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Overview of the thesis

This thesis investigates structure-acoustic problems, which involves a flexible structure
coupled to an enclosed acoustic fluid. In the literature, this type of problems are usually
referred to as vibroacoustic problems or structural-acoustic problems with fluid interac-
tion. The thesis consists of two parts. The first part provides an introduction into the
field of structure-acoustic analysis within the finite element framework, including the de-
scription of porous materials. The second part of the thesis comprises seven papers in
which analysis procedures for modal reduction of structure-acoustic systems are devel-
oped. Two of the included papers also investigate the sound transmission loss of double
walls.

Included papers

Paper 1 Göran Sandberg and Peter Davidsson, A strategy for modal reduction of struc-
ture-acoustic systems, 2002.

Paper 2 Peter Davidsson and Göran Sandberg, Reduction of structure-acoustic prob-
lems that include hysteretic damping, 2002.

Paper 3 Peter Davidsson and Göran Sandberg, Substructuring and modal reduction of
finite element formulated poroelastic systems, Submitted to Computer methods
in applied mechanics and engineering, 2004.

Paper 4 Peter Davidsson and Göran Sandberg, A reduction procedure for structure-
acoustic and poroelastic–acoustic problems using interface-dependent Lanczos
vectors, Submitted to Computer methods in applied mechanics and engineering,
2004.

Paper 5 Peter Davidsson, Göran Sandberg, Gunnar Björkman and Johan Svennings-
torp, Structure-acoustic analysis in an integrated modelling environment,
WCCM V congress in Vienna, 2002.

Paper 6 Peter Davidsson, Jonas Brunskog, Per-Anders Wernberg, Göran Sandberg and
Per Hammer, Analysis of sound transmission loss of double-leaf walls in the
low-frequency range using the finite element method, Submitted to Building
Acoustics, 2004.

Paper 7 Jonas Brunskog and Peter Davidsson, Sound transmission of structures; a finite
element approach with simplified room description, Accepted for publication
in Acta acustica united with Acustica, 2004.

III



“kappa” — 2004/9/6 — 13:41 — page IV — #4
i

i

i

i

i

i

i

i



“kappa” — 2004/9/6 — 13:41 — page V — #5
i

i

i

i

i

i

i

i

V

Summary of papers

Paper 1 The problem in which a flexible structure interacts with an acoustic fluid is
analysed by use of the finite element method. With increasing complexity of
the geometry and when increasing the frequency limit is of interest, the num-
ber of degrees of freedom needed to describe the system becomes very large.
To reduce the coupled system, modal analysis is performed in the structural
and in the fluid domain separately. The subdomain eigenvectors are then used
to reduce the coupled problem. A method for choosing which of these subdo-
main eigenvectors to include in this operation is derived based on the coupling
between the structural and fluid modes, further reducing the system. The cou-
pling depends on similarity in the natural frequencies and in the shapes of the
subdomain modes.

Paper 2 The unsymmetrical eigenvalue problem involved in analysing structure-acoustic
problems by use of the finite element method with a pressure formulation in
the fluid domain can be reduced by transforming it into a symmetric standard
eigenvalue problem. The paper shows that when hysteretic damping is intro-
duced in both the structural and the fluid domain, the problem can still be
treated as a symmetric standard eigenvalue problem, which becomes complex-
valued due to the damping. This provides a simple method for including damp-
ing in the frequency response analysis of structure-acoustic problems.

Paper 3 A structure-poroelastic system, consisting of a porous material domain bounded
to a flexible structural domain, is studied. The porous material is modelled by
Biot’s theory, where both the flexible frame material and the fluid in the open
pores are described by coupled equations of motion. The component mode
synthesis method is used to derive a reduced set of basis vectors for the system.
This is done by dividing the system into three physical domains, the flexible
structure, and the fluid and structural partitions of the porous material. The
displacement continuity between the flexible structural domain and the porous
material is fulfilled by interface modes. These modes are derived by study-
ing the two structural subdomains, the flexible structure and the structural
partition of the porous material, in vacuo. The interface modes are used to-
gether with a set of basis vectors for each of the uncoupled domains, derived
by modal analysis with the interface degrees of freedom fixed, to reduce the
coupled system.

Paper 4 A reduction method is proposed for the analysis of structure-acoustic and
poroelastic–acoustic problems within the finite element framework. This in-
cludes systems consisting of an acoustic fluid domain in contact with a flexible
structural domain and/or a porous sound absorbing material domain. The
problem studied is reduced by dividing the system into a number of physi-
cal domains. A set of basis vectors is derived for each of these domains both
including eigenvectors of the uncoupled domain and interface-dependent vec-
tors including the influence from connecting domains. The proposed method is
compared to solving the total system for both a structure-acoustic eigenvalue
problem and a frequency response analysis of a poroelastic–acoustic system.
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Paper 5 This paper, which is based on the results reported in Papers 1 and 2, describes
the implementation of structure-acoustic finite element analysis in an integrated
modelling environment, one which has interfaces to programs for meshing and
for finite element analysis. The aim is to determine the vehicle interior noise
on the basis of the force applied to the structure.. An interface is created to
a code developed for performing structure-acoustic analysis involving coupled
modal analysis and frequency response analysis. The possibilities this mod-
elling environment provides are demonstrated. Use of this approach simplifies
cooperation between researchers and their interaction with industrial groups.

Paper 6 The sound transmission loss of double-leaf walls in the low-frequency range is
evaluated by means of structure-acoustic finite element analysis. A parametric
study is performed to investigate the influence on the sound transmission loss of
various material and geometric properties of the wall and the dimensions of the
connecting rooms. It is found that a very detailed description of the system is
needed in order to describe sound transmission loss in the low-frequency range.
The model confirms the importance of primary structural resonance and the
size of the wall and the connecting rooms in determining the sound transmission
loss in the low-frequency range.

Paper 7 A prediction model within the finite element framework for the sound insula-
tion of a wall is proposed. The connecting rooms are described as infinite-long
tubes and the influence of the rooms becomes loading terms on the wall, re-
ducing the model to the two-dimensional wall. The analysis can thereby be
conducted higher in the frequency range compared to having to include the
modal bases of the connecting rooms. The same method is developed to study
the sound insulation of lightweight double-leaf walls, and the numerical results
are presented.
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Chapter 1

Introduction

This thesis investigates structure-acoustic systems by use of finite element analysis. The
systems studied here are limited to those that consist of an enclosed acoustic fluid cavity,
which is coupled to a flexible structure and/or a porous sound absorbing material domain.

The introduction gives the background and objective for the thesis and also describes
a number of applications where this type of analysis can be employed. The typical proce-
dure of structure-acoustic analysis is discussed, including the generation of the governing
system of equations and the solution of the generated systems using substructuring and
modal reduction.

The introduction also contains a description of the work conducted, as based on the
included papers where the main contributions of this thesis are stated.

1.1 Background

The demand for building lighter and thereby more fuel efficient vehicles is very likely
to be in conflict with the comfort of the passengers in terms of a low level of interior
noise. Reducing the weight could increase the structural vibrations, leading to higher
noise levels in the passenger compartment. To deal with this problem in the design stage,
detailed structure-acoustic analyses need to be performed. The governing equations for
structure-acoustic analysis are presented in Chapter 2, where also a short review of the
literature of interest is presented. The interior noise comfort can also be in conflict with
other vehicle properties such as safety (crashworthiness), so the design process must be
conducted in an integrated fashion that addresses various vehicle properties – such as
safety, reliability and comfort – in the process. Also, with a decreasing weight of the
vehicle, the dimensioning and thereby the modelling of porous sound absorbing materials
becomes very important. The modelling of porous sound absorbing materials is described
in Chapter 4, also including a literature review.

The use of lightweight constructions in buildings increases the need for prediction
models in the low-frequency range. For example, the sound transmission loss of a double
wall, in the low frequency range, is not only dependent on wall type and wall material
properties but also the dimensions of both the wall and the connecting rooms. Also, the
modelling of the porous sound absorbing material inside the double wall cavities is of
great importance in predicting the sound transmission loss of the wall. The literature

1
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2 CHAPTER 1. INTRODUCTION

pertaining to predicting sound transmission loss in walls can be found in Paper 7 and in
the Doctoral thesis by Brunskog [1].

The number of degrees of freedom of the finite element model, i.e. the size of the
system of equations, when solving structure-acoustic systems is likely to become very
large. The geometric complexity of the systems under study and the frequency limit of
interest determine the size of the system. The constant aim to have a more detailed
description of the geometry and an increased frequency limit of validity for the model
result in increasing number of degrees of freedom. Thus, the need for efficient solution
strategies in structure-acoustic analysis and methods to reduce the size of the model,
i.e. the size of the system of equations to be solved, is therefore large. Different modal
reduction techniques are described in Chapter 3.

The modelling of porous sound absorbing materials increases the solution time due
to both increased number of degrees of freedom and the frequency dependent material
properties. Therefore, it would be desirable to be able to include the porous material
description in the reduction methods.

1.2 Objective

In this thesis, the coupled structure-acoustic problem is studied using the finite element
method. The objective is twofold: to develop the analysis methods and to study engi-
neering applications.

To increase the possibility of including a detailed geometrical description of the studied
system and advanced material descriptions in the analysis, the thesis develops efficient
methods, using substructuring and modal reduction, for the analysis of structure-acoustic

Figure 1.1: Vehicle interior noise: a) Measurement setup for determining the level of
interior noise in the SAAB 340 airplane (M. Gustavsson [2], A2 Acoustics AB, project
performed at SAAB AB during 1995), b) A coupled structure-acoustic mode of the vehicle
model that was analysed in VIVS-lab (P. Davidsson, project with Volvo Technological
Development, 2001), paper 5.
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1.3. PROBLEM DESCRIPTION 3

problems. The aim is also to be able to increase the frequency limit of validity for the
analysis. The geometric problem domain is divided into a number of subdomains and
reduced set of basis vectors is derived for each of these subdomains. The main objective
is to be able to perform as large part of the analysis on the subdomain level as possible,
before assembling the total system. The set of basis vectors for each domain is derived to
include information about both the internal behaviour of the subdomain and the coupling
to the other subdomains. The reduced description enables efficient solution of the total
system. An important feature is to include the description of porous sound absorbing
materials in the reduction process of the structure-acoustic problems.

Another objective for the thesis is to use the derived procedures in engineering appli-
cations; particularly in the study of sound transmission of lightweight double-leaf walls in
the low-frequency range. The objective is to include a detailed geometric description of
the problem enabling a structured evaluation of the influence of various geometrical and
material properties of the studied wall on the predicted sound transmission loss.

1.3 Problem description

This section presents a short discussion on the realisation of finite element analysis of
structure-acoustic systems. This type of analysis is applicable to a wide range of engineer-
ing problems. Figure 1.1 displays two vehicle applications. The first is the measurement
setup used to determine the interior noise level in the SAAB 340 airplane. The second
is a structure-acoustic analysis of the generic car cavity model developed in VIVS-lab,
see Paper 5. The behaviour within the low frequency range of a wall consisting of sheet-
metal wall studs covered by plaster boards is studied in Figure 1.2 (see Papers 6 and 7).
Another example of structure-acoustic analysis is a fluid-filled tank being exposed to an
earthquake, shown in Figure 1.3. The typical damage, being elephant foot buckling, can
be seen at the base. (Note however that large deformations and damage is not investigated

Figure 1.2: Building acoustics: The acoustic behaviour of double leaf walls is studied in
the low frequency range. The figure shows the frequency response to a point source in the
room-wall-room system simulating the measurement setup used for determining the sound
reduction index of the wall (P. Davidsson, project together with Lindab Profil AB, 2001),
paper 6.
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4 CHAPTER 1. INTRODUCTION

Figure 1.3: Earthquake analysis: A fluid filled tank exposed to an earthquake. The typical
damage, elephant foot buckling, is seen at the base of the tank (P. Davidsson, Structural
Mechanics, Report TVSM-5083, 1998).

in this thesis.)

Finite element analysis

In the mathematical description of the structure-acoustic problem, one differential equa-
tion governs the behaviour of each of the structural and fluid domains. The two domains
are coupled through boundary conditions ensuring continuity in displacement and pres-
sure. Finite element formulation of the governing equations including the coupling con-
ditions yields that the system of equation of motion for an undamped structure-acoustic
problem can be written in the form

[

MS 0
ρ0c

2
0H

T
SF MF

] [

d̈S
p̈F

]

+

[

KS −HSF

0 KF

] [

dS
pF

]

=

[

fb
fq

]

(1.1)

which is derived in Chapter 2, where the matrices and material parameters are defined.
The primary variables are the displacements, dS , in the structural domain and the acoustic
pressure, pF , in the fluid domain. The two domains are described by the corresponding
mass and stiffness matrices, 〈MS ,KS〉 and 〈MF ,KF 〉, respectively. The coupling between
the domains is given by the spatial coupling matrix HSF . The right side of the equation
describes the external forces. The number of equations, equal to the number of degrees of
freedom, is denoted n. The Doctoral theses by Sandberg [3] and Carlsson [4] investigate
the finite element formulation of the structure-acoustic problem.

The structure-acoustic system is solved for a specific force field. In a time domain
analysis, the system of equations can be solved in a stepping procedure throughout the
time interval studied. This is carried out when studying the water tank exposed to an
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1.3. PROBLEM DESCRIPTION 5

earthquake, for example. In frequency domain analysis, a harmonic motion is assumed,
i.e. the motion of the system is described by the displacement and pressure amplitudes,
d̂S and p̂F ,

[

dS
pF

]

=

[

d̂S
p̂F

]

eiωt (1.2)

where ω = 2πf (f is the studied frequency in Hz), i =
√
−1, and t denotes time. The

vehicle interior noise problem in Figure 1.1 and the sound transmission loss in a double
wall in Figure 1.2 are two examples of this type of frequency response analysis. Introducing
equation (1.2) in equation (1.1), the response to a harmonic excitation at a number of
frequency steps in the frequency interval of interest can be determined. Due to the
frequency dependence of the dynamic stiffness matrix, a new system of equations must be
solved in each of these steps. Also, when frequency dependent material properties are used
to, for example, describe porous materials or internal damping, the system matrices must
also be reassembled in each frequency step. In the mathematical description, the porous
sound absorbing materials can either be included as a part of the acoustic fluid domain,
using an equivalent fluid model, or as a part of the structural domain, using displacement
formulation of the porous material domain. The modelling of porous materials is studied
in Chapter 4. Solution strategies for the frequency response of structure-acoustic problems
are studied in the Licentiate thesis by Gustavsson [2].

Size of the system of equations

An important problem encountered in structure-acoustic analysis is that the number of
degrees of freedom easily becomes very large. This, together with the lack of symmetry
in the system of equations and the large bandwidth of the system matrices, due to the
coupling matrix, HSF , in equation (1.1), all adds up to long computational times. The
large number of degrees of freedom is mainly due to the fact that the wavelengths of the
structure and acoustic fluid must be resolved in the finite element model. Figure 1.4,
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Figure 1.4: The longitudinal wavelength in air and the bending wave lengths of a 3 mm
aluminium panel and a 12.5 mm plasterboard.
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Figure 1.5: The required number of degrees of freedom when studying the fluid domain,
the structural domain and the coupled problem.

displays how the bending wavelengths of two typical structural members, a 3 mm thick
aluminium plate and a 12.5 mm thick plasterboard, and the longitudinal wavelength
in air varies with frequency. Note, at low frequencies the wavelength in air is much
larger compared to the wavelengths of the structural members, but the wavelength in air
decreases more rapidly with increasing frequency.

A simple measure of the number of degrees of freedom needed in dynamic analysis
is illustrated in Figure 1.5. An enclosed cube-shaped cavity with all boundary sides
flexible is investigated, where it is assumed that 8 degrees of freedom are satisfactory to
resolve each wavelength, both for the structural and fluid domains. The total number of
degrees of freedom needed to describe the system is determined both with respect to the
frequency limit of interest and the volume of the system under study. As for the size of
the system, for comparison, the volume of a passenger compartment in a car is typically
a few cubic metres, a room in an apartment ∼ 102 m3, a large airplane fuselage ∼ 103

m3, and a concert hall ∼ 104 m3. To describe the fluid domain at low frequencies, only
a few degrees of freedom are needed; the wavelength is of the same magnitude as the
dimensions of the system. For the structural domain, the wavelength is much shorter
and more degrees of freedom are needed to resolve it. With increasing frequency, the
number of degrees of freedom increases more rapidly for the three-dimensional acoustic
fluid domain compared to the two-dimensional structure.

For the coupled structure-acoustic analysis, it is assumed that both domains must
be able to describe the shortest wavelength that can appear. This is the structural
wavelength up to the point where the lines cross in Figure 1.5 a), at the, so called,
coincidence frequency. Thus, even for the low-frequency range and small volumes of the
acoustic cavity, a large number of degrees of freedom is needed for the acoustic fluid
domain compared to an uncoupled analysis. For example, at 1000 Hz and a volume of 10
m3, a few million degrees of freedom are needed to describe the system. From this simple
problem, the need for modal reduction, where a reduced set of basis vectors is derived, is
evident.
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1.3. PROBLEM DESCRIPTION 7

Modal reduction

The aim of a modal reduction technique is that m, which is the number of basis vectors
that is used for describing the system, is much smaller then the number of degrees of
freedom, n,. This leads to a speed-up of the analysis since the system of equations to be
solved is smaller. For the studied system in equation (1.1), a reduced set of basis vectors
can be derived

[

dS
pF

]

= Ψξ (1.3)

where Ψ contains a number of basis vectors, or modes, and ξ contains the modal coor-
dinates. Modal reduction techniques are investigated in Chapter 3. The most frequently
used basis vectors are the normal modes, denoted Φ, which are derived in solving the
eigenvalue problem of the system. This analysis also achieves an understanding of the
dynamic behaviour of the system. The eigenvalue problem is also studied in Chapter 3.
An important technique in modal reduction is substructuring, where the system is divided
into subdomains, which are first analysed separately. In structure-acoustic analysis, the
natural choice of subdomains are the structural and fluid domains, i.e. the reduced base
becomes

Ψ =

[

ΨS 0
0 ΨF

]

(1.4)

where the basis vectors, ΨS and ΨF are derived separately. When analysing the gain in
solution time from solving the system using the reduced set of basis vectors, compared
to solving the total system, one must also consider the time to derive this reduced base.
The reduced set of basis vectors must also be able to describe the motion of the system
without restricting the motion into too few displacement modes. Reduction procedures
for structure-acoustic problems are studied in the Doctoral thesis by Carlsson [4] and the
Licentiate thesis by Hansson [5].

A short numerical investigation

To investigate the finite element analysis of structure-acoustic systems, numerical experi-
ments were carried out using the finite element program MSC/Nastran [6]. (All analyses
were performed on a computer with an Intel P4 2.53 Ghz processor and 1 Gb DDR
SDRAM main memory.) A box-shaped structure used for the study was constructed of
aluminium panels, with dimensions 1.7 × 1.2 × 0.8 m3, surrounding an acoustic cavity
filled with either air or water. The computational time for solving the eigenvalue problem
of the fluid domain was first studied, varying the number of degrees of freedom and the
number of normal modes required, see Figure 1.6. The number of normal modes required
determined how many times the iterative procedure, using the factorised system matrix,
needed to be performed, while the number of degrees of freedom determined the time for
each step in the iteration. As can be seen in Figure 1.6, the number of degrees of freedom
is very important to the solution time.

The method of substructuring and modal reduction was also studied (see Figure 1.7).
The structure-acoustic eigenvalue problem was solved, studying the convergence of the
eigenvalues when increasing the number of subdomain modes included. In this analysis,
the acoustic fluid was water. The calculated natural frequencies using the substructur-
ing and modal reduction converged towards the results from direct solution of the total
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Figure 1.6: Time to solve the eigenvalue problem for the acoustic fluid domain.

system. However, a very large number of subdomain modes are needed to describe the
coupled system.

The time consumption in a frequency response analysis of the structural domain was
also studied (see Figure 1.8). One of two solution procedures can be used: either the
total system is solved in each frequency step or a reduced set of basis vectors is derived
and used in a modal frequency response only requiring the solution of a system with the
size equal to the number of modes included. The maximum frequency of interest and the
number of frequency steps to be solved are important factors in the choice of the type of
analysis. Modal frequency response is very efficient when the number of frequency steps
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Figure 1.7: The natural frequencies of the coupled system calculated when varying the
number of structural and fluid modes used for describing the subdomains and also when
solving the total system.
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Figure 1.8: The time for solving the frequency response of the structural domain, when
solving the problem direct (the white surface) and using modal reduction (grey surface).
The number of frequency steps and the maximum frequency of interest are varied.

is large and the number of excited modes is low. If only a few frequency steps are of
interest, it is more efficient to solve the system directly, without first deriving the reduced
set of basis vectors.

Summary

In this section, the procedure of structure-acoustic analysis was discussed, see Figures
1.5 – 1.8. With increasing frequency of interest and dimensions of the studied problem,
the degrees of freedom needed for describing the problem increases rapidly. Also, the
time for solving the derived system of equations is very dependent on the size of this
system, i.e., the number of degrees of freedom. Using a reduced set of basis vectors, or
modes, the size of the system of equations is decreased and this can be very effective for
speeding up the computations, especially when the system of equations is to be solved in
large number of frequency steps (or time steps). However, a large number of modes can
be needed to describe the system. Methods to calculate these subdomain modes using
available information of the studied subdomain and the connecting subdomains are an
important part of this thesis.

1.4 Contents of the thesis

The contents of this thesis are presented in two main parts:

• Development of analysis methods using substructuring and modal reduction for
structure-acoustic and poroelastic-acoustic systems. The procedures that were de-
veloped divide the studied systems into a number of physical subdomains. These
subdomains, which may be an acoustic cavity, a flexible structure and/or a porous
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sound absorbing material domain, are described by a reduced set of basis vectors in-
cluding both the free motion of the subdomain and the influence from the connecting
subdomains.

• The investigation of sound transmission loss of double walls in the low-frequency
range using a detailed geometric description of the system. The detailed description
is used to study the influence of both geometric and material properties of the wall.

As a basis for the work presented in the papers included in the thesis, different aspects
of structure-acoustic analysis are discussed. In Chapter 2, the governing equations of the
structure-acoustic problem are given. The finite element formulation is derived for the
structural and acoustic fluid domains, using the structural displacements and acoustic
pressure as the primary variables, and for the coupled problem. In Chapter 3, modal
reduction techniques are described and evaluated with focus on different variants of the
Rayleigh-Ritz procedure. In Chapter 4, the modelling of porous sound absorbing mate-
rials within the finite element method is investigated. Different formulations of porous
materials can be employed, either a full description of both the structural and fluid parti-
tions or simplified equivalent fluid models. The different formulations are described and
some typical problems are solved to evaluate for which cases the different descriptions
should be employed.

1.4.1 Methods for substructuring and reduction

Papers 1–4 contain development of modal reduction techniques for structure-acoustic
systems. Paper 1 proposes a procedure to determine which subdomain normal modes –
derived from separate analyses of the structural and fluid domains – are most important
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Figure 1.9: Papers 1, 2 and 5: The sound level at the drivers ear in a generic car model.
The number of subdomain modes included in the reduction is varied by increasing the
number of subdomain modes with strong coupling included in the reduction. Small devia-
tions can be seen between using ncoup = 10 and ncoup = 20. This analysis is described in
Paper 5 and based on the work in Papers 1 and 2.
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Figure 1.10: a) Paper 3: Velocity level calculated when using the reduced set of basis
vectors or solving the total system. b) Paper 4: The calculated mean pressure pressure
level in the acoustic cavity. See the papers for details.

to describe the coupled system. Only these normal modes with strong coupling need to
be included in the reduced set of basis vectors for the coupled system and the system is
further reduced. Paper 2 is a study of the same problem but here describes a procedure
to include a simple description of damping in the system. The results of Papers 1 and 2
are implemented in an integrated modelling environment in Paper 5, where a generic car
model is studied. For example, the calculated sound level at the driver’s ear, varying the
number of subdomain modes with strong coupling that are included in the description of

Table 1.1: Paper 4: The calculated natural frequencies of the coupled problem using the
proposed method, employing interface-dependent subdomain modes, and the typical proce-
dure of including normal modes with natural frequency below ”2flimit” are compared to
solving the total system. Note the low number of modes used for the proposed method.

”2flimit” Lanczos vectors, m Direct
0 1 2

Mode Natural frequencies (Hz)

1 73.2197 73.3166 73.0821 73.0820 73.0820
2 89.2792 89.4187 89.0880 89.0879 89.0879
3 148.0841 148.9089 147.5391 147.5310 147.5306
4 163.9861 163.9952 163.9601 163.9600 163.9600
5 246.5600 246.5605 246.4992 246.4990 246.4990
6 252.0476 252.6919 251.1389 251.1246 251.1242
7 263.4865 263.6686 262.4484 262.4178 262.4121

Domain Number of degrees of freedom

Structural 4 4 5 6 243
Fluid 20 4 8 12 1377
Sum 24 8 13 18 1620
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12 CHAPTER 1. INTRODUCTION

the coupled problem, is plotted in Figure 1.9.
The inclusion of porous absorbing materials in the modal reduction is investigated in

Papers 3 and 4. Paper 3 describes a study of a flexible structure with porous material
bounded to its surface. Substructuring and modal reduction is employed to derive a
reduced set of basis vectors for these types of problems. The results from using this
reduced set of basis vectors are compared to solving the total system, as shown in Figure
1.10 a). In Paper 4, a reduction method is proposed which can be used for both plain
structure-acoustic systems and for systems with an acoustic cavity in contact with a
porous material domain. Interface-dependent modes, which include the influence of the
connecting domains, enable a very efficient reduced set of basis vectors to be derived for
each subdomain. The natural frequencies of a structure-acoustic eigenvalue problem using
the proposed method are presented in Table 1.1, and the frequency response in a damped
rectangular acoustic cavity is shown in Figure 1.10 b).

1.4.2 Sound transmission loss

In Papers 6 and 7, the sound transmission loss of double walls is studied by use of the
finite element method. Paper 6 comprises the study of the low-frequency range with a
detailed geometrical description of the wall and the two connecting rooms. The detailed
description is used to study the influence of both geometric properties, for example,
the distance between the wall studs, the length of the wall and the dimensions of the
rooms acoustically coupled to the wall, and material properties; for example, varying the
modulus of elasticity of the plasterboards as is displayed in Figure 1.11 a). In Paper 7,
a simplified tube-like description of the rooms is proposed. The rooms are included as
loading terms on the wall and the size of the system of equations to be solved is only
dependent on the finite element model of the wall. This enables the sound transmission
loss to be determined in a wider frequency range, as shown in Figure 1.11 b).
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Figure 1.11: a) Paper 6: Sound transmission loss when varying the plasterboard modulus
of elasticity, E, for the wall type R120 202 s450. b) Paper 7: The transmission loss for a
double wall with thickness 95 mm, comparing calculations and measurements.
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Chapter 2

Structure-acoustic analysis

This chapter investigates the analysis of structure-acoustic systems, here limited to sys-
tems consisting of a flexible structure in contact with an enclosed acoustic cavity, within
the finite element environment. A short literature review is presented here which focuses
on the need for this type of analysis and where different formulations in the finite el-
ement analysis are discussed. In the sections following, the governing equations of the
structure-acoustic problem are given and the finite element formulation of this problem
is derived.

2.1 Literature review

Vibrating structures inducing pressure waves in a connecting acoustic fluid and the oppo-
site case of acoustic pressure waves inducing structural vibrations constitute a thoroughly
investigated field of research (see for example the texts by Cremer and Heckl [7], and
Fahy [8]). In [9, 10, 11, 12, 13, 14, 15], the structure-acoustic problem is studied using
analytical expressions for the two domains. It is evident that the two connecting domains,
the flexible structure and the enclosed acoustic cavity, can be strongly coupled and in that
case the structure-acoustic system must be studied in a coupled system to evaluate the
natural frequencies and the response to dynamic excitation.

The systems studied often have complex shapes, leading to the conclusion that an-
alytical functions cannot be used for describing the spatial distribution of the primary
variables. Numerical methods must be employed. A review of different solution strategies
for structure-acoustic problems is given by Atalla [16], where analytical methods and two
numerical approaches: the finite element method and the boundary element method, are
discussed. The development of structure-acoustic analysis using the finite element method
for the study of vehicle interior noise is reviewed by Nefske et al. [17]. The basics of the
finite element method are described in, for example, Ottosen and Petersson [18]. A more
thorough investigation of the finite element method is found in, for example, the cited
works of Bathe [19] or Zienkiewicz and Taylor [20], while a focus on dynamic problems is
provided in Clough [21] or Chopra [22].

The formulation of coupled structure-acoustic problems using the finite element meth-
od is described, for example, in [3, 4, 23, 24]. In the finite element formulation, a system of
equations describing the motion of the system is developed, with the number of equations

13
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equal to the number of degrees of freedom introduced in the finite element discretisation.
One important property of the equation system derived is the sparsity of the system
matrices, i.e. only a few positions in these matrices are populated. This property results
in that the time for solving the system of equations is much shorter, compared to solving
a fully populated system of equations with equal size.

In the structural domain, the primary variable is displacement. For the fluid domain,
several different primary variables can be used to describe the motion. Using the fluid dis-
placement as the primary variable, both the structural and fluid domains can be described
with the same type of solid elements. The fluid domain has no shear stiffness and normal
modes with pure rotational motion are introduced. All rotational modes should have the
eigenvalue equal to zero. However, spurious non-zero, and thereby non-physical, modes
are introduced when using full integration of the solid element. Reduced integration can
be used to make all eigenvalues of rotational modes equal to zero [25]. The hourglass
modes due to the reduced integration can however interact with the correct modes giving
spurious modes with the same frequencies as the correct ones. In [26], the element mass
matrix was modified to account for this and the eigenvalue of all spurious modes becomes
zero. A mixed displacement based finite element formulation was presented by Bathe [19],
also removing the spurious modes. Using displacement to describe the fluid domain can
be called an one-field formulation, with only the displacement field is used to describe the
structure-acoustic system.

In order to remove the problem with non-physical modes and to arrive at a more com-
pact system of equations, a potential description of the fluid domain can be used, such as
the acoustic pressure or fluid displacement potential. The pressure formulation was used
in [27, 28] to determine normal modes and eigenvalues of complex shaped rigid-wall enclo-
sures and also in [29] to study the transient response of structure-acoustic systems. A two-
field formulation, with structural displacements and fluid potential function is achieved
with only one degree of freedom per fluid node. The derived system of equations using
pressure or displacement potential yields an unsymmetric system of equations. A fluid
velocity potential can also be used, where a matrix proportional to velocity is introduced
[30]. To solve the structure-acoustic eigenvalue problem using the two field formulation,
one needs an eigenvalue solver that either can handle unsymmetric matrices or can solve
quadratic eigenvalue problems. Solving these problems are more computational intensive
compared to solving the generalised eigenvalue problem for symmetric systems [31].

In order to achieve a symmetric system of equations describing the structure-acoustic
system, a three field formulation with structural displacement, fluid pressure and fluid
displacement potential can be used [32, 33]. By condensation of one of the fluid potentials,
a symmetric two field system of equations can be achieved [4]. However, the system
matrices then lose the positive property of being sparse.

Different types of methods for model reduction are often employed in structure-
acoustic analysis. (For details about the model reduction techniques, see Chapter 3.)
The most commonly used method is to reduce the system using the normal modes for
the structural and fluid domains, derived in separate eigenvalue analysis of the two sub-
domains [34, 35]. In a paper by Sandberg [36], the un-symmetric eigenvalue problem,
achieved when using the structural displacement and fluid pressure as primary variables,
is made symmetric using the subdomain modes and matrix scaling. Reduction methods
using component mode synthesis were also proposed in, for example, [37, 38]. In the
thesis by Carlsson [4], the Lanczos procedure was used in investigating structure-acoustic
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problems.

2.2 Governing equations

For the structure-acoustic system, the structure is (here) described by the differential
equation of motion for a continuum body assuming small deformations and the fluid by the
acoustic wave equation. Coupling conditions at the boundary between the structural and
fluid domains ensure the continuity in displacement and pressure between the domains.
The governing equations and boundary conditions can, as for example, was described in
detail by Carlsson [4], be written:

Structure :











∇̃
T
σS + bS = ρS

∂2uS
∂t2

ΩS

+ Boundary and initial conditions

Fluid :











∂2pF
∂2t

− c20∇
2pF = c20

∂qF
∂t

ΩF

+ Boundary and initial conditions

Coupling :







uS |n = uF |n ∂ΩFS

σS |n = −pF ∂ΩFS

(2.1)

The variables and material parameters are defined in the following sections, where also
the finite element formulation of this coupled problem derived.

In Chapter 4, the finite element formulation of both the continuum body and the
acoustic fluid are used for the modelling of porous sound absorbing materials. The struc-
ture of interest in most structure-acoustic problems is two dimensional and is therefore
often described by plate or shell theory. For derivation of the system matrices for these
problems, see, for example, [19, 20].

2.3 Finite element formulation

2.3.1 Structural domain

The structure is described by the equation of motion for a continuum body. The fi-
nite element formulation is derived with the assumption of small displacements. This
presentation follows the matrix notation used by Ottosen and Petersson [18].

For a continuum material the equation of motion can be written

∇̃
T
σS + bS = qS (2.2)

with the displacement, uS , the body force, bS , and the inertia force, qS ,

uS =





uS1
uS2
uS3



 ; bS =





bS1
bS2
bS3



 ; qS = ρS
∂2uS
∂t2

(2.3)
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where ρS is the density of the material. The differential operator ∇̃ can be written

∇̃ =





































∂

∂x1
0 0

0
∂

∂x2
0

0 0
∂

∂x3
∂

∂x2

∂

∂x1
0

∂

∂x3
0

∂

∂x1

0
∂

∂x3

∂

∂x2





































; (2.4)

The Green-Lagrange strain tensor, ES , and the Cauchy stress tensor SS are defined as

ES =





εS11 εS12 εS13
εS22 εS23

sym. εS33



 ; SS =





σS11 σS12 σS13
σS22 σS23

sym. σS33



 (2.5)

and in matrix notations the strains and stresses can be written

εS =

















εS11
εS22
εS33
γS12
γS13
γS23

















σS =

















σS11
σS22
σS33
σS12
σS13
σS23

















(2.6)

where γS12 = 2εS12, γ
S
13 = 2εS13 and γS23 = 2εS23. The kinematic relations, the relations

between the displacements and strains, can be written

εS = ∇̃uS (2.7)

For an isotropic material, the stresses and strains are related by the constitutive matrix
DS given by

σS = DSεS (2.8)

where

DS =

















λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

















(2.9)

The Lamé coefficients, λ and µ, are expressed in the modulus of elasticity, E, the shear
modulus, G, and Poisson’s ratio, ν by

λ =
νE

(1 + ν)(1− 2ν)
(2.10)
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µ = G =
E

2(1 + ν)
(2.11)

To arrive at the finite element formulation for the structural domain, the weak form
of the differential equation is derived. This can be done by multiplying equation (2.2)
with a weight function, vS = [v1 v2 v3]

T , and integrating over the material domain, ΩS ,

∫

ΩS

vTS (∇̃
T
σS − ρS

∂2uS
∂t2

+ bS)dV = 0 (2.12)

Using Green-Gauss theorem on the first term in equation (2.12) gives

∫

ΩS

vTS ∇̃
T
σSdV =

∫

∂ΩS

(vS)
T tSdS −

∫

ΩS

(∇̃vS)
TσSdV (2.13)

The surface traction vector tS related to the Cauchy stress tensor, SS , by

tS = SSnS (2.14)

where nS is the boundary normal vector pointing outward from the structural domain.
The weak form of the problem can be written

∫

ΩS

vTSρS
∂2uS
∂t2

dV +

∫

ΩS

(∇̃vS)
TσSdV −

∫

∂ΩS

(vS)
T tSdS −

∫

ΩS

vTSbSdV = 0 (2.15)

Introducing the finite element approximations of the displacements dS and weight func-
tions cS by

uS = NSdS ; vS = NScS (2.16)

whereNS contains the finite element shape functions for the structural domain, the strains
can be expressed as

εS = ∇̃NSdS (2.17)

This gives the finite element formulation for the structural domain, when described as a
continuum body

∫

ΩS

NT
SρSNSdV d̈S +

∫

ΩS

(∇̃NS)
TDS∇̃NSdV dS =

∫

∂ΩS

NT
S tSdS +

∫

ΩS

NT
SbSdV

(2.18)
and the governing system of equations can be written

MSd̈S +KSdS = fF + fb (2.19)

where

MS =

∫

ΩS

NT
SρSNSdV ; KS =

∫

ΩS

(∇̃NS)
TDS∇̃NSdV

fF =

∫

∂ΩS

NT
S tSdS fb =

∫

ΩS

NT
SbSdV

(2.20)
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18 CHAPTER 2. STRUCTURE-ACOUSTIC ANALYSIS

2.3.2 Acoustic fluid domain

The governing equations for an acoustic fluid are derived using the following assumptions
for the compressible fluid [4]:

• The fluid is inviscid.

