymers
at temperatures above the glassy region. An important consequence of this corre-
spondence is that modulus and phase curves over many decades of frequency can be
obtained by performing experiments in a limited frequency range at different tem-
peratures. The wide frequency range is covered by shifting the limited frequency
data along the frequency axis. Low temperature measurements correspond to high
frequencies and high temperature measurements correspond to low frequencies. The
composed curves is effectively mirror images of the temperature curves in Figure 8.4,

Special emphasis will here be on strain amplitude dependence of the dynamic
modulus. The modulus is seen to decrease with increasing strain amplitude. This
effect is sometimes denoted the Payne effect due to investigations of reinforced elas-
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Figure 8.4: Temperature dependence of dynamic shear modulus and phase angle for
o filled natural rubber. Influence of frequency is also shown.

tomers made by Payne [45]. He interpreted the decline in modulus by increasing
strain amplitude as a result of breaking of the filler structure. The structure is com-
posed of aggregates held together by van der Waals bonds. Payne found that the
modulus is almost recoverable upon return to small amplitudes, i.e. the filler struc-
ture largely reforms for an amplitude cycle. It is clear that the mechanisms involved
should not be confused with the Mullin’s effect, which is attributed to breaking of
cross-links within the rubber network [42], with recovery times of about 24 hours.

Payne also observed that the shape of the decline in modulus by increasing
strain amplitude was almost independent of frequency for low frequencies, and he
also refers to Warnaka [61] who observed the same frequency independence for higher
frequencies, up to 1500 Hz.

A comprehensive review of dynamic properties of carbon-black-filled rubbers and
the amplitude dependence can be found in the often-cited article by Medalia [38].

Harris and Stevenson [25] have made experimental investigations of several non-
linear aspects of the dynamic behavior of, especially, filled rubbers. They investi-
gated effects of frequency, amplitude, and elastic nonlinearity for filled and unfilled
rubbers. For unfilled rubbers it is clearly seen that the hysteresis loop has an el-
liptic shape for small amplitudes and preload and the behavior is viscoelastic. For
filled rubbers a significant effect of the strain amplitude on the dynamic modulus is
reported. Figure 8.5 shows the equivalent complex modulus, reproduced from [25],
for natural rubbers (NR) with different carbon-black loading. The amount of black
varied from 45 phr (parts per hundred of NR by weight) to 75 phr. The rubbers are
all of approximately the same hardness (about 55 IRHD). This was accomplished
by using three different types of carbon-black and by balancing the reinforcing effect
by addition of a high-viscosity aromatic oil. Figure 8.5 shows the strain amplitude
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Figure 8.5: Amplitude dependence of dynamic shear modulus and phase angle for
some filled natural rubbers of various filler contents. A-E represent increasing filler
contents. (Reproduced from Harris and Stevenson.)

influence in simple shear. The vulcanizates are denoted A,B,C,D,E in [25] in order
of increasing reinforcement of carbon-black. The carbon-black content varied from
30 to 75 phr, i.e. parts per hundred of rubber by weight (75 phr for vulcanizate
E). Vulcanizate B and C behaved similarly. B is therefore left out in the reproduc-
tion (cf. Figure 8.5). The vulcanizate with the highest damping and variation in
dynamic modulus is the one with the highest filler content.

Harris and Stevenson also report that the stress response for harmonic loading
in simple shear is influenced by higher harmonic components, resulting in a dis-
torted elliptic shape which tends towards a parallelogram. The most significant
contribution is from the third harmonic component. The ratios of the third and the
first harmonic component are reported for vulcanizate E for a 1 Hz test at different
amplitudes. The maximum ratio is 0.035 for a strain amplitude of 5%.
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8.3. Experimental results

Several tests have been carried out in order to show the influence of the rate indepen-
dent damping present in carbon-black-filled rubbers and to illustrate the deviations
from viscoelastic behavior. The experimental results will also be compared with
model behavior in subsequent chapters.

H

‘-

_ t
B

Figure 8.6: Displacement controlled double shear. Specimen and an arbitrary strain
history.

The tests were performed in displacement-controlled simple shear for different
strain histories, with a setup schematically shown in Figure 8.6. This mode of
deformation was chosen in order to reduce the influence of elastic nonlinearities.
The “direct shear strain” determined as k = §/H is used as strain measure in all
shear tests. (This measure is connected to the Lagrange shear strain Eip = &/2.)
The shear stress is the force on each of the rubber discs divided by the circular cross-
sectional area 4, i.e. 7 = P/2A. (Diameter D = 25mm and height H = 6mm.)

The same double shear specimen according to Figure 8.6 was used throughout all
the experiments since the purpose was to investigate the behavior of a typical filled
elastomer and not to perform a study of the variation in material properties. The
material was a 55 IRHD carbon-black-filled SBR. (styrene-butadiene) rubber vul-
canizate with 78 phr filler (N330), manufactured by Svedala-Skega rubber company.
The relatively high content of filler was balanced by a mineral oil. This vulcanizate
is similar to vulcanizate E discussed earlier, since the dynamic properties of SBR and
NR polymer are similar and the filler content and the hardness are approximately
equal.

All tests were performed with a servo-hydraulic test machine from MTS systems
with a load cell of 10kN maximum capacity. The system is fully computerized
with a strain history function generator and data logging capabilities. The test
machine is located in a climate-controlled environment. The temperature was held
at 23.5 & 0.5°C for all tests.

The experiments are divided into quasi-static and steady state dynamic experi-
ments. The quasi-static experiments were relaxation tests, tests with low frequency
sinusoidal strain at different amplitudes, and also a test with a triangular periodic
strain to check the sensitivity of the stress response to the shape of the strain history
time function. The steady state dynamic tests were performed for different frequen-
cies and amplitudes, with frequencies from 1 to 20 Hz and shear strain amplitudes
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from 0.02 to 0.15. The tests are compared with the behavior of the models discussed
in Chapter 10 and Chapter 11.

A concern in all tests has been to eliminate effects of damage (Mullin’s effect).

The test specimen was therefore conditioned before testing in order to establish
stationary material behavior.

8.3.1. Quasi-static experiments

A set of relaxation tests was performed according to Figure 8.7, in order to determine
the influence of the step size on the relaxation modulus. This modulus is given by
relaxation stress divided by the strain step s, according to

Gr(t) = Tr(t)/ ks TR = P(t)/24 . (8.2)

x=8/H
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Figure 8.7: Relazation test in shear. Strain steps: [0.2 0.4 0.6 0.8 1.0]. Relazation
stress for 100s and o closer view of the first 10s.

The relaxation tests were carried out at five levels of shear strain
ke=]02 04 06 08 1.0]

according to Figure 8.7. The ramp strain rate was constant for the five levels,
% = 1.66s7! and the stress was allowed to relax for 100 s. The stress relaxation is
shown for the different strain levels for a time interval of 100 s and for the first 10 s.
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Figure 8.8: Relazation modulus in shear i.e. relazation stress divided by the magni-
tude of the strain steps; ks=[0.2 0.4 0.6 0.8 1.0] for 100 s and a closer view of the
first 10 s. The largest relazation modulus corresponds to the smallest strain step.

The dependence of the step size is clearly seen in Figure 8.8 in contrast to
what could be expected from viscoelasticity (cf. Chapter 9). The largest relaxation
modulus corresponds to the smallest strain step, i.e. k,=0.2, the second largest for
rs=0.4, and the third for £,=0.6. Hence, the relaxation modulus decreases with the
step size.

The second quasi-static test set was a test with a sinusoidal strain history and
different amplitudes in order to investigate the influence of amplitude and to check
the shape of the hysteresis loop. The tests were performed at f =0.05 Hz with shear
strain amplitudes

ko=[01 03 05

and a static strain x; =0.5 according to Figure 8.9.

Although the test was carried out in simple shear, which is an almost linear
state of deformation, there is substantial deviation from the elliptical shape that
characterizes linear viscoelastic behavior. The shape tends towards a parallelogram.

It is also seen in Figure 8.9 that the dynamic modulus falls with increasing
amplitude. The frequency dependence was negligible for similar quasi-static tests
performed at f =0.01 Hz and f =0.1 Hz.

The third quasi-static test was a test with a triangular shaped periodic shear
strain that was compared with a harmonic test with the same amplitude and fre-
quency according to Figure 8.10. This test was performed for the purpose of inves-
tigating the sensitivity of the stress response to the shape of the shear strain time
function. The shear strain amplitude x;=0.5 and the prestrain x,=0.5.

The shape of the strain has a very small influence in this quasi-static test. In
Figure 8.10 the triangular and the sinusoidal strain histories yield almost the same
hysteresis loops. This is also a property that is in contrast to viscoelastic behavior.
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Figure 8.9: Double shear specimen and strain history in quasi-static harmonic tests

(left). Hysteresis loops for different amplitudes (right). Strain emplitudes ro=[0.1
0.8 0.5] at f=0.05 Hz.
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Figure 8.10: Check of sensitivity of the hysteresis loop to the shape of the strain
history. A sinusotdel and o triangular shear strain history were tested at 0.05 Hz.
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8.3.2. Steady state dynamic experiments

Tests with different combinations of amplitude and frequency were performed in
order to investigate the influence of amplitude and frequency of the dynamic modulus
and phase angle. A total of 20 tests were performed with the same setup and strain
history as for the quasi-static tests according to Figure 8.9, although for smaller
amplitudes and higher frequencies. The prestrain was held constant, x; = 0.2, and
all combinations of frequency f and amplitude £, in (8.3) were tested.

F=[1 5 10 15 20]Hz ko =[0.02 005 01 0.15].  (8.3)

The dynamic modulus was computed in each test as the quotient

Gagn = 2, (8.4)
Ko

where 1 = AP/(2A) is the shear stress amplitude and AP = Ppnp — Prin. A
harmonic function was fitted by a least squares procedure to the stress response
time functions. The stress amplitude and the phase angle were evaluated from the
fitted function. The shape of the hysteresis loops for these tests does not deviate
t00 much from the elliptic, and the dynamic modulus and phase angle should not
deviate from what would be obtained by the definitions in Section 8.1. Typical
shapes are shown in Figure 8.13.

05

\ 015 01/

Figure 8.11: Dynamic modulus and damping determined from double shear tests with
different frequencies (f) and amplitudes (ko).

The dependences of the dynamic shear modulus and phase angle on frequency
and amplitude are shown in Figures 8.11 and 8.12. The test with maximum fre-
quency and amplitude (20Hz with 15% strain amplitude) could not be evaluated
due to limitations in the testing equipment. The diagrams in 8.12 are views of the
three dimensional plots showing frequency and amplitude dependence.
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Figure 8.12: Above: Two views of the dynamic modulus in Figure 8.11 showing the
frequency (f) and amplitude (ko) dependence. Below: Two views of the equivalent
phase angle in Figure 8.11 showing the frequency (f) and amplitude (ko) dependence.

A moderate increase in dynamic modulus with frequency and a quite substantial
decrease in modulus with increasing amplitude can be seen in Figure 8.12. Moreover,
an important observation is that the experiments indicate a separable amplitude and
frequency dependence. The curves are of the same shape and can approximately be
generated by translation of a single curve in each diagram. This is in accordance
with Payne’s [45] and Warnaka’s [61] observations discussed previously.
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In order to check the reversibility of the dynamic modulus amplitude dependence,
a test with increasing and decreasing amplitude was performed. The influence of
damage on the dynamic modulus amplitude dependence has been tested for the
simple shear specimen. The test was performed in a continuous sequence with
increasing and decreasing amplitude harmonic strain history according to Figure
8.13. The frequency was 5 Hz with 15 cycles for each of the amplitudes (ko) in the
sequence, given by

noz[o.oz 0.05 0.1 0.05 0.02],

with the same prestrain as in the previous test, i.e. x; = 0.2.

The resulting stress-strain loop is also shown in the figure. It can be seen that the
two smallest loops do not coincide. The lower one is the the last and the softening
is probably due to warming of the specimen by hysteresis work.
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10 15 20 25 30 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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Figure 8.13: Reversibility of the amplitude dependence of the dynamic modulus.
Hysteretic loops (right) for the strain history (left). Testing in simple shear with
frequency f =5 Hz and amplitudes ko = 0.02, 0.05, 0.1, 0.05, and 0.02.

Evaluating the stress history in the same way as the previously discussed har-
monic tests yields

Ko | 0.02]0.05] 0.1 |0.05]0.02
Gayn | 1.95]1.56 | 1.32 | 1.51 | 1.88

The important conclusion is that most of the decline in the modulus is recoverable
and that damage therefore plays a minor role in the explanation of the amplitude
dependence. This is in accordance with Payne’s observations [45].
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8.3.3. Summary of experimental findings

Deviations from linear dynamic behavior lie in the underlying nonlinear elastic prop-
erties and in the damping mechanisms introduced by the filler.

For unfilled rubbers a linear viscoelastic behavior can be observed in simple
shear, which is a linear mode of deformation if the strains are not too large. In the
case of filled rubbers, nonlinear dynamic behavior is present even for simple shear
due to breakdown and reforming of the carbon-black structure.

The dynamic properties of carbon-black-filled rubbers according to the references
and the experimental findings in Section 8.3 are summarized here.

¢ In quasi-static loading it can be observed that a difference between loading
and unloading curves is present irrespective of how low the loading rate is.
It was also observed that the hysteresis loop in quasi-static loading takes the
approximate shape of a parallelogram (cf. Figure 8.9).

o The shape of the strain history does not appreciately influence the shape of
the hysteresis loop (cf. Figure 8.10).

¢ In relaxation tests a step size dependence is observed, where the smallest strain
step yields the largest relaxation modulus. The relaxation modulus falls with
increasing step size towards an asymptotic value (cf. Figure 8.8).

¢ In harmonic loading it can be observed that the dynamic modulus shows a
considerable amplitude dependence. The modulus declines with amplitude
towards an asymptotic value for large amplitudes. The damping represented
by the equivalent phase angle reaches a maximum where the decline in modulus
is the greatest (cf. Figure 8.5).

e The dynamic modulus has been shown to be almost recoverable for a strain
cycle in harmonic testing (cf. Figure 8.13). The mechanisms on microstruc-
tural level involved must therefore be different from the mechanisms involved
in the Mullins effect. The explanation is breakdown and reforming of the
carbon-black structure. :

e The shape of the decline of the dynamic modulus with amplitude is insen-
sitive to frequency. Experiments indicate that the amplitude and frequency
dependence are separable (cf. Figure 8.12).

In the next section an introduction to modeling of the observed phenomena will
be given, including references to previous work.
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8.4. One dimensional models of damping

This section is intended as an introduction to modeling of damping in elastomeric
materials. Basic properties of different models will be discussed. The viscous rate-
dependent and the frictional rate-independent damping present in carbon-black-
filled Tubbers will be discussed briefly. A more thorough presentation of these sub-
jects follows in subsequent chapters.

The simple one-dimensional model of elastic and damping properties, cf. Figure
8.14, was discussed in the introduction (Chapter 1). The elastic behavior is provided
by the spring element, which is assumed to be nonlinear. Damping is modeled by
the rate-dependent viscous damper and the rate-independent frictional element. The
frictional element makes it possible to model hysteresis in quasi-static load cases,
i.e. when the strain rate approaches zero.

