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Overview of the thesis

This thesis investigates structure-acoustic problems, which involve a flexible structure
coupled to an enclosed acoustic fluid. In the literature, this type of problem is usually
referred to as vibroacoustic problems or structure-acoustic problems with fluid interaction.
The thesis consists of two parts. The first part provides an introduction into the field
of structure-acoustic analysis within the finite element framework. The second part of
the thesis comprises six papers in which analysis procedures and application examples for
structure-acoustic systems are developed.

Included papers

Paper 1 P-A. Hansson1, and G. Sandberg, Mass matrices by minimization of modal
errors, International Journal for Numerical Methods in Engineering, 40, 4259-
4271(1997)

Paper 2 G. Sandberg, P-A. Hansson1, M. Gustavsson, Domain Decomposition in
Acoustic and Structure-Acoustic Analysis, Computer methods in applied me-
chanics and engineering, 190, 2979-2988(2001)

Paper 3 P-A. Wernberg, G. Sandberg, A symmetric time-stepping scheme for coupled
problems, WCCM V congress in Vienna, 2002.

Paper 4 P-A. Hansson1 and G. Sandberg, Dynamic Finite Element Analysis of Fluid-
filled Pipes, Computer methods in applied mechanics and engineering, 190,
3111-3120(2001)

Paper 5 P. Davidsson, J. Brunskog, P-A. Wernberg, G. Sandberg and P. Hammer,
Analysis of sound transmission loss of double-leaf walls in the low-frequency
range using the finite element method, Building Acoustics, 11, 239-257(2004)

Paper 6 P-A. Wernberg, G. Sandberg, The Finite Element Method as a design instru-
ment for room acoustical environment., Report TVSM-7144, Division of Struc-
tural Mechanics, Lund University,(2006)

1Name changed to P-A Wernberg due to marriage.
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V

Summary of papers

Paper 1 A new approach to constructing mass matrices is presented, based on use of
a variable parameter. This allows the mass matrix to be adjusted in such a
way that a simple eigenvalue problem gets the best solution possible in terms
of some error measure. This procedure is used to create both diagonal mass
matrices and mixed mass matrices.

Paper 2 Finite element analysis in acoustics, structure-acoustics, and structure-hydro-
acoustic engineering applications leads to large systems of equations, and is
still a challenge to current high performance computer systems. The demands
for extremely large models are due to large physical domains or the desire to
resolve high frequency levels, at least as long as the different modes are sepa-
rated, say to 500 Hz. This obviously calls for small elements. It is therefore
of great interest to have procedures for domain splitting, fluid-structure and
fluid-fluid, thus splitting the analysis procedure into smaller problems. Use of
multiple processing also lies down the road. Furthermore changes in design
often affect only part of the geometry, thus, only that particular domain needs
to be recalculated, for instance in the case of sound quality engineering. The
interest and efforts put into numerical methods related to fluid-structure inter-
action are still spreading. This applies both to engineering application studies
and applied mathematical issues related to the topic. A reduction procedure
of the structure and multiple fluid domains is exercised. The coupled problem
is formulated as a symmetric standard problem. A subsequent analysis in the
time domain can be performed on a subset of the eigenmodes.

Paper 3 In a particular class of coupled problems, the resulting coupled set of equations
is unsymmetrical. In this paper a simple procedure for introducing a symmet-
ric effective stiffness matrix using implicit time stepping procedures in fluid-
structure problems, is proposed. As long as the time step is kept constant, the
factorization of the effective stiffness matrix only needs to be performed once.
The numerical example shows that cpu time and memory utilization decrease
with the proposed formulation.

Paper 4 A finite element model for studying fluid-filled pipes is developed by combining
an axisymmetric shell element and a one-dimensional fluid element and taking
the interaction between shell and fluid into account. Both a symmetric and an
unsymmetric element have been developed and evaluated numerically.

Paper 5 The sound transmission loss of double-leaf walls in the low-frequency range is
evaluated by means of structure-acoustic finite element analysis. A parametric
study is performed to investigate the influence on the sound transmission loss of
various material and geometric properties of the wall and the dimensions of the
connecting rooms. It is found that a very detailed description of the system is
needed in order to describe sound transmission loss in the low-frequency range.
The model confirms the importance of primary structural resonance and the
size of the wall and the connecting rooms in determining the sound transmission
loss in the low-frequency range.



VI

Paper 6 Room acoustic design is an important area to study. It affects many people’s
daily life, especially with the increasing number of sources of noise. This paper
discusses how tools like the finite element method could be used in the low
frequency range to improve designs. The fact that the geometric description
of the structure could be very exact, and also modified easily in the model,
makes it an attractive tool in the design process. Combined with theories for
how stochastic variables could be incorporated in the analysis, a discussion
about how these techniques could be used is conducted through a couple of
application examples. The result is not a complete tool, ready to be used, but
the start of discussion of how such a tool could look like.
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Chapter 1

Introduction

This thesis treats simulation of structure-acoustic systems. The introduction gives the
background and objective for the thesis and also describes a number of applications where
this type of analysis can be employed. The typical procedure of structure-acoustic analysis
is discussed, including the generation of the governing system of equations.

The introduction also contains a description of the work conducted, as based on the
included papers where the main contributions of the included papers to this thesis are
stated.

The next chapter contains a short theoretical introduction to the basic equation in-
volved, as well as a more detailed background to the theories about the analysis procedures
in some of the papers.

In the third chapter some concluding remarks and future prospects are given.

1.1 Background

Situations where acoustic and structure-acoustic analysis is of great importance are found
in a number of applications. First, to define the term structure acoustic analysis, one
usually refers to problems where the behaviour of the acoustic domain is influenced by the
structure, and vice versa, the structural behaviour is influenced by the acoustic domain.
The problem is said to be coupled, in opposite to e.g. an acoustic problem, where the
structural vibrations are imposed to the acoustic domain as a boundary condition.

Two common applications for acoustic and structure-acoustic analysis is the passenger
compartments in automobiles and aircraft. The increased use of light-weight materials in
these vehicles usually makes it even more complicated to achieve good passenger comfort
in terms of low level of interior noise. When the weight of the structure is reduced, the
dynamic vibrations could be increased and that could lead to higher noise levels. Other
applications where structure acoustic analysis is of interest is in light-weight constructions
of buildings and in mobile phones, to mention but a few.

In all these situations the designer wants be able to predict the acoustic behavior of
the product at an early design stage. To be able to do so, numerical analysis of the
structure acoustic equations has to be conducted. The most commonly used method in
these situations is the finite element method.

1



2 CHAPTER 1. INTRODUCTION

The interior noise comfort, or the acoustic performance of a speaker in a mobile phone
is often in conflict with other important aspects of the product. In the car case it could
be e.g. crashworthiness and in case of the mobile phone it could be space or rather lack
of space. In these complex design situations it is very important to have accurate and
efficient numerical tools that can help the engineers to test different designs and to find
a good solution.

1.2 Objective

In this thesis, the coupled structure-acoustic problem is studied using the finite element
method. The systems studied here are limited to those that consist of an enclosed acoustic
fluid cavity, which is coupled to a flexible structure. The objective is twofold: to develop
the analysis methods and to study engineering applications.

An important aspect of structure-acoustic analysis is that the number of degrees of
freedom often becomes very large. This is mainly due to the fact that the wavelengths
of the acoustic fluid and structure must be properly resolved in the finite element model.
At higher frequencies the wavelength becomes very short and that in turn leads to very
small elements to be able to resolve this short wavelength. This, and the fact that the
structure-acoustic system is unsymmetric in the most simple formulation, calls for better
solution strategies and decomposition methods.

Anther goal of this thesis is to use the derived procedures in engineering applications.
In the last part of the thesis room acoustical problems are studied. Sound transmission loss
of lightweight double-leaf walls in the lower frequency range are studied. The objective is
to include all the geometric details of the structure and to see how different configurations
of the structure influences on the sound transmission loss. The last paper discusses the
possibility to use the finite element method as a tool in room acoustic design. The
objective is to discuss possible scenarios where room acoustical modelling could benefit
from using the finite element method.

1.3 Problem description

Finite element analysis of structure-acoustic systems is applicable to a wide range of
engineering problems. Some of these applications will be illustrated here. Figure 1.1
shows results from an analysis of a room with flexible walls from Paper 2. The results are
from both a full system and a reduced system. The example from this paper shows that
with the reduction technique presented the model can be substantially reduced without
too much deterioration in the results. Another example is an analysis of a pipe from
Paper 4. The problem is reduced to an axisymmetric model, leading to a great reduction
in model size.

A third example is from a building acoustic application. Figure 1.3 shows an analysis
of a double room with a flexible wall that divides the room from Paper 5. The analysis
is a fully coupled structure-acoustic analysis, but a reduction technique has been used to
decrease the model size.
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Complete system Reduced system

10.17 Hz 9.67 Hz

16.48 Hz 16.55 Hz

Figure 1.1: Mode shapes for a enclosed cavity with a flexible wall. The smaller part of the
cavity is 3 by 4 meters and the larger part is 5 by four meters. The first two modes for
the full system are shown to the left and those for a reduced system to the right.

0.083

1.
08

6 
m

Figure 1.2: Straight copper pipe filled with water, having a length of 1.083 m, a diameter
of 83 mm and a pipe-wall thickness of 3 mm.(left) The first four eigenmodes of the pipe
are shown.(right)
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Figure 1.3: Building acoustics: The acoustic behaviour of double leaf walls is studied in
the low frequency range. The figure shows the frequency response to a point source in the
room-wall-room system simulating the measurement setup used for determining the sound
reduction index of the wall.

1.4 The development of this thesis

The common denominator in the included articles is that the equations of interest are
the coupled structure-acoustic equations and that these equations are solved using the
finite element method. The comprising articles treat a wide spectra of applications, but
all have these basic equations as a common base. In paper 1 the possibility of a new way
of constructing diagonal mass matrices is discussed. This is an important aspect of time-
stepping schemes when solving dynamic problems. It is also important in the solution
procedures presented in paper 2 and paper 3. In a thesis by Carlsson [18], he also pointed
out that in some of the formulations of the fluid-structure systems he studied, a diagonal
mass matrix could be very beneficial and that a numerical study of such matrices would
be of interest.

In paper 2 a new domain decomposition method for structure-acoustic systems is
presented. This paper together with paper 3 deals with a new solution strategy for
coupled problems. Both aim at developing new theories for coupled structure-acoustic
equations. In paper 4 fluid filled pipes are studied. The industrial application of these
pipes could be in submarines but also in nuclear power plants and chemical industries.
Again the basic equations are the coupled structure-acoustic equations. The last two
papers both deal with room acoustical applications in the low frequency range. In paper
5 a parametric study of double-leaf walls is conducted. In paper 6 the ideas from paper 5
are developed further and ideas how these could be used in the industrial building process
are presented. To summarize this, paper 1, 2 and 3 deal with theory development, whereas
paper 4, 5 and 6 deal with different industrial applications.