• The fluid only undergoes small translations.

• The fluid is irrotational.

Thereby, the governing equations for an acoustic fluid are, the equation of motion,

ρ0
∂2uF (t)

∂t2
+ ∇pF (t) = 0 (2.21)

the continuity equation,
∂ρF (t)

∂t
+ ρ0∇

∂uF (t)

∂t
= qF (t) (2.22)

and the constitutive equation,
pF (t) = c20ρF (t) (2.23)

Here uF (t) is the displacement, pF (t) is the dynamic pressure, ρF (t) is the dynamic
density and qF (t) is the added fluid mass per unit volume. ρ0 is the static density and c0
is the speed of sound. ∇ denotes a gradient of a variable, i.e.,

∇ =

[

∂

∂x1

∂

∂x2

∂

∂x3

]T

; (2.24)

The nonhomogeneous wave equation can be derived from equations (2.21) – (2.23). Dif-
ferentiating equation (2.22) with respect to time and using (2.23) gives

1

c20

∂2pF
∂2t

+ ρ0∇

(

ρ0
∂2uF
∂t2

)

=
∂qF
∂t

(2.25)

Substituting (2.21) into this expression gives the nonhomogeneous wave equation ex-
pressed in acoustic pressure pF .

∂2pF
∂2t

− c20∇
2pF = c20

∂qF
∂t

(2.26)

where ∇
2 = ∂2/∂x21 + ∂2/∂x22 + ∂2/∂x23.

The finite element formulation of equation (2.26) is derived by multiplying with a test
function, vF , and integrating over a volume ΩF .

∫

ΩF

vF

(

∂2pF
∂2t

− c20∇
2pF − c20

∂qF
∂t

)

dV = 0 (2.27)

and with Green’s theorem the weak formulation is achieved
∫

ΩF

vF
∂2pF
∂2t

dV +c20

∫

ΩF

∇vF∇pF dV = c20

∫

∂ΩF

vF∇pFnF dA+c20

∫

ΩF

vF
∂qF
∂t

dV (2.28)
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where the boundary normal vector nF points outward from the fluid domain. The finite
element method approximates the pressure field and the weight function by

pF = NFpF ; vF = NF cF (2.29)

where pF contains the nodal pressures, cF the nodal weights and NF contains the finite
element shape functions for the fluid domain. Inserting this into equation (2.28) and
noting that cF is arbitrary gives

∫

ΩF

NT
FNF dV p̈F + c20

∫

ΩF

(∇NF )
T
∇NF dV pF =

= c20

∫

∂ΩF

NT
F∇pFnF dS + c20

∫

ΩF

NT
F

∂qF
∂t

dV

(2.30)

The system of equations for an acoustic fluid domain becomes

MF p̈+KFp = fq + fS (2.31)

where

MF =

∫

ΩF

NT
FNF dV ; KF = c20

∫

ΩF

(∇NF )
T
∇NF dV

fS = c20

∫

∂ΩF

NT
Fn

T
F∇pdS; fq = c20

∫

ΩF

NT
F

∂q

∂t
dV

(2.32)

2.3.3 The coupled structure-acoustic system

At the boundary between the structural and fluid domains, denoted ∂ΩSF , the fluid
particles and the structure moves together in the normal direction of the boundary. In-
troducing the normal vector n = nF = −nS , the displacement boundary condition can
be written

uSn|∂ΩSF
= uFn|∂ΩSF

(2.33)

and the continuity in pressure
σS |n = −pF (2.34)

where pF is the acoustic fluid pressure. The structural stress tensor at the boundary
∂ΩSF thus becomes

SS = −pF





1 0 0
0 1 0
0 0 1



 (2.35)

and the structural force term providing the coupling to the fluid domain, fF (in equation
(2.19)), can be written

fF =

∫

∂ΩSF

NT
S (−pF )





1 0 0
0 1 0
0 0 1



nSdS =

∫

∂ΩSF

NT
SnpF dS =

∫

∂ΩSF

NT
SnNF dSpF

(2.36)
Note that the structural boundary normal vector nS is replaced with the normal vector
n pointing in the opposite direction. The force acting on the structure is expressed in the
acoustic fluid pressure.
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For the fluid partition the coupling is introduced in the force term fS (in equation
(2.31)). Using the relation between pressure and acceleration in the fluid domain

∇pF = −ρ0
∂2uF (t)

∂t2
(2.37)

and the boundary condition in equation (2.33), the force acting on the fluid can be
described in terms of structural acceleration

nT∇pF |∂ΩSF
= −ρ0nT

∂2uF
∂t2
|∂ΩSF

= −ρ0nT
∂2uS
∂t2
|∂ΩSF

= −ρ0nTNSd̈S |∂ΩSF
(2.38)

and the boundary force term of the acoustic fluid domain, fS , can be expressed in struc-
tural acceleration

fS = −c20
∫

∂ΩF S

NT
Fn

T
∇pF dS = −ρ0c20

∫

∂ΩF S

NT
Fn

TNSdSd̈S (2.39)

The introduction of a spatial coupling matrix

HSF =

∫

∂ΩSF

NT
SnNF dS (2.40)

allows the coupling forces to be written as

fF = HSFpF (2.41)

and
fS = −ρ0c20HT

SF d̈S (2.42)

The structure-acoustic problem can then be described by an unsymmetrical system of
equations

[

MS 0
ρ0c

2
0H

T
SF MF

] [

d̈S
p̈F

]

+

[

KS −HSF

0 KF

] [

dS
pF

]

=

[

fb
fq

]

(2.43)

This system is studied through out this thesis. In Chapter 3, different model reduction
techniques are described with focus on the structural domain, which also can be applied to
the acoustic fluid domain. The porous sound absorbing materials, investigated in Chapter
4, can be modelled using an equivalent fluid model, i.e. modifying the material properties
of the acoustic fluid, or using the equations for the continuum body. In the papers included
in this thesis, procedures for reducing this system of equations is described and developed.

2.4 Summary

The governing equations of the structure-acoustic problem was presented. The finite
element formulation of this problem was also derived. This formulation is adopted both
in the following chapters as well as in the papers included in the thesis.
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Chapter 3

Modal reduction techniques

This chapter comprises an investigation of different methods for reducing the size of the
equation system to be solved in structural vibration problems, when using the finite ele-
ment method. The chapter is a basis for the papers included in the theses, where modal
reduction techniques are adopted and developed for the study of structure-acoustic sys-
tems. Using the finite element method to analyse the dynamic behaviour of a structure,
the size of the equation system of motion often becomes very large. Increasing the com-
plexity of the model or the maximum frequency of interest leads to an increasing number
of degrees of freedom and thereby an increasing size of the system of equations. Solving
the problem becomes computation-intensive, so it is desirable to reduce the size of the
system by use of modal reduction techniques, with as little loss of information about
dynamic behaviour of the system as possible. First, a literature review of the studied
problem is presented. The problem of interest is then described and after that the differ-
ent reduction methods are discussed. In parallel with the description of the methods, a
numerical example is studied.

3.1 Literature review

Finite element formulation of the structural vibration problem can be found in [19, 20, 21,
22]. The system is studied either in free vibration solving the eigenvalue problem, or for
some type of force excitation. The studied modal reduction techniques are divided into
three different – although closely related – methods: introducing generalised coordinates,
condensation methods and component mode synthesis. All three methods are variants of
a Rayleigh-Ritz procedure [19].

When introducing generalised coordinates, a reduced set of basis vectors, compared to
the original (physical) coordinates, are derived. For example, after solving the eigenvalue
problem, only a few of the calculated normal modes with the lowest natural frequency are
needed to describe the system [19, 21, 22]. Types of modes other then normal can also
be used. When using Ritz vectors [39, 40, 41, 42], or Lanczos vectors [4, 43, 44], a very
efficient modal reduction of the system can be performed.

In condensation methods, a large number of the degrees of freedom, that are not
needed in describing the dynamic behaviour of the system, is removed. This can be done
by static (Guyan) condensation [45], where the choice of the kept degrees of freedom is

21



“kappa” — 2004/9/6 — 13:41 — page 22 — #30
i

i

i

i

i

i

i

i

22 CHAPTER 3. MODAL REDUCTION TECHNIQUES

very important [46, 47, 48]. The reduction of the problem can also achieved by dynamic
condensation, where the influence of the internal degrees of freedom are accounted for in
a simplified manner [49, 50, 51, 52, 53].

A frequently used method for substructuring and modal reduction is the component
mode synthesis method. The research conducted to develop this method was reviewed by
Seshu [54] and detailed description of the method can be found in, for example, the book
by Craig [55]. The problem domain under study is divided into a number of components,
or subdomains, and a set of basis vectors is derived for each component to be included
in the description of the whole system. Using generalised coordinates or condensation
methods can be seen as special cases of the component mode synthesis method.

Component mode methods are usually divided into the fixed-interface component
mode method and the free-interface component mode method. The fixed-interface mode
method uses static condensation of each component, only keeping the degrees of freedom
at the interface between components [56]. These basis vectors, which fulfil the displace-
ment and force continuity at the interface boundary, are expanded with internal modes
calculated with the interface degrees of freedom fixed. The eigenvalue problem of the
static-reduced system, only including the interface degrees of freedom, can first be solved.
The inclusion of only a number of these modes reduces the size of the reduced system
further [57, 58]. The convergence of the fixed-interface mode method can be improved in
a certain frequency range using quasi-static constraint modes as basis vectors [59].

Using the free interface mode method, the internal modes are calculated without
constraints on the interface degrees of freedom, see [60, 61, 62] for recent developments
of this method. The continuity over the interface is achieved by including attachment
modes, which are calculated by applying a unit force on each of the interface degrees of
freedom with the other interface degrees of freedom unconstrained.

3.2 Problem formulation

The system of equations of the finite element formulated structural vibration problem can
be written

Md̈+Cḋ+Kd = f (3.1)

where d contains the displacements, M is the mass matrix, C is the viscous damping
matrix, K is the stiffness matrix and f is the nodal force vector. The system of equations
has n degrees of freedom. This system is solved for two typical loading conditions. Solving
the system for a transient excitation, a time stepping technique, for example the Newmark
method [21, 22], is often adopted. Assuming harmonic excitation, a steady-state solution
is sought, where the force and corresponding response are expressed as harmonic functions,

f = f̂eiωt

d = d̂eiωt
(3.2)

where f̂ and d̂ are the complex force and displacement amplitudes. Also, ω is the angular
frequency, t denotes time and i =

√
−1. Inserting these expressions into equation (3.1),

and suppressing the time dependance eiωt, the equation of motion in the frequency domain
becomes

D(ω)d̂ = f̂ (3.3)
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where the dynamic stiffness matrix D(ω), dependent on excitation frequency, determine
the response,

D(ω) = −ω2M+ iωC+K (3.4)

The eigenvalue problem

The eigenvalue problem is solved in order to describe the dynamic behaviour in free motion
of the studied system in equation (3.3). The derived eigenvectors, or normal modes, are
employed in the modal reduction techniques described below. For free motion, the force
term is zero and when neglecting damping, the freely vibrating system can be written

(

K− ω2M
)

d̂ = 0 (3.5)

This system has a non-trivial solution if

det
(

K− ω2M
)

= 0 (3.6)

which is called the characteristic equation. This equation, has the same order as the
number of degrees of freedom of the system. The roots of the characteristic equation are
the n eigenvalues of the system. For each eigenvalue, λi = ω2i , a displacement shape fulfil
equation (3.5). This is the corresponding eigenvector, or normal mode, φi. The system
can be written

(K− λiM)φi = 0 (3.7)

Premultiplying equation (3.7) with the transposed eigenvector, φTi , the eigenvalue, λi,
can be determined by

λi =
φTi Kφi
φTi Mφi

(3.8)

which is called the Rayleigh quotient. Introducing the matrix Λ, with the eigenvalues of
the system in the diagonal and the matrix Φ, with the corresponding normal modes as
column vectors, the generalised eigenvalue problem can be written

(K−ΛM)Φ = 0 (3.9)

With mass-normalised eigenvectors the following properties can be noted

ΦTMΦ = I ΦTKΦ = Λ (3.10)

Using the finite element method, the system of equations (3.9) often has a very large
number of degrees of freedom, n, and usually only m of the lowest eigenvalues are wanted,
where m ¿ n. Some type of iterative procedure can be adopted to solve the eigenvalue
problem [19]. The solution of this problem is studied in Section 3.3.

Rayleigh-Ritz procedure

In the Rayleigh-Ritz procedure, it is assumed that the motion of the system can be
described using a reduced set of basis vectors, or modes,

d = Ψ1ξ1 +Ψ2ξ2 + ...+Ψmξm = Ψξ (3.11)
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Figure 3.1: The plate studied in the numerical example. The bold lines show where the
plate is fixed and the force applied in the frequency response example is also displayed.

where Ψ1, ..., Ψm are the mode shapes and ξ1, .., ξm the corresponding modal coordi-
nates. The keystone in the procedure is that the number of introduced modes m is much
smaller then the total number of degrees of freedom, n. Introducing equation (3.11) in
the equation system of motion (3.1), and multiplying from left with ΨT the system is
reduced to

ΨTMΨξ̈ +ΨTCΨξ̇ +ΨTKΨξ = ΨT f (3.12)

It can here be noted that in the following sections, Φ is used to denote normal modes
derived from an eigenvalue analysis of the system while Ψ contains any suitable vectors
to be used in the Rayleigh-Ritz procedure. Three main approaches for the Rayleigh-Ritz
procedure are described:

• Introducing generalised coordinates, for example normal modes or Krylov vectors,
Section 3.3.

• Condensation methods where the model is divided into master (kept) degrees of
freedom and internal degrees of freedom which can be condensed using either static
or dynamic condensation, Section 3.4.

• The component mode synthesis method where the studied problem domain is di-
vided into subdomains. For each domain so called component modes are derived
which are then coupled together for the whole structure using Lagrange multipliers,
Section 3.5.

In parallel with the description of the reduction methods, a numerical example, being
an aluminium plate (see Figure 3.1), is studied. The plate, with the thickness 3 mm, is
0.3 m long (x direction) and 0.2 m wide (y direction). The plate boundaries are fixed in
both translation and rotation at x = 0 m and x = 0.3 m and free at y = 0 m and x = 0.2
m. The modulus of elasticity E = 70 GPa, Poisson’s ratio ν = 0.3, density ρ = 2700
kg/m3 and the hysteretic damping factor η = 0.02.



“kappa” — 2004/9/6 — 13:41 — page 25 — #33
i

i

i

i

i

i

i

i

3.3. GENERALISED COORDINATES 25

3.3 Generalised coordinates

The system is reduced by introducing vectors which limits the possible movement of
the system to certain mode shapes. These vectors should fulfil the Dirchlet boundary
conditions (displacements) and the Neumann boundary conditions (applied forces) are
introduced by computing modal forces. The system is here reduced using two types of
generalised coordinates, either using normal modes, derived in an eigenvalue analysis, or
Krylov modes, which are derived in an iterative procedure discussed below. The Krylov
modes are often used to reduce the system when performing eigenvalue analysis.

3.3.1 Normal modes

For a system with n degrees of freedom, the eigenvalue problem, in equation (3.9), can
be solved and n normal modes can be calculated, which describes all possible movement
of the system. In an analysis it is however often only necessary to include m number of
the lowest modes, where m¿ n, based on two assumptions:

• The dynamic force only excites the modes included.

• The finite element model introduces a frequency limit above which the model ceases
to be valid, the modes over this limit being nonphysical.

Also, when only a limited number of modes are needed, the iterative procedures using
Krylov methods, described in the next section, are very effective in solving the eigenvalue
problem. Using the normal modes to reduce the system in equation (3.12), the mass and
stiffness matrices are reduced to two diagonal matrices. With mass-normalised normal
modes the system can be written

Iξ̈ +ΦTCΦξ̇ +Λξ = ΦT f (3.13)
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Figure 3.2: a) First normal mode, with natural frequency 126 Hz, of the plate. b) Dis-
placement response of the point force using m normal modes to describe the system.
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where I is the unity matrix, Λ contains the eigenvalues in the diagonal andΦ the eigenvec-
tors, or normal modes. With general damping, the modal damping matrix becomes fully
populated. Using simplified damping descriptions – being either proportional Rayleigh
damping or hysteretic damping – the damping matrix becomes diagonal ending up with
an uncoupled system of equations [22]. For the example problem, the normal mode with
the lowest natural frequency is displayed in Figure 3.2 a) and the frequency response to
the point force, with the amplitude 100 N, applied according to Figure 3.1, when varying
the number of normal modes included in the system of equations (3.13).

3.3.2 Krylov modes

For a given matrix, A, and a non-zero start vector, r0, m linear independent Krylov
vectors, i.e. the columns in the Krylov matrix ΨK , can be derived by a sequence of
multiplications

ΨK =
[

r0, Ar0, ..., Am−1r0
]

(3.14)

Performing these multiplications, the last column of the matrix converges towards the
wanted eigenvector, non-orthogonal to the start vector r0, corresponding to the largest
eigenvalue of the matrix. This can be employed for solving the eigenvalue problem of
interest here, given in equation (3.9), by rewriting it on the form

K−1MΦ = µΦ (3.15)

A standard eigenvalue problem of the matrix K−1M is achieved. The eigenvectors of
this system is equal to the eigenvectors of equation (3.9) and the eigenvalues, λi, of the
original system relates to µi by

λi =
1

µi
(3.16)

Replacing the matrix A with K−1M in equation (3.14), the Krylov matrix becomes

ΨK =
[

r0, K−1Mr0, ..., (K−1M)m−1r0
]

(3.17)

Figure 3.3: The first and fourth Krylov vector generated from a random pressure distri-
bution over the plate.
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Figure 3.4: The first and fourth Krylov vector generated from an uniform pressure distri-
bution over the plate.

The last column converges to the eigenvector, φ1, corresponding to the largest eigenvalue
of this matrix, µ1. The eigenvalue, µ1, can be calculated using the Rayleigh quotient
in equation (3.8). The eigenvalue, λ1, of the original system of equation (3.9) can be
determined by λ1 = 1/µ1 (see equation (3.16)). That is, the lowest eigenvalue of the
problem in equation (3.9) is derived. To find the lowest eigenvalue of the system only
the last column of the Krylov matrix is needed. However, the Krylov matrix in equation
(3.17) can also be used as an reduced base for the original problem by it self; m vectors
is generated as the Rayleigh-Ritz base in equation (3.11). Two different, but similar,
approaches are described in the following sections using the Krylov method, the first
using Ritz vectors based on static deformation, and the second method being the Lanczos
method. First, the choice of static force vector used for deriving the start vector and the
method of shifting stiffness matrix to avoid singularities are discussed.

Calculating the start vector

The start vector r0 is calculated by applying a static force vector, f0, on the system

r0 = K−1f0 (3.18)

The choice of the force vector determines how fast the Krylov vectors converges towards
the first normal mode. Examples of the Krylov vectors derived when applying a random
or uniform pressure to calculate the start vector are plotted in Figures 3.3 and 3.4, re-
spectively. For both force vectors, the vectors converge towards the mode shape with the
lowest natural frequency, which is displayed in Figure 3.2 a). However, when the response
to the force vector, f0, is similar to the first mode shape the converges is more rapid, i.e.
fewer columns in the Krylov matrix have to be calculated before the last calculated Krylov
vector is equal to the normal mode, for a certain tolerance. The force vector achieved
for uniformly distributed pressure, resembles the inertia forces excited by the mode shape
in free vibration and the convergence is faster. In eigenvalue analysis, the force vector
must be chosen non-orthogonal to all eigenvectors desired, i.e. as a random vector. For
response analysis, the force vector can be chosen as the static part of the dynamic force
vector. All derived Krylov vectors are thereby non-orthogonal to the force vector, and an
efficient reduced base can be derived.
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Shifting

In the Krylov methods, the stiffness matrix is inverted and in the above description it has
been assumed that this is possible, i.e. that the stiffness matrix is not singular. If it is
singular, a shift point can be introduced. The shifted stiffness matrix can be written

Kσ = K− σM (3.19)

and the eigenvalue problem rewritten using the inverted shifted stiffness matrix becomes

K−1
σ MΦ = τΦ (3.20)

The normal modes are not affected by this shift and the eigenvalue λi in equation (3.9)
is related to eigenvalue τi by

λi =
1

τi
+ σ (3.21)

The shift point can also be used to improve convergence in a certain frequency range; the
eigenvalues closest to the shift point converge first, as can be seen in Figure 3.7.

Ritz vectors based on static deformation

A set of mass-orthogonal Ritz vectors,ΨR = [x1 ...xm], can be derived using the procedure
described in Table 3.1. The first Ritz-vector is the response to a static force applied to the
system. The force vector is non-orthogonal to all the derived Ritz vectors. The (needed)
Ritz vectors are then derived in an iterative fashion based on the Krylov method. In
each step, the new Krylov vector is mass-orthogonalised to the previous ones. The two
first Ritz vectors derived when applying a random pressure are displayed in Figure 3.5
and when applying an uniform pressure in Figure 3.6. Note that the uniform pressure
only produces symmetric Ritz vectors. The generated vectors can be used to perform the
reduction in equation (3.12).

Lanczos vectors

The Lanczos procedure is a very efficient method for deriving a few of the eigenvalues and
eigenvectors of a large matrix based on the Krylov subspace method [4, 19, 63, 64]. The

Figure 3.5: The two first Ritz vectors derived when the force vector is generated from a
random pressure distribution over the plate.
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Figure 3.6: The two first Ritz vectors derived when the force vector is generated from an
uniform pressure distribution over the plate.

studied system can be written

K−1
σ Md̈+K−1

σ Cḋ+ (I+ σK−1
σ M)d = K−1

σ f (3.22)

where the system in equation (3.1) is multiplied with the shifted and inverted stiffness
matrix. The aim is to perform the change of base

d = ΨLξL (3.23)

Table 3.1: Algorithm to generate m Ritz vectors

1. Known stiffness and mass matrices M and K.

2. Generate force vector f.

3. Factorise the stiffness matrix,

K = LU or K = LDLT .

4. Generate the first vector, x1:

a) Solve for the first vector,

Kx̂1 = f .

b) Mass-normalise the vector,

x1 = (x̂T1Mx̂1)
−1/2x̂1.

5. Loop for achieving the additional vectors, i = 2, ...,m:

a) Solve for vector x̂i,

Kx̂i =Mxi−1

b) Mass-orthogonality of the new vector using Gram-Schmidt method.

x̂i = x̂i −
i−1
∑

j=1

(xTj Mx̂i)xj

c) Mass-normalise the vector,

xi = (x̂Ti Mx̂i)
−1/2x̂i.
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where ΨL = [q1 ... qm] contains the Lanczos vectors, which are mass-orthogonal, i.e.

ΨT
LMΨL = I (3.24)

In deriving the Lanczos vectors, it can be shown, as described by Nour-Omid [63], that
the new vector in the Krylov sequence can be expressed by the two previous Lanczos
vectors and a residual vector

K−1
σ Mqj = rj + qjαj + qj−1βj−1 (3.25)

where the residual vector can be expressed

rj = qj+1βj (3.26)

and
αj = qTj MK−1

σ Mqj

βj−1 = qTj−1MK−1
σ Mqj

(3.27)

The residual vector, rj is calculated in each step and then normalised using βj to arrive
at the new Lanczos vector, qi+1. After m steps the system can be written

K−1
σ MΨL = ΨLT+Rm (3.28)

where T, with a tri-diagonal form, can be written

T =













α1 β1
β1 α2

...
αm−1 βm−1

βm−1 αm













(3.29)

and
Rm =

[

0 0 ... 0 rm
]

(3.30)

The residual Rm is orthogonal to the derived Lanczos vectors. Multiplying on the left
side of equation (3.28) with ΨT

LM and using the mass-orthogonality in equation (3.24)
the system can be written

ΨT
LMK−1

σ MΨL = T (3.31)

Introducing the change of base of equation (3.23) in the eigenvalue problem (3.20), i.e.
expressing the normal modes in original coordinates by use of the Lanczos vectors,

Φ = ΨLΦ̂ (3.32)

and multiplying the system from left with ΨT
LM, the problem can be written

TmΦ̂ = µΦ̂ (3.33)

The eigenvalues of the original system can still be determined by (3.21). The procedure to
derive the Lanczos vectors is described in Table 3.2 and performs a Lanczos step for each
start vector. Using one start vector the algorithm is used in deriving m Lanczos vectors,
ΨL = [q1 ... qm]. However, a restart of the procedure – i.e. another Lanczos step with a
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Table 3.2: Algorithm to generate the Lanczos vectors.

1. Input:

Stiffness matrix K, mass matrix M and boundary conditions.

2. Choose a shift point, σ, and factorise the system matrix,

K− σM = LU or K− σM = LDLT .

3. Generate arbitrary force vector f0.

4. Generate the start vector, r0,

(K− µM)r0 = f0.

5. Compute the first Lanczos vector, q1,

a) Compute,

β0 = rT0Mr0.

b) Compute the first Lanczos vector,

q1 = r0/β0

6. Loop for achieving the additional Lanczos vectors i = 1, ...,m,

where m is the maximum number of Lanczos vectors to be derived.

a) Solve for vector r̂i,

(K− µM)r̂i =Mqi

b) Compute αi,

αi = r̂Ti Mqi

c) Compute the residual vector

ri = r̂i − αiqi − βi−1qi−1

d) Mass-orthogonality of the vector using Gram-Schmidt method

ri = ri −
i

∑

k=1

(riMqk)qk

e) Check for orthogonality

βi = rTi Mri.

If βi < τ , the orthogonality is lost and the loop is ended,

τ is a selected tolerance, for example, τ = 10−12.

f) Compute the (i+1)′th Lanczos vector

qi+1 = ri/βi

new start vector and shift point – can be needed due to the fact that only eigenvectors
that are non-orthogonal to the start vector can be determined. The method of shifting
the stiffness matrix can also be used to improve convergence of the eigenvectors towards
the correct ones, the eigenvalues closest to the shift point converges first.

The Lanczos procedure can be used in direct analysis using the Lanczos vectors, with
a start vector derived from the geometrical distribution of the dynamic force, as the
Rayleigh-Ritz base. Performing the same change of basis vectors in equation (3.22) as
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Figure 3.7: The displacement calculated at the applied point force when varying the number
of Lanczos vectors, in the left figure, the shift point σ = 0 and in the right figure, σ =
(2π350)

2
.

was done for the eigenvalue problem (3.33), the reduced system becomes

Tξ̈L +ΨT
LMK−1

σ CΨLξ̇L + (I+ σT)ξL = ΨT
LMK−1

σ f (3.34)

Having proportional damping, the system is reduced to a tri-diagonal form having m
degrees of freedom. The plate in Figure 3.1 is studied in a frequency response analysis
using the Lanczos vectors to reduce the dynamic system, see Figure 3.7. Two different
shift points are used in the derivation of the Lanczos vectors. Choosing σ = 0 gives
the first Lanczos vector equal to the static response, which shows that the response at
zero frequency is exact. With σ = (2π350)

2
, i.e. the Lanczos vectors are calculated at

the frequency 350 Hz, the calculated response at this frequency is exact as compared to
solving the total system.

3.4 Condensation of degrees of freedom

The number of physical degrees of freedom can be reduced by either static (Guyan) or
dynamic condensation. The system of equations (3.1) is partitioned into master degrees
of freedom, db, which are retained, and slave degrees of freedom, ds, which are to be
condensed, as (when neglecting damping)

[

Mbb Mbs

Msb Mss

] [

d̈b
d̈s

]

+

[

Kbb Kbs

Ksb Kss

] [

db
ds

]

=

[

fb
0

]

(3.35)

The boundary conditions and external forces are applied at the physical degrees of freedom
of the reduced model.

3.4.1 Static Condensation

The static condensation was introduced by Guyan, [45], only studying the stiffness matrix
[

Kbb Kbs

Ksb Kss

] [

db
ds

]

=

[

fb
0

]

(3.36)
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The displacements can thereby be expressed using the master degrees of freedom
[

db
ds

]

=

[

I
−K−1

ss Ksb

]

db = Φscdb (3.37)

Introducing this equation as the change of base in equation (3.11), the system of equations
is reduced to

M̃scd̈b + K̃scdb = fb (3.38)

where
K̃sc = ΦT

scKΦsc M̃sc = ΦT
scMΦsc (3.39)

The inertia effect of the condensed degrees of freedom is neglected. The linear eigenvalue
problem of the reduced system becomes

K̃scΦ = λM̃scΦ (3.40)

The choice of master degrees of freedom has a large influence on the frequency limit where
the reduced model ceases to be valid. This limit in frequency is at the point when the
dynamic effect of the condensed degrees of freedom becomes of importance. As a simple
measure, the reduced model is valid up to the lowest natural frequency of the model
with the master degrees of freedom constrained. Methods how to choose which degrees
of freedom to be included as been proposed by several authors [46, 47, 48].

3.4.2 Dynamic Condensation

Dynamic condensation is performed in the same fashion as static condensation but in-
cluding inertia effects, [49]. The dynamic stiffness matrix D(ω), see equation (3.4), is
partitioned into master and slave degrees of freedom

[

Dbb Dbs

Dsb Dss

] [

d̂b
d̂s

]

=

[

f̂b
0

]

(3.41)

The displacements can thereby be expressed using the master degrees of freedom

[

d̂b
d̂s

]

=

[

I
−D−1

ss Dsb

]

d̂b = Φdcdb (3.42)

and the system of equations is reduced to

D̃dc(ω)d̂b = f̂b (3.43)

where
D̃dc(ω) = ΦT

dcDΦdc = Dbb −DbsD
−1
ss Dsb (3.44)

The non-linear eigenvalue problem (ω2 → λ and d̂b → Φb in equation (3.43)) of the
reduced system becomes

D̃dc(λ)Φb = 0 (3.45)

where the nonlinearity depends on the the term D−1
ss = (−λMss + Kss)

−1. To use
dynamic condensation in an efficient way, the description of the inertia effects of the slave
degrees of freedom must be simplified since the dynamic stiffness matrix must be inverted
at each frequency step [50, 51, 52, 53, 65].
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3.5 Component Mode Synthesis

The component mode synthesis method, which is a frequently used method for reducing
the size of the system of equations to be solved, is here investigated. In this method
the studied domain is divided into components, or subdomains, and each subdomain is
described by a set of displacement modes. For the i’th subdomain of a system, described
by the displacement di and with the stiffness matrixKi, mass matrixMi and force vector
fi, the system of equations is written

Mid̈i +Kidi = fi (3.46)

or partitioned into boundary (master) degrees of freedom, db, and internal (slave) degrees
of freedom, ds.

[

Mbb Mbs

Msb Mss

]

i

[

d̈b
d̈s

]

i

+

[

Kbb Kbs

Ksb Kss

]

i

[

db
ds

]

i

=

[

fb
fs

]

i

(3.47)

A change of base is introduced by

di = Ψiξi (3.48)

where Ψi is the set of displacement modes for the subdomain and ξi the corresponding
modal amplitudes. Thus, equation (3.46) can be written

ΨT
i MiΨiξ̈i +ΨT

i KiΨiξi = ΨT
i fi (3.49)

Two types of component mode methods are most frequently used, being either the fixed
interface mode method or the free interface mode method [55]. For each method one
set of modes is derived to fulfill the continuity in displacements and forces between the
subdomains and one set to describe the internal behaviour of the subdomain. In Section
3.5.1, the different modes derived for the subdomains are described and then the method
to couple these subdomains together using Lagrange multipliers is described in Section
3.5.2.

In the previously described numerical example, see Figure 3.1, the plate is divided
into two subdomains and the different included modes are exemplified.

Figure 3.8: The plate divided into two subdomains. The shaded subdomain is used to
exemplify the modes included in the component mode synthesis method.
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3.5.1 Included modes

Fixed-interface mode method

In the component mode synthesis method using fixed interface modes, static reduction is
performed for each subdomain, only retaining the boundary degrees of freedom in contact
with the connecting subdomains. A number of internal normal modes, Φs, calculated
with the boundary degrees of freedom fixed, are added to the basis vectors from the
static reduction, Ψc, in order to improve the description of the dynamic behaviour of the
system. The internal modes could be of any shape fulfilling the the boundary conditions,
see for example, [41, 43]. The change of base using the reduced set of basis vectors can
be written

[

db
ds

]

=
[

Ψc Φs

]

[

db
ξs

]

(3.50)

All the degrees of freedom that lies on the interface boundary are included in the reduced
system.

Constraint modes

The modes from the static reduction

Ψc =

[

Ibb
−K−1

ss Ksb

]

(3.51)

are called component constraint modes and can be derived by applying a unit displace-
ment to each interface degree of freedom while keeping the other interface degrees of
freedom fixed. Note that if only including these constraint modes in the reduction, the
method reduces to the static condensation method. Two examples of constraint modes
are displayed in Figure 3.9.

Figure 3.9: Two of the constraint modes at one node.
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Figure 3.10: Two of the fixed normal modes of the subdomain.

Fixed interface normal modes

The added normal modes with the interface degrees of freedom fixed are calculated from
the eigenvalue problem with the boundary degrees of freedom condensed

KssΦss = λssMssΦss (3.52)

and by adding the zeros at boundary degrees of freedom, the fixed interface normal modes
can be written

Φs =

[

0bb
Φss

]

(3.53)

Two examples of normal modes calculated with the boundary degrees of freedom fixed
are displayed in Figure 3.10.

