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Abstract

The use of timber as a construction material demands continuous improvements
of our knowledge about the material and computational techniques for structural
analysis and design.

In this report the fracture properties of wood are studied and implemented into
numerical crack propagation models. The numerical algorithms are utilized for

computing the development of cracks in structural elements. Six types of timber
beams, with holes and notches, are studied. Experimental results for critical load
indicate that the numerical results are fairly accurate. In addition, numerical studies

are performed regarding the in
uence of distribution of load at support, in
uence
of beam geometry, load con�guration and axial force. The experimental results
presented include a comprehensive testing series on the fracture softening properties

of wood in pure and combined shear and tension perpendicular to grain.

For end-notched beams, the distribution of load at support a�ects the load-bearing

capacity when the loaded area is close to a corner. The way the load was distributed
was found to have little in
uence on beams of di�erent size, while the notch geometry
has a strong in
uence on the load-bearing capacity. The notch depth and height are

the main parameters where the notch height has the most intensive in
uence. Load
con�guration does not in
uence the load-bearing capacity to any greater extent
except for external loads placed within a distance of beam height from the notch.

In that case the load runs partly straight down to the support without a�ecting the
stress singularity very much at the notch corner. If the supporting force is at an
angle to the support area, an axial force may develop in the structure resulting in

in
uence on the load-bearing capacity.

It may be convenient to use simple correction factors to specify in an approximate
manner the in
uence of the studied parameters on the load-bearing capacity of

structural elements.

Keywords: Fracture mechanics, wood, crack, notches, holes, �nite element analysis.
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Chapter 1

Introduction

1.1 General background

Di�erent kinds of structural damage and disasters repeatedly remind us about the

necessity to place requirements on the load-bearing capacity of structural compo-
nents. The common aim is to prevent the failure or fracture of materials and struc-
tures at the same time as we strive for more economic use. Hazardous situations do

occur which unfortunately, from time to time, have catastrophic consequences. The
assessment of some of the risks may be accomplished by fracture mechanics and there
is a development towards practicing fracture mechanics as a common engineering

tool.

The use of wood as a construction material often implies interference in the regular

structure of the material. It is quite common that holes and notches must be made
in structural members which may substantially reduce the load-bearing capacity.
Environmental and time related e�ects as well as the design practice can severely

a�ect the extent to which the capacity of the material may be used. Notches are
often used at structural supports and connections which also su�er from di�erent
kind of stress concentrations due to drilling of holes or driving nails. The integration

of a load-bearing system of a building with the non-structural systems for di�erent
kind of operations and service often implies con
icts where those systems intersect.
One of the common solutions, and perhaps the only one in many cases, is to draw

the operating and service system components (electric system, pipelines, ventiducts

Figure 1.1: Intersection of a load-bearing system and an operating system.
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2 CHAPTER 1. INTRODUCTION

etc.) through holes or notches in the load-bearing system as indicated in Figure

(1.1). Geometric changes of cross-sections of load-bearing structures may also be of
architectonic nature and due to economic aspects. This may imply an optimization
in order to reduce the volume of building materials being used, resulting in cross-

section variations of the structural members. The reduction of the load-bearing
capacity is primarily due to stress concentration in critical regions, Figure (1.3).
Conventional design methods rely normally on stress criteria, but according to linear

elastic stress analysis the stresses may approach in�nity close to a sharp corner of a
hole or a notch. In such cases the necessity for another approach than the use of a
stress criterion is obvious.

1.2 Some speci�c applications

Several application areas for wood and timber research can be mentioned where use

is made of fracture mechanics, Figure (1.2). Some speci�c applications are listed
below:

� Finger joints [32, 33]

� Arch of light weight beams [32]

� Notched beams [5, 27, 38]

� Wood composites [7]

� Structural joints [27, 37, 35, 14]

� Design codes [27]

� Splitting [27]

� Probabilistic fracture [27]

� Load duration [27, 38]

� Holes in structural members [27]

� Hangings [27]

� Cambered beams [27]

� Nail driving [27]

� Drying checks [27, 41]

Figure 1.2: Applications of fracture mechanics
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1.3 Scope and limitations

The main purpose of this report is to describe and study two methods for numerical

analysis of the load-bearing capacity of structural members; one of linear elastic
fracture mechanics (LEFM) and the other of non-linear fracture mechanics (NLFM).
Several models may be used in strength design in relation to the risk of fracture in

wood, see [4],[8] and [27]. One of the most promising numerical models in LEFM,
according to the author, was dealt with by Petersson [8]. It is based on an energy
approach and will be treated and applied in the following sections. It is often

called the energy release rate approach, the compliance method or the virtual crack
extension method.

Basic limiting assumptions adopted throughout this study are:

� the material outside the fracture process zone is linear elastic

� dynamics and inertia forces are neglected

� linear geometry

� no plasticity in the fracture region; only linear or non-linear elasticity

First some basic theory will be presented which is then applied on beams with cracks
propagating in the longitudinal direction. This direction is assumed to coincide

with the wooden grain direction. LEFM and NLFM formulations for determining

Figure 1.3: Studied types of beam structures
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the crack load by �nite element analysis are given and procedures for the numerical

analysis are outlined. Results for some types of beams with a notch or a hole are
presented and discussed. The wooden structural elements analyzed by LEFM are
summarized in Figure (1.3). NLFM is applied to the end-notched beam and to a

three-point bending specimen used for testing material properties. In addition to the
computational studies, some material property and crack propagation test results
are presented.

1.4 Disposition of the report

In Chapter 2 some constitutive properties of wood are reviewed with emphasis on

orthotropic plane material properties. The three modes of fracture are introduced
and the structural levels of wood with related properties are described.

The theories of linear and non-linear fracture mechanics are described in Chapter
3. From the theory of plane anisotropic elasticity, the stress functions for the stress
�eld in the vicinity of a crack tip are derived in brief. Subsequently the methodology

of the linear elastic approach is described. Several methods of non-linear fracture
mechanics are mentioned and some numerical methods outlined.

Several test methods have been proposed for determining the fracture properties of
wood and some of the methods are outlined in Chapter 4.

In chapter 5 the modelling of wood with linear elastic fracture mechanics is treated.

Modelling with non-linear fracture mechanics is described in Chapter 6, where the
description is essentially focused on the �ctious crack model (FCM).

In Chapter 7 the numerical studies are presented and the two methodologies of

LEFM and NLFM are compared.

Finally,Chapter 8, comprises concluding remarks with discussion on design criteria

and potential future research.