1-— } . G=Ge+°v+(§f

/2 1 €
—

Figure 8.14: Simple one-dimenstonal rheological model including nonlinear elastic,
viscous, and frictional properties.

The elastic, viscous, and frictional forces act in parallel, and the total stress is
the sum of the stresses in the elements, i.e. ¢ = o, + 0, + 0. The viscous stress
o, corresponds to dissipative stresses in the rubber network. Stresses in the filler
phase and in the rubber-filler interfaces are responsible for the rate-independent
contribution oy.

This model incorporates some important aspects of the mechanical behavior of
filled rubbers, and it is a starting point for modeling of damping in filled rubbers.
Frequency dependence, effects of static load on the dynamic modulus, distortion of
the elliptic shape of the hysteresis loop, and amplitude dependence are properties
of the simple model. However, it has some unphysical properties, e.g. discontinuous
stress response for continuous strain and inability to exhibit relaxation behavior.

Models without these drawbacks will be outlined here. Four simple one-dimen-
sional models, which exhibit reasonable qualitative physical behavior, are presented
in this introduction. The first is the viscoelastic “standard linear solid” model
that exhibits a linear dynamic behavior due to purely rate-dependent damping and
linear elastic behavior. (Linear viscoelasticity is discussed further in Chapter 9.)
The second is an analogous nonlinear viscoelastic model, with linear rate-dependent
damping and nonlinear elastic behavior. Multiaxial nonlinear viscoelastic models
of this kind are the subject of Chapter 12. The third model is a rate-independent
damping model that exhibits an amplitude-dependent (equivalent) dynamic modu-
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lus. The rate-independent damping model is discussed further and generalized in
Chapter 10. The fourth model combines the rate-dependent and rate-independent
models. This makes it possible to describe transient and steady state dynamic be-
havior of filled rubbers. The model is generalized in a systematic way in Chapter
11.

8.4.1. The standard viscoelastic solid

Eq

n E — —=

MWW e

Figure 8.15: Standard viscoelastic solid (also called Zener model).

The linear standard viscoelastic solid, also called the Zener model, shown in Figure
8.15 represents a special case in the class of linear viscoelastic models, although it
has all the qualitative features of more sophisticated viscoelastic solid models. This
incorporates relaxation behavior and elastic response to very fast and very slow
loading.

The springs are assumed to have linear characteristics and the dashpot stress o,
is proportional to strain rate with the proportionality factor g, i.e. o, = né.

Cp ®

(EntE)E

e

Figure 8.16: Relazation behavior of the standard viscoelastic solid; stress is relazed
to a long-term value.

It will be shown in Chapter 9 that this model responds with an exponentially
declining stress to a suddenly applied constant strain. The relaxation stress is shown
in Figure 8.16. Initially the model responds elastically, because the dashpot acts as
a rigid member to fast loading. The initial modulus is thus determined by the two
parallel springs. The stress is then relaxed to a long-term value determined by the
spring with modulus E, The relaxation time ¢, = 5/FE is a model parameter that
determines the rate of relaxation.

Figure 8.17 shows the response to a sinusoidal strain. Low frequency excitation
yields an almost elastic dynamic modulus close to F,, and high frequency excitation
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also yields an almost elastic response with the dynamic modulus close to Fy =
E + E,,. The dynamic modulus thus increases with frequency from E., to E + E.
Maximum hysteresis (damping) occurs for an intermediate frequency.

Figure 8.17: Elliptical hysteresis loops for sinusoidal excitation at different frequen-
cies for the standard viscoelastic solid. Ezcitation with increasing frequency from 1)
to 3). :

Some properties of the linear dynamic behavior of the viscoelastic solids are
summarized here:

e The dynamic modulus is independent of amplitude.

o Harmonic excitation yields a phase-shifted harmonic response with the same
frequency.

o The hysteresis loop has an elliptic shape.

¢ The dynamic modulus increases with frequency.

8.4.2. A nonlinear viscoelastic solid

— 0000 — o
E0000~|" T

Figure 8.18: Nonlinear viscoelastic rheological model.

The nonlinear property of rubber can be incorporated into the concept of viscoelas-
ticity. The model in Figure 8.18 is assumed to be composed of nonlinear springs
and a linear dashpot. The behavior of the model is similar to the linear version
described previously. However, the nonlinearity distorts the hysteresis loop and the
dynamic modulus is influenced by static load. A model obtained from neo-Hooke
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hyperelasticity (will be derived in Chapter 12) with parameters Cyp = 0.5 £, = 0.15s
and the amount of normalized relaxation ¢ = 0.2 was evaluated in cyclic compres-
sion/tension. Normalized relaxation g = 0.2 means that 20% of the initial stress
is relaxed at infinite time. The model behavior for a strain amplitude ¢, = 0.3 is
illustrated in Figure 8.19.

1 T T T T T
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Strain

Figure 8.19: Stress-strain response to a sinusoidal strain input.

It is seen that in this case we clearly have a nonlinear dynamic behavior with a
distorted elliptical hysteresis loop.

8.4.3. A simple frictional solid model

Eg

Figure 8.20: A one-dimensional rheologic model including elastic and frictional prop-
erties.

A solid model with rate-independent damping properties is represented by the rhe-
ologic model in Figure 8.20. This model is analogous to the Zener model except for
the dissipative element; the dashpot has been replaced by frictional blocks.

The rate-independent stress in the frictional element is limited to oy = Y for
fully developed friction.

It will be shown in Chapter 10 that the hysteresis loop is parallelogram-shaped,
according to Figure 8.21. The shape of the hysteresis loop is the same for differ-
ent kinds of periodic strain excitation, provided that the amplitude ¢ is the same.
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Figure 8.21: Amplitude dependence of the dynamic modulus for the frictional model.

Hence, a sine, sawtooth or square shaped periodic function yields the same response,
regardless of the frequency, if the amplitude is the same. The amplitude dependence
of the dynamic modulus of the model is also illustrated in Figure 8.21. Maximum
stress and maximum strain occur simultaneously and the dynamic modulus is cal-
culated at this point as Egy, = 0o/€. It is clear that the modulus decreases with
increasing strain amplitude.

The rate-independent frictional element thus introduces a nonlinearity that is
seen in the amplitude dependence and the parallelogram-shaped hysteresis loop,
contrary to linear dynamics, where a sinusoidal strain results in a sinusoidal stress
and thereby an elliptic hysteresis loop.

The stress response for the frictional solid model can be resolved into Fourier
components, which are multiples of the input frequency. This has been done for
the stress response of a sinusoidal strain input with frequency 1 Hz and amplitude
€0 = 0.1. The model parameters used are E,, =1, E=1 and Y = 0.015.
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01}

o
o
T

o

=3

@
T

Stress
o

Stress amplitude
[=]
o
(=23

2

0.2k - [

K 0.0 0. 0.05 R e Y S S R
Strain Frequency

Figure 8.22: Hysteresis loop (left) and Fourier components in the stress response
(right) for the frictional model.
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The resulting stress is, according to Figure 8.22, composed of odd multiples of
the fundamental frequency. This is in accordance with the experimental findings of
Harris and Stevenson [25].

Some properties (discussed further in Chapter 10) of the frictional damping are
summarized here:

o The hysteresis loop has the shape of a parallelogram.
o The hysteresis is independent of the rate (frequency) of loading.
¢ The dynamic stiffness decreases with amplitude.

o Harmonic excitation yields a non-harmonic response that can be resolved into
harmonic components that are odd multiples of the excitation frequency.

8‘4'4‘, A combined viscous and frictional model

WA °

Figure 8.23: Five-parameter model including elastic, viscous, and frictional proper-
ties.

A combination of viscous and frictional damping is needed to account for the inelastic
effects in carbon-black-filled rubbers. The model in Figure 8.23 is obtained by
connecting the Zener model and the corresponding frictional model in parallel. It
gives a reasonable representation of damping in filled rubbers, supported by micro
mechanical behavior and experimental observations. The total damping stress is
the sum of the viscous and the frictional stresses. Step size dependent relaxation
and amplitude dependent dynamic modulus are properties of the model, discussed
further in Chapter 11.
In Chapter 13 a possible generalization to the multiaxial case is discussed.

8.5. Modeling of dynamic behavior: Previous work

Models for viscoelastic analysis, with the elastic behavior based on hyperelasticity,
for arbitrary and large strains, have been developed by Simo [54], Lubliner [34],
and Johnson et al. [30]. Simo’s model also includes modeling of damage. Large
strain viscoelastic models for nearly incompressible and compressible analysis are
implemented in the finite element codes ABAQUS and MARC.
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A modification of the theory for the important case of small steady state vibra-
tions superposed on a large static hyperelastic state of strain was proposed by Mor-
man [40]. This model has been implemented in the finite element code ABAQUS.
Similar models have been developed and implemented into finite element code by
for example Zdunek [67].

Experimental investigations suggest that unfilled rubbers can be modeled by
viscoelastic models [25], whereas the behavior of filled rubbers can not, according
to the previous discussion. The amplitude dependence of the dynamic stiffness is
significant in filled rubbers and it is in general more important than the influence
of frequency and temperature. The amplitude dependence is not included in the
viscoelastic models.

Godvinjee and Simo [19] explain the amplitude dependence by damage in a
viscoelastic damage model for large strains. However, they also report that in cyclic
loading the shape of the hysteresis loop is very sensitive to the shape of the periodic
loading history. Moreover, the decline in amplitude for successive larger amplitudes
is irreversible. These essential drawbacks of the theory imply that viscoelasticity is
not suited for filled rubbers.

A one-dimensional model of the amplitude dependence for periodic sinusoidal
loading was suggested by Kraus [31]. This model explains the amplitude dependence
by continuous breaking and reforming of van der Waals forces between carbon-black
aggregates.

The Kraus model has been investigated and evaluated by many researchers, see
for example Ulmer [59] and Vieweg [60]. The latter finds that the sigmoidal decline
(in logarithmic coordinates) of the dynamic modulus does not depend on frequency
for the investigated range 0.06 — 20 Hz.

Rate-independent damping mechanisms have been employed to model the am-
plitude dependence of the dynamic stiffness for discrete damper models, usually
expressed in terms of force and displacement relations, see for example [7] and [12].

However, in terms of three-dimensional large strain models there appears to be
no counterpart to the one-dimensional models that incorporate modeling of rate in-
dependence (cf. Figure 8.23) for filled rubbers. It will be argued that viscoplasticity
is necessary to explain the nonlinear dynamic behavior of these rubbers.
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9. LINEAR VISCOELASTIC MODELS

This chapter provides a background to several concepts concerning the dynamic
properties of rubber. The purpose is to define some important issues such as complex
modulus, creep and relaxation functions, and to provide some understanding of
viscoelastic material behavior. Linear viscoelastic behavior will be illustrated for
transient and periodic loading. The subjects covered in this chapter can be found
in several textbooks; see for example [37], [49] or [56].

Viscoelastic material models combine elastic and viscous characteristics. The
constitutive relations are defined in terms of time functions of stress o(t) and strain
¢(t). Hence, the response becomes time dependent, in contrast to ideally linear
elastic materials where a one-to-one relation exists between the current stresses and
current strains. The constitutive equations can be defined by an integral or by a
differential equation.

Rheological models consisting of spring and dashpot assemblages are often used
to illustrate viscoelastic material behavior. The mechanical behavior of a specific
viscoelastic material in a uniaxial case is analogous to the behavior of a proper
combination of springs and dashpots.

With harmonic excitation the response will be a phase shifted harmonic function
with the same frequency. This property of linear viscoelasticity makes it possible to
define a complex modulus independent of amplitude and a function only of frequency.

9.1. Creep and relaxation

Material behavior explainable by linear viscoelastic models includes, for example,
creep and relaxation phenomena. Creep is an increasing strain as response to a
step-stress loading, and relaxation is a decreasing stress as response to a step-strain
loading.

£ ®
60 ¢

t t

Figure 9.1: Creep behavior; increasing strain as response to a stress step.

133
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For a linear viscoelastic material the creep compliance Jo(t) = €(t)/oo (cf. Figure
9.1) is a characteristic function independent of the stress step o¢. This function is
unique for a specific linear viscoelastic material.

0, (®)
£Q® Oy

t t
Figure 9.2: Relazation behavior; decreasing stress as response to a strain step.

For a linear viscoelastic material, the relaxation modulus Eg(t) = o(t)/e (cf.
Figure 9.2) is a characteristic function independent of the strain step €. This
function is unique for the specific linear viscoelastic material.

It can be shown that the instantaneous elasticity, i.e. the relationship between
the creep compliance and the relaxation modulus at ¢ = 0, is Eg(0) = 1/J(0).

9.2. The hereditary integral

The behavior of a linear viscoelastic material can be defined from this single step
response function. Linearity and superposition (Boltzmann's superposition princi-
ple) leads to the constitutive equation defined as a convolution integral (also called
hereditary integral). The stress history corresponding to any strain history can be
obtained from this integral. The constitutive model is defined by the relaxation
modulus, or for the inverse relation, the creep compliance.

e

de

/

T T

t tykdt ty t
Figure 9.3: An arbitrary strain history.
An arbitrary strain history (¢), cf. Figure 9.3, can be considered as a sum of a

large number of differential, positive and negative strain steps. A strain step de at
time t; causes a stress change do. At time ¢, the stress change has been relaxed to

do(ts) = Er(ts — t1) de(ty) .
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Summation of all stress changes at time ¢, due to all previous strain steps yields

de

olts) = /_t " Enlts —t) it (9.1)

This is the hereditary integral that defines the linear viscoelastic stress response for
an arbitrary strain history. Hence, from knowledge of the relaxation modulus the
stress o(ty) can be derived by (9.1) for an arbitrary strain history e(t).

The inverse relation can be obtained by applying stress steps and assembling the
creep histories, giving the relation

(i) = [ " elts—1) %dt (92)

In connection with the finite element method, where strain and displacement are
the basic unknown quantities, the form (9.1) defined by the relaxation modulus is
preferred.

Figure 9.4: The relazation modulus of a viscoelastic solid. Ey is the instantaneous
modulus and Eo is the long-term modulus.

Linear viscoelastic theory can model both fluid and solid material behavior. The
main interest here is models with solid properties. It is therefore required that the
creep response is limited, and that the relaxation has a limit different from zero
according to Figure 9.4.

An example of a relaxation process can be obtained by assuming a simple expo-

nential law given by
ER(t) = F + (EO — Eoo) e”t/t’

this is the relaxation modulus associated with the Zener model, which will be dis-
cussed further in relation to rheologic models in section 9.4. The parameter £, is the
relaxation time.

9.3. Harmonic excitation and complex modulus

The response to a stationary sinusoidal strain history is of interest in many engi-
neering applications. The stress corresponding to a stationary sinusoidal strain can
be expressed by a complex modulus. The constitutive relation (9.1) will be used to
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determine an expression for the complex modulus. Consider the sinusoidal strain in
complex notation
€ = ge™ = ¢y(cos(wt) + isin(wt)) (9.3)

where the real or imaginary part is interpreted as the physical strain. Inserting (9.3)
into the convolution integral (9.1) yields an expression that resembles the Fourier
transform. The Fourier transform is a complex valued function depending on the
parameter w = 27 /T i.e. the angular frequency for the vibration, with T' being the
periodic time.