Free-interface mode method

Another approach is to reduce the system with free interface modes, i.e. the normal modes
describing the subdomain, Φk, are calculated without imposing boundary conditions at
the interface between subdomains. To fulfill the displacement and force continuity be-
tween the subdomains, attachment modes, Ψa, of the subdomain are derived and the
subdomain is described by

[

db
ds

]

=
[

Ψa Φk

]

[

ξa
ξk

]

(3.54)

Attachment modes

The attachment modes are calculated by applying an unit force at each interface degree
of freedom while keeping the other interface degrees of freedom free. A matrix containing
the corresponding force vectors can be written

fa =

[

Ibb
0sb

]

(3.55)
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Figure 3.11: Two of the attachment modes at one node.

and with the flexibility matrix, G = K−1, i.e. the inverse of the non-singular stiffness
matrix, the attachment modes can be calculated by

Ψa = Gfa = G

[

Ibb
0sb

]

(3.56)

Two examples of attachment modes are displayed in Figure 3.11.

Free interface normal modes

The normal modes of the sub-structure is calculated by

KΦk = λkkMΦk (3.57)

including Dirchlet boundary conditions. Two examples of normal modes calculated with
the boundary degrees of freedom free are displayed in Figure 3.12.

Figure 3.12: Two of the free normal modes of the subdomain.



“kappa” — 2004/9/6 — 13:41 — page 38 — #46
i

i

i

i

i

i

i

i

38 CHAPTER 3. MODAL REDUCTION TECHNIQUES

Residual attachment modes

The flexibility matrix, i.e. the inverse of the stiffness matrix, G = K−1, can be written

G = Φnλ
−1
nnΦ

T
n = Φkλ

−1

kkΦ
T
k +Φdλ

−1

ddΦ
T
d (3.58)

where Φn contains all the flexible normal modes of the subdomain in the free interface
method, Φk the actual calculated flexible normal modes and Φd the residual normal
modes not calculated. The residual flexibility of the structure can be written

Gd = Φdλ
−1

ddΦ
T
d = G−Φkλ

−1

kkΦ
T
k (3.59)

The residual attachment modes then becomes

Ψd = Gdfa =
[

G−Φkλ
−1

kkΦ
T
k

]

[

Ibb
0sb

]

(3.60)

Two examples of residual attachment modes calculated are displayed in Figure 3.13. Per-
forming the change of base using the calculated normal modes and the residual attachment
modes

d =
[

Φk Ψd

]

[

ξk
ξd

]

(3.61)

equation (3.1) can be written

Iξk +Λkξk = ΦT
k f

ΨT
dMΨdξd +ΨT

dKΨdξd = ΨT
d f

(3.62)

The two parts can be separated due to the orthogonality of the used modes. It is then
assumed that the attachment modes are only determined by the stiffness contribution,
neglecting inertia effects, and the second line of equation (3.62) can be written

ΨT
dKΨdξd = ΨT

d f (3.63)

The residual attachment modes can then be written

Ψd = ΦdΛ
−1

d ΦT
d

[

Ibb
0sb

]

= ΦdΛ
−1

d ΦT
bd (3.64)

Figure 3.13: Two of the residual attachment modes at one node.
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Introducing this in equation (3.63) gives

ΦbdΛ
−1

d ΦT
dKΦdΛ

−1

d ΦT
bdξd = ΦbdΛ

−1

d ΦT
d f (3.65)

Noting that ΦT
dKΦd = Λd and because the forces that act at the boundary degrees of

freedom can be written

f = fa =

[

Ibb
0sb

]

(3.66)

the system becomes
ΦbdΛ

−1

d ΦT
bd(ξd − fa) = 0 (3.67)

This gives a condition between the forces acting on the boundary degrees of freedom and
the residual attachment mode coordinate

ξd = fa (3.68)

This will be used in the procedure to couple the subdomains together, giving additional
constraint equations, see Section 3.5.2.

Rigid body modes

If the subdomain have rigid body modes these can be determined as constraint modes by
partition the stiffness matrix as follows





Krr Krb Krs

Kbr Kbb Kbs

Ksr Ksb Kss









dr
db
ds



 =





fr
fb
fs



 (3.69)

where dr contains exactly as many degrees of freedom that are needed to remove the rigid
body motion. Only retaining these degrees of freedom in a static condensation, the rigid
body modes can be written

Ψr =





Irr

−
[

Kbb Kbs

Ksb Kss

]

−1 [

Kbr

Ksr

]



 (3.70)

The degrees of freedom included in dr can not be part of the boundary degrees of freedom
db.

Inertia relief attachment modes

If the subdomain has rigid body modes, these must be considered when calculating the
attachment modes. The total displacements of the subdomain is divided into a rigid body
motion, d0, and deformation of the flexible structure, df ,

d = d0 + df (3.71)

or expressed in modal coordinates

d = Ψrξr +Φfξf (3.72)
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Note the following properties

ΨT
rMΨr = Ir ΨT

rKΨr = 0

ΦT
fMΦf = If ΦT

fKΦf = Λf

ΨT
rMΦf = 0 ΨT

rKΦf = 0

(3.73)

Introducing the change of base given in equation (3.72) in the equation of motion (3.46),
it can be divided in two parts

Irξ̈r = ΨT
r f

If ξ̈f +Λξf = ΦT
f f

(3.74)

Also, the external force is divided into two parts, the one exciting the rigid body motion,
f0, and the other exciting the flexible system, ff ,

f = f0 + ff (3.75)

The force acting on the rigid body can be written

f0 =Md̈0 =MΨrξ̈r =MΨrΨ
T
r f (3.76)

From this, the force acting on the flexible body can be expressed

ff = f − f0 = f −MΨrΨ
T
r f = (I−MΨrΨ

T
r )f = Prf (3.77)

where Pr is called the inertia-relief projection matrix; any force vector multiplied with this
matrix gives a self balanced force vector not imposing rigid body motion of the system.
The attachment modes can be calculated by

Ψa = PT
rGrPr

[

Ibb
0sb

]

(3.78)

where the flexibility matrix, Gr, is calculated with the degrees of freedom dr in equation
(3.69) condensed. Due to the self balanced force vector, no constraint forces are present
at these degrees of freedom.

Residual inertia relief attachment modes

For a subdomain having rigid body modes, the residual attachment modes can be com-
bined with the inertia relief modes. The residual inertia relief attachment modes then
becomes

Ψd =
[

PT
rGrPr −Φkλ

−1

kkΦ
T
k

]

[

Ibb
0sb

]

(3.79)

Quasi-static mode compensation

As suggested in [59], instead of using the static constraint modes the shifted problem can
be used and the solution at a certain angular frequency, ωqs, can be used in equation
(3.51), where Ψc is replaced by

Ψc =

[

Ibb
−(Kss − ω2qsMss)

−1(Ksb − ω2qsMsb)

]

(3.80)
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This can also be used to make the stiffness matrix non-singular, removing the need to
calculate the inertia relief attachment modes. Also, for an acoustic fluid domain, the
wave equation do not provide a static solution, and the quasi-static method can be used
to determine constraint or attachment modes.

3.5.2 Subdomain synthesis

A procedure to assemble the subdomains using Lagrange multiplier – which can be used
for both the fixed and free interface methods – is now to investigated. The use of Lagrange
multipliers was described by, for example, Bathe [19] or Craig [55]. Each subdomain is
described by a set of basis vectors that can be divided into a set of vectors that are
linearly dependent to the basis vectors of the connecting domains and a set of linearly
independent vectors. The linear dependent vectors describes the coupling between the
domains and the number of these vectors is equal to the number of degrees of freedom
at the interface boundary between the domains. A set of linearly independent vectors
is also included to describe the internal behaviour of the subdomain. Note that in the
fixed interface method the physical degrees of freedom at the interface are retained in the
reduced model and a direct assembling procedure can be conducted.

Assume that a structure is divided into two subdomains I and II. The degrees of
freedom are partitioned into boundary and slave degrees of freedom and the displacement
can be described by the linearly dependent vectors, Ψi

d, and independent vectors, Ψi
l, of

the two domains

[

dI
dII

]

=









dIb
dIs
dIIb
dIIs









=









ΨI
db ΨI

lb 0 0

ΨI
ds ΨI

ls 0 0

0 0 ΨII
db ΨII

lb

0 0 ΨII
ds ΨII

ls

















ξId
ξIl
ξIId
ξIIl









=

[

ΨI 0
0 ΨII

] [

ξI
ξII

]

(3.81)
The two domains are described separately. The displacement and force continuity at
the boundary between the domains introduce conditions that couple the two domains
together.

Displacement continuity

At the boundary between two subdomains, the displacement must be continuous

dIb = dIIb (3.82)

This displacement condition can be written using a matrix equation

Bd = B

[

ΨI 0
0 ΨII

] [

ξI
ξII

]

= C

[

ξI
ξII

]

= 0 (3.83)

where the matrix B can be written

B =
[

IIbb 0 −IIIbb 0
]

(3.84)
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The displacement continuity can be expressed using equation (3.81), which gives

[

IIbb 0 −IIIbb 0
]









dIb
dIs
dIIb
dIIs









=
[

Ibb 0 −Ibb 0
]









ΨI
db ΨI

lb 0 0

ΨI
ds ΨI

ls 0 0

0 0 ΨII
db ΨII

lb

0 0 ΨII
ds ΨII

ls

















ξId
ξIl
ξIId
ξIIl









(3.85)
Thus, the constraint matrix C becomes

C =
[

ΨI
db ΨI

lb −ΨII
db −ΨII

lb

]

(3.86)

Using the fixed interface method, the set of basis vectors in equation (3.50) describes the
motion in each subdomain and the constraint system of equations becomes

[

IIbb 0 −IIIbb 0
]









IIbb 0 0 0

−(KI
ss)

−1KI
sb ΨI

ss 0 0
0 0 IIIbb 0

0 0 −(KII
ss)

−1KII
sb ΨII

ss

















dIb
ξIs
dIIb
ξIIs









(3.87)

thus
C =

[

IIbb 0 −IIIbb 0
]

(3.88)

For the free interface method, the subdomains are described by equation (3.54) and C
becomes

C =
[

ΨI
ab ΦIkb −ΨII

ab −ΦIIkb
]

(3.89)

Force equilibrium

The reaction forces that acts at the boundary degrees of freedom must be in equilibrium

f Ib + f IIb = 0 (3.90)

Equations of motion

The equation system describing a problem domain consisting of two subdomains can be
written

[

MI 0
0 MII

] [

d̈I
d̈II

]

+

[

KI 0
0 KII

] [

dI
dII

]

= BTλ+

[

fI
fII

]

(3.91)

where BTλ impose the Lagrange multipliers imposing the constraints described by the
displacement continuity between the two subdomains. The number of Lagrange multipli-
ers, nd (d for dependent), is equal to the number of degrees of freedom at the connecting
boundary between the two domains. Introducing the change of base in equation (3.81)
the system is described by

[

M̃I 0

0 M̃II

] [

ξ̈I
ξ̈II

]

+

[

K̃I 0

0 K̃II

] [

ξI
ξII

]

= CTλ+

[

ΨI 0
0 ΨII

]T [

fI
fII

]

(3.92)

Because nd constraint equations as been introduced, there exists n−nd linearly indepen-
dent degrees of freedom. C is partitioned into the dependent and linearly independent
degrees of freedom

C =
[

Cdd Cld

]

(3.93)
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and a change of base can be introduced

ξ =

[

−C−1

ddCld

I

]

η = Tη (3.94)

For the fixed interface mode method, assuming that the constraint modes of the second
subdomain are linearly dependent on the other modes, the matrix, T becomes

T =









Ibb 0 0
0 IIl 0
Ibb 0 0
0 0 IIIl









(3.95)

The two domains are coupled through the boundary degrees of freedom. For the free
interface mode method, assuming that the attachment modes of the second subdomain is
linearly dependent on the other modes, the matrix T becomes

T =









Ibb 0 0
0 IIl 0

(ΨII
ab)

−1ΨI
ab (ΨII

ab)
−1ΦIkb −(ΨII

ab)
−1ΦIIkb

0 0 IIIl









(3.96)

Using equation (3.94) in equation (3.92) and because

TTCT = 0 (3.97)

the total system can be written

M̃η̈ + K̃η = TT f (3.98)

where

M̃ = TT

[

M̃I 0

0 M̃II

]

T K̃ = TT

[

K̃I 0

0 K̃II

]

T (3.99)

Either the transformation matrix T of equation (3.95) or equation (3.96) can be used.
The size of the coupled system in equation (3.92) is the sum of the number of boundary
degrees of freedom and the number of kept normal modes of the subdomains. With many
interface degrees of freedom the reduced system still is quite large but can be reduced
further by two methods described below. The first focus on the fixed interface method
and calculates interface modes which describes the behaviour of the interface degrees of
freedom in a reduced fashion. The second method uses the extra constraint derived when
using residual attachment modes which removes the attachment modes from the reduced
problem and only keeping the free interface normal modes.

Synthesis using interface modes

Using the fixed interface mode method and only including the substructure constraint
modes for each subdomain in the reduction, the eigenvalue problem can be written

K̃BΦB = λBM̃BΦB (3.100)
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where λB contains the eigenvalues in the diagonal, ΦB the corresponding eigenvectors
and

M̃B =

[

Ibb
Ibb

]T [

ΨI
c 0

0 ΨII
c

]T [

MI 0
0 MII

] [

ΨI
c 0

0 ΨII
c

] [

Ibb
Ibb

]

K̃B =

[

Ibb
Ibb

]T [

ΨI
c 0

0 ΨII
c

]T [

KI 0
0 KII

] [

ΨI
c 0

0 ΨII
c

] [

Ibb
Ibb

]

(3.101)

The eigenvectors derived from solving this problem can then be transformed back to
original coordinates

ΨB =

[

ΨI
c 0

0 ΨII
c

] [

Ibb
Ibb

]

ΦB (3.102)

The system in equation (3.91) can then be reduced by the change of base

d =









ΨI
Bb 0 0

ΨI
Bs ΦIss 0

ΨII
Bb 0 0

ΨII
Bs 0 ΦIIss













ξB
ξI

ξII



 (3.103)

The coupling between the two domains is accounted for by the interface modes and the
number of degrees of freedom in the reduced problem is the sum of the number of retained
interface modes and the number of uncoupled modes of the subdomains. This is efficient
when a large number of boundary degrees of freedom is present.

Synthesis using the method of Craig and Chang

Using residual attachment modes, the number of kept modes can be reduced by not
having to include modes for each interface degree of freedom. This is done by including
an additional number of Lagrange multipliers equal to the number of interface degrees
of freedom. The force equilibrium in equation (3.90) and the relationship between the
residual attachment mode coordinates and forces at the boundary, in equation (3.68),
introduce additional constraint equations

ξIb + ξ
II
b = 0 (3.104)

This gives the number of boundary interface degrees of freedom additional constraints
and the constraint matrix can be written

C =

[

ΨI
db ΦIkb −ΨII

db −ΦIIkb
IIbb 0 IIIbb 0

]

(3.105)

Partitioning the matrix into linear dependent and independent coordinates

C =
[

Cdd Cld

]

=

[

ΨI
db −ΨII

db ΦIkb −ΦIIkb
IIbb IIbb 0 0

]

(3.106)

The transformation matrix then becomes

T =

[

−C−1

ddCdl

I

]

=









−
[

ΨI
db −ΨII

db

IIbb IIIbb

]−1 [

ΦIkb −ΦIIkb
0 0

]

IIl 0
0 IIIl









(3.107)
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Using the same transformation as in equation (3.94), a reduced system is achieved having
the number of degrees of freedom equal to the number of included subdomain modes.

3.6 Summary

Modal reduction techniques for structural vibration problems were investigated. The
procedures of deriving the reduced set of basis vectors are described for three methods:
Introducing generalised coordinates, condensation methods and component mode synthe-
sis method. The two first methods can be seen as special cases of the third one. In the
component mode synthesis method, the studied problem domain is divided into a number
of subdomains and the procedure of coupling these subdomains together, using Lagrange
multipliers, is described. A number of the described reduction procedures are adopted in
the papers included in the thesis.
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Chapter 4

Porous sound absorbing

materials

The modelling of porous materials within the finite element method is now to be investi-
gated. This modelling is very important when, for example, predicting the sound pressure
level in a passenger compartment of a vehicle due to the engine vibrations, or evaluating
the sound transmission loss of double-walls.

The aim of this chapter is to investigate the implementation of the porous material
descriptions in the finite element environment, with an emphasis on the boundary condi-
tions when coupling the porous materials with a flexible structure or an acoustic cavity.
(A detailed description of the theories describing porous materials can be found in the ref-
erenced publications.) The finite elements, that describe the porous material using either
two different equivalent fluid models or Biot’s theory, are implemented as an extension to
the Matlab [66] toolbox CALFEM [67].

The implemented elements are verified in a number of one-dimensional test problems
where the results using the implemented element are compared to the analytical solutions.
Two three dimensional problems are also studied to investigate the effect of using different
porous material descriptions. The two problems of interest are the sound transmission
loss in a double wall lined with porous material and an enclosed acoustic cavity with one
of the walls covered by porous material.

The chapter also includes a review of the literature investigating the modelling of
porous sound absorbing materials, with focus on the description of the porous mate-
rial within the finite element framework. Also, the material parameters for the porous
material, for both the frame and air inside the pores, are described.

4.1 Literature review

In the modelling of sound propagation in sound absorbing materials, the porous material
can be divided into two partitions: the fluid partition (the fluid in the open pores) and
the structural partition (the flexible porous material frame).

Assuming a simplified description of the structural partition, the sound propagation
can be described by an equivalent fluid with frequency dependent bulk modulus and

47
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48 CHAPTER 4. POROUS SOUND ABSORBING MATERIALS

density. These material properties can be determined from measurements, as where done
by Delany and Bazley [68], or by analytical models. The empirical model in [68] was
improved by Mechel [69] by describing the low frequency behaviour by an analytical
model. A similar procedure was adopted by Kirby and Cummings [70]. In the analytical
models, the structural frame is either assumed to be rigid, as described in the book by
Allard [71], or limp, i.e. the inertia effects of the structural frame are included, as in the
models by Ingard [72] and Göransson [73, 74]. Finite element analysis of porous sound
absorbing materials using an equivalent fluid model was performed by, for example, Craggs
[75], using the assumption that the frame is rigid. A scalar primary variable, for example
the pressure, is used for the porous material domain and a system with only one degree
of freedom in each node is achieved in the finite element formulation. The equivalent
fluid models and the inclusion of the models within in the finite element environment are
studied in the following sections.

Biot derived a theory for studying sound propagation in porous materials [76], see also
the book by Allard [71]. The theory accounts for the sound propagation in both the fluid
partition and in the flexible frame (structural partition) as well as the coupling between
the two partitions. The motion in the two partitions is described by the equations of linear
continuummechanics, with the displacements in the structural and fluid partitions, us and
uf respectively, as the primary variables. Finite element formulation of Biot’s equations
[77, 78, 79] gives six degrees of freedom, three displacement components for each partition,
in each node. Since the shear stresses in the fluid partition are zero, a formulation using
the acoustic pressure as the variable in the fluid partition can be derived [80, 81], a
〈us, pf 〉-formulation is achieved. Finite element formulation gives four degrees of freedom
in each node, the displacement components for the structure and the pressure for the
fluid. Both formulations are described in this chapter.

4.2 Porous material properties

The porous material can be divided into two partitions. The structural frame material
and the air in the open pores. The properties for these partitions are here divided into
the properties of the air in the pores, the properties that depend on the geometry of the
porous material frame and the mechanical properties of the frame.

Air properties

The air can be considered as an ideal gas for which the ideal gas law reads

PV = nRT (4.1)

where P is the pressure, V the volume, n is the number of moles and T the temperature of
the gas in Kelvin (K). R is the universal gas constant, R = 8.31144 J/(mol K). Introducing
the molar mass, m, which is given for air in Table 4.1, and the density, ρ, the ideal gas
law can be written

P =
ρRT

m
(4.2)

The density of air is dependent on the ambient pressure and temperature. The static
density, ρ0, at standard air pressure, P0 = 1.01 · 105 Pa and the temperature 20 ◦C is
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given in Table 4.1. The speed of sound, c, in a gas is defined as

c2 =
dP

dρ
(4.3)

Two conditions are of interest. At isothermal conditions, the temperature is constant and
the ratio between the pressure and density at the static configuration, P0 and ρ0, is equal
to the ratio at any state, P and ρ,

P0
ρ0

=
P

ρ
(4.4)

The speed of sound in air at isothermal conditions becomes

c2isothermal = c2t =

(

d

dρ

(

P0ρ

ρ0

))

0

=
P0
ρ0

(4.5)

At adiabatic conditions, i.e. no heat is exchanged with the surroundings, the relation
between pressure and density becomes, see [4],

P0
ργ0

=
P

ργ
(4.6)

with
γ =

cp
cv

(4.7)

being the ratio between the specific heat at constant pressure, cp, and at constant volume,
cv. For air, γ = 1.4. and the speed of sound at adiabatic conditions is

c2adiabatic = c20 =

(

d

dρ

(

P0ρ
γ

ργ0

))

0

=
γP0
ρ0

(4.8)

Sound propagation in free air is assumed to be adiabatic, i.e. there is no heat exchange
with the surroundings. However, in porous materials the heat exchange with the frame
material leads to that the isothermal assumption is more correct. The speed of sound in
air, at 20 ◦C for both adiabatic, c0, and isothermal conditions, ct, is presented in Table
4.1. The viscosity of air η (Nms/m3) and the Prandtl number, Pr, are also given for air
in Table 4.1.

Table 4.1: Material data for air at standard pressure, P0 = 1.01 · 105 Pa and temperature
20◦C.

Air:
ρ0 = 1.21 kg/m3

c0 = 343 m/s
ct = 290 m/s
γ = 1.4
Pr = 0.71
η = 1.84 · 10−5 Ns/m2

m = 29.0 g/mol
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Geometric properties of the frame

The following properties dependent on the geometry of the porous frame material are
introduced to describe the sound propagation in porous materials. A thorough description
of these properties can be found in Allard [71], where also methods to determine these
parameters experimentally are discussed. The porosity, φ, of a material is the ratio
between the air volume in the open pores, Va, and the total volume Vt, i.e. φ = Va/Vt.
The flow resistivity σ (Ns/m4) introduces viscous losses in the sound propagation in
the porous material. The tortuosity, α∞, relates the actual distance the sound has to
propagate to pass through a layer to the thickness of the layer. The tortuosity increases
the real part of the fluid density since the acceleration of the fluid particles is increased
when they have to move around the solid frame. The viscous characteristic length, Λ,
and the thermal characteristic length, Λ′, also depend on the geometry of the frame and
are coupled to the viscous and thermal losses, respectively.

The five measurable porous material properties, φ, σ, α∞, Λ and Λ′, together with
the properties of air in Table 4.1, describe the sound propagation in fluid partition of the
porous absorbing material.

Mechanical properties of the frame

The isotropic structural partition of the porous material is described by two of the related
modulus of elasticity, Es, Poisson’s ratio, νs and shear modulus, Gs together with the
density, ρs. The damping in the structural partition is introduced by a loss factor ηs,
which is independent of frequency, giving a complex modulus of elasticity, Ẽs

Ẽs = (1 + iηs)Es (4.9)

Material properties used in the numerical investigation

In the numerical investigation presented in Section 4.8, three different porous materials
are investigated and the material properties are given in Table 4.2. Material 1 is chosen
to have a structural frame that is very weak and Material 2 to have a very stiff structural
frame. These two materials can be found in [80]. Material 3 has the properties of a typical
foam and can be found in [79].

Table 4.2: Material data for the porous materials.

Porous material: 1 2 3
φ 0.95 0.94 0.96
σ Ns/m4 25000 40000 32000
α∞ 1.4 1.06 1.7
Λ µm 93.2 56 90
Λ′ µm 93.2 110 165
Es kPa 42 4400 845
νs 0 0 0.3
ηs 0.05 0.1 0.1
ρs kg/m3 30 130 30
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4.3 Boundary conditions for a porous material

Using the primary variables 〈us,uf 〉 – being the displacements in the structural and
fluid partitions – for describing the sound propagation in porous material the following
boundary conditions can arise (nP is a normal vector at the boundary directed outward
from the porous material domain):

1. The boundary in contact with an acoustic fluid with the pressure pF and displace-
ment uF at the boundary. Here the following conditions must be satisfied

−φpF = nTP tf

−(1− φ)pF = σs|nP
= nTP ts

nTPuF = (1− φ)nTPus + φnTPuf

(4.10)

2. The porous material bounded to a flexible structure with the displacement uS

us = uS

nTPuf = nTPuS
(4.11)

For a rigid wall
us = 0

nTPuf = 0
(4.12)

3. The porous material is in contact with a flexible structure, but the coupling is un-
bounded, i.e. the structural partition of the porous material and the flexible struc-
ture is not in contact with each other. In this case a thin acoustic fluid layer is placed
between the flexible structure and porous material and the coupling conditions in
equation (4.10) can be used.

4.4 Equivalent fluid models for porous materials

In the equivalent fluid models, the sound propagation in the porous material is described
by the acoustic equation (2.26) with c̃, the speed of sound, calculated by

c̃ =

√

K̃

ρ̃
(4.13)

where ρ̃ is the density and K̃ is the bulk modulus. These parameters are complex and
frequency dependent. The finite element formulation for an acoustic fluid is stated in
equation (2.31). The subscript F , denoting the acoustic fluid domain in the finite element
formulation, is replaced with P , to specify that the porous material is studied. The porous
material domain is denoted ΩP , the nodal pressures and finite element shape functions
are denoted pP and NP , respectively. The studied equivalent fluid models are derived in
detail in the cited references. In this presentation, only the density and bulk modulus are
stated together with an investigation concerning the boundary conditions.
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When describing porous materials using an equivalent fluid model, the volume dis-
placements in the fluid can be used. The actual fluid displacements in the pores, uf , are
related to the volume displacements through the porosity, φ,

ufv = φuf (4.14)

This gives simplified expressions in the boundary conditions.

The structural frame of the porous material is either considered to be rigid or limp
and one model for each of these assumptions is studied.

4.4.1 Porous material with a rigid frame

This model is based on describing the sound propagation in porous materials as propaga-
tion of sound in cylindrical tubes with the frame considered rigid. A detailed description
of this model was presented by Allard [71]. The frequency dependent density and bulk
modulus are derived by including the viscosity of the air and the thermal exchange with
the connecting frame in the model. The density of the porous material is given by

ρ̃(ω) = α∞ρ0

[

1 +
σφ

iωρ0α∞
GJ(ω)

]

(4.15)

and the bulk modulus

K̃(ω) =
γP0

γ − (γ − 1)

[

1 +
σ′φ

iPrωρ0α∞
G′

J (Prω)

]

−1
(4.16)

with

GJ (ω) =

[

1 +
4iα2

∞
ηρ0ω

σ2Λ2φ2

]1/2

(4.17)

and

G′

J(Prω) =

[

1 +
4iα2

∞
ηρ0ωPr

σ′2Λ′2φ2

]1/2

(4.18)

where

σ′ =
Λ2

Λ′2
σ (4.19)

The density and bulk modulus are derived from the fluid displacements in the pores.
Using the volume displacements, the density and the bulk modulus becomes

ρ̃v(ω) =
ρ̃(ω)

φ

K̃v(ω) =
K̃(ω)

φ

(4.20)

with ρ̃(ω) and K̃(ω) from equations (4.15) and (4.16).
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Simplification by Brennan

In the paper by Brennan et al. [82], the complicated expressions for the density and bulk
modulus in equations (4.15) and (4.16) are simplified by neglecting the thermal damping
and with a low frequency assumption. The equivalent fluid density becomes

ρ̃(ω) = α∞ρ0 +
σφ

iω
(4.21)

and the bulk modulus
K̃(ω) = P0 (4.22)

4.4.2 Porous material with a limp frame

Assuming the frame material to be limp, i.e. the frame material has no stiffness but the
inertia effects are included, a material model was derived by Göransson [73]. In this
model the acoustic wave propagates at constant temperature conditions inside the porous
material and the speed of sound is given the isothermal value in Table 4.1. Introducing
the bulk mass density of the material

M = φρ0 + (1− φ)ρs (4.23)

where ρs is the density of the frame material, the relation between the volume displace-
ments of the fluid particles, uvf and the limp frame us becomes

us
uvf

=
1

1 + iωM/σφ
(4.24)

The density and the bulk modulus of the porous material can be written

ρ̃v =
α∞ρ0/φ− iσ/ω

1− iφσ/ωM
(4.25)

and

K̃v =
c2tρ0
φ

(4.26)

The subscript, v, denotes that the model is derived using the fluid volume displacements.
Note that when M → ∞, this model approaches the simplified model by Brennan, pre-
sented in the previous section.

4.4.3 Boundary conditions

Studying the boundary conditions between the porous material domain, ΩP , described by
an equivalent fluid and a connecting structural or fluid domain, the continuity of pressure
and fluid displacements over the boundary must be fulfilled. The continuity in pressure,
when in contact with an acoustic domain, is fulfilled through the assembling process. The
same degrees of freedom at the interface between the domains can be used for both the
acoustic and the porous material domains. The continuity of displacements, of interest
when the fluid is in contact with a flexible structure, is fulfilled using the condition of
preserved normal volume displacements together with the relation between displacements
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and pressure in the acoustic fluid describing the porous material (nP is the boundary
vector pointing outward from the porous material domain.)

nTP∇pP = ω2ρ̃nTPuf = ω2ρ̃vn
T
Pufv (4.27)

This is used in the boundary term in the finite element formulation of the porous material
domain, i.e.

fS = ρ̃c̃2
∫

∂ΩSP

NT
Pn

T
PufdS = ρ̃v c̃

2

∫

S

NT
Pn

T
PufvdS (4.28)

with the conditions derived below. The boundary conditions in the equivalent fluid are:

1. At boundary in contact with an acoustic fluid the conditions in Eq. (4.10) must be
fulfilled. Using the equivalent fluid with a rigid frame the boundary conditions can
be written

pF = pP

nTPuF = nTPφuf = nTPufv
(4.29)

When the frame is assumed to be limp, the boundary conditions can be derived
using equations (4.14), (4.24) and (4.10) giving

pF = pP

nTPuF = γbn
T
Pufv

(4.30)

where

γb =
1− iσ/Mω

1− iφσ/Mω
(4.31)

2. With the boundary in contact with a flexible structure, the conditions in equation
(4.11) are valid. The continuity between the structural frame and the flexible struc-
ture can not be fulfilled using the equivalent fluid models. It is assumed that there
is an air gap between the flexible wall and the porous material and the flexible wall
displacement in the normal direction is equal to the displacement in the acoustic
fluid, i.e., nTPuS = nTPuF . The boundary conditions for the porous material in
contact with the acoustic domain then gives, for the rigid frame

nTPuS = nTPφuf = nTPufv (4.32)

and for the limp frame assumption

nTPuS = γbn
T
Pufv (4.33)

For a rigid wall, nTPuf = nTPufv = 0.

4.5 Biot’s theory

When the sound transmission in a porous material both occurs in the air in the pores
and in the flexible frame, Biot’s theory can be used [76]. This theory describes the fluid
and structural partitions and the coupling between them using the equations of linear
continuum mechanics.
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The implementation of Biot’s theory consists of three main parts, the finite element
formulation of the equation of motion for a continuum body, described in Section 2.3.1.
The sound propagation in the pores when the frame is considered rigid, described in
Section 4.4.1. The third part is Biot’s relations consisting of the stress-strain relationships
of the structural and fluid partitions, described in Section 4.5.1, the inertia coupling,
Section 4.5.2, and viscous forces, Section 4.5.3. Based on these sections the finite element
formulation of Biot’s theory is derived.

4.5.1 Stress-strain relation

The stress-strain relationship in Biot’s theory can, in order to fit into the finite element
formulation, be written in matrix notation as

σs = Dsεs +Qεf (4.34)

σf = QT εs +Dfεf (4.35)

where

Ds =

















P P − 2G P − 2G 0 0 0
P − 2G P P − 2G 0 0 0
P − 2G P − 2G P 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

















Df = R

















1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















; Q = Q

















1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















(4.36)

For large values of the bulk modulus of the material in the porous frame, the effective
bulk modulus of the fluid partition is

R = φKf (4.37)

where the frequency dependent bulk modulus of the fluid, Kf , is previously defined for
the porous material having a rigid frame, equation (4.16). The volume change in the fluid
partition is related to the volume change in the structural partition by the dilatational
coupling coefficient

Q = (1− φ)Kf (4.38)

The bulk modulus of the structural partition, P , can be expressed

P =
4

3
G+Kb +

(1− φ)2

φ
Kf (4.39)

where Kb is the in vacuo bulk modulus of the structural frame

Kb =
2G(ν + 1)

3(1− 2ν)
(4.40)
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With no coupling between the structure and fluid (Q = 0) then P = λ+2µ and R = φKf .
The four material parameters G, P , R and Q can be determined from experiments.

4.5.2 Inertia forces

There also exists a coupling in the inertia terms. When the structure vibrates the fluid
acts as an added mass increasing the density of the frame. In the opposite, vibrating fluid
particles has to move around the structural frame which can be seen as an increase in
density of the fluid. The inertia forces can be written

qs = ρ11üs + ρ12üf (4.41)

qf = ρ12üs + ρ22üf (4.42)

where
ρ11 = ρ1 + ρa

ρ12 = −ρa

ρ22 = φρ0 + ρa

(4.43)

and ρa is the inertial coupling term

ρa = φρ0(α∞ − 1) (4.44)

4.5.3 Viscous forces

The flow resistivity for the air particles in the pores introduces a body force proportional
to the difference in the velocities between the structural partition and fluid partition.
This can be written

bviscs = −σφ2GJ (ω)
∂

∂t
(us − uf ) (4.45)

and

bviscf = σφ2GJ (ω)
∂

∂t
(us − uf ) (4.46)

4.5.4 Strong form of Biot’s equations

The equation of motions in the frequency domain for a porous material can now be written

∇̃
T
σs − iωσφ2GJ (ω)(us − uf ) = −ω2(ρ11us + ρ12uf ) (4.47)

∇̃
T
σf + iωσφ2GJ(ω)(us − uf ) = −ω2(ρ22uf + ρ12us) (4.48)

This can be compared with the governing equation for a continuum body in Section 2.3.1.
Introducing the complex densities including the inertia and viscous effects

ρ̃11 = ρ1 + ρa − iσφ2
G(ω)

ω

ρ̃12 = −ρa + iσφ2
G(ω)

ω

ρ̃22 = φρ0 + ρa − iσφ2
G(ω)

ω

(4.49)
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the equations of motion can be written

∇̃
T
σs = −ω2(ρ̃11us + ρ̃12uf ) (4.50)

∇̃
T
σf = −ω2(ρ̃22uf + ρ̃12us) (4.51)

In the finite element formulation of these equations, described in Section 4.6, both parti-
tions have the displacement as the primary variable, an 〈us-uf 〉-formulation is achieved.
The fluid domain can be described by the acoustic wave equation, which gives a 〈us-pf 〉-
formulation. This formulation is described in Section 4.7.

