LUND UNIVERSITY

Techniques for Distributed Access and Visualisation in Computational Mechanics

Lindemann, Jonas

2003

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Lindemann, J. (2003). Techniques for Distributed Access and Visualisation in Computational Mechanics.
[Doctoral Thesis (compilation), Structural Mechanics]. Division of Structural Mechanics, P.O. Box 118, SE-221
00 Lund,.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 27. Apr. 2024

https://portal.research.lu.se/en/publications/9221182a-d36e-4a50-a19c-a76737750c32

UNIVERSITY

TECHNIQUES FOR DISTRIBUTED
ACCESS AND VISUALISATION IN
COMPUTATIONAL MECHANICS

JONAS LINDEMANN

Structural
Mechanics

Doctoral Thesis

Structural Mechanics

ISRN LUTVDG/TVSM--03/1016--SE (1-175)
ISBN 91-628-5811-4 ISSN 0281-6679

TECHNIQUES FOR DISTRIBUTED
ACCESS AND VISUALISATION IN
COMPUTATIONAL MECHANICS

Doctoral Thesis by
JONAS LINDEMANN

Copyright © Jonas Lindemann, 2003.
Printed by KFS i Lund AB, Lund, Sweden, September 2003.

For information, address:
Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.
Homepage: http://www.byggmek.Ith.se

Preface

The work presented in this PhD thesis was carried out at the Division of Structural
Mechanics, Lund University.

I would like to express my gratitude to my supervisors, Professor Ola Dahlblom and
Professor Goran Sandberg for their support and for the discussions we have had regarding
the topics in this work. I would also like to thank Karl-Gunnar Olsson for contributing
with the fundamental ideas and discussions of the design and educational aspects of using
finite element software in an educational setting, and Mr Bo Zadig for helping me put it
all together.

There are of course many other people, colleagues of mine at Structural Mechanics
included, who in some way have contributed to the work.

Finally, I am grateful for the opportunity of using the computer resources available
through Lunarc, the center for scientific and technical computing, at Lund University

Lund, September 18, 2003

Jonas Lindemann

Contents

I Introduction and overview
1 Introduction

2 Overview
2.1 Different levels of interfaces
2.2 Distributed technologies and middleware
2.3 Visualisation
2.4 Graphical user interfaces oL oL oL
24.1 ForcePAD
2.4.2 ObjectiveFrame L oo

2.5 Visualisation framework

3 Concluding remarks
3.1 Transparent access to finite element software
3.2 Visualisation of complex phenomena

3.3 Usability and educational aspects of finite element software

IT Appended Papers

Paper I — An Approach For Distribution Of Resources In Structural
Analysis Software

Paper II — Using CORBA Middleware in Finite Element Software

Paper III — Software for Numerical Simulation of Drying Induced De-
formation of Wooden Products

iii

co o ot W

10
11
13
15

17
18
18
19

23

25

43

85

CONTENTS CONTENTS

Paper IV — Real-time Visualisation of Fibre Networks 93

Paper V — An Approach to Teaching Architectural and Engineering
Students Utilizing Computational Mechanics Software ForcePAD 105

Paper VI — ObjectiveFrame - An Educational Tool for understanding

the Behaviour of Structures 117
IIT Appendix 127
Paper A.1 — Initial Usability Study of ObjectiveFrame A-1

Paper A.2 — Interactive Visualisation Framework — Ivf++ A-23

Part |

Introduction and overview

Chapter 1

Introduction

Computational mechanics software is widely used in many disciplines today. For the most
part, it is used by people with a good understanding of the methods involved. The way in
which finite element applications has been used have not changed much since they were
first conceived. The normal workflow is shown in Figure 1.1. A pre-processor is used to
define the geometry, loads and boundary conditions. The pre-processor then generates
a mesh, which in turn is used for generating an input file for the finite element solver.
The solver writes the results to an output file, which is read into a post-processor for

Input file [\ 1 Output [\
Preprocessor FE Solver file Postprocessor

Figure 1.1: Normal workflow of a finite element application

visualisation. The design of these applications imposes certain restrictions on the use of
computational mechanics software, concerning both its usability and its integration with
other software.

The work presented here aims at extending the context of computational mechanics
software into such areas as computer science, scientific visualisation and human-computer
interaction. Papers I, IT and III deal with methods for accessing finite element software
by use of distributed technologies. Paper IV presents a method of visualising computa-
tional results in real-time. Papers V and VI examine the usability of the graphical user
interface, particularly in an educational setting.

CHAPTER 1. INTRODUCTION

Chapter 2

Overview

2.1 Different levels of interfaces

Finite element software often has many user and developer interfaces. To make it easier to
understand how users and developers can interact with finite element software, interfaces
of four different levels are defined, see Figure 2.1

Level 3

Pre and post processor software Level 2
Middleware, Scripting and command line tools Level 1
Level O

Figure 2.1: The different levels of interfaces to finite element software

Each level also has two interface categories, the user interface and the developer in-
terface. The finite element software with its various software components, is at level 0.
The user interface to the finite element software being defined here by input and output
files. The developer interface (if one exists) is defined by header files to library routines
for input and output.

At level 1, the user interface to the software is made less complex and easy to use by
the provided scripting and command-line tools. The user is given greater control and can
use the software in a more flexible way. The developer interface at this level can also use
scripting and command-line tools. Direct access to the software is provided by middleware
software enabling a higher-level interface and a component-based architecture. Special
types of middleware can also provide distributed access to the finite element software.

At level 2, the user and developer interfaces are defined by pre- and post-processor
software, which makes the generation of input data and the analysis of the output data

5

2.2. DISTRIBUTED TECHNOLOGIES AND MIDDLEWARE CHAPTER 2. OVERVIEW

more effective. The pre-processor generates the input data for the finite element software,
often using simple geometric shapes to define the object being modeled. This frees the user
from the task of specifying each element in the finite element mesh. The post-processor
software analyses the output of the finite element software and presents the results in
terms of 2D and 3D plots.

At level 3, the user interface is defined as a dedicated application which solves a specific
problem, the details of the finite element software being hidden from users.

Applications written at a specific level often use interfaces located at several levels.
A dedicated application at level 3 can be implemented to use finite element software
directly at level 0 or can access the finite element software by use of middleware or pre-
and post-processing software at level 1 and 2.

2.2 Distributed technologies and middleware

Classical distributed technologies are often based on a client/server architecture that
allows clients to communicate with servers directly. This approach works well when
protocols are well-proven and well-established, but is often difficult to implement if the
systems become more complex. When changes and features are added on the server
side, the client often needs to be updated. To solve this, an additional layer called a
middle-tier (level 1 in Figure2.2) is placed between the client and the server. CORBA [1],
DCOM [2], Java RMI [3], PHP [4] and .NET [5] for example, are technologies that have
been developed to create this middle layer. The main idea is that a set of interfaces is
defined in the middleware software describing the services provided. Clients developed
against these interfaces communicate with the middleware software instead of the real
server system. This allows the server side to be updated and reconfigured without any
of the clients being affected by this. Once an interface has been defined, it can not be
changed. Functions can be added by new interfaces being added to the middle layer.
There are also other benefits of using middleware technologies. Some technologies such
as CORBA, DCOM and .NET are language-neutral. Interfaces are often defined by use
of a special language. From the definition determined in this way, client and server code
can be generated for any language that is supported.

Level 3

Pre and post processor software Level 2

Middleware, Scripting and command line tools Level 1

Finite element software

Level 0

Figure 2.2: Interface levels of distributed technologies and applications

Finite element software today still uses text files to a large extent for communication
with pre- and post-processors. Most finite element software uses a special proprietary-
standard file format. Pre- and post-processor developers often need to support a variety of

CHAPTER 2. OVERVIEW 2.2. DISTRIBUTED TECHNOLOGIES AND MIDDLEWARE

different finite element codes. This requires the development of a large number of export
filters. However, these need to be updated whenever updating of the input and output
file format occurs. Use of text files for communication has other drawbacks as well, such
as ineffective storage schemes. Standardisation efforts often fail because it is too slow to
support many of the features introduced in new versions of finite element softwares. A
solution to this is to use a middle layer between the pre-processor and the finite element
code, just as implemented in modern client /server applications. The middle layer consists
then of a set of general interfaces describing the input and output of the finite element
software. In a perfect world, developers providing finite element software would create a
set of general interfaces for defining such matters as the geometry and properties of the
elements and the results output. Each developer could then add specialised interfaces
for specific feature of their own software. This would make it easier for pre- and post-
processor developers to support a wide range of finite element software. Interfaces to
different packages can be generated in any language automatically from the definitions
the finite element developers provide.

One advantage of using middleware technology is location transparency. This means
that a client using a specific interface does not need to know whether the resources in
question are situated locally or remotely. This in turn allows the computational resources
to be used and configured in a variety of ways without users having to configure their
client applications in any special way.

The new trend which is emerging in distributed computing today is that of GRID
computing. GRID computing connects computational resources such as clusters with
each other to form a "Meta cluster”. Both clusters and grid resources are oriented to
command-line interactions. Although users need to be familiar with a wide variety of
tools and commands in order to use the resources available effectively, this has not been
a problem up to now because most current users of clusters and GRIDs are familiar with
these tools. To gain acceptance for these technologies by a wider user group, however,
the interface to these resources needs to be improved. Middleware technologies such as
CORBA [1], PHP [4], .NET [5] and Java RMI [3] can be the key to providing improved
interfaces to such resources. Figure 2.3 shows an example of a Java-based engineering tool
able to take advantage of distributed resources by executing finite element calculations
remotely. Figure 2.4 shows an effort under way at Lunarc ! to create a more user-friendly
interface to cluster and GRID resources there by providing much of the functionality of
the cluster in a web-based form.

Paper I describes a three-tier finite element application using Microsoft’s Distributed
Component Object Model (DCOM). Paper II provides a more in-depth look at the use
of middleware technologies in computational science and in finite element software. The
performance of CORBA for the transfer of large amounts of data is studied as well. The
paper also includes a complete description of a CORBA-based finite element implemen-
tation. Paper III describes a new finite element application with a plug-in interface for
finite element solvers. Plug-ins will be made available for both local and remote execution
by use of CORBA or other distributed technologies.

ILunarc is the centre for scientific and technical computing at Lund University

2.3. VISUALISATION CHAPTER 2. OVERVIEW

Report XXXX

- .

I | or |

t(mm)

Create Create ABAQUS job

Serial
Parallell Job name ba2d
Parametric
Input file Browse.
ABAQUS
s Wall clock time 10000
MARK
MATLAB Submit Query.
OCTAVE
Scilab
R ser Grid/Cluster Jobs __ Queues _Documentation _About
(T Subrmit. Queue status (Updated every 60 seconds)
Edit Miew Queue Memory CPU Time Walltime Node Run Que Lm State
Delete infa verylong -- 72:00:00-- - o o 10 E R
. Al jobs. long -- 12:00:00 - 0 0 (10 E R
= L medium -~ 02:00:00 - o o 10k R
Modify small - 00:20:00-- - o o 10 E R
default - = = o o o R
Alter
Delete
Hold
Relaase
i server Max Tot Que Run Hid Wat Trn Ext Status

sleipner.byggmeko 0 0 0 0 0 0 0 Active

Figure 2.4: Web-based interface to cluster and GRID resources

2.3 Visualisation

In many situations, normal post-processors cannot be used for visualising results. Susanne
Heyden [6] has developed a software for simulating deformation in three-dimensional fi-
bre structures. The code involved produces result files which cannot be readily used in
conjunction with commercially available post-processors. The complexity of the model,
evident in Figure 2.6, requires special methods for efficient visualisation. The methods
are implemented in the C++ OpenGL [7] application FibreScope. During development
of the FibreScope application, different methods for visualising fibre structure were in-
vestigated. In the one method, a circular cross-section is swept along the fibre spine,

8

CHAPTER 2. OVERVIEW 2.3. VISUALISATION

creating an extruded fibre shape, see the image at the left in Figure 2.5. Although this
method provides a good representation of the fibre geometry, a large number of triangles
are generated. A second method, in which the geometry of the fibre is reduced to a single
band consisting of two triangles per fibre segment, was developed for visualising larger
fibre networks. A texture is also applied to the band for representing the fibre structure.
Visibility issues are dealt with by turning the band toward the user at each vertex point
on the fibre. The result is a visualisation with significantly fewer triangles. An example
of this method is shown in the image at the right in Figure 2.5.

Figure 2.5: Fibre visualisation using the extrusion based method (left) and the band
method (right).

The FibreScope application was also used in a recent project [8] to help evaluate
methods for generating random fibre networks of differing properties. With use of the ap-
plication large networks could be rotated and viewed on the screen in real-time, revealing
quickly whether the generation algorithms were working. The generation algorithms will
probably be integrated into the FibreScope application, allowing the latter to be used as
a pre-processor as well. Figure 2.6 shows FibreScope’s main user interface.

FibreScope is implemented in C++ using the FLTK [12] library for the 2D user inter-
face parts and the Interactive Visualisation Framework Ivf++ [13] for the visualisation
parts. Ivf4++ is a C++ Scene graph library using OpenGL for rendering. Through use of
FLTK and Ivf++, FibreScope can be utilised on any platform, such as Linux, SGI/IRIX
or Microsoft Windows, having an OpenGL implementation.

Paper IV describes the various visualisation methods used in FibreScope, comparing
them in terms of performance.

2.4. GRAPHICAL USER INTERFACES CHAPTER 2. OVERVIEW

T

o oplonsHalp
Ky M S sel[0 T——— obfieo ~akB

2 ¢ ahl=—i=Tgk —-Flf2

Figure 2.6: The FibreScope application

2.4 Graphical user interfaces

Finite element software can be used in a wide variety of areas, due to its generality.
One problem, however, is that finite element software packages often require a thorough
understanding of the inner workings of the software (level 2). To allow the benefits of
finite element software to be taken advantage of adequately, the user interface should be
implemented on a higher level, such at level 3 in Figure 2.1. The interface should also be
designed with the target-user group in mind.

Level 3

Pre and post processor software Level 2

Middleware, Scripting and command line tools

Finite element software

Figure 2.7: Interface levels for graphical user interfaces

Teaching mechanics to engineering and design students involves providing students
with the ability to go on from investigating and understanding properties involved to be-
coming actively engaged in designing, articulation and expression, going from inner qual-
ities to outer contours. Tools particularly useful in this process are ones involving simple
sketching and enabling rapid responses to be made in investigating different mechanical
properties such as those of contour deformation, forces and force fields. Sections 2.4.1
and 2.4.2 describe certain tools developed for this purpose.

10

CHAPTER 2. OVERVIEW 2.4. GRAPHICAL USER INTERFACES

2.4.1 ForcePAD

In design and in design education, much emphasis is placed on the concept of sketching.
A design is never accepted automatically, but is iterated over time until a satisfactory
solution is found, sketching being used extensively in this process. ForcePAD [9] was
developed as a tool both for enhancing the users understanding of mechanical concepts
and for use in the sketching process, particularly in an educational setting.

The ForcePAD application shown in Figure 2.8 employs metaphor similar to the
metaphors found in such image editing applications as Adobe Photoshop [10] and Jasc
PaintShop Pro [11]. These applications are generally very intuitive and direct, using pens,

© ForcePAd 2 EEX
rd m
% 9
I

5]

U)

i
=)

O X

Figure 2.8: The ForcePAD application

brushes and colour palettes as tools for drawing. The ForcePAD user interface is based
on the same principles. The main difference here is that painting is done not in colour
but with use of a grey scale in which white represents zero stiffness and black maximal
stiffness. Use of the painting metaphor also provides other benefits. ForcePAD is able to
import pixel-based images from files or from the Windows clipboard. Imported images
are automatically converted to grey scale images. Use of this approach makes it easy
for a design student to take a sketch, scan it and then paste it into ForcePAD, where
displacements and stresses can be analysed. Figure 2.9 shows an example of this process.
In the example, ForcePAD is used to import a scanned image, edit and then analyse a
sketch of the Pantheon in Rome. The complete analysis can be carried out in a matter
of minutes.

The ForcePAD application also supports the study of mass, centre of gravity and
equilibrium by use of a special version called ForcePAD/R. Figure 2.10 shows the results
of an assignment in which students photographed objects which they then analysed in
terms of centre of gravity and equilibrium.

11

2.4. GRAPHICAL USER INTERFACES CHAPTER 2. OVERVIEW

Figure 2.10: This brief series of pictures shows how a student coupled mechanical entities
with expression by use of the ForcePAD/R [9] software. The direction of a branch on
the right side in (a) and (b), and thus the support conditions as well, are manifested in
the positioning of the hand, which is closed (a) and open in (b). Note the changes in the
support load that occurs.

ForcePAD is implemented in C++ by use of a set of platform independent libraries.
The finite element code is implemented using the NEWMATO09 [14] matrix and solver

12

CHAPTER 2. OVERVIEW 2.4. GRAPHICAL USER INTERFACES

library. The graphical user interface is implemented in the Fast Light Toolkit (FLTK) [12].
This is a user-interface library available for Linux, Mac OS X, Windows and most versions
of UNIX. The library is very efficient and produces highly responsive applications on any
platform. Another advantage of FLTK is that of the graphical user interface designer
FLUID, which comes with the library. FLUID provides almost the same level of rapid
application development as Borland Delphi [15] and Microsoft Visual Basic [16], but
its also providing platform independence. Drawing and visualisation are implemented
with the use of the OpenGL [7] graphics library. OpenGL is generally regarded as a
3D graphics toolkit, although it also has an effective 2D rasterisation interface enabling
hardware-accelerated drawing to be performed rapidly. With the use of this approach,
ForcePAD allows rapid sketching to be done and the finite element meshes to be updated
continually, enhancing the directness of the actions carried out.

Paper V describes the design and implementation of ForcePAD and also presents an
educational case study.

2.4.2 ObjectiveFrame

ObjectiveFrame, see Figure 2.11, was conceived for developing new ideas and principals
for user interaction in 3D finite element software. ObjectiveFrame [17] is a 3D frame-
analysis tool implemented by use of OpenGL. The user interface for it is designed so as to
resemble the way modeling is done in a shop, thus creating a virtual shop. To accomplish
this, interaction with the model needs to be immediate and the representation sufficiently
clear, for a user to feel immersed in the model. This is done by providing ObjectiveFrame
with a fully lit and shaded 3D model, together with direct feedback concerning interaction
with the objects in question.

% % %

Zoom Pan Reset

Figure 2.11: ObjectiveFrame

13

2.4. GRAPHICAL USER INTERFACES CHAPTER 2. OVERVIEW

One of the most important features of ObjectiveFrame is its ability to visualise the
response of a structure subjected to a user-controlled load in real-time. This enables
users to "feel” the degree of stiffness in different directions in a structure. An example
of this is shown in Figure 2.12. The real-time features of ObjectiveFrame have also been

% % B

Zoom Pan ' Reset

Figure 2.12: Real-time updating of a structure in ObjectiveFrame

exploited in a course in architecture 2 in which students investigate different techniques
for the construction and stiffening of high structures, experimenting with the techniques
in question and exploring the effects these have by "feeling” the mechanical properties of
the structure.

The ObjectiveFrame application is implemented in C++, using a set of platform-
independent libraries. The finite element code is implemented by the use of the NEW-
MATO09 [14] matrix and solver library. The graphical user interface is implemented in the
Fast Light Toolkit (FLTK) [12]. Rendering of 3D graphics is involves the use of the Inter-
active Visualisation Framework Ivf++ [13], a C++ scene-graph library, using OpenGL
for rendering. The ObjectiveFrame application is taken up in Paper VI.

The initial usability testing of the ideas and principals in ObjectiveFrame was done
in the different courses in which it was utilised. This has led to continued developments
of it. However, even though the usability of an application can be tested rather well in a
classroom setting, not all the answers needed can be obtained in this way. To improve the
user interface of ObjectiveFrame still more, an initial usability study was conducted early
in 2003, see Paper A.1l. This study involved analysis of the existing user interface, and a
user test of a new interface design. This new design introduced a more direct approach to
selection, creating of loads and treatment of the boundary conditions. It also introduced a
new and improved method for handling the cursor. Some of the improvements are shown
in Figure 2.13. The improvements achieved on the basis of this usability study will be
included in the next major release of ObjectiveFrame.

2A course in high structures given at the School of Architecture at Chalmers University of Technology

14

CHAPTER 2. OVERVIEW 2.5. VISUALISATION FRAMEWORK

Figure 2.13: New cursor and load handling in an ObjectiveFrame prototype

2.5 Visualisation framework

Hardware-accelerated 3D rendering is standard on most platforms today. The most com-
mon way of accessing 3D hardware is by means of an API (Application Programmers
Interface). A common API is OpenGL which is platform independent and available on
several hardware platforms. Programming a visualisation application in OpenGL can be a
complicated task, since OpenGL is a low-level API, most advanced functions such as view
transformation and rendering of advanced geometry need to be implemented by the devel-
oper. Performing a given task often involves using several OpenGL calls. A higher-level
library such as Open Inventor, OpenGL Optimizer or OpenGL Performer is frequently
employed to make 3D rendering by means of OpenGL easier. An object-oriented approach
is often used to implement libraries of this type in C++. Major disadvantages of such
libraries are that they are often designed for a specific task and that they tend to be large,
complex, and difficult to extend.

The Interactive Visualisation Framework, Ivf++, was developed as an object-oriented
layer to be placed on top of OpenGL. This library was also the basis for the FibreScope
and ObjectiveFrame applications. The library implements a scene-graph, as well as a
framework for basic user-interfaces and special widgets for interfacing with user interface
toolkits. Ivf++ is an open-source library available for downloading at Sourceforge [25] 3.
Some of the Ivf4++ features are the following:

- Modular library design. Only the parts needed are used.

- Built to be extended.

- Platform independent, compiling on Windows, Linux or SGI/Irix.

- A scene-graph with culling support.

- A reference counting system with smart pointers.

- Texturing supported by image loaders JPEG, PNG, TIFF, TGA or SGI rgb-files.

3D file format support for DXF, AC3d models and polyfiles.

- A user-interface library for creating simple OpenGL applications in FLTK, MFC
and native WIN32.

3Tvf++ 0.6.0 was released as an open source library under the LGPL license [18] in February 2000 .
The current version is 0.9, which since its creation has been downloaded over 12000 times (September
18, 2003)

15

CHAPTER 2. OVERVIEW

- 3D user interface controls.

- Stereo support.

- Complete class documentation.
- A User guide.

Paper A.2 describes the major ideas and guiding principles of the Ivf++ library.

16

Chapter 3

Concluding remarks

This work presented here concern ideas and methods on how the context of computational
mechanics can be improved for more efficient utilisation and extended into areas previously
not familiar with or capable of using such tools. Three main areas were studied:

e Providing efficient and transparent access to finite element applications.
e Developing methods for the visualisation of complex phenomena.

e Improving the usability of the finite element method, partly in an educational con-
text.

An appoach to providing more efficient and transparent access to finite element ap-
plications and to other computational mechanics software and libraries, based on the
CORBA specification is introduced and its usefulness explored.

Enhancing the understanding of complex phenomena is highly important. Many com-
putational codes produce large amounts of simulation data that need to be analysed and
evaluated. By creating tools that can visualise these simulations in real-time, understand-
ing of physical phenomena involved is enhanced. A special method for the visualisation
of large fibre networks, one that increases the size of the networks that can be visualised
in real-time, is also introduced.

Improving the usability of finite element software is important if it is to be employed
effectively in an educational setting. Normal computational mechanics codes are often
based on a very flexible hierarchical model, which is an obstacle for users unfamiliar with
it. Two approaches which appear more practicable in this respect are introduced here.
The one approach involves use of a new direct-image-based metaphor for creating a tool
that can be thought to ultimately be useful in facilitating creative processes in the work
of engineers, designers and architects. A second approach aims at improving interactivity
and the understanding of mechanical concepts in a 3D frame application using real-time
feedback of both the interface and the resulting deflection of the structure.

17

CHAPTER 3. CONCLUDING REMARKS

3.1 Transparent access to finite element software

The design of computational mechanics software has not changed fundamentally over the
years. The basic computational code is designed as a normal console application, files or
a relational database being used for communication and storage purposes.

In computer science, many new technologies have emerged which facilitate the more
flexible use of applications. Many applications today have an embedded script language,
such as Python [19], Visual Basic for Applications (VBA) [20], Tcl/Tk [21] or Ruby [22].
These script languages enable users to readily extend and utilise applications in ways that
would otherwise have required their being recompiled. Distributed technologies such as
.NET [5], CORBA [1] and Java RMI [3] provide a middle layer for distributing resources
over the internet. The use of computational mechanics software can be made more flexible
and efficient by use of such technologies.

User interface codes are often implemented in Java, C or C++. Interfacing compu-
tational codes based on these languages often requires special interface layers, the de-
velopment of which can be time-consuming. Through use of CORBA and the interface
definition language (IDL) for describing the functionality of computational mechanics
codes, many of these problems can be solved. Using IDL, functionality of a computa-
tional code can be defined in a language neutral way allowing the code for interfacing
with IDL-specified objects and functions to be generated in any desired language auto-
matically. The original computational code can still be kept in the original implementation
language, providing stability and maintainability.

Another way of accessing a computational code is by providing an interface to a script-
language. Through using CORBA when developing computational codes, interfacing with
script-languages becomes an automatic process. Some CORBA implementations, such as
fnorb [23] and omniORB [24] support the generation of interfaces to script languages
directly from the IDL-definitions involved.

Computational mechanics codes implemented with use of a CORBA interface also take
advantage automatically of the distributed features of CORBA. Location transparency
is implicit in the CORBA specification. A client application accessing CORBA objects
or functions does not need to be implemented in any special way for calling remote
or local objects. This enables computational mechanics codes to be placed on powerful
computational resources allowing clients located either remotely or locally to access them.
Client applications involving either aweb-based client or a stand-alone client can access
the resources available, providing for efficient use of the computational resources.

The implementation and performance characteristics of using CORBA and other dis-
tributed techniques in computational mechanics software are taken up in Papers I, IT and
I11.

3.2 Visualisation of complex phenomena

The visualisation of complex phenomena in results provided by computational mechanics
codes is important for the evaluation and understanding of physical phenomena. For the

18

CHAPTER 3. CONCLUDING REMARKS

analyses carried out to be efficient, and understanding of phenomena that is provided to
be adequate it is also important that the visualisation obtained can be interacted with the
in real-time. This enables results to be animated, providing for a better understanding of
time dependant effects.

Efficient real-time rendering also facilitates computational steering. The results at each
time step of a simulation being visualised allows the user to determine quickly whether or
not the simulation is errorneous, allowing the simulation to be terminated if appropriate or
the parameters to be changed in the course of the simulation, reducing the time required
for analysis.

The large amount of result data that computational software produces, can be difficult
to analyse and to evaluate if non-conventional geometries and enteties are employed. At
the same time standard post-processors are often designed for standard element types
only, having difficulties in dealing with non-standard elements. Visualising the behaviour
of the thousands of fibres included in a fibre network simulation [6] often requires advanced
3D graphics hardware. Taking advantage of techniques developed in the field of scientific
visualisation, such as billboarding, impostors and texturing, can improve performance
and reduce the hardware requirements considerably.

A special textured billboard method was developed to increase the number of fibres
that can be visualised in real-time. This method involves a line being swept along the
fibre spine, reducing the triangles to two per fibre segment. Visibility issues are solved by
orienting the band toward the user at each spine vertex. Due to the band fibre being flat,
however, the fibres do not look round unless special measures are taken. These involve
applying a special gradient texture to the band.

Paper IV describes the method implemented here and the post-processor software
FibreScope developed for this method.

3.3 Usability and educational aspects of finite element
software

Computational mechanics software is often designed to be very general, supporting sev-
eral types of elements and differing geometries. The software typically employs a hier-
archical description of the problem to be studied, see COSMOS [26], MSC/Patran [27],
ABAQUS/CAE [28]. If the user is familiar with the conceptual model involved, hierar-
chical models can be both efficient and flexible, but if the user is not, the complexity of
such models can be difficult to handle, see Shneiderman p.68 [29].

The overall usability of computational mechanics tools needs to be improved if these
are to be used effectively in a broad context, such as in an educational setting or with
divergent groups of users. The demands on usability placed on conventional computational
software in an educational setting is often greater than that placed on it in an engineering
setting. Students unfamiliar with finite element method is scarcely able to make adequate
use of an advanced finite element package.

In a problem-based learning environment, applications need to support both exper-
imentation and an iterative design process, creating a virtual workbench. The major

19

CHAPTER 3. CONCLUDING REMARKS

methods of implementing this in computational mechanics software are to make applica-
tions more direct and to provide rich feedback. To accomplish this, the principles used in
the design of user interfaces in computational mechanics software need to be changed.

One approach suggested in the work reported here is to replace the classical hierarchi-
cal modelling approach by an image-based modelling metaphor, such as found in Adobe
Photoshop [10] for example. Image-editing applications are often very direct and easy
to use, being based on the direct-manipulation concept!, creating structures as easy as
selecting a brush and moving the pointer. The user can also see the results immediately.
The ForcePAD [9] application described in Paper V implements the suggested image-
based modeling metaphor in a 2D finite element application. Instead of drawing with
color as in an image editor, the user draws with a grey scale, white representing no stiff-
ness at all and black maximum stiffness. The user is able to quickly create and solve finite
element models without having to spend time on modeling the geometry. The ForcePAD
software has successfully been used in teaching students in engineering, architecture and
industrial design.