The form of the relaxation modulus Eg(t) is inadequate for Fourier transform
methods since the transform is defined only for absolute convergent functions. This
requires that the function to be transformed fulfills the condition

/_Z | f(t) | dE < oo (9.4)

The relaxation modulus, cf. Figure 9.4, does not fulfill the requirement in (9.4).
The long-term modulus E, has to be separated from Eg(t). A dimensionless relax-
ation function e(t) is therefore introduced, according to

ER(t) = Ex(1+e(t)) . (9.5)

The function e(¢) has the property e(t) — 0 when ¢ — oco. The dimensionless
relaxation function now fulfills the requirement in (9.4) and the constitutive relation
(9.1) may now be written as

o(ts) = Ene /_t ;(1 + ety — t))d;—(:)dt. (9.6)

Introducing a change of variables 7 = t; — ¢ and substituting the complex strain
(9.3) into (9.6) yields

o(te) = Eo(l+iw /Oo e(T)e™ " dT)epe™™ . (9.7)
0
In (9.7) the Fourier transform of the dimensionless relaxation function can now be
identified as ©
e'(w) = Fle(r) = [ e me(r)dr
0
and (9.7) can now be expressed as
" = E*(w)e (9.8)

with the complex modulus

E*(w) = Ex(l + twe*(w)) . (9.9)
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Figure 9.5: The real or imaginary part of the complez strain and stress represents
the harmonic motion.

Hence, the hereditary integral (9.1) is converted into a relation between the complex
strain and stress given by a simple multiplication by a complex function, the complex
modulus.

The stress response o* can therefore be written as a complex number in polar

form as '
o* = opeltd) (9.10)

The response to a steady-state sinusoidal strain is thus a steady-state sinusoidal
stress with the same frequency, but out of phase. The phase relationships are con-
veniently shown in the rotating-vector representation according to Figure 9.5.

9.3.1, Interpretation of the complex modulus

In view of (9.8), the complex modulus can be expressed as
o =‘ E* ] eiarg(E*)eoeiwt :I E* | 606i(wt+arg(E*)) . (9'11)

Comparing (9.11) with (9.10) yields an interpretation of the complex modulus in
terms of measurable quantities according to

| E* |= 0 and arg(E*)=6
€0

i.e. the absolute value | E*(w) | is the amplitude ratio of stress and strain and the
phase angle arg(E*(w)) is the phase shift between stress and strain. The absolute
value | E*(w) | is here called the dynamic modulus (also called the absolute modulus).

Note that the dynamic modulus and the phase angle are functions of the angular
frequency w only. Hence, for a linear viscoelastic material, the dynamic modulus is
independent of the strain amplitude €.

The complex modulus

o* 0o ei(wt+6) oo

* __ 2 20 i
E—E*— eiwt - €
o€ €0
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Im E

Figure 9.6: Relation between polar and rectangular form of the complex modulus.

can alternatively be expressed in rectangular form

E* = Deos + i sins (9.12)
€o €0
where the real part F is termed storage modulus and the imaginary part Fj is
termed loss modulus. Hence,

o .
E, = =% cosé and E = % sinéd .
€p €g
The storage modulus is said to represent in-phase response and the loss modulus is
said to represent out-of-phase response, according to Figure 9.6.
An alternative representation of the rectangular form is

E* = E,(1+tané),

where tan § is called the loss factor.

The relation between the polar and the rectangular form of the complex modulus
can be simplified for small values of §. The approximate equalities sind ~ tand ~ §
and cos 6 =~ 1 yield

E, =| E | and E; x| E"|6.
For example, § = 0.2rad yields siné = 0.199, cos § = 0.980, and tan 6 = 0.203.

9.3.2. Hysteresis and energy dissipation

For cyclic loading, viscoelastic materials dissipate energy, which for instance results
in damping of free vibrations. The area enclosed by the loading and unloading
curves ( cf. Figure 9.7) represents the energy dissipated as heat.

Harmonic excitation yields harmonic response with the same frequency but out
of phase for a linear viscoelastic material, according to the previous discussion.
Consequently, if the strain € = ¢psin(wt) and the stress ¢ = ogsin{wt + §) are
plotted in the (o, €) plane, an elliptic path is obtained, as shown in Figure 9.7. The
hysteresis is dependent on the angular frequency w through the complex modulus.

The energy dissipated during one cycle is

T
U= fade = erow/O cos(wt)sin(wt + §)dt . (9.13)
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Figure 9.7: The stress o = gosin(wt+6) and the strain € = epsin(wt) plotted in the
(0,€) plane, giving an elliptical hysteresis loop.

Expression (9.13) is evaluated by using the trigonometric formula sin(wt + §) =
sinwt cosd + coswt sind, giving

U, = wogegsind .

We observe that dissipated heat increases with the phase difference 6 and the largest
dissipation is obtained for § = /2.

9.4. Rheological models

E n
A — 0 e o
— e = €
o=E¢ ‘ o=n¢

Figure 9.8: Basic elements in rheological models; the linear spring and the dashpot.

An illustrative way to interpret and describe the nature of viscoelastic behavior
is to use rheological models. These are mechanical analogue assemblages of linear
springs and dashpots. The elastic behavior is due to the linear springs and the
viscous behavior is due to the dashpots, according to Figure 9.8. The stress in the
linear spring is proportional to strain ¢ = Ee and the dashpot stress is proportional
to strain rate ¢ = né, where the dot denotes time derivative, and 7 is the viscosity
coefficient (Ns/m?).

Simple viscoelastic models can be obtained with linear springs and dashpots
coupled 'in series and in parallel. The spring and dashpot combination in series
yields the Maxwell model, which is a viscoelastic fluid model. The spring and
dashpot components coupled in parallel yield the Kelvin model, which is a crude
viscoelastic solid model. The Kelvin model is not particularly physical. For example,
a sudden application of strain yields a discontinuous stress response.
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The simplest viscoelastic solid model with reasonable physical behavior is ob-
tained by a spring and a Maxwell element coupled in parallel. This is the standard
linear solid model, also called the Zener model. By invoking several Maxwell ele-
ments in parallel with the spring, the generalized Maxwell model is obtained.

In the following subsections, the relaxation modulus Eg(t) and the complex
modulus E*(w) will be derived for the models mentioned.

9.4.1. The Maxwell model

Figure 9.9: The Mazwell model.

The Maxwell element is illustrated in Figure 9.9. The relaxation behavior with a to-
tally relaxed stress suggests that the element is a simple model of a linear viscoelastic
fluid. The normalized relaxation behavior given by Eg(t) is the fundamental func-
tion that defines the behavior of a linear viscoelastic material as mentioned earlier.
Hence, the stress-strain relation for the Maxwell model is found by applying a step
strain and evaluating the stress response.

The two elements in Figure 9.9 are coupled in series, and the requirement on the
strain is € = €gpring + €dashpot- Lhe time derivative is

€= éspring + édashpat . (914)

Inserting éspring = 6/ E and égasnpot = 0 /7 into (9.14) and rearranging yields
E
[T+EU=E6', (9.15)

which is the differential equation that defines the stress-strain relation for the Maxwell
model.

£(t)

Figure 9.10: Relazation behavior of the Mazwell model; stress is relazed to zero.

The normalized relaxation behavior Eg(t) can be derived by solving (9.15) for a
step strain. For ¢ > 0 we have € = 0, giving

E
G+ o=0 t>0 (9.16)
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On application of the step strain the dashpot acts as a rigid member due to the
infinitely large strain rate at ¢ = 0. Hence, the initial stress is defined entirely by the
elastic spring, and the initial condition for the differential equation is a(0) = E e,
i.e. the instantaneous elastic response. Solving (9.16) yields

o(t)=Ee¢ et

The step strain stress response is illustrated in Figure 9.10, and we conclude that
the relaxation modulus for the Maxwell model is

ER(t) =F e—t/t’

where the relaxation time is defined as ¢, = n/E.
The complex modulus E*(w) for the Maxwell model can be determined by solving
(9.15) for a steady-state sinusoidal strain history

e = €o ezwt .

Inserting a trial solution o = Ce™ into (9.15) yields the stationary solution

W iwt

C=E———e=F—"—¢.
zw-}-E/neO zwtr+1€0

Consequently we find the complex modulus

_F wt,
1+ wt,

E*(w) (9.17)
for the Maxwell model.

9.4.2, The Zener model

Figure 9.11: The Zener model. A spring coupled in parallel with a Mazwell element.

A simple rheological model that behaves like a solid can be achieved with a spring
and Maxwell element coupled in parallel. This is the so-called Zener or standard
linear solid model, according to Figure 9.11. The Zener model is the simplest vis-
coelastic model with solid properties that reflects the behavior of real solid materials
in the sense that the relaxation behavior is reasonable and the creep response is lim-
ited.
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Let us denote the stress in the spring with oo and the stress in the Maxwell
element with ops. The total stress in the standard linear solid model, c¢f. Figure
9.11, is then given by

0=0x+0u. (9.18)

£(1)

Figure 9.12: Relazation behavior of the Zener model; stress is relazed to a long-term
value.

The stress in the spring is determined according to Hooke’s law, i.e. 0, = Eye¢
and the response to a step strain history is therefore

or(t) = Eseo+ Be nleq  t>0. (9.19)

Hence, the relaxation modulus for the Zener model is

Fnt) = Boo(1 4 2% (9.20)

o0

The step strain response (9.20) is illustrated in Figure 9.12.

The complex modulus E*(w) for the Zener model can be determined by solving
for a stationary sinusoidal strain. The strain is given by

& = ge™t . (9.21)
The stress is given by inserting the Maxwell stress (9.17) into (9.18) according to

wi
*=Foe + E——¢* . 9.22
o €+ T z'wt,e (9.22)
Hence, the complex modulus for the Zener model is
E wt
E*w)=E (1+—= —). 9.23
@) =B+ T T (9.23)

Another way to determine the complex modulus (9.23) is by Fourier transforming
the dimensionless relaxation function according to (9.5), given by

E
e(t) = ——e Mt

o

?

giving

© _a b E t
* - ) = —twt = —tfte g 7 )
e*(w) = Fle(t)) /0 et =
and using (9.9) then yields the same expression as (9.23).
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9.4.3. The generalized Maxwell model

Figure 9.13: The generalized Mazwell model.

The Zener model from the previous section can be generalized by adding more
Maxwell elements in parallel with the linear spring cf. Figure 9.13. This yields a
model with properties qualitatively the same as the Zener model but with better
ability to accurately fit experimental data.

We denote the stress in the spring component with 0., and the stress in the first
Maxwell element with o, etc. The total stress in the generalized model is

O =00 +0y1+0m2+ ... Opn - (9.24)

The relaxation modulus for the generalized model is consequently established by
summing the individual Maxwell modulis giving a so called Prony series

Ep(t) = B + Y Eje /i | (9.25)

=1

The complex modulus for the generalized Maxwell model can be derived in a
similar manner, i.e. by summing the complex moduli,

=FEy
+Z Jl—Hwtm

giving the complex modulus for the generalized model.
Another way to determine the complex modulus, is as mentioned previously, by
Fourier transforming the dimensionless relaxation moduli.

9.5. Properties of linear viscoelastic solids

To understand the behavior and restrictions of the rheological models for different
strain histories, we will examine the behavior for different loading rates (frequen-
cies). The generalized Maxwell model responds approximately elastically for both
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very slow and very fast loading. This is because the dashpots behave like rigid
members for fast loading rates and because the dashpot stresses are relaxed for slow
loading rates. This behavior can also be identified from the relaxation function. The
instantaneous elastic and the long-term response is

ER(O) = Eoo + zn:E] ER(OO) = -Eoo

Jj=1

according to (9.25), and the model gives elastic behavior for both cases.

Figure 9.14: Linear viscoelastic solid response to sinusoidal excitation.

Looking at harmonic excitation, the behavior is similar. Consider three cases;
low, medium, and high frequency i.e.

1) wh <1l 2 wha~l  3) wh>1

The elliptic paths in the (o, €) plane for the three cases are illustrated in Figure 9.14.
Low and high frequencies yield approximately elastic behavior.

9.5.1. Harmonic response of the Zener model

The Zener model is a fundamental viscoelastic model. It is therefore instructive to
examine it quantitatively for harmonic excitation. First we will define an alternative
set of constants related to the relaxation behavior according to Figure 9.15.

The rheological model is defined from three parameters, namely [F, E,n]. The
alternative set of constants is defined from the instantaneous elasticity Ey = E+FE
and the relative amount of relaxation g (cf. Figure 9.15), and the relaxation time
ty.

The relation between the two sets is

Fo=Ey+E g=-§ t, = n/E (9.26)
0
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ER0/E,

Figure 9.15: The relative amount of relazation g defined in terms of the normalized
relazation modulus. Fqy 1s the instantaneous modulus.

The complex modulus for the Zener model is given in (9.23); inserting (9.26)
yields
Wi,
1+dwt,
Flastic behavior is obtained if E* is real, i.e. for wt, = 0 and wit, = oo. For
intermediate frequencies E* is complex, giving hysteresis. The absolute value and
the phase of E* are shown in Figure 9.16 as functions of normalized frequency wt,.

E*(w)/Ey=1—g+g

(9.27)

T | EY/ E, arg(E")
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Figure 9.16: The absolute value and the phase of E* as functions of normalized
frequency wt, for different values of normalized amount of relazation g.

Maximum phase angle (and hysteresis) occurs at wt, = 1 for values of say g < 0.5.
The assumption tand = § then yields an approximation of the maximum phase angle
Smas = maz{arg(E*)} from (9.27) as
g

=2—-g (for wt, 1 and g <0.5) .

6maa:

The expression is reasonably accurate for g < 0.5. Evaluating for g = 0.5 yields the
exact Smae = 0.34 and the approximate 6peq = 0.33.
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9.6. Summary of linear viscoelastic properties

We have found that linear viscoelastic behavior is defined by an integral that depends
on a single relaxation modulus for the material

o) = [  Ealt ) Sds

and that damping and hysteresis, dependent on the loading rate, can be modeled.
The response to slow and fast loading is elastic in the limit.

b argB*)

0 log(®r,. ) 0 log(wz,. )
Figure 9.17: Zener model; frequency dependence of the complex modulus for g < 0.5.

The behavior in stationary harmonic loading can be characterized by a complex
modulus that depends on frequency but is independent of the amplitude.

0" = E*(w)e"

Harmonic excitation consequently yields a phase-shifted harmonic response with the
same frequency, and the shape of the hysteresis loop is thus elliptical.

