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Tracking of Wideband Multipath Components
in a Vehicular Communication Scenario
Kim Mahler, Wilhelm Keusgen, Fredrik Tufvesson, Thomas Zemen and Giuseppe Caire

Abstract—A detailed understanding of the dynamic processes
of vehicular radio channels is crucial for its realistic modeling.
In this paper, we present multipath components (MPCs) tracking
results from a channel sounder measurement with 1 GHz band-
width at a carrier frequency of 5.7 GHz. We describe in detail
the applied algorithms and perform a tracking performance
evaluation based on artificial channels and on measurement
data from a tunnel scenario. The tracking performance of the
proposed algorithm is comparable to the tracking performance
of the state-of-the-art Gaussian mixture probability hypothesis
density filter, yet with a significantly lower complexity. The
fluctuation of the measured channel gain is followed very well by
the proposed tracking algorithm, with a power loss of only 2.5
dB. We present statistical distributions for the number of MPCs
and the birth/death rate. The applied algorithms and tracking
results can be used to enhance the development of geometry-
based channel models.

Index Terms—Radio propagation, Multipath channels, Chan-
nel models, Intelligent transportation systems,Vehicular and wire-
less technologies.

I. INTRODUCTION

INTER-VEHICULAR radio communication will play an
important role in future collision avoidance systems and

other intelligent transport system applications, because of
its unique potential as a vehicular sensor. Current vehicular
sensors, such as radar or video sensors already enable on-board
sensor fusion systems to establish a comprehensive perception
of the surrounding. However, radio communication enables
vehicles to exchange information, even without a direct line-
of-sight between the vehicles.

In order to enhance vehicular communications, researchers
focus on a better understanding of the communication perfor-
mance and its underlying radio propagation processes. Several
wideband channel measurements in the 6 GHz band have been
conducted, with measurement bandwidths of 60-240 MHz [1]
[2]. In order to extract the relevant channel parameters [3],
complex algorithms are needed [4]. However, the complexity
of the extraction algorithms can be reduced and the quality of
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the measurement results enhanced by an increased measure-
ment bandwidth. A sufficiently large measurement bandwidth
leads to a sparse multipath channel, where the multipath
component (MPC) arrival times can be observed much more
accurately than in narrowband channels [5]. Furthermore, due
to the fine time resolution, the number of physical MPCs
that make up a resolvable MPC is much smaller and results
in the absence of significant multipath fading [6]. Channel
sounder measurements around 6 GHz can be referred to as
(ultra-)wideband, if the absolute bandwidth exceeds 500 MHz
[5]. Channel measurements with a very large bandwidth are
today mostly conducted for millimeter wave communications;
only little work has been done for vehicle-to-vehicle (V2V)
scenarios [7].

A main benefit of wideband channel sounding measure-
ments is the ability to detect individual MPCs and relate these
to physical scattering objects. Consequently, tracking of highly
resolved MPCs can be beneficial for a better geometrical
understanding of the propagation process in V2V channels. A
distinctive characteristic of V2V communication channels is
their time-variant behavior, due to the movement of transmit-
ter, receiver and scattering objects. These dynamics lead to a
smaller stationarity region of the channel statistics [3] and have
to be incorporated appropriately into V2V channel models.
Work in [8] proposes a dynamic V2V channel model based
on a local wide-sense stationary (WSS) time window and MPC
statistics related to this time window. Alternatively, geometry-
based stochastic channel models were proposed, which are
well-suited for non-stationary environments [9]. In order to
identify the time-variant stochastics of these V2V channel
models, researchers focus on tracking the temporal behavior of
individual MPCs. Work in [10] presents an algorithm to track
scatterer clusters centroids, where the path delay, the angles-
of-arrival and the angles-of-departures are used to determine
the MPC distance (MCD) in two consecutive time instances,
a measure which was first introduced in [11]. The MCD is
also used in [8] as a method to quantify the distance and track
MPCs over time. Authors in [12] apply probability hypothesis
density (PHD) filters to track MPCs in an indoor UWB channel
and claim good tracking performance despite a high amount
of diffuse MPCs.

The contribution of this paper is a demonstration that MPCs
from wideband V2V channel measurement with a bandwidth
of 1 GHz can be tracked with highly accurate estimates and
low tracking losses. The proposed tracking algorithm has a
low complexity and yet a tracking performance comparable to
a state-of-the-art tracking algorithm. We track both the small-
scale MPC variations within the time window of an IEEE
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802.11p transmission frame and also the behavior of MPCs
over longer non-stationary regions. A better understanding of
the temporal behavior of individual MPCs will lead to a better
geometrical understanding and finally a better representation
of the V2V radio propagation process within numerical mod-
els.

This paper is organized as follows: In Section II we in-
troduce our measurement device, the measurement settings
and the selected measurement environment. The applied MPC
estimation and small-scale tracking algorithm is explained
in detail in Section III. Then, we evaluate the performance
of these algorithms based on an artificial channel and on
empiric measurement data in Section IV. Section V describes
a large-scale tracking algorithm required to track MPC across
stationarity regions. Finally, we show results of the MPC long-
term evolution in a tunnel scenario in Section VI, including
statistical distributions on the number of MPCs and their
birth/death rate.