In 3D finite element modeling, problems of usability are even more problematic. Many
finite element pre-processors simply extend the metaphors found in mechanics textbooks
to 3D conditions. This approach has two main drawbacks. One is that mechanics text-
books often concern 2D problems, where the metaphors in question work satisfactory.
Extending these metaphors to 3D conditions is not always intuitive. A second drawback
is that the symbols found in textbooks often require a thorough understanding of the
underlying principles. To make 3D finite element modeling more accessible to a larger
user group, the user interface needs to be improved. The ObjectiveFrame application
described in Paper VI, was developed to study possible improvements that can be made
in existing 3D finite element packages. ObjectiveFrame implements a user interface that
responds directly to the user’s inputs, any changes in the dimensions involved or rotation
of a beam being instantly displayed. ObjectiveFrame also takes real-time feedback one
step further. Users are able to "feel” the stiffness of a structure by placing a load on the
structure involved the displacements that occur being updated and visible immediately
in the 3D view. A small usability study concerned with a new version of ObjectiveFrame
was carried out, a version which involved use of 3D widgets allowing load and boundary
condition placement to be determined by use of a direct approach, see Paper A.l.

LA software using direct manipulation should possess the following properties: visibility of the objects
of interest, rapidity and reversibility, incremental action, and replacement of a complex command language
syntax by direct manipulation of the object of interest [30]

20

Bibliography

Object Management Group Inc., http://www.omg.org, 2000
Microsoft Corporation, DCOM Technical Overview, 1996

Sun Microsystems Inc., JavaTM Remote Method Invocation, http://java.sun.com/-
j2se/1.3/docs/guide/rmi/index.html, 2003

PHP - PHP Hypertext Preprocessor, http://www.php.net, 2003
Microsoft .NET Framework, http://msdn.microsoft.com/netframework, 2003

Heyden S, A 3D Network Model for Evaluation of Mechanical Properties of Cellulose
Fibre Fluff, Report TVSM-1011, Division of Structural Mechanics, Lund University,
2000

OpenGL, http://www.opengl.org, 2003

Edlind N, Modelling and Visualization of the Geometry of Fibre Materials, Report
TVSM-5117, Division of Structural Mechanics, Lund University, 2003

ForcePAD, http://www.byggmek.lth.se/resources/forcepad/forcepad.htm, 2003
Adobe Photoshop 7, http://www.adobe.com/products/photoshop/main.html, 2003
Jasc Paint Shop Pro 7, http://www.jasc.com, 2003

B. Spitzak, Fast Light Toolkit FLTK, http://www.fltk.org, 2003

Interactive Visualisation Framework - Ivf++, http://www.gorkon.byggmek.lth.se /ivfweb,

2003
Newmat C++ matrix library, http://www.robertnz.net/nm_intro.htm, 2003
Borland Delphi, http://www.borland.com, 2003

Microsoft Visual Basic, http://msdn.microsoft.com/vbasic, 2003

ObjectiveFrame http://www.byggmek.lth.se/resources/objectiveframe/objectiveframe.htm,

2003

The GNU Lesser General Public License, http://www.fsf.org/licenses/licenses.html-
#LGPL, 2003

21

BIBLIOGRAPHY BIBLIOGRAPHY

[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]
[29]

[30]

Python, http://www.python.org, 2003

Microsoft Visual Basic for Applications, http://msdn.microsoft.com/vba, 2003
Tcl Developers site, http://www.tcl.tk, 2003

Ruby: Programmers’ Best Friend, http://www.ruby-lang.org/en, 2003

The pure Python CORBA ORB, http://www.fnorb.org, 2003

The omniORBpy version 2 User’s Guide, http://omniorb.sourceforge.net/-
omnipy2/omniORBpy, 2003

Sourceforge - Breaking Down The Barriers to Open Source Development,
http://www.sourceforge.net, 2003

COSMOSWorks, http://www.solidworks.com/pages/products/cosmos/cosmosworks-
.html, 2003

MSC.Patran, http://www.mscsoftware.com/products/products_detail.cfm?PI=6,
2003

ABAQUS Inc., http://www.abaqus.com, 2003

B. Shneiderman, Designing the user interface : strategies for effective human-
computer interaction, Third edition, Addison-Wesley, 1998

J. Preece et al, Human-Computer Interaction, Addison-Wesley, 1994

22

Part Il

Appended Papers

23

Paper |

An Approach For Distribution Of
Resources In Structural Analysis
Software

European Conference on Computational Mechanics - ECCM 99

25

26

AN APPROACH FOR DISTRIBUTION OF RESOURCES IN
STRUCTURAL ANALYSIS SOFTWARE

J.Lindemann*, G. Sandberg and O. Dahlblom

Division of Structural Mechanics, Department of Mechanics and Materials
Lund Institute of Technology, Lund University
P.O.Box 118, SE-221 00 LUND, Sweden
e-mail: strucmech@byggmek.Ith.se, web page: http://www.byggmek.Ith.se/

Key words: three-tier, DCOM, CORBA, software, structural mechanics, distributed

Abstract. A sample structural mechanics code is implemented using the Fortran 90 language.
This code is encapsulated by DCOM components using the C++ Language. The different
components of the code can be transparently placed either locally or remote without changing
the client application.

27

ECCM '99, Miinchen, Germany

1 Introduction

A complex hardware product often consists of many exchangeable components. As long as a
component fits into the product, the internal implementation can differ. Software components
are analogous to hardware components. A Software component consists of a description of its
interface and an implementation. Components in programs can be exchanged without the need
for recompilation, as long as the program uses the same component interface. The use of
components in software development has increased during the last few years. The reason for
this is the need to reduce the size of the client programs. When the first client/server systems
appeared the client software were often large programs. Most of the processing was done in
the client program and the database server was used as data storage. The problem with these
systems was the cost of maintaining and installing the client software. The new systems
being developed today often use a three-tier approach. A thin client with little or no data
processing capabilities is used. Instead of calling the database servers directly, they use a set
of components placed on central servers for data processing. These components then access
the database servers. The components are often implemented using the DCOM or CORBA
standards. The advantage of this approach is that the components can be placed on powerful
systems reducing the amount of processing needed at the client. The client software can then
be reduced to only handle user interface interaction.

In the present work, a three-tier approach is applied to structural analysis software. The
computational parts of analysis codes can be placed on remote servers. Access to the codes
can be achieved using components implemented using DCOM or CORBA. The clients can
use these components as if they were located on the same machine, making it possible to
create integrated programs with transparent access to advanced computational resources.

2 Three-tier applications

Three-tier and n-tier applications emerged from the need to shield the client program from
changes at the server side by placing a layer between the client and the server. A detailed
history of the client/server architecture is described in [11]. In the following, the three-tier
approach as applied to database applications is briefly described. For a more detailed
description of how to implement, three-tier applications see for example [9].

The logical three-tier model divides an application in three or more logical components. Each
component is responsible for a well-defined task. An application can for example consist of
the following components:

— Presentation service responsible for displaying data and editing data.
— Logic/Rules service.
— Database service responsible for storing the data with referential integrity.

28

ECCM '99, Miinchen, Germany

The components of the logical model can be grouped together in different configurations to
form a physical model.

In the physical two-tier application the logic/rules service are combined with either the
presentation service or the database service to form a physical two-tier implementation. When
the logical logic/rules service is combined with the presentation service, the client is often
called fat client, see Figure 1. When the logic/rules service is combined with the database
service this is often called fat server, see Figure 2. The three logical services can also be
placed as separate applications at many different servers forming a physical three-tier
application. See Figure 3.

Client Server
Presentation Database
Logic/Rules

Figure 1 - Fat client

Client Server
Presentation Logic/Rules
Database

Figure 2 - Fat server

Client Middle layer Server

Presentation Logic/Rules Database

Figure 3 - Physical three-tier application

Today the middle layer often consists of distributed objects implemented using either
CORBA or DCOM. These middle layer objects handle the application logic and database
connections in an object oriented way. The clients in a physical three-tier application are very
light applications, only containing code to display and edit the information it receives from
the middle layer. This implementation enables developers to have a greater flexibility in the
choice between different hardware and software configurations. It also enables existing
systems to be integrated in new program developments. In this scenario, the middle layer also
shields the client applications from any changes if the existing system is upgraded in the
future.

29

ECCM '99, Miinchen, Germany

3 Distributed Computing

Distributed Computing is defined as a type of computing in which different components and
objects comprising an application can be located on different computers connected to a
network, for an overview see [13]. During the last decades distributed computing has evolved
and a number of enabling technologies have been developed. Both DCOM and CORBA
implementations make use of these technologies. The following sections describe some of
these technologies.

The OSF Distributed Computing Environment [13] is a vendor-neutral set of distributed
computing technologies. DCE provides the following services

— Remote Procedure Call
— Directory Services

— Time Service

— Security Service

— Threads Service

These services lay the foundation for the distributed object models DCOM and CORBA.

The remote procedure calls service of DCE [13] enables one program to call a subroutine on a
different computer without knowing that the implementation of the subroutine is placed on a
server. A first version of RPC was developed in the early eighties by Sun Microsystems as a
part of their Open Network Computing architecture (ONC). DCOM as well as many CORBA
ORB implementations are based on the RPC service.

4 Distributed Object Computing

There are today two coexisting technologies for distributed object computing DCOM and
CORBA.

Microsoft's distributed COM (DCOM) [4] extends the Component Object Model (COM) [12]
to support communications among objects on different computers on a local area network
(LAN) or the Internet. For a more technical description see [12]. Because DCOM is based on
COM many existing COM-based applications can be distributed without modification.
DCOM also introduces new facilities for actively controlling remote objects previously not
available to COM.

Initially DCOM could only be used on the Microsoft Windows NT and Windows 95
operating systems, but this has changed during the last two years. DCOM is currently
implemented on the following platforms:

— Compagq, Tru64 UNIX
— Compag, OpenVMS Version 7.2

30

ECCM '99, Miinchen, Germany

— Sun Microsystems, Solaris
— Linux

— Silicon Graphics, IRIX

— Hewlett Packard, HP/UX
— IBM, OS/400 and AIX

CORBA [7] is the Object Management Group's specification for interoperability and
interaction between objects and applications. Objects and applications can be placed on any
platform and accessed from any platform. CORBA 1.1 was released in 1991 and defined the
Interface Definition Language (IDL) and the Application Programming Interfaces (API) that
enable client/server interaction within a specific implementation of an Object Request Broker
(ORB). CORBA 2.0 was released 1994 and specifies how ORBs from different vendors can
interoperate. Because CORBA is a specification, it is platform independent. To use the
CORBA specification an ORB has to exist for the specified platform. ORB:s exists for almost
all existing platforms today.

The implementation described in this paper was performed using the DCOM specification,
but it could also have been implemented using the CORBA specification.

5 Distributed Component Object Model (DCOM)

DCOM is widely used for distributed computing on the Windows platform because it is built
into Microsoft's operating systems. Most applications using the Component Object Model
(COM) can without modification be distributed using DCOM. To use all facilities available in
DCOM, modifications to the code are necessary. This chapter will introduce DCOM and the
terms used when developing distributed applications with this specification. For a more
detailed, description, see [4].

The DCOM specification is language neutral, which makes it possible to write COM and
DCOM objects using any language. One of the advantages of this approach is the possibility
to encapsulate existing code into DCOM objects.

DCOM/COM objects are accessed through a set of interfaces. The interface is a contract
between the client and the object. Once an interface has been released, it can not be changed.
If it could be changed, clients using this interface would crash. Functionality is added by
adding a new interface to an object. This makes it possible for older clients to access the new
object through the old interface.

31

ECCM '99, Miinchen, Germany

Old client >0 Old object
|0ldInterface
Old dlient Updated
—»O0——
object
I0ldInterface
INewInterface
New client

Figure 4 - Extending object functionality

New interfaces can be derived from existing ones using inheritance. Each interface in DCOM
is given a globally unique identifier called GUID. The GUID identifier is a 128-bit value
generated with a special algorithm guaranteeing it will be statistically unique.

Objects in DCOM implement the functionality of the interfaces. There are three main object
types in DCOM. In-process object, Out of process objects and Remote objects.

In-process objects reside in the same process as the client application, see Figure 5. Calls to
object methods are done directly through the virtual method table. This means no
performance loss when calling an object method. In-process objects are implemented as
dynamic link libraries (DLL).

Process

Client >0 Object

Figure 5 - In-process object

Out of process objects are objects residing in different processes. Clients can not directly call
an object in a different process. DCOM handles this by placing a proxy-object in the client
process. These proxy-objects then call the DCOM run-time that marshals the parameters over
the process boundaries. In the server, a special stub-object calls the actual object itself. Figure
6 illustrates this. The advantage using out of process objects is fault-tolerance. If the object
crashes it won't take down the client process. The disadvantage of out of process objects is the
time required marshalling the data over the process boundaries. Out of process-objects are
often implemented as executable files. In-process objects can also be implemented as out of

32

ECCM '99, Miinchen, Germany

process objects by using a special application (dllhost.exe) which loads the object into its
process space.

Process Process

Client o—I Object

Figure 6 - Out of process objects

Remote objects are objects residing on different machines. These objects are handled in the
same way as out of process-objects with a proxy/stub mechanism.

Network

Process Process

Client o— Object

Figure 7 - Remote objects

6 A sample finite element implementation based on DCOM

To illustrate the method for distribution of resources a three-dimensional beam analysis
program was chosen as sample implementation. The goal of the sample implementation was
to divide it into self contained components. These are then assembled in a visual development
system as Borland Delphi 4 [2] or Microsoft Visual Basic 6.0 [6].

The sample application was implemented as a 32-bit Windows application using a three-
dimensional user interface implemented in OpenGL [8] see Figure 8. The application was
divided into six logical components see Figure 9. By dividing the application into
components, the application becomes easier to maintain during development and after. By
dividing the middle-layer into more components, the application is more open for different
distributed configurations.

33

ECCM '99, Miinchen, Germany

[/ Frame3D - Structural Mechanics.

Figure 8 - Sample frame application

Presentation layer Middle-layer Impl. layer
Application FrameSolver external solver
Editor FrameModel

Result viewer

FrameResult

Figure 9 - Logical system components

6.1 Interfaces

In the Frame application, a set of interfaces is used to control the functionality of the different
objects. Figure 10 shows the interfaces used in the application. There are two major of

advantages of using interfaces in an application:

34

ECCM '99, Miinchen, Germany

1. When functionality is added this is done by adding new interfaces to the objects. This
makes it possible for older clients to use the old interfaces without modification.

2. The middle-layer and implementation layer can be changed completely as long as the new
implementation supports the published interfaces clients can use the new implementation
without modification.

There are two kinds of interfaces in the Frame application. The first interfaces are the default
interfaces returned when an object has been created. From these interfaces, a set of general
finite element interfaces can be retrieved to edit finite element data.

Presentation layer Middle layer Implementation layer

Frame3D FrameSolver External
solver

ICalcControl——
|
[@—ICalcControlEvents:

IFrameModel

IFrameModel

IvfEdit FrameModel

\Noqe5e14>
[ElementSet——
+——IBounda ryFondmons—b

INodel oad: >

IFrameResul

Iviviewer FrameResult
IDisplacements——>

\E\eme%vtForces—b —
IReactionForces—

Figure 10 - Interfaces used in the Frame application

Interface Description

INodeSet Defines a set of functions for handling a set
of nodes.

IElementSet Defines a set of functions for describing a
set of elements.

IBoundaryConditions Defines functions for setting boundary
conditions.

INodeloads Defines functions for defining node loads.

IDisplacements Defines functions for accessing the global
displacements

IReactionsForces Defines function for accessing the global
reactions.

IElementForces Defines functions for accessing element
forces.

Table 1 - General finite element interfaces used in the Frame application

35

ECCM '99, Miinchen, Germany

If the solver is updated to handle structural dynamic problems, new interfaces can be derived
from the above interfaces to implement the new functionality. As an example,
IDynamicNodeLoads extends the INodeLoads interface and IDynamicDisplacements extends
IDisplacements. The new solver can still be used as a static solver by using the old interfaces.

Interfaces can also be officially released with the software, enabling third party software to
integrate with the application. This can create new applications that integrate many
disciplines. A pre-processor can use the interfaces directly to define the finite element model
instead of creating an input file.

6.2 Presentation layer components

The presentation layer objects are responsible for interaction and presentation of the model for
the user.

The main application is implemented using Borland Delphi 4 [2] integrated development
environment (IDE). Delphi is used to assemble the sample application components into a
Windows application. The only code written in the Delphi application is code for managing
menus, toolbars and component states. Main functionality is contained in the IvfEdit and
IvfViewer components.

The NfEdit-component handles three-dimensional geometry editing. The component is
implemented in C++ as a Microsoft Foundation Classes (MFC) [5] ActiveX component.
Drawing is done using a special developed visualisation class library (Interactive
Visualisation Framework, IVF) implemented using OpenGL [8]. When the application has
been started, the component is given an interface to the FrameModel middle-layer component
enabling it to update this component automatically. To enhance performance the IvfEdit- and
FrameModel components both maintain an internal representation of the finite element
model. This prevents network- or inter-process communication each time a geometric element
is added or removed in the IvfEdit-component. Updating of the FrameModel component is
done using the Load and Store methods of the vfEdit-component. The Load method reads the
model stored in FrameModel and creates an internal representation using IVF. Store transfers
the internal IVF model to the FrameModel-component.

<«— | Store

IvfEdit - FrameModel —>

Figure 11 - IvfEdit integration with FrameModel

36

ECCM '99, Miinchen, Germany

The IvfViewer -component is responsible for visualising the result database. The component is
implemented in C++ as a Microsoft Foundation Classes (MFC) [5] ActiveX component.
Drawing is done using a special developed visualisation class library (Interactive
Visualisation Framework, IVF) implemented using OpenGL [8]. When the application has
been started the component is given an interface to the FrameResult middle-layer component
enabling it to retrieve information directly from this component.

IvfViewer o FrameResult
<«— | Load

Figure 12 - IvfViewer integration with FrameResult

6.3 Middle-layer components

The middle-layer components shield the client application from the finite element solver
details. By using a middle-layer, the finite element implementation can easily be replaced
without changing the client applications.

The FrameModel component stores all information needed to describe the finite element
model. The component is implemented using C++ and Microsofts Active Template Library
(ATL). For a description of how ATL is used, see [10]. ATL is a set of template classes for
creating DCOM/COM objects. The template classes have predefined implementations of most
of the standard DCOM/COM interfaces that make it easier to create components for
DCOM/COM.

IFrameModel O— FrameModel

INodeSet O—

IElementSet O—]

INodeLoads J) J) IBoundaryConds

Figure 13 - The FrameModel component

FrameModel maintains an internal class structure describing the finite element model. The
classes are exposed with the interfaces INodeSet, I[ElementSet, INodeLoads and
IBoundaryConds. With these interfaces, it is possible to create nodes, elements, loads and

37

ECCM '99, Miinchen, Germany

boundary conditions. In the Frame application, the FrameModel component stores itself to
disk using a simple textfile. In larger projects, it will probably be necessary to store the finite
element model in a relational database to handle large data volumnes.

The FrameSolver component manages the finite element solver. The DCOM object is
implemented using C++ and Microsoft Active Template Library (ATL). The solver itself can
be implemented by calling an external commercial solver or placing custom solver code
directly into the component. The last choice is probably the best if a new solver is to be
developed. When developing solvers in Fortran, DIGITAL Visual Fortran 6.0 [1] can create
special interface modules to enable Fortran code to call DCOM/COM objects directly.

FrameSolver

5

ICalcControl

IFrameSolver O——

Figure 14 - The FrameSolver component

If the FrameSolver component is to be placed on other operating systems than Windows, it is
important to develop the component without using any of the Windows user interface
routines. When using standard ATL generated objects, this is no problem.

The FrameResult component is responsible for managing the results generated from the
calculation. This component was implemented using Object Pascal and the Delphi IDE [2].
The results were stored in a relational database. Results from the database are accessed from
the interfaces IDisplacements, IReactionForces and IElementForces.

IFrameResult O— FrameResult

IDisplacements O—

IReactionForces O—

|[ElementForces (g

Figure 15 - The FrameResult component

The Microsoft Jet Database engine was used in the Frame application, but if a large amount of
data is to be handled a more powerful database engine has to be used. With larger problems
terabyte size data are common and places high demands on the database engine.

38

ECCM '99, Miinchen, Germany

6.4 Three-tier implementations

Using the components described in the previous section and the three-tier model described in
chapter 2 make it possible to configure the application in many different ways. One
configuration is to place all components on the local machine. This has the advantage of not
relying on any external resources. A disadvantage is that the installation can be quite
complex. All components has to be installed and registered. Updating of software often
requires a new installation. Figure 16 shows an example of this type of installation.

Local machine
Client Middle-layer Impl. layer
Application FrameModel
[
Editor FrameSolver Ext. Solver
[
Result viewer FrameResult

Figure 16 - Local installation

Another configuration is shown in Figure 17. This is a physical two-tier configuration. In this
configuration, the middle-layer and implementation layer components are grouped together on
a remote machine. The client contains only the application and the visual components. This
configuration is typically used if a shared calculation server is installed in the network. The
advantage of this configuration is that the client side is easy to maintain and is freed from
heavy calculations. The disadvantage of this configuration is that the remote machine is fixed
and difficult to modify.

A way of making the configuration more flexible is to divide the components into a physical
three-tier solution. In this configuration the middle-layer and implementation layer are placed
on different machines. The middle-layer in this configuration can then distribute the work
over many machines. The configuration is also more flexible in that the implementation layer
can be placed on a super computer and the middle-layer on small Windows NT or Unix
servers. Figure 18 shows a physical three-tier configuration.

39

ECCM '99, Miinchen, Germany

Local machine

Client

Application

Editor

Remote machine

Result viewer

Middle-layer Impl. layer
FrameModel
I
FrameSolver | | Ext. Solver
I
FrameResult DBMGR

Figure 17 - Physical two-tier configuration

Remote machine 4
Remote machine 3

Local machine

Client

Application

Editor

Remote machine 1

Middle-layer

FrameModel

FrameSolver

Result viewer

Remote machine 2

Impl. layer

Ext. Solver

FrameResult

DBMGR

Figure 18 - Physical three-tier implementation

7 Conclusion

Using a three-tier implementation, with interfaces and components creates a very flexible
finite element application. The three-tier implementation protects the client applications from
changes in configuration and solver design. Components are easily configurable and
maintainable which reduced development. By using interfaces when communicating with
components, the need to recompile client software when new functionality is introduced in the
solver components is reduced. Interfaces can also be published enabling other software to use
the finite element application in an effective way.

40

ECCM '99, Miinchen, Germany

The DCOM and CORBA specifications also enable new ways to use software. Client
software can easily distribute calculations over available workstations. High Performance
Computing (HPC) centres would be able to host a set of applications as DCOM or CORBA
objects. From a web site users can register themselves as users and download client
applications that connect to the objects. This would make high performance computing more
available to a wider user group.

References

[1] COMPAQ DIGITAL Products and Services, DIGITAL Visual Fortran 6.0, http://
http://www.digital.com/fortran/

[2] INPRISE Corporation, Borland Delphi 4.0, http://www.borland.com
[3] Internet.com LLC, PC Webopadia, http://webopedia.internet.com/
[4] Microsoft Corporation, DCOM Technical Overview, 1996

[5] Microsoft Corporation, Microsoft Foundation Class Library 4.0: C++ Application
Framework for Microsoft Windows, 1995

[6] Microsoft Corporation, Microsoft Visual Basic 6.0, http://www.microsoft.com
[7] Object Management Group, Inc., http://www.omg.org

[8] OpenGL The industry's Foundation for High Performance Graphics,
http://www.opengl.org

[9] R. Orfali and D. Harkey, Client/server programming with Java and CORBA. — 2nd
ed., John Wiley & Sons Inc., 1998

[10] G. Reilly, Developing Active Server Components with ATL, Microsoft Corporation,
1997

[11] G. Schussel, Client/Server: Past, Present and Future,
http://news.dci.com/geos/dbsejava.htm

[12] S. Willliams and C. Kindel, Microsoft Corporation, The Component Object Model: A
Technical Overview, 1994

[13] The Open Group, http://www.opengroup.org/dce

41

42

Paper ||

Using CORBA Middleware in
Finite Element Software

Future Generation Computer Systems, 2003, Accepted for publication

43

44

Using CORBA middleware in finite element
software

J. Lindemann, O. Dahlblom and G. Sandberg

Division of Structural Mechanics, Lund University
strucmech@byggmek.lth.se

Abstract. Distributed middleware technologies, such as CORBA can
enable finite element software to be used in a more flexible way. Adding
functionality is possible without the need for recompiling client code.
Applications and libraries can expose their functionality to other ap-
plications in a language neutral way, enabling a more direct and easy
transfer of data, without the need for intermediate input and output
files. The CORBA software components can be easily configured and
distributed tranparently over the network. A sample structural mechan-
ics code, implemented in C++ is used to illustrate these concepts. Some
future directions, such as placing CORBA enabled finite element software
on HPC centres are also discussed.

1 Introduction

A complex hardware product often consists of many exchangeable components.
As long as a component fits into the product, the internal implementation can
differ. Software components are analogous to hardware components. Compo-
nents in programs can be exchanged without the need for recompilation, as long
as the component interface is unchanged. The use of components in software de-
velopment has increased during the last few years. The reason for this is the need
to reduce the size of the client programs. When the first client/server systems
appeared, the client software were often large programs. Most of the processing
was done in the client program and the database server was used as data storage.
The problem with these systems was the cost of installing and maintaining the
client software. New systems developed today often use a thin client with little or
no data processing capabilities. Instead of calling the database servers directly,
they use a set of components placed on central servers for data processing. These
components then access the database servers. The advantage of this approach is
that the components can be placed on powerful systems, reducing the amount
of processing needed at the client. This approach has been successfully applied
to database applications. It is of interest to apply this technique to analysis
software as well. Using the technique of distributed computing, clients can use
components as if they were located on the same machine, making it possible to
create integrated programs with transparent access to computational resources,
such as available workstations on the network or resources at High Performance

45

Computing (HPC) centres. This would make high performance computing more
available to a wider user group.

The present work describes structural analysis software, where the compu-
tational parts of analysis codes can be placed as components on remote servers.
Before describing the structural analysis code, a brief overview of client/server
architecture will be given.

2 Client/server architecture

Three-tier and n-tier applications emerged from the need to shield the client
program from changes at the server side by placing a layer between the client and
the server. The history of the client/server architecture is described by Schussel
[25]. For a more detailed description over the client /server architecture, see Orfali
and Harkey [18]. The logical three-tier or n-tier model divides an application
into three or more logical components. Each component is responsible for a well-
defined task. In a database application there would be a presentation layer for
displaying data and modifying data, a logic and rules layer and a database layer
responsible for storing the data.

The components of the logical model can be grouped together in different
configurations to form a physical model. One of the most interesting combi-
nations of the logical model is when the three logical services are placed as
separate applications on different computers, forming a physical three-tier ap-
plication. This implementation enables developers to have a greater flexibility in
the choice between different hardware and software configurations.

3 Distributed computing

Distributed computing is defined as a type of computing in which different com-
ponents and objects comprising an application can be located on different com-
puters connected to a network; for an overview see [16].

Currently, there are three coexisting technologies for distributed object com-
puting DCOM [2], Java Remote Method Invocation RMI [24] and CORBA [1].
Microsoft’s distributed COM (DCOM) extends the Component Object Model
to be used over the network. RMI or Remote Method Invocation [24] is a dis-
tributed technology based on the Java language. CORBA is the Object Man-
agement Group’s [1] specification for interoperability and interaction between
objects and applications. Objects and applications can be placed on any plat-
form and accessed from any platform.

This paper describes an implementation in CORBA. In a previous paper [12]
a DCOM based implementation has been studied.

DCOM is mainly used on Microsoft compatible platforms, but using third-
party products, it can be ported to most Unix platforms. This technology enables
Java objects to communicate transparently over the network. To use the CORBA
specification there has to be an ORB (Object Request Broker) for the specified
platform. There are ORBs for almost all existing platforms today.

46

4 CORBA

4.1 Concepts and Terminology

To describe a CORBA based implementation, it is important to understand some
terminology and concepts of a CORBA implementation. Some of the more im-
portant concepts and terminology is shown below. A more thorough description
can be found in Henning and Vinoski [10].

— A client is an entity that invokes a request on a CORBA object.

— A CORBA object is a “virtual” entity capable of being located by an ORB
and having client requests invoked on it.

— A server is an application with one or more CORBA objects.

— An object reference is a handle used to identify, locate and address a CORBA
object. Object references is the only way for a client to access CORBA
objects.

— A servant is a programming language entity that implements one or more
CORBA objects.

Communication in CORBA is done by a client invoking requests on a CORBA
object through either a statically linked stub in the client application or through
the dynamic invocation interface (DII). The requests are dispatched to the local
ORB which in turn dispatches these requests to an ORB on the remote ma-
chine. The remote ORB then dispatches the request to an object adapter, which
then directs the request to the servant implementation code. Figure 1 shows an
overview of the CORBA architecture.

4.2 Interface definition language

To access a CORBA object the client must know which methods and properties
it contains. This description is called an interface. To describe such interfaces
CORBA wuses the Interface Definition Language (IDL). In this language the
object interfaces are described. Using a separate language for describing the
objects makes CORBA language neutral. This enables CORBA applications to
be implemented in a variety of different languages. To implement CORBA clients
and objects the IDL definition is compiled using an IDL compiler. This compiler
takes the interface definition and generates the implementation code for both
client and server, in the desired implementation language.

The following code shows an example of a simple IDL interface, declaring an
interface to an Echo object. In this case the object echoes the string word back
to the calling client.

interface Echo {
string Shout(in string word) ;

}

47

Client application Presentation layer
Dynamic
Static stub Invocation
Interface - DIl
Client ORB
Network ———— Middle layer
Server ORB
Object
adaptor Skeleton
Server application Implementation layer

Fig.1. CORBA architecture

Compiling this example using a C4++ IDL compiler, will generate a header
file and an implementation source file for accessing the object described from
a C++ based application and the skeleton code for implementing the servant
object in C++.

In Orbacus [17] the IDL compiler implements the interface in the Echo object,
using C++ classes. The generated client code is shown below.

class Echo : virtual public CORBA::0Object {
Echo(const Echo&);

public:

char* Shout(const char* word);

};

The different files generated by the C++ IDL compiler are shown in figure 2.