The Zener model is a simple example of a linear viscoelastic solid model with
physically reasonable properties. Figure 9.17 shows schematically the frequency
dependence. '



10. FRICTIONAL SOLID MODELS

The concern of this chapter is modeling of rate-independent damping by the model
shown in Figure 10.1, with a number of frictional elements in parallel. An important
issue is to model the amplitude dependence, i.e. the decreasing dynamic modulus
Eyy,, with increasing strain amplitude. This will be shown in detail for the simple
frictional model with one frictional element (discussed in Chapter 8). It will also be
shown that quasi-static harmonic behavior of filled rubbers can be modeled by this
rate-independent model. The simple frictional model was discussed qualitatively
by Gregory [22]. He concludes that the hysteresis loop for heavily filled rubbers
approaches a trapezoidal form in accordance with the behavior of the simple model.
Models with frictional elements coupled in series are discussed by Turner [57] and
Coveney et al. [12]. These models are shown to fit the dynamic modulus and phase
angle for experiments on highly filled rubbers in shear.

o
%__:M e =

Figure 10.1: The generalized frictional solid model.

The model used here with frictional elements in parallel (cf. Figure 10.1) is an
elasto-plastic model. The behavior has to be evaluated by an algorithm, where it
is essential to distinguish if the current stress in the element has reached the yield
limit Y; or if the stress is in the elastic region. The relation between stress and
strain rates can in principle be expressed by an effective elasto-plastic modulus E?,
though it will not be derived explicitly. Hence, stress and strain rates are related as

b = E%¢é

and we find that maximum stress and strain occurs simultaneously. This is in
contrast to viscoelastic behavior, and it implies that relaxation and creep can not

147
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be represented. Moreover, due to the stress limits Y;, the response to harmonic
strain can not be a single harmonic stress component of the same frequency as is
the case in viscoelasticity. We can conclude that the response to a sinusoidal strain
can not be sinusoidal.

10.1. A simple frictional solid model

E+Egp
o IV =] Ep
1
/ A :
YE

Figure 10.2: Frictional model including elastic and frictional properties.

The friction damped solid is represented by the model in Figure 10.2. It is similar
to the Zener model with the rate dependent dashpot changed to a rate-independent
frictional element. In terms of plasticity theory this is a one-dimensional elastic
perfectly plastic model [37].

The hysteresis loop for the total stress, also shown in Figure 10.2, is the sum of
the frictional stress shown in Figure 10.3 and the elastic stress (in the spring with
the modulus E) i.e.

0 == Og + 0.

The rectangular hysteresis according to Figure 10.3 is tilted due to the elastic stress
O = E€ giving the hysteresis shown in Figure 10.2.

The parallelogram-shaped hysteresis loop is the same for different kinds of peri-
odic strain excitation with the same amplitude. That is, a sine, sawtooth or square
shaped periodic function yields the same response, regardless of the frequency, if the
amplitude is the same. This is in accordance with the experimental results shown
previously cf. Figure 8.10.

10.1.1. Stress response for the basic element

The rate-independent damping is symbolized by two blocks with sliding friction that
is fully developed when the stress in the element reaches oy =Y. The stress-strain
relationship for the basic element, according to Figure 10.3, must be evaluated for
increments of strain and stress. Strain is a sum of elastic and (frictional) plastic
strain € = €® + €.
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Y E O; :
%—‘E VWY »"8 > / Y/E/ €,

-Y
Figure 10.3: Frictional stress in the simple model.

To obtain an algorithm an incremental relation given by
Ae = Ae® + A

is employed. The task is to find the stress increment Acy. It can be derived from the
elastic part, because the stress is the same in the elastic and the frictional element
giving oy = E ¢°. Hence, the stress increment can always be expressed as

Ao; = EA€

A trial stress is determined from the assumption that the strain increment is
purely elastic. Suppose that the current stress oy is known. The trial stress is then

gtriat — o+ Ele.

The total stress is limited to —Y < o; < Y this condition is tested for each
increment. If the trial stress o is larger than the yield stress, then at least a

part of the strain increment is plastic. Eventually we have Ae® = 0, if the strain
increment is purely plastic. We get the condition
if |0t |>Y then of ==Y . (10.1)

Hence, the stress has to be scaled back to oy = £Y if the condition (10.1) is fulfilled.
A scale factor o = Y /0" is introduced and the stress is consequently obtained as
os = ao'®. If the condition (10.1) is not fulfilled then we have a purely elastic
stress and o = o i.e. the strain increment is elastic.

The algorithm for determining the stress can now be written

1 =1,2,3...
Ae = ¢t — ¢
ottt = g% + EAe
o = Y/O.trial

if a>1 then a=1
0.;—%-1 — ao.trial
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10.1.2. Dynamic modulus and damping

Y/.E

Figure 10.4: Amplitude dependence in the simple frictional model.

The amplitude dependence of the simple frictional model is illustrated in Figure
10.4. Maximum stress and maximum strain occur simultaneously, and the dynamic
modulus is calculated at this point as Eg,, = o¢/e. If the strain amplitude is
below the yield limit ¢, = Y/E, the model is fully elastic with a constant modulus
E + E,. When strain amplitude exceeds the yield limit, we have oy = Y + E €
and the dynamic modulus decreases with the inverse of amplitude according to

Y
Byn=2c=B _+2 e>e. 10.2
Y
€p €g

In order to determine the damping, the definition (8.1) discussed in Chapter 8 will
be used. The damping can be determined from the area enclosed in one cycle. This
area is the same for the basic element and it is simpler to determine that area (cf.
Figure 10.3).

We have to look at two cases. If the strain amplitude is below the yield strain
then the area enclosed is zero and the damping d = 0. Otherwise, the area is
U, = 4Y (e — €;) and the stress amplitude is 09 = Y + Ew€. The damping given
by the normalized dissipated energy (8.1) in each cycle is thus given by

4 €y — €

d= ;(1 + EOOE()/Y)GO

€y > €5 .

Introducing the normalized strain a = /e, yields the expressions

Edyn E 1 4(0! — 1)
=14+—-—= d d=——F—
E. + Eya an 1+ Z=a)a

for ¢g > €, = Y/E. If the quotient h = E/E, is also introduced as a parameter,
the expressions can be illustrated according to Figure 10.5 for different values of h.
A value h = 1 corresponds to a 50% reduction of the modulus.
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Figure 10.5: Amplitude dependence of dynamic modulus and damping in the simple
frictional solid model.

10.2. Generalized frictional solid model

Including more frictional elements yields a model according to Figure 10.1.
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Figure 10.6: The generalized frictional solid model and corresponding initial loading
curve.

The model parameters can be obtained from the initial loading curve. It is a
piecewise linear curve according to Figure 10.6. The elements are assumed to yield in
the order 1,2, ..n i.e. from above in Figure 10.6, and a particular break point means
that limit load has been reached in one element. The parameters are determined
directly from

0i —Ti-1  Ti41 — 0;

Ei = and K = E’iei . (103)

€ = €i-1 €i+1 — €
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The inverse relation, i.e. the break points obtained from the model parameters, is
given by

Y;' i~1 n
€ = — and g; = ZEkEk + (Eoo + ZEk) €;
Ei k=1 k=i

where it is assumed that the first sum vanishes if 1 = 1.

The dynamic modulus for the generalized model is also found directly from the
loading curve. Values of the dynamic modulus for amplitudes corresponding to the
break point strains are

. O;
By = 6—: (10.4)
Damping for strain amplitudes corresponding to the break point strains can be cal-
culated by summing the enclosed areas for the frictional elements that have yielded

at the particular strain amplitude and using definition (8.1).

The generalized model has been implemented in MATLAB [36] for evaluation of
general strain histories for an arbitrary number of frictional elements. The algorithm
in subsection 10.1.1 was used for each of the frictional elements.

10.3. Fit to quasi-static experiments

The generalized model was fitted to the quasi-static experiments in simple shear
described in Chapter 8 in order to show the frictional character of damping in
filled rubbers at low frequencies. The experimental hysteresis loops were almost
independent of the frequency variation for the three frequencies f = 0.01,0.05 and
0.1 Hz. This indicates that a major part of the damping has a frictional origin at
low strain rates. The amplitudes tested were ko = 0.1, 0.3 and 0.5 for a pre-strain
of K, = 0.5.

A generalized frictional model according to Figure 10.6 with three frictional
elements was fitted to the experiment in order to show the model’s ability to capture
hysteresis and stiffness.

The model is simply fitted to the loading curve up to £ = 0.5 and the model is
obtained directly according to the previous discussion. The parameters are

G=07 G; =10.778 0.185 0.174] Y; =[0.0211 0.0124 0.0235] (10.5)

with values in M Pa. Figure 10.7 shows the model compared to experiments. It can
be seen that the shapes of the hysteresis loops with the sharp edges, the stiffnesses
and the enclosed areas is modeled with good accuracy.
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Figure 10.7: The generalized frictional model fitted to loading curve compared to
quasi-static experiments at f = 0.05 Hz. Left: Model. Right: Ezperiments.

10.4. Fit to stationary dynamic experiments
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Figure 10.8: The generalized frictional model fitted to dynamic experiments from
Harris and Stevenson.

The generalized frictional model was also fitted to the steady state dynamic data
reported by Harris and Stevenson [25] discussed in Chapter 8 cf. Figure 8.5. We
recall that the experimental data reproduced in Figure 8.5 were obtained from simple
shear tests carried out on four natural rubbers with different contents of filler.
Four models, each with six frictional elements were fitted. The behavior of the
models are shown by solid lines, and the reported measurements are indicated by
circles in Figure 10.8). The models were obtained mainly by a direct fit to the
dynamic modulus data using (10.4). Some adjustments were made to capture the
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phase angle correctly. The dynamic moduli and phase angles were derived from
harmonic functions fitted to the model responses.

It can be seen that the model captures quantitatively the amplitude dependence
of the reported rubbers, with various degree of filler. The overall behavior is in
good agreement with the experiments, although it can be seen that the phase angle
predicted by the model is in general a bit too large.

Six elements were chosen for simplicity, and no attempts were made to optimize
the number of elements. Models with fewer elements can be used (will be shown in
Chapter 11), although more work is required to fit of the models. The purpose here
was to show the general capability to capture the amplitude dependence.

10.5. Summary

Frictional (elasto-plastic) one-dimensional models were shown to give a good repre-
sentation of filled rubbers under cyclic loading. The amplitude dependence of the
dynamic modulus and the phase angle for the simple frictional model are schemat-
ically shown in Figure 10.9. The qualitative behavior is in accordance with experi-
ments on filled rubbers. However, a generalized model was needed in order to make
quantitative fits.

g g, & €.~ 38 g,
Figure 10.9: Amplitude dependence of the dynamic modulus and phase angle for the
simple frictional model.

The generalized model was fitted with good accuracy to quasi-static experiments
in simple shear described in Chapter 8. It was also shown that this model could fit
the amplitude dependence of the dynamic modulus and phase angle for steady state
dynamic data reported by Harris and Stevenson [25].



11. COMBINED VISCOUS AND FRICTIONAL
MODELS

The discussion in the previous chapters focused on two sources of damping in filled
rubbers, namely viscous damping in the rubber base and frictional damping in the
rubber-carbon and carbon-carbon interfaces. The total damping stress is here as-
sumed to be the sum of the viscous and the frictional stresses. Hence, in terms
of rheological models, the viscous and frictional elements should be connected in
parallel. The purpose here is to check this assumption for quasi-static and steady
state dynamic load cases.
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> frictional part
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Figure 11.1: One-dimensional rheologic model including elastic, viscous, and friction
properties.

The experimental observations presented in Chapter 8 indicated that the am-
plitude and frequency dependence of the dynamic shear modulus were almost inde-
pendent of each other, support the assumption. ‘

Connecting the Zener model and the simple frictional model in parallel yields a
physically reasonable representation of damping in filled rubbers, supported by micro
mechanical behavior and experimental observations. This yields a five parameter
model that will be fitted to the stationary dynamic experiments described earlier.

However, in order to obtain better fit to experiments, a generalization according
to Figure 11.1 is required. Several viscous elements make it possible to conduct a
fit of the dynamic modulus to a wider frequency range, or in the time range, fit the
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relaxation behavior over a wider time range. Likewise, several frictional elements
make it possible to closely fit the amplitude dependence for large variations in am-
plitude. Moreover, according to the previous discussion, frequency and amplitude
dependence can be fitted separately.

The generalized model has been implemented in MATLAB [36] for evaluation of
general strain histories for an arbitrary number of frictional and viscous elements.

= A

H oo ==

= VWM

Figure 11.2: Rheologic model with interrelated elastic, viscous, and frictional prop-
erties.

11.1. Previous work

One-dimensional models of the type described here have been used as discrete models
of dampers often described in terms of a force and displacement relationship, i.e.
with structural and material properties mixed. A general model according to Figure
11.2 was proposed by Kiimmlee [32]. He used it to model a cylindrical torsional
shaft coupling for wide temperature, frequency, and torsional amplitude ranges. For
these wide ranges of frequency and amplitude he found it necessary to use the general
model in Figure 11.2. Kiimmlee also mentions the model used here, shown in Figure
11.1, and attributes it to Japs [29].

Similar models have been used for example in vehicle dynamics or earthquake
protection applications. Berg [7] has proposed a five-parameter rubber spring model
with elastic, frictional and viscous forces in parallel, for dynamic analysis of rail
vehicles.

11.2. Fit of the combined model to experiments.

The model in Chapter 10, obtained from quasi-static data, will be extended to rate-
dependent effects, and it will be shown that the model in Figure 11.1 can be made
to fit both quasi-static and steady-state dynamic experimental data to a reasonable
engineering accuracy.
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The fitting procedure is performed independently for the elastic, viscous and
frictional part. The stress expression with additive stresses

O=0.+0p+ 0y

is the basis for the fitting procedure.

11.2.1. Fit to quasi-static experimental data

The quasi-static model will be fitted to the relaxation test described in Chapter 8
and compared to the other quasi-static tests described in the same chapter. The
experiments were, apart from the relaxation test for different strain steps, a test
with harmonic straining for different amplitudes at 0.05Hz, and a test with a trian-
gular shaped periodic strain that was compared with a harmonic test with the same
amplitude.
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Figure 11.3: Left: The relazed loading curve, without viscoelastic contribution.
Right: The viscoelastic relazation modulus, i.e. viscoelastic stress only.

Quasi-static parameters can be fitted according to the following procedure.

e Obtain an experimental loading curve for sufficiently low strain rate. This
eliminates the viscous stresses. The rate-independent part of the model is
then obtained by a fit to the loading curve, see Figure 11.3 (left). Model
parameters for o, + o7 are determined.

e Conduct a relaxation test and subtract the elasto-plastic model response ob-
tained by parameters determined from the loading curve. Fit the viscous part
of the model t0 gegp — (0 + 04), see Figure 11.3 (right). Model parameters for
o, are thereby determined and the complete model is thus determined.

The relaxation tests described in Chapter 8 were used to derive model parameters
for the combined viscous and frictional model. The parameters in the frictional part
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were derived from the relaxed stress values in the strain interval 0.2 to 1.0 and in the
interval 0 to 0.2 from the loading curve in slow quasi-static loading. The resulting
relaxed loading curve is shown in Figure 11.3 (left diagram). The 100s relaxed stress
values are shown with crosses.