In paper 1, 3 and 4 the author of this thesis carried out both the planning and writing
of the papers as well as the numerical implementations and calculations. In paper 2 the
own contribution was the numerical implementation and calculations and together with
the coauthors the writing of the article. In paper 5 the contribution was on the numerical
implementation and in the discussions of the writing of the paper. In the paper 6 all
numerical implementations and calculations were carried out by the author. The writing
of this paper was also done by the author of the thesis.



Chapter 2

Structure-acoustic analysis

This chapter investigates the analysis of structure-acoustic systems, here limited to sys-
tems consisting of a flexible structure in contact with an enclosed acoustic cavity, within
the finite element environment. A short literature review is presented here which focuses
on the need for this type of analysis and where different formulations in the finite el-
ement analysis are discussed. In the sections following, the governing equations of the
structure-acoustic problem are given and the finite element formulation of this problem
is derived.

2.1 Literature review

The field of structure-acoustic interaction is a thoroughly investigated field of research,
see for example Cremer et al. [1], and Fahy [2]). In [3, 4, 5, 6, 7, 8, 9], the structure-
acoustic problem is studied using analytical expressions for the two domains. It is evident
that the two connecting domains, the flexible structure and the enclosed acoustic cavity,
can be strongly coupled and in that case the structure-acoustic system must be studied
in a coupled system to evaluate the natural frequencies and the response to dynamic
excitation.

The systems often have complex shapes, making analytical solution procedures im-
possible to use. Numerical methods must be employed. A review of different solution
strategies for structure-acoustic problems is given by Atalla [10]. He discusses booth an-
alytical methods and two numerical approaches, namely the finite element method and
the boundary element method. The development of structure-acoustic analysis using the
finite element method for the study of vehicle interior noise is reviewed by Nefske et al.
[11]. A basic introduction to the finite element method is given in, Ottosen and Petersson
[12]. A more thorough investigation of the finite element method is found in, for example,
the cited works of Bathe [13] or Zienkiewicz and Taylor [14], while a focus on dynamic
problems is provided in Clough [15] or Chopra [16].

The formulation of coupled structure-acoustic problems using the finite element meth-
od is described, for example, in [17, 18, 19, 20]. The size of the system of equations
describing the motion is equal to the number of equations describing the motion. An
important property is the sparsity of the system matrices, i.e. only a few positions in
these matrices are populated. This property results in that the time for solving the

5



6 CHAPTER 2. STRUCTURE-ACOUSTIC ANALYSIS

system of equations is much shorter, compared to solving a fully populated system of
equations with equal size.

The primary variable in the structural domain is displacement. For the fluid domain,
several different primary variables can be used to describe the motion. The most ob-
vious choice is acoustic pressure, since the acoustic wave equation often is formulated
with pressure as primary variable. This leads to the most compact system of equations
possible. However, the coupled system of equations is unsymmetric. The pressure formu-
lation was used in [21, 22] to determine normal modes and eigenvalues of complex shaped
rigid-wall enclosures and also in [23] to study the transient response of structure-acoustic
systems. A two-field formulation, with structural displacements and fluid potential func-
tion is achieved with only one degree of freedom per fluid node. The derived system
of equations using pressure or displacement potential yields an unsymmetric system of
equations. A fluid velocity potential can also be used, where a matrix proportional to
velocity is introduced [24]. This system is symmetric, but to achieve that a term that
corresponds to a damping matrix has been introduced. To solve the structure-acoustic
eigenvalue problem using the two field formulation, one needs an eigenvalue solver that
either can handle unsymmetric matrices or can solve quadratic eigenvalue problems. Solv-
ing these problems are more computational intensive compared to solving the generalised
eigenvalue problem for symmetric systems [25].

In order to achieve a symmetric system of equations describing the structure-acoustic
system, a three field formulation with structural displacement, fluid pressure and fluid
displacement potential can be used [26, 27]. By condensation of one of the fluid potentials,
a symmetric two field system of equations can be achieved [18]. However, the system
matrices then lose the positive property of being sparse.

Another possibility is to describe both the structural and fluid domains with displace-
ment as variable. That means that the domains can be described with the same type of
solid elements. The fluid domain has no shear stiffness and normal modes with pure ro-
tational motion are introduced. All rotational modes should have the eigenvalue equal to
zero. However, spurious non-zero, and thereby non-physical, modes are introduced when
using full integration of the solid element. Reduced integration can be used to make all
eigenvalues of rotational modes equal to zero [28]; however, due to the reduced integra-
tion, the hourglass modes can interact with the correct modes, thereby giving spurious
modes with the same frequencies as the correct ones. In [29], the element mass matrix
was modified to account for this and the eigenvalue of all spurious modes becomes zero.
A mixed displacement based finite element formulation was presented by Bathe [13], also
removing the spurious modes.

Different types of methods for model reduction are often employed in structure-
acoustic analysis. The most commonly used method is to reduce the system using the
normal modes for the structural and fluid domains, derived in separate eigenvalue analysis
of the two subdomains [30, 31]. In a paper by Sandberg [32], the un-symmetric eigen-
value problem, achieved when using the structural displacement and fluid pressure as
primary variables, is made symmetric using the subdomain modes and matrix scaling.
Reduction methods using component mode synthesis were also proposed in, for example,
[33, 34]. In the thesis by Carlsson [18], the Lanczos procedure was used in investigating
structure-acoustic problems.
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2.2 Governing equations and finite element formula-

tion

For the structure-acoustic system, the structure is described by the differential equation of
motion for a continuum body assuming small deformations and the fluid by the acoustic
wave equation. Coupling conditions at the boundary between the structural and fluid
domains ensure the continuity in displacement and pressure between the domains. The
governing equations and boundary conditions was described in detail by Carlsson [18].
The variables and material parameters are defined in the following sections, where also
the finite element formulation of this coupled problem is derived.

The structure-acoustic problem schematically sketched in figure 2.1. It consists of a
fluid domain, Ωf , and a structure domain, Ωs. The boundary between the fluid domain
and the structure domain is denoted, ∂Ωsf , the fluid boundaries with prescribed pressure,
Ωp, with prescribed velocity, Ωv, and with a prescribed impedance, Ωz.

sf

Fluid

Structure

∂Ω

∂Ω v

∂Ω
p

Z

∂Ω

Figure 2.1: Linear elastic structure filled with a compressible fluid.

2.2.1 Acoustic fluid domain

The governing equations for an acoustic fluid are derived using the following assumptions
for the compressible fluid [18]:

• The fluid is inviscid.

• The fluid only undergoes small translations.

• The fluid is irrotational.

These assumptions lead to the nonhomogeneous wave equation in a bounded fluid domain
Ωf and enclosed by a boundary surface ∂Ωf .

∂2p

∂t

2

− c2

0∇
2p = c2

0

∂q

∂t
(2.1)

Here p(t) is the dynamic pressure, q(t) is the added fluid mass per unit volume and
c0 is the speed of sound. ∇ denotes a gradient of a variable.
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In order to define the pressure field in the fluid domain Ωf , one boundary condition
must be specified at each position on the closed boundary surface ∂Ωf :

imposed pressure p = p̄ on ∂Ωp (2.2)

imposed normal velocity vn = v̄n on ∂Ωv (2.3)

imposed normal impedance p = Z̄vn on ∂ΩZ (2.4)

The finite element formulation of equation (2.1) is derived by multiplying with a test
function, v, and integrating over the volume Ωf .

∫

Ωf

v

(

∂2p

∂t

2

− c2

0∇
2p − c2

0

∂q

∂t

)

dV = 0 (2.5)

and with Green’s theorem the following weak formulation is achieved

∫

Ωf

v
∂2p

∂t

2

dV + c2

0

∫

Ωf

∇v∇pdV = c2

0

∫

∂Ωf

v∇pnfdS + c2

0

∫

Ωf

v
∂q

∂t
dV (2.6)

where the boundary normal vector nf points outwards from the fluid domain. The finite
element method approximates the pressure field according to

p = Nfp (2.7)

where p contains the nodal pressures, and Nf contains the finite element shape functions
for the fluid domain. According to Galerkin the weight functions is then chosen to be the
same as the shape functions, i.e.

v = Nfc (2.8)

where c is the nodal weights and Nf contains the finite element shape functions for the
fluid domain. Inserting this into equation (2.6) and noting that c is arbitrary gives

∫

Ωf

NT
f NfdV p̈ + c2

0

∫

Ωf

(∇Nf )T
∇NfdV p =

= c2

0

∫

∂Ωf

NT
f ∇pnfdS + c2

0

∫

Ωf

NT
f

∂q

∂t
dV

(2.9)

The system of equations for an acoustic fluid domain can then be written as

Mf p̈ + Kfp = fs + fq (2.10)

where

Mf =

∫

Ωf

NT
f NfdV

Kf = c2

0

∫

Ωf

(∇Nf )T
∇NfdV

fs = c2

0

∫

∂Ωf

NT
f ∇pnfdS

fq = c2

0

∫

Ωf

NT
f

∂q

∂t
dV

(2.11)
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2.2.2 Boundary terms

The second term on the right hand side in equation (2.10) is the excitation vector due to
an external acoustic source. If this acoustic source is a point source of strength q̄ located
at node i, the source distribution q is

q = q̄δi(xi, yi, zi) (2.12)

where δ is the Dirac delta function at node i.
The first term on the right hand side in equation (2.10) depends on the boundary

conditions. The integration over the boundary surface ∂Ω can be seen as a sum of the
integrations over the subsurfaces ∂Ωp, ∂Ωv and ∂ΩZ

The boundary with imposed normal velocity will lead to the following term

fv = c2

0

∫

∂Ωv

ρNf v̄dS (2.13)

The boundary with the impedance condition leads to a matrix expression, actually a
damping matrix

Cf =

∫

∂ΩZ

ρĀNT
f NfdS (2.14)

This term is an analogy the case of a beam an elastic foundation that also leads to a
contribution on the left hand side of the matrix equation. Equation (2.10) becomes

Mf p̈ + Cf ṗ + Kfp = fs + fq (2.15)

2.2.3 Structural domain

The structure is described by the equation of motion for a continuum body. The finite
element formulation is derived with the assumption of small displacements.

