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Popular summary

The purpose of this thesis is to study the behavior of macro-systems through their micro-
parameters. In particular, we are interested in finding critical scaling in various models.

In Paper I, we explore two models. In the first one, the particle moves under the action of
an external force, and a dissipative force acts on it, which depends linearly on the velocity of
the particle. In the second model, the same external force acts on the particle, but instead
of a dissipative force, it collides with particles of small masses mk at some time intervals.
We have found conditions on the model parameters such that the particle motion in the
first model will be equivalent (in some sense) to the particle motion in the second model.
In particular, we determined that the masses of small particles should be of the same order
as the time period τ between collisions. That is, we found the correct scale withmk tending
to zero.

In Paper II, we consider a random graph with N2 vertices on a 2-dimensional torus, such
that the connection probabilities between the vertices depend on the distance between
them. We consider the critical case, that is, the one where in the average each vertex has
exactly one neighbor. It turns out that in this case, the largest connected component is of
the order of N4/3, and it is possible to construct a diffusion approximation similar to the
classical Erdős-Rényi model. We make a conjecture that the same approach will work for
models of higher dimensions and that the critical scaling will be the same, namely n2/3,
where n is the number of vertices in the graph.

In Paper III and Paper Iv, we consider the growth model of neuron axon trees in dimensions
2 and 3. We find how such a macro indicator as the probability of connection between neu-
rons depends on the micro indicators that determine the growing tree. In particular, we
show that connection probabilities do not necessarily decrease exponentially or polynomi-
ally with increasing distance between neurons. At the moment, it remains a challenge to
find the critical scaling for the distance d between particles as a function of time t, at which
the probability of connection between neurons starts to decrease from 1, but the results of
Paper III and Paper Iv will definitely help in solving this problem.

Collectively, these explorations illuminate the interwoven fabric of diverse phenomena
across physics, random graphs, neuroscience, and probabilistic modeling. As I undertake
the endeavor of synthesizing these insights into my impending thesis, I am keenly aware of
the intrinsic unity underlying seemingly disparate facets of scientific inquiry.

vi



Introduction

The thesis is based on four papers. In this chapter, we provide some definitions and theo-
rems necessary for understanding the papers.

1 Conservation Laws and Stokes’ Law

The laws of physics are often empirical and are based on experimental data. In addition,
some laws work only for a certain set of parameters, while for other parameters, completely
different laws work, which are in no way related to the first ones. Examples of such theories
are Newton’s Classical Mechanics [16] and Quantum Mechanics [17].

As V.A. Malyshev wrote in [19], the fact that physics is only an approximation of reality
does not mean that mathematics contradicts physics. The standard mathematical approach
should aim for the following things:

1. There should be axioms, the less the better. However, for some values of parameters,
they should be as close as possible to the basics of theoretical physics.

2. The range of corollaries and coordination with theoretical physics should be as wide
as possible.

In the first paper we aim to describe the macro-level law for dissipation force (Stoke’s law)
through micro-level collisions with small particles, where we use only laws of conservation
of energy and momentum. We start with some definitions.

Let V be a set of point particles that interact only with each other, i.e. do not interact with
any foreign bodies. Such a system is called a closed system.

Consider the first law that we will use, which deals with uniformity of time. It is the law of
conservation of energy. For closed system V we write the Lagrangian function in Cartesian

1



coordinates

L =
∑
a∈V

mav
2
a

2
− U(r1, r2, . . .), (1.1)

wherema is a mass of a particle a, va is its velocity, and ra is its radius-vector. Since va is
a vector we need to mention that v2

a is a scalar product of va with itself. U is a function
that stands for the interaction between particles in system V . We call U a potential energy
of the system and the first term in (1.1)

T =
∑
a∈V

mav
2
a

2
(1.2)

we call a kinetic energy of the system.

Let us denote the generalized coordinates for the i-th particle by qi, q̇i. From Lagrange
equations, it follows that

d

dt

(∑
i

q̇i
∂L

∂q̇i
− L

)
= 0. (1.3)

Hence, we can conclude that the value

E =
∑
i

q̇i
∂L

∂q̇i
− L (1.4)

does not depend on time. We call this value the energy of the system. In Cartesian coordi-
nates, the energy is written as

E =
∑
a∈V

mav
2
a

2
+ U(r1, r2, . . .). (1.5)

Thus, the energy of the system can be expressed as a sum of kinetic and potential energies,
and it does not depend on time.