4.3 Name service

One of the biggest benefits of CORBA is location transparency. Information
about server location is often not included in the client application. This makes
it easy to configure a client/server setup. A client only needs an object reference

48

- - IDL
simple.idl compiler

|simple.h | <- |simp‘I;.cpp| |simp|e_ske|.h |<—| simple_skel.cpp|
/Il\ /Il\
| simpIeIKimpI.h |<—| simple_impl.cpp|
/
Client application :

server.cpp

Server application

Fig. 2. Relationships between the files generated by the C++ IDL compiler

to connect to an object. Object references are unique identifiers, which also
include information about the location of objects. To connect to objects the
client needs a way of retrieving an object reference. Before the introduction of
CORBA 2.3, object references were often transferred using files over a network
file system or using a non-standard method of name lookup. In CORBA 2.3
a name service was introduced. The name server stores object references in a
human readable form. When a server is started, it creates an entry in the name
server for the object reference. The client then queries the server by name to
receive the object reference. See Figure 3. By using a name server, client/server
configuration can be done transparently. Name server location is the only thing
that has to be configured for the servers and the clients. Clients and servers get
the location of the name server by specifying special command line options.

Name server

3. Receives reference 1. Adds name and reference

2. Requests object by name

Client

4. Connects to object

Fig. 3. Name server lookup

49

4.4 Object creation and destruction

Before request to an object can be made, the object implementation (servant)
must be instantiated and activated. In CORBA this is done by the object
adapter. Earlier CORBA specifications only included a limited basic object
adapter (BOA). To enhance the functionality of this object adapter many ORB
vendors added non-standard extensions. The consequence of this was that the
server side of a CORBA application became ORB dependent. With CORBA 2.3
this limitation was removed by the introduction of the Portable Object Adapter
(POA).

Different types of policies for the creation and destruction of objects can
be specified using lifetime policies for the portable object adapter (POA) in
CORBA. Figure 4 illustrates the typical lifetime of a CORBA object. The default
policy is TRANSIENT. In this policy the object can not be reactivated, when it
has been deactivated. The object reference of a TRANSIENT object is only valid
when the object is active. The PERSISTENT lifetime policy enables objects to be
activated and deactivated multiple times. This requires that the object servants
are able to store their state in a persistent form between the activations.

Object exists

N

Object active

Servant Servant
.—Creat\on created destroyed —Destruction%@

Object inactive

Fig. 4. Object creation and destruction

Because CORBA is a distributed technology, the creation of objects must be
handled in a different way than it is handled when creating local objects. In a
CORBA system, objects are created by special factory objects.

The destruction of a CORBA object is not done by the factory, instead a
special method is declared in the object interface for removing the object. If
the factory was responsible for destroying the object, the client referencing the
object would also have to reference the factory when destroying the object. This
would be quite complex if the object reference has been passed from object to
object. The process of creating and destroying is discussed in detail in Henning
and Vinoski [10].

5 CORBA in finite element software

Most finite element applications communicate using files. The input model is
described in a text file in some form. Generated results are often stored in a

50

binary output file or in a database. If other applications, such as pre and post
processors are integrated with the finite element application they have to gener-
ate and read these files. This generates a lot of extra steps to integrate existing
finite element codes. Using CORBA the inner object model and functions of
the application can be exposed directly to other applications, which can access
them either locally or remotely. To communicate with the CORBA enabled ap-
plication, a wrapper for the given implementation language is generated from
an interface definition as given in the IDL specification. The exposed objects
and functions are accessed from the client applications as local objects and func-
tions in the clients native implementation language. Element coordinate lists and
topology can be sent directly to the finite element application, over the network
or in the same memory space with good performance. This approach can also
be implemented using DCOM [2] which has been done by Lindemann et al. [12],
Larsson [11] and Dolenc and Duhovnik [3].

The normal way of distributing finite element applications, is to install the
software on a remote server and letting the users log in remotely and execute
the application. If the server is behind a firewall, a distributed file system can be
used to access the generated files. The process can be simplified using scripts and
remote execution, but the process is still quite complicated and the applications
still communicate using files. CORBA enabled applications can access resources
transparently over the network or locally. A CORBA enabled pre processor does
not need to know the location of the finite element application when compiled.
When the application is executed, it queries a CORBA name server which then
provides the location of the finite element application to be used.

Functionality of the CORBA application is defined using the interface defi-
nition language IDL. To interface a pre-processor with a CORBA enabled finite
element application, the IDL file is compiled, generating the necessary commu-
nication code and interface functions and classes. The client application is then
recompiled and linked with the IDL generated code. To make this work, existing
finite element applications must be CORBA enabled. Most finite element ap-
plications today are not CORBA enabled, making it difficult to integrate them
into other CORBA based systems. To make interaction of CORBA enabled fi-
nite element applications a reality, a set of standardised IDL definitions must
be agreed upon. A standardised set of interfaces enables component oriented
applications, where the different application components can be exchanged in
an easy way. To integrate finite element codes today in CORBA based systems
is to use CORBA wrappers. This approach is used by Forkert et al. [27] in the
TENT framework which is a integrated simulation environment. This framework
uses CORBA wrappers and a set of translators to create input files and process
results. Another implementation of CORBA is done by Frisch and Ertl [5] where
a finite element solver is integrated with a post processing tool. Figure 5 shows
an example of a component based finite element system.

The trend today is that many applications are becoming web-based. Many
companies are using an internal web for distributing knowledge in the organisa-
tion. A CORBA based finite element application can effectively be used together

o1

l GUI App l l Web Sarvicel l Script environment

l Mesh Generation interface FE Solver interface Resultinterface Postprocessor interface l

FE Solver #2 l Postprocessox#1 l
+
FE Solver #1

h Generator #1
Mesh Generator #2 Post processor #2

Fig. 5. Interfaces with different FE applications

with a web-based application. Java is CORBA enabled by default, enabling a
Java based web application having access to CORBA based services. An exam-
ple of this could be a web-based engineering tool providing support for engineers
making design decisions. The tool first uses a parameterised model to give quick
answers within certain parameter ranges. If the parameters are outside these
ranges a simulation is initiated using a remote CORBA enabled finite element
application. The results are then stored in a database to be reused later on.
The advantage of using CORBA in this application is flexibility. The client does
not communicate directly with the finite element application but through the
CORBA server. The CORBA server can choose to execute the finite element
application on the same machine or it can delegate the execution to another ma-
chine. This can be done without changing anything in the client code. Figures 6
and 7 show an example of how an application of this kind can be constructed.

G 3| S0
e €7 = oo e

Report XXXX

Report General

Model

Links

o |

vieb Based Endin
Copyright © 200

[[—t

Fig. 6. Virtual Engineering Tool

52

2.Testwith

- 1 ’_’::::“‘95‘ Application parametric Param etric model
model

8. Requestjob

4. Query datab Grid 5. Execute job Grid node

6. Update da

Fig. 7. Engineering tool execution process

5.1 CORBA as a scripting interface to FEA applications and
libraries

A powerful concept that can be used together with CORBA enabled application
is scripting. There exist a number of very powerful scripting languages such as
Python [22], Ruby [23], Perl [19] and Tcl/Tk [21], that can be used together
with CORBA. Using CORBA with a scripting language, a parametric study
of a problem can easily be implemented without the need to create input file
and read result files. CORBA applications are accessed as standard Python
objects, all input generation and result processing can be done directly in the
scripting language, communicating directly with the finite element application.
This works with local objects as well as remote objects. Interfacing scripting
languages with CORBA objects can be problematic, because it often requires
using an ORB from another vendor or developer. There exist differences between
different ORBs today which can make it difficult connecting these with each
other. These differences will probably become less important as the CORBA
standard evolves.

The following code excerpt illustrates how a parametric study can be done
using CORBA and Python. The CORBA ORB used with Python is Fnorb [7].

HI R
Python CORBA client example.
HIH
import sys

Fnorb modules.

from Fnorb.orb import CORBA

Stubs generated by ‘fnidl’.

import FEApplication

def main(argv):

93

print ’Initialising the ORB...’
Initialise the ORB.

orb = CORBA.ORB_init(argv, CORBA.ORB_ID)
server = ... get object reference somehow ...

Do a parameter study
parameter = 0.2

while parameter < 3.2:
server.setWidth(parameter)
server.set{... additional parameters ...}
server.execute ()

process results

server.getMaxStress(...)

parameter = parameter + 0.2
return 0O

if __name__ == ’__main__"’:
sys.exit(main(sys.argv))

5.2 CORBA as a language neutral description for libraries

CORBA objects are designed to be accessed remotely, but if the objects are lo-
cated in the same process space any calls to object methods are treated as normal
function calls with approximately the same performance as a normal function
call. The GNOME desktop environment [8] uses CORBA to provide a language
interface to the different libraries. Interfaces are described using IDL and from
these, interface code for languages such as Python [22], Ruby [23], Perl [19] and
Tcl/Tk [21] and C/C++ can be generated. This is similar to the approach Mi-
crosoft is using in the Component Object Model(COM) [2]. COM/DCOM uses
a modified version of the IDL language to describe the interfaces for the objects
and components. This enables the use and interoperability of the COM/DCOM
objects from all supported languages. The approach described above can also
be effectively used to encapsulate PDE and finite element libraries into CORBA
libraries with interfaces described in IDL. The advantage of this is that the
libraries become language neutral. Users of the libraries can choose whatever
language is supported by the their CORBA ORB and generate the interface au-

o4

tomatically from the IDL interface files. The method is similar with the method
used by the SWIG tool [20]. SWIG or Simplified Wrapper and Interface genera-
tor uses a special interface file . i-file to define an interface to a C or C++ library,
which is then used to generate interface code for different higher level scripting
languages. The advantage of using CORBA is that the library definitions can be
used remotely as well.

5.3 Performance

An important factor to consider when implementing a CORBA based finite
element application data is transfer performance. Often large data sets of several
gigabytes have to be transferred when doing finite element simulations. There
are some factors to consider when designing a CORBA interface. The cost of
each request on a CORBA object is determined by the latency and marshalling
rate. The latency is the cost of sending a message. The marshalling rate is the
cost of sending the input and return variables. For a more detailed discussion
see chapter 22.3 in Henning and Vinoski [10]. One of the most critical factors for
performance is the latency. The latency time of invoking a request on a CORBA
object is approximately 500-5000 times higher than doing a function call in C++-.
For more detailed study of CORBA performance and scalability see Gokhale and
Schmidt [26] and the OMG whitepaper [14]. Finite element input data should be
transferred in few CORBA requests, so that the latency overhead is minimized.
The mashalling rate is also an important factor determining the performance of
the finite element application. To determine the optimal block size and transfer
speed when transferring data between a client and a server, a test application was
written. In the application blocks of sizes 2° to 227 are sent between a client and
a servant on a 100 Mbit/s network. When transferring a block using CORBA the
servant application also has to allocate memory for the return variable. The size
of the array to be received is not known by the servant which has to allocate the
array in some way. The way this is done by the CORBA ORB is not defined. In
ORBacus this is done using a block allocation scheme for the array. To measure
the real transfer speed the application tests the time it takes to allocate the array
it sends. The test application is written in C++ using the ORBacus [17) CORBA
ORB. A special test function was defined in IDL containing just a single CORBA
sequence<octet>. The simulation of allocation is done by sequential adding of
values to the block. This can be thought of as simulating the bytes arriving and
being added to the sequence on the server side. To get an accurate allocation
time the procedure is repeated 100 times. Mashalling rate is measured by calling
the test function with the allocated block. This is done 20 times to get a good
result. A test application using normal socket communication was implemented
to compare the CORBA application to an alternative network implementation.
Figure 8 shows the mashalling rate of different block sizes. The solid line with the
+ symbols indicates CORBA mashalling rate without consideration of allocation
time. The dashed line shows the rate with allocation time considered. The dotted
line marked with squares shows the standard socket applications throughput.

%)

The dotted line marked with the symbol (*) is the peak transfer rate over a 100
Mbit /s network.

CORBA Marshaling rate
100000

10000 RCREK KK KR KRR KKK K i e et e i
=)
e

1000 ‘

100
a ja)
=

=
VL
E: B

A Transfer rate (kb/s) —+—
o Transfer rate + allocation time (kb/s) ---x---
Peak transfer rate 100 Mbit/s ------

Transfer rate (kb/s)

)) ‘Transfer‘ rateTCP‘/IP(kb/s)‘ iz}

0.1
0.0001 0.001 0.01 0.1 1 10 100 1000 10000 100000 1000000
Block size (kb)

Fig. 8. CORBA Mashalling rate of different block sizes

From the diagram it can clearly be seen that blocks larger than 10 kb can be
effectively sent using CORBA with high mashalling rates. A block of 16384 kb
achieves a transfer rate of 10998 kb/s. The TCP/IP socket application achieves
a transfer rate to 10817 kb/s. The value achieved for the TCP/IP application
would probably be slightly higher if a more efficient implementation was used.
The decrease in transfer speed shown at the end of the curve at 32768 kb is
probably due to memory swapping at the server machine, which was a PIII 967
MHz machine with 256 Mb memory. The allocation test was done on an AMD
1700+ machine with 512 Mb of memory. The source code for the test routine is
shown below.

void doBandwidthBenchmark(Node: :FileTransfer_var &fileTransfer) {
int i, j, k;
Node: :TFileBlock block;

for (i=0; i<28; i++)

{
int blockSize = pow(2,i);
double duration;
double durationTotal;
double allocTime;
clock_t start, finish;

96

//

// Measure allocation speed
//

Node: :TFileBlock* blockTest;

start = clock();
for (k=0; k<100; k++)

{
blockTest = new Node::TFileBlock();
for (j=0; j<blockSize; j++)
{
blockTest->length(j+1);
(*blockTest) [j]1 = j;
}
delete blockTest;
}

finish = clock();
allocTime = (double) (finish - start) / CLOCKS_PER_SEC / 100.0;

//
// Allocate block to transfer

/7

block.length(blockSize) ;
block[blockSize-1] = 42;

/7

// Measure transfer time

//

start = clock();
for (j=0; j<20; j++)
fileTransfer->blockTest (block); // blockTest(...)
// is the test function
finish = clock();

//

// To obtain the transfer rate the allocation time has to
// be subtracted from the time measured, because the

// servant will allocate a TFileBlock on the server side

//

duration = (double) (finish - start) /
CLOCKS_PER_SEC / 20.0 - allocTime;

durationTotal = duration + allocTime;

printf ("%f %f %f %f %f %f\n",
block.length()/1024.0,

o7

block.length()/duration/1024.0,
block.length()/durationTotal/1024.0,
duration,

durationTotal,

allocTime

5.4 CORBA Interface design for distributed applications

The object-oriented nature of CORBA makes it possible to create an object
model which is very expressive. All features such as polymorphism, data cap-
suling, inheritance can all be applied to a CORBA object. A remote object is
accessed in the same way as its local counterpart, enabling the creation of very
advanced and complex interfaces. Using the same guidelines for object-oriented
design as in other object-oriented languages such as C++ or Java can be prob-
lematic. As discussed in section 5.3 a request on a CORBA object is 500-5000
times slower than making a function call in C4++. This has to be considered
when designing CORBA interfaces.

Fem System Factory

lFemSysrem & 5| FemModel |, | FemNodeSet |, ;_
i
oS
R

i

Fig. 9. Interfaces in the ObjectiveFrame application

Most finite element applications today deal with a large number of nodes
and elements, producing large amounts of data. CORBA interfaces for finite
element applications must take this into concideration. In a previous application
ObjectiveFrame, a very expressive CORBA interface was developed, as shown
in figure 9. The interface made it easy to transfer and communicate with the
CORBA objects, but it was not very efficient. To define a node set with the
CORBA object several requests had to be made, as shown in the code below.

98

DFEMC: :FemNode_var dfemcNode = dfemcNodeSet->getNode();
dfemcNodeSet->first();

for (i=0; i<nodeSet->getSize(); i++)

{
// node and nodeSet are a C++ objects
CFemNode* node = nodeSet->getNode(i);
node->getCoord(x, y, 2z);
// dfemcNode and dfemcNodeSet are CORBA objects
dfemcNode->setCoord(x, y, z);
dfemcNodeSet->next () ;

}

To set the coordinates of a node set, a special node interface is retrieved (dfemc-
NodeSet->getNode()). This interface is used to set the properties of the current
node. Changing to a different node is done by calling the next () and previous()
methods of the node set interface. This interface design requires two CORBA
requests per node, which is not very efficient. To modify the design to support
efficient data transfers, additional methods has to be added to the node set
interface to support block transfer of nodes. The code would then change to:

// nodeSet is a C++ object
TNodeCoordArray array = nodeSet->getNodeCoordsArray() ;

// dfemcNodeSet is a CORBA object
dfemcNodeSet->setNodeCoordsArray (array) ;
dfemcNodeSet->set. ..

This design still has the possibility to access individual nodes on the CORBA
node set using the node interface.

CORBA has advantages even if the interfaces are very simple and shallow.
Creating distributed network applications using conventional TCP/IP socket
programming can be difficult and error prune. A lot of testing is required to
create a stable network protocol. Transferring data between different hardware
platforms will also require the programmer to take care of the different byte-
orderings existing on these. Multiuser systems is also an issue making the appli-
cations even more complex, requiring threaded code. Using CORBA, networking
code is already implemented in the ORB. Byte ordering is also automatically
handled and the transferred data can be assumed to be correct on every hardware
platform. Most CORBA ORBs also handle the threading issues automatically.

5.5 CORBA in GRID computing

An important area where CORBA can be used is GRID computing. Grid Com-
puting is a concept of creating grids of computational and storage resources,
in the same way as the the world wide web is a grid of information resources.

99

CORBA can effectively be used as the glue connecting the different resources
located at geographically different locations. A computing cluster can have a
CORBA based interface for monitoring, job submission and control. By provid-
ing each cluster with a CORBA interface it is relatively simple to connect these
together creating ”Meta”-clusters. Figure 10 shows an example of a CORBA
enabled grid system.

Client

FiIeTransfer| |ServanthntroIIer| | Nodelnformation | | Commandinterface

Fig. 10. Example of a CORBA based grid

6 Example of a Finite element CORBA implementation

The educational software ForcePAD [6] was modified to use a CORBA based fi-
nite element solver. The ForcePAD application is an intuitive tool for visualising
the behaviour of structures subjected to loading and boundary conditions. For-
cePAD uses a bitmap canvas on which the user can draw the finite element model
using standard drawing tools. When the calculation is executed the bitmap im-
age is transferred to a finite element grid, which is then solved. The main win-
dow is shown in Figure 11. The application consists of four components divided
into three layers, as shown in figure 12. The user interface is responsible for
interactively defining the problem. The ForcePadSolver component contains the
interfaces used to describe the finite element model used in the application. The
name server components handle the location of available CORBA ForcePAD-
Solver components in the network. The FE solver components are responsible
for executing the calculations. By providing the functionality of the application
in a component based form, the application can be configured and maintained
in a more flexible way.

60

% ForcePAD 2 i
v d
%

O s A e -

CQE|l— =P

x<{

o Hesh | Disacements | Gveas Lver
Ml 32 stitfriess Intensi
I_w\,a_q‘:' TR

Fig. 11. Sample CORBA application

1
User interface

Presentation layer

— —
ForcePadSolver Name server
server

Middle layer

—
FE Solver

Implementation layer

Fig. 12. Application components

6.1 ForcePadSolver server

The middle layer of the application is implemented in a single server. The ORB
used in the implementation is ORBacus [17], which is a commercial ORB avail-
able with source for multiple platforms, including Microsoft Windows and many
Unix dialects. For non-commercial use It can be used without cost. The FE
solver is implemented in C++ using the newmat09 [13] library, which is freely
available with source code. In this version of the application, the FE solver is
statically linked into the ForcePadSolver server, but it is possible to implement
the FE Solver as a separate CORBA object or use a standard FE code.

61

To make this example easier to follow, the interface of the ForcePAD server
is made deliberately shallow. A more object-oriented interface as described in
section 5.4 is probably to be preferred. To enhance the network performance
the interface transfers the entire finite element grid in one large block. The full
IDL source code is found in appendix A. Figure 13 shows the interfaces used in
the ForcePadSolver server. The main interface in the server is the FemSystem

FemSystem Fem System Factory

+getFemGrid() +create()
+getFemSolver()
+remove()

VRN

Fem Solver Fem Grid
+execute() +setSize()
+getLastError() +setStiffness()
+remove() +setForces()
+setBCs()
+getDisplacements ()
+getResults()
+remove()

Fig. 13. Interfaces used in the finite element server

interface. Every time a client connects to the server it will create this object,
using the FemSystemFactory factory object. The factory object is instantiated
and registered in the name server when the server is started. The FemSystem
object, when instantiated will create an instance of a FemSolver object and
a FemGrid object. These objects are returned from the FemSystem object. A
ForcePadSolver server can hold one instance of FemSystem objects for each client
connected to the server, as shown in Figure 14.

The code below shows how a FemSystem object is created from C++ using
the FemSystemFactory object.

femSystemFactory = ... Get from name server ...
femSystem = femSystemFactory->create();

femGrid = femSystem->getFemGrid();

femSolver = femSystem->getFemSolver();

The FemGrid object defines the finite element model and the FemCalc is used
to control the calculation of the finite element model.

To reduce the marshalling times for the FE model, data will mainly be trans-
ferred using the CORBA data type sequence. This data type is a dynamic array
of a specified type. The following code illustrates a typical data transfer from
the client to a CORBA object in the ForcePAD client application. The complete
client code can be found in appendix C.

62

—1 —1

Client 1 Client 2
Presentation layer 1. create() 5. create()
Middle layer
Fem SystemFactory
2. Creates 6. Creates
FemSyste 1 FemSystem 2
3.Creates 4. Creates 7.Create 8. Create

Fig. 14. Object creation using the FemSystemFactory object

// CORBA defined datatype:

typedef sequence<double> TStiffnessVector;

ForcePadSolver: :TStiffnessVector stiffnessVector(nStiffness);
stiffnessVector.length(nStiffness);

// Transfer internal fem model to stiffnessVector

1 = 0; float value;
for (i=0; i<rows; i++)

for (j=0; j<cols; j++)
for (k=0; k<2; k++)
{
value = m_femGrid->getGridValue(i, j, k);
stiffnessVector[1++] = (double)value;

}

// Invoke request on femGrid CORBA object

femGrid->setStiffness(stiffnessVector);

When all input data has been transferred to the CORBA object FemGrid, the
finite element model can be solved. The execution of the finite element solver is
controlled by the FemCalc object. The following code from the client application

shows how the calculation is initiated:

femSolver->execute();
error = femSolver->getLastError();

In the ForcePadSolver server the execute() method is implemented as a
blocking call. This means that the execution of the client application will wait

63

until the server is finished. To solve this, the execute () could be implemented
as an asynchronous method call in CORBA. Additional methods for monitoring
the execution would have to be added to the interface as well.

The results from the calculation are also retrieved using the CORBA data
type sequence. The difference is that the sequence vectors now are preallocated
and must be transferred back to the C++ class CFemGrid. The following client
code shows how the results are retrieved from the FemGrid object.

// CORBA defined datatype:
// typedef sequence<double> TDisplVector;

ForcePadSolver: :TDisplVector* displacements;

// Invoke request on femGrid CORBA object
femGrid->getDisplacements (displacements) ;

// Store displacement values in local class m_femGrid

m_femGrid->setDisplacementSize(displacements->length()); for
(i=0;i<displacements->length(); i++)
m_femGrid->setDisplacement (i+1, (*displacements)[i]);

// Ve are responsible for deleting the return values

delete displacements;

The lifetime policy used in the ForcePadSolver server is TRANSIENT. A calcu-
lation in ForcePAD does normally not execute more than a few seconds, so the
policy PERSISTENT will not be necessary in this case, it is better suited for ap-
plications executing over several days. The client applications can then connect
and disconnect to object during the execution.

6.2 Server implementation

The ForcePAD solver server is implemented as a C++ console application using
the ORBacus [17] ORB. A skeleton implementation for the server is generated
using a special switch in the ORBacus IDL compiler.

The compiler generates a special skeleton implementation class from which
the implementation classes are derived. A sample implementation class is also
generated. The generated skeleton classes handle the requests from the clients
and dispatch them to the implementation class. The skeleton class itself is derived
from a number of classes in the ORBacus ORB.

To handle object creation and destruction automatically, each servant is also
derived from the RefCountServantBase base class. This class implements a ref-
erence counting scheme which automatically destroys the object servant when
there are no connections to the object. Depending on the implementation, more
complex schemes of object creation and destruction can be implemented, see [10]

64

for more details. Part of the source code for the server implementation can be
found in appendix B.

The process of executing a calculation starts with a request to the FemSolver
method execute(). The FemSolver reads the input model from the FemGrid
object and assembles the finite element model. The solver from the newmat09
[13] is then called. When the solution is found the results are stored back in the
FemGrid object. The results are now available to the client application.

6.3 Client/server configurations

The easiest configuration of the finite element system is to install the client ap-
plication together with the ForcePADSolver server and the finite element solver
on a single computer, see Figure 15. This configuration is typically used to do
calculations that fit into the memory of the local machine.

Local computer

User interface

Presentation layer

ForcePadSolver Name server
server
Middle layer
FE Solver

Implem entation layer

Fig. 15. Local configuration

In the first distributed configuration, the middlelayer and implementation are
moved to a separate computer. This configuration requires the server to be able
to run a CORBA ORB. If the server running the finite element solver does not
support running an ORB, the middlelayer can be placed on a separate computer.
Execution of the finite element solver can then be done using rexec, rsh or
ssh utilities. Figure 16 shows two of the possible configurations. Many more
configurations are possible. By providing location transparency, the CORBA
objects can be configured in almost any way without needing to recompile the
clients and the servers.

6.4 Client application

To create a platform independent application, ForcePAD uses the fast light
toolkit (FLTK) [4]. FLTK is a lightweight user interface toolkit written in C++.
The toolkit can be used on Windows 9x/NT/2000/XP and most Unix dialects

65

Local computer

User interface
Local computer

User interface Presentation layer

i

Presentation layer Remote computer 1

Remote computer ForcePadSolver Name server
server
ForcePadSolver Name server Middie layer
server

Middle layer

Remote computer 2

FE Solver FE Solver

Implementation layer Implementation layer

1

Fig. 16. Remote configuration 1 and 2

with good performance. The 2D graphics in ForcePAD is implemented using
OpenGL [15].

One goal of the client application is to hide the CORBA implementation from
the user. The user should not be able to notice that the client is using CORBA
for interfacing with the ForcePADSolver server.

7 Conclusion

Using a three-tier implementation with interfaces and components, creates a
very flexible finite element application. The three-tier implementation protects
the client applications from changes in configuration and solver design. By using
interfaces when communicating with components, the need to recompile client
software when a new functionality is introduced in the solver components is
reduced. Interfaces can also be published enabling other software to use the
finite element application in an effective way. The CORBA specification also
enables new ways of using software. Applications can expose functionality to
other applications which can use it either locally or remotely, without having to
use intermediate files. By using a special language IDL to define the interfaces
to objects and functions, users of the objects can freely choose to implement
client applications in any language supported by their CORBA implementation.
CORBA exposed objects and methods can also be used in scripting environments
to effectively control complex simulations. Client software can easily distribute
calculations over available workstations. High Performance Computing (HPC)
centres would be able to host a set of applications as CORBA objects. From a
web site, users can register themselves as users and download client applications
that connect to the objects. This would make high performance computing more
available to a wider user group.

66

References

1. Object Management Group, Inc., http://www.omg.org, 2000

2. Microsoft Corporation, DCOM Technical Overview, 1996

3. M. Dolenc and J. Duhovnik, Designing distributed component-based finite element
software, ECPPM 2002

4. B. Spitzak, Fast Light Toolkit FLTK, http://www.fltk.org, 2000

5. N. Frisch and T. Ertl, Embedding Visualisation Software into a Simulation Envi-
ronment, Proceedings of the Spring Conference on Computer Graphics, Bratislava,
2000

6. Division of Structural Mechanics, Lund Univeristy, ForcePAD,
http://www.byggmek.lth.se/bmresources/forcepad, 2001

7. Fnorb the Python CORBA ORB, http://www.fnorb.org, 2002

8. GNOME Computing made easy, http://www.gnome.org, 2002

9. GNU Project, http://www.gnu.org, 2000

10. M. Henning and S. Vinoski, Advanced CORBA Programming with C++, Addison
Wesley Longman Inc., 1999

11. R. Larsson, Encapsulation of a finite element program using a distributed object
model, Masters dissertation TVSM-5095, Division of Structural Mechanics, Lund
University, 1999

12. J. Lindemann, O. Dahlblom and G. Sandberg, An Approach For Distribution Of
Resources In Structural Analysis Software, ECCM 99, Munich, Germany, 1999

13. R. Davies, Newmat09: C++ matrix library, http://webnz.com/robert/cpp_lib.htm
#newmat09, 2001

14. White Paper on Benchmarking Version 1.0, Object Management Group, December
27, 1999

15. OpenGL, http://www.opengl.org, 2000

16. The Open Group, http://www.opengroup.org/dce, 2000

17. ORBacus 4.1.0, http://www.iona.com/products/orbacus_home.htm, 2002

18. R. Orfali and D. Harkey, Client/server programming with Java and CORBA. - 2nd
ed., John Wiley and Sons Inc., 1998

19. Perl Mongers, http://www.perl.org, 2002

20. Simplified Wrapper and Interface Generator, http://www.swig.org, 2002

21. Tecl developer site, http://www.scriptics.com/, 2002

22. Python Language Website, http://www.python.org, 2002

23. Ruby Programmer’s Best Friend, http://www.ruby-lang.org/en, 2002

24. Sun Microsystems Inc., JavaTM Remote Method Invocation,
http://java.sun.com/j2se/1.3/docs/guide /rmi/index.html, 2001

25. G. Schussel, Client/Server: Past, Present and Future,
http://www.dciexpo.com/geos/dbsejava.htm, 1996

26. A. Gokhale and D. Schmidt, Measuring and Optimizing CORBA Latency and
Scalability Over High-speed Networks, IEEE Transaction on Computers, Volume 47,
No. 4, April, 1998

27. T. Forkert, H. Kersken, A. Schreiber, M. Strietzel and K. Wolf, The Distributed
Engineering Framework TENT, In proc. of Vector and Parallel Processing - VECPAR
2000, LNCS 1981, pages 38-46, Springer Verlag, 2000

67

A ForcePAD IDL description

The following section contains the IDL interface description used when generat-
ing implementation and client interface code for the ForcePADSolver server.