The equation of motion can be written as

(∇̃
T
σ − ρS

∂2us

∂t2
+ b)dV = 0 (2.16)

To arrive at the finite element formulation for the structural domain, the weak form
of the differential equation is derived. This can be done by multiplying equation (2.17)
with a weight function, v = [v1 v2 v3]

T , and integrating over the structural domain, Ω,

∫

Ωs

vT (∇̃
T
σ − ρS

∂2us

∂t2
+ b)dV = 0 (2.17)

Using Green-Gauss theorem on the first term in equation (2.17) gives

∫

Ωs

vT
∇

T
σdV =

∫

∂Ωs

(v)T tdS −
∫

Ωs

(∇̃v)T
σdV (2.18)

The surface traction vector t is related to the Cauchy stress tensor, S, by

t = Sns (2.19)
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where ns is the boundary normal vector pointing outwards from the structural domain
and the Cauchy stress tensor is defined by

S =





σ11 σ12 σ13

σ22 σ23

sym. σ33



 (2.20)

In matrix notations the stresses can be written

σ =

















σ11

σ22

σ33

σ12

σ13

σ23

















(2.21)

.
The weak form of the problem can then be written

∫

Ωs

vT ρs

∂2us

∂t2
dV +

∫

Ωs

(∇̃v)T
σdV −

∫

∂Ωs

(v)T tdS −
∫

Ωs

vT bdV = 0 (2.22)

The finite element approximations of the displacements, d, is introduced by

us = Nsd (2.23)

where Ns contains the finite element shape functions for the structural domain. The
relations between the displacements and strains, can be written

ε = ∇̃us (2.24)

For an isotropic material, the stresses and strains are related by the constitutive matrix
D given by

σ = Dε (2.25)

where

D =

















λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

















(2.26)

The Lamé coefficients, λ and µ, are expressed in the modulus of elasticity, E, the shear
modulus, G, and Poisson’s ratio, ν by

λ =
νE

(1 + ν)(1 − 2ν)
(2.27)

µ = G =
E

2(1 + ν)
(2.28)
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Using these relations, the strains can be expressed as

ε = ∇̃Nsd (2.29)

The weight functions are choosen according to Galerkin

v = Nsc (2.30)

This gives the finite element formulation for the structural domain, when described as a
continuum body

∫

Ωs

NT
s ρsNdV d̈ +

∫

Ωs

(∇̃Ns)
T D∇̃NsdV d =

∫

∂Ωs

NT
s tdS +

∫

Ωs

NT
s bdV (2.31)

and the governing system of equations can be written

Msd̈ + Ksd = ff + fb (2.32)

where

Ms =

∫

Ωs

NT
s ρsNsdV

Ks =

∫

Ωs

(∇̃Ns)
T D∇̃NsdV

ff =

∫

∂Ωs

NT
s tdS

fb =

∫

Ωs

NT
s bdV

(2.33)

2.2.4 The coupled structure-acoustic system

The dynamic coupling of the different domains, structure and fluid, is fulfilled by assuming
continuity of the fluid displacements and structural displacements in the normal direction
to the interface. Introducing the normal vector n = nf = −ns, the displacement boundary
condition can be written

usns|∂Ωsf
= ufnf |∂Ωsf

(2.34)

and the continuity in pressure
σ|n = −p (2.35)

where p is the acoustic fluid pressure. The structural stress tensor at the boundary ∂Ωsf

thus becomes

S = −p





1 0 0
0 1 0
0 0 1



 (2.36)

and the structural force term providing the coupling to the fluid domain, ff (in equation
(2.32)), can be written

ff =

∫

∂Ωsf

NT
s (−p)





1 0 0
0 1 0
0 0 1



nsdS =

∫

∂Ωsf

NT
s npdS =

∫

∂Ωsf

NT
s nNfdSp (2.37)
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Note that the structural boundary normal vector ns is replaced with the normal vector n

pointing in the opposite direction. The force acting on the structure is expressed in the
acoustic fluid pressure.

For the fluid partition the coupling is introduced in the force term fS (in equation
(2.10)). Using the relation between pressure and acceleration in the fluid domain

∇p = −ρ0

∂2uf (t)

∂t2
(2.38)

and the boundary condition in equation (2.34), the force acting on the fluid can be
described in terms of structural acceleration

nT
∇p|∂Ωsf

= −ρ0n
T ∂2uf

∂t2
|∂Ωsf

= −ρ0n
T ∂2us

∂t2
|∂Ωsf

= −ρ0n
T Nsd̈|∂Ωsf

(2.39)

and the boundary force term of the acoustic fluid domain, fS , can be expressed in struc-
tural acceleration

fs = −c2

0

∫

∂Ωfs

NT
f nT

∇pdS = −ρ0c
2

0

∫

∂Ωfs

NT
f nT NsdSd̈ (2.40)

The introduction of a spatial coupling matrix

Hsf =

∫

∂Ωsf

NT
s nNfdS (2.41)

allows the coupling forces to be written as

ff = Hsfp (2.42)

and
fs = −ρ0c

2

0H
T
sf d̈ (2.43)

The structure-acoustic problem can then be described by an unsymmetrical system of
equations

[

Ms 0

ρ0c
2
0H

T
sf Mf

] [

d̈

p̈

]

+

[

Ks −Hsf

0 Kf

] [

d

p

]

=

[

fb
fq

]

(2.44)

This system is studied through out this thesis.
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2.3 Mass lumping

2.3.1 Introduction.

Mass matrices used within the finite element method can be derived in many different
ways. In the early days of the finite element method it was common to just place particle
masses, mi, at nodes i of an element such that

∑

mi became the total element mass.
Particle ‘lumps’ had no rotary inertia unless rotary inertia was arbitrarily assigned, as
sometimes was done for the rotation degrees of freedom of beams and plates. This method
of generating mass matrices, called ad hoc lumping, is probably the most intuitive lumping
method. More sophisticated lumping methods have been developed since then.

One of the advantages of lumped mass matrices is that they are diagonal. This prop-
erty could be utilized in many situations, e.g. in fluid structure interaction problems
where in some formulations the mass matrix has to be inverted. There are also some time
stepping schemes for solving dynamic problems, where a diagonal mass matrix is very
beneficial, e.g. in the central difference method.

In this chapter the different methods to calculate mass matrices are described , e.g.
lumping by nodal quadrature, row-sum technique, special lumping technique, consistent
diagonal and lumping by minimization of modal errors. Later mixed matrices are dis-
cussed, i.e. combinations between lumped and consistent mass matrices, and finally fre-
quency dependent mass matrices are described. Both of these methods create full matri-
ces.

2.3.2 Consistent and non-consistent mass matrices.

The consistent mass matrix is based on the same shape functions as the stiffness matrix

Mc =

∫

Ω

NT ρNdV (2.45)

The lumping procedure of a mass matrix can be seen when the standard shape func-
tions, Ni, are substituted by piecewise linear functions, N̄i and Eq. (2.45) is replaced
by

Ml =

∫

Ω

N̄T ρN̄dV (2.46)

in which N̄i are non-overlapping functions covering the whole element. It is the fact
that the functions are non-overlapping that makes the matrix in Eq. (2.46) diagonal.
There are infinite possibilities to chose such an approximation. For convergence, it can
be shown that only three conditions must be satisfied

N̄i = 1 at xi

N̄i = 0 at xj
∑

N̄i = 1
(2.47)

Example of shape functions can be seen in Figures 2.2 and 2.3.
The non-consistent mass matrices could be divided into diagonal mass matrices and

“mixed mass matrices”. The latter are combinations of the consistent mass matrix and a
lumped mass matrix and therefore not diagonal, but often yields more accurate solution
than consistent mass matrices.
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1 2

2

1 2 3

1 2 3

1 2 3

1

N1

N1

N̄1

N̄1

N2

N2

N̄2

N̄2

N3

N̄3

Figure 2.2: Shape functions for linear and parabolic elements.

2.3.3 Mass lumping by nodal quadrature

The idea of nodal quadrature is to use the nodes as integration points in the numerical
integration formula. Normally we would have used Gauss points according to Gauss
integration rules, and because more than one shape function in an element has a non-zero
value at the gauss points, off-diagonal terms are generated. The formula for the mass
matrix at element level is

me
ij = δij

∫

NaρNb dΩ

∼= δij

neq
∑

c=1

Na(ξc)ρNb(ξc)J(ξc)Wc

=

{

δijρJ(ξa)Wa a = b

0 a 6= b

(2.48)

where J(ξa) is the Jacobian evaluated in the points ξa, i.e. in the nodes, and Wa is the
weight function for each integration point. In short, this formula means that the mass
matrix is evaluated with the same numerical procedure, only the integration points are
chosen to coincide with the nodes, and this choice makes the off-diagonal terms vanish.
A theory of nodal quadrature is presented in [35] which describes under what conditions
the nodal quadrature mass matrix is convergent and retains full order of accuracy. If p
is the highest degree of the shape function Ni, and m is the highest order of derivative
in the strain energy expression, then the mass matrices lumped with the quadrature rule
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NiNi
N̄iN̄i

i ii i

Figure 2.3: Linear and piecewise constant shape functions for a triangle.

with degree of at least 2(k − m) will yield comparable accuracy and convergence with
the consistent mass matrix. Mass matrices lumped this way are often called “optimally
lumped”. The method has, however, some drawbacks. For some element types, e.g. the
two-dimensional eight node quadrilateral, the method produces negative entries in the
lumped matrix. This can’t be handled by standard eigenvalue solvers, and could also
cause some non-physical behavior. Another problem could occur when trying to lump
axisymmetric elements. In that case one obtains zero masses along the axis of symmetry.
This is also a problem for eigenvalue solvers, because the mass matrix becomes indefinite.
A third problem is elements with rotational degrees of freedom, e.g. beam elements.
When nodal quadrature is used on these elements, one obtains block-diagonal matrices,
which are of less importance here.

2.3.4 Row-sum technique

As the name row-sum technique implies, the entries in each row are summed and lumped
on the diagonal. This can be formulated as

me
ij =







δij

∫

Ωe

ρNa dΩ a = b

0 a 6= b

(2.49)

One drawback of the method is that it produces negative masses for some elements, e.g.
the two-dimensional eight node quadrilateral.

2.3.5 Special lumping technique

The idea behind this method is to use only the diagonal terms of the consistent mass
matrix, but to scale them in such a way that the total mass of the element is preserved.
The method was developed by Hinton, Rock and Zienkiewicz [36], and is therefore often
called the ’HRZ scheme’. One advantage of the method is that it always produces positive
definite lumped mass matrices. The formula is

me
ij =







αδij

∫

Ωe

ρN2

a dΩ a = b

0 a 6= b

(2.50)
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where

α =

∫

Ωe

ρ dΩ

nen
∑

a=1

∫

Ωe

ρN2

a dΩ

=
total element mass

sum of diagonal entries associated
with one translational degree of
freedom

(2.51)

Note that all diagonal entries from the consistent mass matrix are scaled in the same
way, including entries that are asociated with rotaitonal degrees of freedom. The special
lumping technique is the only method that works on arbitrary elements, and even though
no mathemtical theory of the method has been presented it is a very robust method.

