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ANALYSIS OF THE TAMIL PARALLAX PROCEDURES IN  
LE GENTIL'S REPORT OF 1776 

 

Lars Gislén 
Division of Particle Physics, University of Lund,  

Dala 7163, 242 97 Hörby, Sweden. 
E-mail: LarsG@vasterstad.se 

 
Abstract:  The Tamil procedures for computing the circumstances of eclipses were reported by the French 
astronomer Guillaume Le Gentil  from his visit to India in the 1760's.  This paper investigates these Tamil procedures 
for a solar eclipse, focusing on the procedures for finding the eclipse parallax which are needed to describe the 
local appearance of an eclipse.  These procedures constitute the essential difference between a solar and lunar 
eclipse.  The procedures are compared with the parallax procedures in Sūryasiddhānta and give similar results.  It 
is found that there seems to be little theoretical background to the Tamil procedures, although they work rather well 
in practice.  There are parallels with parallax procedures in Southeast Asian traditional astronomy.  The Tamil 
calculations of the circumstances of the lunar eclipse 13 December 1769 have earlier been analyzed by Otto 
Neugebauer in a paper in Isis. 
 

Keywords: Parallax, solar eclipse, Sun, Moon, nonagesimal, midheaven, Tamil, India, Sūryasiddhānta. 

 
1   INTRODUCTION 
 

In 1952 Otto Neugebauer published a paper 

(Neugebauer, 1952) with an analysis of the 
methods used by Tamil astronomers, as des-
cribed in the book Kala Sankalita published in 
1825 by amateur astronomer Lieutenant Colon-
el John Warren (1769–1830) (Warren, 1825).  

The native astronomers could, using heaps of 

shells on the ground and memorized tables, 
compute the circumstances of a lunar eclipse 
with astonishing accuracy.  At the end of his 
paper Neugebauer cited a remark of Warren 
who regretted not having had access to an 
example of a solar eclipse.  Neugebauer then 
added that he had found an additional source 
for Tamil astronomy in a report by Le Gentil, 

(1776; 1779),1 in which the latter carefully re-
ports the Tamil computational procedures for 
both lunar and solar eclipses.  Neugebauer 
ends his paper by hinting that he would return 
to the Tamil procedures at a later occasion 
which as far as I know this never happened.  
 
2   ECLIPSE FUNDAMENTALS 
 

As for a lunar eclipse, the input for the compu-
tation is the elapsed Kaliyuga year, the solar 
month, and the day in the solar month of the 
eclipse.  I have suppressed parts of the compu-
tation that are similar to those for a lunar eclipse, 
as they have already been analyzed by 
Neugebauer.  The focus of this paper will be on 
the parallax procedures reported by Le Gentil 
and an analysis of them. 
 

In the example reported by Le Gentil, the 
Kaliyuga year is 4863, the solar month 7 (Tulā), 
and the day 5, corresponding to the Western 
date 18 October 1762.  There was a total solar 
eclipse on 17 October 1762, visible as a partial 
eclipse at Tirvalour.  Le Gentil says (Le Gentil, 

1776: 177) that Tirvalour is situated 30 leagues 
south of Puducherry and 5 leagues west of Na-
gapattinam which is close to modern Thiruvarur 
(10.8° N, 79.6° E).  He then states that the equi-
noctial shadow in Tirvalour of a gnomon with a 
height of 720 is 144, which gives a geographical 
latitude of 11.3° N consistent with the data in 
the rising time table (see Table 1 below). 
 

Table 1:  Rising time tables (after Gislén). 
 

 
The Tamil source uses several different 

time and angular measures.  Time is measured 
in nadi, with 60 nadi being a night and day and 
corresponding to 360° in angular measure. One 
nadi corresponds to 24 minutes of Western time 
or 6° in hour angle.  A nadi is divided into 60 
vinadi and 1° then corresponds to 10 vinadi, 
making the conversion between degrees and 
vinadi very easy.  I have used the sexadecimal 
notation a; b, c where a stands for the units, b 
for the number of 1/60ths, c for 1/3600ths.  Nadi 
is denoted by a superscript ‘n’, vinadi by ‘v’ and 
Western hours by ‘h’. 
 