#ifndef _ForcePadSolver_
#define _ForcePadSolver_

#pragma prefix "localdomain.domain"
module ForcePadSolver {
// Type definitions

typedef long RetVal;

typedef sequence<double> TStiffnessVector;
typedef sequence<double> TDisplVector;
typedef sequence<double> TResultVector;
typedef sequence<double> TForceVector;
typedef sequence<long> TForceDofVector;
typedef sequence<double> TBCVector;
typedef sequence<long> TBCDofVector;

// FemGrid interface

interface FemGrid {
void setSize(in long rows, in long cols);
void setStiffness(in TStiffnessVector rowStiffness);
void setForces(in TForceVector forces, in TForceDofVector forceDofs);
void setBCs(in TBCVector bcs, in TBCDofVector bcDofs);
void getDisplacements(out TDisplVector displacements);
void getResults(out TResultVector results);
void remove();

};
// FemGridFactory interface

interface FemGridFactory {
FemGrid create();

};
// FemSolver interface

enum TErrorType {
ET_NO_ERROR,
ET_NO_ELEMENTS,
ET_NO_BCS,
ET_NO_LOADS,
ET_UNSTABLE,
ET_INVALID_MODEL,
ET_LOAD_OUTSIDE_AE,
ET_BC_OUTSIDE_AE

};

interface FemSolver {
void execute();
TErrorType getLastError();
void remove();

};

// FemSolverFactory interface

interface FemSolverFactory {
FemSolver create();

};

// FemSystem interface

68

interface FemSystem {
FemGrid getFemGrid();
FemSolver getFemSolver();
void remove();

};
// FemSystemFactory interface

interface FemSystemFactory {
FemSystem create();
};
};

#endif

B ForcePADSolver server implementation code

This appendix contains the implementation code for the ForcePADSolver server.
The main program initialising the ForcePADSolver server is also listed. Some
code is deliberately left out, indicated with special remarks in the code.

B.1 Header file ForcePADSolver_impl.h

#ifndef ___ForcePadSolver_impl h__

#define ___ForcePadSolver_impl_h

#include <ForcePadSolver_skel.h>

#include "FemGrid.h"
#include "Forces.h"
#include "BCs.h"

#include <vector>
namespace ForcePadSolver {

class FemGrid_impl : virtual public POA_ForcePadSolver::FemGrid,
virtual public PortableServer::RefCountServantBase
{
FemGrid_impl(const FemGrid_impl&);
void operator=(const FemGrid_impl&);

PortableServer: :POA_var poa_;
private:
CFemGrid* m_femGrid;
CForces* m_forces;
CBCs* m_bcs;
public:
FemGrid_impl (PortableServer: :POA_ptr);
“FemGrid_impl();

virtual PortableServer::POA_ptr _default_POAQ);

virtual void setSize(CORBA::Long rows, CORBA::Long cols)
throw(CORBA: : SystemException) ;
virtual void setStiffness(const ForcePadSolver::TStiffnessVector& rowStiffness)
throw(CORBA: : SystemException) ;
virtual void setForces(const ForcePadSolver::TForceVector& forces,
const ForcePadSolver::TForceDofVector& forceDofs);
virtual void setBCs(const ForcePadSolver::TBCVector& bcs,
const ForcePadSolver: :TBCDofVector& bcDofs);
virtual void getDisplacements(ForcePadSolver::TDisplVector_out displacements)

69

throw(CORBA: : SystemException) ;

virtual void getResults(ForcePadSolver::TResultVector_out results)
throw(CORBA: : SystemException) ;

virtual void remove()
throw(CORBA: : SystemException) ;

// Non-CORBA access methods

CBCs* getBCs();

CForces* getForces();

CFemGrid* getFemGrid();
};

class FemGridFactory_impl : virtual public POA_ForcePadSolver::FemGridFactory,
virtual public PortableServer::RefCountServantBase

{
FemGridFactory_impl(const FemGridFactory_impl&);
void operator=(const FemGridFactory_impl&) ;

PortableServer: :POA_var poa_;
public:

FemGridFactory_impl(PortableServer: :POA_ptr);
“FemGridFactory_impl();

virtual PortableServer::POA_ptr _default_POAQ);

virtual ForcePadSolver::FemGrid_ptr create()
throw(CORBA: : SystemException) ;
};

class FemSolver_impl : virtual public POA_ForcePadSolver::FemSolver,
virtual public PortableServer::RefCountServantBase
{
FemSolver_impl(const FemSolver_impl&);
void operator=(const FemSolver_impl&);

PortableServer: :POA_var poa_;
private:

CFemGrid* m_femGrid;

double m_maxNodeValue;

double m_maxStressValue;

CForces* m_forces;

CBCs* m_bcs;

ForcePadSolver: :TErrorType m_errorStatus;
public:

FemSolver_impl (PortableServer: :POA_ptr) ;

“FemSolver_impl();

virtual PortableServer::POA_ptr _default_POAQ);

virtual void execute()
throw(CORBA: : SystemException) ;

virtual ForcePadSolver::TErrorType getLastError()
throw(CORBA: : SystemException) ;

virtual void remove()
throw(CORBA: : SystemException) ;

// Non-CORBA access methods

void setBCs(CBCs* bcs);

void setForces(CForces* forces);

void setFemGrid(CFemGrid* femGrid);
};

class FemSolverFactory_impl : virtual public POA_ForcePadSolver::FemSolverFactory,
virtual public PortableServer::RefCountServantBase

{

70

FemSolverFactory_impl(const FemSolverFactory_impl&);
void operator=(const FemSolverFactory_impl&);

PortableServer: :POA_var poa_;
public:

FemSolverFactory_impl(PortableServer: :POA_ptr) ;
“FemSolverFactory_impl();

virtual PortableServer::POA_ptr _default_POAQ);

virtual ForcePadSolver::FemSolver_ptr create()
throw(CORBA: : SystemException) ;
};

class FemSystem_impl : virtual public POA_ForcePadSolver::FemSystem,
virtual public PortableServer::RefCountServantBase

{
FemSystem_impl (const FemSystem_impl&) ;
void operator=(const FemSystem_impl&) ;
PortableServer: :POA_var poa_;
private:
ForcePadSolver: :FemGrid_ptr m_femGridRef;
ForcePadSolver: :FemSolver_ptr m_femSolverRef;
FemGrid_impl* m_femGridImpl;
FemSolver_impl* m_femSolverImpl;
public:
FemSystem_impl (PortableServer: :POA_ptr);
“FemSystem_impl();
virtual PortableServer::POA_ptr _default_POAQ);
virtual ForcePadSolver::FemGrid_ptr getFemGrid()
throw(CORBA: : SystemException) ;
virtual ForcePadSolver::FemSolver_ptr getFemSolver()
throw(CORBA: : SystemException) ;
virtual void remove()
throw(CORBA: : SystemException) ;
};

class FemSystemFactory_impl : virtual public POA_ForcePadSolver::FemSystemFactory,
virtual public PortableServer::RefCountServantBase
{
FemSystemFactory_impl(const FemSystemFactory_impl&) ;
void operator=(const FemSystemFactory_impl&) ;
PortableServer: :POA_var poa_;

public:

FemSystemFactory_impl(PortableServer: :POA_ptr);
“FemSystemFactory_impl () ;

virtual PortableServer::POA_ptr _default_POA();
virtual ForcePadSolver::FemSystem_ptr create()
throw(CORBA: : SystemException) ;
};

} // End of namespace ForcePadSolver

#endif

71

B.2 Implementation file ForcePADSolver_impl.cpp

#include <0B/CORBA.h>
#include <ForcePadSolver_impl.h>

#include <iostream>
using namespace std;

#include "calfem.h"
#include <set>

//
// Constructor for the FemGrid implementation
//
ForcePadSolver::FemGrid_impl::FemGrid_impl(
PortableServer: :POA_ptr poa)
: poa_(PortableServer: :POA::_duplicate(poa))

{
// Construct implementation objects
m_femGrid = new CFemGrid();
m_femGrid->setUseImage (false);
m_forces = new CForces();
m_bcs = new CBCs();
}
ForcePadSolver: :FemGrid_impl::~“FemGrid_impl()
{
// Delete implemenation objects
delete m_femGrid;
delete m_forces;
delete m_bcs;
}
1171777777177777717777777777777777777777777777717777777777777
///// FemGrid_impl access methods /1117
///// getFemGrid(), getForces(), getBCs(), left out /7117

[I11110777777771777177771777777717777777777177117771177711777

PortableServer: :POA_ptr
ForcePadSolver: :FemGrid_impl::_default_POA()
{
return PortableServer::POA::_duplicate(poa_);

}

//

// Implements the CORBA method setSize

//

void

ForcePadSolver: :FemGrid_impl: :setSize(
CORBA: :Long rows,
CORBA: :Long cols)
throw(CORBA: : SystemException)

{
m_femGrid->setGridSize(rows, cols);

}

//

// Implements the CORBA methods setStiffness

//

void

ForcePadSolver: :FemGrid_impl::setStiffness(
const ForcePadSolver: :TStiffnessVector& rowStiffness)
throw(CORBA: : SystemException)

int i, j, k;

72

int rows, cols;

// Initialise the stiffness grid
m_femGrid->getGridSize (rows, cols);
m_femGrid->initGrid();
m_femGrid->initDofs();

m_femGrid->initResults();

// Transfer the incoming rowStiffness vector
// to the internal implementation grid

k = 0;

for (i=0; i<rows; i++)
for (j=0; j<cols; j++)

m_femGrid->setGridValue(i, j, 0, (float)rowStiffness[k++]);
m_femGrid->setGridValue(i, j, 1, (float)rowStiffness[k++]);

}
}
//
// Implements the CORBA setForces method
//
void

ForcePadSolver::FemGrid_impl::setForces(
const ForcePadSolver: :TForceVector& forces,
const ForcePadSolver: :TForceDofVector& forceDofs)
throw(CORBA: : SystemException)

{
int i;
m_forces->clear();
// Transfer incoming force vectors to internal
// force list instance
for (i=0; i<forces.length(); i++)
m_forces—>add(forceDofs[i], forces[il);
}
//
// Implements the CORBA setBCs method
//
void

ForcePadSolver: :FemGrid_impl: :setBCs(
const ForcePadSolver: :TBCVector& bcs,
const ForcePadSolver::TBCDofVector& bcDofs)
throw(CORBA: : SystemException)

{
int i;
m_bes->clear();
// Transfer incoming bc vectors to internal
// bc list instance
for (i=0; i<bcs.length(); i++)
m_bcs—>add (bcDofs [i], bes[il);
}
//
// Implements the CORBA getDisplacements method
//
void

ForcePadSolver: :FemGrid_impl: :getDisplacements(
ForcePadSolver: :TDisplVector_out displacements)

73

throw(CORBA: : SystemException)

{
int i;
// Instantiate CORBA displacement return vector
displacements = new ForcePadSolver::TDisplVector;
// Get displacements from internal implementation
int displSize = m_femGrid->getDisplacementSize();
// Resize CORBA vector
displacements->length(displSize-1);
// Copy internal results to CORBA return vector
for (i=0; i<displSize-1; i++)
{

(*displacements) [i] = m_femGrid->getDisplacement (i+1);

}

}

//

// Implements CORBA getResults method

//

void

ForcePadSolver::FemGrid_impl::getResults(
ForcePadSolver: :TResultVector_out results)
throw (CORBA: : SystemException)

{
// Instantiate CORBA result return vector
results = new ForcePadSolver::TResultVector;
int i, j, k, 1;
int rows, cols;
double values[3];
// Resize return vector from grid size
m_femGrid->getGridSize (rows, cols);
results—>length(rows*cols*2*3);
// Copy results to CORBA result vector
1=20;
for (i=0; i<rows; i++)
for (j=0; j<cols; j++)
for (k=0; k<2; k++)
{
m_femGrid->getResult(i, j, k, values);
(*results) [1++] = values[0];
(*results) [1++] = values[1];
(*results) [1++] = values[2];
}
}
//
// Implements CORBA remove method
//
void

ForcePadSolver: :FemGrid_impl: :remove()
throw(CORBA: : SystemException)

{
// Get object id of this

74

PortableServer: :POA_var poa = _default_POAQ);
PortableServer: :ObjectId_var id = poa->servant_to_id(this);
poa—>deactivate_object(id);

}

[11717117777777717777177771777177717777177771177111771117711777
///// FemGridFactory_impl empty constructor left out /1117

///// FemGridFactory_impl empty destructor left out /7117
///// FemGridFactory_impl::_default_POA() left out /1177
///
//

// Implements CORBA FemGridFactory create method

//

ForcePadSolver: :FemGrid_ptr
ForcePadSolver: :FemGridFactory_impl: :create()
throw(CORBA: : SystemException)

{

// Create a FemCalc implementation Object

FemGrid_impl* impl = new FemGrid_impl(_default_POAQ));

PortableServer: :ServantBase_var result = impl;

return impl->_this();
}
11777777771777777777777777777777777717777777777777777777777777
///// FemGridSolver_impl empty constructor left out /1117
///// FemGridSolver_impl empty destructor left out /7117

[111711777117771777177771777777717777177777177117771117711777

void ForcePadSolver::FemSolver_impl::setFemGrid(CFemGrid *femGrid)
{
m_femGrid = femGrid;

}

void ForcePadSolver::FemSolver_impl::setForces(CForces *forces)
{
m_forces = forces;

}

void ForcePadSolver: :FemSolver_impl::setBCs(CBCs *bcs)
{
m_bcs = bcs;

}

///
///// FemSolverFactory_impl::_default_POA() left out /7117
///

//

// Implements FemSolver CORBA method execute

//

void

ForcePadSolver: :FemSolver_impl: :execute()
throw(CORBA: : SystemException)

{
I117171777717777777777777717777771777717
///// THIS CODE HAS BEEN LEFT OUT //////
/1117 111177
///// Code contains the solver /17117
///// code used in ForcePAD /11117
II111117777777777777717777177777171777777

}

//

// Implements FemSolver CORBA method last error

//

(6]

ForcePadSolver: :TErrorType
ForcePadSolver: :FemSolver_impl: :getLastError ()
throw(CORBA: : SystemException)

{
// Returns error status from last execution
ForcePadSolver: :TErrorType _r = m_errorStatus;
return _r;

}

//

// Implements FemSolver CORBA method remove

//

void

ForcePadSolver: :FemSolver_impl: :remove()
throw(CORBA: : SystemException)

{
// Get object id of this
PortableServer: :POA_var poa = _default_POAQ);
PortableServer::0bjectId_var id = poa->servant_to_id(this);
poa—>deactivate_object(id);

}

1171777717177777717777777777777777177777777771717777777777777
///// FemSolverFactory_impl empty constructor left out /////
///// FemSolverFactory_impl empty destructor left out /7117
///// FemSolverFactory_impl::_default_POA() left out /1117
11717777771777777177777777777777777717777777777777777777777777

//

// Implements FemSolverFactory CORBA method create

//

ForcePadSolver: :FemSolver_ptr

ForcePadSolver: :FemSolverFactory_impl::create()
throw(CORBA: : SystemException)

{
// Create a FemCalc implementation Object
FemSolver_impl* impl = new FemSolver_impl(_default_POA());
PortableServer: :ServantBase_var result = impl;
return impl->_this();
}
//
// FemSystem_impl constructor
//

ForcePadSolver: :FemSystem_impl: :FemSystem_impl(
PortableServer: :POA_ptr poa)
: poa_(PortableServer: :POA::_duplicate(poa))

// Create a node set servant

m_femGridImpl = new FemGrid_impl(_default_POAQ));
m_femSolverImpl = new FemSolver_impl(_default_POA());
m_femSolverImpl->setFemGrid (m_femGridImpl->getFemGrid());
m_femSolverImpl->setForces(m_femGridImpl->getForces());
m_femSolverImpl->setBCs (m_femGridImpl->getBCs());

// Create a CORBA object reference to FemGrid

m_femGridRef = m_femGridImpl->_this();
m_femGridImpl->_remove_ref();

// Create a CORBA object reference to FemSolver

m_femSolverRef = m_femSolverImpl->_this();
m_femSolverImpl->_remove_ref () ;

76

}

[111117777777771777777777777777777777777777717777177777177777
///// FemSolverFactory_impl empty destructor left out /////
///// FemSolverFactory_impl::_default_POA() left out /7117
[1111117777777717777777177777777777777777777177771177777177777

//

// IDL:byggmek.lth.se/ForcePadSolver/FemSystem/getFemGrid:1.0

//

ForcePadSolver: :FemGrid_ptr

ForcePadSolver: :FemSystem_impl::getFemGrid()
throw(CORBA: : SystemException)

{
ForcePadSolver: :FemGrid_ptr _r = m_femGridRef;
return _r;

}

//

// IDL:byggmek.lth.se/ForcePadSolver/FemSystem/getFemSolver:1.0
//
ForcePadSolver: :FemSolver_ptr
ForcePadSolver: :FemSystem_impl: :getFemSolver ()
throw (CORBA: : SystemException)
{
ForcePadSolver: :FemSolver_ptr _r = m_femSolverRef;
return _r;

}

//

// Implements FemSystem CORBA method remove

//

void

ForcePadSolver: :FemSystem_impl: :remove()
throw(CORBA: : SystemException)

{

// Remove owned servants

m_femGridImpl->remove() ;
m_femSolverImpl->remove() ;

// Get object id of this

PortableServer: :POA_var poa = _default_POAQ);
PortableServer::0bjectId_var id = poa->servant_to_id(this);
poa—>deactivate_object(id);

}

[111111777777771777777717771777777777771777777777771177777777777
///// FemSolverFactory_impl empty constructor left out /////
///// FemSolverFactory_impl empty destructor left out 17171/
///// FemSolverFactory_impl::_default_POA() left out /1117
[1777777771771717777777777777777777777777777777777777177777777

//

// IDL:byggmek.lth.se/ForcePadSolver/FemSystemFactory/create:1.0

//

ForcePadSolver: :FemSystem_ptr

ForcePadSolver: :FemSystemFactory_impl::create()
throw(CORBA: : SystemException)

{
// Create a FemCalc implementation Object
FemSystem_impl* impl = new FemSystem_impl(_default_POA());
PortableServer::ServantBase_var result = impl;
return impl->_this();
}

7

B.3 Server main program

#include <0B/CORBA.h>
#include <0B/CosNaming.h>

#include "ForcePadSolver_impl.h"
#include <cstdlib>

#ifdef WIN32
#include <windows.h>
#endif

#include <iostream>
#include <fstream>

namespace std {};
using namespace std;

// Global variable avaiable to console handler

CosNaming: :Name name;

CosNaming: :NamingContext_var inc;
CosNaming: :NamingContext_var dfemc;
CosNaming: :NamingContext_var models;
CosNaming: :NamingContext_var factories;
CORBA: :0RB_var orb;

// Console event handler (WIN32)

//

// Removes all naming information in case of a
// console event

#ifdef WIN32
BOOL WINAPI handler_routine(DWORD dwCtrlType)

[117177111777171777177771777777777717777717177777777
//// Code left out /717
[I111117777777777777777777177777717771177771177717
}
#endif
int main(int argc, char* argv[])
{
// Handle console window shutdown (WIN32)
#ifdef WIN32
SetConsoleCtrlHandler (handler_routine, TRUE);
#endif
// Initialize ORB
cout << "Initializing orb." << endl;
orb = CORBA::0RB_init(argc, argv);
// Get reference to root POA

cout << "Resolving reference to POA." << endl;

CORBA: :0bject_var poalbj =
orb—>resolve_initial_references("RootPOA");

PortableServer: :POA_var poa =
PortableServer: :POA: : _narrow(poaObj);

// Get reference to NameService

78

cout << "Resolving reference to NameService" << endl;

CORBA: :0bject_var obj;

try

{
obj = orb —-> resolve_initial_references("NameService");

}

catch(const CORBA::0RB::InvalidName&)

{
cerr << " " << argv[0] << ": can’t resolve ‘NameService’" << endl;
return 1;

}

inc = CosNaming::NamingContext::_narrow(obj);
assert(!CORBA::is_nil(inc));

// Activate the Root POA manager
cout << "Activating POA manager." << endl;

PortableServer::POAManager_var mgr =
poa->the_POAManager () ;

mgr->activate();
// Create a FemSystem server
cout << "Creating factory." << endl;

ForcePadSolver: :FemSystemFactory_impl femSystemFactory(poa);
ForcePadSolver: :FemSystemFactory_var object = femSystemFactory._this();

// Creating a naming graph
cout << "Adding name information to NameService." << endl;

name.length(1);

name.length(1);

name[0] .id = CORBA::string_dup("ForcePad");

dfemc = inc—>new_context();

try {
inc->bind_context(name, dfemc);

} catch (const CosNaming::NamingContext::AlreadyBound &) {
cout << " Context ForcePad found." << endl;

}

name.length(2);

name[0] .id = CORBA::string_dup("ForcePad");

name[1] .id = CORBA::string_dup("Factories");

factories = inc->new_context();

try {
inc->bind_context(name, factories);

} catch (const CosNaming::NamingContext::AlreadyBound &) {
cout << " Context Factories found." << endl;

}

cout << "Binding object to NameService." << endl;
name.length(3);

name[0] .id = CORBA::string_dup("ForcePad");

name[1] .id = CORBA::string_dup("Factories");
name[2] .id = CORBA::string_dup("FemSystemFactory");
inc->rebind(name, object);

// Allow orb to start processing requests.

cout << "Starting orb." << endl << endl;

79

orb—>run();

return O;

C ForcePADSolver client code

This code is from the execute() method in the ForcePAD client application.

ForcePadSolver::FemSystem_var femSystem;
try
{
int i, j, k, 1, dofCount;
// Initialize ORB
CORBA: :0RB_var orb = CORBA::0RB_init(m_argc, m_argv);

// Get initial naming context

CORBA: :0Object_var nameRef;

try

{
nameRef = orb -> resolve_initial_references("NameService");

}

catch(const CORBA::0RB::InvalidName&)

{
cerr << m_argv[0] << ": can’t resolve ‘NameService’" << endl;
throw O;

}

CosNaming: :NamingContext_var inc;
inc = CosNaming::NamingContext::_narrow(nameRef);
assert(!CORBA::is_nil(inc));

// Get model factory reference

CORBA: :Object_var systemFactoryRef;

CosNaming: :Name name;

name.length(3);

name[0] .id = CORBA::string_dup("ForcePad");

name[1] .id = CORBA::string_dup("Factories");
name[2] .id = CORBA::string_dup("FemSystemFactory");

try {
systemFactoryRef = inc->resolve(name);
} catch (const CosNaming::NamingContext::NotFound &) {
cerr << "No name for FemSystemFactory factory." << endl;

throw 0;

} catch (const CORBA::Exception &e) {
cerr << "Resolve failed: " << e << endl;
throw 0;

}
// Create a FemSystemFactory object

ForcePadSolver: :FemSystemFactory_var femSystemFactory;
try
{
femSystemFactory = ForcePadSolver::FemSystemFactory::_narrow(systemFactoryRef);
}
catch (const CORBA::SystemException& se)

80

cerr << "Cannot narrow FemSystemFactory reference: " << se << endl;
throw O;
}
if (CORBA::is_nil(femSystemFactory))
{
cerr << "femSystemFactory is nil." << endl;
throw 0;
}

// Create a FemSystem object
femSystem = femSystemFactory->create();

if (CORBA::is_nil(femSystem))

{
cerr << "FemSystem is nil." << endl;
throw 0;

}

// Get a FemGrid
ForcePadSolver: :FemGrid_var femGrid = femSystem->getFemGrid();

if (CORBA::is_nil(femGrid))

{
cerr << "FemGrid is nil." << endl;
throw 0;

}

// Get a FemCalc calculation control object
ForcePadSolver: :FemSolver_var femSolver = femSystem->getFemSolver();

if (CORBA::is_nil(femSolver))

{
cerr << "FemCalc is nil." << endl;
throw 0;

int rows, cols;
int nDof;

int bwLeftRight;
int bwBottomTop;
int maxBandwidth;

// Set gridsize

m_femGrid->getGridSize(rows, cols);
femGrid—->setSize(rows, cols);

// Set stiffness

int nStiffness = rows*cols*2;
ForcePadSolver: :TStiffnessVector stiffnessVector(nStiffness);
stiffnessVector.length(nStiffness);

1=0;
float value;

for (i=0; i<rows; i++)
for (j=0; j<cols; j++)
for (k=0; k<2; k++)
{
value = m_femGrid->getGridValue(i, j, k);
stiffnessVector[1++] = (double)value;

81

femGrid->setStiffness(stiffnessVector);

// Set forces

ForcePadSolver: :TForceVector forces;
ForcePadSolver: :TForceDofVector forceDofs;

bool loadsDefined = false;
double x, y;

double vx, vy;

int dofs[2];

int forceCount = 0;

int nLoads = m_femGrid->getPointLoadSize();

m_femGrid->clearPoints();

if (nLoads==0)

{

}

m_errorStatus = ET_NO_LOADS;
throw 0;

forces.length(nLoads*2);
forceDofs.length(nLoads*2);

CForce* pointLoad = m_femGrid->getFirstPointLoad();

while (pointLoad!=NULL)

{

}

pointLoad->getPosition(x, y);

value = pointLoad->getValue();
pointLoad->getDirection(vx, vy);
m_femGrid->getNearestDofs ((int)x, (int)y, dofs);

if (dofs[0]>0)

{
forces[forceCount] = vx*value;
forceDofs [forceCount++] = dofs[0];
forces[forceCount] = vyxvalue;
forceDofs [forceCount++] = dofs[1];
loadsDefined = true;

}

pointlLoad = m_femGrid->getNextPointLoad();

cout << endl;

if (!loadsDefined)

{

}

m_errorStatus = ET_LOAD_OUTSIDE_AE;
throw 0;

femGrid->setForces(forces, forceDofs);

// Define constraints

ForcePadSolver: :TBCVector bcs;
ForcePadSolver: : TBCDofVector bcDofs;
int nBCs = m_femGrid->getPointConstraintsSize();

if (nBCs==0)

{

m_errorStatus = ET_NO_BCS;
throw 0;

82

}

int nConstraints = m_femGrid->getPointConstraintsSize();
CConstraint* pointConstraint = m_femGrid->getFirstPointConstraint();

set<int> uniqueDofs;

set<int>::iterator sij;

bool becsDefined = false;

while (pointConstraint!=NULL)
pointConstraint->getPosition(x, y);
value = pointConstraint->getValue();

m_femGrid->getNearestDofs ((int)x, (int)y, dofs);

if (dofs[0]>0)

{
switch (pointConstraint->getConstraintType()) {
case CConstraint::CT_XY:
uniqueDofs.insert (dofs[0]);
uniqueDofs.insert(dofs[1]);
bcsDefined = true;
break;
case CConstraint::CT_X:
uniqueDofs.insert (dofs[0]);
bcsDefined = true;
break;
case CConstraint::CT_Y:
uniqueDofs.insert(dofs[1]);
bcsDefined = true;
break;
default:
uniqueDofs.insert(dofs[0]);
uniqueDofs.insert(dofs[1]);
bcsDefined = true;
break;
}
}
pointConstraint = m_femGrid->getNextPointConstraint();
}
if (!becsDefined)
{
m_errorStatus = ET_BC_OUTSIDE_AE;
throw 0;
}

// Remove doubly defined dofs
int bcCount = 0;

bes. length(uniqueDofs.size());
becDofs.length(uniqueDofs.size());

for (si=uniqueDofs.begin(); si!=uniqueDofs.end(); si++)
{
int dof = (*si);
bes[becCount] = 0.0;
bcDofs [becCount++] = dof;
}
uniqueDofs.clear();

femGrid—>setBCs(bcs, bcDofs);

// Solve system

83

ForcePadSolver: :TErrorType error;

femSolver->execute();
error = femSolver->getLastError();

// Get displacements

ForcePadSolver: :TDisplVector* displacements;
femGrid->getDisplacements(displacements) ;
m_maxNodeValue = -1.0e300;
m_femGrid->setDisplacementSize(displacements->length());

for (i=0; i<displacements—>length(); i++)

{
m_femGrid->setDisplacement (i+1, (*displacements)[i]);
if (fabs((*displacements) [i])>m_maxNodeValue)
m_maxNodeValue = fabs((*displacements) [i]);
}

delete displacements;
m_femGrid->setMaxNodeValue (m_maxNodeValue) ;
// Finally destroy all object references

femSystem->remove() ;

}
catch (const CORBA::Exception& e)
{
cerr << "Uncaught CORBA exception: "
<< e << endl;
try {
femSystem->remove() ;
}
catch (const CORBA::Exception& e)
{
return;
}
}

84

Paper |lI

Software for Numerical
Simulation of Drying Induced
Deformation of Wooden Products

IUFRO Conference on Wood drying, 2003

85

86

Software for Numerical Simulation of
Drying Induced Deformation of Wooden Products

Ola Dahlblom', Jonas Lindemann' and Sigurdur Ormarsson’

1) Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden
2) Department of Structural Engineering and Mechanics, Chalmers University of Technology,

SE-412 96 Géteborg, Sweden

ABSTRACT

A previously developed computational model for 3D finite element simulations of wood during moisture changes is
in the present work provided with a special-purpose graphical user interface. The software is designed to use a per-
sonal computer for the graphical user interface and to have possibility to use distributed computational resources for

the simulation.