2.3.6 Consistent diagonal mass matrix

Another possibility is described by Sauer [37], who has developed consistent diagonal mass
matrices for the four-node quadrilateral and the eight-node hexadron elements. The idea
behind this method is to add a contribution to the standard shape functions which make
the off-diagonal entries vanish in the mass matrix. For the four-node element the shape
functions look like

N1 = 0.25
[

1 − (1 − α)ξ − αξ3
] [

1 − (1 − α)η − αη3
]

N2 = 0.25
[

1 + (1 − α)ξ + αξ3
] [

1 − (1 − α)η − αη3
]

N3 = 0.25
[

1 + (1 − α)ξ + αξ3
] [

1 + (1 − α)η + αη3
]

N4 = 0.25
[

1 − (1 − α)ξ − αξ3
] [

1 + (1 − α)η + αη3
]

(2.52)

The equations above contain a free parameter which has to be determined. The expres-
sions for the off-diagonal terms of the mass matrix are used, and α is selected so that
these terms become zero, i.e.

∫

ρNiNjdΩ = 0 i 6= j (2.53)

Finding such a value of the parameter α, however, is only possible if one chooses a 2 by 2 in-
tegration scheme. In that case one obtains for the four-node element, α = −1.5(1 −

√
3).

A projection on the x-axis of the element shape functions N1 and N2 can be seen in Figure
2.4.
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1

10

0

ξ

Figure 2.4: Projection on the ξ-axis of shape functions N1 (above) and N2 (below). Dashed
line is consistent shape function and solid line is shape function according to Sauer.

For the eight-node volume element the shape functions are expanded in the same way
as for the four-node element.

However, there is one thing to observe. This method gives diagonal mass matrices
but it also gives other stiffness matrices than the standard shape functions would have
done. In fact, this difference in the stiffness matrices seems to be the major reason why
this method gives good results in eigenvalue analyses, see [37].

2.3.7 Mixed mass matrices.

Since consistent mass matrices overestimate the natural frequencies, whereas lumped mass
matrices usually underestimate them, a linear combination of the two can yield more
satisfactory results. Let

Mmix = (1 − γ)MC + γML (2.54)

where the formulation for the lumped mass matrix corresponds to γ = 1 and that for the
consistent mass matrix to γ = 0. All other possible values of γ correspond to a ‘mixed
matrix’.

This procedure can be seen as combining the shape functions of each element from
the consistent and the lumped matrix into a single function, see [38] and [39]. Various
mixed shape functions for a linear bar element are shown in Figure 2.5

2.3.8 Freqency dependent mass matrices.

So far, a freqency independent approach to discretize the model has been described.
This leads, both in the consistent and non-consistent mass matrix formulations, to the
eigenvalue problem

(K − ω2

nM)Xn = 0 (2.55)
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In the freqency dependent approach, however, it is assumed that the finite element shape
functions depend on the unknown frequency ω. This means that the element shape
function could be written

N = (N0 + ωN1 + ω2N2 + ...) (2.56)

This results in a quadratic eigenvalue problem

[K0 − ω2M0 − ω4(M2 − K4) − ...]X = 0 (2.57)

There are different ways of solving a quadratic eigenvalue problem, but as a general rule it
always takes more computational effort to solve such a problem as compared to a standard
eigenvalue problem. This disadvantage has to be weighed against the improved accuracy
of the eigen frequencies. The method has not been implemented in any commercial finite
element program.

To see that a standard eigenvalue problem of a continuous body actually is an approx-
imation of the frequency dependent problem, we can rewrite Eq. (2.55)

[

−ω2

[

Mbb Mbi

Mib Mii

]

+

[

Kbb Kbi

Kib Kii

]]{

ub

ui

}

= {0} (2.58)

where ub are the selected degrees of freedom in the model, and ui are the dependent
degrees of freedom, which we want to eliminate. If we solve for ui

ui = −(−ω2Mii + Kii)
−1(−ω2Mib + Kib) {ub} (2.59)

the resulting eigenvalue problem for the chosen degrees of freedom is

[

−ω2Mbb + Kbb − (−ω2Mbi + Kbi)(−ω2Mii + Kii)
−1(−ω2Mib + Kib)

]

{ub} = {0}
(2.60)

which implies an eigenvalue problem of the form

[

A − ω2B − ω4C...
]

{ub} = {0} (2.61)

where A, B and C are functions of the original partitioned matrices in 2.58. Since a
discretized dynamic problem is a reduced set of the continuous structural formulation,
the standard eigenvalue problem is just an approximation of the frequency dependent
problem in 2.57

[K0 − ω2M0 − ω4(M2 − K4) − ...]X = 0 (2.62)

In the numerical investigation the frequency dependent approach will not be tested.
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Figure 2.5: Shape functions for a linear bar element. Above is a consistent element, in
the middle a lumped element and below a mixed element.
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2.4 Dynamic analysis of piping systems

2.4.1 Introduction.

Cylindrical pipes are widely used in industrial applications, such as e.g. nuclear plants
and pressure industries, and the vibrations that occur in these pipes are of great interest
to the designer. The dynamic behaviour includes both transient excitation, e.g. caused
by pressure pulses, and steady-state excitation caused by unbalanced rotating machinery,
e.g. pumps.

These piping systems can be very large and an analysis of these systems using a three-
dimensional model is often very inconvenient. Therefore simplified approaches must be
used to analyze these systems. The first thing to decide is whether the analysis should
be coupled or not , i.e. if the fluid-structure interaction should be taken into account.
An approximate approach would be to perform the analysis in two steps; first the fluid
response is calculated assuming that the structure is rigid and then the structural response
is calculated due to the calculated fluid pressures. In most cases this approach yield a
conservative estimate of the structural response, but there are also cases when a significant
resonance between the fluid and the structure occurs and then coupled analysis must be
evaluated. In this study a model including the effects of fluid structure interaction will
be developed.

When analyzing pipes it is wise to first study vibration patterns for cylindrical shells,
seen in Figures 2.6, 2.7 and 2.8.

The vibration corresponding to n = 0 in Figure 2.7 is often called the breathing mode.
This mode is the dominant mode in cases with fluid transients, i.e pressure pulses, and
the coupling between shell and fluid is strong. The next mode in Figure 2.7, n = 1, is
called the beam-bending mode. As can bee seen from the figure, this mode does not
involve any cross-section area change, i.e. no coupling occurs and the contained fluid
only acts as an added mass. The beam-bending mode is usually the dominant aspect in
low-frequency vibrations in piping systems. The next modes, n = 2(ovalization), n = 3
etc. are more complex in their forms and will not be studied further in this report. The
coupling between fluid and structure in these modes are not as strong as for the breathing
mode. In Figure 2.6 the axial mode pattern associated with the radial vibration modes are
shown, and in Figure 2.8 the axially vibration pattern corresponding to the beam-bending
mode, n = 1, in Figure 2.7 are shown.

Figure 2.6: Axial displacement mode shapes of a circular pipe.

Low-frequency steady-state vibrations.

For low-frequency dynamic excitation of fluid-filled piping systems, the pipes responds
only in their beam modes, n = 1 and not in lobar modes, see Figures 2.7 and 2.8.



2.4. DYNAMIC ANALYSIS OF PIPING SYSTEMS 21

n = 0 n = 1 n = 2

n = 3 n = 4

Figure 2.7: Cross-sectional radial displacement mode shapes of a circular pipe.

Figure 2.8: Beam bending mode shapes of a circular pipe.

Except for the inertial effect the fluid-structure coupling is assumed to occur only at
the pipe bends. This means that the finite element model can be built in the following
way. Beam elements are used to model both the straight pipe-sections and the elbows.
Due to the fact that the pipe bend is more flexible than an equivalent length of a straight
pipe either a flexibility factor could be used with the ordinary beam elements or special
elbow elements could be used to compensate for the bend effect. The acoustic fluid inside
the pipe is usually modeled with one-dimensional acoustic elements. This kind of analyses
can be done with a standard finite element program for structural analysis if the material
constants for the fluid is adjusted. The fluid elements are modeled with structural rod
elements and are assigned the actual mass density ρ for the fluid and the Youngs modulus
E is given by

E = B/(1 + 2rB/Est) (2.63)

where B is the fluid bulk modulus, r is the mean radius of the pipe, Es is the Youngs
modulus of the pipe material and t is the pipe wall thickness. The denominator in
Eq. 2.63 is a corrective factor which account for the elasticity of the pipe. The reactive
pressure from the fluid affects the structure at the pipe bends. The fluid displacements are
constrained to move with the corresponding structural points in the transverse direction,
meaning that the fluid acts as an added mass to these vibrations. In the axial direction
the fluid is free to slide relative to the beam. This model has proven to be valid for
frequencies up to about one half of the lowest acoustic eigenfrequency.
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Figure 2.9: Pipe with acoustic fluid, where the fluid can be seen as spring-connected
masses, free to move along the pipe in the axial direction but constrained to move with
the pipe in the radial direction.

2.4.2 Transient analysis of fluid-filled pipes.

The transient response of fluid-filled pipes is usually referred to as waterhammer. Wa-
terhammer involves large transient pressure pulses which may damage the pipe and its
components. These pressure pulses are generated by e.g. rapid closing or opening of
valves, or by stopping and starting pumps. In conventional waterhammer analyses pipe
elasticity is not incorporated in the propagation speed of the pressure waves. This could
be acceptable for rigid accord pipes but for less restrained systems the fluid structure
interaction may become of importance. This means that a system of coupled equations,
one set for the fluid with the pressure as the primary variable and one set for the struc-
ture with displacement as the primary variable, has to be solved simultaneously. Three
different liquid-pipe coupling mechanisms can be distinguished; friction coupling, Poisson
coupling and junction coupling. Friction coupling represents the mutual friction between
the liquid and the pipe. This phenomena is not included in the present study. The Pois-
son coupling relates the pressure in the liquid to the axial stresses in the pipe through the
radial contraction or expansion of the pipe wall. It is associated with the breathing, n=0
in Figure 2.7. Whereas friction and Poisson coupling act along the pipe, junction coupling
acts at specific points in the piping system such as e.g. bends. When a junction has the
possibility to move in the axial pipe direction, which is the direction of the pressure wave,
mutual forces between fluid and pipe system may interact, which is known as junction
coupling.

A procedure called the method of characteristics, MOC, is often used when solving
waterhammer equations where the pressure pulse is of primary interest, but in situations
where one is interested in both the pressure wave and the structural behavior of the pipe,
it could be convenient to use the finite element method to solve the equations.

The effects of fluid structure interaction are problem dependent, the calculations in-
cluding fluid structure interaction may or may not lead to higher pressures and stresses.