Using the same methods as given by War-
ren in Neugebauer’s paper for a lunar eclipse, 

Sign 
  

Generic 
Rising Time 

Table 
Ascension 
Correction  

Rising Time 
Table for 
11.3° N 

  1 278    24 254 
  2 299   19 280 
  3 323     8 315 
  4 323   –8 331 
  5 299 –19 318 
  6 278 –24 302 
  7 278 –24 302 
  8 299 –19 318 
  9 323   –8 331 
10 323     8 315 
11 299   19 280 
12 278   24 254 
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Figure 1:  Rising times (diagram: Lars Gislén). 

 
the Tamil source first computes the ahargana, 
1776442;43,3,30 (Le Gentil, 1776: 250), the 
number of elapsed days at sunrise 18 October 
1762 since the Kaliyuga epoch.  This then leads 
to the Sun’s true longitude at sunrise, 184;15, 
53°, and the Moon's longitude 192;29,26° (ibid.).  
These longitudes are sidereal as is stan-dard in 
traditional Indian astronomy.  The Tamil source 
uses the year length 365;15,31,15 which is 
standard in the Aryabhāta astronomi-cal canon 
as is the use of sunrise (audayika) as the usual 
origin of day (Billard, 1971). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2:  Ascension difference corrections (doubled) 
and rising times for Tirvalour (after Le Gentil, 1776: 
206). 

Using the elongation between the Sun and 
the Moon and their true daily motion, 59.45′ and 
835′ respectively, the time of conjunction and 
the conjunction longitude are computed by inter-
polation (Le Gentil, 1776: 250): 

 

Conjunction time 21;48,30n after sunrise on 17 
October 1672 
Conjunction longitude 183;37,50° 
 

The longitudes are converted into tropical long-
itudes using the Indian precession, a zig-zag 
function with an amplitude of 27° and a period 
of 7200 years.  In this case, the precession is 
18;57,9° and the tropical conjunction longitude 
becomes 202;34,59° (Le Gentil, 1776: 251). 
 
2   THE SŪRYASIDDHĀNTA PARALLAX 
     PROCEDURES 
 

Before we analyze the Tamil parallax proced-
ures that follow in Le Gentil’s report we study 
them in the standard Indian astronomical work, 
the Sūryasiddhānta. 
 
2.1   Lagna and Nonagesimal  
 

An important quantity in Indian parallax compu-
tation is the lagna or rising sign or the ascen- 
dant.  To calculate it you need a rising time table 
of the zodiacal signs for the given geographical 
latitude φ.  This starts with a generic table for 
the Equator, see Figure 1, where CD is the ris-
ing time for the section AB of the ecliptic and is 
the difference in right ascension of these points. 

 

For each zodiacal sign, the corresponding 
rising times are computed and the degrees 
converted to vinadis by multiplying by 10.  This 
gives the second column of Table 1.  Secondly, 
the ascensional differences for the geographi-
cal latitude φ and zodiacal signs are computed 
for the zodiacal signs.  The ascensional differ-
ence measures how far sunrise and sunset 
deviates from 6 a.m. and 6 p.m.  Their differ-
ences, converted to vinadis, are shown with 
sign in the third column of Table 1 and, when 
subtracted from the standard rising times, gen-
erates the rising times for the given geography-
ical latitude, in this case for the latitude of 
Tirvalour, 11.3° N.  Figure 2 shows the tables 
given in Le Gentil’s report with the differences 
of the ascensional differences multiplied by two 
and the rising time table.  Le Gentil’s minutes 
d’heure are vinadis.  The procedure to arrive at 
twice the differences of the ascensional differ-
ences for the first three signs is described by Le 
Gentil (1776: 176ff): 
 

They know, for example, that at 
Tirvalor ... the length of the shadow of 
the gno-mon, is, on the day of the 
equinox, 144 parts, of which the 
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gnomon contains 720; they multiply 
144 by 20, and divid- 

 

 

Table 2:  Excess in daylength. 
 

Sign 0 1 2 3 4 5 6 7 8 9 10 11 12 

Excess 0 48 86 102 86 48 0 –48 –86 –102 –86 –48 0 

 
ing the product 2880 by 60, they get 48 

minutes of an hour; this is what they call 

the adi-chara-vinady.  They then divide 

the asi-chara-vinady into five parts; and 
take four of these parts which are called 

maddia-chara-vinady; it will be, in this 

example, 38 2/5.  Finally one third of 

the adi-chara-vinady or 48 minutes, will 

give 16 minutes; which they call the 

antia-chara-vinady. (my English trans-
lation). 

 

This seemingly strange procedure with al-

most the same ‘magic’ numbers is also des-

cribed in the Pauliśasiddānta (Neugebauer and 

Pingree, 1970(I): 41; 1970(II): 20) and explain-

ed in Gislén (2021). 
 