INTRODUCTION

Distortion of sawn timber due to changes in moisture
content is a serious problem. One method to improve
the shape stability is to glue wooden pieces together in
an optimal way. In the design process of such products,
it is necessary to perform computer simulations to pre-
dict the distortions. A computer model for 3D finite
element simulations of wood deformation during mois-
ture changes has previously been developed (Ormarsson
1999, Dahlblom et al. 2001, Ormarsson et al. 2001). To
perform the simulations it is necessary to have detailed
information about the moisture and temperature condi-
tions, as well as the mechanical loading. It is also neces-
sary to have a detailed description of the material prop-
erties and their variation with moisture content and tem-
perature, as well as with the position within the log. The
orientation of the wood fibres must also be considered.
In a glued product, the shape stability is to a high extent
dependent on the orientation of the pieces.

The previously developed computational model has
been successfully applied to different wooden products.
To make it suitable for industrial application, a user
interface for handling generation of input data and pres-
entation of results is necessary. The interface presented
in this paper is under development and the work is
sponsored by Swedish wood industry. The software is
designed as a Microsoft Windows application using
standard menus and toolbars.

87

USER INTERFACE

General user interface

The application user interface uses a project-based
layout, see FIGURE 1. In the left side of the main win-
dow, a project view is shown with four folders; Logs
and boards, Products, Drying schedules and Sawing
patterns. The Logs and boards folder contains a set of
logs from which boards can be defined. In the Products
folder, laminated products can be created using the in-
dividual boards listed in the Logs and boards folder.

The middle part of the application shows the model
view, see FIGURE 2. The model view shows different
views, depending on what the user has selected in the
project view. When an object is selected in the project
view, a special property view is shown in the right side
of the main window. Depending on what item is se-
lected, the property view can contain one or more tabs.

The user interface is designed to be highly configurable.
Toolbars, project views and property windows can be
detached and placed floating as separate windows or
docked into to the main window at a user specified po-
sition. This gives the user the possibility to adjust the
user interface to his or her liking. To support advanced
users, keyboard shortcuts exist for most menu and tool-
bar commands, enabling quick and effective usage of
the application.

=laix|

igs and boards
Eoardl
Boardz
Board3
Eoard4
Boards
Boarde

=11 Products

E Product

=] Drying schedules
E||ﬁ Schedule 1

|z et bulb temp,
|z Dry bulb temp.
Cl Sawing patterns

Geometry Spiral grain |Mater\a||

=2 = AN

r i) phi {dearees)
o

o o

0,01 4

0,1 0

0,2 -1

FIGURE 1. Application main window

X
B
DR Ral-sma(ecorr oo |#yw |2 |)®

Property

Project view 1
view

Model view

FIGURE 2. Different areas in the user inerface main
window

Project view

The project view displays all objects in the applica-
tion, see FIGURE 3. In this view objects can be se-
lected, renamed, moved and deleted. When an object is

88

E_] Logs and boards
g

=B Product L
f Logz:Boardl

Log Z:Boardz
og 2:Board4
-
E1-_7 Drying schedules

= |£= Schedule 1

= Wet bulb temp,
| Dry bulb temp.
| Schedule 2

7] Sawing patterns

FIGURE 3. Project view

selected in the project view, the model view and prop-
erty windows are updated accordingly.

To enable quick and easy assembly of products the
application extensively uses the notion of drag-and-
drop. When a log with a sawing pattern has been cre-

ated, the boards can be dragged onto the products de-
fined in the Product folder, as in FIGURE 4. A product
in the application may be a single board or a laminated
timber product. When a product is created, it is shown
in the project window in the “Products” folder. When
boards are added, the product view is also updated to
reflect the finished product. Drying schedules are also
assigned by dragging them onto the product.

ogs and boards

Boardzd
Board3
Board4
Boards
Boardé
I—I 4_] Products

...... E
I—I 4_] Drving sch BJgrd]
i |,_-_¢_: Schedule

iz et bulb temp,
27 Dry bulb bemp,
4_] Sawing patterns

FIGURE 4. Adding boards to products using drag and
drop

Model view

The model view shows different views, depending
on the currently selected item in the project view. Se-
lecting a log will bring up the log editor and selecting a
product will bring up a product editor. In the log editor,
boards can be positioned and resized, using the mouse.
For more precise updates the position and size of the
boards can be updated numerically using the property
window.

Changing boards in the log editor will also update
the boards in the product editor. FIGURE 5 shows the
log editor and FIGURE 6 shows two different laminate
products consisting of three boards, as they appear in
the product editor

FIGURE 5. Log editor in model view

89

Board2

Boardil

Board3

Board1
Board3

Board4

FIGURE 6. Two different laminated product configura-
tions as they appear in the product editor.

Property window

The property window shows the properties of the
item selected in the project view or model view. For
example, selecting a log brings up the properties for the
log such as butt-end radius and top-end radius, spiral
grain and material properties. To use other material pa-
rameters for a log than those provided by the applica-
tion, custom materials can be created. If an object has
many properties, they are divided into categories and
displayed under tabs in the property window as shown
in FIGURE 7.

Geometry ISDiraI grain I Material |

Fstart
end

Length {m) |3
Butt-end radius {m) |0,2

Top-end radius {my 0,2

onical angle {phiy (0
Apply

FIGURE 7. Property view (log selected)

Spiral grain angle can be edited using a spreadsheet
table or using a special envelope editor where the points

can be dragged visually using the mouse. The spiral
grain angle editor is shown in FIGURE 8.

phi
f

36
32
28
24

16
12
08
04

4
04
08

1.2

16

2 r{m)
0 004 008 012 016 02

FIGURE 8. Spiral grain angle editor

Handling of drying schedules

To simulate the drying process, drying schedules
are needed. Schedules can be created either by entering
them in a special table, importing them from a spread-
sheet application, or by visually dragging points in an
envelope editor as shown in FIGURE 9. All schedules
are stored in a special folder called “Drying schedules”
in the project view, see FIGURE 10. To use a drying
schedule, it can be dragged onto a product in the same
way as boards are dragged onto the products.

]
[— S
ikeedts (s <

" i
oz
ois

» =

A 4/7

o ()
0 2 4 6 8 100 120 190 160 180 200 220 240

FIGURE 9. Drying schedule editor

=-_] Drving schedules
| B schedule 1

FIGURE 10. Drying schedules in the project view

Simulation control

Because simulations can be time consuming it is
important to let the user control all aspects of the simu-
lation jobs. In the application, the user can submit mul-

90

tiple jobs that can be run in the background on the local
machine or remotely on a different machine. This func-
tionality is controlled using the job manager, see FIG-
URE 11. Status information is continuously updated in
the job manager, to display progress and error informa-
tion. The user can also terminate any erroneous jobs
submitted.

CE—— 4
Mame | Tupe | Status | Start time T Hew
Simple Local Apr1315:0.. Running

Long Femate Waiting

b Stat
X Delete
A1 Status

% Options.

FIGURE 11. Job manager

Result view

The result view displays results from the simula-
tions. Results that can be displayed are: displacement
history, stresses and strains. The simulation is time de-
pendant, so the result view has a special slider bar for
changing the current simulation step. To handle fast
drawing of results the result view uses OpenGL
(OpenGL 2003). The viewpoint of the result view can
be updated in real-time by moving the mouse using a
“virtual trackball”. It is also possible to change the
magnification factors and colour scales in the result
view with the associated property window. As an exam-
ple of results, distortions of the two products according
to FIGURE 6 are shown in FIGURE 12.

FIGURE 12. Distortion of the laminated products ac-
cording to FIGURE 6.

IMPLEMENTATION

User interface

The user interface is designed around a set of com-
ponents defining the functionality. This reduces de-
pendencies and complexity making the code easier to
maintain. All components use a special class library
defining the different items in the workspace. The soft-
ware is developed using Borland Delphi (Borland Del-
phi 2003), a rapid application development tool (RAD),
which enables the user interface to be designed effec-
tively using visual tools.

To enable easy integration width other software, the
application stores its data using XML (W3C 2003) files.
An XML file is a standardised way of storing structured
information using tags similar to those found in HTML-
files. XML-files are normal text files editable in a text
editor.

Modular solver design

To facilitate using different solver solutions the ap-
plication implements a special modular solver design,
see FIGURE 13. Instead of communicating directly with
the finite element solvers, the software interacts with
solvers using a set of plug-ins. Each plug-in implement
the same interface, enabling dynamic loading of differ-
ent solver solutions. The responsibility of the plug-in is
to generate necessary input files to the solver, execute
and monitor the solver process and finally to process
and handle the solver output files. The plug-in architec-
ture also enables the user interface to be easily config-
ured to take advantage of distributed resources using
CORBA or GRID middleware, as described in Linde-
mann (1999, 2001, 2002, 2003), Foster (2001) and Lars-
son (1999).

User
interface

Plug-in
interface
and loader

ABAQUS plug-in

Custom solver
plug-in

CORBA adapter
plug-in

GRID adapter
plug-in

FIGURE 13. Application modular solver architecture

CONCLUSION

In many cases research results are presented in re-
ports or computational codes which may be difficult to
directly use in industry. The present application is an
effort to encapsulate a computational code developed in
a research project into an application that can be used by
people in the industry. The developed application en-
ables users to easilv assemble wooden nroducts that are

91

to be studied. Effects of different drying schedules can
be studied. Different ways of laminating together boards
in products can also easily be studied.

The modular design of the solver implementation
will also facilitate distributing the simulation code to
resources located at physically different locations. In the
future there will also be possibilities to access resources
on the computational GRID.

ACKNOWLEDGEMENT
The authors acknowledge the financial support
from the Swedish Wood Association.

REFERENCES
Borland Delphi 2003: http://www.borland.com

CORBA 2003: http://www.omg.org

Dahlblom O., Petersson H. and Ormarsson S. 2001: Full
3-D FEM-Simulations of Drying Distortions in
Spruce Boards based on Experimental Studies, 7th
International ITUFRO Wood Drying Conference,
Tsukuba, Japan, July 9-13

Foster 1., Kesselman. C., Tuecke S. 2001: The Anatomy
of the Grid - Enabling Scalable Virtual Organiza-
tions, to appear: Intl J. Supercomputer Applications

Larsson R. 1999: Encapsulation of a finite element pro-
gram using a distributed object model, Report
TVSM-5095, Structural Mechanics, Lund University

Lindemann J., Dahlblom O., Sandberg G. 1999: An
Approach For Distribution Of Resources In Struc-
tural Analysis Software, ECCM '99, Munich, Ger-
many

Lindemann J. 2001: Programming and Visualisation
Techniques in finite element software, Report
TVSM-3050, Structural Mechanics, Lund University

Lindemann J., Sandberg G. and Dahlblom O. 2002: Us-
ing CORBA Middleware in Finite Element Soft-
ware, Lecture Notes in Computer Science 2331,
Computational Science - ICCS 2002, 701-710

Lindemann J., Dahlblom O., Sandberg G. 2003: Using
CORBA middleware in finite element software, Fu-
ture Generation Computer Systems, Accepted for
publication

OpenGL 2003: http://www.opengl.org, OpenGL - High
Performance 2D/3D Graphics

Ormarsson S. 1999: Numerical analysis of moisture-
related distortions in sawn timber, PhD Thesis, De-
partment of Structural Mechanics, Chalmers Univer-
sity of Technology, Géteborg

Ormarsson S., Petersson H., Eriksson J. and Dahlblom
0. 2001: Improved shape stability of timber prod-
ucts obtained by use of a numerical simulation tech-
nique, 7th International [IUFRO Wood Drying Con-
ference, Tsukuba, Japan, July 9-13

W3C 2003: Extensible Markup Language (XML),
http://www.w3.org/ XML

92

Paper IV

Real-time Visualisation of Fibre

Networks -

The Visual Computer, 2002

93

94

Real-time visualisation
of fibre networks

J.Lindemann,
0. Dahlblom

Division of Structural Mechanics, Lund University,
John Ericssons vig 1,221 00 Lund, Sweden
E-mail: stracmech@byggmek.Ith.se

Published online: 24 January 2002
© Springer-Verlag 2002

Different methods of real-time fibre-network
visualisation have been studied. Using an
extrusion-based method yields very good re-
sults, but for large networks the frame rate
becomes unacceptably low. To increase the
number of fibres that can be visualised in real
time, a textured billboard method has been
implemented. With this method, an average
performance gain of 60% has been achieved,
using an OpenGL implementation.

Key words: Fibre network — Visualisation —
Billboard — Extrusion — Real time

95

1 Introduction

A fibre network is a material that has a structure con-
sisting of fibres, such as fluff and fibre insulation ma-
terial. A computer program simulating deformation
and fracture in fibre networks has been developed
by Heyden [2]. When three-dimensional fibre net-
works are simulated, the numerical results are often
difficult to interpret. To be able to analyse the time-
dependent results, different methods have been used
to visualise the data. Commercial post-processors of-
ten have difficulties dealing with simulations that do
not exactly fit into the finite element concept of visu-
alisation. When the initial work on visualising fibre
networks started, the commercial visualisation sys-
tem NAG Explorer [5] was used, with disappointing
results. The NAG explorer is a very powerful tool
when dealing with structured and unstructured grids,
but it does not handle the unusual geometry of fibre
networks well. This paper presents a texture-based
method of visualising fibre-network simulations in
real time. The method has been tested for simulations
ranging from 900 to 2500 fibres.

2 Visualising fibres, using an
extrusion-based method

Fibres can be visualised in many different ways.
A straightforward approach is to sweep a section
along the spine of the fibre in a piecewise linear
manner. To achieve a realistic tubular fibre with this
method, a section with at least six sides has to be
used, see Fig. 1.

The extrusion method was first implemented using
VRMLI7 [9]. This approach worked well due to
the flexibility of the VRML97 specification. The fi-
bres were represented using the extrusion nodes and
the connection points as sphere primitives. Time-
dependent information could also be represented by
using coordinate and colour interpolators. Using ex-
trusion nodes meant that many triangles had to be
used to represent the fibres, limiting the number of
fibres that could be represented in real time. The in-
terpolators were not as effective as expected. The
performance of the VRML97 visualisation largely
depends on the viewer used. By using the Cosmo-
Player 2.1 plugin [1] on an SGI Onyx2 machine [7],
a fibre network consisting of approximately 900 fi-
bres could be rendered in real time at a rate of only
4-5 frames per second. To increase the performance
of the extrusion-based method, it was implemented
using C++ and OpenGL [6]. The rendering of the

The Visual Computer (2002) 18:20-28
Digital Object Identifier (DOI) 10.1007 /5003710100129

J. Lindemann, O. Dahlblom: Real-time visualisation of fibre networks

21

Fig. 1. Example of a fibre visualised by the use of an
extrusion-based method

Fig. 2. Fibre network with 2500 fibres and a six-sided
section

Fig. 3. Fibre network using a six-sided section

Fig. 4. Fibre network using a 20-sided section

extrusions is performed using the GLE Tubing and
Extrusion library [8]. This library is widely used
when rendering extruded objects, and has a good
performance. The application implemented in C++
achieves a frame rate of around 6 frames per sec-
ond on an SGI Onyx2 system for a network of
2500 fibres. Figure 2 shows a screen capture of this
network.

The main advantage of using this method is image
quality, which is increased by adding sides to the fi-
bre section. The drawback is of course a decreased
real-time performance. Using more than 12 sides
will only enhance the rendering of specular high-
lights and does not add to the general image quality.
Figures 3 and 4 show the network rendered, using 6

96

and 20 sides in the sections respectively. The vertex
interpolation is much smoother when more sides are
used, but the six-sided section gives an acceptable
quality for real-time use.

3 Visualising fibres, using texture
bands

The proposed method uses a single band of trian-
gles with a gradient texture, to give an illusion of
a circular section (see Fig. 5). Using this method,
the number of triangles only increases by 2 per seg-
ment, which is much less than for the extrusion-
based method. The problem when drawing just these

22

J. Lindemann, O. Dahlblom: Real-time visualisation of fibre networks

Texture

L — View forwand
| vector

Filbre spin

-

Fig. 5. Example of a fibre visualised with a texture-based method
Fig. 6. Illustration of the orientation of a band used in a simple up-vector method
Fig. 7. Network of 2500 fibres, using the simple up-vector method

bands is that the rendered image largely depends on
the viewing angle. At certain angles, the entire net-
work may disappear. To avoid this, the orientation of
each band representing a fibre is chosen to depend
on the view transformation in such a way that the flat
side is always turned towards the viewer. Two meth-
ods of view alignment have been implemented.

3.1 Simple up-vector alignment method

In this method, the up-vector of the view transfor-
mation is used to create an upper and a lower off-
set of the original line. The segment is then drawn
with triangles between these lines (see Fig. 6). The
vector e is the normalized view vector determined
by the camera position (x, y,,z,) and the target
(x5 Y15 20):
_ (X, 7xp)i + (yt B yp)j + (Zt 7 Zp)k
VO =x)2+ i =)2 + (2 = 2,)?
By using this vector, the following vectors are ob-
tained:

er M

97

e, = I8)
lJ xegl
e,=esXe;, 3)

where e, is perpendicular to the view forward vector
e and in the same plane as the up vector j and e;.
By using the e, vector, the points needed to draw the
band can be determined by

—

—

OP; = OP,; +re,, 4)
— =

OP; = OP; —re,,)
where P; is a point on the fibre segment and O is the

origin.

Due to its simple implementation, this method is
very efficient. The drawback is that fibres oriented in
the camera up direction can be difficult to see. The
use of this method is illustrated in Fig. 7. Looking
at the network in Figs. 7 and 8 at close range re-
veals the banded nature of the fibres. Even though
the band structure can be visibly observed at close

J. Lindemann, O. Dahlblom: Real-time visualisation of fibre networks

23

Fig. 8. Fibre network using the simple up-vector method
at close range
Fig. 9. Modified band method

range, it is difficult to see at the global level. In stud-
ies of network deformations the global level is often
of primary interest, and in such situations the method
may therefore be useful in spite of its disadvantages
atclose range.

3.2 Billboard method

To solve the visibility problem with the previous
method, a billboard method has been developed. In
this method, the fibre band is aligned with the view
around each vertex point, and the created points are
on the plane with the normal, according to the direc-
tion of the spine (see Fig. 9). First the vertex normal
vector n; is calculated from the fibre segment,

i = x)i+ it = Y)J + @i — 20k

i = = = (6)
V@it —x)? + i1 — 3)? + @i — 20)
An average vertex normal is calculated using
n; n;
;wg _ +1+ (7)

RCRERT
with the exception of the end-points, where it is given
by ny* = ng and n,"* = n,,_,. The fibre orientation

vector e}, can be calculated as

e, xn’’
i °f i ®)
o avg

ley xn; |

98

where e is the normalized view vector defined in
(1). By using the e, vector, the points needed to draw
the band can be determined by

—> —> .
OP! = OP;+re’, ©)
— = .
OP/ = OP;—re’, (10)

where P, is a point on the fibre segment.

The billboard method in Figs. 10 and 11 shows
a close resemblance to the image obtained with
the extrusion method, shown previously in Figs. 3
and 4. The most noticeable difference is the fibre
end-points. With the extrusion method, the end caps
are represented correctly. Due to the banded geom-
etry used in the textured-band method, the end caps
cannot be represented correctly. Another difference
between the methods is that in the textured-band
method a light source cannot be used.

Using textures also brings other advantages. A tex-
ture is a graphical image, and it is therefore possible
to use actual images of fibres, to make the network
appear more realistic. Figure 12 shows a close-up of
a network using a “bumpy” texture, which gives the
fibres a more organic look.

24

J. Lindemann, O. Dahlblom: Real-time visualisation of fibre networks

13

Fig.10. Network of 2500 fibres, using the billboard
method

Fig. 11. Fibre network using the billboard method at close
range

Fig. 12. “Bumpy” texture applied with the use of the bill-
board method

Fig. 13. Connection points

4 Visualising connection-point usage
and breakage

A fibre-network model is constructed of a large
number of fibres connected with connection points.
When the network is subjected to loading, these con-
nection points will become stressed and eventually
break. To visualise these connection points, simple
spheres are used. Figure 13 shows typical connection
points.

The simulation model [2] provides information
about connection-point usage. Usage is converted
to a colour through a scale and then applied to the
sphere representation. To visualise the connection-

99

pointusage, itis important to choose a good, intuitive
colour scale. A high usage could, for example, be
represented by a white colour and low usage by
a dark red colour. Because of the complexity of the
network, connection points are easily hidden among
the many fibres in the model. To remedy this, the
fibres should be made dimmer and smaller when
connection points are to be studied. To further illus-
trate a high usage, connection points with a usage
above, say, 95% can be enlarged to highlight this
aspect in the model. This gives a “popping” effect
when viewed through the timesteps. Effective colour
maps are shown in Fig. 14. In the same way as en-
larging the usage above 95%, sound can be used to
forewarn that a connection is about to be broken. The

J. Lindemann, O. Dahlblom: Real-time visualisation of fibre networks 25

v

0% 10O

T —
ﬁ — & - Simple up-vectar
&0 ‘} — 0 — Bilbara
= [—{— Extruskin
agl W =B —Eurusian_
5
-
L
5 50
E
=
10
a

= = - Smple up-ecton
— -0 — Bilboard

300 a0a 1300 1800 2300
Number of fibres

Fig. 14. Usage colour scales
Fig. 15. Performance at resolution 660 x 560
Fig. 16. Performance at resolution 1920 x 1024

amount of audible “popping” gives hints on break-
ages in the model.

When a connection point is broken, according to the
simulation model [2], the sphere should be made in-
visible. A sphere is made invisible by setting the
OpenGL alpha value to zero. If this is not done, bro-
ken connection points will float around in the model
and possibly hide important information.

5 Comparisons

The performance of the methods was evaluated on
an SGI Onyx2 machine, by measuring the frame
rate when animating the displacement history of fi-
bre networks consisting of different numbers of fi-
bres. An idle loop was used to drive the animation.
The performance was measured at full resolution,
1920 x 1024, and at a reduced resolution, 660 x 560.
Figs. 15 and 16 show the performance achieved.

Performance gain compared with the extrusion
method with six-sided sections is shown in Table 1.
The difference in performance between a small and
a large resolution is due to the fact that the 3D
hardware has to render larger triangles at a higher
resolution, which decreases the performance. Using

Table 1. Performance increase using a texture-based method
(L = large resolution, S = small resolution)

Fibres Simple S. Billb. S Simple L. Billb. L
347 1.92 2.00 1.00 1.01
458 1.77 1.38 1.40 1.50
632 1.53 1.51 1.47 1.18
694 1.46 1.50 1.04 1.26
843 2.00 1.93 1.43 1.43
917 2.12 1.92 1.67 1.51

1265 1.69 1.68 1.50 1.50
2531 2.49 1.96 1.83 1.58
Average 1.87 1.73 1.42 1.37

100

26 J. Lindemann, O. Dahlblom: Real-time visualisation of fibre networks

Fig. 17. Snapshots from a simulation

more graphic pipelines in the SGI Onyx2 machine level as the GLE library [8]. Tests have also been
will probably increase the performance when ren- made on a standard 3D accelerated PC. These tests
dering at a higher resolution. Higher texture-based show an even greater performance difference be-
performance of the methods could also be achieved tween the extrusion-based method and the banded
if optimising the band drawing code to the same texture methods.

101

J. Lindemann, O. Dahlblom: Real-time visualisation of fibre networks 27

6 Example of use

Figure 17 shows a sequence of snapshots at selected
points from a fibre network simulation of a 2 x 2 x
2 mm cube of cellulose fibre fluff, performed by Hey-
den [2]. The fibres were arranged in a random struc-
ture according to random fibre orientation distribu-
tion and the bonds were modelled as non-linear cou-
pling elements representing stick-slip performance.
The structure is subjected to a forced displacement
in one direction. Network geometry is periodic, such
that opposite sides match. This allows the studied
cube to be regarded as one of many cubes making
up a global structure. The visualisation below con-
sists of 2531 fibres and 331 simulation steps. The
diagram in the lower part of the images shows the
current position of the simulation in the stress—strain
relationship.

7 Implementation

To be able to study the time-dependent behaviour
of fibre networks, real-time performance is impor-
tant. To implement this in real time, OpenGL was
chosen, because it is a platform-independent spec-
ification for hardware-accelerated 3D equipment.
The Ivf++ library [4] was chosen as an abstraction
layer on top of OpenGL. Ivf++ is a simple class
library, encapsulating OpenGL and GLUT [3] func-
tionality. The main Ivf++ library consists of about
50 classes, among them primitive shapes, selection,
level of detail (LOD) and view management. In the
texture method, fast switching between timesteps is
important. Each fibre stores an initial geometry de-
scription and a set of relative displacements for each
fibre and timestep. By using this scheme, scaling
of displacements can be done efficiently without re-
computing all fibre coordinates. Animating the time
history is then just a matter of updating the current
timestep. Fibre rendering is performed using a spe-
cially developed fibre class. This class implements
both the extrusion-based method of fibre rendering
and the texture-based method. The extrusion-based
method is implemented with the GLE library. The
textured method is implemented using the OpenGL

GL_TRIANGLES primitive. Connection points are
rendered in the same way as the fibres, but with the
use of a sphere primitive.

8 Conclusions

It has been shown that a texture-based method can be
effectively used to visualise large fibre networks in
real time with a good visual appearance. The texture-
based method can also be effectively used to visu-
alise networks on smaller hardware. In the fibre net-
works studied, ranging from 900 to 2500 fibres and
from 80 to 300 timesteps, all fibres and timesteps
could be loaded into memory (SGI Onyx2 with 1 Gb
of memory). Typical memory usage for these net-
works range from 40 Mb to 380 Mb. Using the above
approach, real-time update of the timesteps could be
made with up to 2500 fibres.

References

1. Cosmo Software (2000) CosmoPlayer 2.1.
http: //www.cai.com/cosmo/

2. Heyden S (2000) A 3D network model for evaluation
of mechanical properties of cellulose fibre fluff. Report
TVSM-1011, Division of Structural Mechanics, Lund Uni-
versity

3. Kilgard M (2000) The OpenGL Utility Toolkit (GLUT)
Programming Interface API version 3.
http: //reality.sgi.com/opengl/spec3/spec3.html

4. Lindemann J (2001) Interactive Visualisation Framework
— user’s guide. Report TVSM-3038, Division of Structural
Mechanics, Lund University

5. NAG (2000) IRIS Explorer. The Numerical Algorithms
Group Ltd,
http: //www.nag.co.uk/Welcome_IEC.html

6. OpenGL (2000) http: //www.opengl.org

7. Silicon Graphics (2000) Silicon Graphics Onyx2.
http: //www.sgi.com/onyx2

8. Vepstas L (2000) GLE Tubing and Extrusion library.
http: //linas.org/gle/index.html

9. Web3D Consortium (2000) VRML97.
http: //www.web3d.org

Photographs of the authors and their biographies are given on
the next page.

102

28

J. Lindemann, O. Dahlblom: Real-time visualisation of fibre networks

JONAS LINDEMANN was
born in Sweden in 1970. He re-
ceived his MS degree in civil
engineering in 1997. He is cur-
rently working as a PhD student
at the Division of Structural Me-
chanics at Lund University. His
research interests include visu-
alisation of finite element sim-
ulations, methods for distribut-
ing finite element systems using
CORBA and DCOM, develop-
ment of user interfaces for com-
putational codes and educational
tools in structural mechanics.

OLA DAHLBLOM received
his PhD degree in structural me-
chanics at Lund University in
1987. He is currently an asso-
ciate professor at the Division
of Structural Mechanics at Lund
University. His research activi-
ties are concerned with consti-
tutive modelling and finite el-
ement simulation of structural
behaviour. An important part of
the work is development of com-
puter code for computation and
for results presentation. Exam-
ples of areas of application are

simulation of deformation development in sawn wood during
moisture content changes and stress development in concrete
structures during hardening.

103

104

Paper V

An Approach to Teaching

Architectural and Engineering

Students Utilizing Computational N
Mechanics Software ForcePAD

Electronic Journal of Information Technology in special theme Construction on
ICT Supported Learning in Architecture and Civil Engineering, 2003,
The paper is accepted with minor revisions, not included in this version

105

106

AN APPROACH TO TEACHING ARCHITECTURAL AND
ENGINEERING STUDENTS UTILIZING COMPUTATIONAL
MECHANICS SOFTWARE FORCEPAD

J. Lindemann, Postgraduate student,
Division of Structural Mechanics, Lund University, Lund;
jonas.lindemann@byggmek.lth.se, http://www.byggmek.lth.se

G. Sandberg, Professor,
Division of Structural Mechanics, Lund University, Lund;
goran@byggmek.lth.se, http://www.byggmek.lth.se

K. Olsson, Lecturer
Structural Design, School of Architecture, Chalmers University of Technology, Gothenburg
kg@arch.chalmers.se, http://www.arch.chalmers.se

SUMMARY: The paper discusses how courses in mechanics can be taught to architectural students in a manner
aimed at presenting concepts in such a way that mechanics becomes a inspiration for the design process rather
than a limitation to it. It also presents an ideal tool for basic introduction in mechanics to students in civil engi-
neering. In the courses of this sort that have been held, emphasis has been placed on the use of software for fa-
cilitating an intuitive understanding of physical matters related to mechanics and how that understanding can be
transformed into design sketches. ForcePAD is a comprehensible software for making sketches and investigating
patterns in mechanics. Its aim is to enhance the conception of such factors as balance, weight, stability, rest and
movement, support forces, stress fields, and deformation. The paper is based on experience with classes of this
sort taught both at Lund University and at Chalmers University in Gothenburg (Olsson, 2003), the weekly tasks
students have been given in courses of this type being discussed. The pedagogical idea utilized in these classes
taught has influenced in the design of the software ForcePAD.

KEYWORDS: Teaching, Mechanics, Software, ForcePAD.