Next, we consider the second law which deals with uniformity of space distance-wise. It is
the law of conservation of linear momentum. For closed system V from Lagrange equations
it follows that ∑

a∈V

d

dt

∂L

∂va
=

d

dt

∑
a∈V

∂L

∂va
= 0, (1.6)

which implies that the value

P =
∑
a∈V

∂L

∂va
(1.7)
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does not depend on time. We call this value the momentum of the system. In Cartesian
coordinates it becomes

P =
∑
a∈V

mava. (1.8)

Let us derive now simple examples of these two laws. Consider a closed system V which
consists of only two particles a and b. We also assume that there is no potential force
between them, i.e. U = 0, but there are interactions caused by collisions between the
particles.

Definition 1.1. A collision of two particles is said to be elastic if it is not accompanied by a
change in their internal state. Accordingly, when applying the energy conservation law to
such a collision, one can ignore the internal energy of particles.

For elastic collision the following propositions hold.

Proposition 1.2 (Laws of conservation of energy and momentum). Assume that two particles,
with massesm1 andm2, collide elastically. Denote the velocities of them before the collision as
u1 and u2 and after the collision as v1 and v2. Then

m1u
2
1

2
+
m2u

2
2

2
=
m1v

2
1

2
+
m2v

2
2

2
, (1.9)

m1u1 +m2u2 = m1v1 +m2v2, (1.10)

where (1.9) is the law of conservation of energy and (1.10) is the law of conservation of momen-
tum.

From Proposition 1.2 we derive formulas of velocities of the particles after the collision.

Proposition 1.3. Given massesm1 andm2 of two particles, and the velocities u1 and u2 before
the collision, we derive equations for velocities after the collision:

v1 =
m1 −m2

m1 +m2
u1 +

2m2

m1 +m2
u2, (1.11)

v2 =
m2 −m1

m1 +m2
u2 +

2m1

m1 +m2
u1. (1.12)

Consider also Newton’s laws of motion, in particular the second law. The momentum of a
point particle is

p = mv. (1.13)

Taking the derivative with respect to time we get

F =
dp

dt
= m

dv

dt
= ma. (1.14)
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Newton’s second law of motion states that this derivative F is a force (sum for all forces
acted upon the particle) and a is an acceleration of the particle.

The last law we consider is Stoke’s law [28] which describes force arising in fluid dynamics
[18], such as a frictional (drag) force for a spherical object with very small Reynolds numbers
[25] in a viscous fluid.

Proposition 1.4 (Stoke’s law). The force of viscosity (Stoke’s drag) on a small sphere moving
through a viscous fluid is given by

Fd = 6πµRv, (1.15)

where µ is a dynamic viscosity,R is a radius of the spherical object, v is the flow velocity relative
to the object .

In particular, this states that the drag force is linearly dependent on the flow velocity.

2 Markov Chains and Branching Processes

We present some results related to Markov chains from [24]. A Markov Process {Xt} is
a stochastic process with the property that, given the value of Xt, the values of Xs for
s > t are not influenced by the values of Xu for u < t. A discrete-time Markov chain is a
Markov process whose state space S is a finite or countable set, and whose (time) index set
is T = (1, 2, ...). In formal terms, the Markov property is that

P
(
Xn+1 = j

∣∣Xn = i,Xn−1 = in−1, . . . , X1 = i1
)

(2.1)
= P

(
Xn+1 = j

∣∣Xn = i
)
,

for all time points n and all states i1, . . . , in−1, i, j ∈ S. The latter probability is called
the one-step transition probability and is denoted by Pn,n+1

ij . When the one-step transition
probabilities are independent of the time variable n, i.e. Pn,n+1

ij = Pij , we say that the
Markov chain has stationary transition probabilities. Set S = 1, 2, . . .. It is customary to
arrange numbers Pij in a matrix, in the infinite square array

P =


P11 P12 P13 . . .
P21 P22 P23 . . .
...