Using the difference table in Figure 2, the 

excess in daylength in vinadis can then be 
calculated (see Table 2). 
 

The procedure to compute the lagna is best 
illustrated by an example.  Suppose that the 

longitude of the Sun is 250° = 8 signs 10° and 

that the time from sunrise is 600 vinadis.  Sign 

9 has a rising time of 331 vinadis.  The 10° 

correspond to 10 × 318 / 30 = 110 vinadis.  
There is a remainder 331 – 110 = 221 vinadis 

in sign 9.  Subtracting this from the time from 

sunrise gives 600 – 221 = 379 vinadis.  If we 

subtract the rising time of sign 10 there remains 

379 – 315 = 64.  This is less than the rising time 

of sign 11 and interpolating the remaining de-
grees in this sign gives 30 × 64 / 280 = 6.9°.  

Thus, the lagna is 10 signs 6.9° = 306;54°. 
 

With the lagna known, the longitude of the 

nonagesimal, λN, is computed by subtracting 

90°.  The nonagesimal is the highest point of 

the ecliptic, halfway between the ascending and 

descending signs of the zodiac. 
 
2.2   PARALLAX 
 

Parallax is due to the fact that a celestial object, 
P (see Figure 3), at a finite distance from the 

Earth will be seen in slightly different directions 

as seen from the center of the Earth, C, and 

from an observer, O, on the surface of the Earth.  

For an object in the zenith the direction from the 

center of the Earth and from the observer will 
coincide and the parallax, π, will be zero.  The 

horizontal parallax, π0, is the parallax when the 

celestial object has a zenith distance of 90°.  

The basic idea in traditional Indian parallax 

theory is that the vertical parallax of an object, 

a depression vertically, is given by the 

horizontal parallax π0 multiplied by the sine of 

the zenith distance, z, of the celestial body3 

(Burgess, 2000: 162): 
 

π = π0 sin z         (1) 
 

The rigorous formula is sin π = sin π0 sin z.  Due 

to the smallness of the angle π and π0 the Indian 

expression is an excellent approximation. 
 

For the horizontal parallax an effective 

value is used which is the difference between 

the Indian lunar and solar horizontal parallaxes.  

These parallaxes are said to be their daily mean 

motions during 4 nadis and are respectively 52′ 
42′′ and 3′ 56′′, thus π0 = 48′ 46′′ ≈ 49′. (Burgess, 

2000: 145). 
 

If the ecliptic lies in the local vertical plane, 

its highest point in the zenith is the nonagesimal 
and the parallax in the ecliptic will be purely 

parallax in longitude, πλ, being zero if the 

celestial body in the ecliptic is also in the zenith 

(the nonagesimal) and maximum if it is in the 

horizon.  For intermediate longitudes λ there 

would be a zenith distance z = λN – λ and a 

parallax in longitude 
 

πλ = π0 sin(λN – λ)        (2) 
 

If the ecliptic lies in the local horizontal 

plane, so will the celestial body which then has 

a zenith distance of 90° and the parallax will be 

vertical and maximum and perpendicular to the 
ecliptic, i.e. purely parallax in latitude: πβ = π0. 
 

The assumption in the Sūryasiddhānta is 

that if we start with the ecliptic vertical and tilt it, 

the parallax in longitude gradually changing into 
parallax in latitude as the zenith distance zN of 

the nonagesimal increases from 0° to 90°.  This 

is described by 
 

πλ = π0 sin(λN – λ) cos zN         (3) 
πβ = π0 sin zN          (4) 
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Figure 3:  Parallax (diagram: Lars Gislén). 

2.2.1   Calculation of zN 
 

A second important quantity in Indian astron-

omy is the culminating point or midheaven, in 
Latin medium coeli.  It is the longitude of the 

ecliptic where it crosses the south part of the 

meridian.  We will denote this longitude by λM.  

It can be computed from the rising time table by 

entering with the Sun’s longitude and adding or 

subtracting the time form noon, adding if it is 

before noon, otherwise subtracting, and then 
finding the corresponding ecliptic longitude in a 

similar way as for the lagna.  The longitudes of 

the midheaven and the nonagesimal will be 

almost the same for geographical latitudes not 

far from the Equator. 
 