1. INTRODUCTION

Design is inventing. It is about finding shapes that not only have an interesting appearance but also actually are
able to contain certain tangible properties. Designing force-carrying structures is about inventing too. A structure
that integrates strong spatial qualities with effective use of its material is second to none. (Think about the gothic
cathedrals from eight hundred years ago. The delicate stone ribbons embrace the interior space like fan-shaped
laces. They are true minimal structures that should be compared to the most efficient aeroplane construction and
yet they allow their space to penetrated by the light from the sun and the sky and allow their space to be cooled
by natural ventilation through the open ribbons.)

Teaching mechanics to design students is about providing the students with an ability to go from investigating
properties to articulation of expression, from inner structure to outer contour. The tool for this endeavour in-
cludes simple sketching, fast response to investigate properties of mechanics such as contour deformation, forces
and force fields.

Within industrial design and architecture, the structural properties arrived at in the buildings and objects pro-
duced are often a consequence primarily of artistic intuition, of strict topology or use of readymade solutions.
Their function however are often to carry a load. The aim of teaching should be to make the pattern of abstract
forces involved both inspiring and readily accessible to the student of design so that the structure, rather than
simply being a functional necessity, provides an image of forces.

Courses in mechanics have the immediate practical goal of providing the understanding and the tools needed for
the designing of structures. However, courses should also be taught in such a way that they become a source of
inspiration in matters pertaining to design. Although the conceptions of mechanics are abstract, they relate to our

107

understanding of how constructions form a well-functional structural system. It is also one of the great strengths
of mechanics that both the conception and context exits in physical shapes, mechanics allowing us to experiment
with materials and shapes so as to create the basis for an intuitive interpretation of the abstract content of the
conceptions. We readily understand what is heavy, light, and stable, in equilibrium or seem to be out of balance,
or when the structure seems to be at the boundary of what it can withstand in term of exterior forces. The ab-
stract, absolute thinking of science is related to our intuitive understanding since it takes as its reference the
world around us, which we can observe and interpret in everyday life. Since the abstract ideas of mechanics exist
in the form of physical shapes or are related to these, students can be trained to use them as sources of inspiration
in design tasks and in preliminary sketches for these.

2. A WEEKLY TASK - A TRIPOD

In the following, a task students were given is described. Brief accounts of discussions with students are pre-
sented to indicate how the processes referred to above influenced them and allowed them to use elements of me-
chanics as a source of inspiration.

One task given to first-year students of industrial design at Lund University is described for students as follows:

"Three points are defined in a horizontal plane and forms an equal sided triangle. The side length is 1400 mm. A
fourth point is defined 600 mm above this plane. At this position in space, you shall be able to place an item
weighing at least than 5 kg. The size of the base area of item is 100°100 mm?2. The material is corrugated paper-
board in sheets of the size 1000°600 mm2. You can assemble the material by using glue, staples, or by knitting.
However, you have to choose only one of these means. The support of the structure must be within a circle with
the diameter of 100 mm. The structure will be judged by the way it expresses how the load is carried, including
how the load is transmitted from loading position to the support positions in the corners of the triangle. The
structure should be as light as possible and a volley ball should be able to roll under it."

The major question for the student to consider here is how the solution arrived at expresses the external load and
the path of the internal load, i.e. how the visible structure reflects the stresses present in the material, and how
the material is utilized to accommodate this stresses. Students are to make sketches of the design of the structure
intended. They are also to present arguments in support of their solution. To illustrate this, consider how two of
the students presented and developed their arguments. Their brief sketches are presented in Fig. 1 below. The
drawing to the left, (a), represents their first suggestion. The basic idea was to have the loading position encircled
by the structure. Since large parts of the structure do not contribute to the load-bearing capacity, one can ask
whether it is possible both to let their intention of encircling the load be fulfilled and to let each part contribute to
supporting the load. Allowing the structural parts to meet above the loading position would be one solution.

FIG. 1 - The first suggestion for the tripod the structure should encircle the load, (a). Two suggestions for one
leg of the tripod, (b)-(c)

108

(b) shows their first proposal along this line, in connection with which they argued for letting all the structural
elements have the same visual direction. It is not evident, however, that this is favourable from a structural point
of view. Their third proposal is shown to the right, (c). Here the change shows the flow of forces in the external
load instead, interest being directed at where the load is placed. Quick simulations also indicate the flow of the
internal forces here to be different.

FIG. 2 - Stresses in one of the legs of the tripod, blue indicates compression and red indicates tension stresses,
(a) first attempt, (b) final solution, (c) stiffeners have been attached, and (d) only high levels of stress are shown.

Whereas the proposal at the left in Figure 2, (a), gives rise to an unclear and mixed stress field, parts both tensile
and compressive states, the proposal (b) is better coordinated. Two parts are both exposed to tensile forces,
which of course is favourable (remember, the tripod is constructed of corrugated cardboard). The compression
evident in the long element needs to deal with by use of additional stiffeners (c-d), which were introduced in the
final solution.

The tripod ready for testing is shown in Fig. 3. Loads were applied until the structure collapsed. This particular
tripod yielded with grace under the ultimate load, its rotating downwards as the legs collapsed. Even after the
collapse the solution selected looks interesting, since the failure tells such a clear history, see Figure 4.

FIG. 3 - The final solution for a load-carrying tripod.

109

FIG. 4 - Loading of the structure (left) and the structure as it appeared following failure (right).

One can conclude, on the basis of the results of these brief tasks, that the experiment the students conducted and
their discussion of it made them aware of the qualities of the material involved and how these can be used to
express and articulate the shape of the structure created and to design and link together its various parts. These
qualities are not readily apparent without a tool to make them visible.

3. DESIGN AND IMPLEMENTATION OF FORCEPAD

ForcePAD was designed as an intuitive sketch tool for designers, archtitects and people without the theoretical
knowledge of material, shape and force relationships. To be easy to use for inexperienced users, the user inter-
face is based loosely on the design commonly used in standard image drawing programs.

The underlying implementation of ForcePAD is a 2D finite element model based on simple triangular plane
stress elements, with 2 degrees of freedom at each node. Users don't create elements directly, but first "paint"
stiffness on a screen image. When a calculation is done, the image is transferred to an element grid, which is then
solved. The stiffness values for each element in the element grid are determined by calculating the amount of
pixels covering the element. Fig. 1 illustrates this.

FIGURE 1 - Converting a pixel based image to a finite element grid

110

3.1 User interface

The ForcePAD system is designed as a direct manipulation system, which according to (Preece, 1994) should
have the following properties: Visibility of the objects of interest, rapid and reversible, incremental actions, and
replacement of complex command language syntax by direct manipulation of the object of interest.

i

"|)| | Stiffness painting tools Archive and import
L rchive and impor

’ functions

Force and locking tools
Undo last action I

o ™

Tools for erasing bowm

. stiffness and loads x

% y| T Calculate st_resses Editing tools, copy and paste _J
and deflections

- -y
*—eo 6—0 o—0

Property palette
[]

& = '-'lForces”Disp\ecement&. §'tressl Abouﬂ Y
' Transpatency Size Line width Step Mesh int. T’_r‘ ld L] f'CIeaH;
|| (LLLLEI] (] (W) (WG| i |7 - Cempresia

Tensile

FIGURE 2 - ForcePAD user interface

The user interface of ForcePAD is divided into three main areas: drawing area, toolbars and the property palette.
The drawing area is used to paint the structures to be studied and to visualise the displacements and stresses.
Often used tools are found in the left toolbar. In the right toolbar, functions for archiving, undo and copy/paste
functionality are found. Visualisation properties are found in the property palette.

A problem with many applications today is that most functionality and features are visible in different toolbars
and menus, making the user interface very complex. According to (Norman, 1998) there are two ways to over-
come this "featurism". First is avoidance or great restrain. Avoidance and restraint is not always possible, be-
cause many features are an essential part of an application and cannot be removed. The second way is organisa-
tion or modularisation. In this method the application functions are divided into a number of modules each with a
limited number of functions. In this way, all features are still present but are represented in small parts that are
more comprehensible.

To make ForcePAD easy to use and yet have more features for experienced users, more advanced features are
"hidden" using property buttons and "flip-out" toolbars. The property buttons are shown beside the normal but-
ton. When a property button is pressed, a small window is shown beside the button with the more advanced fea-
tures. Fig. 3 illustrates this. Geometric painting functions are also hidden by placing them on a "flip-out" toolbar,
which is shown when pressing the button for geometric painting functions.

111

% ForcePAD 2
J Blending | 255 |e——

Trato] m—
Brush | Round 32 ;I

"

The icon design in ForcePAD is influenced by the guidelines found in (Shneidermann, 1998) chapter 6.4. The
icons in ForcePAD are 36x36 pixels, so that a high colored three-dimensional image can be represented. All
icons also have a drop-shadow to make the more clearly identifiable.

FIGURE 3 - Property buttons

3.1.1 “Painting stiffness”

Creating structures in ForcePAD is done by "painting" stiffness. Black represents max stiffness and white no
stiffness. Stiffness is chosen by using the stiffness palette. This corresponds to selecting a different color in a
normal image editing application.

Painting is done by using one of the three different painting tools: brush, geometric shapes and fill. These corre-
spond to the common tools also found in imaging editing applications.

3.1.2 Creating loads and boundary conditions

Loads in ForcePAD are represented using red arrows. The user creates a load by selecting the load tool and
clicking on the point where the load is to be applied. The Direction of the load is set by moving the mouse
around the application point. When the mouse is release the force is added to the model.

The term boundary condition is not used in ForcePAD, instead the term locking is used. This is done to make it
easier for novice users to understand the concept of boundary conditions. Three kinds of locks are used, locked
in x direction indicated by a vertical blue line (I), locked in y direction indicated by a horisontal blue line (-) and
locked in x and y direction indicated by a blue cross (+). The choice of line direction has been done emulate a
frictionless surface on which the structure is free to move.

3.2 Visualisation

If a tool should be able to be used effectively as a design tool, the visualisation of results from finite element
simulation should be an integral part of the design process. To facilitate this the user can control the parameters
of the visualisation using the property palette.

1

Transparancy Size Line width Step hesh int. Tr?’g‘td v Al [;Ckesr'g |
(LI | (LA (L (W) (Wim] ||~ - Comprasive
== ~ Tansile

FIGURE 4 - Tweakable visualisation controls

Visualising stresses in ForcePAD is done using coloured arrows representing principal stresses. An arrow is col-
oured red if positive principal stress and blue if negative. Important parameters for controlling the appearance of
the stress visualisation are: Transparency of stress arrows, Size of stress arrows and Width of stress arrows. Ex-
amples of stress visualisation are shown in fig. 5.

112

-

o

- > Sem R N
U A oo e N TR
FEF S FF s o i e R R L R

,r' DI T T T T T b S A L L L I I 0 NN
e e e e EEmErht e
R -

L

FIGURE 5 - Stress visualisation

Displacements can also be visualised in ForcePAD. The deflection scalefactor can be scaled in real-time using
the slider found in the displacements tab in the property palette. Fig. 6 shows a beam deflected by a single force.

+ -

FIGURE 6 - Deflected beam structure subjected to a single load

3.3 Software implementation

ForcePAD is implemented in C++. The user interface is created using the Fast Light Toolkit (Spitzak, 2003).
This is a lightweight user interface toolkit written in C++. The toolkit can be used on Windows 95/98/NT and
most Unix:es with good performance.

The solver is implemented using the newmat(09 (Davies, 2002) matrix library. Using this library a finite element
solver was implemented using a notation similar to MATLAB (The MathWorks, Inc, 2003) just by changing
some of the notation.

Visualisation of the element grid, stress distribution and displacements where implemented using OpenGL
(OpenGL, 2003). Using OpenGL good performance is achieved for 2D graphics in both software emulated
graphics and hardware supported graphics.

ForcePAD is implemented in a way that it does not change or modify any settings in computer when installed.
This also enables it to be installed and executed from any folder, making easier to install it on a network share.
The ForcePAD install is also small, ~1.3Mb making it possible to download it over slow Internet connections as
well.

4. FORCEPAD ON THE WEB

To support ForcePAD when used in an educational setting, a special web page has been setup.
(http://www.byggmek.Ith.se — Resources — ForcePAD) At this web page users and student using ForcePAD
can download the lastest version, look at video tutorials and ask questions and discuss problem in a electronic
web forum. Making the software and documentation available over the Internet make it easier to support.

113

Division of Structural Mechanics

UNIVERSITY
ForcePAD
News Division of Structural Mechanics
Research ‘ n
y General information Tutorial Discussions
Education
i FarcePAD s svalable in twa versions, an ol versian 1.0.5 versian and & version 2.1. Hardware
Publications J OpenG bable graphics card is | 126 Mb or more memory ta use finer
Risiirads grid spacings. HEotes AD fs based n part on wark done by the FLTK project. hitp fhwsew fitk org,
Staff [The registration form should be working again. We are sorry for any problems this has
Contact caused!
Internal Installs: for Microsoft VWindows GXME/NT/2000/XP are provided below.
- Register and download L Ty B e
B
= Not
(e 2L This page introduces some ForsePAD concepts using a series of videnclips. To play these clips,
Users ofthe NYIDIS Guadro sef Windows Madia Playsr is required and the Divx codec. Mote: Wark has been done on compressing the
oy prabtbly also requite latervers{ Elips, 50 that they are reasonable small, but they are still each approx. 300Kkb - 600kb in size

New features in the 2.1.2 relea:
- Minar fixes.
New features in the 2.1.1 relea

- Bugfix. When the erase toals
drawing area will erase any pres

New faatures in the 2.1.0 relea:

- Import of JPEG and PNG ima

Lund Institute of Technaloay] [Lund Ui
@ Div. of Structural Mechanics, Lund Ui
Comments to we bmaste r@byaamek 1th]

Starting ForcePAD Locks and loads

From the desktop

@ Drawing locks and loads

From the start-menu
Calculation

’a Sirnple calculation
Ha Calculation using a coarse grid
Hj Caleulation using a fine grid

Painting

@ Simple painting using the brush
Hﬂ Changing the stifiess

Changing the brush shape and size
m Using blending when painting

Other drawing tools

Visualisation

B4 Stress visualisation

Hﬁ Dizplacement visualisation

FIGURE 7 - ForcePAD web page

5. CONCLUDING REMARKS

ForcePAD is an educational software programme developed at the Division of Structural Mechanics at Lund
University in collaboration with the Division of Building Design at Chalmers. Although it was conceived for use
by students of industrial design and architecture, we believe it can be useful for other categories of students as
well, due to its unique features. ForcePAD deals with a variety of different matters of physical character within
the area of mechanics, such as the centre of gravity, loads, support reactions, deformation, and internal stresses.

A unique feature of it is its simple interface, which clearly mirrors the physical constituents involved. The inter-
face mimics the conditions that sketching on a sheet of paper represent. The immediate consequences that adding
material or a line or removing material by scratching has, in terms of changes in form, adds to the simplicity of
working with it, allowing ForcePAD to become an intimate part of design sketching in an educational context.
Our experience with it is that it supports in a very genuine way a reflective process on the part of the user, pro-
viding both insight and inspiration in forming materials into shapes for creative and constructive ends. The pro-
gramme supports an iterative process of reflective optimisation that the user is guided through, rather than its
being software for simply an automatic optimization of shapes. Despite its not being software for advanced me-
chanical analysis, hidden within it are in fact some advanced finite element tools having optimizing characteris-
tics computationally.

6. REFERENCES

Davies R. (2002). Newmat C++ matrix library, http://www.robertnz.net/nm_intro.htm

Norman D. (1988). The design of everyday things, First Doubleday/Currency

Olsson K.G. (2003). Course homepage for Building Design at Chalmers,
htto://www.arch.chalmers.se/tema/form-teknik/bvegnadskonstruktion/klal vt2003/klal 03.html

114

OpenGL. (2003). OpenGL - The Industry's Foundation for High Performance Graphics, http://www.opengl.org
Preece J. et al (1994). Human-Computer Interaction, Addison-Wesley

Sandberg G. and Olsson K. and Lindemann J and Lund M. (2002). Images of forces, Proceedings of the, DRS
2002 International Conference, Common Ground, 5 - 8 September 2002

Shneiderman B. (1998). Designing the user interface : strategies for effective human-computer interaction, Third
edition, Addison-Wesley

Spitzak B. et al (2003). The Fast Light Toolkit, http://www.fltk.org
The MathWorks, Inc. (2003). MATLAB, http://www.mathworks.com

115

116

Paper VI

ObjectiveFrame - An Educational
Tool for understanding the
Behaviour of Structures

Applied Virtual Reality in Engineering & Construction Applications of Virtual -
Reality Current Initiatives and Future Challenges, AVR Il and CONVR, 2001

117

118

ObjectiveFrame - An educational tool for
understanding the behaviour of structures

J. Lindemann, O. Dahlblom and G. Sandberg

Division of Structural Mechanics, Lund University
John Ericssons vig 1
221 00 Lund
+46 46 222 73 70
struchmech@byggmek.lth.se

ABSTRACT

To understand the behaviour of structures subjected to loads the 3d beam analysis
program ObjectiveFrame has been developed. One of the features of this program is
that it can visualise the response of a structure to a user-defined load in real-time. This
makes it suitable for use as an educational tool in design science, architecture and
structural mechanics. ObjectiveFrame also implements a heads-up display used for
displaying messages and toolbars. Most operations in ObjectiveFrame are
implemented using a direct manipulation paradigm.

KEYWORDS

Virtual Reality, Real-time visualisation, Structural Mechanics

INTRODUCTION

Creating a 3D beam model is a complex task in most pre-processors, due to the
complexity of the user interface. These programs are often designed as general pre-
processors handling all kinds of finite element models. ObjectiveFrame was designed
to solve some of these problems, creating an intuitive tool for experiments with
structures and forces.

To enable users to experiment with a structure, ObjectiveFrame has the ability to
visualise the response of structures in real-time, when applied a user-defined load. To
make ObjectiveFrame intuitive and easy to use, most operations in the user interface
are implemented using a direct manipulation paradigm, giving the users direct
feedback of actions taken.

CONCEPTUAL MODEL

A conceptual model is a mental representation of how an object works. An application
user interface must convey the conceptual model to the user. ObjectiveFrame uses a
conceptual model based on Christiansson [1], see Figure 1.

119

Domain Product Process

Application | Beam model Edit, change and move
nodes, beams, loads,
—> boundary conditions

and materials.

System User interface, editing
functions, 3D graphics,
view transformations,

FE solver.

User Students, Architects, Visualise behaviour of
Engineers structures

.

Figure 1 - Conceptual model

In this approach the conceptual model is divided into three domains, the application,
the system and user domains. The application domain is the problem arca. The system
domain is a description of the system. The user domain describes the users and the
problems the users want to solve.

The application model is a 3D beam model using 6 degrees of freedom at each node,
based on a Bernoulli beam theory.

Due to the low complexity of the user interface in ObjectiveFrame, it has been
successfully used in the teaching of mechanics to architectural students. In this context
the main user goals are:

— Provide an easy way of constructing a 3D beam model.
— Solving 3D beam problems
— Understanding the behaviour of structures and forces.

According to Preece [7], a direct manipulation system can have the following
properties:

— Visibility of the objects of interest

— Rapid and reversible incremental actions

— Replacement of complex command language syntax by direct manipulation of
the object of interest.

120

The system model of ObjectiveFrame was designed as a direct manipulation system
with using the goals described above. Reversible action has however not been
implemented yet.

ObjectiveFrame also uses the Model-View-Controller paradigm described in Dix [2].
In this paradigm the user interface is managed by three components:

— The model component, representing the application.

— One or more view components, responsible for displaying views of the model.

— The controller component, receiving input from input devices controlling the
view and model components.

Figure 2 illustrates this paradigm.

— “
/ Display

-
\ Mouse

CEDN———

Keyboard

Figure 2 - Model-View-Controller paradigm

ObjectiveFrame only uses one 3d perspective view of the beam model. The design
principle used was to give the user the impression of directly manipulating a real 3d
beam model. To further the experience, the beam model is displayed shaded using a
lightsource.

USER INTERFACE

The main user interface in ObjectiveFrame is the workspace. The workspace is the
"workbench" on which the beam models are assembled and consists of an axis and a
transparent grid. The user can change the workspace size to fit the model constructed.
Object placement, movement and creation are done using a special 3d cursor. The
position of the 3d cursor is determined by mapping the mouse coordinates on to the 3d
grid. Movement perpendicular to the grid is done by holding down the [ctrl] button. 3d
cursor movement in a VR system would use some kind of 3d pointing device instead
of the mouse. Figure 3 shows the workspace layout.

121

Ele Edt Mode Tools Cakeuation Optiors Help

OBJECTIVEFRAME - L.D.2

Model toolbar View toolbar

WET RS | 5% m

Zoom Pan', Reset

Figure 3 - ObjectiveFrame workspace and toolbars

Many modern applications provide toolbars for most user actions. The use of toolbars
tends to reduce the available work area of the application. In ObjectiveFrame toolbars
have been made transparent, so that the 3d workspace can be seen through them. To
make it easier to find different toolbars coloured gradients are also placed behind the
toolbar icons. When the mouse is over a toolbar icon, this icon magnified and its
colour changed to white. A hint is also displayed in the middle of the screen. The
toolbars are also visible in Figure 3.

The technique described is often found in many modern computer games, for example
Half-Life [3].

ObjectiveFrame uses seven modes:

— Select

— Move

— Feedback

— Create nodes
— Create beams
— View/zoom
— View/pan

Clicking on a 3d toolbar icon switches between nodes. The current mode is indicated
by a red square around the toolbar icon.

In the view modes the user can freely move around the beam model. Using the left

mouse button always rotates the view. The right button is used to zoom or pan
depending on the current mode.

122

In the selection mode objects can be selected. A selectable object is highlighted in
white, when the mouse is over it. An object is added to the list of selected objects by
clicking on it. Clicking on the workspace clears the selection. Selected objects can be
moved, deleted, assigned loads, boundary conditions or material properties.

Figure 4 - Highlighting and selection

VISUALISING STRUCTURE RESPONSE

To enable experimentation with the interaction of forces and structure,
ObjectiveFrame implements a special feedback mode. In this mode a user-defined
load can be applied to the structure. When the user moves the load, the corresponding
deflections are computed in real-time. This enables the user to "feel" the response of a
structure.

Fle [t Mooe Tools Calcuiation Optons Nelp

OBJECTIVEFRAME V1D

% %%

Zoom Pan Reget

Figure 5 - Structure in feedback mode

When the feedback mode is selected, a node must be selected for the user-defined
force. Moving the mouse over a node displays a force over it, indicating that it can be
placed at the node. The force is attached to the node by clicking on it. A first
calculation of the model is done as well. The force can now be moved using the
mouse. updating the structure deflection continuously. Figure 6 shows how the mouse

123

movements map to the 3d world. In a VR system the force could be controlled directly
using some kind of 3d input device.

Figure 6 - Force movement

EXAMPLE OF USE

ObjectiveFrame has successfully been used in the course "High Structures - A
Creative Investigation" [4] at the School of Architecture at Chalmers University of
Technology. In the course the students investigated the architectural possibilities and
limitations of high structures. ObjectiveFrame was used as a tool for understanding
the effects of different methods for stiffening a structure. Using the feedback method,
the students could experiment and evaluate the different methods in real-time on the

screen.

Figure 7 - A student group working on the assignment

IMPLEMENTATION

The application was implemented in C++. The 2d user interface parts where
implemented using the platform independent toolkit FLTK [8]. The 3d user interface

124

was implemented using the Interactive Visualisation Framework - Ivf++ [5], which is
a set of C++ libraries for creating 3d graphics. This library uses OpenGL [6] as a
rasterisation interface.

CONCLUSIONS

It has been shown that a direct manipulation interface can be effectively used in 3d
beam analysis. Instant feedback of actions gives the user the impression of directly
manipulating the beam model. By extending the direct manipulation paradigm to the
post-processing and visualising, enhances this experience even further.

Students have successfully used the concepts introduced in ObjectiveFrame as a
"Virtual Workshop" in architectural education as well as in design science education.

REFERENCES

[1] P. Christiansson, Knowledge communication in the global network, Position
paper for the July 16-20 1995 Workshop on Research Directions in
Architectural Computing, Published as a chapter in a book from KLUWER in
June 1996

[2] A. Dix et al, Human-Computer Interaction, Prentice Hall International (UK),
1993

[3] Half-life, http://sierrastudios.com/games/half-life, 2000

[4] High Structures - A Creative Investigation (Swedish),
http://www.arch.chalmers.se/projekt/high_structures/index2.html, 2000

[5] Lindemann J., Interactive Visualisation Framework - User's guide, Report
TVSM-3038, Division of Structural Mechanics, Lund University, 2000

[6] OpenGL, http://www.opengl.org, 2000

[7] J. Preece, Human-Computer Interaction, Addison-Wesley Publishing
Company, 1994

[8] B. Spitzak, Fast Light Toolkit FLTK, http://www.fltk.org, 2000

125

126

Part 11l

Appendix

127

Paper A.1

Initial Usability Study of
ObjectiveFrame

2003

A-1

A-2

Initial usability study of ObjectiveFrame

Jonas Lindemann

September 17, 2003

Abstract

ObjectiveFrame is a 3D frame analysis tool targeted towards an educational setting. To further
the use of ObjectiveFrame with a wider user group, an initial usability study has been performed.
This paper describes the methods and findings of that study.

1 Introduction

A special software tool ObjectiveFrame have been developed to aid in the teaching of mechanics
to engineering and design students. ObjectiveFrame is a 3D frame analysis software, with which
the students can interact in real-time with the structures they create. This functionality of the
software has been successfully used with prebuilt models. Problems started when the users had
to create the structures themselves. The general structure of ObjectiveFrame is that of a classical
finite element application, i.e. you first create element properties (Section data, material properties
etc.). These properties can then be assigned to the elements in the model. To make the model
flexible an element property can be assigned to many elements. The same approach is also used in
conjunction with loads and boundary conditions. The advantage of the above described method is
flexibility. The disadvantage is that novice users and users not familiar with finite element software
have difficulties using the applications. We have seen this in the courses in which we have used
ObjectiveFrame. Other issues that are problematic in ObjectiveFrame is how to interact and create
the 3d frame model in an easy to use way.

The goal of this project is to investigate how the interface of ObjectiveFrame can be designed
in a way that it is more accessible to a wider range of users, especially students learning mechanics
at different levels. The project will not look at all aspects of the ObjectiveFrame user interface,
but focus on some problem areas as described above.

2 Initial user study

The main users of ObjectiveFrame can be described as follows:

- Architectural students learning mechanics as a part of the courses in high structures during
the final part of their education.

- Design students learning basic mechanics in the first terms of their education.

- Civil engineering students learning basic mechanics in the first and second semester

- Teachers in mechanics

2.1 Goals

The typical goals of the users can be described as in the following table:

2.2 Knowledge and skill level

Most of the users are quite computer literate and have little problem handling complex user inter-
faces. The students in architecture and design often use applications such as Adobe Photoshop,
Mlustrator and 3DStudio, which have very complex user interfaces. Users in civil engineering often
have experience from CAD software such as AutoCAD.

A-3

User group Goals
Architectural students Create and study the behaviour of build-
inglike structures.

Design students Create and study the behaviour of struc-
tures.

Civil engineering students | Create and study the mechanical be-
haviour of beams and beam structures.
Create beam topology for input to other
finite element software.

Teachers Create illustrative models for use in the
teaching of mechanics.

Table 1: Typical user goals

IPE100
Steel

1. Create the given structure. Add additional members to the struc-
ture so that the deflection of the top member is maximum 10
mim.

Figure 1: A typical task to be solved using the ObjectiveFrame application

2.3 Work environment

The student work environment can be divided into two groups. Civil engineering students often
work in a lecture and exercise based form, attending lectures given by staff at the departments and
then taking part in scheduled 2 hour exercises. The students in architecture and design often work
in larger projects attending lectures and then applying the knowledge in the projects. Scheduled
exercises exists in some courses.

ObjectiveFrame will be used to enhance the understanding of certain concepts in mechanics,
when the students are doing project work in these courses.

2.4 Objects and tasks

The assignments given in the courses are typical to study some kind of structure and then discuss
some phenomena. A typical task is shown in figure 1.
The objects involved in this exercise are:

- Structural nodes (connection points)
- Beam elements

- Forces

- Boundary conditions or constraints
- Simulation

- Results

- View

Typical tasks in the exercise are:

- Moditying the viewpoint

- Creating, modifying and deleting nodes

- Connecting nodes with beam elements

- Removing beam elements

- Modifying beam element properties

- Adding, modifying and deleting loads

- Adding, modifying and deleting boundary conditions
- Running simulation

- Viewing and interpreting results

- Modifying model after interpreting results

3 Usability evaluation

To understand the behaviour of structures subjected to loads the 3d beam analysis program Ob-
jectiveFrame has been developed. One of the features of this program is that it can visualise the
response of a structure to a user-defined load in real-time. This makes it suitable as an educational
tool in design science, architecture and structural mechanics.

When ObjectiveFrame has been used in courses for architects and design students, it was appar-
ent that usability problem existed. This section describe the current user interface and the issues
related to its design.

3.1 General user interface description

The main user interface in ObjectiveFrame is the workspace, see figure 2 The workspace is the
”workbench” on which the beam models are assembled and consists of an axis and a transparent
grid. The user can change the workspace size to fit the model constructed.

The main user interface is centered around the 3d view showing the ”virtual” workbench.
Around the 3d view the main toolbars of ObjectiveFrame are placed: the edit toolbar for manipu-
lating existing objects in the view, the model toolbar for creating new objects in the scene and the
view toolbar for manipulating the current 3d view.

Object placement, movement and creation are done using a special 3d cursor. The position of
the 3d cursor is determined by mapping the mouse coordinates on to the 3d grid.