Chapter 2

Some constitutive properties of

wood

2.1 General

A thorough understanding of the fracture properties of wood is the basis for mod-
elling and the fracture process can be more easily comprehended with some basic

knowledge of the di�erent structural levels of wood. A short description follows
with emphasis on the structural levels, the orthotropic properties and the consti-
tutive properties of the fracture zone. Linear elastic fracture mechanics deals with

the analysis of cracks by means of linear elastic theory. The region where the frac-
ture process takes place is in that case regarded as in�nitely small. The loading of
a crack or a fracture plane is often divided into three modes. Mode I refers to a

symmetric opening of the crack, mode II to shear and mode III to antisymmetric
shear according to Figure (2.1). In the following sections mainly mode I and mode
II will be discussed, including a combined action of mode I and II, termed as mixed

mode.

a) b) c)

Figure 2.1: Loading and fracture modes (a) Mode I, (b) Mode II, (c) Mode III

5



6 CHAPTER 2. SOME CONSTITUTIVE PROPERTIES OF WOOD

Figure 2.2: Principal structural features of a wood segment

2.2 Structural levels and related properties

Wood can be regarded as an orthotropic material. Di�erent de�nitions of the consti-
tutive properties can be given for di�erent structural levels. Starting with the cross

section of a tree trunk one detects the characteristic pattern of the annual rings,
Figure (2.2). The annual rings, also termed as growth rings, develop through a dif-
ference in growth intensity during spring and summer. The light-colored earlywood

that forms during the spring and early summer stands for the major part of the
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Figure 2.3: Annual rings [42] with an approximate width of 1.5mm and 2.0mm
respectively

growth and is relatively porous and weak compared to the dark latewood, Figures

(2.2) and (2.3). At this macroscopic level the material can be described as cylindrical
orthotropic [22]. The next level is the annual ring, Figure (2.3), where we usually de-
scribe the constitutive properties as rectlinearly orthotropic. In engineering practice

these �rst two levels are usually treated as transversely isotropic, i.e. no di�erence
is made between the properties in the radial and the tangential directions [39]. The
next structural level beyond the annual ring would be the individual cell or rather

the cell wall which may be regarded as a composite material with its cell wall layers
and a lignin layer between the cells constituting a gluing agent between the cells,
Figures (2.4) and (2.5).

The constitutive properties are a�ected also by other structural variations. Among

those is the existence of juvenile wood which comprises roughly the �rst twenty
annual rings. The juvenile wood is characterized by lower strength and sti�ness,
but with higher shrinkage, Figure (2.6). The existence of knots and the forming of
reaction wood a�ect also the properties of wood considerably. However, regarding

fracture, knots have proven to have a reinforcing e�ect when oriented perpendicular
to the fracture surface.

Figure 2.4: Cellular structure of softwood (Picea abies) [42]
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Figure 2.6: Measured variation of longitudinal modulus of elasticity with density
and distance from pith [44]

2.3 Orthotropic elasticity

Although the computational results in this report will be dealing with two-dimensional

models only, it is appropriate to review the relevant constitutive relations for a three-
dimensional case. The constitutive relation for an in-plane state is simplest extracted
from the three-dimensional constitutive expression for an orthotropic linear elastic
medium, see for example [2] and [23].
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which represents Hooke's law for an orthotropic material in a plane stress state if the
planes of symmetry coincide with the coordinate axes. Written in a more compact

form
f�g = [C] f�g (2.3)

The compliance matrix C is composed of the four independent parameters Exx; Eyy; Gxy

and �xy. Due to symmetry of [C] the relation

�yx = �xy
Eyy

Exx

(2.4)

will hold. The inverse relation to Eq.(2.3) is

f�g = [D] f�g (2.5)

where D is the sti�ness matrix. Written on matrix form the sti�ness matrix for the
plane stress state is

D = D� =

2
66666664

Exx

(1 � �xy�yx)

�yxExx

(1 � �xy�yx)
0

�xyEyy

(1 � �xy�yx)

Eyy

(1 � �xy�yx)
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3
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(2.6)

and the strain �zz can be calculated form

�zz = �
 
�xz�xx

Exx

+
�yz�yy

Eyy

!
(2.7)
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Making use of the inverse of the compliance matrix in Eq.(2.1) and assuming that

�zz = 
xz = 
yz = 0 the sti�ness matrix in a plane strain state appears as

D = D� =

2
6666664

Exx(1� �yz�zy)

jT j
Exx(�yx + �yz�zx)

jT j 0

Eyy(�xy + �xz�zy)

jT j
Eyy(1 � �zx�xz)

jT j 0

0 0 Gxy

3
7777775

(2.8)

where

jT j = 1� 2�yx�zy�xz � �xz�zx � �yz�zy � �xy�yx (2.9)

The stress �zz becomes

�zz =
Ezz

jT j ((�xz + �xy�yz) �xx + (�yz + �xz�yx) �yy) (2.10)

2.4 Plane material properties

In order to study the di�erence between states of plane stress and plane strain,
properties for a typical softwood species (Picea abies) is chosen for two di�erent

densities, � = 390kg=m3 and � = 430kg=m3 , see Table (2.1).

The sti�ness matrices, D�, for plane stress according to (Eq.(2.6)) and D� for plane

strain according to Eq.(2.8)) are, respectively, for � = 390kg=m3

� = 390kg=m3 � = 430kg=m3

Moduli of elasticity MPa MPa

EL 10700 13760

ER 710 910

ET 430 490

Moduli of rigidity MPa MPa

GLR 500 510

GLT 620 730

GTR 23 30

Poisson's ratio

�LR 0.380 0.452

�RL 0.030 0.030

�LT 0.510 0.536

�TL 0.025 0.019

�RT 0.510 0.559

�TR 0.310 0.301

Table 2.1: Elastic constants for di�erent densities according to

[15] and [21]
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D� =

2
64 10823 299 0

299 718 0

0 0 500

3
75 D� =

2
64 11145 520 0

520 867 0

0 0 500

3
75 (2.11)

and for � = 430kg=m3

D� =

2
64 13949 417 0

417 922 0
0 0 510

3
75 D� =

2
64 14335 698 0

698 1128 0
0 0 510

3
75 (2.12)

In a simpli�ed two-dimensional fracture mechanics analysis it is often necessary to

choose between plane stress and plane strain. In reality the governing state is a
mixture of these two states. Which one is dominating, depends primarily on the
dimensions of the body being modelled [20]. However, for wood and the type of

problems studied in this investigation a number of �nite element calculations has
shown that variations of the matrix element D12 = D21 has very little in
uence on
the overall results (the load-bearing capacity). Further, the variations of the sti�ness

properties for wood are substantial, Figure (2.7) and (??). These variations have
substantially larger in
uence on the structural response than the choice of a proper
stress or strain state.

In order to get a well-de�ned input for the numerical analysis a state of plane stress
will be chosen. Further, no di�erence will be made between radial, tangential or a

mixed radial-tangential direction for the in-plane analysis, only distinguishing be-
tween the �ber direction k and the transversal direction ?. The sti�ness parameters
are selected in such a way that E?=

Ek
30

and Gk?=
Ek
16

as shown in Table (2.2).