4.6 us-uf-formulation

4.6.1 Finite element formulation

Following the procedure in the finite element formulation of the continuum material de-
scribed in Section 2.3.1, multiplying with a weight function, integrating over the domain
ΩPF and using the Green-Gauss theorem, the weak form of the equations of motion for
the two partitions can be derived

−ω2
∫

ΩP

vTs (ρ̃11us + ρ̃12uf )dV +

∫

ΩP

(∇̃vs)
TσsdV −

∫

∂ΩP

vTs tsdS = 0 (4.52)

−ω2
∫

ΩP

vTf (ρ̃22uf + ρ̃12us)dV +

∫

ΩP

(∇̃vf )
TσfdV −

∫

∂ΩP

vTf tfdS = 0 (4.53)

where ts and tf are the surface traction vectors of the structural and fluid partitions,
respectively. With this weak formulation of the poroelastic problem the finite element
equations of motion can be derived. The finite element approximation of the structural
and fluid displacements, us and uf , and the weight functions, vs and vf , can be written

us = Nsds; uf = Nfdf

vs = Nscs; vf = Nfcf
(4.54)

where ds and df are the nodal displacements and the cs and cf the corresponding nodal
weights. The kinematic relations can be expressed in the finite element displacements

εs = ∇̃Nsds; εf = ∇̃Nfdf (4.55)

Introducing the stress-strain relations in equations (4.34) and (4.35), and noting that cs
and cf are arbitrary, give the finite element formulation; for the structural partition

−ω2(ρ̃11
∫

ΩP

NT
sNsdV ds + ρ̃12

∫

ΩP

NT
sNfdV df )+

+

∫

ΩP

(∇̃Ns)
TDs∇̃NsdV ds +

∫

ΩP

(∇̃Ns)
TQ∇̃NfdV df =

=

∫

∂ΩP

NT
s tsdS

(4.56)
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and for the fluid partition

−ω2(ρ̃22
∫

ΩP

NT
fNfdV df + ρ̃12

∫

ΩP

NT
fNsdV ds+

+

∫

ΩP

(∇̃Nf )
TDf∇̃NfdV +

∫

ΩP

(∇̃Nf )
TQ∇̃NsdV ds =

=

∫

∂ΩP

NT
f tfdS

(4.57)

The system of equations describing the sound propagation in porous material can be
written

(

−ω2
[

Mss Msf

Mfs Mff

]

+

[

Kss Ksf

Kfs Kff

])[

ds
df

]

=

[

fbs
fbf

]

(4.58)

with the following matrices derived

Mss = ρ̃11

∫

ΩP

NT
sNsdV Msf = ρ̃12

∫

ΩP

NT
sNfdV

Kss =

∫

ΩP

(∇̃Ns)
TDs∇̃NsdV Ksf =

∫

ΩP

(∇̃Ns)
TQ∇̃NfdV

fbs =

∫

∂ΩP

NT
s tsdS

(4.59)

Mff = ρ̃22

∫

ΩP

NT
fNfdV Mfs = ρ̃12

∫

ΩP

NT
fNsdV

Kff =

∫

ΩP

(∇̃Nf )
TDf∇̃NfdV Kfs =

∫

ΩP

(∇̃Nf )
TQT

∇̃NsdV

fbf =

∫

∂ΩP

NT
f tfdS

(4.60)

The procedure to couple the porous material to an acoustic fluid domain or a flexible
structure is studied in the next sections.

4.6.2 Coupling with an acoustic fluid

If the porous material is in contact with an acoustic fluid, at the boundary ∂ΩPF , the
conditions in equation (4.10) can be introduced through the boundary force terms fbs
and fbf in equations (4.59) and (4.60) for the porous material. Noting that the boundary
normal vector n points outward from the acoustic fluid domain, i.e. n = nF = −nP , the
force terms can be written

fsF =

∫

∂ΩP F

NT
s tsdS =

∫

∂ΩP F

(Ns)
Tn(1− φ)pF dS = (1− φ)

∫

∂ΩP F

(Ns)
TnNF dSpF

ffF =

∫

∂ΩP F

NT
f tfdS =

∫

∂ΩP F

(Nf )
TnφpF dS = φ

∫

∂ΩP F

(Nf )
TnNF dSpF

(4.61)
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The boundary force term in the acoustic fluid domain, fbF in equation (2.31), is

fFP = c20

∫

∂ΩP F

NT
F∇pFndS = ω2ρ0c

2
0

∫

∂ΩP F

NT
Fn

T ((1− φ)us + φuf ) dS =

ω2ρ0c
2
0

(

(1− φ)

∫

∂ΩP F

NT
Fn

TNsdSds + φ

∫

∂ΩP F

NT
Fn

TNfdSdf

) (4.62)

The following coupling matrices can be introduced

HsF =

∫

∂ΩP F

NT
s nNF dS

HfF =

∫

∂ΩP F

NT
f nNF dS

(4.63)

whereby the force terms can be written

fsF = (1− φ)HsF p̄F

ffF = φHfF p̄F

fFP = ω2ρ0c
2
0

(

(1− φ)HT
sFds + φHT

fFdf

)

(4.64)

And the coupled system becomes



−ω2




Mss Msf 0
Mfs Mff 0

(1− φ)ρ0c
2
0H

T
sF φρ0c

2
0H

t
fF MF



+





Kss Ksf −(1− φ)HsF

Kfs Kff −φHfF

0 0 KF













ds
df
p̄F



 =





fls
flf
fFq





(4.65)

4.6.3 Coupling with a flexible structure

If the boundary is in contact with a flexible structure the porous material can be either
bounded or unbounded to the surface. If bounded, the structural partition of the porous
material and the flexible structure have common degrees of freedom at the interface,

us = uS (4.66)

The displacements in the normal direction, nP , at the boundary is the same for the
connecting flexible structure and the fluid partition

nTPuS = nTPuf (4.67)

If unbounded, a thin layer of an acoustic fluid is placed between the flexible structure and
the porous material. The procedure in Section 4.6.2 for the coupling with the acoustic
fluid can be adopted.
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4.7 us-pf – formulation

In Ref. [80], a mixed formulation using the structural displacements and the fluid pressure
as the variables for describing the porous material using Biot’s theory, is derived. The
advantage is that only four degrees of freedom, three structural displacement components
and one fluid pressure component, are needed in each node instead of, when using the
displacement formulation for both partitions, six degrees of freedom. The derivation
enables the equations of motion, (4.50) and (4.51), to expressed without using the fluid
displacements. The total stresses, σt, in the porous material can be written

σt = σs + σf (4.68)

where σs denotes the stresses in the frame and σf the stresses in the fluid, which is
related to the fluid pressure by

σf = −φpf1 (4.69)

where 1 =
[

1 1 1 0 0 0
]T

. The stress-strain relationship in Biot’s theory can be
written

σs = Dsεs +Qdiv(uf )1 (4.70)

σf = −φpf1 = Qdiv(us)1+Rdiv(uf )1 (4.71)

Introducing σ̃s, which contains the stresses in the frame depending on the frame displace-
ments, the stresses in the frame can be written

σs = σ̃s − φ
Q

R
pf1 (4.72)

where

σ̃s = Dsεs −
Q2

R
div(us)1 (4.73)

The total stresses can thereby be expressed as

σt = σ̃s − φ

(

1 +
Q

R

)

pf1 (4.74)

without using the fluid displacements. The equation of motion for the structural partition
becomes

∇̃
T
σ̃s = −ω2ρ̃us − γ̃∇pf (4.75)

where
σ̃s = D̃sεs (4.76)

with

D̃s =























(

P − Q2

R

) (

P − Q2

R

)

− 2N
(

P − Q2

R

)

− 2N 0 0 0
(

P − Q2

R

)

− 2N
(

P − Q2

R

) (

P − Q2

R

)

− 2N 0 0 0
(

P − Q2

R

)

− 2N
(

P − Q2

R

)

− 2N
(

P − Q2

R

)

0 0 0

0 0 0 N 0 0
0 0 0 0 N 0
0 0 0 0 0 N























(4.77)
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and

ρ̃ = ρ̃11 −
ρ̃212
ρ̃22

γ̃ = φ

(

ρ̃12
ρ̃22
− Q

R

)

(4.78)

For the fluid partition, the equation of motion becomes

∇
Tσf = −φ∇pf = −ω2(ρ̃22uf + ρ̃12us) (4.79)

Taking the divergence of this equation and together with equation (4.71), the acoustic
equation describing the fluid partition is achieved,

φ2

ρ̃22
∇2pf = −ω2φ

2

R
pf + ω2γ̃div(us) (4.80)

The primary variable is the fluid pressure and the contribution from the structural par-
tition is present in the last term.

4.7.1 Finite element formulation

The weak form is derived, multiplying with weight functions, vs and vf , integrating over
a region ΩPF and using the Green-Gauss theorem, for the structural partition

−ω2ρ̃
∫

ΩP

vTs usdV +

∫

ΩP

∇̃(vs)
T σ̃sdV − γ̃

∫

ΩP

vTs ∇pfdV−

−
∫

∂ΩP

vTs S
tnP dS −

∫

∂ΩP

vTs φ

(

1 +
Q

R

)

pfInP dS = 0

(4.81)

where I is a identity tensor, nP is the boundary normal vector directed outward from the
porous material domain and the relation

t̃s = S̃snP =

(

St + φ

(

1 +
Q

R

)

pfI

)

nP (4.82)

has been used. For the fluid partition

−ω2φ
2

R

∫

ΩP

vppfdV +
φ2

ρ̃22

∫

ΩP

∇vp∇pdV − ω2γ̃

∫

ΩP

∇vpusdV−

− φ2

ρ̃22

∫

∂ΩP

vpn
T
P∇pfdS + ω2γ̃

∫

∂ΩP

vpn
T
PusdS = 0

(4.83)

The finite element approximation of the structural displacement, us and fluid pressure
pf , and the weight functions, vs and vp, are

us = Nsds; pf = Nppf

vs = Nscs; vp = Npcp
(4.84)

where ds and pf are the nodal displacement and pressure, respectively, and the cs and
cp the corresponding nodal weights. Using that cs and cf are arbitrary, introducing the
stress strain relation in equation (4.76) and with

εs = ∇̃Nsds (4.85)
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the finite element formulation becomes; for the structural partition

−ω2ρ̃
∫

ΩP

NT
sNsdV ds +

∫

ΩP

(∇̃Ns)
T D̃s∇̃NsdV ds − γ̃

∫

ΩP

NT
s ∇NpdV pf−

−
∫

∂ΩP

NT
s S

tnP dS − φ

(

1 +
Q

R

)∫

∂ΩP

NT
s nP pfdS = 0

(4.86)

and for the fluid partition

−ω2φ
2

R

∫

ΩP

NT
pNpdV pf +

φ2

ρ̃22

∫

ΩP

(∇Np)
T∇NpdV pf − ω2γ̃

∫

ΩP

(∇Np)
TNsdV ds−

− φ2

ρ̃22

∫

∂ΩP

NT
p n

T
P∇pfdS + ω2γ̃

∫

∂ΩP

NT
p n

T
PNsdSds = 0

(4.87)
The finite element system of equations can be written

[

−ω2Mss +Kss −Csp

−ω2CT
sp −ω2Mpp +Kpp

] [

ds
pf

]

=

[

fbs
fbp

]

(4.88)

where the system matrices for the structural and fluid partition are

Mss = ρ̃

∫

ΩP

NT
sNsdV Kss =

∫

ΩP

∇̃NT
s D̃s∇̃NsdV

Mpp =
φ2

R

∫

ΩP

NT
pNpdV Kpp =

φ2

ρ̃22

∫

ΩP

(∇Np)
T∇NpdV

(4.89)

The coupling matrix is

Csp = γ̃

∫

ΩP F

NT
s ∇NpdV (4.90)

The boundary term of the structural partition can be written

fbs =

∫

∂ΩP

NT
s S

tnP dS + φ

(

1 +
Q

R

)∫

∂ΩP

NT
s nP pfdS (4.91)

and for the boundary term of the fluid partition, the relation in equation (4.79) is used
in order to apply the appropriate boundary conditions

fbp =
φ2

ρ̃22

∫

∂ΩP

NT
p n

T
P∇pfdS − ω2γ̃

∫

∂ΩP

NT
p n

T
PusdS =

=
φ2

ρ̃22

∫

∂ΩP

NT
p n

T
P

ω2

φ
(ρ̃12us + ρ̃22uf )dS − ω2γ̃

∫

∂ΩP

NT
p n

T
PusdS =

= ω2
∫

∂ΩP

NT
p n

T
Pφ (uf − us) dS + ω2

∫

∂ΩP

NT
p n

T
Pφ

(

1 +
Q

R

)

usdS

(4.92)

4.7.2 Boundary conditions

A thorough investigation of the boundary conditions when using the 〈us,pf 〉-formulation
for describing the sound propagation in porous material was given by Debergue et al.
[83]. The following boundary conditions can arise (nP is a normal vector at the boundary
directed outward from the porous material domain), :
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1. The boundary in contact with an acoustic fluid with the pressure pF and displace-
ment uF at the boundary. Only the following condition must be satisfied

pF = pf (4.93)

This condition is fulfilled in the assembling process using the same degrees of freedom
for the acoustic fluid domain and the fluid partition of the porous material domain
at the connecting boundary.

2. The boundary in contact with a flexible structure

us = uS

nTPuf = nTPus = nTPuS
(4.94)

The continuity in displacements between the flexible structure and the structural
partition of the porous material is accounted for in the assembling. The condition
in normal displacement of the fluid partition is imposed in the second term of the
last step in equation (4.92).

fbp = ω2
∫

∂ΩSP

NT
p n

TNT
SdSuS = HT

SpuS (4.95)

This is the usual structure-acoustic coupling condition.

4.8 Finite element analysis including porous materials

The implemented finite elements describing the sound propagation of porous materials are
employed in the investigation of a number of numerical examples. The porous material
is described using the equivalent fluid models and Biot’s theory. For Biot’s theory, both
the 〈us,uf 〉- and the 〈us, pf 〉-formulation, are evaluated. A number of one-dimensional
problems are studied to verify the implemented elements with the analytical solutions.
Two three-dimensional problems, being the sound transmission loss of a double wall lined
with porous material and an enclosed cavity with one wall covered with porous material,
are also investigated. These problems include a discussion of which description to be
adopted in the modelling of the porous material.

4.8.1 Implementation of finite elements

The porous material finite elements are implemented as extensions to the Matlab [66]
finite element toolbox CALFEM [67]. An eight node isoparametric solid element is used.
The equivalent fluid models use the pressure formulation giving one degree of freedom in
each node. The displacement formulation of Biot’s theory have six degrees of freedom
in each node, see Figure 4.1. The mixed displacement-pressure formulation gives four
degrees of freedom in each node.

4.8.2 One-dimensional sound propagation

A porous material layer, with thickness L = 0.1 m and placed between x = −L and x = 0,
is studied. Four one-dimensional problems, displayed in Figure 4.2, are investigated,
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exciting both the two compressional waves and the shear wave. Problems 1–3 were studied
by Dauchez et al. [79], comparing finite element results with the analytical solutions. In
all problems, 8 elements are used in the x direction. The results using the implemented
elements are compared with the analytical solutions.

The one-dimensional sound propagation in porous materials modelled by Biot’s theory
can be described by two compressional waves and one shear wave [71]. The compressional
waves, which are uncoupled to the shear wave, can propagate in the porous material
having the wave numbers

k1 =

√

√

√

√

ω2
(

P ρ̃22 +Rρ̃11 − 2Qρ̃12 −
√
∆
)

2PR− 2Q2
(4.96)

and

k2 =

√

√

√

√

ω2
(

P ρ̃22 +Rρ̃11 − 2Qρ̃12 +
√
∆
)

2PR− 2Q2
(4.97)

where
∆ = (P ρ̃22 +Rρ̃11 − 2Qρ̃12)

2 − 4
(

PR−Q2
) (

ρ̃11ρ̃22 − ρ̃212
)

(4.98)

The two compressional waves can propagate in positive or negative x direction, denoted
by the superscripts + and −, and the motion in the structural partition can be written

us(x) = u+s1(0)e
−ik1x + u−s1(0)e

ik1x + u+s2(0)e
−ik2x + u−s2(0)e

ik2x (4.99)

x

y

z

u  ,u

u  ,u

u  ,u

3     27

2     26

1     25 u  ,u

u  ,u

u  ,u

4     28

5     29

6     30
u  ,u

u  ,u

u  ,u

10    34

11    35

12    36 u  ,u

u  ,u

u  ,u

9     33

8     32

7     31

u  ,u

u  ,u

u  ,u

13    37

14    38

15    39 u  ,u

u  ,u

u  ,u

18    42

17    41

16    40

u  ,u

u  ,u

u  ,u

19    43

20    44

21    45u  ,u

u  ,u

u  ,u

24    48

23    47

22    46

Figure 4.1: Displacement formulated element describing Biot’s theory. Six degrees of
freedom are present at each node. Degree 1 to 24 contains the structural displacements
and 25 to 48 the fluid displacements.
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3)

V

V

vs, vf

P

1)
us, uf

2)

U

U

us, uf

4)

U

U

US

Figure 4.2: The four one-dimensional problems for which the results using the imple-
mented finite elements are compared with the analytical solutions, 1) normal impedance,
2) prescribed normal displacement, 3) prescribed shear displacement, 4) double wall.

and for the fluid partition

uf (x) = u+f1(0)e
−ik1x + u−f1(0)e

ik1x + u+f2(0)e
−ik2x + u−f2(0)e

ik2x =

= µ1u
+
s1e

−ik1x + µ1u
−

s1e
ik1x + µ2u

+
s2e

−ik2x + µ2u
−

s2e
ik2x

(4.100)

where the ratios between the displacements in the structural partition and fluid partition,
µ1 and µ2, are given by

µ1 =
u+f1(0)

u+s1(0)
=
Pk21 − ω2ρ̃11
ω2ρ̃12 −Qk21

; µ2 =
u+f2(0)

u+s2(0)
=
Pk22 − ω2ρ̃11
ω2ρ̃12 −Qk22

(4.101)

Also, the shear wave can propagate with the wave number

k3 =

√

ω2(ρ̃11ρ̃22 − ρ̃212)

G0ρ̃22
(4.102)

The shear wave can be written

vs(x) = v+s1(0)e
−ik3x + v−s1(0)e

ik3x (4.103)

vf (x) = v+f1(0)e
−ik3x + v−f1(0)e

ik3x = µ3v
+
s1(0)e

−ik3x + µ3v
−

s1(0)e
ik3x (4.104)

where the ratios between the displacement in the structural partition and fluid partition

µ3 =
v+f1(0)

v+s1(0)
= − ρ̃12

ρ̃22
(4.105)

The four one-dimensional problems displayed in Figure 4.2 are studied. The materials
used are described in Table 4.2.



“kappa” — 2004/9/6 — 13:41 — page 66 — #74
i

i

i

i

i

i

i

i

66 CHAPTER 4. POROUS SOUND ABSORBING MATERIALS

1) Normal impedance

The porous material is excited by an unit pressure at x = −L and the end at x = 0
is fixed. The velocity level at x = −L is calculated and the normal impedance can be
determined. The governing boundary conditions are

us(0) = 0

uf (0) = 0

P
∂us(−L)

∂x
+Q

∂uf (−L)
∂x

= (1− φ)p

Q
∂us(−L)

∂x
+R

∂uf (−L)
∂x

= φp

(4.106)

and the solution becomes

us(−L) = −2i
(

u+s1(0) sin (−k1L) + u+s2(0) sin (−k2L)
)

(4.107)

uf (−L) = −2i
(

µ1u
+
s1(0) sin (−k1L) + µ2u

+
s2(0) sin (−k2L)

)

(4.108)

where

u+s1(0) =
1

2

ip (Pφ+Qµ2φ−Q−Rµ2 + φQ+ φRµ2)

cos (k1L) k1 (−PRµ1 −Q2µ2 + PRµ2 +Q2µ1)
(4.109)

u+s2(0) = −
1

2

ip (Rµ1φ−Rµ1 + Pφ−Q+ µ1φQ+ φQ)

k2 cos (k2L) (−PRµ1 −Q2µ2 + PRµ2 +Q2µ1)
(4.110)

The impedance, Z, can be determined as

Z =
1

iω (φuf (−L) + (1− φ)us(−L))
(4.111)
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Figure 4.3: Normal impedance for Material 2 using, a) the 〈us,uf 〉- and b) the 〈us, pf 〉-
formulation formulation. The solid lines displays the real part, and the dotted line the
imaginary part, of the normal impedance.
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Figure 4.4: Normal impedance when using the equivalent fluid models, a) Material 1 and
b) Material 2. The solid lines displays the real part, and the dotted line the imaginary
part, of the normal impedance.

The real and imaginary parts of the impedance are displayed comparing the analytical
and the finite element solutions using both the 〈us,uf 〉-formulation, in Figure 4.3 a), and
the 〈us, pf 〉-formulation, in Figure 4.3 b). The solutions are practically identical.

In Figure 4.4, the normal impedance is determined using the equivalent fluid mod-
els. The limp assumption provides a better description of Material 1, which has a low
structural stiffness, and the rigid assumption for Material 2, which have a high structural
stiffness. Resonances in the frame material can not be described by the equivalent fluid
models.

2) Prescribed normal displacement

A prescribed normal displacement, U , excites the porous material at x = −L and the end
at x = 0 is free. The velocity level at x = 0 is determined. Boundary conditions:

us(−L) = U

uf (−L) = U

∂us(0)

∂x
= 0

∂uf (0)

∂x
= 0

(4.112)

The solution becomes:

us(0) =
U (µ2 − 1)

cos (k1 L) (µ2 − µ1 )
− (µ1 − 1)U

cos (k2 L) (µ2 − µ1 )
(4.113)

and

uf (0) =
µ1 U (µ2 − 1)

cos (k1 L) (µ2 − µ1 )
− µ2 (µ1 − 1)U

cos (k2 L) (µ2 − µ1 )
(4.114)
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Figure 4.5: Normal displacement for material 2 using, a) the 〈us,uf 〉- and b) the 〈us, pf 〉-
formulation.
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Figure 4.6: Normal displacement for material 1 using, a) the 〈us,uf 〉-formulation and b)
equivalent fluid models.

The normal velocity level calculated using the implemented elements – based on both
〈us,uf 〉- and 〈us, pf 〉-formulation of Biot’s theory – and the corresponding analytical
solution are displayed in Figure 4.5. The results agree well with the analytical solution
when Material 2, with a stiff structural frame, is used. In Figure 4.6, Material 1 is studied
using both Biot’s theory and equivalent fluid models. The resonances in the structural
frame can not be captured in the equivalent fluid models. Also, as can be seen in Figure4.6
a), the weak frame leads to a large number of resonances in the frequency range studied.
More elements are therefore needed in the x direction, in order to describe the structural
behaviour when employing Biot’s theory.
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3) Prescribed shear displacement

A prescribed transverse displacement, V , excites the porous material at x = −L and
the end at x = 0 is free. The velocity level at the free end is determined. Boundary
conditions:

vs(−L) = V

∂vs(0)

∂x
= 0

(4.115)

The solution becomes:

vs(0) =
V

cos (k3 L)
(4.116)

vf (0) =
µ3 V

cos (k3 L)
(4.117)

The shear velocity level calculated using the implemented elements based on Biot’s theory
and the corresponding analytical solution are displayed in Figure 4.7. Both 〈us,uf 〉- and
〈us, pf 〉-formulation are used and the results agree well with the analytical solution. No
shear stresses are present in the equivalent fluid models, only the elements based on Biot’s
theory are studied.

4) One dimensional double wall

An aluminium panel, with the thickness 2 mm, is bounded to each side of the porous
material and, at x = −L the plate is excited with a prescribed normal displacement, U ,
and the end at x = 0 is free. The velocity level difference of the plate at x = 0, and at
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Figure 4.7: Shear displacement for material 2 using, a) the 〈us,uf 〉- and b) the 〈us, pf 〉-
formulation.
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x = −L is determined. Boundary conditions:

us(−L) = U

uf (−L) = U
(4.118)

The equation of motion of the sheet at x = 0 is also needed,

−ω2mSuS = p(0) (4.119)

where mS is the sheet mass (kg/m2) and p(0) the pressure acting on the sheet from the
porous structural and fluid domain, which is given by

p(0) = −
(

P
∂us(0)

∂x
+Q

∂uf (0)

∂x
+Q

∂us(0)

∂x
+R

∂uf (0)

∂x

)

(4.120)

There are five unknowns and five equations to solve and the velocity can be determined.
The velocity level difference calculated using the implemented elements based on Biot’s
theory and the analytical solution is displayed in Figure 4.8. Three configurations includ-
ing the different materials in Table 4.2 are investigated. The velocity level difference is
accurately calculated using the implemented elements.

The equivalent fluid models are evaluated in Figure 4.9. The rigid and limp frame as-
sumption is compared with Biot’s theory. The case where the porous material is described
by Biot’s theory and the material is unbounded to the panels is also evaluated. If the
porous material is bounded to the panels, the full Biot’s description must be employed.
When the porous material is unbounded, the equivalent fluid models gives results similar
to using Biot’s theory.
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Figure 4.8: Velocity level difference using the implemented finite elements compared to
the analytical solution, for the three different materials, using a) the 〈us,uf 〉- and b) the
〈us, pf 〉-formulation.
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Figure 4.9: Velocity level difference using different descriptions of the porous sound ab-
sorbing material, a) Material 1 b) Material 2.

4.8.3 Sound transmission loss of a double wall

The sound transmission loss in a double wall lined with porous sound absorbing material,
adopting the procedure described in Paper 7, is evaluated. The double wall is considered
to be an ideal double wall, i.e. only the structural and fluid partitions of the porous
material provides the coupling between the panels. The wall is 0.5 m long and 0.3 m
high and with the distance 0.1 m between the panels. The panels are 2 mm thick and
made of aluminium. The porous material is described by Biot’s theory or an equivalent
fluid model using either a rigid frame or limp frame assumption. The porous material is
bounded to the panels and two different materials are studied: Material 1, with relatively
low structural stiffness, and Material 2, with a relatively high structural stiffness, see
Table 4.2. A study of the sound transmission loss of a multilayered structure including
porous material was studied by Panneton et. al. [84], which can be seen as the basis of the
study presented here. In [84], the panels were described by plate theory, not including the
longitudinal stiffness of the panels in the model. This stiffness is included here, modelling
the panels using 4-node shell elements, which are derived by combing a quadrilateral plate
element [85] and a membrane element with drilling degrees of freedom [86].

The sound transmission loss of the ideal double wall, when the porous material is
bounded to the panels, is displayed in Figure 4.10. Even for the low stiffness of the frame
material (Material 1), when the static stiffness of the wall is not affected, it is important
to include the structural partition of the porous material when determining the sound
transmission loss. The equivalent fluid models can not describe the behaviour of the
system.

In Figure 4.11 the ideal double wall is studied for the case of the porous material being
modelled by Biot’s theory and assumed to be bounded or unbounded to the panels and
also using the limp equivalent fluid model. It can be seen that if the porous material is
not bounded to the panels, the equivalent fluid model gives reasonable agreement with
the full Biot’s description.
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Figure 4.10: Sound transmission loss of an ideal double wall lined with porous material.
a) Material 1, b) Material 2.
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Figure 4.11: Sound transmission loss of an ideal double wall lined with porous material,
which is either bounded or unbounded to the panels, a) Material 1, b) Material 2.

4.8.4 Enclosed cavity

An enclosed cavity with one wall covered with porous absorbing material is studied, see
Figure 4.12. This problem was studied Kang et. al. [78]. The cavity is 0.6 m long and
0.4 m wide and 0.75 in depth. The porous material domain is 0.05 m wide. The cavity is
excited by a volume velocity source placed in a corner and the mean sound pressure level
is evaluated. Three different formulations for the porous material is used. It is described
by Biot’s theory or by an equivalent fluid model using either a rigid frame or limp frame
assumption. The sound pressure level calculated for Material 1 and 2, using the tree
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Figure 4.12: The enclosed cavity with one wall covered with porous material.

different formulations, is displayed in Figure 4.13. The different material descriptions
gives similar results. However, at the first cavity resonance peak for, the response level
predicted when Material 1 is modelled by Biot’s theory is much higher, compared for
the equivalent fluid models. A possible explanation of this behaviour can be achieved by
comparing the with the normal impedance displayed in Figures 4.3 and 4.4. For Material
1, the real part of the normal impedance has a low value at the first response peak.
Note that the material thickness is 0.1 m for the normal impedance calculations, whereas
the thickness is 0.05 m in the analysis presented in this section. The low real-valued
impedance is due to a structural resonance in the frame material partition which results
in that the fluid and structural partitions moves in phase with each other. The damping
provided due to the flow resistivity, which is proportional to the velocity difference of the
two partitions, is therefor low. This resonance can not be described by the equivalent
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Figure 4.13: Calculated mean sound pressure level using different formulations for the
porous material, a) Material 1, b) Material 2.
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fluid models. For Material 2, with a stiffer frame material, this resonance occurs at a
higher frequency and the equivalent fluid models can capture the behaviour of the porous
material.

4.9 Summary

The modelling of porous materials within the finite element framework was investigated.
The governing equations and the finite element formulation of these equations were de-
scribed. Different material descriptions was implemented and compared to analytical
solutions for a number of one-dimensional problems. Two three-dimensional problems
were also investigated to evaluate which porous material model to be used. The porous
material descriptions are employed in the included papers.
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A strategy for modal reduction of structure-acoustic

systems

Göran Sandberg, Peter Davidsson
Division of Structural Mechanics, Lund University, Sweden

Abstract

A strategy for choosing a modal basis for the reduction of structure-acoustic systems based
on the finite element method is investigated. The coupled system is set up using a dis-
placement formulation in the structural domain and a pressure formulation in the fluid
domain, resulting in an unsymmetrical system. This system is reduced by the structural
and fluid normal modes, which are derived in separate eigenvalue analyses of the two do-
mains. The paper emphasises the need to include a large number of normal modes in the
reduction for proper description of the coupled problem and therefor proposes a method for
choosing which of these structural and fluid modes to include in the reduced model. This
is performed by evaluating the characteristics of the coupling between the normal modes
of the two domains. The structural and fluid modes with strong coupling that depends
on similarity in the natural frequencies or similarity in the mode shapes are included in
the reduction. This enables the structure-acoustic system to be described accurately using
a very limited number of structural and fluid modes. A numerical example is given for
verifying the method proposed.

1 Introduction

The coupled problem of a flexible structure interacting with an acoustic fluid is of interest
in many fields of engineering. It can concern a fluid-filled tank exposed to an earthquake
or the noise level due to structural vibrations in a vehicle compartment. Many different
formulations for describing the structure-acoustic problem have been proposed [1, 2, 3, 4].
In the present paper the primary variable in the structural domain is the displacement
and in the fluid domain the acoustic pressure. Using a finite element formulation gives an
unsymmetrical system of equations, the lack of symmetry being due to the coupling terms
between the structural and the fluid subdomains.
Problems involving fluid-structure interaction typically generate very large systems of equa-
tions. In performing modal analysis, the system can be reduced by using the structural
and fluid normal modes derived in separate eigenvalue analyses of the two domains [5, 6].
These modes are in this paper referred to as subdomain modes and the normal modes of
the coupled structure-acoustic system are referred to as the coupled modes. The coupled
modes are dominated by either the structure or the fluid, each subdomain mode providing

1
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a corresponding coupled mode. The system can be made symmetric by matrix transfor-
mations [7, 8, 9].
The need for only including a selected portion of the subdomain modes in the reduction of
the coupled problem was stated in [5]. In [10] a possible way of choosing these structural
and fluid modes was outlined.
In the present paper, a set of basis vectors is derived for each domain by including those
of the subdomain modes that are of most importance in describing the coupled structure-
acoustic system. In [11], a similar procedure was used to determine which modes are of
importance for the interior noise in a vehicle. By including only the important modes in the
reduction of the coupled problem, the size of the system of equations can be reduced further.
The paper elaborates on the importance of a correct choice of modal basis in structure-
acoustic calculations and obtaining a proper understanding of the coupling phenomena
which links the two domains.
A numerical example is presented based on the work described in [12] where the structure-
acoustic behaviour of an aircraft fuselage was studied.

2 Finite element analysis

The structure-acoustic problem with a flexible structure in contact with an enclosed acous-
tic fluid involves one differential equation describing the structure, typically from plate or
shell theory, and one describing the fluid, the acoustic wave equation. The fluid domain
is assumed to be both inviscid and irrotational and the motions involved are small. A
finite element formulation of the governing equations gives the equations of motion for the
structural domain

MSd̈S +KSdS = fb + fF (1)

where dS denotes the nodal displacements,MS andKS are the structural mass and stiffness
matrices. fb includes the external forces and fF is the force vector describing the coupling
to the fluid domain. For the fluid domain

MF p̈F +KFpF = fq + fS (2)

where pF denotes the nodal pressures,MF andKF are the fluid mass and stiffness matrices.
fq includes the added mass term and fS the force vector describing the coupling to the
structural domain. For a further account of the system matrices, see [7].
The coupling between the domains is, as mentioned, described by the boundary force terms,
the structure is subjected to a force at the boundary between the domains, ∂ΩSF , due to
the fluid pressure

fF =
∫

∂ΩSF

NT
SpFndS (3)

where n = [nx ny nz]
T is the boundary surface normal vector pointing outward from the

fluid domain and NS denotes the structural shape functions. The force acting on the fluid
due to displacement of the structure can be derived from the boundary term

fS = c2
0

∫

∂ΩSF

NT
Fn

T∇pFdS (4)

2
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where ∇ = [∂/∂x ∂/∂y ∂/∂z]T , NF contains the fluid shape functions and c0 is the speed
of sound in the fluid. At the connecting boundary the movement of the two domains
in the normal direction is equal, uSn|S = uFn|S. Using the relation between pressure
and acceleration in the fluid domain enables the force acting on the fluid due to structural
movement to be written in terms of structural acceleration. The component of the pressure
gradient at the interface boundary, ∂ΩSF , in the direction of the normal vector n can be
expressed

nT∇pF |∂ΩSF
= −ρ0nT ∂

2uF

∂t2
|∂ΩSF

= −ρ0nT ∂
2uS

∂t2
|∂ΩSF

= −ρ0nTNSd̈S|∂ΩSF
(5)

where ρ0 is the fluid density. In the final step the structural accelerations are approximated
by a finite element formulation. Using this to express fS gives

fS = −ρ0c20
∫

∂ΩSF

NT
Fn

TNSdSd̈S = −ρ0c20HT
SF d̈S (6)

The spatial coupling matrix HSF that is introduced can also be used to describe fF

fF =
∫

∂ΩSF

NT
SnNFdSpF = HSFpF (7)

Equations (1) and (2) can now be written in matrix form to yield the system of equations
describing the structure-acoustic problem

[

MS 0

ρ0c
2

0
HT

SF MF

] [

d̈S

p̈F

]

+

[

KS −HSF

0 KF

] [

dS

pF

]

=

[

fb
fq

]

(8)

The matrix HSF makes the system matrices unsymmetrical and therefore both the left and
right eigenvectors need to be calculated in order to diagonalise the system. A procedure
for establishing a reduced symmetric system of equations has been described in a previous
paper [7]. The normal modes of the subdomains are first calculated and are normalised
according to

ΦT
SMSΦS = IS ΦT

SKSΦS = ΛS

ΦT
FMFΦF = IF ΦT

FKFΦF = ΛF

(9)

where ΦS and ΦF are the normal modes of the structural and the fluid domain and ΛS and
ΛF contain the corresponding eigenvalues of the two domains in the diagonal. Introducing
the change of base

[

dS

pF

]

=

[

ΦS 0

0 ΦF

] [

ξS

ξF

]

(10)

the coupled system in equation (8) can be reformulated, according to the procedure in [7],
to arrive at a reduced symmetric system

[

ζ̈S

ζ̈F

]

+

[

ΛS −
√
ρc2
√
ΛSΦ

T
SHSFΦF

−
√
ρc2ΦT

FH
T
SFΦS

√
ΛS ΛF + ρc2ΦT

FH
T
SFΦSΦ

T
SHSFΦF

] [

ζS

ζF

]

=

[ √
ρc2
√
ΛSΦ

T
S fb

ΦT
F fq − ρc2ΦT

FH
T
SFΦSΦ

T
S fb

]

(11)

which gives the right eigenvectors. Setting up a system with the transposed system matrices
gives the left eigenvectors.