Chapter 3

Concluding Remarks and

Contributions

This introduction was intended to give the reader a short background to the six different
papers that comprises this thesis. Both in terms of trying to explain how the articles
are connected to each other, and also to give a deeper general background to the field
of structure-acoustic analysis and to give a detailed background to two special topics,
namely mass lumping and transient analysis of fluid filled pipes.

The overall aim of the work presented in this thesis has been to develop analysis meth-
ods and to study engineering applications within the field of structure acoustic analysis.
This is a quite general goal, and to be more precise the most important results of the
work can be summarised in the following items:

• A new method for mass matrix lumping was developed in paper 1, applicable to
many dynamic finite element problems

• In paper 2 a new domain decomposition method was developed for structure acoustic
problems.

• In paper 3 a new solution method for a special case of coupled problems was pre-
sented.

• In paper 4 a method for a simplified analysis procedure of fluid-filled pipes was
discussed.

• In paper 5 and in paper 6 the finite element method was used to study room acousti-
cal problems in the low frequency range. Several examples showed the usability of
the method in these papers.

Naturally the field of structure-acoustic analysis is not ready as a research field. There
are many things yet to be investigated. Better solution methods, better methods to model
materials and damping. Methods that make it possible to conduct the analysis at a higher
valid frequency limit. These examples all deal with new methods. But there are also things
to be done using existing methods, only using them in a new way, as in paper 6. This
paper is only suggestion for a starting point for these procedures, much more work needs
to be done in this field.

23
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ABSTRACT

A new approach to constructing mass matrices is presented, based on expressing it through use of a variable
parameter. This allows the mass matrix to be adjusted in such a way that a simple eigenvalue problem get
the best solution possible in terms of some error measure. This procedure is used to create both diagonal
mass matrices and mixed mass matrices. ? 1997 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997)
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1. INTRODUCTION

Mass matrices used in the �nite element method can be derived in many di�erent ways. In the early
days of the �nite element method, it was common to simply place particle masses, mi, at nodes
i of an element in such a way that

∑
mi became the total element mass. These particle ‘lumps’

had no rotary inertia unless rotary inertia was arbitrarily assigned, as was sometimes done for the
rotational degrees of freedom of beams and plates. This method of generating mass matrices, called
ad hoc lumping, is probably the most intuitive of all lumping methods. Better lumping methods
have been developed since then. One of the advantages of lumped mass matrices is that they are
diagonal. This property can be utilized in many situations, in which they need to be inverted.
For solving dynamic problems, there are also various time-stepping schemes for which a diagonal
mass matrix is very advantageous.
A theoretically sounder approach to calculating the mass matrix than ‘ad hoc lumping’ was

introduced by Archer.1 Although Archer made no explicit mention of the term ‘�nite element’, he
introduced a technique for calculating distributed mass in
uence matrices that is still in use today
within the framework of the �nite element method. Archer expressed structural velocities as the
product of displacement interpolation functions and generalized velocities. Inserting this expression
into the general formula for kinetic energy, he obtained a consistent mass matrix. When one speaks
of a consistent mass matrix today, one usually refers to its having been calculated using the same
shape functions as the sti�ness matrix and as the other terms in the �nite element equations. With
the formulation of consistent mass matrices it was possible to establish convergence criteria for

∗ Correspondence to: Per-Anders Hansson, Division of Structural Mechanics, Lund University, PO Box 118, SE-221 00
Lund, Sweden

CCC 0029–5981/97/224259–13$17.50 Received 23 December 1996
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eigenvalues obtained from �nite element equations. These criteria were found to represent the
upper bounds of the exact solution.
Przemieniecki2 showed that the concept of consistent mass matrix could be improved however,

by using frequency-dependent shape functions to describe the structural motions. This idea was
developed further by Gupta,3 who generalized Przemieniecki’s approach for two and three dimen-
sions. Gupta’s the so-called dynamic element method has the serious drawback, however, that it
results in a quadratic eigenvalue problem which cannot be solved by means of standard numerical
techniques. This disadvantage is probably a major reasons for the dynamic element method not
coming into widespread use in the �nite element community, although Gupta et al.4 have described
a technique for solution of quadratic matrix equations requiring approximately the same computing
time as the standard linear eigenvalue problem. Despite this, the earlier conceptions of lumped and
frequency-independent consistent mass matrices are still dominant in �nite element analysis.
One way to obtain accuracy almost as great as that of frequency-dependent mass matrices is

to combine a consistent mass matrix with a lumped mass matrix, preserving the mass by scaling
the two matrices appropriately. This technique has shown to provide good results in eigenvalue
analyses of many di�erent element types, see References 5 and 6.
Although one might think that, because of its better theoretical foundations the consistent mass

matrix would be the only type used in practice, such is not the case. As already indicated, there are
time-stepping schemes such as the central di�erence method that require a diagonal mass matrix
for their e�ciency to be fully exploited. There are also cases in which a lumped mass matrix
leads to better results than a consistent mass matrix does.
One of the simplest methods of obtaining a diagonal mass matrix is to sum all the entries in each

row of the consistent mass matrix and to then store the sums in the corresponding diagonal matrix
positions, the o�-diagonal terms being set to zero. Although it is a simple method, this so-called
row-sum technique has certain drawbacks: �rst that it cannot be applied to rotary mass terms,
secondly, that it produces negative diagonal entries in the mass matrix if it is applied to elements
having mid-side nodes, and thirdly that the whole consistent mass matrix must be computed �rst.
Another method of obtaining diagonal mass matrices is to use nodal quadrature integration

rules. This involves using the nodes as integration points in the numerical integration scheme used
to compute the mass matrix. Although this procedure has the advantage of generating no o�-
diagonal terms, it likewise has drawbacks. It generates block-diagonal mass matrices for elements
with rotational degrees of freedom and, if used for elements having mid-side nodes, it generates
negative entries in the diagonal. For other elements the method has been shown to have the same
convergence rate as the consistent mass matrix, see References 7–9.
A method that always generates positive de�nite mass matrices was proposed by Hinton et al.10

Their approach is to scale the diagonal entries of the consistent mass matrix in such a way that
the total mass is preserved and to then insert these scaled masses into the diagonal of the lumped
mass matrix.
Sauer, see Reference 11, has suggested a di�erent way o� computing a diagonal consistent

mass matrix. His approach is to add a sort of bubble-function to the normal shape functions,
a function so constructed that the o�-diagonal terms in the mass matrix vanish when the numerical
integration is performed. However, this method is only applicable to a limited number of elements,
e.g. to isoparametric four node elements.
In the present study another possibility is suggested. This involves varying the diagonal entries

in the lumped mass matrix so as to minimize the error present in the eigenfrequencies, or to
minimize the error contained in some other measure, using a simple geometry. The mass matrix

Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997) ? 1997 John Wiley & Sons, Ltd.
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con�guration with the smallest error is then chosen. Each diagonal entry is linked with a node.
Through isoparametric mapping these masses are scaled in a manner appropriate for a given
element that is distorted.

2. PRESENTATION OF THE METHOD

The method just referred to can be used to generate optimized diagonal mass matrices for elements
with quadratic shape functions, as well as optimized mixed mass matrices.

2.1. Diagonal mass matrices

One expresses the mass matrix here using a variable relevant to the mass distribution within the
element, one solves a simple eigenvalue-problem with one element or a small number of elements
in a simple geometry. This simple eigenvalue-problem has to be solved a number of times for
each value of the mass scaling variable that controls the mass distribution within the element. The
variable is varied over a range of values allowing an error curve for the mass variable  to be
obtained. The error measure used here is the frequency error

�1 =
(

N∑
i=1

|fi − �fi|
|fi|

)/
N (1)

where fi is the analytical frequency, �fi the computed frequency, and N the number of eigen-
frequencies considered.
This yields a curve in which the error measure is a function of the mass parameter  . From

this curve the most appropriate mass matrix can be selected.
Due to the attempt being made here to optimize the mass matrix in the undeformed parent

domain, the method is ine�ective for linear elements. For such elements all standard methods give
the same results, namely that each node has the same portion of mass associated with it.
For elements having quadratic shape-functions, on the other hand, the mass matrices that standard

methods for mass lumping yield for various elements di�er also in the parent domain. Accordingly
since di�erent portions of the mass can be associated with the various nodes it is meaningful to
use a method of this sort to generate mass matrices, as the numerical examples will indicate.
The isoparametric mapping solves the problems connected with the scaling of the mass asso-

ciated with each node. The transformation is performed on the area or volume that is lumped to
a particular node, see Figure 1.
When dealing with linear elements, one can use these same principles, so as to create optimized

mixed mass matrices instead, as is taken up in the next section.

2.2. Mixed mass matrices

Since consistent mass matrices overestimate the natural frequencies whereas lumped mass
matrices usually underestimate them, a linear combination of the two can yield more satis-
factory results. Let

Mmix = �MC + �ML (2)

where � and � are the weighting parameters for the consistent and the lumped matrix, respectively.

�+ �=1 (3)

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997)
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Figure 1. The mass associated with each node is proportional to the shaded area. This area is mapped to the global domain
by isoparametric transformation

Figure 2. Shape functions for a linear bar element. Above is a consistent element, in the middle a lumped element and
below a mixed element

This procedure can be seen as combining the shape-functions of each element from the consistent
and the lumped matrix into a single function, see References 5 and 11. Various mixed shape
functions for a linear bar element are shown in Figure 2.
Instead of using � and �, one can also express the mixed mass matrix as

Mmix = (1− 
)MC + 
ML (4)

where the formulation for the lumped mass matrix corresponds to 
=1 and that for the consistent
mass matrix to 
=0. All other possible values of 
 correspond to a ‘mixed matrix’. The method of

Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997) ? 1997 John Wiley & Sons, Ltd.
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minimization of the modal errors can be applied to mixed matrices through varying the parameter 

in equation (4).

3. NUMERICAL EXAMPLES

A comparison of di�erent types of mass matrices will be presented in this section. The objective is
not simply to examine how adequately the method that is suggested performs, but also to examine
how adequately other methods behave.
In denoting the weighting parameters,  refers to diagonal matrices and 
 to mixed matrices.

3.1. Diagonal matrices

In this section mass matrices for a one-dimensional quadratic bar element and a two-dimensional
quadratic acoustic element are tested.
For a quadratic bar element with equal spacing between nodes, see Figure 3, the consistent and

the lumped mass matrix, respectively, are

Mc =
�AL
30


 4 2 −1
2 16 2
−1 2 4


 (5)

Ml =
�AL
6


 1 0 0
0 4 0
0 0 1


 (6)

The lumped mass matrix can be expressed in a manner allowing the lumping to be varied. If
the element mass is distributed at the nodes in the manner shown in Figure 3, the total element
mass m is preserved if

�=1− 2 (7)

Accordingly, the lumped mass matrix can also be written as

Ml( )= �AL



 0 0

0 1− 2 0

0 0  


 (8)

All the standard methods here yield  = 1
6 .