3.2 Cursor placement

A central concept in ObjectiveFrame is the nodal point, where beams are connected and loads
and boundary conditions are applied. The nodal point has to be placed in 3d in some way. To
implement node placement ObjectiveFrame uses a special 3d cursor, which can be moved using
the mouse. Using a mouse to place 3d objects has certain drawbacks, because it only supports 2
degrees of freedom, x and y. The current version of ObjectiveFrame projects a ray from the pointer
position on the screen to the plane of the ”virtual workbench”. This enables cursor movement in
the plane. To support movement out of the plane the cursor must be locked in the xy-plane. Cursor
locking is done by holding down the [Ctrl] key.

The problem with node creation and cursor placements was that the information of locking was
not visible in the user interface. This made it harder for new users to begin using the application.
Neither he process of creating nodes is clear from looking at the user interface. The cursor did
not provide any clues of what to do when the node creation mode in ObjectiveFrame was selected,
which lead to many questions from the students.

Another problem with the cursor placement method was the mapping of mouse movement when
placing a node out of plane (zdirection). It is not always possible to figure out the mapping of the
mouse movement to the movement of the 3d cursor. Figure 3 illustrates these problems.

A-5

Tools Calculation Resuts Options _Help

OBJECTIVEFRAME 1L.2.A

Edit tools

Model tools View tools

A B % % B

Zoom Pan Reset

Figure 2: Current ObjectiveFrame user interface

e 3: The left figure shows a good mouse pointer mapping of the 3d cursor. The right figure s
blematic mapping when the viewing angle changed.

3.3 Object selection

Modifying and removing objects in ObjectiveFrame requires objects to be selected. Selection is
handled using the select tool in the edit toolbar. When the mouse pointer is over a selectable
object, the object is highlighted in white. Clicking an object changes its colour to yellow. The
highlight effect is providing good feedback for the users, indicating what objects are selectable. The
method for indicating that an object is selected causes a lot of problems. The main problem is the
conflict with the colouring scheme in ObjectiveFrame; in ObjectiveFrame it is possible to assign
different beams with colours indicating specific element properties. Assigning yellow for a given
element property will greatly confuse object selection, see figure 4

b

Figure 4: Object selection problems

3.4 Moving nodes
The current method of moving nodes is as follows:

1. Select the the points to be moved using the select tool.
2. Select the move tool.

3. Place the 3d cursor at the initial movement point.

4

. Drag the 3d cursor for moving the points. Use [Ctrl] for moving the points in the z-direction.

The method does not provide any clues of how it should be used and many users click on the
movement tool and try to drag the points directly, which fail, or does not provide the desired
outcome.

3.5 Applying loads and boundary conditions

The main usability problem with ObjectiveFrame is due to the fact that is was initially not designed
to be used in the teaching of design and architectural students, but an experimental user interface
for a 3d beam analysis code. The target users were engineers or engineering students. These user
groups often require the applications to be very general and flexible, which often lead to more
complex user interfaces.

Loads and boundary conditions in ObjectiveFrame are handled using special windows (see
figure 5), where the users can create load cases and apply these to selected nodes or elements.

i Node loads (o1 (ol

Loads BCs

[T =
M ! §
L a

bl
il

Figure 5: Load and boundary condition windows

Architecture and design students are often unfamiliar with the concepts of load cases. The
concept of applying a load defined in the window to many nodes at the same time is also confusing.
A more direct approach would be preferable.

A-7

4 Revised user interface

To enhance the current user interface a new prototype interface for ObjectiveFrame has been
designed and is described in this section. The prototype will focus on the following areas as
described in section 3:

- Node creation and cursor placement

- Object selection

- Moving and copying nodes

- Applying loads and boundary conditions

4.1 Conceptual design

The conceptual design in ObjectiveFrame is centred around the virtual shop concept. In this
conceptual model, sthe user assembles a model on a workbench. As an aid in assembling a model,
the user also has a number of building blocks available. ObjectiveFrame uses a ball-and-stick
model for creating three-dimensional beam models. This model consists of two main constructional
elements: the ball and the stick. The ball is used as a connection point to which the sticks are
connected to form a structure. The ball and stick model can be found in chemistry for assembling
molecular structures and in engineering for assembling space frames, see figure 6

Figure 6: Ball-and-stick models

Table 2 describes the main building blocks in ObjectiveFrame.

These building blocks present the user with a construction kit for beam and truss structures. It
can be compared to having a Meccano kit, see figure 7 with simple elements that can be assembled
into structures that are more complex.

4.2 Interaction design

The ObjectivelFrame prototype was created using a combination of tools and libraries. The 2d user
interface was created using the FLTK [2] library and the user interface designer FLUID, that comes
with this library. The 3d user interface was implemented using the Ivf++ [3] visualisation library.
These tools enable quick and easy creation of a functional prototype. It is also easy to change
functionality of the prototype.

The main window of the prototype is divided into three parts: 3D view, toolbar, and status view,
as shown in figure 8. In the toolbars, functions for setting the current state and other functions
are placed. The current state is indicated using a checkbox in the button. In the status view,
the users are given short information on the selected state or function. There is also a coordinate
display showing the current coordinate of the 3D cursor. Hints are also used to display additional
information about the state and functions. The appearance of the toolbar and status views will
probably be changed in the final version.

The user interface of the ObjectiveFrame prototype is designed as a direct manipulation inter-
face, i.e.

Representation Name Description
Node The node is the "ball” in the conceptual
a3 model of ObjectiveFrame. Beams, loads
and boundary conditions can be attached
to the nodes.

Beam/bar The beam is the ”stick” in the concep-
[tual model. Tt is also the main structural
element in the finite element model.
Load/Force The load represents an external force ap-
plied to the structure and is represented
by an arrow pointing in the direction of
the force.
BC A boundary condition (BC) representa-
- tion a constraint to the structure. For
example a node fixed support.

Table 2: ObjectiveFrame building blocks

Figure 7: A Meccano kit. Image from [1]

- Continuous visual representation of objects and current operations.
- Physical actions instead of complex commands.

- Fast, incremental and reversible actions.

- Easy for beginners to start using the system.

In the ObjectiveFrame prototype direct manipulation is used in most operations, for example
when moving a node will show a node representation being moved on the screen. Rotating the view
is updated directly when the user moves the mouse.

Node creation and cursor placement

To make the node creation more intuitive the 3D cursor has been enhanced. The cursor now shows
the object to be placed in the middle and has arrows showing the direction of allowable movement,
see figure 9

A-9

oo - mE
™ Markera

3D View
Lallanoder |

<— Toolbar

 Noder

I stanger

I Laster

}

Staths View
l
x

x (05 ¥ 2 z[0 Info [Anvand musen for att piacera ut noder.

|

pR -
|
|

Figure 8: Prototype main window

Figure 9: Updated 3d cursor

The first step when creating a node is placing the node in the zy-plane. The cursor shows four
arrows representing the allowable movement directions in the zy-plane. When the user clicks at a
position in the zy-plane the 3D cursor will after that lock at the selected position and will show
two arrows in the z-direction indicating that the allowable movement now is in the z-direction.
Clicking a second time will create a node at the specified position. The cursor will then return to
the initial state, locked in zy-plane to allow the user to create additional nodes. A state diagram
of the process is shown in figure 10.

In the current version of ObjectiveFrame, cursor movement in the z-direction was done by taking
mouse y movement and scaling it against the workspace size. This method produced mapping
problems when used in certain view angles as described earlier. To solve this, the intersection point
from the screen (z, y) position to a special plane containing the zy-position selected in the first click
is calculated. This method will provide a more correct mapping of the mouse movements against
the 3D cursor movement. The method is illustrated in figure 11.

Object selection

Most functions such as moving, copying and deletion in ObjectiveFrame operate on an object
selection. Object selection in the prototype application is done by clicking on a selectable object.
A Selectable object is highlighted when the mouse pointer is moved over it in the workspace.

A-10

Esc/Cancel

SelectZ

Xand Y
Show XY and , ©
position of position of
cursor -]
node using node using

Figure 10: Node creation state diagram

Figure 11: Z-mapping method

Clicking on additional objects will add these to the selection. If a user clicks on an object which is
already selected the object will be removed from the selection.

Moving and copying objects

Moving and copying operates on selected nodes. To move or copy a selection of objects, the user
clicks on it, after which the same method as in node creation is used to move it. To give the user a
better understanding of what to do, a special cursor shape is shown over a node when the mouse
pointer is over it, see figure 12. The selection highlight is moved along with the 3d cursor when the
user has clicked on the first node, see figure 13

Creating loads

In the current version of ObjectiveFrame, loads are created in the load windows. The direction of
the load is specified in x, y and z directions. Setting a negative value can also affect the direction

A-11

Figure 12: Move cursor

Figure 13: Moving/copying objects

of the load. To make the load creation more direct a special method for visually applying a load
has been developed.

The difficulty of creating a load in 3D is to be sure about its direction, due to the fact that the
perspective transform distorts angles and distances, making it hard to see the direction of a vector.
The prototype implements a special widget aiding the user in directing the load visually in 3d.

The load creation process starts by moving the mouse pointer over a node. When the mouse
pointer is over a node a special load cursor is shown indicating that a load can be applied to the
node. Clicking on the node will show the ”widget” for directing the load. The ”widget” consists
of one vertical circle and a horisontal circle. On the vertical circle, the load is attached. The load
can glide on the vertical circle providing the first angle of the load. The vertical circle is attached
to the horisontal circle, which is rotated in the second click, providing the second angle for load
placement. The complete process of applying a load is shown in figure 14.

4.3 Graphical design

Many of the guidelines available for graphical design apply only to 2D user interfaces. Some
guidelines, such as those for colour and icons can equally well be applied to 3D user interfaces. The
focus in this evaluation has been on interaction design in the 3D user interface. Due to the lack of
guidlines some new solutions have been proposed.

Selection and highlight

A lot of work developing this prototype was done developing a new way of visualising the selection
process. The previous method of using a single colour was problematic, as the models created often
use colour to indicate material properties. To solve this, a special method of object selection has
been developed. In this method, an object selected is rendered twice. First the object is rendered
using its original colours, secondly the object is rendered scaled to 120% and using a light grey
colour. The result is then composited together, yielding an object which is highlighted regardless
of initial object colour. Figure 15 illustrates the new selection method.

A-12

Figure 15: Object selection using a two pass rendering technique.

Colour and lighting scheme

The building blocks in the prototype are given distinct colours or materials to make it easy for the
user to distinguish between them. Nodes use a red material, beams, a green material, and loads
a blue material. Cursors and 3D icons all use a yellow material. Helper objects such as the guide
circles in the load application method use a dull grey appearance, so that they don’t draw the focus

A-13

away from the cursor icons. The workbench also uses darker grey colours, so that the grid won’t
clutter the created model.

The entire model in the prototype is rendered with lighting. This is to enhance user experience
of ”assmebling” a real model. The light is attached as a headlight to the current view direction.
This will always produce a well-lighted model without any dark areas.

5 Usability study

The usability study is divided in two parts. The first part is a normal usability study involving real
users evaluating the prototype. This method is not allways possible to do due to lack of resources
or time. The second part describes a heuristic evaluation using Shneiderman’s 8 golden rules for
interaction design [4]. In this method the user interface is evaluated using a set of rules to determine
the usability of the interface. Even if this method does not involve any users it can point out many
problems in a user interface design.

5.1 User test

The user test was conducted using the prototype described in chapter 4. Four civil engineering
students were test users. One of the test users were already experienced with the current version
of ObjectiveFrame and the other three users had never used ObjectiveFrame before.

Test setup

The test setup used a standard PC with keyboard, mouse and 3D graphics support. A standard
DV video camera was used to record the screen, keyboard and mouse. To accurately capture user
input a screen capture program recorded the user interactions for each task. The CamStudio [5]
software was used, which enables loss-less screen recording without disturbing the user.

Test procedure

Before starting the test, the users were informed of the objective of the test. They were also
informed that questions on the prototype were not going to be answered during the test, unless the
test person wascompletely stuck.

The users were given seven tasks to complete. Tasks 1 - 4 covered node creation, node selection,
copying and moving nodes. The tasks used a simple structure as shown in the left image of figure 16.
In tasks 6 and 7 a predefined beam structure, as shown in the right image of figure 16 is used to
evaluate beam selection and load creation.

Figure 16: Structures used in task 1 - 4 (left), 6 and 7 (right)

For each task a description on how to manipulate the view were given. The user interface for
view manipulation has not been determined yet. In addition, the users were told that all operations
in the prototype could be cancelled using the [Esc] key. The users were also instructed not to turn
to the next page before the current task was combleted.

A-14

The user tasks were evaluated by studying the recorded screens and video. During the recording
notes were taken about important events. Timing of specific tasks were done by studying the screen
capture video and determining three timings:

Inactivity Amount of time where the user does not move the mouse. During this time the user
is probably studying the task description.

Pre-operations Amount of time before the user selects the studied operation. For example mov-
ing around changing the view.

Operational time Amount of time for completing the task.

These timings can be found in the diagrams accompanying each task in the following sections.

Task 1 - Creating nodes

In task 1, the user should create a set of nodes according as shown in the left image of figure 16.
The two-step node creation procedure seems to work. There is an initial time spent figuring out
how to move the mouse, but when the first node has been created, the others are created very
quickly. One of the users placed the first layer of nodes correctly but had problems placing the
next layer correctly. The Esc-key was used successfully to abort the node creation process. An
interesting side note: Instead of creating the nodes one by one, one user used the copy function for
copying an entire node layer.

05:00

O Construction time
W Pre-operations
O Inactivity

04:00

03:00

Time (minutes)

02:00

01:00 +

00:00

User 1 User2 User 3 User 4

Figure 17: User times for task 1 - creating nodes

Most of the problems with the prototype in task 1 can probably be solved by enhancing the
information displayed in the status view. Some kind of state indicator showing the user where in
the node creation process he or she is would be desirable.

Task 2 - Selecting and deleting nodes

In task 2, the user should select and delete the top layer of nodes in the given structure. The
selection method seems to work fine. Some of the users used the view commands in this exercise to
modify the view. One of the users didn’t use the multiple selections, but instead deleted the nodes
one by one.

The selection process can be:

A-15

- Clicking on objects will add them to the selection. Clicking on already selected objects will
remove them from the selection. Clicking outside the selection will remove all objects from
the selection.

- Clicking objects will select them. Clicking on a non-selected object will deselect the previous
one. Multiple selections are handled using modifier keys such as [Shift] and [Ctrl]. This
method is common in many Microsoft applications, such as Word or Excel.

The first method mentioned was used in the prototype. Users do not seem to have any problems
with it. The highlighting of object when the mouse is over them also seem to accelerate the selection
process.

00:40
OSelection/Deletion
00:35 W Pre-operations
"’ @ lInactivity
00:30
00:25
n
k]
3
£
€ 00:20
3
E
IS
00:15
00:10
0005 ﬁ
00:00 T T T
User 1 User 2 User 3 User 4

Figure 18: User times for task 2 - Selecting and deleting nodes

Task 3 - Copying nodes

In this task, the users should copy the top four nodes in the given structure. The copy method
works in approximately the same way as with moving nodes. Users seem to have little problem
with this method. The special cursor that is shown when the mouse is over a node works well.
Some of the users also used the select-deselect functionality of the prototype.

Most of the problems with the prototype in task 3 can probably be solved by enhancing the
information displayed in the status view. Some kind of state indicator showing the user where in
the copy process he or she is, would be desirable. The selection process should perhaps also be
reviewed to solve some of the problems in this task.

Task 4 - Moving nodes

In this task, the users should move two nodes from the left and right sides. The move method
works in approximately the same way as with moving nodes. Some users were probably expecting
the selection to be removed when the move operation was finished. There were also some attempts
to deselect nodes by clicking on the select button after the operation was finished. The special
cursor that is shown when the mouse is over a node works well. Some of the users also used the
select-deselect functionality of the prototype.

Most of the problems with the prototype in task 4 can probably be solved by enhancing the
information displayed in the status view. Some kind of state indicator showing the user where in
the node creation process he or she is, would be desirable. The selection process should perhaps
also be reviewed to solve some of the problems in this task.

A-16

01:00

O Selection/Copy
re-operations
@ lnactivity

00:50

00:40

Time (minutes)
8
8

00:20

00:10

00:00
User 1 User 3 User 4

Figure 19: User times for task 3 - Copying nodes

02:00
OSelection/Move
operations

01:45 @lnactivity

01:30

00:30
" .

00:00

Time (minutes)
=3 2
Py Y
s B

2
1=
E
&

User 1 User2 User 3 User 4

Figure 20: User times for task 4 - Moving nodes

Task 5 - Creating beams

In this task, the users should create beams according the given structure. This process seems to
have no problems. Highlighting of allowable objects seems to aid in the process of selecting the
nodes for the beams. One user created beams in the wrong place, and used the select tool and
deleted these without problems.

A-17

01:30

OCreate beams
|| operations
@ lnactivity

01:15

01:00

00:45

Time (minutes)

00:30

00:15

00:00
User 1 User 2 User 3 User 4

Figure 21: User times for task 5 - Creating beams

Task 6 - Selecting and deleting beams

In this task, the beams shown in the picture should be deleted. Users quickly selected the beams.
If the beams are hidden in the 3D view, they change the view. Highlighting of selectable objects
is speeding up the selection process. One user tried to delete the axis indicator. In addition, some
problems with using the view functions were noted.

Visible buttons for changing the view should be added to aid users not familiar with how to
change the view using the mouse and modifier keys. The axis indicator should probably also be
made smaller or more different from the beams.

01:00

OSelection/Deletion

00:50 dlnactivity

00:40

00:30
00:20
00:10

00:00

Time (minutes)

User 1 User2 User 3 User 4

Figure 22: User times for task 6 - Selecting and deleting beams

A-18

Task 7 - Creating loads

In this task, the users should add loads to the structure given. All of the users seem to figure out
how to use the load widget. There seems to be a mapping problem in the widget rotational control.
Two of the users had difficulties figuring out how to rotate the load. There were also problems
when a load was created in the wrong direction, but this was mainly related to the fact that the
prototype does not support deleting nodes.

The mapping for the rotational widget should be reviewed, so that they are more easily inter-
preted.

04:30

OCreate loads
04:00 1| B Pre-operations
@ Inactivity
03:30
03:00
2 02130
5
£
E
@
E 02:00
5
01:30
01:00
00:30
00:00
User 1 User 2 User 3 User 4

Figure 23: User times for task 7 - Creating loads

5.2 Heuristic evaluation

In this section the prototype application is evaluated using the eight golden rules for interaction
design according to Shneiderman [4].

Consistency

The prototype takes advantage of consistency by using the same methods for moving and placing
objects in 3D. Node creation, move and copy functions all use the same cursors and methods.
Cursors are also shown using the same colour and graphical design. The Esc-key can be used
throughout the different operations in the prototype.

Shortcuts for experienced users

The prototype supports experienced users by providing shortcuts to the commands. By pressing
special keys, the experienced user quickly can switch between the different states of the application.
In addition, movement in the Z-direction can be reached by holding down the [Shift] key.

Informative feedback

Feedback is provided in the status view of the application. In some cases, the feedback could be
improved. For example, when placing objects in 3D there should be some indicator of the state
of the process. In addition, confirmation dialogues should perhaps be added before objects are
deleted. This could be implemented as an option in the application, to let more experienced users
delete without confirmation.

A-19

Design dialogues to yield closure

The prototype application does not contain dialogues, but the process of creating nodes, copying
and moving objects can be seen as a kind of dialogs. As such, there should be more feedback of
the process, as discussed in the previous section.

Offer error prevention and simple error handling

Many errors in the prototype are prevented by only allowing certain actions to take place, such
as only allowing nodes to be selected when creating beams. The highlighting scheme used in the
object selection process is also helping the user to place the mouse more accurately.

Permit easy reversal of actions

The prototype application only supports very limited action reversal. This reversal is in the form
of the Esc-key permitting the current operation to be cancelled. This is an area which should be
enhanced in the new version of ObjectiveFrame.

Set the user in control

The prototype is designed in such a way that the user always has control. The user is given a set
of building blocks that can be used to create any desired structure. The purpose of the application
prototype is to aid in this creation process, not interfere. A minimum of dialogues and windows
are used, so that structure creation can be compared to assembling a physical structure.

Reduce short term memory use

Most operations and commands are clearly visible. Most information is available in the user in-
terface. Hint boxes provide additional information on the functionality of the buttons and tools.
The user is provided with additional instructions in the status view about what he has to do to
complete the operation.

6 Conclusions

ObjectiveFrame has shown great potential as an educational software. It was initially designed to
be a general application tool with engineers as the main user group. Use in courses for architectural
and design students has shown that the concepts used in ObjectiveFrame was difficult to use for
these students.

This work has illustrated that ObjectiveFrame can easily be modified to be a more direct
application, more suitable for an educational setting. It has also been shown that by doing a
simple user testing and a heuristic analysis a lot of information on the problems of a user interface
can be found.

Through the information provided in the user test and the heuristic evaluation, the following
points will be improved in the future versions of ObjectiveFrame.

State information Some kind of indicator should be added to display what state the current
operation is in. In the node creation process, information on which step the application is
currently in should be clearly visible together with information on how to complete the step.

View handling The view handling should be improved by supporting view manipulation using
visible buttons in the application, in addition to using the mouse and modifier keys.

Improved axis indicator A more distinguishable axis indicator should be designed so that it
would not be mistakenly taken for a beam object.

Selection An improved selection visualisation is implemented, so that is more clear what objects
are selected in the model.

Confirmation dialogues Critical operations should be preceded by optional confirmation dia-
logues.

Mapping of rotations The mapping of rotation angles when creating loads should be improved,
to make the load placing a more intuitive process.

A-20

References

The MECCANO Light Red and Green Period,
http://www.meccanonut.com/lightred /index.htm, 2003

The Fast Light Toolkit Home Page, http://www.fltk.org, 2003

The Interactive Visualisation Framework - Ivf++,
http://www.gorkon.byggmek.lth.se/iviweb, 2003

Shneiderman B., Designing the User Interface - Strategies for Effective Human-Computer
Interaction, Addison-Wesley, 1998

Rendersoft CamStudio 2.0, http://www.rendersoftware.com/products/camstudio, 2003

A-21

A-22

Paper A.2

Interactive Visualisation
Framework — Ivf4+

http://www.gorkon.byggmek.lth.se/ivfweb, 2003

A-23

A-24

Ivf4++4+ — An Extendable OpenGL
Visualisation Framework

Jonas Lindemann

September 17, 2003

Abstract

Ivf++ is a C++ application framework for developing OpenGL applications. The library
focuses on extensibility and ease of use. The library also enables direct use of OpenGL
function calls. The library consists of approximately 240 classes and is released under the
LGPL license.

1 Introduction

Visualisation applications often use the OpenGL graphics library [9] for rendering real-time
3D graphics. OpenGL is a software interface to graphics hardware consisting of 150 distinct
commands. To be platform indpendent OpenGL does not have commands for creating
windows or providing user input. To use the OpenGL redering commands, a window with a
suitable rendering context must exist. Creating windows and rendering contexts is different
depending on which platform is used, making it hard to implement platform indpendent
visualisation applications. Drawing in OpenGL can also be complex. OpenGL can be seen
as the assembly language of 3d graphics, requiring knowledge of transformation matrices and
linear algebra, to fully utilise the library. Ivf++ or Interactive Visualisation Framework [5]
was developed to make it easier to use OpenGL and in the same time enable the user to
fully utilise the advantages of the library. The library is also designed to be modular, to
be seamlessly integrated with other libraries. The different libraries included in Ivf++ are
described in table 1 and in figure 1.

library Description

ivfmath 3D math classes

ivf Scenegraph library
ivfui User interface library

ivffile 3D file loaders

ivfimage | 2D image file loaders

ivfctl Support for animation controllers
ivf3dui Support for 3d user interface controls
ivfwidget | User interface abstraction library
ivifltk FLTK integration library

ivfwin32 | Win32 integration library

ivfext Ivf++ extension library

Table 1: Ivf++ libraries

2 Creating a basic OpenGL application

To create an standard OpenGL application using Ivf++, the ivfui-library can be used.
This librarv encapsulates all the windowing details and event handling needed for a basic

A-25

— —
ivimath E‘ iviwidget

|

Enli

Figure 1: Ivf++ library dependencies

OpenGL application. Implementing a simple OpenGL application using the ivfui-library
usually consists of four steps:

e Adding the ivfui include directives.

e Declaring a CIvfWindow derived window class.

e Declaring and assigning events to be used.

e Implementing the main procedure.

The necessary include directives for a ivfui based application are:

#include <ivfui/lvfApplication.h>
#include <ivfui/lvfWindow .h>

Next, we derive a window class from the CIvfWindow class. To handle events, three event
classes are added to the inheritance list and the virtual methods from these classes are added
to the window class definition. Events in Ivf++ are C++ class instances containing a single
event method.

class CExampleWindow: public ClvfWindow ,
ClvflnitEvent ,
ClvfResizeEvent ,
ClvfRenderEvent {

private:

public:
CExampleWindow(int X, int Y, int W, int H);

virtual void onlnit(int width, int height);

virtual void onResize(int width, int height);
virtual void onRender();

I¥

To receive events for the defined virtual methods, they have to be registered with the
base class. This is done in the class constructor.

CExampleWindow :: CExampleWindow(int X, int Y, int W, int H
:ClvfWindow (X, Y, W, H)
addInitEvent (this);

addResizeEvent(this);
addRenderEvent(this);

A-26

It is not allowed to call any OpenGL commands in the class constructor of an ivfui-
based application. A valid rendering context does not exist when the constructor is called.
To handle initialisation of objects and OpenGL state information the onInit is used instead.
This method is called after the window has been created and a valid rendering context exists.
The onInit event method has 2 parameters width and height, representing the initial size of
the window. In this example the default Ivf++ OpenGL settings (depth buffer and lighting
enabled) is used and no other initialisation is needed, so an empty onInit is added (Will be
used later on).

void CExampleWindow:: onlnit(int width, int height)

{
}

Window resizing is handled in the onResize event method. The event method takes 2
parameters, width and height for the new size of the window. In this example, the onResize
method is used to setup the viewport and view transform using OpenGL commands.

void CExampleWindow:: onResize(int width, int height)
{
glViewport (0,0, width, height);
glMatrixMode (GL_.PROJECTION) ;
glLoadldentity();
glOrtho (0.0, 1.0, 0.0, 1.0, —1.0, 1.0);
glMatrixMode (GL.MODELVIEW) ;

}

To display something in the window the example window must implement the onRender
event method. From this method the actual OpenGL rendering will be done. It should be
noted that Ivf4++ will maintain the matrix state between OpenGL calls by calling glPushMatr
and glPopMatrix before and after the onRender method. Clearing of the screen is also au-
tomatically handled by Ivf++ (This behaviour can be overridden by the onClear event
method). In this example a simple coloured quadrilateral is rendered.

void CExampleWindow:: onRender ()

{
glDisable (GL_LIGHTING);
glBegin (GL.POLYGON) ;
glColor3f(1.0f, 0.0f, 0.0f);
glVertex3f (0.25, 0.25, 0.0
glColor3f(0.0f, 1.0f, 0.0f)
glVertex3f (0.75, 0.25, 0.0
glColor3f(1.0f, 1.0f, 0.0f);
glVertex3f (0.75, 0.75, 0.0);
glColor3f(0.0f, 0.0f, 1.0f);
glVertex3f (0.25, 0.75, 0.0);

glEnd();

}

To make it easier to handle allocation and deallocation of objects, Ivf++ implements
a smart pointer system. A smart pointer is a template based class that mimics a normal
pointer declaration, adding function for automatically initialising and destroying the class
instance. The Ivf4++ smart pointer also handles the reference counting scheme implemented
in Ivf4++4. Smart pointers are created with the IvfSmartPointer macro. In this example a
smart pointer is declared for the example window by adding the IvfSmartPointer macro
just before the class declaration. This defines a smart pointer class CExampleWindowPtr,
which is used later on when instantiating the window.

A-27

IvfSmartPointer (CExampleWindow) ;
class CExampleWindow: public ClvfWindow ,

The implementation of the window class is now complete. To finish the example a main
routine has to be implemented. First, an instance of an application object is created. The
application object encapsulates the main event loop of the application. It also sets the desired
default rendering context for the created windows; in this example a double buffered colour
display supporting RGB colour.

ClvfApplicationPtr app = new ClvfApplication (IVF_.DOUBLE |
IVF_RGB);

In the next step the window class defined earlier is instantiated and displayed using the
show method.