The declination δM of the midheaven (Bur-

gess, 2000: 165) is given by 
 

sin δM = sin λM sin ε       (5) 
 

Here ε is the obliquity of the ecliptic, taken as 

24° in Indian astronomy.  Then the zenith dist-

ance of the midheaven is given by 
 

sin zM = sin(δM – φ)       (6) 
 

As before φ is the geographical latitude.  De-

noting sin ∆ = sin(λM – λN) = sin Λ sin ε / cos φ 

the Sūryasiddhānta (Burgess, 2000: 166) then 

has 
 

sin2 zN = sin2zM – sin2∆       (7) 
 
2.2.2   Parallax in Longitude 
 

The first approximation of this parallax is πλ = π0 
sin(λN – λ) cos zN (Burgess, 2000: 167ff).  In the 
Sūryasiddhānta the horizontal parallax π0 is ex-
pressed in time measure, 4 nadis.  The parallax 
should be taken as positive if the eclipse is after 
noon, otherwise negative. This parallax will 
change the longitude of the celestial body, and 
a second approximation with the new longitude 
is computed, and so on.  The iterations will rap-
idly converge to a limiting value. Figure 4 shows 
the iterated parallax in longitude for some dif-
ferent zenith angles after four iterations. 
 

The longitude of the Moon and the conjunc-
tion time is then updated with the parallax in 
longitude.  Together with the distance from the 
lunar node it will give the first lunar latitude 
which, however, has to be corrected for parallax 
in latitude. 
 

2.2.3   Parallax in Latitude 
 

With an updated value of zN, the parallax in 
latitude is computed by Equation (4) and the 
lunar latitude is corrected (Burgess, 2000: 172). 
The algorithm now has all the quantities needed 
to compute the elements of the eclipse.  In the 
Sūryasiddhānta the calculations are repeated 
for the beginning and end of the eclipse to take 
into account the changing latitude of the Moon 
during the eclipse. 
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Figure 4:  Longitudinal parallax in Sūryasiddhānta (diagram: Lars Gislén). 
 

 

 

3   THE TAMIL PARALLAX PROCEURES 
 

We now present the parallax procedures as 
reported by Le Gentil, together with an analysis. 
 
3.1   Parallax in Longitude 
 

With the tropical conjunction longitude λ and the 
conjunction time after sunrise the lagna is found 
as 328;55,43° (Le Gentil, 1776: 253).  The 
Tamil procedure then calculates the difference 
between the lagna, Λ, and the conjunction 
longitude, multiplies it by 5 and divides by 30.  
This operation converts the difference from 
angle in degrees to time in nadi.  Then it sub-
tracts 15 nadis from the result (Le Gentil, 1776: 
255).  Expressed in degrees this is Λ – λ – 90° 
= λN – λ, i.e. the correct argument for computing 
the parallax in longitude according to the Sūrya-
siddhānta.  The rule given by Le Gentil is: Sub-
tract 15 from the difference of the lagna and the 
Sun’s longitude, if it is larger than 15, otherwise 
keep it.  This rule is certainly wrong, as it would 
not result in a continuous parallax function al-
though in this case it gives the correct result.  
The result of the operation is 6;3,0,0n (Le Gentil, 
1776: 253).  It is denoted by d below. 
 

The Tamil procedure then deviates from the 
Sūryasiddhānta.  The parallax time correction in 

nadi is determined by the formula πλ = 60 × (20 

– d) × d / 1468.  Inserting the actual value of d 

results in a parallax of 3;26,58n (Le Gentil, 1776: 

254).  The formula is a quadratic function of d 

with a maximum 4.087 at 10 nadi.  I have no ex-

planation of the factor 1468 in the formula, and 

a better value would actually have been about 
1800.  There is a similarity with the corres-

ponding Sūryasiddhānta function for zN ≈ 0° and 

also with a model for longitudinal parallax that 

assumes that the Sun and Moon move in the 

equatorial plane of the Earth as used in Thai 

eclipse calculations (Gislén, 2019, see the Ap-
pendix).  For the actual solar eclipse zN ≈ 28°.  

In Figure 5 the gray curve shows the Sūrya-

siddhānta parallax for zN = 28° and the black 

curve is the Tamil parallax function being about 

0.6 nadi (15 minutes) too large in the present 
case.  The horizontal scale is in nadi from the 

nonagesimal.  The vertical scale is the parallax 

in nadi. 
 

Using the longitudinal parallax correction, 
the  corrected  eclipse  time  from  sunrise  is  
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Figure 5: Comparison of parallax in longitude (diagram: Lars Gislén). 

 
 

 

 
 

 

25;15,28n.  The  corrected  eclipse  longitude  of 
the Moon using its true daily motion is 203; 
22,52° and that of the Sun is 202;38,24° (Le 
Gentil, 1776: 255). 
 