3
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3 Choosing subdomain modes.

In the change of base in equation (10), the number of structural and fluid modes included
can become very large. The motion at the boundary for a certain subdomain mode of one
of the domains must be captured by the included modes of the opposite domain. That
is, the static behaviour due to the loading from a mode of the opposite domain must be
described correctly. Having, as for a typical low frequency structure-acoustic problem,
much smaller wave lengths of the structural domain than for the fluid domain, this leads
to that high frequency modes of the fluid domain must be included to capture the pressure
distribution at the boundary interface. In opposite, the pressure distribution can excite
structural modes with high natural frequency.
In this section, a method for using information about the coupling between the structural
and fluid normal modes to determine which of these modes are important in describing the
coupled problem and to only include them in equation (10).
For a principal discussion of the structure–acoustic problem, an illustrative example prob-
lem, being a simply supported plate in contact with an acoustic cavity, is investigated. A
similar discussion can be found in Refs. [4, pp. 14-18 ]) and [13, pp. 252-256 ]. Only
the structural normal mode, ψS1, and fluid normal mode, ψF1, with the lowest (non-zero)
natural frequencies (see Figure 1), are included in the analysis. These natural frequencies
are denoted fS1 and fF1, respectively. The coupling between the two domains is given by
the spatial coupling coefficient C11,

C11 =
∫

∂ΩSF

ψS1(x, y)ψF1(x, y)dS = ΦT
S1HSFΦF1 (12)

where the finite element approximation of the modes is introduced in the last step.
For the studied problem, the natural frequencies of the coupled problem, fc1 and fc2, are
calculated while varying the coupling coefficient, C11 in equation (12) and the natural
frequency of the structural domain fS1, see Figure 2. C11 is varied by changing the area
of the boundary, ∂ΩSF , with acoustical coupling between the two domains. The natural
frequency of the fluid domain fF1 is held constant. The coupled natural frequencies are
affected by the strength in mode shape coupling and are more sensitive to changes in the
coupling strength when the natural frequencies of the subdomain modes are of similar
magnitude.
From this brief discussion it can be concluded that when using the normal modes, calculated
for the structural and fluid domains separately, in the reduction of the coupled problem, the

Figure 1: A flexible panel backed by an acoustic cavity is studied. The two subdomain
normal modes, with the lowest (non-zero) natural frequencies, are displayed. The figure
shows the displacement shape of the structural domain and the pressure distribution in the
fluid domain.

4
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Figure 2: Natural frequencies, fc, of the coupled structure-acoustic problem with two de-
grees of freedom when varying the coupling strength. The calculated natural frequencies are
normalised by the natural frequency of the fluid domain, fF1, which is held constant. C

max
11

is calculated with the whole interface area, ∂ΩSF , coupled.

similarity between the natural frequencies, fSi and fFj, as well as strength of the coupling
Cij, determine the influence of each of these modes on the coupled modes.
To determine which of the structural and fluid modes are strongly coupled, the following
expression is used

Bij =
ΦT

SiHSFΦFj

ω2Si − ω2Fj

(13)

The numerator corresponds to the coefficient Cij in equation (12). In the denominator,
natural frequencies of the i’th structural mode and the j’th fluid mode are introduced,
similar frequencies giving a value of denominator close to zero. This expression allows the
coupling between the structural domain and the fluid domain to be determined creating
the possibility of choosing the most important subdomain modes to include in the reduced
coupled problem. Equation (13) was used in [11] to determine which structural and fluid
modes participate in generating vehicle interior noise. Similarity in the mode shapes and
similarity in the natural frequencies gives a large value for Bij, the corresponding modes
being included in the coupled analysis. The following variables are defined, see also Figure
3:

ΦS denotes all available structural modes. nS being the number of
these modes
ΦF denotes all available fluid modes. nF being the number of
these modes

Φ̂S = {ΦSi ∈ ΦS;ωSi ≤ ω̂}
Φ̂F = {ΦFi ∈ ΦF ;ωFi ≤ ω̂}

where ω̂ = 2πf̂ and f̂ is the maximum frequency of interest.
The scheme for choosing which subdomain modes to include in the analysis is as follows:

1. Perform modal analyses of the structural and fluid domains separately, calculating
ΦS and ΦF .

5
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Figure 3: Natural frequencies of the two domains plotted against the mode number. Uncou-
pled modes of the two domains are compared using equation (13) and the most important
modes to describe the coupled system can be included in the reduced coupled analysis, equa-
tion (11).

2. On the basis of the maximum frequency of interest, f̂ , determine Φ̂S and Φ̂F . All of
these modes are included in the reduction of the coupled problem.

3. Determine the coupling between Φ̂S and ΦF using equation (13). A number ncoup

of fluid modes with the strongest coupling for each structural mode is determined.
These fluid modes above the frequency range of interest are also included in the
reduction, see Figure 3. The effect of the value of ncoup is studied in the numerical
example.

4. Use the same method for the fluid modes Φ̂F comparing them with ΦS for determin-
ing which structural modes above the frequency range of interest should be included
in the reduction.

5. Perform the reduced coupled modal analysis, based on equation (11), using the struc-
tural and fluid modes chosen.

Because all the modes below the frequency limit f̂ are included the numerator has only
a small effect on the choice of modes in the upper frequency range, assuming that the
condition ωSi À ωFj or ωSi ¿ ωFj is satisfied. Instead of using equation (13) a simplified
expression

B̂ij = Φ
T
SiHSFΦFj (14)

in which only the similarity in mode shapes is calculated, can be used to determine the
modes to include in the analysis. These two methods, method I represented by equation
(13) and method II represented by equation (14), are evaluated in the numerical example
in the next section.

4 Numerical example

In this section the two methods for choosing the subdomain modes described above are
evaluated and the number of these modes needed for describing the coupled system is
examined.

6
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Table 1: Material data for the body.

Steel: E = 210 GPa
ν = 0.30

ρ = 7800 kg/m3

Aluminum: E = 70 GPa
ν = 0.30

ρ = 2700 kg/m3

Air: ρ = 1.21 kg/m3

c = 340 m/s.

4.1 Model

A simple three-dimensional body is analysed, Figure 4. The model employed is based on
[12], in which numerical and experimental work was performed. It involves a cylindrical
steel shell 1.2 mm thick with a 0.183 m radius. The length of the cylinder is 1.01 m and
circular aluminum plates 25.4 mm thick are attached to the ends. The material properties
are listed in Table 1 and the number of degrees of freedom for the domains being shown in
Table 2. Eigenvalue analysis of the fluid domain and the structural domain is performed
using MSC/Nastran [14] and the coupled modal analysis in Matlab/CALFEM [15, 16]. The
results are compared with a direct solution of the coupled problem using MSC/Nastran.
The total number of subdomain modes needed to describe the coupled system is evaluated.

Table 2: Finite element model data.

Domain Degrees of freedom
Structure 4620
Acoustic fluid 2465
Total 7085

Figure 4: Finite element model of the three-dimensional body.

7
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The methods described for choosing modes are studied by varying the number of subdomain
modes with strong coupling that are included, i.e. the number ncoup. The mode shapes
calculated, Φreduced, are compared with the modes obtained in solving the total system,
Φtotal, using the expression

κ =
ΦT

reduced ·Φtotal

|Φreduced| · |Φtotal|
(15)

The value of κ is between 0 to 1 where 1 represents exact agreement between the modes
that are compared.

4.2 Coupled analysis without choosing modes

The effect of the number of structural modes, nS, and fluid modes, nF , included in the
analysis is shown in Figure 5. The maximum frequency of interest is set to 500 Hz , the
similarity of the eigenvectors of the reduced model and the total model, κ, being plotted
for the 22 coupled modes with natural frequency below this value. Four cases are shown
in the Figure, differing in the number of structural and fluid modes included, namely: 1)
all structural and fluid modes up to 1.2 times the highest frequency of interest, which
gives nS = 39, nF = 9 (◦); 2) nS = 100, nF = 200 (∗); 3) nS = 200, nF = 500 (4); 4)
nS = 500, nF = 1000 (×). The similarity in mode shapes is plotted for the structural and
fluid parts of the coupled eigenvectors separately. For the structural part of the mode, the
shape is accurate for those modes dominated by the structure. In contrast, modes 1 and
12 are dominated by the fluid. Thus, a large number of structural modes are needed to
describe the behaviour of the coupled modes. The same is true for the fluid domain, where
the modes dominated by the fluid are represented accurately. From this it is obvious that
many of the subdomain modes do not contribute to the coupled solution and can thus
be sorted out. When the 22 lowest coupled modes are calculated, based on originally 500
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Mode number

κ

Mode similarity − structural domain
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Figure 5: Similarity between modes in the reduced model and in the total model: a) struc-
tural part, b) fluid part. Modes included: nS = 39, nF = 9, all subdomain modes with a
natural frequency of up to 600 Hz (◦); nS = 100, nF = 200 (∗); nS = 200, nF = 500 (4);
nS = 500, nF = 1000 (×)
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structural modes and 1000 fluid modes, the minimum values are κ = 0.997 for the structure
and κ = 0.964 for the fluid.

4.3 Proposed method

The methods for selecting modes are evaluated by making selections from the 500 structural
modes, ΦS, and the 1000 fluid modes, ΦF , that are lowest. Since the highest frequency of
interest is 500 Hz, Φ̂S represents the 26 lowest structural modes (including 6 zero-modes).
Φ̂F represents the 3 lowest fluid modes (including one zero-mode).
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Figure 6: Method I (equation 13). Similarity between modes in the reduced model and in
the total model: Solid line - structural domain. Dashed line - fluid domain. 4 - minimum
value of κ, 3 - mean value of κ.
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Figure 7: Method I (equation 13). Number of modes from the subdomains included: 3 -
structural domain, 4 - fluid domain, 2 - Total number.
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Figure 6 displays the similarity in mode shapes for each domain as obtained for method
I when ncoup, according to the suggested scheme, is increased from one to twenty. The
mean and the minimum value of κ for the first 22 coupled modes (below 500 Hz) are
displayed for the structural and the fluid part of the coupled eigenvector separately. The
horizontal dotted lines denote κ for the structural and fluid domains, obtained when all
500 structural and 1000 fluid modes are included. In Figure 7, the corresponding number
of subdomain modes included in the coupled analysis is plotted. The results for method
II are displayed in Figures 8 and 9. Note that all the modes below 500 Hz from each
subdomain are included in the coupled analysis. The first method provides very close
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Figure 8: Method II (equation 14). Similarity between modes in the reduced model and in
the total model: Solid line - structural domain. Dashed line - fluid domain. 4 - minimum
value of κ, 3 - mean value of κ.
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Figure 9: Method II (equation 14). Number of modes from the subdomains included: 3 -
structural domain, 4 - fluid domain, 2 - Total number.
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agreement for ncoup = 11, where 236 subdomain modes (42 structural and 194 fluid modes)
are included in the coupled analysis. The number of degrees of freedom for the coupled
system is thus reduced from 7085 to 236, with very high accuracy being maintained. The
eigenvalue problem is also of a standard symmetric form which makes it easy to solve.
The second method which uses a simpler method, also yields good results, but since the
frequency dependence is neglected a less smooth curve of convergence is obtained.

5 Conclusions

A structure-acoustic system is analysed using a strategy for substructuring and reducing
the coupled problem by the structural and the fluid normal modes derived in separate
analyses. Since a large number of modes from the subdomains is needed to describe the
coupled system, a method for choosing the structural and the fluid normal modes that
contribute most strongly to a description of the coupled problem in the frequency range of
interest is studied. The paper proposes two methods which are similar, Method I involves
selecting the subdomain modes on the basis of strong coupling using resemblance in terms
both of natural frequency and of mode shapes. Method II involves determining the most
important subdomain modes on the basis of the similarity in mode shapes only. The
numerical example shows Method I to give the best results. That method allows the
coupled system to be reduced from 7085 to 236 degrees of freedom, with only a small loss
of accuracy. Comparing the results for the reduced system using a selected set of modes
with those obtained using all the modes available shows the results to be almost identical.
For the case analysed here the number of modes included is reduced from 1500 to 236.
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Reduction of structure-acoustic systems that include

hysteretic damping

Peter Davidsson, Göran Sandberg
Division of Structural Mechanics, Lund University, Sweden

Abstract

The structure-acoustic fluid problem is studied by use of the finite element method. In
a previous paper the unsymmetrical system obtained by use of a pressure formulation
for the fluid domain was reduced by use of the uncoupled modes of the structural and
the fluid domain and was transformed into a symmetric standard eigenvalue problem. In
the present paper the possibility of including hysteretic damping in this transformation,
resulting in a complex-valued symmetric standard eigenvalue problem, is described. This
provides a simple method for including damping in the frequency response analysis of
structure-acoustic problems.

1 Introduction

In structure-acoustic finite element analysis the number of degrees of freedom can easily
becomes very large. The element size needs to be small enough for the model to be able
to describe the dynamic behaviour of the system below the frequency limit of interest.
In [1, 2], the size of the problem is reduced by sub-structuring of the coupled problem
followed by modal reduction of it. The normal modes of the structural domain and of
the fluid domain are calculated separately, the coupled system then being reduced by use
of these modes. After matrix scaling, the symmetric standard eigenvalue problem can be
solved.
Damping is of considerable importance in the dynamic behaviour of the system and needs
to be accounted for in the structure-acoustic analysis. This is a very complex phenomena
and advanced models must be used in the description of typical damping materials, for
example, rubber, see [3, 4] or porous sound absorbtion material, see [5, 6]. In these models,
a large number of material parameters are needed and in a frequency response analysis,
the frequency dependance in the parameters leads to that the system matrices must be
generated in each frequency step. The normal mode approach, which arrive at an uncoupled
system of equations, can not be used. However, at certain circumstances, for example,
when determining the effect of structural modifications on the sound pressure level in the
compartment in the early design process of a vehicle, a rough description of the damping
is often adopted.
The reduction of the coupled system is performed here including hysteretic damping in both
the structural and the fluid domain. This provides an averaged measure of the damping
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in each domain by use of two damping factors, ηS and ηF , both of them independent of
frequency. The modal analysis of the damped coupled problem yields complex eigenvalues
and eigenvectors. These eigenmodes can then be used in a modal frequency response
analysis.
The ability of this approach is investigated in predicting the sound transmission loss in a
flexible panel coupled to an acoustic cavity.

2 Sub-structuring and reduction

The damping is included at a constitutive level in the structural domain as a complex
modulus of elasticity

ẼS = (1 + iηS)ES (1)

and in the fluid domain a complex bulk modulus

B̃0 = (1 + iηF )B0 (2)

After finite element formulation has been performed the coupled structure-acoustic system
can be described by an unsymmetrical equation system using a displacement formulation for
the structural domain and a pressure formulation for the fluid domain, The displacements
are denoted dF and the pressure pF . Harmonic motion is assumed

[

dF

pF

]

=

[

d̂F

p̂F

]

eiωt (3)

where i =
√
−1, ω is the angular frequency and t denotes time. With the time dependency

suppressed the system of equations becomes

(

−ω2

[

MS 0

ρc2HT
SF MF

]

+

[

K̃S −HSF

0 K̃F

]) [

d̂F

p̂F

]

=

[

f̂b

f̂q

]

(4)

where
K̃S = (1 + iηS)KS; K̃F = (1 + iηF )KF (5)

are the complex stiffness matrices, which means an imaginary part due to damping being
included in the structural and fluid stiffness matrices. MS andMF are the mass matrices
and HSF describes the spatial coupling between the two domains. The right hand side of
the equation describes the amplitude of the harmonic external forces acting on the system.
The aim is now to calculate the eigenvalues, Λ̃, and the left and right eigenvectors,ṽL

and ṽR, of the coupled system in order to end up with a diagonal equation system in the
frequency domain, i.e.

ṽT
L

[

MS 0

ρc2HT
SF MF

]

ṽR = I

ṽT
L

[

K̃S −HSF

0 K̃F

]

ṽR = Λ̃

(6)

where I is an identity matrix and Λ̃ contains the eigenvalues of the coupled system in
the diagonal. The coupled system is solved by first a reduction through use of uncoupled
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modes of the structural and fluid domains. The two domains are analysed separately [1].
When hysteretic damping is included, this gives

ΦT
SMSΦS = IS ΦT

SK̃SΦS = Λ̃S

ΦT
FMFΦF = IF ΦT

F K̃FΦF = Λ̃F

(7)

where the eigenvectorsΦS andΦF are real and the eigenvalues of the two domains diag(Λ̃S)
and diag(Λ̃F ) are complex. By introducing the change of base

[

d̂F

p̂F

]

=

[

ΦS 0

0 ΦF

] [

ξ̂S

ξ̂F

]

(8)

in equation (4) and through matrix scaling of the reduced problem, a symmetric standard
eigenvalue problem is obtained





Λ̃S −
√
ρc2

√

Λ̃SΦ
T
SHSFΦF

−
√
ρc2ΦT

FH
T
SFΦS

√

Λ̃S ΛF + ρc2ΦT
FH

T
SFΦSΦ

T
SHSFΦF





[

ζ̂S

ζ̂F

]

R

= Λ̃

[

ζ̂S

ζ̂F

]

R

(9)

Λ̃ now contains n eigenvalues of the coupled system in the diagonal where n is the total
number of structural and fluid eigenvectors used in reduction of the coupled system. This
system gives the eigenvalues and the right eigenvectors expressed in terms of the trans-
formed coordinates. In terms of the original coordinates the right eigenvectors become

ṽR =

[

ΦS 0
0 ΦF

]







(√
ρc2

√

Λ̃S

)

−1

0

0 IF







[

ζ̂S

ζ̂F

]

R

(10)

For the left system, the coupled system matrices are transposed prior to reduction, i.e.

ṽT
L

[

K̃S −HSF

0 K̃F

]

= λ̃ṽT
L

[

MS 0

ρc2HT
SF MF

]

⇔

[

K̃S −HSF

0 K̃F

]T

ṽL = λ̃

[

MS 0

ρc2HT
SF MF

]T

ṽL

(11)

The system matrices MS, K̃S, MF and K̃F are symmetric and the standard eigenvalue
problem that yields the left eigenvectors can be written as





Λ̃S + ρc2ΦT
SHSFΦFΦ

T
FH

T
SFΦS −

√
ρc2ΦT

SHSFΦF

√

Λ̃F

−
√
ρc2

√

Λ̃FΦ
T
FH

T
SFΦS Λ̃F





[

ζ̂S

ζ̂F

]

L

= Λ̃

[

ζ̂S

ζ̂F

]

L

. (12)

In terms of the original coordinates the left eigenvectors become

ṽL =

[

ΦS 0
0 ΦF

]







IS 0

0
(√

ρc2

√

Λ̃F

)

−1







[

ζ̂S

ζ̂F

]

L

(13)
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Figure 1: A flexible panel backed by an acoustic cavity is studied.

Introducing the change of base with the right eigenvectors

[

d̂F

p̂F

]

= ṽRξ̂ (14)

in equation (4) and multiplying with the left eigenvectors ṽL from the left gives the reduced
system of equations

(−ω̄2I+ Λ̃)ξ̂ = ṽT
L

[

f̂b

f̂q

]

(15)

A system of uncoupled equations describing the structure-acoustic problem including hys-
teretic damping is achieved.

3 Numerical example

The numerical part of the analysis was performed in Matlab using the finite element toolbox
CALFEM [7]. An aluminium panel of 3 mm in thickness behind which a rectangular
acoustic cavity is located has been analysed, see Fig. 1. The panel is 0.60 m long and 0.40
m wide. The air filled cavity is 2.1 m in depth. All the walls of the cavity except for the
panel are rigid. The material data is given in Tab. 1.
A normal incident pressure wave in the frequency range of 1-700 Hz impinges on the outside
of the panel. The sound transmission loss is measured between the outside and inside of the
midpoint of the panel. The structural domain is described in use of 4-node quadrilateral
plate elements derived in [8], and for the acoustic domain 8-node isoparametric elements
with pressure formulation are used, see [2]. The analysis, which involves 910 degrees-of-
freedom follows the steps described in the previous section. The sound transmission loss

Table 1: Material data for the panel and cavity.

Aluminum: E = 70 GPa
ν = 0.30

ρ = 2700 kg/m3

Air: ρ = 1.21 kg/m3

c = 340 m/s.
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Figure 2: Sound transmission loss 2010log p̂0

p̂back

. a) The damping in the fluid domain is

varied, b) the damping in the structural domain is varied.

when the damping factors for the two domains are varied is plotted in Fig. 2. It can
be concluded which subdomain dominate the behaviour at each transmission peak. For
example, the first transmission peak, at 70 Hz, is dominated by a structural mode and
increasing the structural damping increases the sound transmission loss. However, varying
the damping in the fluid domain has little effect at this peak. The opposite behaviour can
be seen at the second transmission peak, at 90 Hz, which is dominated by the fluid domain.
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4 Conclusions

The reduction of a structure-acoustic system presented earlier [1] is conducted here with
inclusion of hysteretic damping in both the structural and the fluid domain. The reduction
of the coupled problem can be performed as in the undamped case, except that the damping
introduces complex arithmetics that yields imaginary parts for both the eigenvalues and the
eigenvectors. Although the description of the damping this provides is very much simplified
it is efficient from an engineering point of view since accurate estimates of damping are
often difficult to obtain. The proposed method can for example be used in the early
design stage when detailed properties of the system is not known. The simplified damping
description can be used to evaluate in which domain the effort must be put to reduce a
certain response peak.
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Substructuring and modal reduction of finite element

formulated poroelastic systems

Peter Davidsson, Göran Sandberg
Division of Structural Mechanics, Lund University, Sweden

Abstract

A method, using substructuring and modal reduction, is proposed for the finite element
analysis of the dynamic behaviour of porous sound absorption material bounded to a flexi-
ble structure; the porous material is described by Biot’s theory. The system is divided into
three physical subdomains: the flexible structural domain, and the structural and fluid
partitions of the porous material. The interface modes, studying the structural subdo-
mains in vacuo, are derived to fulfil the displacement continuity between the subdomains.
These modes are used, together with a set of fixed interface normal modes for each of the
subdomains, to describe the total system.

1 Introduction

The accurate description of porous absorption material, and its interaction with a flexible
structure, is very important when studying various acoustical applications. For example,
in attempting to improve passenger comfort regarding interior noise in vehicles, a very
detailed description of the acoustic cavity (the compartment) and its boundaries – which
can incorporate absorption material – are needed. Another example is the description
of absorption material inside wall cavities when investigating sound transmission loss in
lightweight double walls.
Porous sound absorption material can be modelled using Biot’s theory [1, 2], in which the
material is divided into two partitions: the structural partition, being the flexible frame
material, and the fluid partition, being the fluid in the open pores. Both these partitions
are described by the equations of continuum mechanics. The two partitions are coupled
through Biot’s stress–strain relationships, viscous forces and inertial forces. This problem
has been studied within the finite element environment using displacement formulation
in both partitions, a 〈us,uf〉 formulation [3, 4, 5], or by a mixed displacement pressure
formulation, a 〈us, pf〉 formulation [6, 7, 8]. Depending on the properties of the structural
frame of the porous material, the modelling of the porous material can be simplified to
that of an equivalent fluid. This is done by assuming the frame to be either rigid [2] or
limp [9]. In this paper it is assumed that the flexibility of the structural frame must be
included in the description. Biot’s theory together with displacement formulation for both
the structural and the fluid partition is used.
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The poroelastic problem has been studied using a reduced base, starting from the 〈us, pf〉
formulation [10, 11]. The system matrices are complex and frequency dependent, which
implies that a set of normal modes that uncouple the equations of motion cannot easily be
derived. The analysis can be sped up, however, by deriving a set of basis vectors that can
reduce the size of the equation system to be solved.
An efficient and widely used method for model reduction is the component mode synthesis
(CMS) method [12]. In this method the studied problem domain is divided into a number
of components, or subdomains, and a set of basis vectors is derived for each subdomain
describing its behaviour as well as its coupling to the other subdomains. The degrees of
freedom for each subdomain can be divided into interface and internal degrees of free-
dom. The interface degrees of freedom ensure that continuity of displacement between the
subdomains is accomplished. Two main methods are used to calculate the basis vectors,
either using fixed interface modes or free interface modes [13]. The present study uses
the fixed interface method, where the set of basis vectors for each domain contains the
constraint modes, calculated by applying a unit displacement at each interface degree of
freedom while keeping the other interface degrees of freedom fixed, and the normal modes,
calculated with the interface degrees of freedom fixed. Assembling the system using only
the constraint modes, i.e. only retaining the interface degrees of freedom, and solving the
eigenvalue problem of this system, allows the interface modes to be calculated [14, 15].
These modes give an efficient description of the displacement continuity, especially when
a large number of interface degrees of freedom are present.
In this paper the studied system is divided into three physical subdomains: the flexible
structural domain, and the two partitions of the porous material (being the structural
and fluid partitions of this material). Each domain is described by the interface modes
fulfilling the displacement continuity between the domains and by the fixed interface normal
modes. The interface modes are derived by studying the structure in vacuo, i.e. the flexible
structure and structural partition of the porous material. The fluid partition is not included
in this analysis, but the interface vectors are also used in order to fulfil the displacement
continuity between the flexible structure and the fluid partition of the porous material.
For the porous material, the fixed interface normal modes are calculated for the structural
and fluid partitions by solving the eigenvalue problems of the two partitions separately,
ignoring the coupling terms in Biot’s theory. For the fluid partition, reduced integration
and projection of the mass matrix is used to remove spurious non-zero modes [16, 17]. By
using this procedure, all purely rotational modes will have the eigenvalue zero. The normal
modes can be used as a reduced base for the poroelastic problem. However, due to the
viscous and inertial coupling terms in Biot’s theory, all purely rotational fluid modes must
be included. This could lead to numerical problems and is moreover inefficient, because
a large number of modes must be included. Instead, a number of modes having non-zero
eigenvalues from both the structural and fluid partitions are combined into a set of basis
vectors describing the fluid partition. This ensures that the rotational motion in the fluid
partition induced by motion in the structural partition can be described correctly.
This method, that divides the system into physical subdomains, enables a large part of the
analysis to be performed at the subdomain level before generating the total system. This
aims at both faster computational times and increasing the frequency of interest.
The paper is organised as follows: After the introduction, the governing equations of Biot’s
theory are described and the finite element formulation of the problem is given. Then the
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proposed method for substructuring and reduction is described. This is followed by a
numerical example, where a porous material, bounded to a flexible panel, is excited by
pressure distributions simulating the porous material being in contact with an acoustic
cavity. The paper ends with a discussion and conclusions.

2 Method

2.1 Biot’s theory

The porous material is described by Biot’s theory, which includes sound propagation in both
the flexible frame (the structural partition), and the fluid in the pores (the fluid partition).
Both partitions are described using continuum mechanics and are coupled through volume
preserving (dilatational), inertial and viscous coupling terms. The description of Biot’s
theory is based on the derivation in [2], and the matrix notation used to write the equations
for easy implementation in the finite element analysis follows the example of [18].
The equations of motion in the frequency domain for a porous material without any body
forces can be written, for the structural partition

∇̃
T
σs = −ω2(ρ̃11us + ρ̃12uf ) (1)

and for the fluid partition

∇̃
T
σf = −ω2(ρ̃22uf + ρ̃12us) (2)

where ω = 2πf is the angular frequency (f is the frequency in Hz); the stress–strain
relationship according to Biot’s theory can be written in matrix notation, for the structural
partition

σs = Dsεs +Qεf (3)

and for the fluid partition
σf = QTεs +Dfεf (4)

The stress and strain components in the three-dimensional partitions are

σi =





















σi
11

σi
22

σi
33

σi
12

σi
13

σi
23





















; εi =





















εi
11

εi
22

εi
33

γi
12

γi
13

γi
23





















(5)

where i = {s, f} denotes the structural and fluid partitions. The displacements in the
structural and fluid partitions are denoted

ui =







ui
1

ui
2

ui
3





 (6)
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and the matrix differential operator is

∇̃ =













































∂

∂x1
0 0

0
∂

∂x2
0

0 0
∂

∂x3
∂

∂x2

∂

∂x1
0

∂

∂x3
0

∂

∂x1

0
∂

∂x3

∂

∂x2













































(7)

The constitutive matrices Ds and Df and the coupling matrix Q are given by

Ds =





















P P − 2Gs P − 2Gs 0 0 0
P − 2Gs P P − 2Gs 0 0 0
P − 2Gs P − 2Gs P 0 0 0

0 0 0 Gs 0 0
0 0 0 0 Gs 0
0 0 0 0 0 Gs





















Df = R





















1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















; Q = Q





















1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





















(8)

where Gs is the shear modulus of the frame material related to the modulus of elasticity,
Es, and Poisson’s ratio, νs. P and R are the bulk modulus of the structural and fluid
partitions, respectively. The bulk modulus, P , of the structural partition can be expressed

P =
4

3
Gs +Kb +

(1− φ)2

φ
Kf (9)

and the bulk modulus, R, of the fluid partition

R = φKf (10)

The dilatational coupling coefficient, Q, is given by

Q = (1− φ)Kf (11)

The bulk modulus of the frame in vacuo is determined from

Kb =
2Gs(νs + 1)

3(1− 2νs)
(12)
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and the frequency-dependent bulk modulus of the fluid

Kf (ω) =
γP0

γ − (γ − 1)
[

1 + σ′φ
i Pr ωρ0α∞

G′

J(Pr ω)
]

−1
(13)

where i =
√
−1 and

G′

J(Pr ω) =

[

1 +
4iα2

∞
ηρ0ω Pr

σ′2Λ′2φ2

]1/2

(14)

which is related to the thermal losses in the fluid to the solid frame. The material param-
eters for air, used in the description of the porous material, are density, ρ0, mean pressure,
P0, viscosity, η, and the ratio between specific heat of unit mass at constant pressure and
constant volume, γ. Pr denotes the Prandtl number. The values of these parameters
for air, at the temperature 18◦C, are given in Table 1. The porous material parameters
depending on the geometry of the material are porosity, φ, flow resistivity, σ, tortuosity,
α∞, viscous characteristic length, Λ, and thermal characteristic length, Λ′. These material
parameters are described in detail in [2] and are presented for the studied porous material
in Table 1. The complex and frequency-dependent densities are

ρ̃11 = ρs + ρa − iσφ2
GJ(ω)

ω

ρ̃12 = −ρa + iσφ2
GJ(ω)

ω

ρ̃22 = φρ0 + ρa − iσφ2
GJ(ω)

ω

(15)

where ρs is the structural density. These densities includes the inertial and viscous coupling
between the structural and fluid partitions. GJ(ω) is related to the viscous losses and is
given by

GJ(ω) =

[

1 +
4iα2

∞
ηρ0ω

σ2Λ2φ2

]1/2

(16)

2.2 Boundary conditions

The conditions at the boundary between the flexible structure and the porous material
bounded to the structure are

us = uS

ufn = uSn

(17)

where n denotes a boundary normal vector pointing outward from the porous material
domain. The subscript, S, denotes the flexible structure, and s and f , denote the structural
and fluid partitions of the porous material,respectively.
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2.3 Finite element formulation

A flexible structure can be described using the finite element method by the system of
equations

(

−ω2MS +KS

)

dS = fbS (18)

where dS contains the structural displacements, MS and KS are the mass and stiffness
matrices and fbS is the force vector.
For the porous material, by multiplying equations (1) and (2) by the weight functions, vs
and vf , and integrating the results over region Ω, the weak formulation of the poroelastic
problem can be derived. The next step is to introduce the finite element approximations
of the structural and fluid displacements and the weight functions

us = Nsds; uf = Nfdf

vs = Nscs; vf = Nfcf

(19)

where ds and df are the finite element displacements and Ns and Nf are the shape func-
tions. The conditions at the boundary between the flexible structural domain and the
porous material domain given in equation (17) can be expressed as a matrix equation

B







dS
ds
df





 = 0 (20)

The finite element system of equations for a porous material attached to a flexible structure
can then be written




−ω2






MS 0 0

0 Mss Msf

0 Mfs Mff





+







KS 0 0

0 Kss Ksf

0 Kfs Kff



















dS
ds
df





 =







fbS
fbs
fbf





+BTλlagr (21)

where the last term includes Lagrange multipliers to fulfil the displacement continuity
between the domains. The system matrices for the porous material are

Mss = ρ̃11

∫

Ω

NT
sNsdV Msf = ρ̃12

∫

Ω

NT
sNfdV

Kss =
∫

Ω

∇̃NT
sDs∇̃NsdV Ksf =

∫

Ω

∇̃NT
sQ∇̃NfdV

fbs =
∫

∂Ω
NT

s tsdS

(22)

Mff = ρ̃22

∫

Ω

NT
fNfdV Mfs = ρ̃12

∫

Ω

NT
fNsdV

Kff =
∫

Ω

∇̃NT
fDf∇̃NfdV Kfs =

∫

Ω

∇̃NT
fQ

T
∇̃NsdV

fbf =
∫

∂Ω
NT

f tfdS

(23)
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Displacement
continuity

Flexible structure

Substructures

Fluid partition

Porous material

Structural partition

Interface modes

In vacuo structure

Fixed interface normal modes

(-w2M + K) d = F

Reduced system

fT (-w2M + K) f x = fT F

Figure 1: Analysis method that generates the reduced system. A set of fixed interface modes
is derived for each domain and the in vacuo structural interface modes are derived to fulfil
the displacement continuity in equation (17).

The external force terms fbs and fbf include the pressure exciting the system.
Performing frequency response analysis of poroelastic systems can often be very compu-
tationally intensive. The frequency limit of interest and the geometric complexity of the
system determine the number of degrees of freedom of the model, and due to the frequency
dependence of the system matrices, these must be regenerated in each step. However, in
analysing large poroelastic systems most time is consumed in solving the system of equa-
tions. In the next section a method is proposed that reduces the size of the equation system
and thereby speeds up the analysis.