The frictional model parameters were determined from the loading curve accord-
ing to (10.3). The points used are marked as circles on the loading curve in Figure
11.3. The viscoelastic parameters were determined from a fit to the normalized re-
laxation curve in Figure 11.3, where the elasto-plastic part is separated according
to the previously outlined procedure. The model parameters are

Goo = 0.645 MPa
Gy =[0.778 0.185 0.174] MPa  Y; =[0.0156 0.0092 0.0174 ] MPa (11.1)
G, = [0.503 0.0671 0.0839 | MPa t,;=[0.1 2 30]s

Figure 11.4 shows the model behavior compared to the relaxation test, which is
the basis for the fit of the model. The diagram to the left shows relaxation shear data
for the total time (i.e. 100s) compared to the model according to (11.1), and the
diagram to the right shows the same data for the first 10s compared to the model.
Figure 11.4 readily shows the ability to model the step size dependent relaxation
behavior of carbon-black filled rubbers.
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Figure 11.4: Comparison of model behavior and test for relazation in shear. Strain
steps: [0.2 0.4 0.6 0.8 1.0]. Left: Relazation stress, 100s. Right: A closer view of
the first 10s.

The model obtained from relaxation data, according to (11.1) was compared to
the quasi-static harmonic loading shown in Figure 11.5. Although this is a com-
pletely different loading case, the model quite accurately captures the essential fea-
tures of the material behavior.

The model (11.1) was also compared to the shape sensitivity test. Figure 11.6
shows the model behavior compared. to experiments. It can be seen that both the
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model and the experimental data are insensitive to the shape of shear strain history,
i.e. a triangular and a sinusoidal strain history yields similar hysteresis loops. This
is a feature of the rate independent models discussed in Chapter 10, which yielded
complete insensivity. The small differenses in the model behavior shown here is
attributed to the viscoelastic part.
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Figure 11.5: Comparison of model behavior and test for quasi-static harmonic shear
at 0.05 Hz. Strain amplitudes: [0.1 0.8 0.5]. Left: Model. Right: Ezperiments.
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Figure 11.6: Test of shape sensitivity. Comparison of model behavior and test for
quasi-static harmonic and triangular shear strain at 0.05 Hz. Left: Model. Right:
Ezperiments.
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11.2.2. Fit to steady-state harmonic experimental data

The contributions to the dynamic modulus in the complex plane including the fric-
tional contribution can be approximately represented by the basic Fourier compo-
nent of the response as an equivalent complex modulus. This yields an interpretation
of the total dynamic modulus illustrated in Figure 11.7.

Im

Re

Figure 11.7: The equivelent complexr modulus including elastic, viscous, and fric-
tional contributions.

The dynamic modulus Eg4y, =| E* | is the length of the vector in the complex
plane, and the normalized damping d is approximately the angle. For reasonable
values of damping corresponding to, say, § < 0.4, we can use the approximation
sind ~ tand = 6 and cos§ = 1. The dynamic modulus is approximately the sum
of the elastic, viscous and frictional modulus,

Edyn ~ Eoo + Egyn(eo) + E}llyn(w) ’

i.e. the total dynamic modulus is the sum of the constant elastic modulus, the fre-
quency dependent viscous modulus and the amplitude dependent frictional modulus.
The damping is also found approximately from Figure 11.7 as

d~ (E}ilyndv + Ejyndf)/Edyn s

i.e. the total normalized damping can be expressed as a weighted sum of the viscous
and frictional damping.
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Figure 11.8: Five-parameter model including elastic, viscous, and frictional proper-
ties.
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Fitting procedure for the five-parameter model

A fitting procedure will be outlined for the five-parameter model in Figure 11.8. For
this model we can express frictional and viscous contributions as

wt,

1/1-%—(w75,u)27

obtained from (10.2) and (9.17) respectively, with ¢, = Y/E; and ¢, = n/E,. The
parameters are obtained in the following order: the static parameter first, then the
amplitude dependence and last the frequency dependence.

€ "
E,];yn(éo) = Efg and Ej ()= E, (11.2)

1) o

£
Figure 11.9: The elastic part of the five-parameter model.

1. The first concern is to get the static level correct. This is done by determining
E, from the loading curve according to Figure 11.9.
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Figure 11.10: The frictional part of the five-parameter model.

2. The two parameters that control the amplitude dependence is the second con-
cern (cf. Figure 11.10). The yield limit ¢, is chosen so that the shape of the
normalized damping curve corresponds to the experimentally obtained curve.
The maximum damping for the five-parameter model occurs for €pq, & 3¢, ac-
cording to Figure 10.9. The change in dynamic modulus due to the amplitude
dependence, cf. (11.2), is

AEL, = Ese,(1/e; — 1/¢5)

where the strain range used in the fit is given by €} and €2, and AEZ is the
experimentally obtained change in modulus. This determines Ey.
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3)

Wr=1 log(®)

Figure 11.11: The viscous part of the five-parameter model.

3. Finally the two parameters that control the frequency dependence are deter-
mined (cf. Figure 11.11). The relaxation time ¢, is obtained from the shape of
the experimental normalized damping curve. The maximum damping for the
model occurs for wt, ~ 1. The change in dynamic modulus due to frequency,
cf. (11.2), is

Wa ]
AE® = E,( S
o \/1 + (QJgtr)z \/1 + (wltr)2

)tr

where w; and w, is the frequency range, and AEZ,, is the experimentally
obtained change in modulus. This determines E,.

The procedure was applied to the experimental data for the steady state har-
monic experiments described in Chapter 8, giving the parameters

Go =090 MPa
Gy =115 MPa Y =0.0184 MPa (11.3)
G, =052 MPa {, = 0.013s.

Figures 11.12 and 11.13 show the frequency and amplitude dependence of dy-
namic modulus and phase angle compared to experiments. The model is shown by
solid lines and the measured data are shown with circles connected by dotted lines.
The dynamic modulus and phase angle of the model and the experiments were de-
rived by fitting a harmonic function to the response. The dynamic modulus and
phase angle were then derived from the fitted harmonic function. From the figures
it can be seen that the dynamic modulus is accurately described by the model, while
the phase is less accurately captured.

The model behavior with regard to the phase angle could be improved if one more
frictional element was used. This was shown for completely rate independent models
in Chapter 10. However, the purpose here was to show that steady state dynamic
behavior can be modeled quite accurately with a limited number of constants.
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Figure 11.12: Five-parameter model: Fit of the frequency (f) and amplitude (ko)
dependence of the dynamic shear modulus. Solid lines: Model. Circles: Ezperimental

data.
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Figure 11.13: Five-parameter model: Fit of the frequency (f) and amplitude (ko)

dependence of the phase angle in shear. Solid lines: Model. Circles: Experimental
data.
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11.3. Summary

It was shown that a combination of rate-independent and rate-dependent damping
is needed to account for the inelastic effects present in carbon-black filled rubbers.
The one-dimensional model used here is a model with viscoelastic and elasto-plastic
stress contributions added. Step-size dependent relaxation modulus and amplitude
dependent dynamic modulus are properties of the model.

The model was compared to quasi-static and dynamic experiments, and fitting
procedures for quasi-static and dynamic experiments were discussed.

The quasi-static model was obtained from relaxation test data, and this model
was compared to experiments with periodic loading of different amplitudes and
shape of the strain history. The model was shown to agree well with the experiments
obtained in simple shear.

A model with only five parameters was fitted to stationary dynamic data, and
it was shown to model the frequency and amplitude dependence of the dynamic
modulus well, while the phase angle was not so well fitted although it is of the right
size.



12. MULTIAXIAL LARGE STRAIN
VISCOELASTIC MODELS

The constitutive theory for a visco-hyperelastic incompressible solid is briefly out-
lined here, and evaluated for simple shear and compression/tension. The theory is
based on linear viscoelasticity, given by the convolution integral expression (9.1), to
allow for large deformations.

The strain energy density is also essential in large strain viscoelastic analysis. In
three-dimensional constitutive models, that allow for large viscoelastic strains, the
elastic part is modeled as hyperelastic.

Two versions of these constitutive theories are implemented in finite element
codes. One is intended for large strain transient analysis and one for small vibrations
superimposed on a large hyperelastic deformation. Visco-hyper-elastic formulations
are implemented in the finite element codes ABAQUS and MARC. In ABAQUS, the
small vibration model is based on the work of Morman [40], and for the arbitrary
large strain formulation Simo [54] is referenced.

12.1. A large strain visco-hyperelastic model

The visco-hyperelastic large strain constitutive model implemented in ABAQUS [26]
will be stated and evaluated here for the incompressible case. The model is given in
terms of Kirchoff stress, which is equivalent to Cauchy stress for complete incom-
pressibility. Hence, the Cauchy stress tensor o (“true stress”) for this constitutive
model is given by

N

o=3s"—Y s¥+pl (12.1)

i=1
where s¢ is the instantaneous hyperelastic deviatoric stress tensor, s3° the i'th vis-
coelastic deviatoric stress tensor, I the unit tensor, and

p= (011 + 022+ 033)/3

is the hydrostatic pressure. (Note that p is an independent variable due to incom-
pressibility.) The instantaneous hyperelastic deviatoric stress tensor is given by

e _ (9W0 8W0 6WO 2
s* =25 +h 6]2)B—28I2 B
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where Wy is the instantaneous strain energy demsity, I; and I, are the invariants
of B = FFT, with F being the deformation gradient (cf. Appendix). The i'th
viscoelastic deviatoric stress tensor s?¢ is given by

gt
s¥ = &/ e~ trisym{ K (t — s)}ds

¢ tm' 0

where sym{-} is the symmetric part of the tensor inside the brackets and the function
K is given by
K(t—s)=Fy(t—s)"s(t — s)Fy(t — s). (12.2)

The normalized moduli g; and the relaxation times ¢,; define the viscous behavior.
Further, F;(t — s) is the relative deformation tensor defined by

Fyt—s)=F(t—s)F(t).

—00Q00 —
L0000~
HHE0 - —

L0000~

Figure 12.1: Nonlinear elastic one-dimensional rheologic analog to the large strain
viscoelastic constitutive theory. '

An intuitive understanding of this visco-hyperelastic constitutive theory can be
gained from the equivalent one-dimensional rheological model, according to Figure
12.1, composed of nonlinear elastic springs and viscous dashpots. The stresses in the
viscous elements correspond to the stress components s?® in (12.1), and the stress
in the spring not connected to a dashpot corresponds to the long-term hyperelastic
stress. The model shows an instantaneous and long-term nonlinear elastic response
similar to the standard linear solid model discussed in Chapter 9. The main differ-
ence, compared to the standard linear solid model, is that it allows for nonlinearity
of the elastic response.

The similarity to the standard linear solid model unfortunately also holds for
the drawbacks found earlier in viscoelastic modeling of the behavior of filled rub-
bers. The step size and amplitude dependence observed experimentally, according
to Chapter 8, can not be represented by this constitutive theory. Hence, the theory
is better suited to fit the behavior of unfilled elastomers.
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12.2. Principal directions

States of deformation with fixed principal directions are used in testing of elastomers.
The constitutive model will be specialized accordingly in this section.

The state of strain in principal directions is obtained from the deformation gra-
dient (derived in the Appendix) i.e.

N 00
0 0 ()

giving an expression for K in (12.2) that is diagonal, and explicitly of the form
K(t—s) = sym{Fy(t — s)'s°(t — ) Fy(t — 5)} = s°(t — 5) .

Hence, the Cauchy stress is given by
N g [t
o(t) = s(t) — > t—/o e~ /trise(t — s)ds + pI .
i=1 i

Eliminating the pressure in accordance with Rivlins relations (3.8), yields

N g gt
ai(t) — oj(t) = s£(t) — s5(8) — D tg— /é e=s/tri(s5(t — 5) — s5(t — 8))ds  (12.3)
j=1 "7t
with oW oW
s5(t) — s5(t) = 2(0—11‘) + Ai—a-jzﬂ)(xg ~)2)

The integers 1, j, k are combinations of 1,2,3. Relations for pure shear, equibiaxial
strain, etc. found in Chapter 4 can be derived from (12.3) in a similar manner for
this visco-hyperelastic theory.

12.3. Evaluation of uniaxial stress

The expression for principal directions (12.3) is specialized here to compression /tension.
The state of stress and strain is according to

g1=0=PNA, oy=03=0 and M=} Xl=>X=1/VA

where P and ) are the force and the stretch in direction one respectively, and A is
the undeformed cross section area perpendicular to direction one (cf. Chapter 4).
Using (12.3) yields

N oo gt
o(t)=oc%(t) = > g /0 e~S/trige(t — 5)ds

i=1 tri
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where the elastic stress 0(t) is the Cauchy stress derived in Chapter 4

OWo | 10Wo, .y 1

of(t) = (6—]1 + X_B_I;—)( 3 (12.4)
The nominal stress becomes
P(t)/A = [o°® —N.gi t's/tm'e _ A 9
(t)/A = [o°(2) Zt e o®(t — 8)ds]/A(t) (12.5)
i=1 bri

i.e. a convolution integral for evaluation of stress history in compression/tension.

12.3.1. Relaxation of the visco-hyperelastic model

The relaxation behavior of the visco-hyperelastic model with one viscoelastic stress
component will be derived for uniaxial stress. The model is a nonlinear elastic equiv-
alent to the standard linear solid model. The model is defined by the instantaneous
strain energy density Wy([1, Iz) and the parameters g and ¢,.

Relaxation yields A(f) = Ao = const. for ¢ > 0, and according to (12.4) the
relaxation Cauchy stress becomes

o _ e g ¢ —8/tr €
r(t) = 0o e *"afds t>0
0

o,
where oW, 1 W, 1
75 =250+ TN - )
oI, " % 0L, oy

is the constant elastic stress. This yields
or(t) =ot(1—g(1—e")  ¢t>0. (12.6)

The relaxation response according to (12.6) is shown in Figure 12.2, and we find a
single relaxation curve if the stress response is normalized with respect to the initial
elastic response.

Aft)

Figure 12.2: Relazation response for the visco-hyperelastic model in uniazial stress.
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Figure 12.3: Comparison of the linear Zener model and the visco-hyperelastic Neo-
Hooke model in uniazial stress for sinusoidal shear strain at 1Hz. Left: Small strain
amplitude (1%). Right: Large strain amplitude (30%).

12.3.2. Numeric evaluation for general strain histories

The convolution integral expression (12.5) was evaluated numerically by a convolu-
tion integral routine in MATLAB [36]. This routine enables evaluation for general
strain histories. A sinusoidal strain history is studied here.

A Neo-Hooke based visco-hyperelastic model with parameters

Cy=05MPa g=0.2 t, = 0.15s

was compared with a linear Zener model for sinusoidal strain at 1Hz, with a set of
corresponding parameters, i.e. Ey = 2.4MPq, E = 0.6M Pa, and n = 0.09M Pas.

The behavior for small strains is almost identical to the behavior of the linear
viscoelastic Zener model. For large strains the nonlinearity in the elastic behavior
of the Neo-Hooke based model is seen in Figure 12.3.

12.4. Evaluation of simple shear

In order to further evaluate the constitutive model simple shear will also be consid-
ered.