The first latitude of the Moon can now be 
computed using a fixed table for its latitude as 
a function of the longitude distance from the 
lunar node (ibid.).  This gives 38;34′ N.  As in 
the Sūryasiddhānta, this latitude is given by 4.5° 
times the sine of the distance from the node. 
 
3.2   Parallax in Latitude 
 

Using the table of excess daylength and tropical 
longitude of the Sun, the daylength is comput-
ed, 29;23,52n.  The eclipse time from noon is 
then the time from sunrise minus half the day 
length, or 10;32,42n (Le Gentil, 1776: 256).  This 
is the quantity needed to compute the longitude 
of the midheaven.  However, the Tamil proced-
ure is a simplified Sūryasiddhānta version.  The 
eclipse time from noon in nadis is converted into 
degrees by multiplying by 6 and then the trop-
ical solar eclipse longitude is added to 265;50, 
24°.  This is an approximation of the longitude 
of the midheaven λM, as the Sun’s longitude is 
measured in the ecliptic system while the time 
is measured in the equatorial system.  A correct 
computation would give 261;52,31°.  If the re-
sult is larger than 180°, subtract 180° giving in 
this case the remainder 85;50,24°.  The result 
is called bouja by Le Gentil (Sanskrit bhuja).  
The approximation to the midheaven as a sub-
stitution for the nonagesimal is a recognized 
practice in the Sūryasiddhānta: 
 

The sine and cosine of the meridian 
zenith-distance are the approximate 

sines of the ecliptic zenith-distance and 

altitude. (Burgess, 2000: 167). 
 

This approximation is also used in Burmese 

traditional astronomy (Gislén, 2019) and, con-

sidering the approximations in the next steps of 

the calculations, is not very critical.  It avoids 
making the tedious calculation of a new lagna 

using the corrected eclipse time from sunrise 

and corrected solar longitude, and a new cal-

culation of zN.  Such a calculation would give 

lagna Λ = 353;18° and a longitude for the 

nonagesimal of λN = 263;18°, which only differs 

from the approximate value above by about 2°. 
 

Using the bhuja as an argument and the 

table for excess daylength, the ascensional dif-

ference, A = –100v of the midheaven is com-

puted by interpolation (Le Gentil, 1776: 256ff).  

Then the following formula is used to obtain the 

parallax in latitude: 
 

πβ = 2 × (A × 6 × 60 / 144 – 114′ 14′′) / 25           (8) 
With the numbers in Le Gentil’s text this gives –
29;8′.  The corrected latitude of the Moon is 
then 38;34′ –29;8 = 9;26′. 
 

Effectively, the factor multiplying A (in vin-
adi), 6 × 60 / (144 × 25) = 1/10, converts this 
term to arc minutes.  The extremal values of A 
are ±102v for Tirvalour and the first term then 
gives an extremal contribution to πβ  of ±20.40′.  
The first term will be a nearly sinusoidal function 
with this amplitude.  The second term, presum-
ably a geographical latitude constant, gives the 
contribution –9.14′, thus the extremal values of 
πβ  are –29.54′ and +10.36′.  From the Sūrya-
siddhānta we have, using the midheaven in-
stead of the nonagesimal: 
 

πβ  = π0 sin(δN – φ) ≈ π0 sin(δM – φ)      (9) 
 

The last expression is a very good ap-  
proximation for the rigorous expression.  Using      
the Sūryasiddhānta approximation and the geo-
graphical latitude of Tirvalour (9) gives the cor-
responding extrema –28.32′ and +10.77′ differ-
ing only by at most about 1′ from the Tamil re-
sult.  The same kind of approximation is used in 
Burmese traditional eclipse calculations (Gis-
lén, 2019).  See Figure 6, which shows the par-
allax in latitude in arc minutes as a function of 
the longitude of the cumulating point in de-
grees.  The Tamil function is the black curve, 
the Suryasiddhanta function the grey one.  The 
agreement is very good, with only small devia-
tions at the extrema. 

 

A possible explanation for the Tamil for-
mula is the following.  We can develop Equation 
(9) into  
 

πβ  = π0 (sin δM cos φ – cos δM sin φ)    (10) 
 

In the last term, δM lies in the interval 0° to 24° 
and cos δM in the interval 0.91 to 1.  Using the 
mean value for cos δM and inserting the geo-
graphical latitude φ = 11.3°, the contribution of 
the last term to the parallax is 9.16′, very close 
to the Tamil second term 9.14′ in (8).  In the first 
term, cos φ ≈ 0.98, and the contribution to the 
parallax will be a sinusoidal function with an 
amplitude of 19.5′, very similar to the first term 
in the Tamil formula.  A similar approximation is 
used in Southeast Asian eclipse calculations 
(Gislén, 2019). 
 