...
... . . .

Pi1 Pi2 Pi3 . . .
...

...
... . . .

 , (2.2)

which is called a transition probability matrix.
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Suppose that S = {1, . . . , N}, finite, and a transition probability matrix P on S has the
property that when raised to the power k, the matrix P k has all of its elements strictly
positive. Such a transition probability matrix and the corresponding Markov chain are
called regular. The important fact concerning a regular Markov chain is the existence of
a limiting probability distribution π = (π1, . . . , πN ), where πj ≥ 0 for j = 1, . . . , N

and
N∑
j=1

πj = 1, and this distribution is independent of the initial state, i.e. there is a

convergence
lim
n→∞

Pnij = πj , for j = 1, . . . , N. (2.3)

Theorem 2.1. LetP be a regular transition probability matrix on the states 1, . . . , N . Then the
limiting distribution π = (π1, . . . , πN ) is the unique non-negative solution of the equations

πj =

N∑
i=1

πiPij , j = 1, . . . , N (2.4)

N∑
j=1

πj = 1. (2.5)

A transition probability matrix is called doubly stochastic if the columns sum to one as well
as the rows, i.e.

Pij ≥ 0 and
∑
k

Pik =
∑
k

Pkj = 1 for all i, j. (2.6)

Consider a doubly stochastic transition probability matrix on the N states 1, 2, . . . , N .
If the matrix is regular, then the limiting distribution is the uniform distribution π =
(1/N, . . . , 1/N), since it is a solution of the equations (2.4) and (2.5) and by Theorem 2.1
this solution is unique.

Let us now consider a branching process. Suppose an organism at the end of its life produces
a random number ξ of offspring with the probability distribution

P (ξ = k) = pk, for k = 0, 1, . . . , (2.7)

where pk ≥ 0 and
∞∑
k=1

pk = 1. We assume that all offspring act independently of each

other and at the end of their lifetimes individually have progeny in accordance with the
probability distribution (2.7). The process {Xn}, whereXn is the population size at thenth
generation, is a Markov chain of special structure called a branching process or the Galton-
Watson process [32].

Suppose that the process starts with only one organism X1 = 1. An important character-
istic of a branching process is the probability that the process ever becomes extinct, i.e.

q = P (Xi = 0 for some i ≥ 2) = lim
n→∞

P (Xn = 0) . (2.8)
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Consider also the probability generating function of the random variable ξ

g(s) = Esξ =
∞∑
k=0

skpk, |s| ≤ 1. (2.9)

Then the following theorems hold true:

Theorem 2.2 (From [5]). The extinction probability of the {Xn} is the smallest non-negative
root q of the equation

t = g(t), (2.10)

and

• if Eξ ≤ 1, then q = 1 ;

• if Eξ > 1, then q < 1 .

Theorem 2.3 (From [11]). No matter what is the finite value ofm = Eξ, we have

lim
n→∞

P (Xn = k) = 0, k = 1, 2, . . . . (2.11)

Moreover Xn →∞ with probability 1− q and Xn → 0 with probability q.

3 Random Graphs

Consider some classical results for Erdős-Rényi graphs [10]. Let V = {1, 2, . . . , n} be a
set of vertices and let Xi,j : 1 ≤ i < j ≤ n be independent Bernoulli random variables
with parameter p. Then for each pair of vertices i ̸= j we place an edge between them if
Xi,j = 1. The resulting graph we denote as G(n, p). Note that there are no loops and
double edges in the graph. We can vary the parameter p (for example, p = λ/n), and
consider the structure of G(n, p) in the limit n→∞.

Consider the results for largest connected component of G(n, p) for

p =
λ

n
, λ > 0. (3.1)

Theorem 3.1 (From [10] and [30]). Let C1 be the size of the largest connected component in
G(n, p), with p defined in (3.1). Then for λ = 1 the phase transition occurs, and

1. If λ < 1 then
C1

log n

P→ 1

λ− 1− log λ
, n→∞. (3.2)
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2. If λ > 1 then
C1
n

P→ β(λ), n→∞, (3.3)

where β(λ) ∈ (0, 1) is the unique solution of

β + e−λβ = 1. (3.4)

From Theorem 3.1 we see, that in subcritical case λ < 1 the largest connected component
is of order log n. For supercritical case λ > 1 the largest connected component is of order
n.