II. MEASUREMENT

A. Measurement Equipment

The HHI channel sounder, developed at the Fraunhofer
Heinrich Hertz Institute (HHI), is a wideband measurement
device with a bandwidth of 1 GHz at a carrier frequency of 5.7
GHz [13]. The measurement bandwidth allows a delay time
resolution of 1 ns (30 cm of wave propagation) and therefore a
highly resolved view into the behavior of MPCs. The channel
sounder consists of a transmitter unit and a receiver unit that
can be installed in conventional passenger vehicles and de-
ployed in real traffic scenarios. For our measurements we use
an Audi Avant as transmitter and a Renault Scenic as receiver
vehicle. Both vehicles are equipped with omnidirectional and
vertically polarized antennas mounted on the roof at the left
edge of the vehicle. The deployed antennas were developed at
HHI and are matched to the desired frequency range from 5.2
to 6.2 GHz. The antennas feature under laboratory conditions
an evenly distributed azimuth radiation pattern with maximum
deviations of 0.4 dB from the maximum value and a mean
deviation of around 0.2 dB. This radiation pattern probably
differs when the antennas are mounted on the roof of the
vehicles. However, we expect no significant deviation from
the laboratory measurement, due to the fact that the total
length of the antenna is around 30 cm and therefore multiple
wavelengths above the metallic roof surface. In order to
record the position of the vehicles during measurements, the
highly accurate positioning system GeneSys ADMA-G was
used, which works for a limited time even in tunnels without
coverage of GPS satellites. Based on measurements in several
tunnels with lengths of up to 2 km, we estimate an accuracy
of 20 m for the first 1000 m traveled, which applies for the
measurement run described in this paper.

B. Measurement Run

The tracking algorithms are applied to channel data from a
measurement run in the so-called Tiergartentunnel in Berlin.
The measurement vehicles are driving southbound in a convoy

Fig. 1. Video snapshot of conducted measurement run in a tunnel scenario,
taken from the rear measurement vehicle.

with speeds between 42 km/h and 52 km/h at distances be-
tween 75 m and 110 m, with the above mentioned uncertainty
of around 20 m. The shape of the tunnel is curved and
the traffic density during measurement was low, as can be
seen in Fig. 1. One measurement run of the HHI channel
sounder contains 10,000 snapshots, which are organized into
sets of snapshots. In this measurement run, a set consists of
six snapshots with a time interval of 0.717 ms between the
snapshots, which results in a set recording time of around
3.6 ms. The time interval between the starting of two sets
is 10 ms. We recorded 1666 sets, which amounts to a total
measurement time of around 16.7 s. This measurement set-
up enables longer measurement runs compared to continuous
recording and in addition reflects the packet on-air times of
cooperative awareness messages based on IEEE 802.11p. One
of the most relevant challenges in vehicular communication
is a reliable frame detection, which corresponds to the time-
variant behavior of the channel while a transmission packet
is on the air. Therefore, we selected the length of the set
recording time to account for the maximum IEEE 802.11p
frame duration of 2 ms, considering the maximum allowed
payload of 1500 Bytes.

III. MPC ESTIMATION AND TRACKING

A. Detecting MPCs in a Channel Impulse Response

Processing of channel sounder data is a multi-step process
and starts with the detection of MPCs in the channel impulse
response at a certain time instance. Superresolution channel
parameter estimation schemes such as ESPRIT [14] and MU-
SIC [15] require a covariance matrix, hence multiple obser-
vations of a stationary process. Since the fading process of
vehicular channels is non-stationary [3], [8] and [3] suggest to
use a local WSS time window. Instead, we decided to use the
smallest possible time window and take every measurement
snapshot as an independent process step. This approach is
reasonable for our wideband channel measurement data, since
we observe non-stationary MPC behavior between snapshots,
e.g. appearing/disappearing MPCs and a change of the MPC
delay. Since our tracking method does not depend on any
statistics and we are not aiming at any statistical channel
parameters based on a local stationarity region, we disregard
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matters on appropriate stationarity window lengths in this
paper.

We use a MPC detection algorithm that is based on work
from [16], which has some similarities to the CLEAN [17] or
UWB-SAGE [18] algorithms and can be summarized as fol-
lows: Find the strongest peak in the channel impulse response,
subtract this dominant peak in the frequency domain and con-
tinue searching and subtracting strongest peaks respectively
in the remaining impulse response. A detailed description of
this search and subtract algorithm can be found in [19], an
experimental verification of this algorithm is given in [16].
Here, we start with the time-variant channel impulse response
as

h(t, τ) =

L∑
l=1

αl(t)δ(τ − τl(t)), (1)

where L is the number of scatterers, αl the complex gain and
τl the delay of MPC l. The channel impulse response provided
from a channel sounder with measurement bandwidth B can
be expressed as

h(t, τ) =

L∑
l=1

αl(t)w(τ − τl(t)), (2)

where w(τ) is the isolated pulse with duration Tp. The
sampled channel data depends on the snapshot sampling period
Ts and the delay resolution period Tb = 1/B. We therefore
express the discretized form of the channel impulse response
as

h(nTs, uTb) =

L∑
l=1

αl(nTs) w(uTb − τl(nTs)), (3)

for n = 1, ...,M and u = 1, ..., U , where M is the maximum
number of available snapshots and U is the selected sounding
sequence length (denoted N in [13]). As previously stated,
we want to detect the MPCs at each single snapshot n and
therefore define a channel impulse response as vector h ∈ RU
with elements

hu = h(uTb) =
L∑
l=1

αl w(uTb − τl). (4)