The material matrix D, for plane stress, with values from Table (2.2) then becomes

D =

2
64 12069 169 0

169 402 0
0 0 750

3
75 (2.13)

The o�-diagonal term D12 = D21 in Eq.(2.13) seems quite small, but is probably
a reasonable choice in practice if also the in
uence of rolling shear is to be consid-

ered to some extent (the y- and z axes do not coincide with the principal axes).
Experimental results according to [6] clearly show that substantially lower values

Moduli of elasticity MPa

Ek 12000

E? 400

Moduli of rigidity MPa

Gk? 750

Poisson's ratio

�k? 0.41

Table 2.2: Elastic constants for FE-model
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should be used for D12 and D22 than Eq.(2.11) and Eq.(2.12) indicate. For a more

accurate analysis than a two-dimensional calculation can provide, a complete three-
dimensional analysis must be performed considering the current orientation of the
principal axes (longitudinal, radial and tangential axes) in each material point of

the studied body.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

600

700

800

900

Figure 2.7: Variation of sti�ness with orientation of annual rings (Vertical axis shows
sti�ness in MPa and the horizontal axis shows annual ring angle)



Chapter 3

Fracture Mechanics

3.1 General

The conventional methods for strength analysis by stress based criteria have limita-

tions. The American Concrete Institute has argued for the use of fracture criteria
instead of stress failure criteria using the following arguments [65]:

� Energy requirement for crack growth. The use of energy based cri-

teria is needed due to the fact that crack propagation requires a certain

amount of energy per unit crack extension.

� Objectivity of load and response calculations. The use of numer-

ical methods has expanded continually since the early sixties. Di�erent

kind of models have been developed for fracture analysis. The expe-

rience seems to reveal a considerable element-size-dependency of the

response (This is not the experience in the present study).

� Lack of yield plateau. For non-yielding materials the post-peak ten-

sion softening describes the propagation of a crack not including any

yielding process of plastic deformations.

� Energy absorbing capability and ductility. A complete load-

response curve, including the e�ects of post-peak tension softening, ex-

presses the energy absorption of a body during the failure process. Apart

from the recoverable elastic part the energy is absorbed by the fracture

process. The size and form of the tension softening range is crucial for

the structural behavior. The larger the post-peak range; the more en-

ergy is absorbed and the more ductile is the response. Energy absorbing

characteristics cannot be indicated with stress limit analysis.

� Size e�ect. The size e�ect probably represents the most obvious ad-

vantage in using fracture mechanics analysis on structures, Figure (3.1).

It is recognized on all levels of analysis; from laboratory testing to the

full scale response of a structural member. The size e�ect re
ects the

variation of material strength with the size of tested body. Moreover,

the post-peak response may also be greatly a�ected as the question of

stability is concerned.

13
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Figure 3.1: Principals of failure criteria and size e�ect prediction [65, 66]

When discussing fracture we may distinguish between two di�erent fracture phe-
nomena which both give rise to a similar structural performance. Fracture can be
the result of either excessive yielding, also termed as plastic instability (necking)

or simply due to the propagation of cracks. Still, fracture due to necking results
normally in cracking caused by excessive stress concentrations in the neck. We of-
ten distinguish between ductile and brittle fracture, referring both to micro- and

macrostructural level, Figure (3.2). Ductile behavior on the macrostructural level
implies microstructural ductility which may also be the cause for globally brittle
fracture. However, microstructural brittle fracture only gives rise to the analogous
performance on the global basis. Wood, like many other materials, is frequently re-

ferred to as a quasi-brittle material meaning that these materials can fail by fracture
but the extent of the fracture zone cannot be ignored. Besides this fact, wood is
a strongly orthotropic and grain oriented material which entails almost completely

predictable crack paths. Fracture involving crack paths aligned with the grain di-
rection dissipates less energy than cross-grain fracture, Figure (3.3).

3.2 Fracture Models

Apart from the traditional de�nition of linear elastic fracture mechanics (LEFM) and
non-linear fracture mechanics (NLFM) there exist models which may be regarded

as a composition of both theories [8, 30, 55] where the assumed stress distribu-
tion is illustrated in Figure (3.4). The models applied in the subsequent chapters
correspond to stress distribution of Figure (3.4 a) and b) respectively.
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Figure 3.2: Concepts of the form of fracture (Modi�ed after [16])
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Figure 3.3: Orientation of crack paths
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Figure 3.4: Stress distribution of the fracture models a) LEFM model, b) NLFM

model, c) Non-linear cohesive crack model with singularity (Modi�ed after [55])

3.3 Linear Elastic Fracture Mechanics

3.3.1 General

The basics of linear elastic fracture mechanics (LEFM) will be outlined in the sub-

sequent sections. Due to the assumptions which make up the foundations of LEFM
we are faced with the question to which extent the methodology is valid. The main
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feature of LEFM is the stress singularity at the tip of a crack and accordingly the

requirement of a prescribed crack. In other words, LEFM cannot be used to predict
the occurrence of crack initiation. But if a crack exists in a body, LEFM can be
a good tool for propagation analysis, provided that the size of the fracture process

region is small compared to the length of the crack. The application of linear elastic
theory implies neglecting possible yielding at both some remote point on the body
in question and in the vicinity of the crack tip.

3.3.2 Energy release rate and fracture energy

The energy release rate G is also termed as the crack driving force. It is de�ned as
the release of potential of the loads and elastic strain energy of the body for a crack
extension of one unit area. Depending on the mode of action the energy release

rate is often denoted as GI ; GII or GIII respectively. When the energy release rate
reaches a critical value, i.e. when crack propagation occurs

G = Gc = 2
 (3.1)

where 
 is the surface energy density and Gc is termed as the critical energy re-
lease rate of the material. The energy release rate at mixed loading is obtained by

summation.
G = GI + GII + GIII (3.2)

The principals of variations of energy terms is illustrated to some extent in Figure

(3.5). The crack propagation criterion, i.e. G = Gc = 2
, can be identi�ed by the
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Figure 3.5: Schematic variations of energy parameters with crack extension (Modi-
�ed after [53])
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dF = mg/2

W2 = dF x u0 G =
(W1 + W2 + W3)

(h-a) B

dF W2
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W3 = W2
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Fo
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e,
 P

P, u

hm

Figure 3.6: Evaluation of fracture energy from experimental testing

crack length ac at the point of intersection or by the corresponding maximum point
of the energy curve. The critical energy release rate should not be confused with the

fracture energy, GF although for certain conditions Gc = GF . The fracture energy,
GF , may be de�ned as the area below the ��Æ curve [31, 65], see Figure (3.6). This
curve is determined from laboratory tests and GF is frequently used as an input

parameter in fracture mechanics models. The critical energy release rate , according
to the de�nition above, may depend upon the geometry of the body as well as the
load con�guration. Furthermore, Gc may include other terms of energy dissipation

than those emerging from crack propagation, such as limited plasticity at the crack
tip. [53, 20, 65]. Then

2
 = 2
c + 
p (3.3)

where 
c is the energy density of the fracture surface and 
p is the plastic energy
per unit crack extension. The de�nition of the critical energy release rate may thus

seem to be rather conservative as it is taken for granted that all changes in stored
energy of a body are due to dissipation of the fracture process. This assumption is
true only for a body of elastic brittle material although it may be approximately

true or acceptable for bodies with limited yielding in the vicinity of the crack tip
[53, 46].