The state of strain in simple shear is obtained from the deformation gradient
(derived in the Appendix) given by

10 w(t) 1 0 —&(1)
F(t):[Ol 0 F“l(t)=[01 ol.
00 1 00 1

If the elastic response is derived from a strain energy density, dependent only on
the first invariant (e.g. as for the Yeoh model), then the elastic deviatoric response
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is given by 5

Wo

¢=2(——)B
s =251
where the left Cauchy-Green deformation tensor B now is given by
1+k% 0 &
B =FF? = 0 10 (12.7)
K 01

The shear stress sq3 is found from the deviatoric stress tensor
N g [t
s513(t) = 8§, — Z t_z/o e~ trisym{Fy(t — s) " 5%(t — 5)F4(t — ) }1sds
i1 Uri
with
sym{F(t — s) st — 8)Fy(t — s)hs =
%’[Kgl(t —8)+ Kt —s)] =

8W0
2571wt = 5) + $r(t = 5)s(t — ) = (t)) (8] =
s5alt — $)[1+ §((t = ) = 5(6))x()

Then if we write 7(¢) = s13(t) the expression for the shear stress as a function of
time becomes

(t ; gi / —s/tm,].e(t__ S+ ;( (t— s) — s(t))k(t)]ds , (12.8)

i.e. a convolution integral for evaluation of shear stress history in simple shear.

12.4.1. Relaxation of a Neo-Hooke visco-hyperelastic model

The relaxation behavior in simple shear of a Neo-Hooke based model with one vis-
coelastic stress component will be derived. The model is a nonlinear elastic equiv-
alent to the standard linear solid model and has a one-dimensional representation
according to Figure 12.4.

Hence, the model parameters are CJ, g and t, and the elastic stress is

s¢=2CB =GB

where @ is the shear modulus and B is given by (12.7).
Relaxation yields k(t) = ko = const for ¢ > 0. The stress in relaxation can,
according to (12.8), be expressed as

¢
Tr(t) = 7°(t) — tg/o e/t 1%(t — s)ds  with 7°(t — s) = Gr(t — s) = Gko



12.4. EVALUATION OF SIMPLE SHEAR 171

— 0000 — .
P@QQO/-_:f

Figure 12.4: Nonlinear elastic one-dimensional rheologic analog to the Neo-Hooke
based viscoelastic model.

being the constant elastic shear stress at time ¢ — 5. This yields
Tr(t) = Gro — ;fg:/ot e~ Qrods = Gro(1 —g(1 — ™)) t>0.
Hence we can conclude that it is possible to obtain a relaxation modulus
Gr(t) = G(1 — g(1 — e7t)) (12.9)

similar to linear viscoelasticity, for a Neo-Hooke based model in simple shear. The
relaxation response according to (12.9) is shown in Figure 12.5.

Gr()=TR(1)/ ¥,

x(t)

Figure 12.5: Relazation response for the Neo-Hooke based viscoelastic model in sim-
ple shear.

12.4.2. Numeric evaluation of a Yeoh visco-hyperelastic model

The convolution integral expression (12.8) has also been implemented in a MATLAB
routine for gemeral strain histories, and is here evaluated for a sinusoidal strain
history.

A Yeoh based (cf. (3.17)) visco-hyperelastic model is here compared with the
linear Zener model for sinusoidal shear strain at 1Hz. This model contains three
hyperelastic parameters, and they were chosen according to

0% =05 C%=-005 C%=0005 (MPa).

The initial shear modulus (G = 2CY, = 1MPa) is the same as for the model
illustrated in the uniaxial stress case (cf. Figure 12.3). The viscous parameters are
the same as for the Neo-Hooke based model, i.e. g = 0.2 and ¢, = 0.15s.
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Figure 12.6: Comparison of (the linear) Zener model and visco-hyperelastic Yeoh
model in simple shear for sinusoidal shear strain. Left: Small strain emplitude
(10%). Right: Large strain amplitude (150%).

The model is compared with the linear Zener model with corresponding param-
eters, i.e. Go = 0.8M Pa, G = 0.2M Pa, and n = 0.03M Pas, in Figure 12.6. The
figure shows shear stress T versus shear strain s according to (12.8).

The behavior for small strains is almost identical to the behavior of the linear
viscoelastic Zener model. For large strains the nonlinearity in the elastic behavior
of the Yeoh based model is seen in Figure 12.6 (to the right).

12.5. Summary

The nonlinear elastic property of rubber can be incorporated into the concept of
viscoelasticity. A visco-hyperelastic large strain constitutive model was examined
for uniaxial stress and simple shear. The model was evaluated for step strain and
sinusoidal loading.

Similarities and differences compared to linear viscoelasticity were investigated.
The behavior of the model is similar to the linear viscoelastic models described in
Chapter 9 for small strains, whereas the behavior for large strains is influenced by
the nonlinear elasticity included in the model.
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Rate-independent damping has been shown to be essential to capture the dynamic
behavior of filled rubbers. Viscoelasticity with purely rate-dependent dissipation has
been shown to be insufficient. The investigation in the previous chapters concerning
the rheological models indicates that a viscoplastic model is more suitable. Such a
model will be outlined here and evaluated for complete incompressibility in uniaxial
stress and simple shear. The proposed model is a first attempt to model the dynamic
behavior of filled rubbers by a multiaxial viscoplastic model, and it is merely a sketch
of a possible model that has to be evaluated further. To make a thorough evaluation
a finite element implementation is necessary. This is, however, outside the scope of
the thesis and intended as future work.

The proposed model is a straightforward generalization of the one-dimensional
models discussed previously. The frictional part is modeled for simplicity by Von
Mises’ ideal elasto-plasticity, although other more sophisticated models could be
used.

Elasto-plasticity for large strains is a very involved subject and a lot of theories,
using different stress and strain measures, have been proposed. However, there is
yet no unified theory that everybody agrees upon when it comes to large strain
plasticity. An overview and comparison of some existing theories can be found in

[50].

13.1. The fraction model of Besseling

The multiaxial model relies on summing stress contributions obtained from sim-
ple constitutive models. This so-called fraction model was originally proposed by
Besseling [8]. The basic concept of this model is that the material is thought to
be subdivided into a number of parallel fractions, each with simple conventional
properties. The more complicated behavior of real materials is approximated by
choosing a number of parallel fractions with suitable models and model parame-
ters. The original fraction model described in this section was formulated for small
strains, and has been applied to metal plasticity and creep phenomena in metals.
The most general form of the model is a multiaxial version of the one-dimensional
model of Kiimmlee according to Figure 11.2, and it is a straightforward generaliza-
tion of this one-dimensional model. In this form each fraction contains elastic,
viscous, and plastic small strain components, which are added. However, purely
elastic, viscoelastic or elasto-plastic fractions can be used to build specific models.

173
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The one-dimensional models discussed so far are all special versions of the most
general fractional model.

In the mathematical description, the total strain in a fraction % is denoted by €
which is the same for all fractions. The elastic part of this strain results in stresses
o, in the fraction % according to Hooke’s law, i.e.

O, = C’eei,,

where o, is the stress in fraction k, C° is the elastic moduli tensor, and €f, is the
elastic strain in fraction k. The total stress is the weighted sum of the stresses in
the fractions, i.e.

N
o= Z YO, (13.1)

k=1
where o is the total stress, 1y, is the relative volume size of fraction &, and N is the
number of fractions.
The total strain rate is divided into elastic, plastic, and viscous parts and the
strain rates can therefore be divided according to

. .e P sw
€=¢€,+ €, + €,

where € is the total strain, €}, is the plastic strain in fraction k, and €}, is the viscous
strain in fraction k.

Several different constitutive models can be obtained by chosing different stress
fractions. For example a model with constant kinematic hardening can be obtained
by one ideal elasto-plastic fraction in parallel with a purely elastic fraction.

13.2. A fraction model for filled elastomers

Well-established models can be used for the fractions and the same strain is valid
for each fraction. Realistic loading and unloading behavior can be obtained from
fractions contributing to the total stress by using simple constitutive models for the
stress fractions. This approach is consistent with the Prony series representation
for the viscoelastic models described in Chapter 12, which can also be regarded as
a fraction model.

In the proposed model the stress fractions are divided into viscoelastic and elasto-
plastic fractions in analogy with the one-dimensional model according to Figure 11.1.
The elasto-plastic stress fractions are here modeled by Von Mises’ ideal plasticity
analogous to the one-dimensional case. Things are simplified by choosing Von Mises’
plasticity for the elasto-plastic fractions. Evaluation of the model and fulfillment of
the consistency condition of plasticity are particularly simple in this model. The
weights according to (13.1) are here put equal.

Hence, the total Cauchy stress tensor o is the sum of visco-hyperelastic and
elasto-plastic stress contributions

oc=0c"+o%. (13.2)
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The viscous contribution has been discussed in Chapter 12. The viscoelastic part of
the stress is given by a sum of fractions

The elasto-plastic contributions to the total stress are, as mentioned, expressed in
terms of ideal Von Mises’ plasticity, and the elasto-plastic part of the stress is given
by a sum of elasto-plastic contributions

N
o?=>Y of.
k=1

The elasto-plastic contributions to the total stress will be discussed next.

13.2.1. The elasto-plastic part

An elasto-plastic Von Mises’ model in terms of Jaumann stress rate and the rate
of deformation tensor will be used. A discussion of large strain plasticity and this
model in particular can be found in [9]. The elasto-plastic stress fractions o are
determined from the expression (with index k omitted)

o= (C®— C?)D — otr(D) (13.3)

where & is the Jaumann rate of the Cauchy stress, C° the elastic modulus tensor,
CP the plastic modulus tensor, and D is the rate of deformation tensor. If the stress
is in the elastic range the plastic part of C*? vanishes, i.e. C* = 0.

The Jaumann rate is defined as

o=6—-Wo+oW

where W is the spin tensor defined from the decomposition of the velocity gradient
L = FF! according to

L=D+W with D=sym(L) and W =asym(L).
The elastic part of (13.4) for isotropic elasticity is expressed as
C*D = 2GD + Ktr(D)I

where G is the shear modulus and K is the bulk modulus. The plastic modulus
tensor can be expressed in terms of deviatoric Cauchy stress s. The plastic part of
(13.4) ( active in plastic loading) is

3G 3G
C%lekl = Wsijslekz or C?°D = —2(5 . D)S
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where Y is the uniaxial Cauchy yield stress, and s : D = s3;Dy;. The conditions for
plastic loading can be expressed by the effective stress o, as

(&)

3
=§s:s=Y2 and s:D>0
where the first is the yield condition and the second is the loading condition.
The complete expression for isotropic Von Mises’ plasticity in plastic loading is

¢ —Wo + oW = 26D + Kir(D)I — ;_Cj(s . D)s — otr(D) (13.4)

a

43

It is required that the yield condition o2 = Y2 is fulfilled during plastic loading.

Experimental curves for filled rubbers showing the amplitude dependence of the
dynamic modulus indicate an onset of amplitude dependence at very small strains.
In the proposed model this corresponds to small yield strains.
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13.3. Evaluation of the model

The model will be evaluated for the complete incompressible case in simple shear
and uniaxial stress. The total Cauchy stress tensor o is the sum of visco-hyperelastic
and elasto-plastic stress contributions

o= 5"+ s +pl (13.5)

where s%¢ and s% are the deviatoric viscoelastic and elasto-plastic stress components
respectively and p is the hydrostatic stress given by

p= (o1 + 092 +033)/3

with p an independent variable due to incompressibility.
The visco-hyperelastic part of the deviatoric stress is

N
s =s°— ) s}° (13.6)
=1

where s¢ is the instantaneous hyperelastic deviatoric stress tensor described in Chap-
ter 12.
The deviatoric elasto-plastic stress is given by

M
s =3 5% (13.7)
Ci=1

In the next section an elasto-plastic fraction will be evaluated for the incom-
pressible case in cyclic compression/tension and simple shear.

13.4. Incompressible elasto-plastic fraction

The constitutive equation (13.4) can be simplified by taking incompressibility into
account. The volumetric strain vanishes, i.e. €, = tr(D) — 0 and the term Ktr(D)
is replaced by the time derivative of the pressure, i.e. p.
The Jaumann rate expressed in terms of the stress deviator is given by
o=5 +pI .

The volumetric strain vanishes giving an expression in terms of the stress deviator

s=(C*—CP"\D
which can also be written -
. 3G
5—Ws+sW =2GD — ?—2—(3 : D)s . - (13.8)

Expression (13.8) giving the deviatoric Cauchy stress will be evaluated for uniaxial
stress and simple shear.
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13.4.1. Uniaxial stress

The expression (13.8) is specialized here to compression/tension. The state of stress
and strain is according to

or=01, oa=03=0 and M =X A=A=1/VX.

The deformation gradient and its time derivative for the equi-biaxial deformation
are given by

A0 0 R 0
F=10 A2 0 and F=|0 —Irx%2) 0 .
0 0 A2 0 0 —1A3/2)

The velocity gradient L = FF'is

A
L=2%
)

The rate of deformation tensor D = L because L = LT and consequently W = 0.
The elasto-plastic equation in terms of the stress deviator is thus

$§=2GD - %g(s :D)s with s:D= —;(511 — S92) (13.9)

By looking at the Cauchy stress

11 =811+ P
Oap = 033 = S99 +p=10

it follows that o1 = 811 — 892.
From (13.9) the components can be written

. A 3G A

811 = 2GX - Wx(su — 82)811

, A 3G

S22 = “G;\“ - Wx(5n - 822)522
Subtracting the equations yields the Cauchy stress for the uniaxial case according
to .
G,
}73")\“7 11 -
It should be observed that the second term in (13.10) is zero in the elastic range.
The condition for plastic loading is

A

011 = Y and O']_lA > 0.
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Figure 13.1: Elasto-plastic stress strain loops, with elastic shear modulus G = 1.
Left: Small strain amplitude (1%) and small yield stress (Y = 0.01). Right: Large
strain amplitude (50%) and large yield stress (Y = 0.5).

Equation (13.10) has been solved for cyclic loading giving hysteresis loops ac-
cording to Figure 13.1, showing the elasto-plastic Cauchy stress o1y versus stretch
A for two cases.

The first is for small stretch amplitudes A)g = 0.01 and the second is for large
stretch amplitudes AXg = 0.5. The yield stress Y = 0.01 for the small amplitude
case (left figure), and ¥ = 0.5 for the large amplitude case (right figure). The
elastic shear modulus G = 1 for both cases. The elastic behavior for large strain
case deviates from the small strain case by different stiffness in compression and
tension.

13.4.2. Simple shear

The behavior of the Von Mises’ model (13.8) is here evaluated for simple shear, with
the velocity gradient

‘ 0 0 & 10 —x 00 &
L=FF'=]|000 01 0l=]0001].
000 00 1 000

From D = sym(L) and W = asym(L) it is found that

0 0 Lk 0 0 ik
D=]0 0 0 W=| 0 0 .
0 0 ~1k 0
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Using (13.8) with s : D = 5134 yields

. 3G , ..