We furthermore define vector

w(τ) = [0Dτ , w0, 0U−Z−Dτ ]T ∈ RU , (5)

with Dτ being the discretized version of time delay τ , such
that τ ' Dτ ·Tb and with w0 ∈ RZ of elements wu = w(uTb),
u = 1, ..., Z such that Tp = Z · Tb. The zero series 0Dτ
and 0U−Z−Dτ consist of Dτ and U − Z −Dτ zero elements
respectively and are used to shift w0 in w(τ). Since we are
using sparse wideband channel data, we assume that the delay
components τl are separable, that is,

|τi − τj | ≥ Tb ∀i 6= j (6)

and can therefore apply the maximum likelihood method to
obtain the delay and complex amplitude estimates of the
strongest peak [19]

τ̂l = argmax
τ

∣∣w(τ)Thl
∣∣ (7)

α̂l =
w(τ̂l)

Thl
wTw

, (8)

where hl is the channel impulse response after l strongest peak
detections. The strongest MPC is subtracted from the channel
impulse response in the following way

hl =

{
h , l = 1

hl−1 − α̂l−1w
∗(τ̂l−1) , l > 1,

(9)

the detected MPC θl = {al, τl} is saved for further processing
and the algorithm searches for the next strongest peak.

We augment the algorithm by windowing the measured
transfer function before applying the detection algorithm.
The windowing reduces the side lobes of the pulses in the
channel impulse response and improves the overall detection
performance. In order to select the best windowing method,
the performance evaluation described in Section IV.A was
executed for a Raised-Cosine roll-off window and a Kaiser
window [20] with different corresponding window parameters.
The shape of the Kaiser window in the frequency domain

z[u] =

{
I0(πa

√
1−( 2u

U−1−1)2)
I0(πa)

, 0 ≤ u ≤ U − 1

0 otherwise,
(10)

and therefore the trade-off between the width and the side
lobes of the pulse is determined only by one parameter a. In
(10), I0 is the zeroth order of the modified Bessel function of
the first kind, U is the window length (equal to the sounding
sequence length) and a a non-negative real number. The best
results showed the Kaiser window with a parameter value of
a = 6.

After the subtraction of a peak, a delay range around the
identified peak location is blocked for the following peak
searches, with the purpose to prevent a re-detection at neigh-
boring delay values. We set the width of this blocked delay
range equal to the channel sounder pulse width at 10 dB below
its peak magnitude, which is in our case 2.47 ns. The entire
detection process for a channel impulse response involves the
following steps:

1) Estimate the noise floor by estimating the power of a
channel impulse response part where no MPCs occur
(usually at larger delays), add 6 dB to obtain a noise
floor threshold and set all values in the impulse response
below this threshold to zero.

2) Apply windowing in the frequency domain using a
Kaiser window with a parameter value of 6 (see (10) for
the corresponding equation and [20] for more details).

3) Find the strongest peak outside blocked delay range(s)
and save as a detected MPC.

4) Block the delay range surrounding the newly detected
MPC.

5) Subtract the channel sounder pulse at the detected MPC
delay position from the measured transfer function, as
done in (9).

6) Repeat points 3 to 5 until no additional MPCs are
detected.
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TABLE I
PARAMETERS OF THE GM-PHD FILTER IMPLEMENTATION USED FOR

TRACKING PERFORMANCE COMPARISON

Symbol Value Explanation

σν 3 · 10−1 Standard deviation of process noise in m
s2

σε 3 · 10−3 Standard deviation of measurement noise in m
pS 0.99 Probability of target survival, see (19) in [21]
pD 0.95 Probability of target detection, see (20) in [21]
T 1 · 10−2 Truncation threshold, see Table II in [21]
U 1 · 10−1 Merge threshold, see Table II in [21]
− 2 · 10−1 Minimum weight threshold, see Table III in [21]

B. Tracking of MPCs over Time

The large measurement bandwidth of 1 GHz makes MPC
tracking of individual MPCs comparatively easy and leads
to a reduced likelihood of false positives. In addition, a
large bandwidth decreases the number of physical MPC in
a superimposed MPC and consequently decreases the ampli-
tude fluctuations. This can be confirmed with the short-term
tracking results of our measurement run, where 90% of the
MPCs show a power standard deviation of less than 1.5 dB, as
shown in the results section in Fig. 7. Another fact that reduces
the demands on an (ultra-) wideband MPC tracking algorithm
in vehicular communications scenarios is the comparatively
high predictability of the geometry changes; cars usually
drive within clearly defined limits regarding their change of
direction and change in speed. The high predictability of
the moving objects results in a high predictability of the
corresponding MPC tracks. Our wideband channel data reveals
appearing and disappearing MPCs from one snapshot to the
next snapshot as shown in Fig. 6. Therefore, instead of defining
a stationarity window across multiple measurement snapshots
as done in [8], we decided to use a time window equal to
the time interval between two snapshots and track MPCs on
a snapshot basis.

The goal of our MPC tracking method is to keep the
algorithm complexity as low as possible and yet establish an
effective tool with a good tracking performance. In order to
evaluate our algorithm, we compare performance indicators
with a state-of-the-art tracking algorithm called Gaussian
mixture probability hypothesis density (GM-PHD) filter [21],
which incorporates the widely used extended Kalman filter
[22]. The GM-PHD filter is a recursive algorithm that models
targets as random finite sets and propagates the posterior
intensity in time. The implementation of this tracking
approach is elaborate, requires substantial computational
efforts and an adaption of least 10 algorithm parameters
to the corresponding tracking problem. This includes seven
core algorithm parameters and additional parameters with
lower effect on the tracking results. In our implementation,
we use three additional parameters for creating the so-called
birth processes and four additional parameters to filter out
tracks with unlikely delay/magnitude changes (similar to
our maximum delay/magnitude change thresholds in (15)).
In Table I we list the most relevant algorithm parameters
matched to our measurement data.