3.3.3 Stress intensity factors

A stress criterion for crack propagation (Appendix A) is often de�ned in terms of
stress intensity factors, which depend on the geometry of the body and the load.

Here, use is made of these stress intensity factors in deriving an expression for the
energy release rate, G, in mixed mode as a function of the stresses in the vicinity of
the crack.

Studying the case of a two-dimensional anisotropic elasticity, the equations of equi-
librium, in the absence of body forces are [23]

~rT� = 0 (3.4)
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Figure 3.7: Stress distribution at the tip of a crack.

or written on component form

@�xx

@x
+
@�xy

@y
= 0

@�yx

@x
+
@�yy

@y
= 0

(3.5)

where

�yx = �xy (3.6)

From strain-displacement relationships a compatibility equation is derived as

@2�xx

@y2
+
@2�yy

@x2
� @2
xy

@x@y
= 0 (3.7)

By introducing an Airy stress function � [22][24][25] where the stresses are de�ned as
second derivatives of �, the equilibrium and compatibility equations can be satis�ed

exactly. The governing equation can be written as

c22
@4�

@x4
� 2c23

@4�

@x3@y
+ (2c12 + c33)

@4�

@x2@y2
� 2c13

@4�

@x@y3
+ c11

@4�

@y4
= 0 (3.8)

where cij are the components of the compliance matrix C, Eq.(2.3). The expression

above can be simpli�ed by using linear di�erential operators of the �rst order

Dk =
@

@y
� �k

@

@x
k = 1; 2; 3; 4 (3.9)

which applied on Eq.(2.18) gives

D1D2D3D4� = 0 (3.10)

The parameters �k appearing in the di�erential operator are the roots of the char-
acteristic equation, being either complex or purely imaginary

c11�
4 � 2c13�

3 + (2c12 + c33)�
2 � 2c23�+ c22 = 0 (3.11)

In an orthotropic plane state, the compliance components c13 = c23 = 0 which leads
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to a further simpli�cation of Eq. (3.11)

�4 +
(2c12 + c33)

c11
�2 +

c22

c11
= 0 (3.12)

which in the state of plane stress and plane strain takes the form

�4 + (
Exx

Gxy

� 2�xy)�
2 +

Exx

Eyy

= 0 (3.13)

and

�4 + (
Exx

Gxy

1

1� �xz�zx
� 2

Exx

Eyy

�yx + �yz�zx

1� �xz�zx
)�2 +

Exx

Eyy

= 0 (3.14)

respectively. A general solution of Eq.(3.8) with respect to the stress �eld in the

vicinity of a crack tip is

�xx = 2< [�21�
00
1(z1) + �22�

00
2(z2)]

�yy = 2< [�001(z1) + �002(z2)]

�xy = �2< [�1�
00
1(z1) + �2�

00
2(z2)]

(3.15)

where < stands for the real part of the expression and zk = x+ �k y; (k = 1; 2) [24]
with x and y being the Cartesian coordinates of a point close to the crack tip for

which the stress is to be calculated, Figure (3.7). The functions �1 and �2 are de�ned
in the transformed coordinate systems according to Figure (3.8), where the distance

rk to the point of interest in the transformed region is rk = r
q
cos(�) + �k sin(�) By

introducing a suitable form of the stress function and further variable substitutions,

y
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r
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y2

x2

z2
r2

θ2

Figure 3.8: Notation of real space region and transformed regions.
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the stress �elds close to the crack tip can be expressed as

�xx =
KIp
2�r

<
"

�1�2
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(3.16)

where KI and KII are the stress intensity factors for the stress and displacement
�elds near a crack tip according to the �rst two modes of fracture. Apart from the
roots of the characteristic equation, �1 and �2, the expressions for �xx, �yy and �xy
include the radial distance r from the crack tip and the angle � from the direction
of the crack, see Figure (3.7). These expressions can be written in a more compact
form

~� = ~� ~K (3.17)

where
~�T = [�xx �yy �xy �yz]
~KT = [KI KII KIII ]

(3.18)

and

~� =

2
6664
�11 �12 �13
�21 �22 �23
�31 �32 �33
�41 �42 �43

3
7775 (3.19)

The last term, KIII , in Eq.(3.18) may be identi�ed in appendix A, Eq.(A.36). The

terms �ij are functions of the angle � and the term
1p
2�r

. Furthermore, by identifying

the elements in ~� which are equal to zero we get

~� =

2
6664
�11 �12 0
�21 �22 0

0 0 �33
0 0 �43

3
7775 (3.20)

In the case of isotropic material the equilibrium and compatibility conditions lead
to the bi-harmonic equation

�2� = r4� = 0 (3.21)

with the roots �1 = �2 = i. Thus, the expressions in Eq.(3.16) are obviously not

applicable for isotropic materials and the special case of orthotropic materials when
�1 = �2 = �i. The general solution for isotropic materials results in the following
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expressions for the stress �eld in the xy-plane near the tip of the crack, see for

example [1] and [16]

2
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The stress intensity factors are are closely related to the energy release rate [24], G

Gi = �iK
2
i i = I; II (3.23)

where the factors �i for orthotropic plane state, with the geometric axes aligned with

the principal axes of elasticity, are

�I =
1

EI

=

r
c11c22

2

"s
c22

c11
+
2c12 + c33

2c11

#1=2

�II =
1

EII

=
c11p
2

"s
c22

c11
+
2c12 + c33

2c11

#1=2 (3.24)

3.3.4 Mixed mode failure criterion

The values of the stress intensity factors KI and KII depend on the load case, the
geometry and the boundary conditions. In pure mode I or pure mode II fracture is

assumed to take place when either KI = KIc or KII = KIIc, where KIc and KIIc

are material parameters. In order to determine the critical load in mixed mode one
often uses empirical expressions, such as

�
KI

KIc

�m
+

�
KII

KIIc

�n
= 1 (3.25)

where m=1 and n=2 has been suggested for wood by Wu [28]. In order to �nd
a reasonable relation between Gc and the stress ratio at the crack tip ��?=�� we
may start from a case illustrated in Figure (3.9). According to Eq.(3.16) we may
approximate

��

��
� lim

�!0

�yy

�xy
� KI

KII

(3.26)

where the stress intensity factors KI and KII can be related to elasticity and frac-
ture parameters [16][25][26].