In the critical case there is a result of Aldous [4].

Theorem 3.2. Consider the graph G(n, p) with

p =
1

n
+

t

n4/3
. (3.5)

Let C1, C2, . . . denote the ordered sizes of the connected components in G(n, p) with C1 being
the largest one. Let γ1, γ2, . . . denote the ordered lengths of the excursions of the process

B(s) = W̃ (s)− min
0<t<s

W̃ (t),

where
W̃ (s) =W (s)− 1

2
s2 + ts (3.6)

withW being the standard Brownian motion. Then

1

n2/3
(C1, C2, . . .)

d→ (γ1, γ2, . . .) , as n→∞,

with respect to l2 topology on the set of infinite non-decreasing sequences x = (x1, x2, . . .) of

non-negative values with metric d(x, y) =
(∑

i
(xi − yi)2

)1/2

.

From Theorem 3.2 we see, that in critical case the largest connected component is of order
n2/3. Very similar results were obtained in [20].

Erdős-Rényi graph G(n, p) is an example of a homogeneous graph. Let us define the
inhomogeneous graph [8]. If instead of the probability of connection p (which does not
depend on vertices i, j ∈ V ) we consider probabilities p(i, j), then the graph becomes
inhomogeneous.
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Consider a separable metric space (S, ρ). Let µ be a Borel probability measure on S . Let
also (xn) = {x1, . . . , xn} be a sequence (deterministic or random) of points in S such
that for any µ-continuity set A ⊂ S

#{i : xi ∈ A}
n

P→ µ(A). (3.7)

Definition 3.3. A generalized vertex space V is a triple (S, µ, (xn)), where (xn) satisfies
(3.7) .

Definition 3.4. A kernel κ is graphical on a (generalized) vertex space V = (S, µ, (xn)) if
the following conditions hold:

1. κ is continuous a.e. on S × S ;

2. κ ∈ L1(S × S, µ× µ) ;

3.
1

n
E {e(G(V, n, κ))} = 1

2

∫
S

∫
S

κ(x, y)dµ(x)dµ(y), (3.8)

where G(V, n, κ) denotes a random graph where any two vertices xi and xj are
connected independently of others with probability

p(xi, xj) = min

{
κ(xi, xj)

n
, 1

}
, (3.9)

and e(G) denotes the number of the edges in G .

Definition 3.5. Let V = (S, µ, (xn)) be a (generalized) vertex space and let κ be a kernel
on V . A sequence (κn) of kernels on (S, µ) is graphical on V with limit κ if, for a.e.
(y, z) ∈ S2

yn → y and zn → z imply that κn(yn, zn)→ κ(y, z), (3.10)

κ satisfies condition 1 and 2 of Definition 3.4, and

1

n
E {e(G(V, n, κn))} →

1

2

∫
S

∫
S

κ(x, y)dµ(x)dµ(y). (3.11)

Consider also an integral operator

(Tκf)(x) =

∫
S

κ(x, y)f(y)dy (3.12)
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for any measurable function f such that this integral is defined for a.e. x. Define the norm
of this operator

∥Tκ∥ := sup
{
∥Tκ(f)∥L2(S) : f ≥ 0, ∥f∥L2(S) ≤ 1

}
≤ ∞. (3.13)

The following result for the phase transition obtained in [8].

Theorem 3.6. Let (κn) be a graphical sequence of kernels on a (generalized) vertex space V
with limit κ. Then

1. If ∥Tκ∥ ≤ 1, then the size of the largest connected component C1(G(V, n, κn)) =
op(n) .

2. If ∥Tκ∥ > 1, then C1(G(V, n, κn)) = O(n) with high probability.

If the graphical kernel κ has the form κ(x, y) = ψ(x)ψ(y) for some function ψ > 0 on
S , then we call this rank 1 case [8]. The critical regime for rank 1 case has been studied in
[6], [7], [29].