Our proposed algorithm works with little computational ef-
fort and is based on the continuity of the delay and magnitude
changes. Although proposed as a method for MPC tracking in
[23], the phase change estimates are not used for tracking due
to their high measurement noise and their 2π-ambiguity. Our
algorithm is based on four parameters, which are estimated
depending on the measurement data set-up and quality as for
(23) or directly from the underlying physical model as for
(15).

The developed MPC tracking algorithm is based on the
following assumptions:

1) The same MPC is detected in three consecutive snap-
shots.

2) Splitting or combining of MPC tracks does not occur.
3) The second derivatives of delay and magnitude, i.e. the

change of the Doppler frequency (delay change) and the
change of the MPC power fading (magnitude change),
are below the estimated maximum search tolerances in
(23).

The main idea behind our MPC tracking approach is similar
to the tracking approach described in [9], but in addition to
delay estimates we also use magnitude estimates as a measure
for tracking. The MPC tracking steps are depicted in Fig. 2
and can be summarized as follows:

1) Start in the first snapshot with the strongest peak and
search in the second snapshot for neighboring peaks in
terms of delay and magnitude distance to the starting
peak.

2) Use the observed delay change and magnitude change
(dotted lines in step 1 in Fig. 2) to predict the peak
location in the third snapshot, as shown in step 2 in Fig.
2. Based on the predicted location and the pre-defined
search tolerances, define a two-dimensional search range
(brackets in step 2 in Fig. 2). If a peak is found within
the search ranges, a MPC track has been identified.

3) In case more than one peak is found within the defined
search ranges, choose the peak with smallest distance to
the predicted delay location.

4) Use the latest delay change and magnitude change to
get the next search ranges accordingly (step 3 in Fig. 2).
Continue searching peaks along the MPC track, until no
peak within the current search ranges is found.

5) Start with the second strongest peak in the first snapshot
until the MPC track ends. Only consider peaks that are
not yet linked to a MPC track.

6) Continue searching tracks for all other peaks in the first
snapshot and then continue searching for tracks in later
snapshots that are not yet linked to a MPC track.

Stating the MPC tracking algorithm with mathematical ex-
pressions, we have to keep in mind that h(nTs, uTb) = h[n, u],
with Ts being the channel acquisition period and Tb being
the delay resolution period. The output from the detection
algorithm at time instance n are the MPC gain al, the delay
τl and the phase φl

θl = {al, τl, φl} (11)
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Fig. 2. Schematic diagram of the MPC tracking steps.

with l ∈ {1...Ln} and Ln being the number of detected MPCs
at time n. For the MPC tracking algorithm, we use a subset
of the estimated parameters

sl[n] =

(
al[n]
τl[n]

)
. (12)

We start in n = nstartk = 1 searching for MPC track k = 1
with the strongest MPC ŝ[n] and its neighbors in the next time
instance

xcl =

{
1, if d

(
ŝ[n], {sl[n+ 1]}Ln+1

l=1

)
≤ ξs

0 otherwise,
(13)

where d(., .) is the distance defined as

d
(
ŝ[n], {sl[n+ 1]}Ln+1

l=1

)
=

∣∣∣∣∣
(

â[n]− {al[n+ 1]}Ln+1

l=1

τ̂l[n]− {τl[n+ 1]}Ln+1

l=1

)∣∣∣∣∣ ,
(14)

and
ξs =

(
ξa
ξτ

)
(15)

is the maximum magnitude change and delay change, based
on considerations on the physical limits of the moving objects.
The resulting C initial track direction candidates

xcl {sc[n+1]}Cc=1 = {s1l [n+1], s2l [n+1], ..., sCl [n+1]} (16)

are used for an identification of track k by predicting s̃k[n+1]
with the linear prediction model H . We start with the first
initial direction candidate and set sl[m] = s1l [n+ 1] in

s̃k[m+ 1] = H (sl[m]) =

(
al[m] + ∆al[m]
τl[m] + ∆τl[m]

)
, (17)

with
∆al[m] = al[m]− al[m− 1] (18)

∆τl[m] = τl[m]− τl[m− 1]. (19)

Based on the prediction s̃1k[n+ 2] = s̃k[m+ 1], we can look
for MPCs in the defined search ranges rmin and rmax

xmkl =

{
1, if rmin ≤ {sl[m+ 1]}Lm+1

l=1 ≤ rmax
0 otherwise,

(20)

where
rmin = s̃k[m+ 1]− εs (21)

rmax = s̃k[m+ 1] + εs. (22)

The values of the maximum allowed search tolerances

εs =

(
εa
ετ

)
(23)

depend on the time interval between two snapshots, the
dynamics of the propagation channel and the quality of the
measurement device. An evaluation of the algorithm results
has to be performed in order to estimate appropriate search
tolerance values, as described in Section IV.B.