813 = (2G — 8511 + 833 — 2@5%3)1{,/2

. 3G .
811 = 813(1 - '—};5511)['\7 . (1311)

) 3 .
533 = —s13(1+ ?;933)*S

We find that s = 0. The last term in the equations vanishes in the elastic range.
Conditions for plastic loading are

3
ol = —2—(533 +83, +83) =YY% and s135 > 0,
where o, is the equivalent stress.
Solving (13.11) for cyclic loading yields an hysteresis loop according to Figure
13.2, with shear strain amplitude ¢ = 0.5. The elastic shear modulus G = 1 and
the uniaxial yield stress Y = 0.11/3 corresponding to a yield stress in shear ¥, = 0.1.
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Figure 13.2: Elasto-plastic stress strain loops in simple shear, with elastic shear
modulus G = 1, yield strain Y = 0.173 and strain amplitude ko = 0.5 (50%). Left:
Shear stress s13. Right: Deviatoric normal stress components s;;.

The left figure shows shear stress si3 versus shear strain x and the right figure
shows the deviatoric normal stresses versus shear strain . (Note that the sum of
these stresses is zero.) The shear stress versus shear strain behavior is here identical
to the one-dimensional case.
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13.5. Nonlinear elastic plastic models

The behavior for quasi-static conditions of the fraction model with the viscoelastic
contribution reduced to a hyperelastic fraction, is studied here. The Neo-Hooke
and Yeoh models in combination with elasto-plastic stress fractions are considered.
These models are examples of multiaxial nonlinear versions of the frictional models
in Chapter 10. The elasto-plastic fraction parameters are adopted directly from the
one-dimensional model according to (10.5). The parameters were G = 0.7 and

Gk:[o."778 0.185 0.174] Yskz[o.ozu 0.0124 0.0235] (13.12)

with values in M Pa. The values Y's; should be interpreted as the yield stresses in
shear.

13.5.1. A Neo-Hooke based elastic plastic model

The hyperelastic part is here given by the Neo-Hooke model. The shear modulus
G = 0.7 MPa yields Cyp = G/2 = 0.35 M Pa. Model response to sinusoidal cyclic
straining in simple shear and uniaxial stress is shown in Figure 13.3.

The left figure shows shear stress si3 versus shear strain x. The simple shear
strain history is the same as in Chapter 10. Due to the linearity of the Neo-Hooke
model in simple shear, and the behavior of the elasto-plastic fractions in shear
the hysteresis curves (left figure) are identical to the ones for the one-dimensional
frictional model.
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Figure 13.3: Neo-Hooke based model in simple shear and uniazial stress, with pa-
rameters according to the one-dimensional frictional model.

The behavior of this Neo-Hooke based model in uniaxial stress is also shown
in Figure 13.3 (right figure). The figure shows nominal stress o11/A versus stretch
) for cyclic sinusoidal loading around a static strain of 20% (A = 1.2) with strain
amplitudes Al = 0.1,0.3,0.5.
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The overall nonlinear behavior (static and dynamic) is reasonably captured.
However, the shape of the hysteresis loop in uniaxial stress is not quite what could be
expected from real material behavior, because the hysteresis is larger in compression
than in tension.

13.5.2. A Yeoh based elastic plastic model

By invoking a Yeoh hyperelastic model the nonlinear upturn, shown in the laboratory
testing in simple shear, can be captured. The hyperelastic parameters are changed
to "

Cio=G[2 Cy=-01G/2 C3 =0.06G/2,

and the other parameters remain unchanged. This model has the same initial shear
modulus as the Neo-Hooke model (and the one-dimensional model). Figure 13.4
shows the model hysteresis loops compared to experiments for the same sinusoidal
shear strain history as in the previous subsection. Shear stress s;3 versus shear strain
& is shown.
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Figure 13.4: Yeoh based elasto-plastic model (left) compared to quasi-static experi-
ments in harmonic simple shear ot f = 0.05 Hz (right).

13.6. Discussion

Steady state dynamic behavior of filled rubbers is significantly influenced by strain
amplitude. The main purpose was to show that some form of rate-independent
damping mechanism is needed to capture the amplitude dependence in cyclic load-
ing (and step size dependence in relaxation). The proposed model is a combination
of the visco-hyperelastic model described in Chapter 12 and an elasto-plastic model
built up from simple elasto-plastic fractions. The model is a straightforward gener-
alization of the one-dimensional model in Chapter 11.



13.6. DISCUSSION 183

A first attempt used here for the elasto-plastic fraction was isotropic Von Mises’
plasticity without hardening, and it was shown that this model in combination with
Neo-Hooke hyperelasticity in simple shear is equivalent to the one-dimensional model
in Chapter 10.

The behavior in uniaxial stress is however not quite satisfactory with an hys-
teresis smaller in tension than in compression. A possibility to model increasing
hysteresis with increasing stretch would improve the model. This requires use of
some other elasto-plastic fraction model or alternatively a completely different de-
scription of the elasto-plastic (rate-independent) fraction.

An inconsistency with the present formulation is that the elastic behavior in the
elasto-plastic fraction is hypoelastic while the elastic behavior in the viscoelastic
part is hyperelastic. This is due to the stress measure used in the elasto-plastic
fractions i.e. Jaumann rate of Cauchy stress [50] (p. 95).

The proposed model should be relatively easy to implement in finite element
code since it relies on existing constitutive models. This is also necessary in order to
evaluate it more thoroughly. It should also be mentioned that the main drawback
with the fraction model in connection to finite element analysis is the large number
of state variables that must be stored.

Another possibility worth investigating is small viscoplastic vibrations imposed
on a large elastic deformation in analogy with steady state viscoelastic analysis.
Although complex analysis is not possible in this case, an analysis with a per-
turbation/linearization around a hyperelastically deformed state could be a useful
development.
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14. CONCLUDING REMARKS

14.1. Summary

Mechanical behavior of elastomeric materials was discussed in terms of constitutive
models and calibration of these models to experiments. The main concern was to
model static elastic and dynamic properties of elastomers containing fillers.

The first part of the thesis mainly concerns static elastic properties in terms
of hyperelastic models and calibration of the models to test data. These models,
defined from a strain energy density function, are used in finite element codes to
define nonlinear elastic behavior. The choice of hyperelastic models was discussed
and the fit of the models to experimental data was illustrated. Special interest was
focused on the “cubic I1 model”, with three parameters, well suited for modeling
the elastic properties of carbon-black-filled rubbers.

A strain energy plot to check the behavior of the fitted model for a general state
of strain was presented. The strain energy plot reveals whether the fitted model is
physically reasonable and useful in finite element analysis.

Different test specimens and corresponding stress-strain relations were discussed,
and analyses of the specimens to show deviations from the ideal homogeneous states
of strain were presented.

Carbon-black-filled natural rubber vulcanizates are common in technical appli-
cations involving elastomeric units. These vulcanizates are highly elastic but not
perfectly elastic; dissipation and damage (Mullins effect) are examples of inelas-
tic effects. In order to use the well-established hyperelastic constitutive models in
analysis of quasi-static mechanical behavior of carbon-black-filled rubber vulcan-
izates, the usual choice is to fit the elastic model to the loading curve for suitably
pre-strained test specimens. The influences of the pre-straining or mechanical con-
ditioning procedure were investigated and three different procedures for mechanical
conditioning were compared.

The hyperelastic three-parameter model was fitted to test data for a number of
carbon-black-filled natural rubber vulcanizates of different hardness.

Alternative test specimens and methods were also discussed. A new test speci-
men was proposed that can replace the standard dumbbell specimen, which is a very
weak specimen that is difficult to use because of the small load-cell required and the
risk for slippage in the connections to the loading heads. The “solid dumbbell” test
specimen can also be used in compression. A method that uses a modified form of
the hardness test to extract hyperelastic constants was presented. This method can

185
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rationalize the process of obtaining the hyperelastic constants, because the hardness
test is an often-used standard test and it would be a benefit if more information could
be derived from this test. Moreover, a method for contact-free strain measurement
was presented that can be used for rubber membranes, for example in biaxial testing.
Nonhomogeneous states of strain can be determined and experimental deformation
gradients in different points in the membrane can be obtained.

The second part of the thesis concerns dynamic material properties. A de-
scription of damping mechanisms in filled elastomers and the ability to model the
dependence of the dynamic modulus on frequency and amplitude were discussed.
Rate-dependent and rate-independent damping were discussed in terms of one-
dimensional and multiaxial models.

Linear viscoelasticity was discussed and basic concepts such as relaxation modu-
lus, the hereditary integral and complex modulus were defined. Rheological models
are used to illustrate the possibilities and limitations of constitutive models avail-
able in existing finite element codes in modeling of filled rubbers. Rate-independent
damping was discussed in terms of one-dimensional elasto-plastic models. It was
shown that the amplitude dependence of filled rubbers can be modeled by these
rate-independent models. The models were fitted to quasi-static experiments and
to experiments taken from literature.

The microstructure and the experimental results support a proposed rheologic
model with elastic, viscous and frictional elements connected in parallel, i.e. the
viscoelastic and elasto-plastic stress contributions are added. This model accurately
captures elasticity and damping in filled elastomers. Moreover, it was shown that
these models can be fitted to quasi-static and dynamic tests. A simple fitting proce-
dure was outlined for both cases. The models were fitted to transient and periodic
quasi-static loading, and they were shown to capture the amplitude and frequency
dependence of the dynamic modulus with a reasonable engineering accuracy.

Finally a possible generalization of the one-dimensional viscoplastic model to
the multiaxial case was discussed. The model combines large-strain viscoelastic-
ity and elasto-plasticity by summing stress fractions. It was evaluated for simple
shear and uniaxial stress, and shown to fit experiments in simple shear accurately,
while the hysteresis in uniaxial stress was less accurate for the present elasto-plastic
formulation.

14.2. Future work

It is important to emphasize the value of a close connection between experimental
investigations and theoretical development in constitutive modeling. Both areas
contribute to the development; experimental procedures can be developed through
theoretical insights and theory benefits from experimental progress.

The experimental and modeling work presented in this study can be further
developed in many ways.
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One issue mentioned is to manufacture the short solid dumbbell with different
filler content and check the accuracy and stability of the specimen. The results from
the finite element analysis indicated that the relation between loading head and
gauge length displacement was almost independent of rubber hardness. This should
be verified experimentally, preferably also for other rubbers.

Another interesting subject would be to compare the accuracy of Yeoh’s model
with two and four parameter Ogden models for the tested filled rubbers according
to Chapter 5.

An experimental verification of the modified hardness test is another subject
of interest. This can be done by manufacturing specimens for hardness test, com-
pression and shear tests from the same material batch and compare the hyperelastic
constants obtained from the compression and shear tests with the constants obtained
from the modified hardness test.

Future developments were also indicated in connection with the contact free
strain measurement. The method can be simplified by using correlation techniques,
in which a general texture applied to the specimens could be used instead of the
distinct dots. From this texture it would be possible to estimate local deformations
using linear mappings of subareas and correlate these maps and the actual deformed
texture.

More research is also needed in order to obtain a better understanding of the dy-
namic behavior of filled rubbers. A systematic experimental investigation of carbon-
black-filled rubbers with regard to amplitude and frequency in a wider frequency
and amplitude range, can provide important information. Moreover, available exper-
imental data are usually obtained in simple shear for steady-state sinusoidal loading
or for relaxation. Tests with other load histories and in other modes of deformation
can reveal additional information about the material behavior. The solid dumbbell
can be used for this purpose to study compression and tension in the same test. The
application of combined load cases, for example compression in combination with
shear for different levels of static compression, is also of interest.

Experiments of the kind discussed above would also be helpful in the development
of the proposed viscoplastic model. However, development and evaluation of the
model require a finite element implementation, especially if combined load cases are
taken into account.

It would also be of great interest to investigate small viscoplastic vibrations
superposed on a large elastic deformation.

Many complicated issues in constitutive modeling of filled rubbers, such as dam-
age and dissipative mechanisms in connection to large strains remains to be resolved.
Tt is a field with many theoretical and experimental challenges and possibilities.
Clearly, further research is needed to obtain a more complete understanding of the
various phenomena encountered in engineering with rubber.
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A. BASIC MECHANICS

This appendix concerns measures of strain and stress used in constitutive relations
for rubber elasticity and viscoelasticity. A more comprehensive treatment of these
subjects can be found in Malvern [37].

Consider a deformable body occupying a region in space loaded by forces acting
on its surface. The loading changes the shape of the body, and strain and stress
develop in the deformed body. We are not assigning any particular material to the
body, i.e. the connection between stress and strain is not discussed here.

The kinematics of large deformations, including a derivation of a proper measure
of strain and the important concept of strain invariants and fundamentals about
traction and the stress tensor, are subjects discussed in this chapter.

A.1. Kinematics
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Figure A.1: Deformable body in reference and current configuration.

This section contains a brief description of the kinematics of finite deformations,
including a derivation of a proper measure of strain and the strain invariants. The
kinematic description concerns only deformation and strain, with no regard to what
is causing the deformation of the body. The body is defined by a collection of
material particles. The locations of the particles are determined by position vectors
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in a fixed Cartesian coordinate system. A configuration in which the positions of
the particles are known is chosen to be the reference configuration of the body. This
configuration is often taken to be the undeformed configuration. The deformation
takes the particles to new positions, and the new configuration is called the current
or deformed configuration, cf. Figure A.1.

A.1.1. Deformation

The deformation of the body is expressed by a mapping, from the reference to
the current configuration, defined for every particle in the body. The location of a
material particle in the reference configuration is uniquely determined by coordinates
Xy and by z; for the same material particle in the current configuration. The indices
¢ and k can have the values 1,2 and 3. The mapping

2 = 2:(Xz) (A

determines the location of a material point as a function of the position in the
reference configuration (cf. Figure A.1). The components of (A.1) can be collected
in a column matrix and expressed in matrix notation as

21 z1 (X1, X5, X3)
o | = | z2(X1, Xa, X3) L= x = x(X). (A.2)
T3 $3(X17X2,X3)

The convention of using capital letters for quantities referring to the reference
configuration and lower case letters for the current configuration is used.

3 3

L/ . I3
/ .

v 1

1

Figure A.2: Deformation without shear of a prismatic block.

Two important examples of the mapping (A.2) will be considered. The first is
deformation without shear, illustrated in Figure A.2. This state of deformation is
used in Chapter 4 to determine the kinematics of rubber test specimens.



A.1. KINEMATICS 197

A prismatic block is deformed by extension or compression to a new prismatic
block. The undeformed side lengths of the block are L; and the side lengths in the
deformed configuration are I; (cf. Figure A.2). The relation between the coordinates
in the reference and the current configuration is

Ty = Ale
Iy = )\2X2 where }\z = lz/Lz . (A?))
I3y = >\3X3

X; and z; are the coordinates in the original and deformed configuration respectively.

X3
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Figure A.3: Simple shear.

The other example of deformation is called simple shear. The deformation in
this case is determined by

zy =X+ kX3
:Bzin with fs=tan€=ﬁ,
z3 = X3

and 6 is the shear angle according to Figure A.3. We observe that there is no
displacement in the second and third direction. The only displacement of particles
occurs in the first direction, and the displacement is proportional to Xs.

The two examples considered here are basic states of deformation used in the
tests described in Chapter 4.