We have
KI =

q
EIGI (3.27)

KII =
q
EIIGII (3.28)

and, referring to Figure (3.9),

EI

EII

=

s
Ey

Ex

=

vuutE?
Ek

(3.29)
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Figure 3.9: Crack propagation in grain direction.

where E? and Ek are the elasticity moduli perpendicular to and parallel with the
grain direction. By use of Wu's suggestion [28] based on the stress intensity factor

approach, Eq.(3.27) and (3.28), the fracture energy Gc in a mixed mode

Gc = GI + GII (3.30)

is assumed to be related to the fracture energy in pure mode I (GcI) and pure mode
II (GcII) as p

GIp
GIc

+
GII

GIIc

= 1 (3.31)

According to Eq.(3.25) and (3.26) and after some manipulations of Eq.(3.27) to

(3.31) we get

Gc =
1

a

2
41 + b2

2a
(1 �

s
1 +

4a

b2
)

3
5 (3.32)

where

a =
1� �2

GIIc

(3.33)

b2 =
�

GIc

(3.34)

and

�2 =
1

1 +
r

E?
Ek

�
��
��

�2 (3.35)

This expression, Eq.(3.32), will be used subsequently in FE-computations for the

fracture energy Gc in mixed mode.

3.3.5 Stress �elds in the vicinity of singularities

The analytical solution, according to Lekhnitskii [22], for an elastic stress �eld in the
vicinity of a crack is presented in Eq.(3.16). Several other formulations have been

developed where the one suggested by Williams [57] has also gained some interest.
Williams approach is, due to its simplicity and being formulated as an eigenvalue
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Figure 3.10: Linear-elastic eigenvalue analysis of stress �elds (Modi�ed from [58])

problem, quite suitable for numerical procedures [58, 16, 59, 7]. A common principal
feature in the eigenvalue formulations is the assumed stress function

� = Ar�F (�; �) (3.36)

where A is an arbitrary constant, r and � are polar coordinates and � is an resulting
in solutions for the stress �eld on the form

[�r; ��; �r�] = AF(F (�); F 0(�); F 00(�); �) (3.37)

With appropriate boundary conditions Eq.(3.37) may be used to de�ne an eigenequa-

tion
A� = 0 (3.38)

which is solved for �.

3.3.6 Quasi-brittle fracture

A quasi-brittle material may be de�ned as a material which re
ects negligible or at
the most moderate strain hardening prior to the ultimate tensile stress followed by
a descending tension softening branch, Figure (3.11). The material is linear to begin
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Figure 3.11: Load-de
ection response of a quasi-brittle material
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with but due to the occurrence of micro-cracks or small scale yielding it develops a

non-linear response up to the level of ultimate tensile strength. From now on the
micro-cracks or the plastic deformations develop very fast and a primary crack or
necking forms successively with the corresponding loss of load-bearing capacity as a

consequence. Quasi-brittle global response may be de�ned with analogous restric-
tions, i.e. the potential forming of multiple cracks or excessive plastic deformations
which eventually cause a global failure or instability.

3.4 Fracture Mechanisms in Wood

3.4.1 Fracture process zone

When wood is subjected to tensile loading the nominal strength is dependent upon

the existence of defects in the material. What normally is considered as defects are,
for example, knots; reaction wood and visible cracks which may have formed either
due to drying [67, 62, 41] or the application of load [5, 4, 9, 10]. When a wooden

structure is subjected to a load it may su�er from extensive stress concentrations
due to singularities. These singularities may, for instance, be pre-existing cracks or
notches, Figure (3.12). If we have a close look at a crack in clear wood [42] we may

notice the crack bridging �bers which still maintain some sti�ness in the fractured
area, Figure (3.14). Just before the ultimate load the material can be almost intact,
i.e. no severe cracking has taken place. Micro-cracks may have started to form

but when passing the point of ultimate load the cracking increases substantially
and the crack successively develops. Materials like wood which exhibit moderate
local micro-cracking e�ects and very little plastic yield, prior to ultimate load, may

be de�ned as quasi-brittle where the fracture process zone practically occupies the
entire non-linear region, Figure (3.13). The fracture process zone is assumed to
consist of a micro-cracking zone, in front of the crack tip, and a primary cracking

zone with bridging wood �bers between the adjacent crack surfaces. The size of the
fracture process zone, `p, is of major interest but is not easy to determine. Another
parameter of similar order, the material characteristic length, `ch, may be used for
crude estimation of the process zone length.

`p � `ch =
E?GF

f2t
(3.39)

Figure 3.12: Stress concentration in a structural member
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Figure 3.13: Fracture process zone

Typical values of `ch are in the interval 5-15 mm and for mode I propagation of

RL and TL cracks, Figure (3.3), `p can be about 1:5`ch [5]. Hillerborg (1983)
proposed the ratio d

`ch
as a dimensionless parameter (brittleness number) where

some characteristic size, d, of a structural member is related to material properties,
E?; GF ; ft. This has proved to be useful in presenting results in form of general

dimensionless diagrams. The brittleness number also appears in the literature on a
reciprocal form `ch

d
.

3.4.2 Tensile softening models

The material properties needed for modelling of wood with a proper crack model
can be obtained from stable experimental test results. An example of such results
is illustrated in Figure (3.15). A specimen is loaded in uniaxial tension. The initial

response is linear elastic, i.e. the deformations are assumed to be uniformly dis-
tributed along the whole length of the specimen which in turn allows the strain to
be written as

� =
�`

`
(3.40)

Beyond the linear elastic limit the material exhibits non-linear behavior which

up to the attainment of ultimate tensile capacity is primarily due to development
of micro-cracks. Plastic deformations and material defects may also contribute to
this non-linear behavior. The strain softening response, when the load carrying

capacity passes the ultimate strength, is characterized by increase in deformations
accompanied with decrease in strength. When the load is about to pass the ultimate
tensile strength a so called �ctious localized fracture zone is assumed to develop

across the entire cross section. At this point, increasing elongation, �`, of the
specimen results in branching of the load-deformation response where the material
in the fracture process zone follows the strain softening branch and the material

outside the fracture zone follows the unloading branch. The total elongation of the
specimen may thus be given by

�` = �`+ Æ (3.41)
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The �rst term in the expression, �`, represents the elastic response and the sec-

ond one, Æ, the crack opening displacement. Due to the branching of the load-
deformation curve the material properties are expressed with two separate relations
representing the mechanical properties of the material. This is very convenient in

Figure 3.14: Fracture in clear wood
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Figure 3.15: Characteristics of a stable tensile fracture test

the case of modelling fracture with the �ctious crack model (FCM). The elastic re-
sponse is represented with a � � � relation while the fracture and separation of the
crack surfaces is represented with a � � Æ relation.

3.4.3 Crack paths

If we take a close look at Figure (3.3) we may identify six potential crack paths
in the principal material directions. The attainment of fracture mechanics material
data has been restricted to these orientations to a large extent. In fact the LR

and LT directions have hardly been investigated at all. Normally we make no
di�erence between the fracture energy in cracks with the same orientation of crack
surfaces, i.e. GTL = GTR, GRL = GRT and GLR = GLT . At least we have not been

able to determine any signi�cant di�erence with the present-day methods. Crack
paths in wood initially run according to the orientation of the singularity (initial
crack) or defect causing the fracture. Shortly after a crack has begun to develop,

and sometimes almost instantaneously, the crack has a tendency to adjust to the
principal orthotropic directions of the material, Figure (3.16). This is not surprising,
given the variation in density in a growth ring. The crack path tends to follow low-

density material where it propagates more easily, Figure (3.14) and Figure (3.16).