Then, we check the outcome of the binary variable xmkl with
Lm∑
l=1

xmkl = X. (24)

In case X = 0, no track is found and the algorithm continues
with the next initial candidates {scl [n + 1]}. In case X = 1,
only one track candidate is found and consequently a track is
identified; while in case X > 1, more than one track candidate
is found. In order to select from multiple track candidates, we
use

argmin
xkl

Lm+1∑
l=1

d(τ̃k[m+ 1], τl[m+ 1])xkl (25)

so that X = 1 holds in (24). Now, as an MPC track is identified
by three adjacent MPCs, we save

xnkl = xn+1
kl = xn+2

kl = 1 (26)

and continue searching along track k = 1 with the linear
prediction model in (17), for m = nstartk + 3, ..., N or until
the end of track k at Nk is found. We save the estimated MPC
parameters of track k in

sk[n] = sl[n]xnkl. (27)

Next, we continue in n = nstartk = 1 with the next strongest
MPC ŝ[n] not yet part of a track

ŝ[n] /∈ {sk[n]}Knk=1, (28)

where Kn is the number of tracked MPCs at time n. Based
on ŝ[n], we start again identifying initial track direction can-
didates in (13). After Ln starting MPCs ŝ[n] are considered,
we continue with n = nstartk = 2 and look for MPCs that
fulfill (28) to start again from (13). The result of the tracking
algorithm is the set

Sk = {sk[n]}Nk
n=nstartk

. (29)

The lifetime of track k is ψk = Nk−nstartk . In order to obtain
a Doppler frequency estimate per track k, we first retrieve mk

with linear regression

y +mkx =
∆{τk[n]}Nk

n=nstartk

∆nTs
(30)

and calculate the Doppler frequency

νk = −mkfc (31)

where fc is the carrier frequency. The final outcome of the
short-term MPC tracking are the following estimates

θk = {ak[n], τk[n], ψk, νk}Nkn=nstartk
. (32)
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Fig. 3. Result from proposed MPC tracking algorithm for an artificial channel
created with a measured channel sounder pulse.

IV. MPC TRACKING PERFORMANCE EVALUATION

A. Evaluation Based on an Artificial Channel

In order to evaluate the performance of the detection al-
gorithm and both tracking algorithms, two different kinds of
evaluation methods are applied. The first evaluation method is
based on an artificial channel, which is created using a channel
sounder pulse. This pulse is extracted from a channel sounder
measurement via an RF cable and reflects the characteristics
of the measurement device. The artificial channel used for
the performance evaluation consists of two MPCs tracks with
identical power levels, decreasing delay distances and an added
noise floor with a power level at -140 dB, as shown in Fig. 3.
This artificial channel can be regarded as a worst-case tracking
scenario when considering two MPCs, since a greater power
difference between the MPCs would lead to the dominance
of one MPC and a better overall result. Since we are mainly
interested in the separation of two MPC tracks that are close
in terms of delay distance, we use this simple artificial channel
to assess the tracking performance.

The example in Fig. 3 shows an artificial channel with MPC
powers of -116 dB. We found that up to a delay distance
of around 2.5 ns, the mean delay estimation error is below
0.03 ns with flawless tracking results, as shown for large MPC
powers in Fig. 4 and Fig. 5. The malfunction of the detection
algorithm at delay distances below 2.5 ns can be explained
with the width of the channel sounder pulse and the effects
of two superimposing pulses [24]. The decreasing distance of
two complex pulses with finite bandwidth leads to constructive
or destructive superposition and consequently to fluctuations
of the resulting pulse, as shown in Fig. 3. In order to find the
limits of the applied algorithms, the power level of the MPCs
is reduced and the tracking results up to a distance of 2.5 ns
between the approaching MPC tracks are compared to ground
truth.

We compare the tracking performance of the proposed
algorithm and the GM-PHD filter in Fig. 4 and Fig. 5, both
with and without prior windowing. As we can observe in Fig.
4 and Fig. 5, prior Kaiser windowing results in more accurate

Fig. 4. Number of detected tracks as a MPC tracking performance indicator,
based on an artificial channel and delay distances above 2.5 ns

Fig. 5. Mean delay estimation error as a MPC tracking performance indicator,
based on an artificial channel and delay distances above 2.5 ns

number of tracks and lower mean delay estimation errors. The
third appearing ”track” without Kaiser windowing in Fig. 4 is
due to the fact that the superimposing pulses generate a third
pulse in some successive snapshots, which are misinterpreted
as a track. Also, we find in Fig. 4 that the detected MPC tracks
start to split into more than the actual two tracks at a MPC
power of -124 dB for the GM-PHD filter and at a MPC power
of -126 dB for the proposed algorithm. As can be found in
Fig. 5, the mean delay estimation error at these power values is
below 0.07 ns and in terms of delay estimation, the proposed
tracking algorithm has a better performance than the GM-PHD
filter.

B. Evaluation Based on Channel Measurement Data

The second performance evaluation is based on visual in-
spection of tracking results from actual channel measurement
data. The goal of this evaluation is to identify false positives
and false negatives, i.e. tracking mistakes and missed tracks. In
order to evaluate the tracking algorithms on demanding MPC
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Fig. 6. MPC tracking results for a recorded channel measurement set in a
tunnel convoy traffic communication scenario. The dashed lines result from the
GM-PHD filter with EKF, whereas the dotted lines result from the proposed
tracking algorithm

Fig. 7. Standard deviation of tracked wideband multipath components power
for entire measurement run

tracks, we use the previously described measurement run from
a convoy traffic tunnel scenario with dense multipath inter-
arrival times. Based on the results, we tuned the parameters
of the tracking algorithm empirically and found that with
a snapshot time interval of Ts = 0.7 ms, a delay search
tolerance value of ετ = 0.5 ns and a magnitude search tolerance
value of εa = 10 dB is suitable. These high search tolerance
values have been selected since they leave enough space for
deviations from the instantaneously observed delay/magnitude
change without, due to the sparsity of the channel, leading to
additional false positives. In particular weak MPCs undergo
significant fluctuations and require larger search tolerances.
These search tolerance values are most likely also adequate
for other V2V scenarios, if applied on measurement data
with similar snapshot time intervals and similar measurement
bandwidth. This assumption is based on the fact that these
values were also appropriate for a highway measurement run
we processed and analyzed.