Consider now Geometric Random Graphs, which have been actively studied in [23]. We
are particularly interested in Geometric Random Graphs on torus [22]. Let N ∈ N and
consider in dimension d ≥ 2 the discretized torus TdN = (Z/NZ)d. Denote the set of
vertices on this torus by

VN = {1, . . . , N}d.

Hence, the number of vertices inVN is |VN | = Nd. For any two verticesu = (u1, . . . , ud),
v = (v1, . . . , vd) ∈ VN define the torus distance ρ(u, v) between them by

ρ(u, v) =

d∑
k=1

ρN (uk − vk),

where for any 1 ≤ i ≤ N

ρN (i) =

{
i, 0 ≤ i ≤ N/2,
N − i, N/2 < i < N.

Consider a random simple graph on the set of verticesVN defined as follows. LetX,Xu, u ∈
VN be i.i.d. non-negative random variables, 0 ≤ α < d be fixed arbitrarily, and let Gα,XN,d
denote a random graph on VN where any two different vertices u, v ∈ VN are connected
independently of the rest with probability

p(u, v) = min

{
XuXv

Nd−αρα(u, v)
, 1

}
. (3.14)
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We shall also write p(u, u) = 0 for any u ∈ VN , meaning that there are no loops in the
graph.

This model was introduced in [22] as a generalization of the original model from [15], which
is a particular case of (3.14) when d = 2, α = 1, and X =

√
c for some constant c > 0.

Phase transitions in this particular case were studied in [2].

The following result for phase transitions of general graph Gα,XN,d was obtained in [22].

Theorem 3.7. Let C1 be the size of the largest connected component of the graph Gα,XN,d with
α < d. Assume that

EX2 =

∞∫
0

x2dµX(x) <∞. (3.15)

Define

λ = 2d
∫
Λd

dx1 . . . dxd
(x1 + . . .+ xd)α

, (3.16)

where Λd = (0, 1/2]d.

1. As N →∞ we have
C1
Nd

P→ βλ :=

∞∫
0

β(x)dµX(x), (3.17)

where β(x) is a maximal solution to

f(x) = 1− exp

−λx
∞∫
0

yf(y)dµX(y)

 . (3.18)

Furthermore, βλ > 0 if and only if

λEX2 > 1. (3.19)

2. If
λEX2 < 1 (3.20)

and also EeaX <∞ for some a > 0, then

C1
d logN

P→ 1

log γλ
, (3.21)

where
γλ :=

1

λE {X2 exp(λ(y − 1)XEX)}
> 1, (3.22)
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with y > 1 which satisfies

y =
1

λEX
E {X exp(λ(y − 1)XEX)}
E {X2 exp(λ(y − 1)XEX)}

. (3.23)

4 Neural Networks

Let us start with a model of an abstract neuron [26], the structure of which is shown in
Figure 1. The model neuron usually has several inputs and 1 output (which, however,
can be transmitted to several neurons). Each input channel i can transmit a real value
xi. Each input channel has an associated weight wi which multiplies with the input xi.
Then the transmitted information is integrated into the neuron (typically just by adding
the incoming signals) providing some real value, at which the primitive function f (selected
arbitrarily) is evaluated.

Figure 1: An abstract neuron

One can combine neurons in networks, which are proved to be useful, for instance, in
approximation theory. One simple example is the Taylor series for a function F which is
being approximated around the point x0

F (x) = a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ an(x− x0)n + · · · , (4.1)

where the constants a0, a1, . . . depend on the function F and its derivatives at x0. We
can construct a network, as in Figure 2, which models the first n+1 terms in Taylor series
Fn(x) for the function F (x). By changing the number of neurons, connection options,
functions, and weights, one can achieve a high precision in approximation.