3.4.4 Environmental in
uence on material parameters

The environmental in
uence on the material properties is often neglected in fracture
analysis. Environmental in
uence is used here to mean the in
uence of moisture and
temperature. Moisture variations in wood are a major cause for internal stresses
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Figure 3.16: Example of possible crack paths, a) parallel with annual rings b) per-
pendicular to annual rings

due to its hygroscopic properties [67, 68, 62, 69, 41]. When discussing wood drying

one may perhaps distinguish between the drying from a green state to what we
experience as \normal" dry wood, often in the vicinity of 10% - 20%MC, and the
seasonal variations caused by climatic changes. There can be dramatic changes in

stresses when wood is subjected to process drying and those changes are traced to
the shrinking [41], which can be large when the moisture content decreases below the
�bre saturation point. The properties of the main chemical constituents of wood,

i.e. lignin, hemicellulose and cellulose are decisive for the macroscopic shrinkage
properties. Furthermore, the variations in micro�bril angle of wood [42, 44] have
considerable in
uence on the shrinkage and its anisotropy. Experience shows that

cracks tend to occur in wood as the moisture content decreases. As the moisture
distribution in a log is initially uneven there may be an almost immediate shrinking
in the heartwood, but delayed shrinking in the sapwood. The process which results
in shrinking variations in the material, along with the material anisotropy, are the
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basis for the development of internal stresses. When the stresses have reached the

strength of the material, cracks start to develop and as the shrinkage properties
depend, to some extent, on the stress level we may experience an indirect fracture
e�ect on the shrinkage properties due to stress relaxation in the fracture process.

The long-term e�ects of climatic variations on the material properties of wood are
still a matter of investigation. The intensive research on the microscopic level may
reveal the e�ects and generate knowledge applicable to the engineering practice.

The e�ects found at microscopic or material level, projected on structural members,
give rise to the question whether the size e�ect and duration of load are coupled in
some way through climate variations.

3.5 Non-Linear Fracture Mechanics

3.5.1 General

Non-linear fracture mechanics (NLFM) is de�ned here as the theory of fracture
mechanics which takes into account the non-linear material behavior in the fracture

process zone (see subsection 3.4.1, page 25). This behavior may be either a pure
fracture process or localized plastic yielding or a mixture of both.

3.5.2 Cohesive crack models

For the purpose of implementation in numerical procedures we are �rst of all faced

with the choice of modelling the fracture either with a discrete pre-assumed crack or
a continuum model. The present study will focus entirely on discrete cracks with a
prescribed propagation path. The �ctious crack model, FCM, will be utilized in the

theory and the subsequent computations. The �ctious crack model was presented
by Hillerborg [30] for modelling crack propagation in concrete and it has been uti-
lized successfully by many since then, see for instance Mod�eer [30], Gustafsson [5],

Bostr�om [62] and Wernersson [32].

The �rst attempt to model the stress state in a cohesive fracture process zone was
made in the late �fties by Barenblatt, who introduced a smoothly closing crack,
Figure (3.17), where forces act on a zone (fracture process zone) near the crack tip.

The main drawback of Barenblatt's model is that the distribution of the cohesive
forces is usually unknown. A closely related model referred to as the Dugdale model
(1960) is based on similar con�guration of the fracture zone, apart from the distri-

bution of traction forces, �y, in the fracture process zone which are considered to
be constant, Figure (3.17). Both models imply the same kind of geometric con�gu-
ration of the crack tip, i.e. smoothly closing crack faces which in turn implies that
the stresses are �nite. The fact that we have �nite stresses in front of the crack tip

makes the stress concentrations vanish and the Irwin theory of brittle fracture is no
longer applicable (see subsection 3.3.2 and appendix A.4).

Ki = 0 i = I; II; III (3.42)

The zero stress intensity implies that we have entered the category of non-linear frac-
ture mechanics. The �ctious crack model (FCM) is a widely used model. It di�ers
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from Barenblatt's and Dugdale's models, primarily due to assumptions concerning

the stress distribution in the fracture process zone, Figure (3.13). In the FCM there
is no pre-assumed stress distribution in the fracture process zone. Instead, we apply
a constitutive relation in the fracture zone which is extracted from a stable tensile

test, Figure (3.15), or a three point bending test, Figure (3.6). When the maxi-
mum stress has been reached in the material all further deformations within the
fracture zone result in increased damage and decreasing traction forces. Simultane-

ously the non-fractured part of the material outside the fracture zone is unloaded.
The fracture successively localizes in a narrow band or zone. This zone is the one
referred to as a �ctious crack, i.e. stress transferring crack. We simply assume a

prescribed crack path and adopt appropriate stress-widening rules for the separation
of the crack faces. A closely related method, the crack band method (CBM), was
proposed by Ba�zant and Oh (1983). The primary di�erence is the assumption that

the fracture process is distributed on a certain width, i.e. we do not have a discrete
crack, but a narrow band with distributed fracture properties. Both models have
their origin in fracture modelling of concrete.

Invariant integrals have played an important role in both elastic and elastic-plastic

lp

ft

ft lp

σt

σt

Figure 3.17: Cohesive crack models, a) Barenblatt's model b) Dugdale's model
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Figure 3.18: A plane, cracked region of non-linear elastic material
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fracture mechanics. Rice (1968) adopted the J-integral in fracture mechanics. It

may be interpreted as a generalisation of the energy release rate, G, for non-linear
elasticity. If we disregard the body forces, the potential energy of a body may be
expressed as

� =
Z


Wd
�

I
�t

tiuid� (3.43)

where W is the strain energy density of a body on the domain 
 and �t is the
boundary of the body with traction forces ti and the displacements ui, Figure (3.18).
By di�erentiating Eq.(3.44) with respect to the crack length, a, we obtain
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The right hand side of Eq.(3.45) is identical with Rice's de�nition of the J-integral
and thus we arrive at

J = �d�

da
(3.46)

which makes the J-integral identical with the energy release rate, G, in the case
of linear elasticity. Equation (3.46) reveals that the J-integral may be determined
experimentally as the change in potential energy of two similar bodies with a slight

di�erence in crack lengths [60].

3.5.3 Some alternative methods of non-linear fracture mod-

elling

Dahlblom [54] developed a smeared crack model by utilizing the �ctious crack model.
By introducing a parameter termed as the equivalent element length; implying the
e�ect of crack shearing and unloading a �ctious crack model evolved, free of one
of the main drawbacks of the original FCM which is the prede�nition of the crack

path. Petersson [10] established yet another version of the �ctious crack model or
rather the crack band model. This method presumes a prescribed crack path with a
band of continuum crack elements. The solution algorithm is based on an eigenvalue

analysis of the negative sti�ness in the fracture process zone, Section (6.3). A quite
di�erent FE approch is the one presented by Tryding [71] who studied the in-plane
failure of paper by means of two continuum models which both are formulated as a

plasticity problem. Another FE plasticity approach was studied by Cannmo [72] who
implemented an interface model, based on plasticity and damage, in FE code. In his
study, Schellecens [29] dealt with a formulation of solution strategies for composite

structures where he came up with an approach for both interface and continuum
models formulated as FE plasticity problems.