Figure 3. A three-node bar element with di�erent masses associated with each node

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997)
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Figure 4. Frequency error, �1, for di�erent number of eigenvalues, N , used in equation (1). The model involves of four
degrees of freedom

As a numerical example involving this type of element, consider a bar with one end �xed and
the other end free. An eigenvalue analysis of this system is performed using di�erent types of
mass matrices. The computed eigenvalues are compared then with the analytical ones.
The analytical eigenfrequencies for this problem are

!i=
�
2L

√
E
�
(2i − 1); i=1; 2; 3 : : : (9)

Note that the frequency error �1 varies with the matrix type, i.e. with di�ering values of  . The
result is shown in Figure 4.
As can be seen, the frequency error �1 depends on the number of frequencies comprising the

sum. If one is only interested in the fundamental frequency, the optimal  is the same as obtained
for standard methods of lumping.
An eight-node isoparametric quadratic element is also examined. In searching for a parameter to

express the mass matrix here, one should note that if the mass associated with every corner node
in the parent domain is  , and the mass associated with every mid-side node is �, the following
condition must be satis�ed

�=
1− 4 
4

(10)

The element and the areas associated with each node are shown in Figure 5. The shaded areas
correspond to the corner node masses.
In endeavoring to optimize  for a single eight-node element, one obtains curves such as

those shown in Figure 6. Di�erent curves are obtained for the di�erent values of N contained in
equation (1). For N =1, i.e. for the fundamental frequency, the curve has a minimum for  =0·030,
the optimal value for N =4 being  =0·017. If all the frequencies are used, i.e. for N =8 the
minimum is for  =0·192. For a single undistorted element, the special lumping technique yields
 =0·0278 and the equal lumping technique  =0·25.

Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997) ? 1997 John Wiley & Sons, Ltd.
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Figure 5. Allocation of Ni in a two-dimensional quadratic isoparametric element. Shaded area refers to Ni =1 for the
corner nodes, and white area refers to Ni =1 for midside nodes

Figure 6. Errors in frequency vs. mass parameter  for a quadratic element

In Figure 7, a element with the mass con�guration corresponding to  =0·017 is compared with
elements obtained for other lumping schemes. As can be seen, the proposed lumping scheme in
which  =0·017 has the best convergence rate of all the lumping methods. The special lumping
scheme performs nearly as well. Equal lumping shows the worst performance of the methods tested
here.
An eight-node element involving distortion is tested next, see Figures 8 and 9. All the methods

are numerically stable when the mesh is distorted. An observation of interest is that when the

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997)
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Figure 7. Error in frequency vs. mode number in a 12-element model

Figure 8. Mesh for 8-node distorted elements

distortion angle increases, the accuracy of the diagonal consistent method and of the special lump-
ing method increases as well, see Figure 9.
How the number of elements per wavelength a�ects the error-curves is likewise investigated.

In the curve for N =1 in Figure 6, two elements are used per wavelength. Figure 10 in which
curves for N =1 are shown for di�erent numbers of elements per wavelength, one observe that
the minimum moves towards  =0 when the number of elements is increased.
Thus, if the fundamental frequency is the dominant aspect of a problem, the proper choice of  

would be  =0. With this choice, one concentrates the masses in the midside nodes. The number
of unknowns in the problem can then easily be reduced by means of static condensation.

3.2. Mixed matrices

As an illustrative example, consider a bar �xed at one end. First we note how the frequency
error varies with the mode number for the di�erent matrix types, see Figure 11. As expected, one
can observe that the consistent mass matrix overestimates the eigenfrequency and that the lumped
mass matrix underestimates it. The mixed matrix is somewhere in between. The shape of this
curve varies with the weighting parameter 
, and also to some extent with the number of elements
employed. As evident in the �gure, the mixed matrix gives better results than either the consistent
or the lumped mass matrix.

Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997) ? 1997 John Wiley & Sons, Ltd.
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Figure 9. Frequency error vs. distortion angle for a quadratic 8-node element

Figure 10. Error curve for di�erent number of elements per wavelength for quadratic 8-node element

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997)
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Figure 11. (a) Bar of length L, �xed at one end, and (b) Frequency error vs. mode number in a ten element model

Table I. Suggested con�gurations of mixed mass matri-
ces for a linear bar element

Form Value of 


Lumped 1
Averaged 0·5
Ki-Ook Kim5 0·4
Stavrinidis et al. 6 0·25
Consistent 0

Next, the dependency of the frequency error �1 on the parameter 
 in a mixed matrix is examined.
Note that for N =1 the curve for the frequency error has a minimum at 
≈ 1

4 . For this element-
type, the minimum can also be derived analytically, see Reference 6. Note also that the minimum
of the error curve is dependent upon how many eigenvalues are used in the calculation of e.g. �1. In
some cases, when only the lower eigenvalues are of interest, one can optimize the mass matrix to
whatever number of eigenvalues is desired. Other authors have suggested values of 
 in accordance
with Table I. If one compares this table with Figure 12 one can observe that the values in Table I
are in the range of 0·25–0·5, which is exactly where the curves in Figure 12 have their minima. It
is important here that one knows which frequency range is of interest, since one can then choose
a value for 
 that suits one’s needs.
The same type of tests that were made for the bar element can be carried out for the two-

dimensional acoustic element. Observe �rst the error in the eigenfrequency vs. the mode-number,
as shown in Figure 13.
Note here that a mixed matrix yields very satisfactory results compared with the lumped and

the consistent mass matrix. The next matter to be examined is how the mass parameter 
 in
equation (4) can be optimized, see Figure 14.

Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997) ? 1997 John Wiley & Sons, Ltd.
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Figure 12. Summed frequency error �1 vs. the parameter 
 in a model with four degrees of freedom

Figure 13. Errors in frequency vs. the mode number in a model with 27 two-dimensional acoustic elements

As can be seen here too, the number of frequencies used is a highly important factor in attempt-
ing to �nd the minimum on the error curve. The minima on the error curves range from 0·25 to
0·5.
The importance of the number of elements per wavelength is tested for this element type too.

The results are shown in Figure 15.

? 1997 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng., 40, 4259–4271 (1997)
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Figure 14. Errors in frequency vs. the mode mass parameter 


Figure 15. Error curve for di�erent numbers of elements per wavelength for a linear 4-node element
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As can be seen, the optimal 
 changes from 0·45 to 0·5 when one increases the number of
elements per wavelength from four to eight, the optimal 
 remaining constant if still a greater
number of elements is involved.

4. CONCLUSIONS

Di�erent mass lumping methods have been described and tested numerically. The analytical eigen-
values were the target of these tests. A new method for constructing mass matrices was outlined,
one involving the obtaining of mass matrices by the minimization of modal errors, allowing one to
construct a mass matrix optimized for the frequency range of interest. This method has been used
to construct both mixed mass matrices and lumped diagonal mass matrices. The proposed method
was found to perform well, compared with other methods for constructing diagonal lumped mass
matrices. The characteristics of the diagonal mass matrix obtained by use of method are often
very close to those of the matrix obtained by the special lumping technique described by Hinton,
Rock and Zienkiewicz. The present method is very stable and performs well in all the situations
for which it was tested.
Many suggestions concerning how to construct mixed mass matrices have been made in the

literature. Using the approach suggested here, an optimized mass matrix can be obtained for the
frequency range of interest. The numerical examples show too that mixed mass matrices perform
very well as compared with consistent and lumped mass matrices.
It is important to note that the optimal value of the mass matrix depends on the number of

elements per wavelength. For mixed matrices, the optimal 
-value changes by a few percent when
the number of elements per wavelength is changed, its remaining constant when the number of
elements per wavelength is increased beyond eight. For quadratic elements however, the optimal
value of  goes towards zero when the number of elements is increased. Thus if the fundamental
frequency is the dominant aspect of a problem,  = 0 could be employed, this concentrating the
mass on the midside nodes. By performing static condensation then the size of the problem can
be decreased.
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Abstract
In a particular class of coupled problems, the resulting coupled set of equations is unsymmetrical. In
this paper a simple procedure for introducing a symmetric effective stiffness matrix using implicit time
stepping procedures in fluid-structure problems, is proposed. As long as the time step is kept constant, the
factorization of the effective stiffness matrix only needs to be performed once. The numerical example
show that cpu time and memory utilization decreases with the proposed formulation.
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1 Introduction

There is a class of coupled problems that result in an unsymmetrical system of equations.The reason for
this, although the complete system is conservative, is how the information is passed between the two
domains. The unsymmetrical representation is the most compact representation of the coupled system
possible. However, the unsymmetrical system doubles the demand for storing the system matrices and
also double the number of operations to be performed for a specific analysis. Hence, there is a benefit in
reformulating the system creating a symmetric representation. In a previous work, see [1], this has been
done for the coupled eigenvalue problem.

The interacting fluid-structure problem for the structural domain can be written

Msd̈ + Csḋ + Ksd − Hfsp = fb (1)

where

Ms =

∫

Vs

NT
s ρsNs dV Ks =

∫

Vs

(∇̃Ns)
TD∇̃Ns dV

Hfs =

∫

S

NT
s · nNf dS fb =

∫

Vs

NT
s ρsb dV (2)

and Ns is a polynomial matrix, for the structural domain Vs. All the matrices above, including the
damping matrix Cs, are considered to be symmetrical.

For the fluid domain, Vf , we have

Mf p̈ + Cf ṗ + Kf p + Hsf d̈ = fq (3)

where

Mf =

∫

Vf

NT
f Nf dV Kf =

∫

Vf

(∇Nf )T c2
∇Nf dV

Hsf =

∫

S

NT
f ρc2Ns dS fq =

∫

Vf

NT
f c2q̇ dV (4)

and Nf is a polynomial matrix, for the fluid domain Vf . q is the mass inflow per unit volume and time.All
the matrices above, including the damping matrix Cf , are considered to be symmetrical. Putting these
equations together, and introducing

Hfs = H

Hsf = ρc2H (5)

we get the following unsymmetrical system of equations

[
Ms 0

ρc2 HT Mf

][
d̈

p̈

]
+

[
Cs 0

0 Cf

] [
ḋ

ṗ

]
+

[
Ks −H

0 Kf

][
d

p

]
=

[
fb

fq

]
(6)
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2 Reformulating for symmetric time integration

Introducing the multiplication factor α into the second line of equations in Eq. 6 yields

[
Ms 0

αρc2 HT αMf

][
d̈

p̈

]
+

[
Cs 0

0 αCf

] [
ḋ

ṗ

]
+

[
Ks −H

0 αKf

][
d

p

]
=

[
fb

αfq

]
(7)

Now consider a standard implicit time integration scheme

1. Initialize, u0, u̇0, ü0

2. Form the effective stiffness matrix, Keff = M/β (∆t)2 + γC/β∆t + K

3. Factorize Keff = LDLT .

For each time step perform the following steps

(a) Evaluate the effective forces
feff = fn+1 − M

(
un/β (∆t)2 + u̇n/β∆t + ün (1 − 2β) /2β

)

(b) Solve LDLTa = feff .