CExampleWindowPtr window = new CExampleWindow
(0,0, 512, 512);

window—>setWindowTitle (" Ivf++.OpenGL_application”);

window—>show () ;

The application loop is entered by calling the run of the application object app. When
all application windows are closed, the run methods will return.

app—>run();

Compiling and executing the application at this point will show black window with a
single coloured quadrilateral. In every event method OpenGL calls are guaranteed to have
an active rendering context. The complete example with sample OpenGL rendering code is
shown below:

Listing 1: Ivf++ Standard OpenGL application
#include <ivfui/lIvfApplication.h>
#include <ivfui/lvfWindow . h>

IvfSmartPointer(CExampleWindow) ;

class CExampleWindow: public ClvfWindow ,
ClvflnitEvent ,
ClvfResizeEvent,
ClvfRenderEvent {

private:

public:
CExampleWindow(int X, int Y, int W, int H);

virtual void onlnit(int width, int height);
virtual void onResize(int width, int height);
virtual void onRender();

Ie

CExampleWindow : : CExampleWindow (int X, int Y, int W, int H)
: ClvfWindow (X, Y, W, H)

addInitEvent (this);

addResizeEvent(this);
addRenderEvent(this);

}

void CExampleWindow :: onlnit(int width, int height)

{
}

void CExampleWindow :: onResize(int width. int height)

A-28

glViewport (0,0, width , height);
glMatrixMode (GL.PROJECTION) ;
glLoadldentity();
glOrtho (0.0, 1.0, 0.0, 1.0, —1.0, 1.0);
glMatrixMode (GL_.MODELVIEW) ;

}

void CExampleWindow :: onRender ()

glDisable (GL_LIGHTING);
g!Begin (GL_LPOLYGON) ;
glColor3f(1.0f, 0.0f, 0.0f);
glVertex3f (0.25, 0.25, 0.0);
g1Color3f(0.0f, 1.0f, 0.0f);
glVertex3f (0.75, 0.25, 0.0);
glColor3f(1.0f, 1.0f, 0.0f);
glVertex3f (0.75, 0.75, 0.0);
glColor3f(0.0f, 0.0f, 1.0f);
glVertex3f (0.25, 0.75, 0.0);
glEnd () ;

int main(int argc, char xxargv)
ClvfApplicationPtr app = new ClvfApplication (IVF_-DOUBLE|IVF_RGB);
CExampleWindowPtr window = new CExampleWindow (0, 0, 512, 512);
window—>setWindowTitle (" Ivf++_OpenGL_application”);
window—>show () ;
app—>run();

return 0;

}

Listing 1: Ivf++ Standard OpenGL application

3 The Ivf+4 Scene graph

To make it easier to use OpenGL, the core library of Ivf++ implements a scene graph. A
scene graph is a structure containing nodes in a tree-like structure. To render a scene graph
the tree is traversed from top to bottom. There are two kinds of objects in an Ivf++ scene
graph, primitive objects and composite objects. Primitive objects can render themselves
without dependencies on other objects, for example sphere, cube, cylinder and triangle set
objects. Composite objects are objects that contain other objects, making the contained
objects inherit the state of the composite object. Examples of these objects are aggregate
objects and transform objects. Appearance, view transforms and state information are not
included as objects in the scene graph, but as attributes on the objects in the scene graph or
as separate objects. The main reason for this is to keep the scene graph as simple and easy
to understand as possible. Figure 2 illustrates the relationships between scene graph objects
and other objects in Ivf++.

The simplest way to use the scene graph nodes in Ivf++ is to use a CIvfComposite class
as the root node for the scene graph. In addition to this class we need some additional Ivf4++
classes. The following include directives are added:

#include <ivf/lvfComposite .h>
#include <ivf/IvfCamera.h>
#include <ivf/lvfMaterial .h>
#include <ivf/lvfCube.h>
#include <ivf/lvfLighting .h>
#include <ivf/lvfLight . h>

In the class definition we add member variables for the scene graph root node m_scene,
persbective viewing m_camera and lichtine m_1ight.

A-29

Cullmg %

Scene graph
Comp node
| Leaf node | | Leaf node | | Comp. node |_| Attribute|
| Leafnode | | Leaf node | | Leaf node Attribute |

| Global state | | Lighting | | Rasterization | | Blending |

Figure 2: Ivf4++ scene graph relationships

class CExampleWindow: public ClvfWindow ,
ClvflnitEvent ,
ClvfResizeEvent ,
ClvfRenderEvent {

private:
ClvfCompositePtr m_scene;
ClvfCameraPtr m_camera;
ClvfLightPtr m_light;

To make deallocation of the Ivf++ objects easier we use smart pointers for all the member
variables, indicated by the Ptr extension in the class declarations. Instantiation of the scene
graph node and other objects are done in the onInit method. First, the root scene graph
object is created:

m_scene = new ClvfComposite();
As seen in the instantiation code, using a smart pointer is as simple as using a normal pointer
variable in C++.

Next a simple cube object is created with its associated material attribute.
ClvfMaterialPtr material = new ClvfMaterial ();
material —>setDiffuseColor (1.0f, 0.0f, 0.0f, 1.0f
material—>setSpecularColor(1.0f, 1.0f, 1.0f, 1.0

ClvfCubePtr cube = new ClvfCube();
cube—>setMaterial (material);

Adding objects to a composite object is done using the addChild method.

m_scene—>addChild (cube);

A-30

To view the scene a view transform and a perspective transform is needed. This is handled
in Ivf4++ by the CIvfCamera class.

m_camera = new ClvfCamera();
m_camera—>setPerspective (45.0, 0.1, 20.0);
m_camera—>setPosition (3.0, 3.0, 3.0);

In the code above the parameters for the perspective transform is set by the setPerspective.
The first parameter is the field of view, the second and third parameters set the near and
far clipping planes.

To be able to see any objects in the scene graph, lighting must also be enabled. Lighting
in Ivf++ is handled through the CIvfLighting singleton class. This class maintains a set of
lights corresponding to the lights available in OpenGL. Lighting is setup using the following
code:

ClvfLightingPtr lighting = ClvfLighting :: getlnstance();
m_light = lighting —>getLight (0);
m_light—>setlLightPosition (1.0, 1.0, 1.0, 0.0);
m_light—>setAmbientColor(0.2f, 0.2f, 0.2f, 1.0f);
m_light —enable ();

Viewport and camera must be adjusted when the window size changes, this is done in
the onResize event method.

m_camera—>setViewPort(width, height);
m_camera—>initialize ();

To render the scene graph, the code in the onRender event method must be modified to
render the scene graph, lighting and view transforms.

m_light—render ();
m_camera—>render () ;
m_scene—>render () ;

The ordering in the code above is important. A camera must always be rendered before the
scene graph. Rendering lights can be done before the camera or after, producing different
effects. Rendering the light before the camera, will have the effect of having the light attached
to the camera. Rendering the light after the camera has the effect of placing the light relative
to the scene graph coordinate system. The complete code is found in the following listing:

Listing 2: Ivf4++ scene graph rendering

#include <ivfui/lIvfApplication.h>
#include <ivfui/lvfWindow . h>

#include <ivf/lvfComposite.h>
#include <ivf/lvfCamera .h>
#include <ivf/IvfMaterial .h>
#include <ivf/lvfCube.h>
#include <ivf/lvfLighting.h>
#include <ivf/lvfLight.h>

IvfSmartPointer(CExampleWindow) ;

class CExampleWindow: public ClvfWindow ,
ClvflnitEvent ,
ClvfResizeEvent ,
ClvfRenderEvent {
private:
ClvfCompositePtr m_scene;
ClvfCameraPtr m_camera;
ClvfLightPtr m_light;
public:
CExampleWindow(int X. int Y. int W. int H):

A-31

virtual void onlnit(int width, int height);
virtual void onResize(int width, int height);
virtual void onRender();

b

CExampleWindow : : CExampleWindow (int X, int Y, int W, int H)
:ClvfWindow (X, Y, W, H)

addInitEvent (this);
addResizeEvent (this);
addRenderEvent(this);

void CExampleWindow :: onlnit(int width, int height)

{

m_scene = new ClvfComposite();

ClvfMaterialPtr material = new ClvfMaterial ();
material =>setDiffuseColor (1.0f, 0.0f, 0.0f, 1.0f);
material —>setSpecularColor (1.0f, 1.0f, 1.0f, 1.0f);

ClvfCubePtr cube = new ClvfCube();
cube—>setMaterial (material);

m_scene—>addChild (cube);

m_camera = new ClvfCamera();
m_camera—>setPerspective (45.0, 0.1, 20.0);
m_camera—>setPosition (3.0, 3.0, 3.0);

ClvfLightingPtr lighting = ClvfLighting:: getinstance ();
m_light = lighting —>getLight (0);
m_light —>setLightPosition (1.0, 1.0, 1.0, 0.0);
m_light —>setAmbientColor (0.2f, 0.2f, 0.2f, 1.0f);
m_light —>enable () ;

}

void CExampleWindow :: onResize (int width, int height)

m_camera—>setViewPort (width , height);
m_camera—>initialize ();

}

void CExampleWindow :: onRender ()
m_light —>render () ;
m_camera—>render () ;

m_scene—>render () ;

}
int main(int argc, char xxargv)
ClvfApplicationPtr app = new ClvfApplication (IVF_-DOUBLE|IVF_RGB);
CExampleWindowPtr window = new CExampleWindow (0, 0, 512, 512);
window—>setWindowTitle (" Ivf++.OpenGL_application”);
window—>show () ;

app—>run();

return 0;

}

Listing 2: Ivf++ scene graph rendering

3.1 Using the Ivf++4 ClvfScene class

To make it easier to use a scene graph, Ivf++ includes a special class CIvfScene for handling
lighting, viewing and rendering. To change the previous example to use the CIvfScene class
the include directives for the CIvfComposite is changed to the following:

A-32

#include <ivf/lvfScene .h> // Changed
#include <ivf/IvfCamera.h>

#include <ivf/lvfMaterial .h>

#include <ivf/lvfCube .h>

#include <ivf/lvfLighting .h>

#include <ivf/lvfLight.h>

In the class declaration the CIvfCompositePtr is changed to CIvfScenePtr. The m_camera
and m_light member variables can be removed because the CIvfScene class will handle the
camera and the light rendering.

class CExampleWindow: public ClvfWindow ,
ClvflnitEvent ,
ClvfResizeEvent ,
ClvfRenderEvent {
private:
ClvfScenePtr m_scene;

The onInit must be updated to instantiate a CIvfScene class instead of a CIvfComposite
class.

m_scene = new ClvfScene();

The camera is instantiated locally and assigned to the m_scene object.
ClvfCameraPtr camera = new ClvfCamera();
camera—>setPerspective (45.0, 0.1, 20.0);
camera—>setPosition (3.0, 3.0, 3.0);

m_scene—>setCamera(camera);

Rendering of the lights are now handled by the CIvfScene class. Configuration of the light
still has to be done, but it can be done locally.

ClvfLightingPtr lighting = ClvfLighting :: getlnstance();
ClvfLightPtr light = lighting—>getLight(0);

light —>setlLightPosition (1.0, 1.0, 1.0, 0.0);

light —>setAmbientColor(0.2f, 0.2f, 0.2f, 1.0f);

light —>enable () ;

The CIvfScene class implements a method, doResize for updating camera and viewport,
which must be called from the onResize method.

void CExampleWindow:: onResize(int width, int height)

{
}

The onRender event method now becomes even simpler. Only a single call to the
CIvfScene object is needed to render the scene.

m_scene—>doResize(width, height);

void CExampleWindow:: onRender ()

{
}

The complete example is found in the following listing:

m_scene—>render () ;

A-33

Listing 3: Ivf4++ scene graph rendering using the CIvfScene class

#include <ivfui/IvfApplication.h>
#include <ivfui/lvfWindow . h>

#include <ivf/lvfScene h>
#include <ivf/lvfCamera.h>
#include <ivf/IvfMaterial .h>
#include <ivf/lvfCube . h>
#include <ivf/lvflLighting .h>
#include <ivf/lvfLight.h>

IvfSmartPointer(CExampleWindow) ;

class CExampleWindow: public ClvfWindow ,
ClvflnitEvent ,
ClvfResizeEvent ,
ClvfRenderEvent {
private:
ClvfScenePtr m_scene;
public:
CExampleWindow(int X, int Y, int W, int H);

virtual void onlnit(int width, int height);
virtual void onResize(int width, int height);
virtual void onRender();

s

CExampleWindow :: CExampleWindow (int X, int Y, int W, int H)
ClvfWindow (X, Y, W, H)

addInitEvent (this);

addResizeEvent (this);

addRenderEvent(this);
}

void CExampleWindow :: onlnit(int width, int height)

{

m_scene = new ClvfScene();

ClvfMaterialPtr material = new ClvfMaterial();
material =>setDiffuseColor (1.0f, 0.0f, 0.0f, 1.0f);
material —>setSpecularColor (1.0f, 1.0f, 1.0f, 1.0f);

ClvfCubePtr cube = new ClvfCube();
cube—>setMaterial (material);

m_scene—>addChild (cube);

ClvfCameraPtr camera = new ClvfCamera();
camera—>setPerspective (45.0, 0.1, 20.0);
camera—>setPosition (3.0, 3.0, 3.0);

m_scene—>setCamera (camera) ;

ClvfLightingPtr lighting = ClvfLighting:: getinstance ();
ClvfLightPtr light = lighting —>getLight (0);

light —>setLightPosition (1.0, 1.0, 1.0, 0.0);

light —>setAmbientColor (0.2f, 0.2f, 0.2f, 1.0f);

light —>enable();

}

void CExampleWindow :: onResize (int width, int height)

{

m_scene—>doResize (width , height);
void CExampleWindow :: onRender ()
{
}

int main(int argc, char xxargv)

{

m_scene—>render () ;

A-34

ClvfApplicationPtr app = new ClvfApplication (IVF.-DOUBLE|IVF_RGB);
CExampleWindowPtr window = new CExampleWindow (0, 0, 512, 512);
window—>setWindowTitle (" Ivf++_.OpenGL.application”);
window—>show () ;

app—>run();

return 0;

Listing 3: Ivf++ scene graph rendering using the CIvfScene class

4 Using event handlers

A new concept introduced from version 0.9.x in Ivf++ is event handlers. Event handlers
are classes implementing a functionality that integrates with events in the CIvfWidgetBase
derived classes, such as the CIvfWindow class used in the examples in this article. Using
event handlers can minimise the event handling code in an application, enabling a user to
focus on the visualisation code. The relationships between the handler and widget base class
is shown in figure 3.

for (i=0; i<renderEvents .size(); i++)

renderEvents[il->onRender()
for (i=0; i<resizeEvents.size(); i++)
| CIviRenderEvent | | CIvfResizeEvent | resizeEvents|i]->onResize(...)

CIviRenderEvent
CIvResizeEvent

ClIviSceneHandler >—widget CifWidgetBase K>

widget->addRenderEvent(this);
widget->addResizeEvent(this);

| CIMFlItkBase | |CMWin32Window|
/\

Civwindow

Figure 3: Event handler concepts

The scene graph example in section 3.1 will be modified to use handler classes for scene
rendering and mouse viewing,.

Handler classes are located in the ivfwidget library. In this example the CIvfSceneHandl
and CIvfMouseViewHandler classes will be used, so the following includes are added:

#include <ivfwidget/lvfSceneHandler .h>
#include <ivfwidget/IvfMouseViewHandler. h>

In the class declaration, events for resizing and rendering are removed. These events are
handled automatically by the handler classes. The CIvfInitEvent event is still needed to
setup the scene graph. The member variables for the handler classes m_sceneHandler and
m mouseViewHandler are added.

class CExampleWindow: public ClvfWindow ,
ClvflnitEvent
{

private:
ClvfScenePtr m_scene;
ClvfSceneHandlerPtr m_sceneHandler;
ClvfMouseViewHandlerPtr m_mouseViewHandler:

A-35

public:
CExampleWindow(int X, int Y, int W, int H);

virtual void onlnit(int width, int height);

b

The constructor must also be modified, removing the resize and render events. The
constructor becomes:

CExampleWindow :: CExampleWindow(int X, int Y, int W, int H

)
: ClvfWindow (X, Y, W, H)
{

}

In the onInit event method, the handler classes must be instantiated. First the CIvfScene
class is instantiated. This class will automatically handle both rendering and resizing of the
window. The constructor needs a reference to a CIvfWidget derived instance, in this case
the CIvfExampleWindow class (this) and a reference to a CIvEScene instance.

addInitEvent (this);

m_sceneHandler = new ClvfSceneHandler(this, m_scene);

The CIvfMouseViewHandler class handles mouse input for controlling the current view.
The constructor needs a reference to a CIvEfWidget derived instance, in this case the CIvfExam)
class and a reference to a CIvfCamera instance for controlling the camera.

m_mouseViewHandler = new ClvfMouseViewHandler(this ,
camera);

A handler in Ivf4++ can be active or inactive. When a handler is created it is default set
to active, so no extra code is needed for the handler to receive events. To change handler
state the activate and deactivate methods can be used. The last step is to remove the
event methods onResize and onRender in the class implementation. The application is now
finished, containing only one event for initialising the scene graph.

Other handler classes in Ivf++ are:

library Description
CIvfInteractionHandler Interaction with 3D GUI controls.
CIvfCoordinateInputHandler | 3D Coordinate input using the mouse.
CIvfSelectionHandler Shape selection.

CIvfFlyHandler Fly view handler.

Table 2: Other handler classes

The complete example is found in the following listing:

Listing 4: Using handler classes in Ivf++

#include <ivfui/IvfApplication.h>
#include <ivfui/lvfWindow . h>

#include <ivf/lvfScene h>
#include <ivf/IvfCamera.h>
#include <ivf/lvfMaterial .h>
#include <ivf/IvfCube.h>
#include <ivf/lIvfLighting.h>
#include <ivf/lvfLight.h>

#include <ivfwidget/IvfSceneHandler .h>

A-36

#include <ivfwidget/IvfMouseViewHandler . h>
IvfSmartPointer(CExampleWindow) ;

class CExampleWindow: public ClvfWindow ,
ClvflnitEvent
{

private:
ClvfScenePtr m_scene;
ClvfSceneHandlerPtr m_sceneHandler;
ClvfMouseViewHandlerPtr m_mouseViewHandler ;
public:
CExampleWindow (int X, int Y, int W, int H);

virtual void onlnit(int width, int height);

IE

CExampleWindow :: CExampleWindow (int X, int Y, int W, int H)
: ClvfWindow (X, Y, W, H)

addInitEvent (this);

void CExampleWindow:: onlnit(int width, int height)

{
m_scene = new ClvfScene();
ClvfMaterialPtr material = new ClvfMaterial ();
material =>setDiffuseColor (1.0f, 0.0f, 0.0f, 1.0f);
material —>setSpecularColor (1.0f, 1.0f, 1.0f, 1.0f);
ClvfCubePtr cube = new ClvfCube();
cube—>setMaterial (material);
m_scene—>addChild (cube);
ClvfCameraPtr camera = new ClvfCamera();
camera—>setPerspective (45.0, 0.1, 20.0);
camera—>setPosition (3.0, 3.0, 3.0);
m_scene—>setCamera (camera) ;
ClvfLightingPtr lighting = ClvfLighting :: getlnstance ();
ClvfLightPtr light = lighting—>getLight (0);
light —>setLightPosition (1.0, 1.0, 1.0, 0.0);
light —>setAmbientColor (0.2f, 0.2f, 0.2f, 1.0f);
light —enable();
m_sceneHandler = new ClvfSceneHandler (this , m_scene);
m_mouseViewHandler = new ClvfMouseViewHandler(this , camera);
}

int main(int argc, char xxargv)
ClvfApplicationPtr app = new ClvfApplication (IVF_DOUBLE|IVF_RGB);
CExampleWindowPtr window = new CExampleWindow (0, 0, 512, 512);
window—>setWindow Title (" Ivf++_OpenGL_application”);
window—>show () ;
app—>run();

return 0;

}

Listing 4: Using handler classes in Ivf4++

5 Extending the library

Many class libraries often have a special abstraction layer hiding the lower level libraries or
software rendering implementations. This abproach is flexible when supporting DirectX [11

A-37

or OpenGL [9] in the same class library. Extending such a library with custom rendering code
can only be done through the abstraction layer, thus reducing the amount of functionality
available. Ivf++ does not have this problem, because it is designed to support and enable
the use of OpenGL in an easy way. The class library serves as a framework supporting the
use of OpenGL code directly in the classes.

There are three main ways of extending the library with rendering code:

1. Deriving CIvfShape derived classes with custom OpenGL rendering code.
2. Deriving CIvfComposite derived classes composed of other Ivf++ shape classes.

3. Deriving CIvEfGLPrimitive derived classes creating topology based geometry using the
functions in the base class.

To aid in the creation of extension classes, Ivf++ includes a simple class generator,
ivfclassgen for this purpose. ivfclassgen is a simple command line utility written in
Python [10] which generates skeleton include and implementation files for the 3 main exten-
sion types. Giving the command ivfclassgen without any parameters lists the available
command options:

Ivf Classgen 0.1 - Ivf++ Class Template Generator
Copyright (C) 2003 Division of Structural Mechanics
Usage:

ivfclassgen classtype [classname]

values for classtype are:

shape Shape derived class
quadset QuadSet derived class
composite Composite derived class

The first option specifies the type of class generated. The last options specifies the name
of the class.

5.1 Creating CIvfShape derived classes

The most general way of extending Ivf++ is to create CIvfShape derived classes. The
CIvfShape supports positioning, material, textures and state handling in OpenGL. To im-
plement OpenGL rendering in the class the protected virtual method createGeometry must
be overridden. In the createGeometry method any OpenGL based rendering code is placed.

Rendering code in the CIvEShape should generate the geometry around the origin (0, 0, 0),
otherwise the built in position code will not be intuitive to use. Material handling can be
left out if not some kind of vertex colouring scheme is used. The CIvfShape class will
automatically apply material parameters before the createGeometry method is called. If
textures are used together with the extension class, texture coordinates must be specified
using glTexCoord2 methods.

To illustrate the process of creating an extension class, a simple class CIvfShapeExample
will be implemented. Skeleton source code for the class defintion and implementation is
generated using the ivfclassgen tool. The following commands are given:

ivfclassgen shape IvfShapeExample

The files IvfShapeExample.hand IvfShapeExample. cpp are generated. The ivfclassge
tool automatically adds the neccesary class methods and also adds a smart pointer defini-
tion and support for the Ivf++ run time class information system. The generated code for
IvfShapeExample.h is shown in the following listing:

#ifndef _ClvfShapeExample_h_
#define _ClvfShapeExample_h_

A-38

#include <ivf/lvfShape.h>
IvfSmartPointer (ClvfShapeExample);

class ClvfShapeExample: public ClvfShape {
private:

public:
ClvfShapeExample();

IvfClassinfo (" IvfShapeExample” , ClvfShape);

protected:
virtual void createGeometry ();
b

#endif

To implement the new shape, code for rendering must be added in the createGeometry
method. The ivfclassgen tool creates some simple rendering code to illustrate the concepts,
as shown in the following code:

#include "IvfShapeExample.h”
ClvfShapeExample :: ClvfShapeExample ()

// Add construction code here

void ClvfShapeExample ::createGeometry ()

{

// Rendering code

glBegin (GL.QUADS) ;
gINormal3d(0.0, 0.0, 1.0
glVertex3d(1.0, 1.0, 0.0
glVertex3d(—1.0, 1.0, 0.0
.0, 0.0
.0, 0.0

glVertex3d(—-1.0,-1
glVertex3d(1.0, -1

glEnd ()

~—— — — —

}
The implemented class can automatically be used with Ivf++ in the same way as any
other Ivf++ class. To illustrate this, the cube in the previous examples are replaced with
the new CIvfShapeExample class. First the include for the new class is added:

#include "IvfShapeExample.h”

In the onInit the cube instantiation code is replaced with code for instantiating the new
class:

ClvfShapeExamplePtr newShape = new ClvfShapeExample();
newShape—>setMaterial (material);

m_scene—>addChild (newShape);
As shown in the code above the normal Ivf4++ method setMaterial is used to assign a

material that will be used when rendering the object. Running the example will produce a
single red plane.

A-39

5.2 Creating CIviGLPrimitive derived classes

To implement advanced geometry in OpenGL often involves the handling of coordinate
arrays, index arrays and normal arrays. To aid in this process Ivf++ supports the handling
of indicies and coordinates through the CIvfGLPrimitive base class. From this class Ivf++
several classes for the OpenGL rendering primitives are derived, see figure 4.

ClIviShape

‘CMPoimSet| |CIvaineStripSet| |CIvariStripSet| |CIvauadStripSet| |CIvaonSet|

| CIvaineSetl | CIvtTriSet| | CIvauadSet|

Figure 4: CIvEGLPrimitive derived classes in Ivf++

Creating classes based on the CIvEGLPrimitive base class can be done either by directly
deriving from the CIvfGLPrimitive or from the separate Ivf4++ primitive classes. Deriving
directly from the CIvEGLPrimitive class will also require implementing the createGeometry
for rendering the geometry using OpenGL calls. To derive from the Ivf++ primitive base
classes require defining the geometry using the methods in the CIvfGLPrimitive class
and implementing routines for changing geometry dimensions. To illustrate this a simple
CIvfQuadSet derived class CIvfQuadSetExample will be implemented. The class renders

a single quadrilateral with properties for width and height. The class definition is shown
below:

#ifndef _ClvfQuadSetExample_h_
#define _ClvfQuadSetExample_h_

#include <ivf/lvfQuadSet.h>
IvfSmartPointer (ClvfQuadSetExample);

class ClvfQuadSetExample: public ClvfQuadSet {

private:
double m_width;
double m_height;
void update();
public:

ClvfQuadSetExample();
IvfClassinfo (" IvfQuadSetExample” , ClvfQuadSet);

void setSize(double width, double height);

i
#endif
A special routine update is added, for updating the geometry when the width and height
properties are changed. The initial topology of the geometry can not be changed in this

class, so the geometry definition is done in the class constructor. First default values for the
width and height are set

A-40

ClvfQuadSetExample:: ClvfQuadSetExample()

{

m_width = 1.0;
m_height = 1.0;

The geometry is centered around (0,0, 0) so 3 offset variables are defined.

double ox = —m_width /2.0;
double oy = —m_height /2.0;
double oz = 0.0;

Coordinates are added using the addCoord from the CIvfGLPrimitive.

addCoord (ox, oy, oz);

addCoord (ox + m_width, oy, oz);
addCoord (ox + m_width, oy + m_height, oz);
addCoord (ox, oy + m_height, oz);

To support textures the class must supply texture coordinates. Adding texture coordi-
nates is done using the addTextureCoord method. This example implements a very simple
texture mapping scheme, as shown in figure 5.

t

(1.0, 1.0)

(0.0, 0.0) s

Figure 5: Texture coordinates in the CIvfQuadSetExample class
The texture coordinates for the described mapping is added with the following code:

addTextureCoord (0.0, 0.0)
addTextureCoord (1.0, 0.0)
addTextureCoord (1.0, 1.0)
addTextureCoord (0.0, 1.0)

Until now no connectivity data has not been defined. Connectivity in Ivf4++ is handled
using the CIvfIndex class. The CIvfIndex class maintains an array of indices (long) pointing
to coordinates, texture coordinates or vertex normals. CIvEGLPrimitive derived classes
can have one or more CIvfIndex, each instance representing a glBegin/glEnd pair. In
this example 2 CIvfIndex indexes are needed, one for the vertices and one for the texture
coordinates. Using a CIvfIndex class is simple, indexes are added with the add method.
The CIvfIndex instance for the coordinates is added to the CIvEfGLPrimitive class with the
addCoordIndex method.

A-41

ClvfindexPtr idx;

idx = new Clvflndex();
idx—>add (1, 2, 3, 0);

addCoordlIndex (idx);
Texture indices are added in the same way.

idx = new Clvflndex();
idx—>add (0, 1, 2, 3);

addTexturelndex (idx);

Changing the size of the quad using the setSize, requires changing the defined geometry.
This is done in the update routine. The CIvEGLPrimitive provides the method setCoord for
changing the coordinates in the coordinate array. The update method becomes as followes:

void ClvfQuadSetExample:: update()
{
double ox = —m_width /2.0;
double oy = —m_height /2.0;
double oz = 0.0;

setCoord (0, ox, oy, oz);

setCoord (1, ox + m._width, oy, oz);
setCoord (2, ox + m._width, oy, oz + m_height);
setCoord (3, ox, oy, oz + m_height);

}

Changing texture coordinates is done in the same way using the setTextureCoord method.

5.3 Creating CIvfComposite derived classes

The easiest way of extending Ivf++ is to create composite objects consisting of existing
Ivf++ classes. These types of classes can be derived from the CIvfComposite class. Ob-

jects contained in the composite are created and added in the class constructor. The class
definition can look as follows:

#ifndef _ClvfCompositeExample_h_
#define _ClvfCompositeExample_h_

#include <ivf/lvfComposite .h>
IvfSmartPointer (ClvfCompositeExample);

class ClvfCompositeExample: public ClvfComposite {
private:

public:
ClvfCompositeExample() ;

IvfClassinfo (" lvfCompositeExample” , ClvfComposite

)

#endif

A-42

The example above only includes a declaration for the class constructor. If the class
implements dynamic geometry, access methods and member variables for the objects has to
be added in the class definition.

Objects created in the class constructor are added using the addChild method of the
CIvfComposite class.

#include "IvfCompositeExample . h”

#include <ivf/lvfCube . h>
#include <ivf/IvfSphere . h>

ClvfCompositeExample:: ClvfCompositeExample()

{

// Add construction code here
ClvfCubePtr cube = new ClvfCube();
this—addChild (cube);

ClvfSpherePtr sphere = new ClvfSphere();
sphere—>setRadius (0.5) ;
sphere—>setPosition (0.0, 0.5, 0.0);

this—>addChild (sphere);
}

The code above creates a 1 x 1 cube located at (0,0,0). A sphere with r = 0.5 is placed
with the centre at (0, 0.5, 0).

6 Conlusions

Ivf++ is an easy to use framework, supporting OpenGL application development. The
current version 0.9.x includes approximately 240 classes. Integration with different graphical
user interface toolkits is an important factor in the development of Ivf++, and the library
presently integrates with FLTK [3], MFC [8] and native Windows applications.

Another important aspect of the library is to support the OpenGL library not by com-
pletely encapsulating it behind an abstraction layer, but to support the direct use of it in
the Ivf4++ classes. Software rendering is supported through the MesaGL [7] library and on
Microsoft Windows using the fallback method available in the OpenGL implementation on
this platform.

Ivf++ can also effectively be used as a rapid application development system for OpenGL
applications. Ivf++ includes a simple application framework, enabling the creation of plat-
form independant OpenGL applications, without any platform specific code.

Documentation is an important aspect often neglected. Most classes in Ivf4+ are fully
documented using the Doxygen [2] documentation tool. Doxygen produces reference docu-
menation in HTML, RTF or Latex. Ivf++ also comes with a 200 page user’s guide [6].

The driving force behind the development of this library has been the feedback and the
many downloads of the library on the internet !. The library is released under a LGPL
license enabling the use of the library in open source applications as well as commercial
propriatary applications.

References

[1] Microsoft DirectX - Multimedia technology for Windows-based gaming and
entertainment, http://www.microsoft.com/windows/directx/default.aspx, 2003

f++ has been downloaded 12000 times since 2000

A-43

A-44