Another example of a neural network is the Hopfield network [13]. Let V be a graph of
n ∈ N vertices such that all vertices are connected without loops and double edges. Each
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Figure 2: Taylor Network

edge has a weight, i.e. for any two different vertices i and j we assign a numberwij (wii = 0
for any 1 ≤ i ≤ n). Then for any set of weights we define a matrixW = (wij)

n
i,j=1. Since

there are no loops in the graph, and there is only one edge between two different vertices,
the matrix W is symmetric and has 0’s on the diagonal. For each vertex i we also assign a
number xi ∈ {−1, 1}which we call the state of vertex i, and θi which we call the threshold
of vertex i. For such a network we define an energy function

E(x1, . . . , xn) = −
1

2

n∑
i=1

n∑
j=1

wijxixj −
n∑
i=1

θixi. (4.2)

Let us define the updating rule for any particular vertex i:

xi ←

 +1, if
n∑
j=1

wijxj ≥ θi.

−1, otherwise.
(4.3)

Updates can be performed in two different ways: Asynchronous (only one vertex is updated
at a time, it can be picked at random or in a pre-defined order) or Synchronous (all vertices
are updated at the same time). The following proposition holds true regarding convergence.

Proposition 4.1 (From [26]). A Hopfield network with n vertices and asynchronous dynamics,
which starts from any given network state, eventually reaches a stable state at a local minimum
of the energy function.

A Hopfield network can be used as an associative memory. If we want to memorize or store
m patterns, given as vectors xµ = (xµ1 , . . . , x

µ
n) ∈ {−1, 1}n where 1 ≤ µ ≤ m, then we
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can create a matrix W with the following form (Hebbian learning [12]):

wij =
m∑
µ=1

xµi x
µ
j −mδij , (4.4)

where δij equals 1, if i = j, and 0 otherwise. Ifm < n and vectors xµ are close to orthog-
onal, in most cases, they will be stable with respect to the described dynamics. According
to Proposition 4.1 there is a convergence to a stable vector. That is how one can model
an associative memory. It is worth noting the equivalence of the Hopfield model and the
Perceptron model ([21], [27]), as well as the Ising model [14]. An interesting question for
research is to consider the Hopfield model not on a full graph, but on a graph with some
structure (for example, Z2-lattice or a star) and find out what patterns this model can re-
member. It is also interesting to consider this model on geometric graphs, e.g. from Paper
II.

Figure 3: From [31]: A branching event at a terminal segment (open arrow) of a dendritic tree. Terminal (ts), intermediate (is),
and root (rs) segments are distinguished, as well as the root, bifurcation points (bp), and terminal tips (tt). In the
resultant tree after branching, the segments are labeled according to a centrifugal ordering scheme. By branching,
the number of terminal segments has been increased from 3 to 4.

Let us now look at a model of not artificial neurons, but biological ones. Consider a model
which was proposed in [31]. This is a branching process model for growing dendritic trees.
We ignore the metric properties such as segment lengths and diameters. Dendritic trees
are reduced to their skeletons only characterized by the number and the connectivity of the
segments (topological structure). In a rooted binary tree (Figure 3), intermediate segments
ending in bifurcation points, and terminal segments ending in terminal tips are distin-
guished. Segments are labelled by a centrifugal order scheme which counts the number of
bifurcation points on the path from the root up to the segment. Branching is assumed to
occur at terminal segments only. Let ps(t) be the branching probability per unit of time
of the individual terminal segment, n(t) be the expectation of the number of terminal
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segments. It was proposed in [31] that

dn(t)

dt
= n(t)ps(t), (4.5)

or
ps(t) =

d log n(t)

dt
. (4.6)

In Paper III and Paper Iv, we consider a similar model where all the terminal segments grow
independently, and the time until splitting is exponentially distributed with rate λ.

5 Main results of the research papers

5.1 Paper I: Linear Dissipative Force as a Result of Discrete Time Collisions

In this paper, we consider two models: one describes the particle movement under the
influence of external force and friction (which refers us to Proposition 1.4), and another
one describes the movement of a particle, which is acted upon by the same external force
but additionally collides with other particles of much lighter masses (which refers us to laws
of conservation of energy and momentum in Proposition 1.2). All models are considered
in dimension 1, so to describe the movement of the particle we need to know its position
and velocity (x(t), v(t)) ∈ R2.