(c) Calculate the accelerations and velocities at the new timestep.

The crucial part of the scheme is the factorization of the effective stiffness matrix In this case the effective
stiffness matrix according to Eq. 7 and step (2) is

Keff =

[
Ks + 1

β(∆t)2
Ms + γ

β∆t
Cs −H

αρc2

β(∆t)2
HT αKf + α

β(∆t)2
Mf + αγ

β∆t
Cf

]
(8)

Based on the original system , α = 1, the effective stiffness matrix is not symmetric and hence symmetric
solvers can not be utilized. The matrix can be made symmetric, however , if

α = −
β (∆t)2

ρc2
(9)

For this choice of α the system matrix becomes

Keff =

[
Ks + 1

β(∆t)2
Ms + γ

β∆t
Cs −H

−HT
−

β(∆t)2

ρc2
Kf −

1
ρc2

Mf −
γ∆t
ρc2

Cf

]
(10)

The time step enters into the efficient stiffness matrix, and as long as the time step is kept constant, the
same factorization can be used.

3
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3 Other formulations

In [3], Sandberg and Göransson proposed a symmetric three field form, by introducing a fluid displace-
ment potential, Ψ.




Ms 0 0

0 ρ
c2

Kf 0

0 0 0







d̈

Ψ̈

p̈


+




Ks 0 −H

0 0 1
c2

Kf

−HT 1
c2

Kf −
1

ρc2)
Mf







d

Ψ

p


 =




fb

0

fq


 (11)

The drawback for this formulation, however, is that it demands twice as many degrees of freedom for the
fluid part compared to Eq. 6. Another possibility proposed in [4] by Everstine is a symmetric two field
formulation. This is accomplished by introducing a fluid velocity potential, Φ.

Φ = Ψ̇ (12)

This leads to

[
Ms 0

0 −
ρ
c2

Mf

][
d̈

Φ̈

]
+

[
Cs ρH

ρHT Mf

][
ḋ

Φ̇

]
+

[
Ks 0

0 −
ρ
c2

Kf

][
d

Φ

]
=

[
fb

−
ρ
c2

Fq

]
(13)

The drawback here is that it leads to a quadratic eigenvalue problem even in the non-damped case. In the
transient case, with a implicit time stepping scheme, it leads to the following effective system matrix

Keff =

[
Ks + 1

β(∆t)2
Ms + γ

β∆t
Cs

γ
β∆t

ρH
γ

β∆t
ρHT

−
c2

ρ
Kf −

c2

ρβ(∆t)2
Mf + γ

β∆t
Cf

]
(14)

There are several other possible formulations of the coupled acoustic fluid-structure problem. For a sur-
vey see e.g [5]. In the numerical example, however, the formulations in Eq. 8, 10 and 14 are used.

4 Numerical example

Consider a three dimensional cavity with a flexible plate on the top, Figure 1.

A transient load is applied to the structure according to Figure 2.

The computer implementation of this problem is done in fortran. The SGI math libraries, SCSL [6], are
used to factorize and solve the equations. The solvers used, psldlt and psldu, are direct solvers for sparse
matrices. The pressure in the fluid in one of the smaller meshes can be seen in Figure 3.

The numerical results for the different formulations, unsymmetrical Eq. 6, symmetric according to Ever-
stine Eq. 13 and the proposed symmetric system Eq. 7 can be seen in Table 4

The effective stiffness matrix Keff is positive definite in the symmetrical case and indefinite in the
unsymmetrical cases.
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Figure 1: Cavity size: 12*6*6. Structural properties: E = 70e9 t = 0.064 v = 0.3 ρ = 2690

Fluid properties: ρ = 1.21 c = 340

1

kN f(t)

t

ms
2 4

Figure 2: Transient load applied to the plate, Fmax = 1000 ∗ g

Figure 3: Fluid pressure in cavity after 1ms
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Table 1: Numerical results. Time for time-step loop.

Method 3234 dofs 20664 dofs 64294 dofs 146124 dofs
unsymmetrical form, Eq. 8, SCSL ldu 7.21 90.7 564 2427
symmetrical form, Eq. 10 , SCSL ldlt 6.02 68.7 346 1338
symmetrical form, Eq. 14, SCSL ldlt 6.09 68.4 361 1401

5 Conclusions

A symmetric time stepping scheme for unsymmetrical problems has been evaluated. Both numerical
results and theoretical considerations shows that the proposed method is faster and need less memory
than if one should solve the unsymmetrical problem directly. The method has proven to be stable in the
numerical examples.
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1 Introduction

Sound insulation of buildings becomes more and more important. Living in a noisy en-
vironment requires a quiet place to be able to e.g. work. Unfortunately, planners design
is often not focused on the acoustical properties of a building. Constructive and aesthetic
constraints take center stage in the state of design. As a consequence, people often have to
live under acoustically unsatisfactory circumstances or have to improve the situation by
a reconstruction of the building. A possibility to overcome this problem is the develop-
ment of numerical tools that predict the acoustical behavior of a designed building. Such
a tool has to represent the complex mechanisms of sound propagation in and through dif-
ferent materials and components. With such a tool the planner can determine the effects
of constructive modifications on the sound insulation and the sound fields in a building
realistically and efficiently.

There are two commonly used ways of studying the room acoustic properties. The first
is to describe the phenomena by sound particles. This theory assumes a diffuse sound
field and continuous absorbtion of sound at boundaries. The geometric approach was first
proposed by Sabine [1], and is concerned with the statistical characteristics (diffusive-
ness) of the acoustic conditions present. With use of such a model he was able to describe
acoustic conditions in terms of separate numerical quantities, such as reverberation time
and absorption area. In the 1960s, ideas of this sort within structural acoustics were ex-
tended to different groups of resonance systems being distinguished, an approach referred
to as SEA (Statistical Energy Analysis). However, these methods cannot be applied at low
frequencies because of the low mode density.

While the geometric approach is good for a rough understanding of the sound field in a
room, a more detailed understanding requires the use of wave theory, which allows for
wave motion and the response of the room to be visualized in terms of a large number
of normal modes, each behaving as a damped oscillator. A comprehensive study of this
approach was taken by Morse and Feshbach [2], who successfully applied this method to
room acoustics. As they worked with closed form solutions, they only obtained solutions
for highly idealized cases.

Architectural acoustics has long been concerned with the development of a high degree
of precision in the assessment of both momentary and average acoustic conditions, also
measures with relevance from a psychological standpoint. The measures involved con-
cern such concepts as reverberation time and audibility, and questions of how sounds are



perceived under various conditions. For the low frequency area however, the models avail-
able today do not yield the degree of precision and differentiation required for achieving
the level of sound-quality assessment that is needed. The use of finite element analysis
allows for more complex geometries to be considered, and for various types of absorption
at the bounding walls.

The finite element method is a general tool for solving differential equations. In many
areas, such as the car industry , aeroplane industry and the space industry, it is considered
as a natural part of the design process when developing new products, and also making
modifications to existing products. Each of these areas has developed its own method-
ologies to be able to predict the behavior of the final product at an early stage in the
design process. Numerical analysis is combined with experimental data from prototypes,
and these experimental data is also a source to further develop the numerical models. This
type of design process is not so well developed within the building industry. The are many
reasons for this. But there are certainly possibilities to develop this kind of design process
within industrialised construction. Both in terms of developing general components and
the development of a specific construction.

The possibilities that an increased resolution in the analysis results creates, could also lead
to new designs. Some of these possible analysis strategies in room acoustic situations will
be presented here in of a couple of examples.

2 Numerical model

2.1 Finite element formulation of the acoustic equations

The finite element analysis of acoustic systems has been conducted be several researcher,
e.g. Craggs [3] and Petyt [4]. Also in room acoustic situations it has been used as a way
to determine the sound field. The nonhomogeneous wave equation expressed in terms of
dynamic pressure pd, is

∂2pd

∂2t
− c2∇2pd = c2∂2q

∂2t
(1)

The application examples presented in the next section are all analyzed with a steady-state
acoustic load therefore we assume harmonic motion and rewrite the equation as

∇pd + k2pd = −iωρ0q (2)

where
k =

ω

c
(3)

The boundary conditions applicable on the acoustic cavity are,
Imposed normal velocity on Ωv:

v = v̄n (4)



Imposed impedance on ΩZ :
p

v
= Z (5)

Flexible wall:

us|n = uf |n = −∂p

∂n
(6)

The finite element formulation of Eq. 1 is derived. This leads to the following matrix
equation

Kfp + iωCfp − ω2Mfp = fq + fv (7)

where

Mf =

∫

Ωf

1

c2
NTNdV (8)

Kf =

∫

Ωf

∇N∇NdV (9)

Cf =

∫

∂ΩZ

ρ0
1

Z̄
NTNdS (10)

fv = −
∫

∂Ωv

iρ0ωNv̄ndS (11)

fq =

∫

Ωf

iρ0ωNqdV (12)

Investigations regarding the reduction of structure acoustic systems has been has been
done by Sandberg, Wernberg and Davidsson, see e.g. [5]. These techniques will also be
used here.

2.2 Porous sound absorbing material

In the application examples the damping material is modelled with a equivalent fluid
model. In these models, the sound propagation in the porous material is described by the
acoustic equation (1) with c̃, the speed of sound, calculated by

c̃ =

√

K̃

ρ̃
(13)

where ρ̃ is the density and K̃ is the bulk modulus. These parameters are complex and
frequency dependent.

When describing porous materials using an equivalent fluid model, the volume displace-
ments in the fluid can be used. The actual fluid displacements in the pores, uf , are related
to the volume displacements through the porosity, φ,

ufv = φuf (14)



This gives simplified expressions in the boundary conditions.

The structural frame of the porous material is either considered to be rigid or limp and
here a rigid model will be used.