A.1.2. Deformation gradient

In order to determine the straining of the body we need to know how the distance
between two neighboring particles in the reference configuration is affected by the
deformation. This can be achieved by considering the length changes of an infinites-
imal material line element. The line element is obtained by differentiation of (A.1)
yielding

_ 8.’131'

de; =
"1 9X;

dx; . (A.4)
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The explicit matrix expression of (A.4) is

dz, g;?l %;”;2 52 e
do | = | 52 o2 2| x| (A.5)
dry | | g g || axy
which can be expressed in compact matrix notation as
dx =FdX. (A.6)
The matrix F, with the components

is called the deformation gradient. The relation (A.6) describes how a material line
element changes its length and direction by the deformation. The line element in
the reference and current configuration is illustrated in Figure A.4.

X x
Figure A.4: A material line element in original and deformed configuration.

The deformation gradients of the two examples in the previous section are easily
computed from (A.5). Deformation without shear yields the deformation gradient

A 00
F={0 X 0 (A7)
0 0 XA

where, as mentioned above, A; is the ratio between the deformed and the unde-
formed side lengths. The matrix is constant with respect to the coordinates, i.e. the
deformation gradient is the same for all points in the prismatic block considered.
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For the simple shear deformation we also obtain a constant deformation gradient

1 0 &
F=,010
001

The deformation without shear and the simple shear deformation are homogeneous
deformations. A body is subjected to a homogeneous deformation if the deformation
gradient is constant for all material particles, i.e. there is no spatial variation of the
deformation gradient.

Rubber test specimens are designed to give as homogeneous states of deformation
as possible, in at least a clearly defined part of the specimen. This is discussed in
Chapter 4 and Chapter 6.

A.1.3. Measures of strain

The question of a suitable measure of strain is the concern of this section. We
know everything about the deformation of the material line element from relation
(A.6) and should be able to determine the straining of the body. The deformation
gradient, however, determines both rotation and length changes of the material line
element.

To show that the deformation gradient is dependent on the rotation consider the
deformation expressed by

z1 = cosp Xy — sing X
s = sing X1 + cosd X»
z3 = X3

This deformation is a pure rotation an angle ¢ around the X3 axis and it is therefore
not causing any straining of the body. The deformation gradient for this deformation
is

cosp —sing 0
F=R=|sing cos¢p 0],
0 0 1

ie. a nonzero constant matrix. So a pure rigid rotation of the body considered
yields a deformation gradient different from zero.

A suitable measure of strain should be independent of rigid body rotations. So
the deformation gradient F is in itself not good as a measure of strain. But as will
be shown later it can be combined into an expression that is independent of rigid
body rotation.

Now let us focus on the subject of finding a suitable measure of strain. The
mapping of the line element is therefore described in terms of pure rotation and
pure stretch. This can be done in two ways, either by a rotation followed by stretch
or, in the reversed order, stretch followed by rotation.
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Suppose that the line element is first subjected to a rotation. The rotation of
the line element can be expressed as

dx' = RdX (A.8)

where R is an orthogonal rotation matrix of the same type as in the example above
and dx’ is the intermediate rotated line element. Then the rotated line element is
subjected to a pure stretch, expressed by

dx = Vdx' . (A.9)
Inserting (A.8) into (A.9) yields
dx = VRdX , (A.10)
and by comparing with (A.6) the decomposition
F=VR (A.11)

of the deformation gradient is obtained.
Alternatively we can start with the stretch and then rotate the line element.
This yields in a similar manner the decomposition

F=RU, (A12)

where U is the deformation gradient of the pure stretch and R is an orthogonal
rotation matrix (i.e. RT = R™1). The relations (A.11) and (A.12) are shown in
a more general way in the polar decomposition theorem [37]. This theorem states
that the matrices V and U are positive definite and symmetric matrices and R is
an orthogonal matrix.

The matrices V and U are suitable measures of strain because they do not
involve any rigid body rotation. But it is difficult in practice to determine V and
U.

A more convenient way to determine the straining of the line element is by
direct calculation of the element length in the original and deformed configuration
and using the ratio of these two lengths as a measure of strain. This strain measure
is called stretch and it is consequently defined as

ds
A= — Al
= (A.13)
where the lengths are computed as
ds? = dxTdx and ds? = dXTax. (A.14)

From (A.13) we conclude that A = 1 if there is no straining of the line element.
Inserting the vector notations (A.14) into expression (A.13) yields

, dxTdx

- == A.15
dxtdx (A-15)
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Use of (A.6) in (A.15) then gives an expression that only involves the line element
in the reference configuration

dXTFTFdX

A=
axtax

The product
C=FTF (A.16)

forms a symmetric tensor called the right Cauchy-Green deformation tensor.
It is possible to use the polar decomposition theorem to show that C is indepen-
dent of rigid body motion

C=UTRTRU=UTU =12, (A.17)

where the orthogonality of R and the symmetry of U are used. Expression (A.17)
shows that C is independent of R. We conclude that C can be used as a measure
of strain, because rigid body motion do not affect expression (A.16).

The polar decomposition theorem can also be used to show similar properties
for the deformation tensor called the left Cauchy-Green deformation tensor. It is
defined as

B =FF” (A.18)

which is also a symmetric tensor. The polar decomposition theorem yields
B = VRR'VI = vVT =V? (A.19)

and we conclude that B is also a suitable measure of strain.
B is used as strain measure in the constitutive relation for the nonlinear elastic,
so called, hyperelastic material discussed in Chapter 3.

A.1.4. Principal axis of deformation

This section concerns the principal azis of deformation and the principal stretches
in order to prepare for the discussion of strain invariants in the next section.

It is always possible to determine an orientation, in any point in a deformed body,
in which a small cube in the original configuration is deformed without shearing.
The three perpendicular directions, parallel to the sides of the cube, where there is
no shear, are called the principal axis of deformation. The corresponding principal
stretches can be shown to include the maximum and minimum stretch in the small
region considered surrounding the point of interest.

For a general nonhomogeneous deformation, the principal directions will obvi-
ously be different from point to point in the deformed body. But the principal
directions are also dependent on the size of the deformation. Consider the example
of simple shear illustrated in Figure A.6. The example shows that the size of the
deformation affects the principal directions.



202 APPENDIX A. BASIC MECHANICS

Figure A.5: Principal directions

X3
X3

X, X, X, X7
Figure A.6: Principal directions in simple shear

The principal axis and corresponding stretch values can be found by formulating
and solving an eigenvalue problem. To show this we recall the polar decomposition
theorem in the form (A.11), where the deformation gradient was decomposed by
a rotation followed by a pure stretch. The differential material line elements are
expressed by use of unit vectors

dx =nds and dX =NdS§, (A.20)

where n is a unit vector in the current configuration and N is a unit vector in the
original configuration. Inserting (A.11) and (A.20) into (A.6) yields

nds = VRNdS , (A.21)

where RIN expresses the rotation of the unit vector N. The second phase in the
decomposed deformation, however, involves no rotation and the rotated line element
will not change direction in the pure stretch. For this reason the relation

RN =n (A.22)
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must hold. Inserting (A.22) into (A.21) gives
nds = VndS (A.23)
and then using the definition of stretch (A.13) in (A.23) yields
Vn=)n, (A.24)

which is an eigenvalue problem for V with the stretch A as the eigenvalue and the
principal axis as the eigenvector. The eigenvectors are the principal axis referred to
the deformed configuration, because the vector n is referred to this configuration.

Solving the eigenproblem yields a set of eigenvalues A1, Az, A3 and a set of eigen-
vectors my, Dg, ng. The eigenvalues are real values and the eigenvectors can be
chosen to be perpendicular unit vectors, due to the symmetry of V.

The difficulties in obtaining V can be avoided by rewriting the eigenproblem in
terms of the left Cauchy-Green deformation matrix B. The more convenient form
of the eigenproblem is thus stated as

Bn = an (A.25)

Using (A.19), where it was shown that B is the square of V, and (A.24) in (A.25)
yields
Vin=\n. (A.26)

The principal values of B are thus the squared principal values of V. Solving (A.26)
results in the set of eigenvalues A%, A2, As? and the same set of eigenvectors as
above. The eigenvectors n; are the principal directions in the deformed configura-
tion. These vectors correspond to a set of eigenvectors IN; connected by the relation
(A.22).

The decomposition (A.12) can be used in the same way as above, to obtain an
eigenvalue problem similar to (A.26);

UN = A°N , (A.27)

where U? = C according to (A.17). The principal axis in the reference configuration
is obtained by solving (A.27). The principal values of C can be shown to be the
same as for B.

A.1.5. Strain invariants

The strain invariants are central in defining the nonlinear elastic, so called hyper-
elastic, material.The strain invariants of the left Cauchy-Green deformation tensor
are derived from the eigenproblem (A.26). The eigenvalues are found from the
characteristic polynomial of B according to '

det(B — XI) = 0. (A.28)
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This polynomial is the same regardless of what coordinate system is used to express
the components of B, i.e. the characteristic polynomial is éinvariant of coordinate
transformations.

Expression (A.28) can be written in terms of the principal values as

A2 =22 = R =8 =0
which can be rewritten as
WP - L+ LN -L=0 (A.29)
where the coefficients I, I, and I3 have the values

I = 22+ A%+ )87
L= 20"+ A2 + 22 (A.30)
Iy = M%A% 287

If the characteristic polynomial is invariant then the coefficients according to (A.30)

must also be invariants. The strain invariants of the left Cauchy-Green deformation
tensor B are the coefficients (A.30) of the characteristic polynomial of B.

AL pL

AL
A

Figure A.7: Stretching of a small cube oriented in the principal directions.

The strain invariants can be found without solving the eigenproblem (A.28). The
trace, i.e. the sum of the diagonal components, and the determinant of B can also
be shown to be invariants. To take advantage of this property we have to rewrite the
second strain invariant in expression (A.30). The second invariant can be expressed

L=+ X2+ 297 — (W22 + () + (DY) (A.31)

Where the trace of B and the trace of B2 can be recognized. Because of the invariant
property of the trace and the determinant, expression (A.30) can be written in terms
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of B only as
I, = tr(B)
L = Htr(B)? —tr(B?)) . (A.32)
_[3 = det(B)

The advantage of (A.32) is that an invariant measure of strain can be obtained by
simple matrix operations without solving an eigenvalue problem.

It is possible to give a geometric interpretation of the strain invariants. A small
cube oriented in the principal directions is deformed without shearing, as illustrated
in Figure A.7. The side lengths of the cube are originally dL and the stretched cube
has the side lengths dl; = \;dL.

Computation of the space diagonal, the free surface and the volume of the cube
before and after deformation generates the expressions (A.30).

The ratio of the square of the space diagonal in the deformed and the undeformed
cube can be written as

(MdL)? + (AdL)? + (AsdL)® 1

T =30 (A.33)

The ratio of the square of the surface of the deformed and the undeformed cube can
be written as
2(MAdL?)? 4 2(02N%dL2)% + 2N X% AL 1

The ratio of the square of the volume in the deformed and the undeformed cube can

be written as (MdLAgdLA3dL)?
1 (d2L3)23 =1I. (4.35)

This interpretation of the third invariant is important in connection with incom-
pressible materials. The condition

;=1

must be fulfilled for the deformation of an incompressible material.
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A.2. Traction and Stress

Traction, the Cauchy stress tensor and its decomposition into deviatoric and hydro-
static components are the subject of this section.

Figure A.8: Force acting on a surface element with normal n.

Neglecting body forces, the only force acting on the body is the surface traction
t; that acts on the boundary of the considered body, and it has the dimension of
force per unit area. The traction vector t; and the stress tensor are defined in this
section.

A.2.1. Cauchy’s stress tensor

The stress tensor is introduced as a quantity that determines the traction vector, in
a given point, on a surface, internal or external, with arbitrary orientation. But let
us first define the traction vector.

Consider a surface element da of a part of the loaded body as illustrated in
Figure A.8. The surface can be internal or external i.e. it can be a part of a cross
section of the body or a part of the outer surface of the body. The orientation of
the surface element in the deformed body is given by the unit normal vector n. A
force df is acting on the surface element. The traction vector t on the surface with
normal n is defined as

‘ df

da

Consider the special surfaces that are perpendicular to the coordinate directions

according to Figure A.9. The traction vectors acting on surfaces with normals paral-

lel to the axis z1, 2 and z3 are denoted t;, t5 and t3 respectively. The components

of the vectors are denoted by oy;, where i indicates the normal direction and j
indicates the direction of the traction.

(A.36)

011 O21 031
ti1= | o012 ty = | o2 ty=| 03 |, (A.37)
013 023 033

where o5 are stress components. Components with equal indices are normal stresses
and components with unequal indices are shear stresses.
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Figure A.9: Stress components on an infinitesimal cube in a loaded body.

The stress tensor o;j, in terms of the Cartesian components, can be represented
by a matrix where the rows consist of the traction vectors (A.37) giving

011 Oi12 013 ‘
o = 091 09y 093 . (A38)
031 032 033

In order to satisfy moment equilibrium the matrix (A.38) can be shown to be
symmetric, i.e.
o=0o". (A.39)

The matrix (A.38) contains all the information on the state of stress in a specific
point of the loaded body; cf. Figure A.9. It should be observed that the Cauchy
stress components are established in the current configuration as force per deformed
area.

From (A.38) we can compute the traction on a surface with arbitrary normal
direction n, by using Coauchy’s stress principle

t=on. (A.40)
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A.2.2. Principal directions and components

The principal directions of the stress tensor are three perpendicular directions where
the traction is parallel to the normal of the considered surface i.e.

(5} 0 0
o=|0 o 0 (A.41)
0 0 03

there is no shear stress on the surfaces whose normals are the principal directions.
The principal directions and stresses are determined from an eigenvalue problem
similar to the treatment of the kinematics.

A.2.3. Stress deviator and pressure stress

The stress tensor can be divided into two parts
1 1
oij = ij + gomdy and  p = zop (A.42)

where s;; is the deviatoric stress tensor and p is the mean pressure or the pressure
stress. The stress deviator tensor has the property s; = 0. Expressed in matrix
notation,

oc=s+pl with p= :rl))—tr(a) . (A43)

A.2.4. Nominal stress

L/ O 5 %/ >fz
e

ay

1

Figure A.10: Rectangular block loaded by uniformly distributed stress.

The nominal stress is defined as the current force divided by the original cross section
area. The nominal stress is easy to derive from the force recorded in laboratory tests.
The Cauchy stress can be computed only if the deformation is known.
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A common situation in laboratory tests is that the principal axes are held fixed.
This applies to the rectangular block in Figure A.10. The state of deformation is
the deformation without shear given by (A.3). Suppose that the surfaces are loaded
by forces f; uniformly distributed according to Figure A.10. The nominal stress S;
and the true or Cauchy stress o; are

fi fi

S = = —
Y= ToLs T Ll
_f _fa
%=1 7= 1
g = 1 e I3
T L, SN

We can get a connection between the nominal and true stress by introducing the
stretch, giving the relations

o1 = 51
1T

Ty — SZ
S Mg

727 Nk

The laboratory tests described in Chapter 4, except the tests that use the simple
shear deformation, use the state of deformation and stress given above.
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