Let (x0, v0) ∈ R2 be the initial coordinate and speed of the (“main”) particle at time t = 0.
We assume that the mass of this particle is 1 and that the coordinate x0 > 0. Let F (x, t)
denote the external force at time t ≥ 0 and place x. Using Newton’s second law of motion
(1.14) we derive the first model as

dx

dt
= v,

dv

dt
= F (x, t)− av,

(5.1)

with friction force −av, which linearly depends on the velocity as in (1.15). Here the dissi-
pation constant we denote as a.

For the second model, we denote the position and the velocity of the main particle as
(x̃(t), ṽ(t)) with the same initial conditions (x̃(0), ṽ(0)) = (x0, v0) as in the first model.
Suppose that the particle collides with different light particles at certain moments 0 < t1 <
t2 < . . . < tn < . . . . Until the first collision and between any consecutive collisions the
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state and the velocity of the particle are governed by the following law:
dx̃

dt
= ṽ,

dṽ

dt
= F (x̃, t),

(5.2)

t < t1, tn < t < tn+1, n ≥ 1.

We assume that x̃(t) is a continuous function of t, while the velocity ṽ(t) is a right-
continuous function with “jumps” at every tn caused by the elastic collisions described
as follows. Let mn < 1 denote the mass of the light particle which collides with the main
particle of mass 1 at the moment tn, and let wn be the velocity of this light particle at tn.
Define

αn :=
1−mn

1 +mn
, (5.3)

and then from Proposition 1.3 we get

ṽ(tn) = αnṽ(tn−) + (1− αn)wn. (5.4)

For various examples of external force F (x, t) we find parameters that yield asymptotic
equivalence of the velocities of the particle in different models. We also provide conditions
when the trajectories of the particles in different models are close to each other in the
Chebyshev norm over a certain finite period of time. In almost all cases if masses of the
other particles are equal and smallmn = m≪ 1, and if the time between (n− 1)-th and
n-th collision τn = tn − tn−1 are either equal to some constant τ , or are i.i.d positive
random variables with mean τ and variance of order O(τ) then two models are equivalent
if

τ =
2m

a
+O(m2), (5.5)

from which we see that τ should be of order m multiplying by a constant 2/a. This is a
critical scaling for τ .

5.2 Paper II: Scaling of Components in Critical Geometric Random Graphs on
2-dim Torus

In this paper, we study a random graph on the discrete 2-dimensional torus with probabil-
ities of connection

p(u, v) = min

{
c

Nρ(u, v)
, 1

}
, (5.6)
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which is special case of (3.14) with d = 2, α = 1 and X =
√
c. The phase transition for

the special case was studied in [8] and [2], and in the general case in [22]. We study the
special case in criticality. The main result of this paper is the following theorem.

Theorem 5.1. Let GcN be a random graph on the set of vertices of T2
N with probabilities of

connections
p(u, v) = min

{
c

Nρ(u, v)
, 1

}
,

where
c = ccr =

1

4 log 2

is the critical value.

Let C1, C2, . . . denote the ordered sizes of the connected components in GcN with C1 being the
largest one. Let γ1, γ2, . . . denote the ordered lengths of the excursions of the process

B(s) = W̃ (s)− min
0<t<s

W̃ (t),

where
W̃ (s) =W (s)− 1

2
s2 (5.7)

withW being the standard Brownian motion. Then

1

|VN |2/3
(C1, C2, . . .)

d→ (γ1, γ2, . . .) , as N →∞,

with respect to l2 topology on the set of infinite non-decreasing sequences x = (x1, x2, . . .) of

non-negative values with metric d(x, y) =
(∑

i
(xi − yi)2

)1/2

.

Comparing the results of Theorem 5.1 and Theorem 3.7 with Theorem 3.2 and Theorem
3.1 we see, that the results for the connected components in the Geometric Graphs on 2-
dimensional torus are similar to the classical Erdős-Rényi graphs. Note that this model is
outside the class of models of rank 1.