4   CONCLUDING REMARKS 
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There seems to be little theoretical background 

for the Tamil parallax procedures.  They differ 

in style from the earlier parts of the lunar and 
solar eclipse calculations which are mainly 

based on memorized tables.  Instead the paral-

lax procedures use mathematical expressions 

that give satisfactory agreement with more 

elaborate theoretical models but are faster and 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 
Figure 6:  Comparison of the Tamil and the Sūryasiddhānta parallax in latitude, 
represented by the black and grey curves respectively (diagram: Lars Gislén). 

 

easier to use and remember.  They also use 

short-cuts and approximations that facilitates 

the computation as when the ascensional dif-

ference table is used instead of a sine table.  

However, the procedure for parallax in long-
itude is crude.  The traditional astronomy in 

Southeast Asia is much influenced by early 

Indian astronomy.  It is therefore not surprising 

to see parallels in the parallax calculations. 

 

5   NOTE 
 

1.  His full name was Guillaume Joseph Hya-

cinthe Jean-Baptiste Le Gentil de la Gal-

aisière. 
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8   APPENDIX: DERIVATION OF A SIMPLIFIED LONGITUDINAL PARALLAX  
 

We look at the situation at the time of a solar 

eclipse (Figure 7).  It is assumed that the Sun 

and the Moon move in circles in the equatorial 

plane and that we see the Earth from the north 

pole and the Earth rotates counter-clockwise.  

At the geocentric conjunction, the Moon, M, and 

the Sun, S, lie on a straight line CMS from the 

center of the Earth.  The observer is located at 

O with an hour angle H relative to the geocentric 

positions of the Moon and Sun.  As seen from 

the observer, the direction of the sight-lines OM 

and OS will not coincide, there will be an ang-

ular separation or a parallax of the Sun and 

Moon relative to each other.  As the parallax π 

of a single object is given by π = π0 sin H, where 

π0 is the horizonal parallax, the parallax when 

the zenith distance H = 90°, and the celestial 

object is at the horizon.  The effective joint par-

allax will be the difference of these parallaxes 

and is defined as the increase in elongation 

between the Moon and Sun during 4 nadi.  
 

At some later time ∆H the observer is at O′, 

the Moon has moved to M′, and the Sun to S' 

and they are now seen to coincide in direction 

as seen from O′.  The angle M′CM, the angle 

that the Moon has moved is vM × ∆H/v where vM 

≈ 791′ is the Moon’s mean daily angular velocity 

and v the daily rotation of the Earth, 21600.  In 

the same way the angle S′CS is vS × ∆H/v with 

vS ≈ 59′ being the corresponding solar velocity.  

The angle α can be expressed in two ways, us-

ing the consideration that the local zenith dist-

ance of either luminary is the angle H + ∆H 

decreased by the respective angular movement 

during time H, and increased by its parallax at 

zenith distance H + ∆H – vL × ∆H / v.  The index 

L is here M or S.  
 

α = H + ∆H–vM  × ∆H / v + πM sin(H + ∆H–vM × 
∆H / v)        (11) 
α = H + ∆H–vS  × ∆H / v + πS sin(H + ∆H–vS  × 
∆H / v).        (12) 
 

We ignore the last term inside the sine ar-

gument, since both ratios vM /v and vS /v are 

much smaller than 1.  Eliminating the angle α 

we get 
 

∆H = (πM – πS)·sin(H + ∆H)xv /( vM – vS)    (13) 
 

Using the definition of the effective parallax 

we finally get 
 

∆H = 4n·sin(H + ∆H)       (14) 
 

This is a transcendental equation that must 

be solved by successive approximation (Ken-

nedy, 1956; Kennedy and Transue,1956; Neu-

gebauer,1962; Suter, 1914).  We first set ∆H = 

0 in the right member to compute ∆H that in turn 

is inserted in the right member and so on.  The 

iteration process converges very rapidly, typi-

cally only four iterations are needed to reach a 

sufficient accuracy and gives the same result as 

the Sūryasiddhānta when the zenith distance of 

the nonagesimal is zero. 
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Figure 7:  Solar eclipse parallax (diagram: Lars Gislén). 
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