Fig. 8. Comparision between the original channel gain after Kaiser windowing
and the captured channel gain after the detection, the proposed tracking
algorithm and the GM-PHD filter with EKF

Fig. 9. Power losses due to the detection, the proposed tracking algorithm
and the GM-PHD filter with EKF

Fig. 6 shows the time-variant channel impulse response
of a tunnel scenario measurement, where circles indicate the
detected MPC peaks, the dotted lines show the outcome of
the proposed tracking algorithm and the dashed lines show
the results from the GM-PHD filter. In Fig. 6, we can observe
that, compared to the GM-PHD filter tracks, the tracks from
the proposed algorithm are more reactive to the dynamic MPC
behavior. Also, we can observe that some diffuse multipath
components (DMC) peaks are not linked to any MPC track and
result in a loss of the captured channel gain. Fig. 8 shows for a
part of our measurement run the original channel gain after the
mentioned Kaiser windowing, the detected channel gain and
the tracked channel gain of both tracking approaches, which
are defined at time instance n by

∑J
j=1 |aj |2,

∑Ln
l=1 |al|2 and∑Kn

k=1 |ak|2 respectively. It can be observed that all processed
channel gain curves, the detected and the two tracked curves,
are below the original channel gain curve and follow the
original curve progression very well with a certain distance.
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Fig. 9 displays the power losses due to the applied al-
gorithms, where it becomes clear that the main loss is due
to the detection algorithm. Also, we can observe in Fig. 9
that the loss decreases for a larger channel gain, which can
be explained with DMCs being beyond the limited dynamic
range of the channel sounder when receiving stronger MPCs.
When comparing the two tracking approaches in Fig. 9, we can
observe that each algorithm has tracking difficulties at different
parts of the measurement run (the proposed algorithm at 6.25 s
and the GM-PHD filter at 6.85 s). Furthermore, we can observe
that the energy loss of the GM-PHD filter is sometimes below
zero. This can be explained with the set-up of this algorithm
and the ”survival” of a track, even without any measurement
data supporting this track. In contrast, the proposed algorithm
simply connects detected MPCs and therefore never results
in a negative loss. The mean square error of the energy loss
compared to the detected channel gain is 0.0065 dB for the
proposed algorithm and 0.005 dB for the GM-PHD filter. For
the entire measurement run, we observed an average total
energy loss of around 2 dB for both tracking approaches, with
a standard deviation of around 0.4 dB.

The main advantage of our proposed algorithm is its com-
paratively low computational effort. The performance of our
tracking method is comparable to the GM-PHD filter, but
its numerical complexity is strongly reduced. The proposed
algorithm has a linear time complexity, due to the fact that it
processes on a snapshot basis every MPC track separately. In
contrast, the GM-PHD filter predicts and processes multiple
targets simultaneously, which leads to a linear complexity in
the number of targets and a cubic complexity in the number
of snapshots [25]. In order to limit the computational effort of
a corresponding implementation, several thresholds are used
to reduce the number of targets (e.g. the last three variables
in Table I). However, strongly “optimized” threshold values
come at the expense of a reduced tracking accuracy.

We estimate a time complexity reduction factor of up to 10,
based on the fact that processing 100 measurement snapshots
with our algorithm take around 95 s on a standard computer,
whereas processing with our GM-PHD filter implementation
requires 911 s.

In addition, our algorithm leads to more accurate delay
estimates if applied on measurement data with low measure-
ment noise, as can be found in Fig. 5. This is due to the
fact that our approach interrelates detected peaks instead of
generating processes that approximate tracks, as done in the
GM-PHD filter. In other words, the GM-PHD filter usually
lags a little behind the measured dynamics. Furthermore, since
the resulting track is not directly linked to the detected peaks, a
track might be found where there is actually no track. Finally,
due to the high number of algorithm parameters, finding
the proper parameter value set is a challenging task. We do
not claim that our algorithm is applicable for any tracking
problem, but it showed that this approach is a better solution
for our measurement data compared to the GM-PHD filter.
One disadvantage of our proposed algorithm is that it fails
to track if multiple peaks in adjacent snapshots are missing.
This shortage could be overcome by continuously searching
for peaks along the observed delay (and magnitude) change,

as done in [9]. On the other hand, bridging a track across
multiple snapshots might result in less reliable tracking results
and furthermore does not reflect what has been measured.

From Fig. 6, we can observe that the power of strong MPCs
stay nearly constant within a measurement set, whereas smaller
MPC tracks show larger power fluctuations and shorter life-
times. An analysis of the MPC power standard deviation over
the entire measurement run results in a CDF as shown in Fig.
7, based on the proposed tracking results of 34,000 MPC tracks
and 23,000 full-lifetime MPC tracks respectively. The long-
term MPC tracking algorithm described in the next section
only takes full-lifetime MPCs into consideration, where 85%
of the MPCs show a power standard deviation of less than 1
dB over the set recording period of around 3.6 ms.