2.4 Substructuring and modal reduction

A reduced set of basis vectors is derived for the system in equation (21) by means of
substructuring and modal reduction. The component mode synthesis (CMS) method with
fixed interface modes is used.
The proposed method is described in Figure 1. For each partition the constraint modes,
ψbi, derived by applying a unit force at each interface degree of freedom while keeping the
other interface degrees of freedom fixed, and the fixed interface normal modes, φi, derived
by modal analysis with the interface degrees of freedom fixed, are used in the reduction,

di =
[

ψbi φi

]

[

dbi
ξi

]

(24)
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where i = {S, s, f}. In the method, the structural domains (the flexible structural domain
and the structural partition of the porous material) are first examined in vacuo, i.e. the
fluid partition of the porous material is not included. The displacements are partitioned
into boundary degrees of freedom connecting to the opposite domain, dbi, and degrees of
freedom of the interior of the domain, ddi. The continuity between the flexible structure
and the structural partition of the porous material can be written

[

I −I
]

[

dbS
dbs

]

= C

[

dbS
dbs

]

(25)

where the the interior degrees of freedom, which can either be expressed by physical degrees
of freedom, ddi, or generalised degrees of freedom, ξi, are excluded. The displacements can
then be expressed, using the fixed interface method, as











dbS
ddS
dbs
dds











=

[

ψbS φS 0

ψbs 0 φs

]







dbS
ξS
ξs





 = T







dbS
ξS
ξs





 (26)

Using this set of basis vectors to reduce the system would not be efficient due to the large
number of degrees of freedom at the boundary dbS. Therefore, the interface modes are
calculated by performing modal analysis of the system derived when only retaining the

boundary degrees of freedom for the in vacuo structure, i.e. T =
[

ψbS ψbs

]T
, and the

reduced system can be written
(

−ω2TT

[

MS 0

0 Mss

]

T+TT

[

KS 0

0 Kss

]

T

)

dbS =

= TT

[

fbS
fbs

]

+TTCT λ̃lagr

(27)

Because TTCT = 0, and the system matrices in equation (27) denoted Mb and Kb, the
eigenvalue problem deriving the interface modes can be written

λsMbφb = Kbφb (28)

The derived eigenvectors, φb, are transformed back to original co-ordinates by
[

ΨbS

Ψbs

]

=

[

ψbS 0
0 ψbs

]

Tφb (29)

These interface modes can also be used to fulfil the continuity of the displacements between
the flexible structure and the fluid partition of the porous material by using the same
interface vectors as were used for the structural partition. The displacements can be
expressed in a reduced base by







dS
ds
df





 =







ΨbS φS 0 0
Ψbs 0 φs 0
Ψbs 0 0 φf

















ξbS
ξS
ξs
ξf











(30)
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Only a few interface modes in the first column are now needed to fulfil the displacement
continuity. This can be compared to using the constraint modes in equation (26), where
all boundary degrees of freedom must be included.
To calculate the fixed interface normal modes for the partitions of the porous material, the
structural and fluid partitions are uncoupled by assuming that the dilatational coupling
coefficient, Q, is zero and by ignoring viscous and thermal damping effects. This assumption
yields zero viscous forces and a constant bulk modulus, Kf = P0, of the fluid domain [19].
The added density described by the tortuosity is included in the fluid mass matrix, and
the effective density of the fluid partition thereby becomes α∞ρ0. The eigenvalue problem
for the structural domain becomes

λsMssφs = Kssφs (31)

and for the fluid domain
λfMffφf = Kffφf (32)

where λi and φi are the eigenvalue and eigenvector of domain i = {s, f}. Numerical
problems are encountered for the fluid partition due to the lack of shear stiffness. Therefore,
reduced integration and projection of the element mass matrix is used [17]. The zero energy
modes for an 8-node hexahedral element can be found in, for example, [20]. The solution
of the eigenvalue problem of the fluid partition yields a large number of rotational modes
with no change in the volume of the elements and therefore with λf = 0 and a set of
modes corresponding to dilatation with λf > 0. The straightforward way would now be
to use a set of fluid eigenvectors with non-zero eigenvalues to reduce the system, i.e. using

φf = φ
λf>0
f in equation (30). However, the zero energy fluid modes have to be included

because they are needed to describe the motion due to inertial and viscous coupling between
the fluid and structural domains. A large number of modes must be included, leading to
an inefficient reduction procedure. Instead, a combined set of basis vectors is introduced
to describe to the fluid domain, combining the structural and non-zero fluid normal modes

φf =
[

φ
λf>0
f φs

]

(33)

This set of basis vectors could, however, contain linearly dependent vectors, in which case
the Gram-Schmidt method [21], for example, could be used to achieve an orthogonal set of
basis vectors. Structural eigenvectors that are linearly dependent on the fluid eigenvectors
are not included in equation (33). The combined set of basis vectors is used in equation
(30) and ensures that rotations induced by the structural partition in the fluid partition
are correctly described.

3 Numerical example

In the numerical example, the need to use the combined base for the fluid partition of the
porous material is shown and a convergence study of the number of modes to be included
is performed.
A porous material sample of 0.3 m in length (x direction), 0.02 m in width (y direction)
and 0.10 m in depth (z direction) is bounded to a flexible aluminium panel at z = 0 m
(see Figure 2). The panel is 0.003 m thick and is constrained in translation at x = 0 m

9
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Figure 2: Finite element model of the investigated problem. At z = 0 m, shell elements
describe the aluminium panel. The marker shows where the velocity is studied.

and x = 0.30 m. Boundary conditions are applied to achieve a two-dimensional behaviour,
simulating the system having infinite extension in the y direction. The porous material
is unbounded along the side walls, i.e. it can move parallel to the walls at x = 0 m and
x = 0.3 m. In the finite element model, the porous material is described using an 8-node
isoparametric element with six degrees of freedom in each node, while the flexible panel
is described by a 4-node shell element with six degrees of freedom in each node. The
shell element is an assembly of the thin plate element derived in [22] and the membrane
element, with drilling degrees of freedom, derived in [23]. The material properties of the
porous material and flexible panel are given in Table 1. The porous material properties
can be found in [5]; the material was chosen to give a relatively high degree of stiffness in
the structural frame.
To derive the subdomain modes, the eigenvalue problems of the two porous material par-
titions are solved, but with the interface degrees of freedom fixed. The shapes of the two
fluid modes with the lowest natural frequencies are plotted in Figure 3, and the shapes
of the structural modes are plotted in Figure 4. Also, the interface modes are derived for
the in vacuo structural domains; Figure 5 displays the two modes with the lowest natural

Table 1: Material data for air, the porous material and the flexible aluminium panel.

Porous material: Air (at 18◦):
Es = 845 kPa ρ0 = 1.21 kg/m3

νs = 0.3 P0 = 1.0132 · 105 Pa
ηs = 0.1 γ = 1.4

ρs = 30 kg/m3 Pr = 0.71
φ = 0.96 η = 1.84 · 10−5
σ = 32000 Ns/m4 Aluminium:
α∞ = 1.7 E = 71 GPa
Λ = 90 · 10−6 m ν = 0.3

Λ′ = 165 · 10−6 m ρ = 2800 kg/m3

10
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Fluid mode, f
0
=552.79 Hz

Fluid mode, f
0
=662.53 Hz

Figure 3: Examples of mode shapes for the fluid partitions.

Structural mode, f
0
=389.43 Hz Structural mode, f

0
=474.73 Hz

Figure 4: Examples of mode shapes for the structural partitions with unbounded sides.

Interface mode, f
0
=93.09 Hz Interface mode, f

0
=308.43 Hz

Figure 5: Examples of interface modes.

frequencies. To show the need to include a combined base using both structural and fluid
modes to describe the fluid partition according to equation (33), the panel is assumed to
be rigid and the system is excited by two load cases, first a uniform unit pressure and
second a pressure distributed as a cosine function in the x direction, with a value of 1
at x = 0 m and of -1 at x = 0.3 m. The excitation is chosen to resemble two possible
pressure distributions when the porous material is in contact with an acoustic fluid cavity.
The velocity in the z direction at the corner node marked in Figure 2 is determined. The
system is analysed using three different methods:

• Solving the total system having 1248 degrees of freedom

11
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Figure 6: Fluid velocity amplitude in the z direction when the porous material is excited
by: a) a uniformly distributed pressure, and b) a cosine distribution of the pressure in the
x direction

• Reducing each partition with its non-zero eigenmodes using 40 modes for each domain

• Reducing the system using a combined base, equation (33), for the fluid domain
derived from the 40 modes from each domain.

For the uniform pressure the results are also compared with the analytical solution. The
velocity amplitude in the z direction for the fluid partition can be seen in Figure 6 for both
the uniform and cosine distributions of the pressure.
A convergence study investigating the full system, including the flexible panel, is performed.
The number of modes from the porous material partitions as well as the number of interface
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Figure 7: Velocity amplitude in the z direction when the porous material is excited by a
uniformly distributed pressure: a) shows the structural partition, and b) the fluid partition.
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Figure 8: Velocity amplitude in the z direction when the porous material is excited by a
cosine distribution of the pressure in the x direction: a) shows the structural partition, and
b) the fluid partition.

modes included are varied. The velocity amplitude at the studied degree of freedom, when
the system is excited by the previously defined pressure distributions, is displayed in Figures
7 and 8. The velocity level of both the structural and fluid partitions is displayed and the
number of modes for the structural and fluid partitions and the number of interface modes
are given in the legend.

4 Discussion and Conclusions

When the system is excited by a uniformly distributed pressure, the results from solving
the total system agree with the analytical solution (see Figure 6 a). Both of the reduced
set of basis vectors can also describe the motion of the porous material, i.e. the non-zero
normal modes of the two domains are sufficient to describe the motion. However, for the
case with non-uniform excitation (see Figure 6 b), the combined base is needed to reduce
the system. The proposed combined base can describe the velocity distribution correctly,
whereas the set of basis vectors with separate normal modes for each domain, removing
the possibility of the fluid rotating, cannot describe the motion of the porous material.
In the convergence study, Figures 7 and 8, it is shown that the number of modes needed
to describe the motion is limited compared to the total number of degrees of freedom. At
the response peaks the corresponding modes dominate the behaviour, and the velocity is
determined correctly if the excited mode is included in the reduced set of basis vectors.
The proposed method enables an accurate description of the dynamic behaviour of the
system, using a limited number of modes. It can be concluded from Figures 7 and 8 that,
although the system matrices are frequency dependent, the same set of basis vectors can
be used for different excitations across a wide frequency range.
However, the uncoupled modes are calculated with the surface, at which the pressure is
applied, being unconstrained, i.e. the pressure is equal to zero. The convergence should
therefore be considerably improved by using load-dependent basis vectors. This topic will
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be studied in a subsequent paper.
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A reduction method for structure-acoustic and

poroelastic-acoustic problems using interface-dependent

Lanczos vectors

Peter Davidsson, Göran Sandberg
Division of Structural Mechanics, Lund University, Sweden

Abstract

A reduction method is proposed for analysing structure-acoustic and poroelastic-acoustic
problems within a finite element framework. This includes systems consisting of an acoustic
fluid domain coupled to a flexible structural domain and/or a porous sound absorbing
material domain. The studied problem is reduced by dividing the system into a number
of physical subdomains. A set of basis vectors is derived for each of these subdomains,
including both normal modes and interface-dependent vectors that take account of the
influence of connecting subdomains.
The method is verified in two numerical examples using the proposed method for both
solving the structure-acoustic eigenvalue problem and performing a frequency response
analysis in an acoustic cavity with one wall covered by porous material.

1 Introduction

This paper investigates the sound pressure distribution in enclosed acoustic cavities using
finite element analysis. The studied system is typically a vehicle structure with an interior
passenger compartment, illustrated in Figure 1. As vehicles develop towards being more
fuel efficient and with a greater focus on stiffness in the interest of crashworthiness, lighter
and stiffer construction can introduce the problem of interior noise. Therefore, the need
to conduct detailed analysis of acoustic comfort is increasing.
In the finite element analysis of acoustic problems, the increase of the frequency limit
of interest, the need to resolve the details of complex geometries in the finite element
model and the inclusion of advanced material descriptions to model, for example, porous
sound absorption material, lead to a rapid increase in the number of degrees of freedom in
the model. Efficient techniques for solving such large equation systems are thus of great
importance.
This structure-acoustic problem has been studied by several authors using the finite element
method, and several different formulations have been proposed [1, 2, 3]. The difference
between these formulations lies in the way the fluid domain is described. The fluid can be
described by a displacement formulation which, due to the lack of shear stiffness, introduces
spurious modes. Using reduced integration [4] and control of the hourglass modes [5], all
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pure rotational modes have the eigenvalue zero. This procedure is adopted in this paper
when studying the fluid partition of the porous material. The most straightforward and
compact method for describing the fluid in structure-acoustic systems is to start with the
acoustic wave equation using a potential description, for example, of pressure, with only
one degree of freedom in each node [6]. The drawback is that the system matrices of
this two-field formalisation become unsymmetric. If one instead uses both pressure and
velocity potential to describe the fluid, symmetric system matrices are generated; however,
this three-field formulation uses two degrees of freedom in each node, thereby increasing
the total number of degrees of freedom of the system [7].
The dominant method for model reduction is the component mode synthesis method [8, 9].
The studied physical domain is divided into a number of components and a set of basis
vectors is derived for each component to be included in the description of the entire sys-
tem. This procedure is also adopted in the model reduction of structure-acoustic problems
starting with the unsymmetric two-field formulation [3, 10, 11, 12, 13, 14]. The eigenvalue
problems of the structural and fluid domains are first solved separately. The coupled sys-
tem is then reduced by the calculated normal modes. The reduced unsymmetric system
can, by using some matrix manipulations, be written as a symmetric standard eigenvalue
problem [15]. A large number of eigenmodes must be included in the reduction to describe
the coupled problem correctly, and only the most important of these modes can be chosen
to be included in the reduction to decrease the problem size [16], paper 1.
The Lanczos procedure, described in, for example, [17], can be used when deriving the

Porous material

Microphone Acoustic source

Acoustic cavity

Flexible panel

Figure 1: Problem description: The vibrating panels generate noise inside the enclosed
cavity where the noise can be reduced by the use of porous material. The noise, measured
by a microphone at some point in the cavity, can also be generated by an acoustic source.

2
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normal modes for each component. It has also been used to derive load-dependent Lanczos
vectors, achieving a very efficient basis for each excitation of the studied system, which has
been applied to a symmetric three-field formulation of a structure-acoustic system in [2].
In modelling porous sound absorption material, Biot’s theory can be adopted in order to
include both the flexible frame material and the fluid in the open pores in the description
[18, 19]. This is necessary when the flexibility of the frame material is important to the
behaviour of the system. Both domains are then described by the equations of continuum
mechanics. This theory has been implemented in the finite element environment using a
〈us,uf〉 formulation [20, 21, 22], i.e. both the structural and fluid partitions are described
by displacements, and using a 〈us, pf〉 formulation [23, 24, 25], i.e. the fluid partition is
described by acoustic pressure. The problem with a porous material in contact with an
acoustic cavity using a two-dimensional model is studied in [20]. The poroelastic problem
has also been investigated using a reduced set of basis vectors starting from the 〈us, pf〉
formulation [26, 27].
The present paper examine two important properties in investigating sound pressure dis-
tribution in enclosed acoustic cavities: interaction with connecting flexible panels, and
energy absorption in connecting porous sound absorption materials. A method is proposed
for solving structure-acoustic and poroelastic-acoustic problems, based on substructuring
and modal reduction. The system is divided into its physical domains and a set of basis
vectors for each of the domains is derived based on the free motion of the studied domain
and the normal mode characteristics of the connecting domains. The subdomain modes
below the frequency limit of interest are first evaluated. This applies to both the structure-
acoustic and poroelastic-acoustic analyses. The influence of the subdomain modes above
the frequency limit is accounted for using the fact that the coupling between the subdo-
mains is described by force terms. For example, the pressure distribution in the acoustic
fluid domain results in forces that act on the structure or porous material. The spatial
distribution of each calculated acoustic fluid mode at the boundary of the opposite domain,
which is either the flexible structure or the porous material, is used in a Lanczos procedure
to derive interface-dependent vectors for that domain. These vectors are then included
in the set of basis vectors for the reduction of the coupled problem. The same procedure
is employed in the opposite direction. This method derives an efficient reduced base for
the studied problems. The structure-acoustic eigenvalue problem can be solved efficiently
and a reduced set of basis vectors for the poroelastic-acoustic problem is derived, which
can be used for response analysis over a wide frequency range. The method only involves
well-known finite element tools and should be easily implemented in any standard finite
element environment.
The paper is organised as follows: The proposed method is described after a short presen-
tation of the involved theory. Two numerical examples are then presented and examined.
The first, a coupled structure-acoustic eigenvalue problem consisting of a flexible panel and
an enclosed acoustic cavity, is solved. The second is the evaluation of the pressure level
in an acoustic cavity, one wall of which is covered by porous material, when the cavity is
excited by a volume velocity source placed in a corner. The paper ends with a discussion
and conclusions.

3
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2 Method

2.1 Structural-acoustic analysis

The coupled system for the structure-acoustic problem is derived using the finite element
method. The structural domain is described by the system of equations

MSd̈S +KSdS = fb + fF (1)

where dS contains the displacements, andMS and KS are the structural mass and stiffness
matrices, respectively. The external forces are contained by fb, and fF contains the forces
acting on the structure from the fluid domain

fF = HSFpF (2)

where HSF describes the spatial coupling between the structural domain and the acoustic
fluid domain. The governing system of equations of fluid domain can be written

MF p̈F +KFpF = fq + fS (3)

where pF contains the acoustic pressures, andMF and KF are the fluid mass and stiffness
matrices, respectively. The external source terms are contained by fq, and fS contains the
forces acting on the fluid from the structural domain

fS = −ρc2HT
SF d̈S (4)

The coupled problem can then be written

[

MS 0

ρc2HT
SF MF

] [

d̈S
p̈F

]

+

[

KS −HSF

0 KF

] [

dS
pF

]

=

[

fb
fq

]

(5)

The system is unsymmetric due to the coupling and therefore both the left and right
eigenvectors, or normal modes, are needed to diagonalise the system. Further description
of the system matrices is given in [28, 16]. The coupled system in equation (5) is reduced
by the change of base

[

dS
pF

]

=

[

ΦS 0

0 ΦF

] [

ξS
ξF

]

(6)

using the normal modes of the two subdomains: ΦS contains the structural normal modes,
and ΦF the fluid normal modes.
The reduced coupled system is transformed into a symmetric system using a number of
matrix manipulations

[

ζ̈S
ζ̈F

]

+

[

ΛS −
√
ρc2

√
ΛSΦ

T
SHSFΦF

−
√
ρc2ΦT

FH
T
SFΦS

√
ΛS ΛF + ρc2ΦT

FH
T
SFΦSΦ

T
SHSFΦF

] [

ζS
ζF

]

=

[ √
ρc2

√
ΛSΦ

T
S fb

ΦT
F fq − ρc2ΦT

FH
T
SFΦSΦ

T
S fb

]

(7)

where ΛS and ΛF contain the eigenvalues of the structural and fluid domains. This pro-
cedure is described in [15, 28]. Solving the eigenvalue problem of equation (7) gives the
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eigenvalues and the right eigenvectors of the system. A large number of subdomain normal
modes, i.e. large number of members of ΦS and ΦF , must be included in the reduction in
order to achieve a good description of the coupled system. A previous study, [16], Paper 1,
proposed a method for determining the most important of these normal modes for describ-
ing the coupled system. In the present paper, the subdomain modes are calculated using
information from the other domain, reducing the need to calculate most of the subdomain
normal modes, further increasing the simulation speed-up compared to [16].
The Lanczos procedure, described in Table 1, is used to solve the eigenvalue problem [17].
In the procedure, also used in the proposed method and therefore described in detail,
an arbitrary force vector, r, is first generated. For this force vector a Lanczos stage is
performed (Steps 3 to 6). A start vector, x1, is calculated (Step 3), which must be non-
orthogonal to the desired normal modes. For this start vector, a set of Lanczos vectors is
derived and the normal modes are calculated. A convergence check controls whether all
eigenmodes below a frequency limit are derived. If not, either more Lanczos vectors are
derived or the Lanczos stage is restarted with a new start vector. A new shift point, µ in
Step 1, can be used in the restart to improve convergence.

2.2 Poroelastic-acoustic analysis

The system of equations describing the frequency response analysis of an acoustic fluid
in contact with a porous sound absorption material, described by Biot’s theory, can be
written





−ω2







Mss Msf 0
Mfs Mff 0

(1− φ)ρ0c
2HT

sF φρ0c
2HT

fF MF





+

+







Kss Ksf −(1− φ)HsF

Kfs Kff −φHfF

0 0 KF



















ds
df
pF





 =







fbs
fbf
fq







(8)

where ω is the studied angular frequency. The porous material is modelled by two coupled
partitions, the structural frame and the fluid in the open pores. Matrices HsF and HfF

describe the spatial coupling between the partitions of the porous material and the acoustic
fluid domain. The system matrices for the porous material are frequency dependent and
are described in [29]. A detailed description of Biot’s theory and the porous material
properties is given in [18, 19].
A reduced modal base for the porous material is desired and the method in [29] has been
adopted, where the structural and fluid modes are calculated in separate analyses. The
dilatational, viscous and inertia coupling terms are ignored in deriving the normal modes
of the two partitions. For the structural partition, the eigenvalue problem is written

λsMssΦs = KssΦs (9)

and for the fluid partition
λfMffΦf = KffΦf (10)

Because numerical problems can be encountered regarding the fluid partition due to the
lack of shear stiffness, a procedure using reduced integration and projection of the element
mass matrix has been adopted [5].
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To avoid having to include a large number of zero energy fluid modes in describing the
fluid motion due to the inertia and viscous coupling existing between the fluid partition
and structural partition, a combined base is used [29]. This base includes both structural
and fluid normal modes with λf > 0 describing the fluid partition, i.e.

Φf =
[

Φ
λf>0

f Φs

]

(11)

The reduced base for the porous material then becomes

[

ds
df

]

=

[

Φs 0

0 Φf

] [

ξs
ξf

]

(12)

The porous material is thereby described in a modal base which will be used in the following
section to derive an efficient set of basis vectors for the poroelastic-acoustic problem.

2.3 Proposed method

The proposed method is based on the Lanczos procedure presented in Table 1 and takes
advantage of the fact that the Lanczos vectors can be derived effectively using the spatial
distribution of the dynamic forces. This is described for structure-acoustic systems in [2].
The external dynamic force acting on the system is written

fext = rextf(t) (13)

where rext is the spatial distribution of the force and f(t) is the time-varying force. In
Step 2, rext is chosen as the force vector (see Table 1), and an efficient reduced base for
the system can be derived for this specific force. The proposed method has adopted this
methodology so as to achieve an efficient base in equations (6) and (12), in order to reduce
the coupled systems.
For the structure-acoustic problem, the subdomain modes below the frequency limit of
interest are first derived. Using these modes to describe the forces on the opposite domain,
the fluid loading on the structure in the frequency domain becomes

fF = HSFΦFξF (14)

and in the opposite direction
fS = −ρc2ω2HT

SFΦSξS (15)

where ω is the frequency of interest. The spatial distributions of the above force terms, for
the acoustic fluid modes that act on the structural domain

rF = HSFΦF (16)

and for the structural modes that act on the fluid

rS = HT
SFΦS (17)

which are used for deriving the starting vectors in the Lanczos procedure. The scheme
described in Table 2 is used in generating a reduced base for the structure-acoustic system.

6
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Table 1: The Lanczos procedure.
1. Choose a shift point, µ, and factorise the system matrix,

K− µM = LU or K− µM = LDLT .
2. Generate p number of arbitrary force vectors r1 ... rp.
The Lanczos stage (Steps 3 to 6) is repeated p times.
3. Generate the first vector (start vector), x1.

a) Solve for the first vector,
(K− µM)x̂1 = r1.

c) Mass-orthogonalise the vectors using the Gram-Schmidt method

x̂1 = x̂1 −
nc
∑

j=1

(x̂1MΦj)Φj

b) Check for orthogonality,
γ = x̂T1Mx̂1.

If γ < τ the new start vector is not orthogonal with previously
generated eigenvectors and no new Lanczos vectors can be derived.
τ is a selected tolerance controlling orthogonality.

c) Compute
x1 = x̂1/γ

4. Loop for achieving the additional vectors, i = 1...m;
m is the maximum number of Lanczos vectors to be derived.
a) Solve for vector x̂i

(K− µM)x̂i =Mxi
b) Compute

αi = x̂
T
i Mx̂i

c) Compute
x̃i = x̂i − αixi − βi−1xi−1

d) Mass-orthogonalise the vector using the Gram-Schmidt method

x̃i = x̃i −
i

∑

k=1

(x̃iMxk)xk −
nc
∑

j=1

(x̃iMΦj)Φj

e) Check for orthogonality
βi = x̃

T
i Mx̃i.

If βi < τ , end the Lanczos stage; a new start vector is needed.
f) Compute

xi+1 = x̃i/βi
5. Calculate the nc + 1 to nc + r converged eigenvalues and

eigenvectors of the transformed system by

TiΦ̂ =
1

λ̂
Φ̂

The convergence is controlled.
6. Calculate the real eigenvalues and eigenvectors by

λ = µ+
1

λ̂
and Φ = XΦ̂

7. The convergence is controlled.

7
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Table 2: Algorithm to generate effective bases to use in the modal reduction of the structure-
acoustic system.
1. a) Set the frequency limit of interest for the analysis, flimit.

b) Determine the normal modes of the structural domain,

〈Λ̂S, Φ̂S〉, and the fluid domain, 〈Λ̂F , Φ̂f〉, below this frequency limit.
2. The forces acting on the opposite domain due to the geometrical distribution

of the calculated eigenmodes are evaluated. For the structural domain

rF = HSF Φ̂F

and for the acoustic fluid domain

rS = HT
SF Φ̂S

3. Use these vectors to calculate the Lanczos vectors in Table 1 for each
domain. A Lanczos stage is performed for each mode of the opposite domain
and m Lanczos vectors for each mode are calculated.

4. Reduce the system with the new base and calculate the
coupled eigenmodes.

The same scheme is adopted for the porous material; in this case the geometrical distri-
bution of the force acting on the porous material from the acoustic fluid domain becomes,
for the structural partition,

rsF = (1− φ)HsFΦF (18)

and for the fluid partition,
rfF = φHfFΦF (19)

The geometrical distribution of the forces acting on the acoustic fluid domain due to the
motion of the porous material becomes

rFb =
[

(1− φ)HT
sFΦs φHT

fFΦf

]

(20)

The method introduces a new step between the analysis of each domain and the analysis
of the coupled system. This is performed efficiently at the component level before the
synthesis and with system matrices that are independent of frequency.

3 Numerical examples

3.1 Structure-acoustic analysis

An aluminium plate backed by an air cavity is studied, see Figure 2. The plate is 3 mm
thick, the modulus of elasticity is 70 GPa, Poisson’s ratio is 0.3 and the density is 2800
kg/m3. For air, the density is 1.21 kg/m3 and the speed of sound is 340 m/s. The frequency
limit of interest is set to 300 Hz.
The number of Lanczos vectors, m, for each interface vector needed to achieve the correct
eigenmodes of the coupled system is studied. The calculated eigenvalues are compared
with those achieved by directly solving the eigenvalue problem for the unreduced system.
The comparison of calculated mode shapes is evaluated by

κ =
ΦT
reduced ·Φdirect

|Φreduced| · |Φdirect|
(21)

8



“art˙lanczos˙cmam2” — 2004/8/5 — 14:29 — page 9 — #9
i

i

i

i

i

i

i

i

Figure 2: The finite element model of the studied structure-acoustic problem.

where κ is referred to as the mode shape similarity. For κ = 1 the compared vectors
are identical, and here it is assumed that good agreement is achieved if κ > 0.99; κ
is separately evaluated for the structural and fluid parts. For comparison, the coupled
eigenvalue problem is solved using a standard procedure to include all the subdomain
modes, say below twice the frequency limit of interest, in the reduction. The results of this
analysis are here referred to by ”2flimit”. Two simple examples are studied:
1) The plate is 0.55 m long and 0.35 m wide, the depth of the cavity being 2.1 m. This
results in the natural frequencies of the first normal mode of the structural domain and of
the fluid domain coinciding at 81 Hz. The computed coupled eigenvalues below 300 Hz,
together with the number of subdomain modes included in the analysis, are shown in Table
3.
2) The plate is 0.9 m long and 0.65 m wide, the depth of the cavity being 1.25 m. The
number of subdomain normal modes below the frequency limit is now larger. The error in
natural frequency and mode shape is evaluated by ελ = (λred − λ)/λ, displayed in Figure

”2flimit” Lanczos vectors, m Direct
0 1 2

Mode Natural frequencies (Hz)

1 73.2197 73.3166 73.0821 73.0820 73.0820
2 89.2792 89.4187 89.0880 89.0879 89.0879
3 148.0841 148.9089 147.5391 147.5310 147.5306
4 163.9861 163.9952 163.9601 163.9600 163.9600
5 246.5600 246.5605 246.4992 246.4990 246.4990
6 252.0476 252.6919 251.1389 251.1246 251.1242
7 263.4865 263.6686 262.4484 262.4178 262.4121

Domain Number of degrees of freedom

Structural 4 4 5 6 243
Fluid 20 4 8 12 1377
Sum 24 8 13 18 1620

Table 3: The calculated natural frequencies and the number of degrees of freedom used.
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Figure 4: Error in calculated eigenvectors, a) structural domain and b) fluid domain.

3, and εφ = (1 − κ), displayed in Figure 4. The numbers of degrees of freedom (dofs) of
the reduced systems are as follow: for all modes below ”2flimit”, 46 dofs; for m = 0, 23
dofs; for m = 1, 42 dofs; for m = 2, 61 dofs; and for m = 3, 80 dofs.

3.2 Porous-acoustic analysis

A cavity, one wall of which is covered with porous material, is excited by means of a point
source (see Figure 5). The length of the cavity parallel to the porous material is 0.6 m, the
height is 0.4 m and the depth of the cavity is 0.75 m. The thickness of the porous material
is 0.05 m. The properties of the porous material are given in Table 4. The point source
produces a constant volume velocity, and the analysis is performed in the frequency range
from 70 to 700 Hz.
For the studied poroelastic-acoustic problem the total number of degrees of freedom (dofs)
is 5382, with 3510 dofs for the porous material and 1872 dofs for the acoustic cavity. Three

10
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Figure 5: Finite element model of the acoustic cavity in contact with a porous material.
The shaded elements indicate the porous material domain.

different approaches are used:

• Solving the total system

• Reducing the system using a number of normal modes for each subdomain with
natural frequencies up to twice the maximum frequency of interest(f0 < 2flimit)

• Using the proposed method with one interface vector for each subdomain normal
mode from the opposite domain, i.e. m = 1. This will be shown to be sufficient to
achieve a good description of the coupled system.

Including only normal modes, 120 modes are used for the structural partition, while the
combined base for the fluid partition includes 138 modes. For the acoustic domain, 76
modes are included, the total number of modes being 334.
For the proposed method, 137 modes are used in total: the porous material is described
using 43 modes for the structural partition, 51 modes for the combined base in the fluid
partition and 43 modes for the acoustic domain.
The pressure distribution in the cavity is presented in Figure 6: the mean pressure level
in the cavity is plotted in Figure 6 a), while the pressure level at the centre of the cavity

Table 4: Material data for the porous material

Porous material:
Es = 845 kPa
νs = 0.3
ηs = 0.1

ρs = 30 kg/m3

φ = 0.96
σ = 32000 Ns/m4

α∞ = 1.7
Λ = 90 · 10−6 m
Λ′ = 165 · 10−6 m

11
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Figure 6: The pressure level in the acoustic cavity as calculated using the proposed method
is compared with the result obtained by solving the system directly and also with the result
obtained by using a reduced base including the subdomain modes up to twice the frequency
limit of interest: a) mean pressure, b) pressure at the centre of the cavity, c) pressure at the
midpoint of the interface boundary, and d) pressure at a corner of the interface boundary.

is plotted in Figure 6 b). Figures 6 c) and d) present the pressures at the mid and corner
points of the boundary area between the acoustic cavity and porous material.

4 Discussion and conclusions

For the structure-acoustic eigenvalue problem, both the eigenvalues and eigenvectors –
calculated using the proposed method – converge rapidly with the ones achieved by solving
the system in the original coordinates. This is shown both in Table 3 and by the error
norms given in Figures 3 and 4. The method especially improves the description of the
acoustic field near the flexible structural domain which is of special interest when the sound
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pressure level is to be determined close to a vibrating surface.
For the poroelastic-acoustic problem presented in Figure 6, the pressure distribution in
the acoustic domain is described in detail using the proposed method when one Lanczos
vector for each mode from the opposite domain is included. Solving the total system using
a large number of normal modes produces results very similar to those obtained with the
proposed method. However, the proposed method uses fewer than half of the modes when
only normal modes are included.
The analysis step added to derive these reduced sets of basis vectors is performed at the
substructure level and also with system matrices independent of frequency; it can therefore
be conducted very efficiently. Only well-known finite element tools are used, and this
method should be easy to implement in any standard finite element environment. The
system matrices are frequency dependent, but it has been shown that the same reduced
base can be used over a wide range of frequencies.
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Abstract
Structure-acoustic finite element analysis is implemented in an integrated modelling environment to
demonstrate the possibilities such an environment provides. This allows research results to be used for
analysing realistic vehicle structures, permitting research results and computational results to be readily
displayed. Use of this environment aims at facilitating collaboration between different research projects
and between researchers and industrial groups.
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1 Introduction

The implementation of structure-acoustic finite element analysis in the Virtual Integral Vehicle Struc-
ture Laboratory (VIVS-lab) will be described. The VIVS-lab modelling environment aims at providing a
common basis for communication between vehicle researchers and the vehicle industry, and at simplify-
ing and facilitating cooperation and interaction between the two. In VIVS-lab, generic geometry models
of different vehicle structures are created, allowing research results to be implemented and tested on re-
alistic models. The present paper concerns the advantages of such an environment and the possibilities it
opens up.

VIVS-lab is part of the Swedish national research programme IVS (Integral Vehicle Structure), which
concerns future generations of vehicles. The programme aims at being multidisciplinary and at allowing
different research projects to interact with each other. VIVS-lab is developed within the AML (Adaptive
Modelling Language) modelling framework [6], aimed at facilitating the integration of the different parts
of the product development cycle. AML is a modelling environment with an object-oriented architecture
and with a graphical interface in which a parameterised model of the product of interest can be studied.
Integration of the development cycle is accomplished with the help of interfaces to a variety of other
programs. The program to be used depends on the task, which may involve design (CAD) or finite
element analysis (FEA), for example. The design process is divided up by the modelling environment
into different objects, each representing a part of the total process. A given object can consist of several
different subobjects.