This model is based on describing the sound propagation in porous materials as propaga-
tion of sound in cylindrical tubes with the frame considered rigid. A detailed description
of this model was presented by Allard [6]. The frequency dependent density and bulk
modulus are derived by including the viscosity of the air and the thermal exchange with
the connecting frame in the model. The density of the porous material is given by

ρ̃(ω) = α∞ρ0

[

1 +
σφ

iωρ0α∞
GJ(ω)

]

(15)

and the bulk modulus

K̃(ω) =
γP0

γ − (γ − 1)

[

1 +
σ′φ

iPrωρ0α∞
G′

J(Prω)

]−1 (16)

with

GJ(ω) =

[

1 +
4iα2

∞ηρ0ω

σ2Λ2φ2

]1/2

(17)

and

G′
J(Prω) =

[

1 +
4iα2

∞ηρ0ωPr

σ′2Λ′2φ2

]1/2

(18)

where

σ′ =
Λ2

Λ′2σ (19)

The density and bulk modulus are derived from the fluid displacements in the pores. Using
the volume displacements, the density and the bulk modulus becomes

ρ̃v(ω) =
ρ̃(ω)

φ

K̃v(ω) =
K̃(ω)

φ

(20)

with ρ̃(ω) and K̃(ω) from equations (15) and (16).

2.3 Stochastic simulations

Nowadays elaborate deterministic numerical methods and models, including sophisticated
strategies for dealing with a variety of mechanical processes, have become wide-spread
and are employed in everyday engineering design practice. However, in most design cases



the engineer is left with uncertainties about how to actually model a structure. The uncer-
tainties can be directed towards the stiffness values of structural members or connections,
geometrical or material properties. Production errors or damage, caused by accidents or
inadequate management, are in many civil engineering structures uncertain parameters
that should be considered in the analysis as well. Other issues are how the load is applied
and, in dynamic analysis, the time history of the load.

There is a growing realization that unavoidable uncertainties must be considered in a
computational scheme to produce reliable computational and engineering results. Tradi-
tionally, designers have used safety factors to provide increased confidence in the struc-
tural performance, but this approach does not take into account the special probability
characteristics of a particular structure and does not provide the designer with adequate
information about the reliability of the entire system. This has lead to rather extensive re-
search aiming at combining efficient methods of structural analysis with stochastic analy-
sis, where the influence of random variables is thoroughly evaluated.

The only method that has become widespread in engineering design practice is the Monte
Carlo simulation technique. Probabilistic design parameters are sampled and a number
of deterministic computations are performed to provide information about the distribu-
tion, or some statistics of response parameters. This is an accurate and simple approach,
but also very expensive in terms of computer resources. Several methods that could be
employed at a lower computational cost have been proposed. These can be divided into
three main categories. One od these methods concern the sampling itself of the Monte
Carlo technique in order to reduce the number of realizations required to provide reliable
statistics of the response. To this category belong stratified sampling and Latin hypercube
sampling.

In stochastic simulations the variables can be of two kinds, variables with uncertain prop-
erties and variables with design properties. The uncertain variables are those that actu-
ally are uncertain due to various kinds of imperfections or varying production tolerances,
whereas free design parameters are used to create some sort of optimal solution. Both of
these must be treated in a design case and most production parameters inherently contain
them both.

2.4 Latin Hypercube Sampling

In order to reduce the required number of realizations, Latin hypercube sampling can
be employed. As for the SMC method, the desired accuracy in the estimated distribution
function determines the required number of realizations. Let n denote the required number
of realizations and k the number of random variables. The sampling space is then k-
dimensional. An n×k matrix P, in which each of the k columns is a random permutation
of (1,n), and an n × k matrix R̄ of independent random numbers from the uniform (0,1)
distribution are established. Then the elements of the sampling matrix V̄ are determined



as

V̄ij = F−1
j

(

Pij − R̄ij

n

)

(21)

where F−1
j represents the inverse of the target cumulative distribution function for variable

j. Each row in V̄ now contains input for one deterministic computation. For two input
variables and five realizations, a possible sampling plan is shown in figure 1. Note that the
sample is spread over the entire sampling space as the generation of the Latin hypercube
sampling plan requires one image from each row and each column. If n realizations from
the entire sampling space had been chosen completely at random, as in SMC sampling,
there is a risk that they would form a cluster and some parts of the sampling space would
not be investigated.
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Figure 1: Latin cube, two variables and five realizations. The 5× 2 matrix (a) determines
the plan illustrated in (b).

Even though the marginal distribution of each variable is efficiently represented, there
is a risk that some spurious correlation appears, see figure 2(a). However, such spurious
correlation can be reduced by modifications in the permutation matrix P, see figure 2(b).

(b)(a)

Correlation
reduction

Figure 2: Spurious correlation of sampling plan (a) is reduced in plan (b).



3 Application examples

The following application examples are intended to show how the described theories can
be used. A standard finite element analysis of a acoustic cavity is a procedure in many
applications, such as passenger compartments in automobiles and aircrafts. The method
is not so well spread in room acoustical situations. One reason is tradition, the finite
element method has not been a well accepted method in acoustics. Another reason could
be that the validity of the finite element method in room acoustic analysis is only up to a
certain frequency limit, say 500 Hz. On the other hand, more traditional acoustic methods
are not well suited for low frequency analysis, they need a high mode density. Also many
traditional acoustic methods are analytically, and can only deal with problems that have
certain boundary conditions. Therefore, in practical situations, with complex geometry
and complex topology, these methods are not applicable.

3.1 Room with flexible gypsum wall.

The first example is a very simple case of a rectangular room where damping material
is placed at different locations on the boundary surface. The system is excited by a point
source representing a loudspeaker, see figure 3. The influence of the placement of ab-
sorbtion material on the sound pressure level is studied. In figure 4 the sound pressure
levels measured in the shaded area of figure 3 accomplished by the point source when one
wall at a time is totally covered with damping material is seen.The damping material is
modelled as a porous sound absorbing material described in section 2.2 . This shows the
possibility to control the sound pressure field by introducing damping material.

Figure 3: Test case, rectangular room with loudspeaker.

The results from the analysis could also be seen in a snapshot plot of the pressure distrib-
ution in the room at a certain frequency. Figure 5 shows the pressure distribution for one
frequency at two height levels in the room. This could be very useful, if e.g. you are inter-
ested of the sound comfort at a certain position in a room, and by viewing at the results in
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Figure 4: Frequency response for different damper locations.

such a detailed way, new insights can be made about the sound level at a certain position
in the room.

Figure 5: Frequency response for one damper location at to hight levels in the room.

The purpose of this example was just to show that the use of the finite element method
gives large possibilities to view and analyse the result. It gives both the possibility to
plot e.g. sound pressure level against frequency, but also view the pressure distribution
anywhere in the space of the room.



3.2 Room with stochastic variation in size and damper material prop-
erties

The second example is the same room again with dimensions according to figure 6.

Figure 6: Rectangular room with loudspeaker. Room width is 3.6 m, height 2.4 m and
length is 4.8 m.

In this case the room length has probabilistic value, where the mean value was chosen
to 4.8 m and the standard deviation to 0.2. Dampers are placed on the backwall in this
case, and the material properties of the dampers was also given a stochastic variation
with a mean value of porosity of 2500 and a standard deviation of 2000. An analysis
procedure is created with the LHS routines and in this case 20 simulations were setup for
the analysis.
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Figure 7: Frequency response from three different stochastic configurations

Figure 7 shows frequency response from three different stochastic configurations. As can
be seen there are differences in the results at some points, although the stochastic variation
has been quite small.



Figure 8 shows pressure response for different frequencies and different heights in the
room. The figure shows the sound pressure level in the shaded area in figure 6 for three
different stochastic combinations.

Figure 8: Frequency response for different damper locations and room lengths. Going
from left to right are response for frequencies 22 Hz, 34 Hz, 77 Hz and 199 Hz. The first
row are responses at 2.0 m above the floor, the second row for 1.2 m and the last row for
0.4 m.

The spatial averages of the sound pressure level, filtered into 1
3
-octave bands can be cal-

culated as where

Lfa−fb
i = 10 log

(

fb
∑

f=fa

10Li/10

)

(22)

As can be seen in figure 9 the results from different simulations can be quit different. From
the results one can find maximum and minimum responses due to different stochastic
configurations.



20 40 60 80 100 120 140 160
45

50

55

60

65

70

75

80

85

90

95

Frequency

S
ou

nd
 le

ve
l(d

B
)

Figure 9: Sound pressure level for three different stochastic configurations

3.3 Room with stochastic variation in position of chairs

In this case the room has been occupied by some furniture. Two chairs are randomly
positioned in the room. The position of the chair is the stochastic variable. The chairs
are made of a material the has a damping effect and is modelled in the same way as in
previous example. The material properties also have a stochastic variation.

Figure 10: Rectangular room with loudspeaker. Room width is 3.6 m, height 2.4 m and
length is 4.8 m. Two chairs positioned with stochastic variation

In figure 11 the results from three different set of furniture positions are shown.

4 Discussion

In a number of application examples the usability of finite element analysis in rooms
acoustical situations has been demonstrated. The analysis was made in combination with
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Figure 11: Sound pressure level for three different stochastic configurations

a stochastic simulation technique, Latin hypercube sampling. The intension was to show
that the finite element method could be a useful design instrument in room acoustical
situations. The influence of variation in e.g. geometry or material properties could easily
be studied in the design phase, at a low cost. There are a number of situations where
similar analysis could be conducted:

• Simulation of sound insulation in building acoustics. In a paper by Davidsson et el
[10] sound transmission loss for different double-leaf walls were studied. The in-
fluence of several parameters were investigated, e.g. the density of the plaserboard,
different geometries of the wall studs and variation of the porous material density
of sound insulating material in the wall. Other situations where this could be used
is e.g. investigation of sound insulation of windows.

• Simulation of loudspeaker placement in a room. When tuning a hifi equipment so
that the best possible performance is achieved, an analysis of the placement of the
loudspeakers with regard to the listening position could be conducted.

• Design of room dimensions for critical listening environments. In e.g. [11] the au-
thor tries to optimize the shape of a room. The goal is to achieve a smoother sound
pressure distribution in the low frequency range.

• General modelling of sound fields in building environments, taking uncertainties
into account.

To improve the usability of the suggested method, there are a number of things to be done:

• Better material models of damping materials are needed in the implementations. In
e.g. [12] Biot’s material models are described that could be used in room acoustical
analysis as well.



• A software implementation that are intended to be used by a person who not neces-
sarily is a finite element expert. At least the stochastic routines should be packaged
in a more user friendly way. The goal should be that the results from these calcula-
tions should be easier to visualise and interpret.

• Implement the best possible reduction techniques to be able to run larger problem
sizes, i.e. be able to analyse the problems at higher frequencies.

• Create a toolbox in the software that immediately can calculate traditional acoustic
measures, such as reverbation time and sound transmission loss.

• Implement a simple stochastic optimisation routine. Such a routine is not intended
to find the optimal solution to a problem. On the contrary, an acceptable goal is set
up for a number of variables, and then the solution is accepted when the goal is
achieved.
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