V. LONG-TERM TRACKING

In order to investigate the large-scale evolution of MPC
tracks, a supplementary long-term tracking algorithm is ap-
plied. This additional tracking method is needed to interrelate
MPC tracks across adjacent recording sets, which are separated
by gaps of around 6.4 ms as described in Section III.B. For this
algorithm, only full-lifetime MPCs are considered, i.e. MPC
tracks with a lifetime equal to the duration of the recording
set. Excluding non-full-lifetime MPC tracks is based on the
observation that tracks appearing or disappearing within the
set recording time of 3.6 ms rarely lead to a MPC survival
of 10 ms or more. Disregarding these MPC tracks results
in an additional power loss of around 5%, but increases the
reliability of the long-term tracking.

Our long-term tracking approach is similar to the tracking
approaches described in [8] and [10]. However, other than in
these publications, our approach is not applied on direction-
resolved measurement data, but calculates the multipath dis-
tance based on delay, power and Doppler frequencies estimates
of individual MPCs. The main idea behind the algorithm
is simple and can be best explained with Fig. 10, where
the circles indicate the averaged powers and delays of time-
variant MPCs of the current set, and the crosses indicate the
corresponding MPCs of the next recording set. As the channel
is quite sparse, it is straightforward to relate the MPCs of
different sets. The algorithm starts with the strongest MPC
track in the current set, defines a two-dimensional search range
and searches in the next set for possible candidates. In the next
step of the algorithm, the delay change (Doppler frequency)
of the current MPC track is used to predict the delay location
of the MPC track in the next set. The same is done in the
opposite direction; the delay change of the MPC track in the
next set is used to predict the delay location of the MPC track
in the current set. This additional prediction in the opposite
direction increases the reliability of the tracking outcomes and
is similar to the ”two-way-matching” described in [8]. The
deviation between the actual delay value and the predicted
delay value is compared to different threshold values, again
for both directions. Two MPC tracks are found to be related,
if both deviations are below this threshold.

For the mathematical description of the long-term tracking
algorithm, we have to note that h(nTr, uTb) = h[n, u], where
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Tr is the recording set period. We take the average MPC gain
āk and τ̄k from (31) and define the estimation parameters for
the long-term tracking algorithm

Θk = {āk, τ̄k, ψk, νk} (33)

with k ∈ {1...Ki} and Ki being the number of tracks at time
instance i. Long-term time instances are denoted as i, in order
to be clearly distinguishable from short-term time n in Section
II.C. We only consider full-lifetime MPCs ψk

!
= nsnap, with

nsnap being the number of snapshots per set and define a
subset

qk[i] =

 āk[i]
τ̄k[i]
νk[i]

 . (34)

We start again with the strongest MPC q̂[i] in i = istartk = 1
and search for candidates using

xck =

{
1, if d

(
q̂[i], {qk[i+ 1]}Ki+1

k=1

)
≤ ξq

0 otherwise,
(35)

where d(.,.) is defined as in (14) and ξq is set empirically to
a maximum delay change value of ξτ = 1 ns and a maximum
magnitude change value ξa = 5 dB. The identified candidates

xcr{qc[i+ 1]}Cc=1 = {q1r[i+ 1], q2r[i+ 1], ..., qCr [i+ 1]} (36)

are used together with the linear prediction τ̃r[i + 1] from
model G in

τ̃r[i+ 1] = G(τ̄k[i], νk[i]) = τ̄k[i]− νk[i]fcTr (37)

to find the closest candidate in terms of delay change predic-
tion

η = argmin
c

d
(
τ̃r[i+ 1], xcr{τ̄c[i+ 1]}Cc=1

)
. (38)

Now, we use the selected candidate η to predict the delay in
the opposite direction

τ̃k[i] = τ̄ηr [i+ 1] + νηr [i+ 1]fcTr (39)

and check the condition

xirk =

{
1, if dr ≤ χ ∧ dk ≤ χ
0 otherwise,

(40)

where
dr = d (τ̃r[i+ 1], τηr [i+ 1]) (41)

dk = d (τ̃k[i], τk[i]) (42)

The final output of the long-term tracking is

qr[i+ 1] = qk[i]xirk. (43)

The different threshold values for χ are coded in Fig. 10 and
Fig. 11, where the solid red line indicates a delay prediction
error below 0.1 ns, the dashed magenta line an error below
0.2 ns, the dash-dotted blue line below 0.5 ns and the dotted
black line below 1.0 ns.

Fig. 10. Relating MPCs of current set (circles, 250 ms in Fig. 11) to MPCs
of next set (crosses, 260 ms in Fig. 11).

Fig. 11. Long-term tracking of MPC powers in the tunnel scenario. At the
beginning two strong MPC tracks can be observed, whereas three dominant
tracks can be found at the end of the diagram. The two-way delay prediction
errors obtained from (37) and (17) are displayed as solid red line with errors
χ ≤ 0.1 ns, dashed magenta χ ≤ 0.2 ns, dash-dotted blue line χ ≤ 0.5 ns
and dotted black line χ ≤ 1.0 ns.

VI. RESULTS

A. Long-Term MPC evolution

The long-term MPC tracking result for a small part of the
measurement run is shown in Fig. 11, where each time instance
represents the mean MPC powers of a time-variant channel
impulse response as shown Fig. 6. Likewise, the MPCs in Fig.
6 can be related to the MPC powers at 250 ms and 260 ms
in Fig. 11. As previously mentioned, only full-lifetime MPC
tracks are considered for the long-term tracking algorithm.
The example in Fig. 11 shows that most of the full lifetime
MPC tracks can be related to adjacent MPC tracks, yet with
different levels of trustworthiness as indicated by the different
colors and line styles. Strong MPC tracks can be connected
with higher reliability (solid red line), whereas weaker MPC
tracks can only be related with higher tolerances. For this
measurement run, only 5% of the power of all (full lifetime)



10

MPCs could not be related to adjacent MPC tracks. The lowest
delay prediction error below 0.1 ns holds still for 72% of the
power of all connected MPC tracks.