2 Structure-acoustic analysis

The finite element method can be used to study the interior noise level produced by structural vibrations.
The structural domain and the fluid domain can be described by two separate equation systems of motion.
For the structural domain

Msd̈+Ksd = fb +Hp (1)

where d represent structural displacements and the dots indicate differentiation with respect to time. For
the fluid domain

Mf p̈+Kfp = fq − ρc2HT d̈ (2)

where p is the fluid pressure. For an account of the system matrices, see [1]. The coupling between the
two domains is based on the force terms which include the coupling matrix H and allows the coupled
system to be written as

[

Ms 0

ρc2HT Mf

] [

d̈

p̈

]

+

[

Ks −H

0 Kf

] [

d

p

]

=

[

fb

fq

]

(3)

The strategy employed in the structure-acoustic analysis involves substructuring and modal reduction
[1, 2]. First, the two eigenvalue problems, one for the structural domain and the other for the enclosed
cavity domain, are solved separately. The uncoupled eigenmodes are then used to reduce the coupled
problem by a change of base

[

d

p

]

=

[

Φs 0

0 Φf

]

ξ (4)

Matrix transformation is used to derive two symmetric standard eigenvalue problems, providing the left
and right eigenvectors needed to diagonalise the coupled equation system.

2
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Determining the strength of the coupling between the modes of the two domains allows the most impor-
tant uncoupled modes needed for describing the coupled system to be determined [4]. This is done by
studying the modal coupling matrix

Bij =
ΦT

siHΦfj

ω2

si − ω2

aj

(5)

where ωsj and ωai are the structural and fluid eigenvalues with corresponding eigenvectorsΦsi andΦfj .
For each structural mode below a maximum frequency of interest a number of fluid modes with strong
coupling to this structural mode, i.e. with large corresponding values in the modal coupling matrix, can be
chosen to be included in the reduction of the coupled problem. The same procedure is used for each fluid
mode below the maximum frequency of interest determining the structural modes with strong coupling.
Thereby, only the most important uncoupled modes are included in the reduction.

Hysteretic damping of the two domains can be included in the reduction of the coupled problem [5]. The
damping is introduced in the structural domain at a constitutive level, as a complex modulus of elasticity

Ẽs = (1 + iηs)Es (6)

and in the fluid domain as a complex bulk modulus

B̃f = (1 + iηf )Bf (7)

This gives the coupled system complex eigenvalues and eigenvectors. It can then be reduced to a system
of uncoupled equations expressed in terms of modal coordinates, ζ. Frequency response analysis using
a harmonic force F = F̂ sin ω̄t is then applied to obtain the equation system

(−ω̄2I+Λ)ζ = vT
L

[

f̂b

f̂q

]

(8)

where Λ is an (n×n) matrix having the system eigenvalues in the diagonal, the left eigenvectors being
included in vL.

3 Implementation

VIVS-lab is created in an object oriented environment and the aim here is to create an analysis class that
perform structure-acoustic analysis on a given geometry model. This could for example be an imported
CAD model. Here a geometry object is created to serve as a simple model of a vehicle structure in which
there is an interior cavity. The geometry object is displayed in the AML graphical interface in Fig. 1.
This geometry should then be possible to replace with a more complex vehicle structure without having
to perform changes in the analysis class. The analysis consists of two parts, first the finite element model
is generated and then the finite element analysis is performed. This can be expressed in AML-code:

(define-class structure-acoustic-analysis-class
:subobjects(

(acoustic-mesh :class ’acoustic-mesh-class)
(acoustic-analysis :class ’acoustic-analysis-class)

)
)

3
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Figure 1: The AML graphical interface in which the geometry model has been plotted in the graphics
display window. The object tree to the left shows the objects that have been instantiated. The acoustic-
cavity-class contains the geometry and the structure-acoustic-analysis-class is instantiated to perform the
analysis. In the center part of the interface the parameters controlling this analysis are displayed.

3.1 Meshing

In the analysis class the geometry is used to generate a finite element model. The geometry objects
need to contain all the information necessary to perform the operations called for, such as the minimum
element size, for example. This is accomplished by tagging the objects, giving them the attributes needed
to generate the mesh by use of the AML-interface to MSC/Patran. The structural mesh and fluid mesh
are plotted in Fig. 2. The coupling elements between the structural domain and the fluid domain used
for determining the coupling matrix H contain information about which nodes from the two domains
coincide. The mesh object generates a (coinciding) mesh of shared nodes from the two domains at the
boundary between them. The shell elements in contact with the fluid can thus also be used as coupling
elements, having all the information needed.
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Figure 2: a) Finite element model of the structural domain. b) Finite element model of the acoustic fluid
domain.

3.2 Analysis

The structure-acoustic analysis is performed following the above described scheme. The parameters
controlling the analysis can be edited in the graphical interface, see Fig. 1, and each step of the analysis
is carried out using interfaces to different programs. The modal analysis of the structural and fluid domain
is carried out in MSC/Nastran [7]. The coupled analysis performed in Matlab [8] consists of two parts.
Modal analysis is first used to determine the eigenvalues and the left and right eigenvectors. These results
are used then, in the second step, for determining the frequency response to a given excitation. The object
tree generated for the analysis can be seen in the left part of Fig. 1.

20 30 40 50 60 70 80 90 100
25

30

35

40

45

50

55

60

65

70

Frequency (Hz)

S
ou

nd
 p

re
ss

ur
e 

(d
B

)

a) b)

Figure 3: a) The finite elements located where the pressure is applied and the evaluation nodes at the
driver’s ear. b) The sound pressure level at the drivers ear when a uniform pressure of 1 Pa is applied.
The analysis parameters employed can be seen in Fig. 1.
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Figure 4: The number of uncoupled modes included in the reduction is varied.

3.3 Results

Structure-acoustic finite element analysis can be performed in an automated fashion for determining the
sound level due to a force that is applied to the structure. As an example the sound pressure level at the
driver’s ear due to a uniform pressure in the frequency range from 20 to 100 Hz being applied to the
outside of the front wall is calculated. The finite elements where the pressure is applied and the nodes
where the sound level is evaluated are shown in Fig. 3 a). The frequency response curve is then displayed
in Fig. 3 b). To show the advantage of the environment the influence on the result due to how many
uncoupled modes are included in the coupled analysis is studied. This is done by varying the number of
uncoupled modes with strong coupling, ncoup, by the method described above. The analysis parameters
shown in Fig. 1 are kept constant except ncoup which is varied between 1 and 20. This gives the frequency
response curves of Fig. 4.

4 Future work - Truck cabin

The next step is to apply the structure-acoustic analysis class to a more complex structure. This is to be
done on a truck cabin generated in the VIVS-lab environment, see Fig. 5.
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Figure 5: A truck cabin is generated in VIVS-lab. The geometry model of the structural and the cavity
domain are displayed.

[2] G. Sandberg, Acoustic and Interface Elements for Structure-Acoustic Analysis in CALFEM, Re-
port TVSM-7113, Lund Institute of Technology, Division of Structural Mechanics, Lund (1996).

[3] K.-G. Olsson, P.-E. Austrell, M. Ristinmaa, G. Sandberg, CALFEM — a finite element toolbox
to Matlab, Version 3.2, Report TVSM–9001, Lund Institute of Technology, Division of Structural
Mechanics and Department of Solid Mechanics, Lund, Sweden (1999).

[4] G. Sandberg, P. Davidsson, Choosing modes in the reduction of structure-acoustic systems, Sub-
mitted to Computer Methods in Applied Mechanics and Engineering (2001).

[5] P. Davidsson, G. Sandberg, Reduction of structure-acoustic systems that include hysteretic damp-
ing, Submitted to Computer Methods in Applied Mechanics and Engineering (2001).

[6] Technosoft Inc., AML Version 3.2.0, Reference manual, (2001).

[7] The MacNeal-Schwendler Corporation, MSC/NASTRAN ENCYCLOPEDIA - V70.5, (1998).

[8] The Mathworks Inc., Matlab Reference Guide, (2000).

7



“mellanblad” — 2004/7/29 — 10:12 — page 6 — #6
i

i

i

i

i

i

i

i



“mellanblad” — 2004/8/5 — 16:11 — page 13 — #13
i

i

i

i

i

i

i

i

Paper 6

Analysis of sound transmission loss of
double-leaf walls in the low-frequency
range using the finite element method

Peter Davidsson, Per-Anders Wernberg and
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Abstract

The sound transmission loss of double walls in the low-frequency range is studied by means
of structure-acoustic finite element analysis. The analysis simulates standard experiments
to determine sound transmission loss in the walls. The model is a detailed description of
the geometry of the system, including both the double wall and the rooms acoustically
coupled to the wall. The frequency range studied is in the 1

3
-octave bands between 40

Hz and 200 Hz. A parametric study is performed to investigate the influence on the
sound transmission loss of various material and geometric properties of the wall and the
dimensions of the connecting rooms.

It is found that a very detailed description of the system is needed in order to describe
sound transmission loss in the low-frequency range. The model confirms the importance
of primary structural resonance and the size of the connecting rooms in determining the
degree of sound transmission loss. The primary structural resonance is mainly determined
by the distance between the wall studs and the properties of the sheeting material. Wall
length is also important: if the length is such that the wall studs of last wall cavity are
closer together than those of the other wall cavities, the primary structural resonance
will be at a higher frequency, thereby decreasing sound transmission loss over a broader
frequency range. Similar dimensions of the connecting rooms results in poor transmission
loss, mainly at frequencies below 100 Hz (for the wall and room dimensions studied here).

1 Introduction

The ability to predict and measure sound transmission loss in the low-frequency range is
needed. Road and air traffic noise as well as home cinema and stereo equipment have
increased the demand for low-frequency sound transmission loss [1, 2]. When determining
the sound transmission loss in the laboratory, a wall is placed in between two rooms, a

1
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sending room with a loudspeaker and a receiving room. The spatial averages of the sound
level in each of the two rooms are measured [3], and evaluated [4], indicating the sound
transmission loss the wall provides.

It is well known that the sound transmission loss of a wall in the low-frequency range is
limited by the resonances of the wall. In an investigation by Bradley et al. measurements
were performed to evaluate the effects of various wall properties on sound transmission
loss [5]. For double walls with mechanical coupling between the plates, sound transmission
in the low-frequency range is governed by the primary structural resonance, not, as with
a double wall without mechanical coupling between the plates, by a mass-air-mass reso-
nance. A similar study was performed by Hammer et al. [6]. Maluski et al. [7] studied the
sound transmission loss in single-leaf walls using the finite element method, including the
connecting rooms in the model . The sound transmission loss of a wall in the low-frequency
range was described as being mass controlled when the first wall resonance occurred below
the first resonance in the connecting rooms, and as being stiffness controlled if the first
room resonance was lower than the first wall resonance. In the transition between these
regions the wall resonances control the sound transmission loss.

The dimensions of the sending and receiving rooms and thereby the room resonances
also affect the measured sound transmission [7, 8, 9, 10, 11]. In an investigation by Kropp
et al. [9], a large number of room configurations were examined. However, in the theoret-
ical prediction model used, the wall was described as a locally reacting mass impedance.
Therefore, the average sound transmission loss for these configurations was identical to the
mass law.

To decrease room dependence in the measurements, thereby increasing the reliability of
the predicted low-frequency sound transmission loss, absorbing elements, which reduce the
sound level peaks in the rooms, can be inserted into the test rooms, as were done by Fuchs
et al. [12]. However, Maluski et al. [13] showed that the damping and scattering provided
by typical furnishing in a room have a small effect on the predicted sound pressure levels
in the frequency range below 100 Hz compared to an empty room. The theoretical model
presented by Papadopoulos [14] had the objective increase the reliability of numerical pre-
diction of low frequency transmission loss. It presented a virtual laboratory, in which test
rooms were optimised for improved mode distribution resulting in smaller sound pressure
fluctuations in the low-frequency range. This virtual laboratory was used to study the
sound transmission loss of single-leaf and double-leaf walls without mechanical coupling
between the two leaves [15].

Brunskog et al. [16] analysed the sound transmission loss in a double wall using the finite
element method; the rooms were described as semi-infinite tubes and were thereby included
in the analysis as loading terms on the wall. A more compact description was achieved
compared to including the modal bases of the rooms, and, thereby, the analysis can be
extended to higher frequencies. The literature pertaining to predicting sound transmission
loss in walls was also reviewed.

Osipov et al. predicted the sound transmission loss in single-leaf walls using three differ-
ent theoretical models [11]. It was shown that the infinite plate model, i.e. the mass law,
and the baffled plate model where a finite wall is placed within an infinitely extended rigid
baffle cannot describe the low-frequency behaviour of the system. Although increasing the
computational cost of the analysis, the full room-wall-room system must be studied when
determining sound transmission loss in the low-frequency range.
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This paper presents a parametric study of how properties of the sending-room–wall–
receiving-room system influence sound transmission in double walls at low frequencies,
based on a detailed geometric model. The analysis is performed by using the finite element
method [17, 18, 19]. (Description of structure-acoustic analysis using the finite element
method can be found in, for example, [20, 21, 22, 23].) The model used in the study
mimics the measurement procedure for determining the sound transmission loss of a wall
according to [3], and involves the following parameters:

• The material properties in the wall. The modulus of elasticity, E, and density, ρ,
of the plasterboards and the flow resistivity, σ, and the density, ρs, of the porous
material are studied.

• The geometric properties of the wall. The influence of wall stud spacing and the total
length of the wall on the sound transmission loss is evaluated.

• The dimensions of the connecting rooms. The depth of the receiving room is varied.
The effect of placing the wall within a baffle is also studied.

A low-frequency measure, which describes the sound transmission loss from 40 Hz to
200 Hz in a single value, is evaluated. This combined measure facilitates examination of
the influence of the various parameters. This study gives a structured evaluation of the
influence of various system properties on the sound transmission loss of double walls at low
frequencies. Conclusions previously drawn from measurements and theoretical models can
here be examined in detail. Also, the effect of varying both the material and geometric
properties of the system can be evaluated and compared. For example, the importance
of the primary structural resonance and the dimensions of the connecting rooms on the
sound transmission loss and the sensitivity in the material properties describing the wall
are displayed.

This paper is organised as follows: After the introduction the analysis procedure is
described which is followed by the parametric study. The paper ends with the discussion
of the results and some conclusions.

2 Analysis procedure

To determine the sound transmission loss, the studied wall is placed in between two rooms,
a sending room with a loudspeaker and a receiving room, see Figure 1 (left). Here a
computer model, based on the actual geometry used for the measurements, is derived for
studying and simulating the same situation in order to determine the sound transmission
loss in the low-frequency range.

Finite element procedure

The prediction model used is based on the finite element method. The structure is described
by finite elements, and the two rooms and the enclosed wall cavities are described by
analytical modal bases derived for a rectangular cavity with rigid wall boundary conditions.
A modal base expressed in cosine modes is achieved for each cavity, see Fahy [24], page

3
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163. Assuming harmonic motion, with the harmonic time dependency eiωt suppressed, the
coupled structure-acoustic problem can be written

(

−ω2

[

Ms 0

ρc2ΦT
fH

T If

]

+

[

Ks −HΦf

0 Λf

]) [

d̂

ξ̂p

]

=

[

fb
ΦT

f fq

]

(1)

where ω is the angular frequency and

ξ̂p = [ξ̂
1

p ... ξ̂
M

p ]T ; Λf = diag([Λ1

f ...Λ
M
f ]); Φf = diag([Φ1

f ...Φ
M
f ]) (2)

M is the number of fluid domains involved, one domain for each room and for each enclosed
wall cavity. In the i’th fluid domain, the variable is the modal pressure, ξ̂i

p, which is related

to the actual pressure amplitude, p̂i, by p̂i = Φi
f ξ̂

i
p. Φ

i
f contains the eigenvectors and Λi

f

the eigenvalues. In the structural domain, d contains the displacements and Ms and Ks

are the mass matrix and stiffness matrix, respectively. The geometric coupling between
the structural and fluid domains is described by the coupling matrix H. It couples the
structural domain with each of the fluid domains, H = [H1 ...Hi ...HM ].

The sound levels in the two rooms are determined by means of frequency response anal-
ysis in the 35 Hz to 224 Hz interval, i.e. the lower and upper bounds of the 1

3
-octave bands

studied. The system is reduced by first solving the eigenvalue problem for the structural
domain using MSC/Nastran [25], and then performing a change of base in equation (1),
given by

[

d̂

ξ̂p

]

=

[

Φs 0

0 I

] [

ξ̂s

ξ̂p

]

(3)

where Φs and ξ̂s contains the structural eigenvectors and structural modal co-ordinates,
respectively. The coupled analysis is conducted in Matlab [26] using the finite element
toolbox, CALFEM [27]. Further description of the structure-acoustic analysis of this type
can be found in [21, 22].

The analysis model

The dimensions of the studied wall and the connecting rooms are given in Table 1. In the
parametric study, the height and width of the wall and the connecting rooms are equal.
However, the effect of placing the within a baffle is evaluated. In this case, the height and
width of the rooms are increased, while keeping the dimensions of the studied wall fixed,

Table 1: Geometric data.

Wall length 4.2 m
Wall height 2.6 m
Sending room depth 4.91 m
Receiving room depth 5.2 m
Length of baffle 0 m
Measurement height 1.2 m
Measurement area 2× 2 m2

4
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Figure 1: Measurement setup (left) where the wall is placed in a baffle, and the finite
element model of the wall (right).

as can be seen in Figure 1 (left). The length of the baffle is the increased length and width
of the rooms, on the sides and above the studied wall.

The finite element model of the structure can be seen in Figure 1 (right). The plas-
terboards, modelled by shell elements, are 12.5 mm thick. In the discretisation of the
plasterboards, the length of each shell element is 0.075 m. To verify the finite element
model, the eigenvalue problem of a simply supported beam with material properties of the
plaster board and the length of 0.45 m, is solved. Six shell elements are used to describe
the beam, i.e. using the same discretisation as for finite element model employed in the
study. The second natural frequency (228 Hz) is calculated with an error of 4 % compared
to the analytical solution, which shows that the model provides satisfactory accuracy. The
sheet-metal wall studs, described by shell elements for the web and beam elements for the
flanges, are 0.5 mm thick. The modulus of elasticity, E, Poisson’s ratio, ν, and density, ρ,
for the materials can be found in Table 2. The screws connecting the plasterboards to the
wall studs are placed with 0.2 m between adjacent screws, modelled as springs connecting
the nodes at the wall stud–plasterboard interface. The stiffness, K, of each screw for the
in-plane deformation (parallel to the plasterboard) can be found in Table 2. The coupling
in the normal direction and the rotational coupling in all three directions are assumed to
be rigid. The loss factor, η = 0.02, is assumed independent of frequency and used in the
analysis for both the wall and the connecting rooms. Damping is thereby included at a
constitutive level in the structural domain as a complex modulus of elasticity

E → (1 + iη)E (4)

and in the two rooms as a complex bulk modulus

B0 → (1 + iη)B0 (5)

where B0 = ρ0c
2

0
, and where ρ0 and c0 are the density of and speed of sound in air. The

sound absorbing material placed inside the wall cavities is described by an equivalent fluid

5
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Table 2: Material properties.

Wall studs:
E = 210 GPa
ν = 0.30

ρ = 7800 kg/m3

Plasterboards:
E = 3 GPa
ν = 0.10

ρ = 720 kg/m3

Fasteners:
K = 500 kN/m

Air:

ρ0 = 1.21 kg/m3

c0 = 340 m/s
Porous material:
cp = 280 m/s
φ = 0.99
σ = 20000 Ns/m4

ks = 1.7

ρs = 30 kg/m3

introduced by Gransson [28], assuming the frame of the porous material to be limp and not
in contact with the rest of the wall, i.e. no vibrations are induced in the porous material
frame. The material parameters for air and the porous material are also given in Table 2: cp

is the speed of sound inside the porous material; φ is the porosity; σ is the flow resistivity;
and ks is the structure factor of the porous material. The equivalent fluid model introduces
frequency-dependent density and bulk modulus. See [28] for a detailed description of the
material model and parameters.

The walls studied are specified as, for example, R120 202 s600, where R120 denotes the
wall thickness in mm, 202 denotes two plasterboards on each side of the wall, and s600

denotes the distance between the wall studs in mm.

Evaluation of sound transmission loss

The present study simulates the measurement standard set forth in [3]. Thus, the sound
transmission loss, R, is determined by

R = Ls − Lr − 10 log
(

A

S

)

(6)

where Ls and Lr are the spatial averages of the sound pressure level, filtered into 1

3
-octave

bands, in the sending and receiving rooms, respectively. Pressure levels are evaluated in
a rectangular partition in the centre of each room, the shaded are in Figure 1 (left), at
the height and in the area given in Table 1. S is the area of the wall being studied and
A is the absorption area in the receiving room, which can be expressed in terms of the

6
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reverberation time, T , and the volume of the room, V :

A = 0.16
V

T
(7)

The loss factor, η = 0.02, which is independent of frequency, is used in the analysis. The
reverberation time then is

T =
2.2

fη
(8)

where f is the frequency. The sound transmission loss can thereby be calculated in 1

3
-octave

bands
R = Ls − Lr − 10 log (0.38fη) (9)

where the receiving room dimensions in Table 1 have been used. The same correction term
for the room and wall dimensions and the reverberation time of the receiving room is used
in all analyses.

Low-frequency measures

To derive a measure of the experienced difference in sound levels between the studied con-
figurations, the pressure levels in the various frequency bands must be weighted together
[4]. For this weighting, sound pressure levels in the 50–5000 Hz range are required, which
are not available here. In the present study a linear weighted low-frequency measure is
derived, determining the sound pressure level difference in the frequency range of interest.
The low-frequency sound transmission loss, ∆Lfa−fb , is calculated by integrating the pres-
sure levels in the two rooms given in 1

3
-octave bands over the frequency range of fa to fb

(1

3
-octave band centre frequencies) indicated by the superscript, i.e.

∆Lfa−fb = Lfa−fb

s − Lfa−fb

r (10)

where

L
fa−fb

i = 10 log





fb
∑

f=fa

10Li/10



 (11)

where i = {s, r}. Note that ∆Lfa−fb only pertains to the pressure level difference, not in-
cluding the last term in equation (9). Two different frequency intervals are used: ∆L40−200

is evaluated to investigate sound transmission loss in the low-frequency range for the 1

3
-

octave bands with centre frequencies between 40 Hz and 200 Hz. (Thus, the actually
studied frequency range is between 35 and 220 Hz.) To exclude the behaviour of the 1

3
-

octave bands with centre frequencies from 100 Hz and below, ∆L126−200 is also evaluated.
This second measure is derived to determine whether the studied properties only influence
sound transmission loss at very low frequencies or also in frequencies above 100 Hz.

3 The parametric study

The influence of a number of system parameters on sound transmission loss is examined.
When one of the parameters is varied the others are held constant and given in Tables
1 and 2. The sound transmission loss is evaluated by means of equation (9), using the

7
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calculated sound pressure levels in the sending and receiving rooms. The results for each
of the variables in the parametric study are displayed both by means of sound transmission
loss (TL) curves and by the low-frequency measures, ∆L40−200 and ∆L126−200.

Material properties of the wall

The calculated TL when varying the modulus of elasticity, E, of the plasterboards is
displayed in Figure 2 and the corresponding low-frequency measures in Figure 3. For the
density, ρ, of the plasterboards, the calculated TL is given in Figure 4 and the low-frequency
measures in Figure 5.

As the modulus of elasticity and density of the plasterboards affect the modal charac-
teristics of the wall, the peaks in TL shift in frequency (see Figures 2 and 4). However,
varying the modulus of elasticity of the plasterboard does not change the value of ∆L40−200

40 50 63 79 100 126 158 200
5

10

15

20

25

30

35

40

45

50

Frequency (Hz)

R
 (d

B
)

  2
2.2
2.4
2.6
2.8
  3

40 50 63 79 100 126 158 200
5

10

15

20

25

30

35

40

45

50

Frequency (Hz)

R
 (d

B
)

  2
2.2
2.4
2.6
2.8
  3

Figure 2: Sound transmission loss when varying the plasterboard modulus of elasticity, E,
for wall types R120 202 c450 (left) and R120 202 s600 (right).
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Figure 3: The low-frequency pressure level difference when varying the plasterboard modulus
of elasticity, E, ∆L40−200 (left) and ∆L126−200 (right).
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significantly (see Figure 3, left). Low-frequency sound transmission loss increases with in-
creasing plasterboard density, as can be seen for the TL in Figure 4. For low-frequency
measures the improvement roughly follows the mass law, which states that doubling the
density of the plasterboards increases the TL by about 6 dB. This is shown in Figure 5
(left), where ∆L40−200 is displayed; the effect is even more evident in the case of ∆L126−200,
displayed in Figure 5 (right).

For the porous material, the TL when varying the density, ρs, of the porous material
frame and the flow resistivity, σ, is displayed in Figures 6 and 8 and the corresponding
low-frequency measures in Figures 7 and 9.

Varying the porous material density and flow resistivity have little effect on the sound
transmission in the low-frequency range, as displayed in Figures 6 and 8. The wall vibra-
tions and thereby the sound transmission are mainly governed by the plates and wall studs.
The description of the porous material in the present study is simplified, and measurements

40 50 63 79 100 126 158 200
5

10

15

20

25

30

35

40

45

50

Frequency (Hz)

R
 (d

B
)

500
600
700
800
900

40 50 63 79 100 126 158 200
5

10

15

20

25

30

35

40

45

50

Frequency (Hz)

R
 (d

B
)

500
600
700
800
900

Figure 4: Sound transmission loss when varying the plasterboard density, ρ, for wall types
R120 202 c450 (left) and R120 202 s600 (right).
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Figure 5: The low-frequency pressure level difference when varying the plasterboard density,
ρ, ∆L40−200 (left) and ∆L126−200 (right).
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indicate that the porous material strongly affects low-frequency sound transmission loss
(as was found by, for example, Uris et al. [29]). Achieving reliable results regarding the in-
fluence of the porous material on sound transmission loss requires a more detailed material
description of the porous material. This is provided in Biot’s theory, which also includes
the stiffness of the porous material frame. Allard [30] gives a detailed description of this
theory, and a study of the sound transmission loss of a multilayered structure including
porous material was performed by Panneton et al. [31].

Geometric properties of the wall

The TL calculated when varying the distance between the wall studs is displayed in Figure
10, and with the low-frequency measures given in Figure 11. The TL calculated when
varying the wall length is displayed in Figure 13, and with the low-frequency measures
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Figure 6: Sound transmission loss when varying the porous material density, ρs, for wall
types R120 202 c450 (left) and R120 202 s600 (right).
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Figure 7: The low-frequency pressure level difference when varying the porous material
density, ρs, ∆L

40−200 (left) and ∆L126−200 (right).

10



“art˙doubleaf2˙afterrev” — 2004/8/5 — 14:32 — page 11 — #11
i

i

i

i

i

i

i

i

given in Figure 14.
The sound transmission loss as affected by varying the wall stud spacing is displayed in

Figure 10. The spacing affects the stiffness of the plasterboard by changing the distance
between the supports, affecting the plate bending motion. The greater the distance between
the wall studs, the weaker the wall becomes and the lower the frequency of the primary
structural resonance. Above this resonance the wall has a mass-like behaviour and achieves
good sound transmission loss. The change in stiffness is proportional to the distance
between wall studs to the power of three, whereas the previously studied modulus of
elasticity for the plate is linearly proportional to the stiffness, as found by Bradley et al.
[5]. The low-frequency resonance of a double wall is, as stated in [5], not the mass-air-mass
resonance but the primary structural resonance. This primary resonance is studied in detail
for the particular wall type R95 202 s600. By repeating the analysis procedure, but only
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Figure 8: Sound transmission loss when varying the porous material flow resistivity, σ, for
wall types R120 202 c450 (left) and R120 202 s600 (right).
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Figure 9: The low-frequency pressure level difference when varying the porous material flow
resistivity, σ, ∆L40−200 (left) and ∆L126−200 (right).
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including one in vacuo structural mode at a time in the description of the structure, it is
found that the mode with a natural frequency of 70.7 Hz and the mode shape displayed in
Figure 12 dominates sound transmission, this mode being the primary structural resonance.
The natural frequency of this mode does not directly give the frequency where the sound
transmission peaks, as this peak also depends on the porous material in the wall cavities
and, to a great extent, on the room dimensions.

For the evaluated ∆L126−200, a wall stud spacing of 0.60 m generally produces 10–12 dB
less sound transmission than does the 0.45 m spacing, this holding true for any parameter
studied. This is also due to the primary structural resonance, which occurs below 100 Hz
for the 0.6 m spacing but in the studied frequency range for the 0.45 m spacing.

Varying the length of the wall, and thereby also the dimensions of the rooms, the modal
characteristics of the rooms is affected. This is evident in the 1

3
-octave band with centre

frequency 80 Hz, where the calculated sound transmission loss varies greatly for the same
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Figure 10: Sound transmission loss when varying the wall stud spacing for wall types R95

202 (left) and R120 202 (right).
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Figure 11: The low-frequency pressure level difference when varying the wall stud spacing,
∆L40−200 (left) and ∆L126−200 (right).
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Figure 12: The primary structural resonance for R95 202 s600 with the in vacuo natural
frequency being 70.7 Hz. A slice along the length and at half the total height of the wall
is displayed. The spacing of the wall studs, the plasterboard density, and the modulus of
elasticity are important in determining the natural frequency of the mode.
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Figure 13: Sound transmission loss when varying the wall length for wall types R120 202

c450 (left) and R120 202 s600 (right).
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Figure 14: The low-frequency pressure level difference when varying the wall length,
∆L40−200 (left) and ∆L126−200 (right).
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wall type (see Figure 13). Also, the smaller width of the last wall cavity means that the
primary structural resonance is present in frequency bands higher up in the frequency
range. This is evident in Figure 13 (right), where TL is displayed for a wall stud spacing
of 600 mm. The same can be seen in the measure ∆L126−200, which varies 4 dB depending
on the size of the last cavity (see Figure 14, right).

The sudden jump seen in the calculated ∆L126−200 in Figure 11 (right) can also be
explained by the primary structural resonance. For wall stud spacings between 0.3 m and
0.45 m, this resonance occurs in the frequency range studied. The two configurations with
stud spacings of 0.525 m and 0.60 m have their primary structural resonances at natural
frequencies below the studied range (this also holds true for the last wall cavity, since the
total wall length is a whole multiple of these wall stud spacings). The dynamic behaviour
is governed by the mass of the system and the sound transmission loss is high.
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Figure 15: Sound transmission loss when varying the receiving room depth for wall types
R120 202 c450 (left) and R120 202 s600 (right).
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Figure 16: The low-frequency pressure level difference when varying the receiving room
depth, ∆L40−200 (left) and ∆L126−200 (right).
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Room dimensions

The effect on TL of varying the depth of the receiving room is evaluated in Figure 15, and
with the low-frequency measures given in Figure 16. The effect on TL of placing the wall
within a baffle is displayed in Figure 17, and the corresponding low-frequency measures
are given in Figure 18.

The dimensions of the sending and receiving rooms strongly affect sound transmission
(see Figure 15). These effects are well known, and similar results have been presented
in, for example, [7, 9, 11]. The difference in sound transmission loss in the low-frequency
range, ∆L40−200, can be up to 6 dB depending on the receiving room length (see Figure 16,
left). With equal room sizes, ∆L40−200 is almost equal for the different wall configurations
due to the matching eigenmodes of the two rooms. Calculating ∆L126−200, the depth of
the room has only a small effect, as indicated in Figure 16 (right). The influence of room
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Figure 17: Sound transmission loss when varying the length of the baffle for wall types
R120 202 c450 (left) and R120 202 s600 (right).
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dimensions is here limited to the 40-125 Hz range, this being dependent on the size of the
studied rooms.

The calculated sound transmission loss when placing the wall within a baffle is displayed
in Figure 17. Although, the low-frequency sound transmission loss in certain frequency
bands fluctuates, ∆L40−200 is not significantly affected (see Figure 18, left). In [32], placing
a single-leaf wall within a baffle was seen to improve the sound transmission loss. In that
case, however, the wall size was decreased while keeping the room size fixed. In the present
study, however, it is the room dimensions that are changed.

4 Conclusions

The need to perform a detailed analysis to be able to accurately predict sound transmission
loss in the low-frequency range is demonstrated. This was done by examining a number of
parameters that describe the sending-room-wall–receiving-room system.

The improved sound transmission loss when increasing the sheeting material density on
average follows the mass law, whereas the modulus of elasticity only has a small effect
on the modal characteristics of the wall. The distance between the wall studs, however,
is important for low-frequency sound transmission loss. This distance affects the natural
frequency of the primary structural resonance at which the sound transmission loss is low.
The length of the studied double wall can affect the primary structural resonance, also
leading to decreased sound transmission loss above 100 Hz. The room dimensions, both
perpendicular and parallel to the wall, are of great importance, especially at frequencies
below 100 Hz. Several of the studied effects have been presented in earlier work, both in
terms of measurements and theoretical models for single-leaf walls. In this paper, however,
the analysis, including the full geometric description of the double wall and connecting
rooms, gives a structured presentation of the effects of various parameters on sound trans-
mission loss in the low-frequency range and on the ability to compare different changes in
the system.
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Summary
A theoretical prediction model for the sound insulation of a wall is an important tool when developing new wall
structures. A full description of the entire room-wall-room system in a theoretical model for sound insulation is still
today too computation-intensive, implying that the sound insulation at higher frequencies cannot be studied. Some
simplifications must thus be introduced. The simplification proposed in this present paper is to describe the rooms
with waveguides, i.e., infinity-long rooms. The model then reduces to the (more or less) two-dimensional wall. The
question of how to apply the excitation then arises. The choice proposed here is to use a combination of diffuse field
and Monte Carlo simulations. The incident and radiated power, expressed in waveguide modes, are used to calculate
the transmission loss. A minor literature survey is also included, as well as numerical results and comparison with
experimental results. The method presented is developed to study the sound insulation of lightweight double-leaf walls,
and the numerical results of such walls are presented.

PACS no. 43.55.Rg, 43.55.Ti, 43.20.Mv

1. Introduction

The development of new building systems is intensive.
These new systems are often related to lightweight con-
structions and developed for use in load-bearing structures
and dwellings. When developing such new building struc-
tures, a theoretical prediction model for the sound insula-
tion is an important tool.

When studying the airborne sound insulation of a build-
ing structure, various approaches have been used by re-
searchers. The simplest approach is to describe the struc-
ture to be infinite in extent and coupled to semi-infinite
sender and receiver rooms, as Cremer did for a homoge-
nous wall in 1942 [1] (repeated in [2, pp. 544–547]), or as
London did for a double wall some years later [3]. How-
ever, the vibration field in an actual structure can be di-
vided into one part with wavenumbers that corresponds to
the wavenumbers in the surrounding (excitating) medium,
and one part with other wavenumbers – especially the
wavenumbers of the free waves of the structure. The first
part can be referred to as the forced field and the second
part as the reverberant field. When studying infinite struc-
tures, only the forced field is present causing sound trans-
mission (below the critical frequency). The finiteness of
the structure introduces a continuous amount of wavenum-
bers, some of which are able to radiate sound; thus, the fact
that the finiteness of the radiation region will cause extra
radiation is not taken into account in the infinite model.