5.3 Paper III: Decay of connection probabilities with distance in 2D and 3D
neuronal networks

In this paper, we study a model that imitates how neurons in the brain grow and form
connections through synapses. This model was introduced in [3] as a simplified version of
the original model in [31]. We note also a similar model in [9], where the axons are modeled
as trajectories of stochastic (but not branching as in our case) processes.
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We consider a subset V of a closed bounded area in R2 or R3. This set represents the
centers of neurons. The dynamics for a randomly growing branching tree (axonal tree) of
each neuron are independent of other neurons. At time t = 0 a segment starts to grow from
each neuron, with uniformly distributed random direction and constant speed. Then each
segment splits after exponentially distributed time with rate λ into two segments, which
continue to grow in the same manner as the first segment and independently of each other.
This creates for any v ∈ V a tree Tv(t). We say that a neuron v is connected to a neuron
u at time t if the distance between Tv(t) and u is less than some parameter r > 0. If the
distance between v and u is equal to d, then, since the direction of each segment in the tree
is uniformly distributed, the probability of connection depends on parameters t, d, λ, r.

For the case R2 an integral equation for the probability of connection was derived in [3].
In this paper, we derived such an equation also for the case R3 and computed numerically
this probability for different parameters in both cases R2 and R3. Our results show that
contrary to a common belief, these probabilities do not necessarily decay polynomially or
exponentially in distance, but there are regimes of parameter values when the probability
of proximity is not sensitive to the distance. In particular, in R3 the Euclidean distance
between the neuronal cell body centers of neurons seems to play a very subtle role, as the
probabilities of connections are practically constant within a certain finite range of distance.

The model has a sufficient number of parameters to assess networks of neurons of different
types. Our results give a firm basis for further modelling of the neuronal connectivity taking
into account some realistic bouton distributions for establishing synaptic connections.

5.4 Paper IV: Properties of Randomly Grown 2D and 3D Networks

In this paper, we continue studying the model from Paper III. Some properties (such as de-
gree distribution, average shortest path length, and clustering coefficient) have been studied
in [1]. While in the original model from Paper III the branches in the treeTv(t) always grow
and split into two new branches, in this paper we also consider random stops of growth.

In Section 3.1 we derived the integral formula for the probability of connection for the
model with stopping times in R2 and R3, and found the expectations and the moment
generating functions of the total length of all branches of the tree and of the number of
branches which have stopped.

In Section 3.2 we derived some numeric results for the probability of connections. It turned
out that for some parameters of the model such probability is very weakly dependent not
only on distance d between neurons (as we showed on Paper III), but also on time t.

In Section 3.3 we derived an integral formula for the distribution of the distance between
the branching point and the root of the tree.
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In Section 3.4 we derived the distribution function for the chord length in the condition
that a branch intersects a ball with some radius.

In Section 3.5 we derived an integral formula for the expectation of the number of branching
points of the tree inside the ball of radius r which is located at distance d from the root of
the tree.

6 Future Development

In Paper I we considered Stokes’ Law where the dissipation (drag) force depends linearly
on the velocity of the particle. One can ask, what if the drag force has the form−av2 (this
is true for higher speeds and higher Reynolds number), or has some other dependence on
the velocity. We assume that for this kind of force, it will no longer be possible to build a
model with elastic collisions, as we did. Perhaps, here it is necessary to take into account
the accumulation of particles or their adhesion.

In Paper II we proved the convergence of scaled components to excursion of diffusion pro-
cess for the particular case of 2-dimensional torus, when d = 2, α = 1. As it was reported

in [22] the number of triangles in the graph is of order constant if α <
2

3
d. Therefore

we assume, that the same proof should work for all α <
2

3
d and for all d ≥ 2. But if α

becomes close to d, there are different scalings for the number of triangles, then extra terms
may arise in (5.7).

In Papers III and Iv, in particular, we considered the probabilities of connection between
the axon tree of one neuron and dendrites, which are a ball of radius r, of another neuron.
In Paper Iv, we also considered the properties of the model, in particular, the density of
tree vertices. These results should help us in the problem of investigating the probability
of connection, if the dendrites, in turn, also represent growing trees. This is especially
interesting in the 3-dimensional case because in this case the trees do not intersect with a
high probability and we can talk about a potential connection depending on how far apart
the trees are. Also of interest is the question of the distribution of the farthest point of the
tree from the root, and how this distribution scales depending on time t.
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