3.6 Numerical Methods

The most widely used methods are the �nite di�erence method (FDM), the �nite

element method (FEM), the boundary element method (BEM) and the dual bound-
ary element method (DBEM). Each of these methods are to be preferred in di�erent
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situations. An example of the use of �nite di�erence method is the two-dimensional

crack path study of Hori et.al. [19]. The FE method is probably the most common
numerical method used in mechanics context, including fracture mechanics. The
boundary element method (BEM) is growing as a numerical method within many

�elds of engineering. It is based on an element discretisation, but di�erent from the
FEM it is made on the boundary only. This means that the solution domain within
the boundary is solved exactly. The method is considered to be very accurate but

the need for analytic solution of the inner domain may sometimes be considered
as a serious drawback. The BEM is more or less regarded as a complement to the
FEM. Its growing popularity in the �eld of fracture mechanics is partly due to the

simplicity of modelling the fracture process zone in the non-linear case. The DBEM
is a sort of a mixed formulation version of the BEM applied primarily to fracture
problems. Its main features lie in the use of a displacement boundary integral equa-

tion on one part of the fracturing surface and a traction boundary integral equation
on the other. This method has the advantage ahead of the BEM that no subsequent
re-meshing is needed as the crack propagates.





Chapter 4

Experimental Determination of

Fracture Properties

4.1 Introduction

Various methods have emerged for evaluating fracture energy of clear wood or for
establishing constitutive relations. Some methods of evaluating fracture parameters

for wood will be mentioned here brie
y and experimental results are presented from
a series of tests which were carried out at the laboratories of Lund Institute of
Technology in 1993. For establishing mode I fracture energy values of clear wood

we have to rely mainly on two methods of testing; a simple tensile test, referred to
as the Compact Tension test (CT) and the tree point bending test (TPB). The CT
test has been discussed by Bostr�om [62] and the TPB test by Larsen and Gustafsson

[52]. Furthermore, Bostr�om [61] has worked on developing a fracture energy test for
shear parallel with grain.

4.2 Tensile tests, mode I

4.2.1 The Compact Tension test

The tensile fracture toughness test is probably the most simple one of fracture testing
methods applied for wood. Originally applied to metals and later to concrete it has
also been frequently used for evaluating fracture properties of wood. Apart from

being simple in performance it does not require large quantities of material for the
testing. The geometry of the CT specimen according to ASTM (1981) is illustrated
in Figure (4.1). The load is applied to the specimen with a displacement controlled

testing machine, either by directly pulling the two cantilever beams apart or by
driving a wedge in the crack direction between bearings attached to the specimen.
The CT test was investigated to some extent by Bostr�om [62] where he performed a

FE analysis on the CTS in order to determine the error of the geometry function Y

in the expression KIC = Y Pmax

p
a=(bh) which is derived for isotropic material. The

error was estimated to KIC;iso=KIC;ortho � 1:07. According to ASTM the geometry

expression is valid only in the interval of 0:45 < a=h < 0:55, on the form presented
here, but Hillemeier and Hilsdorf [65] have modi�ed it to be valid for 0:125 <

a=h < 0:925 so the CTS should be applicable to wide range of crack lengths, a.

35
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Figure 4.1: Compact Tension Specimen (CTS) a) Geometry according to ASTM
(1981) b) Wedge loaded CTS

Bostr�om however, found out in his theoretical study of the CT test that the material
characteristic length needed to be `ch � (h�a)=3, in order to attain fracture energy

values fairly accurate for use in linear elastic computations. With `ch in the vicinity
of 5�20 mm we may be expecting a ligament size in the interval of 15�60 mm and
thus a specimen size up to 150 mm, given that the initial notch is approximately of

the same size as the ligament, i.e. h � 2a. This potential restriction on specimen
size may be diÆcult to comply with in order to attain a representative clear wood
specimen.

4.2.2 The Three-Point Bending test

The tensile fracture energy test, based on three point bending, is probably the

most reliable one, at the present, for direct fracture energy testing of wood [52].
A joint testing project, initiated by Larsen and Gustafsson, has been performed in
conjunction with the intended introduction of the TPB in the CIB timber design

code. The fracture energy is the energy dissipated in the fracture process zone (work
of fracture) during a unit elongation of a crack. Depending on the load con�guration
in the testing setup, Figure (4.2), the energy put into the fracture process may be

obtained

GcI =
1

(h� a0)b

 Z Æc

0
P dÆ + (m0 + 2mP ) g Æc

!
(4.1)

where a0 is the notch depth; Æc is the de
ection at failure; m0 is the weight of the
specimen and mP is the weight of the testing equipment applied on the specimen.

The results of these tests reveal a linear relation between the density, %!;!, and
the measured fracture energy, GIc, Figure (4.16). Similar results are reported by
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Figure 4.2: Geometry of testing setup in three point bending

Kretschmann [64] and Bostr�om [62]. The specimen with the dimensions l� b� h =
48� 45� 80 mm is glued in between two blocks of wood and it is provided with an

initial notch of a0 = 0:6 h. The length of the notch is determined in order to avoid
instability in the test. This has been veri�ed with FE calculations by Petersson
in [10] and by the author in a veri�cation example of the applied algorithm in the

present study, see subsection (7.2.1).

4.3 Shear tests, mode II

4.3.1 Small specimen shear test

Wernersson [32] used a rigid steel frame or grips in which the wood specimen is

attached, Figure (4.3). This test was introduced for adhesive joints by Wernersson
and Gustafsson in 1987 but has also been used successfully for pure wood specimen.
A compressive anti-symmetric load is applied at the ends of the frame for obtaining

shear in the specimen. Piston movements in the testing machine are registered
as well as the relative slip of the two frame halves. The specimen is provided
with notches in order to achieve approximately uniform stress distribution and to

stabilize the test. In this test not only the fracture energy but the complete shear
stress-deformation curve for the gradual damage of the shear fracture process region
is recorded.

4.3.2 Tapered end-notched 
exural test

Racois and Valentin and suggested a test for determination of fracture energy in clear
wood with respect to shear parallel with grain. The method has been developed
within RILEM TC 133 [61]. It consists of a beam with a varying cross-section,

l� b� h, where l = 500 mm; b = 16� 26 mm and h � 58 mm. The beam specimen
is provided with a notch where two pieces of te
on are placed in order to prevent
undesirable compression at the crack tip. The load de
ection response is registered

and the work of load, W , evaluated. The size of the fractured region is determined
from a visual inspection of the specimen, whereby the fracture energy in modus II
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Figure 4.3: Small specimen shear test setup

P

Figure 4.4: Tapered end-notched 
exural test

may be calculated as

Gf;II =
W

�A
(4.2)

The propagation of the crack in the specimen results in a crack area increment equal
to �A = f(b1+ b2)=2� (�a1+�a2)=2 + b1=2� b1=2g where b1 and b2 represent the

thickness of the specimen at the crack tip, before and after testing. The variables
�a1 and �a2 are the lengths of the crack propagation path on each side of the
specimen.