The approaches that include finiteness can schemati-
cally be divided into four groups, corresponding to the
combinations of finite/infinite fluid field and finite/infinite

Received 1 January –,
accepted 1 January –.

structural field. The papers mentioned [1, 3] fall in the
group of infinite fluid field and infinite structural field
(i.e., no inclusion of finiteness). The finite-finite case has
mostly been studied in the low frequency region using nor-
mal modes [4, 5, 6, 7, 8, 9, 10, 11, 12] or the finite ele-
ment method (FEM) [13, 14, 15]. Kropp et. al. [16] made
use of both FEM and normal modes, studying the mean-
ing of the transmission loss at low frequencies (the FE-
model was primarily used as a check of the simplifications
in the normal mode model). Also the boundary element
method (BEM) has been used, e.g., by Santos and Tadeu
[17, 18] in a study of the insulation of a wall separating
two contiguous “tunnels”. Thus, they made the problem
two-dimensional by means of infinite extensions of the
rooms. However, in contrast to the present problem, they
allowed one of the directions parallel to the wall to be infi-
nite (as they were specially interested in the low frequency
problems of the geometry of the room affecting the sound
insulation). Other approaches are the use of the Green ray
integral method [19] – an uncoupled approach where the
structure is described by FEM and approximative Green’s
functions are used to describe the rooms – and the decou-
pled modal approach [20].

A common way to introduce finiteness is to let both the
fluid and structural field be infinite, but to let the radiation
area be finite, cf. Ljunggren [21], Villot et al. [22] and Cre-
mer and Heckl [2, pp. 526–534], so that the phenomenon
of finite radiating area is taken into account. However, in
a later paper Ljunggren [23] states that the actual type of
room boundary condition is important; the transmission
of an ordinary homogenous wall due to resonant response
increases by 6 dB at frequencies below the critical fre-
quency if the rooms described by cosine-modes are com-
pared with a wall mounted in a baffle (i.e., as in [21]). This
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effect was not seen by Kropp et. al. [16] in their analysis
(as is more thoroughly discussed below); this fact can per-
haps be explained by the fact that no boundary losses were
present in [16], in contrast to [21]. The latter paper – even
if it is not always easy to follow – provided one of the
starting points for the present paper.

Many of the prediction models for sound insulation
available today are restricted to very simplified struc-
tures: for example, many of them do not include the
joists in a double-leaf structure [3, 24, 25]. However,
there are prediction models that include the joists, e.g.,
[26, 27, 28, 29, 30]. Some of these deal with point ex-
citation and some with airborne excitation (see also the
literature survey [31]), but in these models the wall is as-
sumed infinite in extent. One possibility then is to make
use of the finite element method, so that all details of in-
terest in the structure can be described and included in
the model, and at the same time the finiteness of the real
structure is included. A drawback using the finite element
method directly is that it is computationally time consum-
ing, meaning that normally only the low frequency range
can be studied. Thus, the approach proposed here aims to
reduce the computation time of the FE-approach.

It should be pointed out that the numerical results (pre-
sented in section 3) do not – at this stage – aim to yield fur-
ther insight into the physics of sound insulation; the aim of
the paper is merely to present an effective numerical pre-
diction model for the transmission loss of a wall structure.

The present paper tries to predict the sound insulation
of a wall structure by means of FEM, and thus, the low
frequencies are of special interest (even if the goal is to
stretch the limits to higher frequencies) as FEM is a de-
terministic low frequency range method. The prediction
of sound insulation at low frequencies is a difficult task:
the measured or calculated sound insulation is in princi-
pal only valid for the specific case under consideration.
Parameters such as room dimensions, reverberation time,
or geometry of the interface influence the sound insula-
tion [16, 13, 14, 15]. For low frequencies there is a large
dependence in the sound transmission loss of the size of
the rooms. However, to include this dependency in a the-
oretical model studying the room-wall-room system the
analysis will be limited to very low frequencies due to
the size of the numerical model. As was found in e.g.,
[13, 14, 15], the dependence on the dimensions of the
rooms to the sound reduction of the wall also makes it
difficult to evaluate how changes in the wall properties af-
fect the sound transmission in room configurations other
than the one where the measurements (or calculations) are
performed. Thus, it can be preferable to use the tube-like
room, as it is well defined. Moreover, it is related to the
ensemble average of every room (cf. SEA theory [32]).

The simplified room description – as reflected in the ti-
tle of the present paper – is achieved by means of assuming
the rooms as being infinite in extent in the direction per-
pendicular to the test wall (see Figure 1). Thus, the theory
used is a waveguide theory. The walls normal to the trans-
mitting wall are rigid, described by cosine-modes, but the
walls parallel with the transmitting wall are not present

(or are totally absorbing). Thus, the aim is to evaluate the
sound transmission loss (TL) for walls without the influ-
ence of the depth dimensions of the connecting rooms. By
using waveguide rooms, the problem can be reduced by
including terms that are due to the loading of the rooms
added to the dynamic stiffness of the wall. In other words,
the problem is reduced from three dimensions to two. The
calculation procedure presented here was first developed
in [33]. The present paper states the calculation procedure
in a more general way, develops it further, and uses nota-
tions and methods used in a FEM context.

When measuring the transmission loss, the two-room
method is the laboratory technique most often used. A
wall is built up between the sender and receiver rooms, the
sound levels in both rooms are measured, and the trans-
mission loss can be determined [34]. When measuring in
a laboratory, the two rooms must fulfil the criteria for a
diffuse sound field. Thus, the actual measurement situa-
tion that the prediction model is to be compared against
is clearly finite in its character. However, there is also a
measurement procedure where intensity measurements are
applied [35]. This measurement procedure corresponds
roughly to the calculation procedure proposed here.

There are some similarities between this paper and the
paper by Kropp et. al. [16]: in the modal approach a wave
formulation was used in the direction perpendicular to
the test wall. The Kropp paper also has a “sketch” of a
combined modal and finite element approach, where the
wall is modelled by FEM and the sound field is described
by the modal approach. The coupling is to be performed
point-wise by means of a mobility matrix of the struc-
ture (determined in vacuum). However, the combined ap-
proach was not used in the paper. Kropp et. al. fulfilled
the boundary conditions by means of point collocation:
the modal amplitudes were adjusted so that the bound-
ary conditions were fulfilled in a finite number of discreet
points. The wall was described as a locally reacting mass
impedance, and no boundary losses were introduced (as
discussed above). Also Thomasson [11] formulated the
problem with a wave formulation in the direction perpen-
dicular to the test wall (and modes in the other directions).
He also assumed the wall to be a locally reacting mass
impedance, but avoided the use of point collocation. The
back-side wall, parallel to the test wall, was absorbing.
Other similar studies are Nilsson [9] and Gagliardini et
al. [12], who were interested in baffle effect.

The problem setup can be seen in Figure 1, with the test
wall in the x1x2-plane and the rooms and the perpendicu-
lar walls having infinite extension in the x3 direction. The
test wall has a total thickness d. The computational model
is verified by comparison with measurement (see section
3.3) and by a theoretical comparison with simplified mass-
law formulas (see the appendix section A2).

The paper is organised as follows: after the introduc-
tion in section 1 comes the theoretical section, starting
with a general description in section 2.1, the structural dis-
placement being primary described in FE-coordinates; the
model used for the rooms is presented in section 2.2; the
fluid-structure coupling is described in section 2.3, where
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Figure 1. The model. The normal vectors of the fluid regions, n1

and n2, point outwards.

the structural displacement is expressed in terms of the
fluid modes; in sections 2.4 and 2.5 the coupling expres-
sions so found are rewritten in terms of the FE-coordinates
primary used for the structure; the FE expressions are then
solved in sections 2.6 and 2.7; the excitation is discussed
in section 2.8; the power expressions used to calculate the
transmission loss are presented in section 2.9; the numer-
ical results are then presented in section 3, including a
description of the numerical procedures and comparisons
with measurements; then follows a short discussion of the
findings in section 4; and the paper ends with some con-
cluding remarks in section 5.

2. Theory

2.1. Problem description

The differential equation describing the structure in Figure
1 can be formulated as

Lsw = n1 p
e|x3=0

+ n1p
r|x3=0

+ n2p
t
∣

∣

x3=d
(1)

where

w = [w1 w2 w3]
T ,

n1 = [0 0 1]T , n2 = [0 0 − 1]T ,

and where Ls is the differential operator acting on the
structural displacement w. Moreover, pe is the excitation
pressure and pr the reflected pressure at the wall in the
source room and pt is the transmitted pressure in the re-
ceiving room. The normal vectors n1 and n2 are defined in
Figure 1. The pressures and displacements are assumed to
be in the linear range. A time dependency eiωt is assumed
and omitted (i =

√
−1), ω = 2πf being the angular fre-

quency. A finite element formulation of the structure, as
described in (1), results in a system with n equations of
motion (n is the number of degrees of freedom)

(−ω2Ms +Ks)u = f
e + fr + f t, (2)

whereMs andKs are the mass and stiffness matrices for
the structure (which are not to be discussed in the present
paper; we refer to standard FE-literature such as [36, 37],
for coupling between internal cavity and wall structure,
see [38]). The structural displacement w is related to the
FE nodal displacement vector u as

w = Nsu,

whereNs is the structural shape functions. Moreover, the
pressures are transformed to force vectors

f i =

∫

∂Ωj

NT
s njp

idS, (3)

where i = {e, r, t} and j = {1, 1, 2}. The integration
is performed on each side of the structure; i.e. ∂Ω1 is the
surface between the structure and the sending room and
∂Ω2 is the surface between the structure and the receiving
room (see Figure 1).

2.2. The rooms

The infinitely long walls perpendicular to the test wall
structure are assumed to be rigid. Hence, the boundary
condition

∂pi

∂x1

∣

∣

∣

∣

x1=0

=
∂pi

∂x1

∣

∣

∣

∣

x1=L1

=
∂pi

∂x2

∣

∣

∣

∣

x2=0

=
∂pi

∂x2

∣

∣

∣

∣

x2=L2

= 0 (4)

must be fulfilled. To meet this condition, the pressure field
is expanded by means of cosine modes. Thus, the pressure
field in the rooms is described by (letting ·̂ denote ampli-
tudes in the fluid mode coordinates)

pi(x1, x2, x3) =
∞
∑

m,n=0

p̂imnψ
i
mn(x1, x2, x3) (5)

with the shape functions

ψemn(x1, x2, x3) = ψnm(x1, x2)e
−κmnx3 (6a)

ψrmn(x1, x2, x3) = ψnm(x1, x2)e
+κmnx3 (6b)

ψtmn(x1, x2, x3) = ψnm(x1, x2)e
−κmn(x3−d) (6c)

where equations (6–b) are valid for x3 ≤ 0 and equation
(6c) is valid for x3 ≥ d, where d is the thickness of the
wall. The remaining common modal function are cosines

ψnm(x1, x2) = γmγn cos(αmx1) cos(βnx2) (7)

where αm = πm/L1, βn = πn/L2 and

κmn =
√

α2m + β2n − k2.

The modes in equation (7) fulfil the boundary condition in
equation (4), and thereby the boundary condition is also
fulfilled for the total pressure field. The wavenumber in
the air in the rooms is k = ω/cf , where ω is the angular
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frequency and cf the speed of sound in air. γm and γn
normalise the shape functions

γm =

{

1/
√
2 if m = 0

1 if m 6= 0 . (8)

(See also the appendix, section A1). The pressure distri-
bution at x3 = 0 or x3 = d is truncated and rewritten in
matrix notation

pi(x1, x2) ≈
M,N
∑

m,n=0

p̂imnψmn(x1, x2) = ψp̂
i, (9)

where the following vector notations are introduced in the
last equality:

ψ = [ψ11 · · · ψmn · · · ψMN ], (10a)
p̂i = [pi11 · · · pimn · · · piMN ]

T , (10b)

and where M and N are the number of terms used in x1-
and x2-directions in the truncated series expansions of the
pressures.

Note that the boundary conditions for the rooms can be
other than the rigid boundary conditions now used; other
duct modes applies as long as an orthogonality condition
can be found. However, the rigid boundary conditions are
of most practical interest and are easy to apply.

2.3. Fluid-structure coupling

The boundary conditions at x3 = 0 and x3 = d, connect-
ing the fluid fields with the structural field, are still to be
fulfilled. These boundary conditions are, for the sending
room

∂(pe + pr)

∂x3

∣

∣

∣

∣

x3=0

= ω2ρw3
∣

∣

x3=0
(11)

and for the receiving room

∂pt

∂x3

∣

∣

∣

∣

x3=d

= ω2ρw3
∣

∣

x3=d
(12)

where w3 is the structural displacement normal to the wall
in positive x3-direction. The pressure derivatives at x3 =
0 and x3 = d are

∂pe

∂x3
= −

∞
∑

m,n=0

κmnp̂
e
mnψ

e
mn(x1, x2), (13a)

∂pr

∂x3
=

∞
∑

m,n=0

κmnp̂
r
mnψ

r
mn(x1, x2), (13b)

∂pt

∂x3
= −

∞
∑

m,n=0

κmnp̂
t
mnψ

t
mn(x1, x2). (13c)

These derivatives are to be used in equations (11) and (12).
The structural vibrations is now expressed in terms of the

fluid modes,

w3|x3=0
=

∞
∑

m,n=0

û1,mnψmn(x1, x2), (14a)

w3|x3=d
=

∞
∑

m,n=0

û2,mnψmn(x1, x2). (14b)

Note here that the structure is primary described in terms
of the FE-coordinates, see equations (2), (16–b) and the
solution in section 2.6 – equation (14–b) is used just for
the fluid-structure coupling. Using equation (14–b), to-
gether with the derivatives in equation (13–c), inserted in
the boundary conditions equations (11–b), yields (if let-
ting the boundary condition be fulfilled for every term in
the infinite sums)

p̂rmn = ω2ρû1,mn/κmn + p̂emn, (15a)
p̂tmn = −ω2ρû2,mn/κmn. (15b)

A relation is thus found between the structural displace-
ments and the pressures. This relation must now be ex-
pressed in the FE-coordinates.

2.4. Description in terms of FE-coordinates

The relation between the structural vibrations expressed in
fluid modal coordinates and the finite element coordinates
may now to be derived. The structural displacements in
the x3-direction at the two sides of the wall can be written,
using the FE-coordinates u

w3|x3=0
= nT1w

∣

∣

x3=0
= nT1 (Nsu)

∣

∣

x3=0
, (16a)

w3|x3=d
= −nT2w

∣

∣

x3=d
=−nT2 (Nsu)

∣

∣

x3=d
.(16b)

(The sign in equation (16b) is due to the orientation of
n2.)The same displacements can also be expressed in
terms of the fluid modal coordinates,

w3|x3=0
=

M,N
∑

m,n=0

û1,mnψmn = ψû1, (17a)

w3|x3=d
=

M,N
∑

m,n=0

û2,mnψmn = ψû2. (17b)

Set equations (16-b) equal to equations (17-b), respec-
tively. Multiplying with ψT from left in these equations
and integrating over the surface ∂Ωj of the structure

∫

∂Ω1

ψT
nT1NsdSu =

∫

∂Ω1

ψTψdSû1 (18a)

−
∫

∂Ω2

ψT
nT2NsdSu =

∫

∂Ω2

ψTψdSû2 (18b)

The analytical fluid modes can be expressed as

ψ = Nf ψ̃, (19)

where ψ̃ is the discretisation of the analytical fluid modes
ψ, and Nf is the finite element shape functions used for
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the fluid. Using equation (19), the left part of equations
(18–b) can be written as coupling matricesH1 andH2,

H1 =

∫

∂Ω1

NT
s n1NfdS, H2 =

∫

∂Ω2

NT
s n2NfdS, (20)

which now are introduced. For the right part of equations
(18–b), making use of the orthogonality of ψnm(x1, x2)
yields

∫

∂Ωj

ψTψdS =
L1L2
4
I (21)

with I being the identity matrix (the orthogonality is more
elaborately treated in the appendix, section A1). Using
(19–21) the structural modal displacements can now be
written

û1 =
4

L1L2
ψ̃
T
HT
1 u, (22a)

û2 =−
4

L1L2
ψ̃
T
HT
2 u. (22b)

Thus, the structural displacement described in terms of the
fluid modal coordinates, û, is now related to the structural
FE-coordinates, u. The negative sign depends on the di-
rection of n2.

With the notation

Λ = diag([1/κ11 · · · 1/κmn · · · 1/κMN ]) (23)

where M and N are the number of terms used in x1- and
x2-directions in the series expansions of the pressures, the
reacting pressures, as described in equation (15–b), can be
written

p̂r = ω2ρ
4

L1L2
Λψ̃

T
HT
1 u+ p̂

e, (24a)

p̂t = ω2ρ
4

L1L2
Λψ̃

T
HT
2 u. (24b)

2.5. The force terms

The force terms in equation (2) was rewritten in the pres-
sures in matrix notation in equation (3). Making use of
equations (9) and (19–20), equation (3) can be rewritten

f i = Hjψ̃p̂
i (25)

Using (24–b) in equation (25) gives the force terms ex-
pressed in exciting pressure and structural displacements

fe = H1ψ̃p̂
e (26a)

fr = ω2ρ
4

L1L2
H1ψ̃Λψ̃

T
HT
1 u+H1ψ̃p̂

e (26b)

f t = ω2ρ
4

L1L2
H2ψ̃Λψ̃

T
HT
2 u (26c)

The first term in equation (26b) is due to the elastic scat-
tered field, and the second term is due to the geometrical
reflection of the incident field.

2.6. Solving for the displacement field

The equation of motion for the structure including the ex-
citing pressure and the fluid loading, equations (1–2) can
now be written in FE matrix notations, if discreticising the
fluid load according to equations (26–c). Introducing the
notations

D ≡ Ds +Df (27)

which are dynamic stiffness matrixes:Ds is the structural
dynamic stiffness matrix andDf is the fluid load dynamic
stiffness matrix, and they are

Ds = −ω2Ms +Ks

Df = −ω2ρ
4

L1L2

(

H1ψ̃Λψ̃
T
HT
1 +H2ψ̃Λψ̃

T
HT
2

)

.

Note that the dynamic stiffness matrixDs in case of a dou-
ble wall structure also contains the description of the wall
cavities, where the acoustic pressure is used as the primary
variable. These cavities do not couple to the pressure fields
in the rooms and are left out of the description for clarity.
A detailed description of the finite element model of the
double wall can be found in [15]. The excitation vector
can in a similar way be denoted

f = 2H1ψ̃p̂
e. (28)

The FE displacement vector of the structure can then be
found as

u = D−1f . (29)

2.7. Expressing solution in normal modes

In order to reduce computation time, the displacements
can be expressed in the m number of structural normal
modes Φs, found by eigenvalue analysis of the unloaded
structure, with m¿ n,

u = Φsξ (30)

were ξ is the yet unknown modal coordinates. The reduced
set of basis vectors for the coupled system, being the wall
structure and the interior wall cavities, is, for readability,
only described as structural modes. The basis vectors con-
sists, in reality, of both the in vacuo structural modes and
the analytical cosine modes describing the interior wall
cavities. The mode superposition is based on two assump-
tions. First, that the fluid pressure only excites the struc-
tural modes included in the reduction. And second, that the
finite element model has an upper frequency limit where
it ceases to be valid, the modes above this frequency being
non-physical [39]. Equation (30) inserted in (2) and (26b–
c) gives the reduced equations to solve, making use of the
notations

D̃ ≡ D̃s + D̃f (31)
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where

D̃s = −ω2φTsMsφs + φ
T
sKsφs

D̃f=−ω2ρ
4

L1L2
ΦT
s

(

H1ψ̃Λψ̃
T
HT
1 +H2ψ̃Λψ̃

T
HT
2

)

Φs

and further

f̃ = ΦT
s f . (32)

The displacement is now found as

u = Φs(D̃
−1f̃). (33)

2.8. Excitation pressure

In an actual measurement situation, the excitation is re-
alised by means of a loudspeaker in a certain position.
However, it can be argued that in a theoretical analysis
it is a better idea to use a diffuse sound field; e.g., the ba-
sic requirement of the sound transmission loss theory is
then met (a diffuse field is assumed in the power balance),
and the solution is not dependent on the position of the
loudspeaker, cf. [40].

In idealisation, a diffuse sound field is a field that con-
sists of an infinite number of uncorrelated plane progres-
sive waves, with their intensity uniformly distributed with
respect to direction. The diffuse field is statistically ho-
mogeneous and isotropic. For a single frequency analy-
sis (as the present), the idealised diffuse field consists of
an infinite number of uncorrelated single-frequency plane
waves, all with the same infinitesimal amplitude but with
the phase randomly distributed, and the waves arrive from
all directions with equal probability [41]. However, in the
present case, the exciting pressure must also fulfil the
boundary conditions in the room, equation (4). There are
thus two conditions to be fulfilled: the diffuseness and the
boundary conditions at the rigid walls. To meet these con-
ditions, the diffuseness condition must be released: not all
angles of incidence can be present. Thus, the excitation
pressure is described as in equation (5). However, only
plane progressive waves must be included. The condition
for the exciting wave to be a travelling wave in the x3-
direction is that k2 > α2m + β

2
n, so that κmn is imaginary.

Summing up all these conditions, the exciting pressure
coefficients then are found as

p̂emn =

{

ei2πθmn if k2 > α2m + β2n
0 if k2 < α2m + β2n

(34)

where θmn is a uniformly distributed stochastic variable
∈ [0, 1]. Thus, we will have a finite number of travelling
waves with random phase and at the same time fulfilling
the boundary conditions. For each calculation one repre-
sentation according to (34) is chosen. A Monte Carlo pro-
cedure is then used to yield an average response (or the
variance).

Alternatively, if only the average value is of interest, one
can then express equation (34) as

p̂emn =







1
Nmc

Nmc
∑

ν=1
ei2πθ

(ν)
mn if k2 > α2m + β2n

0 if k2 < α2m + β2n

(35)

where Nmc is the number of Monte Carlo simulations.

2.9. Transmission loss

The sound transmission loss (or sound reduction index) of
a wall is defined as

R = log10

(

1

τ

)

. (36)

The transmission coefficient, τ , is the quotient of real
power radiated from the plate to the receiver room over
real incident power, exciting the plate from the source
room,

τ =
<{Πt}
<{Πe}

. (37)

The incident power can be written

Πe =
1

2

∫

∂Ω

pe(iωwe3)
∗dS (38)

where iωwe3 is the acoustic velocity in x3-direction due to
the excitation pressure pe, and ·∗ denotes complex conju-
gate. The velocity can be written as

iωwe3 = iωψŵ
e
3 (39)

where

ŵe
3 = −

1

ω2ρ
Λp̂e. (40)

Expressing these quantities in finite element coordinates
pe = Nfp

e, the incident power can be written

Πe =
1

2

(−i
ωρ
Λp̂e

)

∗ ∫

∂ω

ψTψdSp̂e

= i
L1L2
8ωρ

(p̂e)∗(Λ−1)∗p̂e (41)

where for matrixes ·∗ denotes both transposed and com-
plex conjugate. The displacement on the receiving room
side in the x3-direction can be written we

3 = −n2Nsus
The transmitted pressure pt can be calculated from equa-
tion (24–b) and the transmitted power becomes

Πt = −
2

L1L2
(iωu)∗ω2ρHT

2 ψ̃Λψ̃
T
HT
2 u

=
i2ω3ρ

L1L2
(u)∗HT

2 ψ̃Λψ̃
T
HT
2 u. (42)

The Transmission loss R in equation (36) is then easily
calculated using equations (37), (41) and (42). The result
can then be integrated to third octave band values in order
to compare with measurements (see section 3.3).
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Table I. Material data. For the different notations, see [2, 42].

Wall studs:
E 15 GPa
µ 0.10
ρ 500 kg/m3

Plaster boards:
E 3 GPa
µ 0.10
ρ 720 kg/m3

Screw connection:
K 500 kN/m

Air:
ρ0 1.21 kg/m3

c0 340 m/s
P0 1.01 · 105 Pa
γ 1.4

η 1.84 · 10−5

Porous material:
φ 0.99

σ 1000 Ns/m4

α∞ 1

B2
0.71

Λ 1.92 · 10−4 m
Λ
′

3.84 · 10−4 m

3. Numerical results

The proposed prediction approach is used to evaluate the
sound transmission loss, first, of a single plasterboard and,
second, of two different double walls, where also com-
parison with measurements found in the literature is per-
formed.

3.1. Numerical implementation and data

The material properties used for both the single and the
double walls can be found in Table I.

The double walls studied are constructed using wooden
wall studs covered with plasterboards and with absorbtion
material in the wall cavities (see Figure 3). The length
of the wall in the numerical model is 4.05 m and the
height is 2.5 m. The plasterboard plates have a thickness of
12.5 mm, using two together on each side of the wall (no
shear or viscous connection is present between the plates).
Wooden wall studs are used, with a width of 45 mm and a
thickness of 45 or 95 mm. The distance between the studs
are 0.6 m. The absorption material inside the wall – in the
real structure mineral wool with the same thickness as the
studs (i.e., the cavity is full of mineral wool) – is modelled
as an equivalent fluid as described by Allard [42, p. 92].
The screw connection between the plasterboard and wall
stud is modelled as flexible, using spring elements for the
in-plane (of the plate) deformation for each screw connec-
tion. The stiffness used is given in Table I, and the other
deformation directions in the connection are assumed to
be rigid. A loss factor η = 0.02 is introduced for the
structural domain. The boundary conditions of the struc-
ture were simply supported (for each sub-plate).

The analysis is performed in the frequency range from
45 Hz to 700 Hz. The finite element model of the wall
is shown in Figure 4. The plasterboards and wall studs are
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Figure 2. Sound transmission loss of a single plaster board, solid line
calculated and the two dotted lines are the mass law, equation (43),
with the wave incidence angle of 90◦ (top line) and 45◦ (bottom
line). The dashed lines (close to the solid line) is the mean ± the
standard deviation.

modelled using 4 node shell elements and a modal (cosine)
description is used for the cavities between the wall studs
inside the wall. All cavity modes below 1000 Hz are in-
cluded in the analysis. The finite element model of the wall
consists of 22 000 degrees of freedom and the 800 low-
est structural eigenmodes are included in the reduction of
the system in equation (31). The analysis is conducted in
MATLAB [43]. However, in order to speed up the calcu-
lations, the structural eigenvalue problem is solved using
MSC.Nastran [44] (not including the cavity of the wall).
The FE-model is shown in Figure 4.

3.2. Single-leaf wall

The transmission loss (TL) for a wall consisting of a sin-
gle plasterboard is studied, see Figure 2. The standard de-
viation of the TL due to stochastic excitation (the random
phase angles in equation (34), evaluated with Monte Carlo
simulations) is plotted. The results are compared to the
mass law with the wave incidence angle of 90◦ and 45◦.
The mass law used is

R = 10 log10

(

1 +
ω2m′′2 cos2 θ

4ρ20c
2
0

)

, (43)

where m′′ is the mass per unit area of the wall and θ is the
incidence angle , see e.g. [2, p. 546].

3.3. Double-leaf wall – comparison with measurement

The transmission loss of two double walls with different
wall stud thickness, and therefore also total thickness, is
evaluated and compared with measurements, see also Fig-
ures 3 and 4. The measurements, found in [45], were per-
formed in an ordinary transmission loss laboratory accord-



8 Author: J. Brunskog and P. Davidsson
A C U S T I C A · acta acustica

Vol. – (–)

Figure 3. Sketch of the double walls with wooden joists studied in
Figures 5 and 6.

Figure 4. FE model of the double walls studied in Figures 5 and 6.

ing [34] (the measurement opening is 4× 2.5 m2 whereas
the room dimensions are 6× 3.5× 6.3 m3).

In the analysis, the modulus of elasticity of the plaster-
boards is varied, being 2, 2.5 or 3 GPa. The transmission
loss for the wall stud thickness 45 mm is plotted in Figure
5 and for the wall stud thickness 95 mm in Figure 6.

3.4. Computational efficiency

The main aim of the present prediction model approach is
to be more time-efficient than ordinary FE-models. Thus,
the approach proposed in the present paper is compared
to a FE-analysis including full modal descriptions of the
sending and receiving rooms. In this analysis the rooms
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Figure 5. The transmission loss for a double wall with thickness 45
mm, comparing calculations and measurements.
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Figure 6. The transmission loss for a double wall with thickness 95
mm, comparing calculations and measurements.

have the height and width equal to the studied wall and
the length perpendicular to the wall is 4.91 m for the send-
ing room and 5.2 m for the receiving room. All walls of the
rooms are assumed rigid. The number of degrees of free-
dom – i.e., the size of the equation system – needed for the
two types of analysis are plotted against the maximum fre-
quency of interest in Figure 7. The number of degrees of
freedom increases rapidly when including the modal de-
scription of the rooms. For the tube-like description of the
rooms, the number of degrees of freedom are only deter-
mined by the the eigenmodes of the wall. In Figure 8, the
computational time for one frequency step of the analy-
sis is plotted against the maximum frequency of interest
of the solution. The solid lines are the total time for each
step, and the dotted lines are the time for actually solving
the derived system of equations. The proposed approach
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Figure 7. The number of degrees of freedom needed in the analysis:
the present tube-like description of the sending and receiving room
compared to a full modal analysis.
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Figure 8. The computational time: the present tube-like description
of the sending and receiving room compared to a full modal anal-
ysis. The solid lines are the total time for each step and the dotted
lines show the time for solving the derived equation system.

has a larger part of matrix manipulations in each step, but
the solution time (the dotted line with circular markers) is
much smaller. The total computational time to calculate
the transmission loss for a double wall in the studied fre-
quency range is a matter of hours – not days. The analyses
are performed in MATLAB [43] on a computer with an
1.4 GHz AMD Athlon processor and 1 GB RAM.

4. Discussion

Figure 2 shows both the transmission loss and the standard
deviation of the transmission loss are plotted: only a mi-
nor variation around the average value can be seen. Thus,
the influence of the random phase angle is very small.
The roughness in the curve is due to the resonances in the

structure and rooms; the calculation is performed for the
single frequencies.

In Figures 5 and 6, the uncertainties involved in choos-
ing material parameters – the Young’s modulus E is var-
ied between 2 and 3 GPa – are seen to have a large in-
fluence on the predicted transmission loss. However, the
agreement between calculations and measurements is rea-
sonably good if the uncertainties in the input data and the
difference in measurement and analysis situation are taken
into account. Note that no tuning or measurement of the
input data has been done.

With use of the present prediction model the transmis-
sion loss can be evaluated efficiently, compared to the full
FE-model including the modal description of the sending
room and receiving room, cf. [13, 14, 15]. With increas-
ing frequency of interest, as can be seen in Figure 7, the
full modal description leads to a much faster increase of
the number of degrees of freedom needed to describe the
system. Using the full FE-model also means that a spe-
cific room-wall-room system must be chosen and studied.
Thus, the calculated transmission loss is dependent on the
geometrical properties of the rooms. One drawback with
the present approach is that the sparsity of the structural
system matrix D is lost due to the fact that all degrees
of freedom describing out-of-plane motion at respective
sides of the wall become coupled (i.e. the coupling ma-
trix, Df , is fully populated at all these degrees of free-
dom). Thus, the bandwidth thereby becomes equal to the
number of the degrees of freedom describing the out of
plane motion at each side of the wall, compared for the
uncoupled structural problem where the bandwidth is lim-
ited to the number of connecting degrees of freedom in
each element and the node numbering.

5. Concluding remarks

The present approach is a combination of the normal mode
methods, as [4, 5, 6, 7, 8, 9, 10, 11, 12] and the finite
element method (FEM), as [13, 14, 15]. The sender and
receiver rooms are applied to the structure as a load ex-
pressed in cosine-modes.

It can be concluded that the proposed procedure is
computation-effective compared with the traditional alter-
native of including the entire fluid fields in the FE-model;
a reasonable frequency range is achieved with a modest
computational time. However, this positive effect is gained
along with a loss of sparsity of the structural system ma-
trix – i.e., the bandwidth of the matrix is increased – due
to coupling between the degrees of freedom on each side
of the wall.

The detailed description of the wall that can be accom-
plished due to the finite element formulation enables the
prediction of the transmission loss for changes in wall
properties. For example, the effects of varying the wall
stud dimensions or stiffness of the fasteners between the
plasterboards and the wall studs can be studied, as well as
the effects of the wall area in combination with baffling.
Also, the procedure can be used in predicting the change
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in transmission loss due to uncertainties in the material,
geometrical, and boundary properties.

Regarding computational efficiency, large benefits
could be achieved in implementing the procedure in an
efficient finite element environment (e.g. MSC.Nastran).
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Appendix

A1. Orthogonality

The orthogonality relations for the fluid modes ψnm are
examined. In connection to the fluid structure coupling in
section 2.4, the following integral matrix appears:

∫

∂Ωj

ψTψdS. (A1)

One element of this matrix is
∫

∂Ω

ψnm (x1, x2)ψpq (x1, x2) dS

= γnγmγpγq

L1
∫

0

cos (αmx1) cos (αpx1) dx1

×
L2
∫

0

cos (βnx2) cos (βqx2) dx2. (A2)

Using αm = πm/L1 and betan = πn/L2, the first inte-
grals in (A2) can be written

L1
∫

0

cos

(

πm

L1
x1

)

cos

(

πp

L1
x1

)

dx1

=







0 if n 6= p
L1/2 if n = p 6= 0
L1 if n = p = 0

(A3)

and a corresponding equation can be written for the second
integral. Thus, if n 6= p or m 6= q the matrix element is

zero, and if else, that is n = p and m = q, we have
∫

∂Ω

ψ2mn (x1, x2) dS

= γ2nγ
2
mL1L2







1/4 if n 6= 0 and m 6= 0
1/2 if n = 0 or m = 0
1 if n = 0 and m = 0

(A4)

and thus is the definition of γm in equation (8) correct in
connection to the orthogonality relations used in equation
(21).

A2. A special case – normal incident wave

To verify the model a simple test problem is constructed.
The wall is assumed to be a SDOF system, a rigid plate
with an area of 1 m2 and mass of m kg/m2 connected to
a spring with the stiffness k(1 + iηs) kN/m3 where η is
the loss factor of the system. The natural frequency of the
wall becomes f0 =

√
λs/(2π) =

√

k/m/(2π) with the
structural eigenmodeΦ = [100100 ...100]T . The normal
incident wave is the first wave in the series expansion, with
the pressure distribution at the wall, i.e. x3 = 0, written in
matrix notation ψ = [0.5 0.5 ... 0.5]T . The amplitude of
the excitation wave is p̂e. Reducing the system using the
eigenmodes and noting that ψ̃

T
HT
1Φ = LxLy/2 = 1/2

and Λ = 1/κ00 = −i(cf/ω). The system can now be
written

(−ω2m+ k + 2iωρcf )û = p̂e

and therefore

û =
p̂e

(−ω2m+ k + 2iωρcf )
(A5)

The complex exciting and transmitted powers become

Πe =
|p̂e|2
8ρfcf

(A6)

and

Πt =
ω2ρcf
2

|p̂e|2
|(−ω2m+ k + 2iωρcf )|2

(A7)

and the transmission coefficient can therefore be written

τ =
<{Πt}
<{Πe}

=
4ω2ρ2c2f

(−ω2m+ k)2 + (2ωρcf )2
(A8)

Choosing the natural frequency of the structure close to
zero, the transmission corresponds to the mass law for nor-
mal incident waves

R = log10

(

1 +
ω2m2

4ρ2c2

)

(A9)
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