From Fig. 11, several observations regarding the long-term
evolution of MPCs can be made. The strongest 2-3 MPC tracks
show a parallel and wave-like power fluctuation behavior.
Another MPC track at around -90 dB is comparatively constant
and shows also a (reversed) wave-like power fluctuation after
400 ms. Starting at 200 ms, a MPC track at -97.5 dB gains
power and becomes the strongest MPC at 320 ms. Several
weaker MPC tracks appear, reach a small power level and
disappear within a short period, for instance the track between
350 and 400 ms. Very rarely (full-lifetime) MPC tracks appear
in one set only, i.e. circles without any connecting line.

B. Total Tracking Power Loss

Summing up the power losses of all processing steps, 2
dB power loss due to DMCs in the short-term MPC tracking,
around 5% power loss due to the neglect of non-full-lifetime
MPCs and again 5% power loss due to losses in the long-
term tracking, the total tracking power loss is 2.4 dB. This
means that the final long-term tracking results and the drawn
statistical conclusions reflect around 57% of the measured
channel power. The remaining power can be assigned to dif-
fuse or other non-trackable MPCs, which have a minor impact
on fading effects compared to specular MPCs. We therefore
consider the temporal behavior of MPCs in the measured
propagation channel well represented with our tracking results.

C. Statistical Characterization

The wideband measurement data and the applied algorithms
allow an extraction of all relevant MPC parameters. For this
paper, we focus on the long-term MPC statistic results for
the number of MPCs and the birth/death rate of MPCs. The
tunnel measurement run with 1666 sets results in a distribution
of the number of MPCs as depicted in Fig. 12. The smooth
shape of the CDF indicates a sufficiently large sample. Fig. 13
shows the CDF of the birth and death rate of MPCs per meter
travelled, i.e. the number of MPCs appearing or disappearing
per cumulative distance of both vehicles.

VII. SUMMARY

Channel sounder measurements at 5.7 GHz with a band-
width of 1 GHz lead to a sparse channel impulse response
with favorable properties. The wide bandwidth makes highly
accurate multipath components (MPC) estimation and tracking
of individual MPCs feasible. Our proposed detection and
tracking algorithms follow very well the progression of the
channel gain fluctuations, with a power loss of only 2.5
dB. Compared to the GM-PHD filter, the proposed tracking
algorithm has a comparable or better tracking performance
and a significantly lower complexity. The proposed tracking
method works flawless down to an SNR of 14 dB with a delay
estimation error of 0.07 ns. In order to track the long-term
evolution of MPC and relate tracks across measurement gaps
of 6.4 ms, a long-term tracking method is applied. Based on

Fig. 12. Statistical distribution of number of MPCs in tunnel scenario.

Fig. 13. Statistical distribution of birth/death rate of MPCs in tunnel scenario.

these results, statistical distributions on the number of MPCs
and the birth/death rate are drawn.

Apart from a better understanding of the time-variant
propagation process, the proposed approach enables the de-
velopment of more accurate channel models. The temporal
evolution of highly-resolved individual MPCs can be related
to physical objects and enhance the development of geometry-
based channel models.
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[3] L. Bernadó, T. Zemen, F. Tufvesson, A. F. Molisch, and C. F. Mecklen-
brauker, “Delay and Doppler spreads of nonstationary vehicular channels
for safety-relevant scenarios,” Vehicular Technology, IEEE Transactions
on, vol. 63, no. 1, pp. 82–93, 2014.

[4] A. Richter, “Estimation of radio channel parameters: Models and algo-
rithms.” ISLE, 2005.



11

[5] A. F. Molisch, “Ultrawideband propagation channels-theory, measure-
ment, and modeling,” Vehicular Technology, IEEE Transactions on,
vol. 54, no. 5, pp. 1528–1545, 2005.

[6] M. Z. Win and R. A. Scholtz, “On the energy capture of ultrawide band-
width signals in dense multipath environments,” IEEE Communications
Letters, vol. 2, no. 9, pp. 245–247, 1998.

[7] J.-Y. Lee, J.-H. Lee, S.-D. Kim, J.-H. Jeong, W.-H. Kim, G.-Y. Ha,
C.-S. Jung, J.-E. Oh, D.-W. Ha, S.-J. Kong et al., “UWB propagation
measurements in vehicular environments,” in Radio and Wireless Sym-
posium, 2009. RWS’09. IEEE. IEEE, 2009, pp. 236–239.

[8] R. He, O. Renaudin, V. M. Kolmonen, K. Haneda, Z. Zhong, B. Ai,
and C. Oestges, “A dynamic wideband directional channel model for
vehicle-to-vehicle communications,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 12, pp. 7870–7882, Dec 2015.

[9] J. Karedal, F. Tufvesson, N. Czink, A. Paier, C. Dumard, T. Zemen,
C. F. Mecklenbrauker, and A. F. Molisch, “A geometry-based stochastic
MIMO model for vehicle-to-vehicle communications,” Wireless Com-
munications, IEEE Transactions on, vol. 8, no. 7, pp. 3646–3657, 2009.

[10] N. Czink, C. Mecklenbrauker, and G. Del Galdo, “A novel automatic
cluster tracking algorithm,” in Personal, Indoor and Mobile Radio
Communications, 2006 IEEE 17th International Symposium on, Sept
2006, pp. 1–5.
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