4.4 Mixed mode testing

The strive for a complete mixed mode testing of clear wood has led to the develop-

ment of a sophisticated equipment for material testing at the Division of Structural
Mechanics in Lund. This testing machine (EMS) is equipped with an electromag-
netic actuator and it is capable of loading a specimen bi-axially, Figure (4.5). The

very high sti�ness of the machine in relation to the average specimen size makes it
possible to perform direct measurements of fracture energy. Thus, it is not necessary
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to make any adjustments of the experimental results regarding in
uence of the test-

ing equipment as the machine may be considered as completely rigid. The horizontal
sti�ness of the EMS is in the vicinity of KEMS;H � 50000kN=m. A specimen of clear
wood may be expected to have a corresponding sti�ness of Kspec;H � 0:015kN=m so

the di�erence is of the order 106. The control response time is approximately 10 ms
for short strokes.

Figure 4.5: EMS testing machine

4.5 Experimental results

4.5.1 General

The experiments reported in this section were all performed with the EMS machine.
The specimens of Norwegian spruce (picea abies) were taken from a log referred
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Figure 4.6: Mounted specimen in the biaxial machine

to as 3047001 or H1 which was cut at a height between 500mm and 960mm from
ground surface. This log has also been used in the experimental part of several other

reports, for instance by Persson [44]. Between cutting and production of specimens
the log was kept at 5ÆC and 80% RH. The specimens were cut from the south-east
quadrant of the log and preserved at 20ÆC and 60% RH until testing. The average

moisture content at testing was 13.8%. The testing climate was 20�25ÆC and about
30% RH.

4.5.2 Experimental setup

The relative shear and tensile movements of the testing machine were registered

with LVDT sensors, one for each direction. Further details of the setup are shown
in Figure (4.7) and Figure (4.8). The material coordinate directions of the specimens
are indicated with L, R and T in the �gure. The forces and displacements are Fs; Æs
in the shear direction and Fn; Æn in the tensile direction. The dimensions of the
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~0.5
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~20
R

T

L
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Figure 4.7: Specimen geometry [mm] and de�nition of coordinates
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Figure 4.8: Specimen setup

specimen were approximately according to Figure (4.7). The following notations

were used in the experiments:

Æn = vertical tensile displacement

Æs = horizontal shear displacement
� = mean tensile stress
� = mean shear stress

k = Æn=Æs or �=�

Table 4.1: Experiment notations

The loading rate was kept constant,
q
Æ2n + Æ2s = 0:0017mm=s, throughout the ex-

periments.

4.5.3 Results obtained

The experimental results presented here are subtracted from the basic results of dis-

placement controlled testing, given in Appendix B. The combined stress-displacement
curves are given in Figures (4.9) to (4.13).

Each �gure represents a speci�c displacement ratio. The shear stresses are indicated
with dashed lines and the tensile stresses with solid lines. In Figure (4.9) the curves
coincide fairy well, indicating a rather stable testing procedure. This is also re
ected
in the remaining �gures regarding the shear mode. On the other hand, the tensile

mode shows more deviations from what might be expected. This is especially appar-
ent in Figure (4.10) and Figure (4.11) i.e. for the lower values of the displacement
ratio. For the displacement ratios of k = 2:0 and k = 1 this e�ect seems to be

absent or at least minimal. The pure tensile tests also indicate a fairly stable testing
procedure.
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Figure 4.9: Stress-displacement, combined results for k = 0:0
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Figure 4.10: Stress-displacement, combined results for k = 0:5
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Figure 4.11: Stress-displacement, combined results for k = 1:0

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

Displacement δ
s
, δ

n
 [mm]

S
tr

es
s 

σ,
 τ

  [
M

P
a]

Figure 4.12: Stress-displacement, combined results for k = 2:0
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Figure 4.13: Stress-displacement, combined results for k =1
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Figure 4.14: Strength versus displacement ratio.

Figure (4.14) shows the average tensile and shear strength in relation to the dis-

placement ratio. The data has been �tted with linear regression curves. Applying
Norris criterion to the measured results we get the dashed line in Figure (4.14) which
is fairly close to the expected value 1:0 and thus supports the use of the criterion in
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Petersson (LEFM)
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Figure 4.15: Fracture energy versus displacement/stress ratio.

the fracture analysis. The criterion of Norris used here is:

 
�

ft

!2
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�

fv

!2
= 1:0 (4.3)

In Figure (4.15) the fracture energy versus displacement ratio is indicated as ex-

perimental results versus displacement ratio. Assuming that
Ek
E?

� 30 we can plot

the measured results versus stress ratio which deviates primarily form the criterion
assumed by Petersson for stress ratios less than k = 0:5. If we instead assume
that the fracture energy is related to the displacement ratio, arctan(k), in a linear

manner and we get very close to the criterion adopted by Petersson, Figure(5.5) by
transforming the displacement ratio to a stress ratio.
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4.5.4 Remarks on density

The radial variation of sti�ness in the tree trunk has been reported by Persson

[44, 45]. This brings to mind the question of how the fracture energy may vary. A
potential relation for mode I fracture energy versus density has been extracted from
[52], Figure (4.16). This relation is approached with two straight lines, one repre-

senting European softwood and the other representing all specimens in the project.
This leaves the question of whether it may be possible to estimate fracture energy
values in an indirect manner by measuring the density and the elastic modulus.
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Figure 4.16: Mode I fracture energy versus density [52]



Chapter 5

Linear Elastic Fracture

Mechanics Model

5.1 General

Various methods of numerical fracture analysis of structures have been developed
by utilizing linear elastic fracture mechanics. One of the most promising methods

adopted for �nite element analysis is often referred to as the energy release rate
method. The method is also known as the compliance method, due to the theoretical
approach, or the virtual crack extension method, which re
ects the methodology of

the calculation process. This method has been adopted here for examining the
relationship between crack propagation and the corresponding critical load. An
outline of the theory is given in [8] and it has been applied by the author and

Gullander [3].

5.2 Basic theory

The following basic theory is adopted from Petersson [8]. A more detailed description
is given in Appendix C.

We assume a linear elastic body subjected to small strains, except for the cracking
process zone. The equilibrium equations may be written as

@�ij

@xj
+ bi = 0 (5.1)

where �ij = �ji is a stress component, bi a body force component and xj refers to
a Cartesian coordinate system. The tractions, pi, on the boundary surface S are
de�ned by

pi = nj�ij (5.2)

where nj is a direction cosine for the outward normal to the surface S.

For a body with a crack, Figure (5.1), a week formulation of the equilibrium equa-

tions may be established, starting from equilibrium equations, Eq.(5.1).

47
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Sc
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V

Figure 5.1: Studied body with a crack. Total boundary surface S = Se + Sc

By introducing weighting functions vi (i = 1,2,3) [23]

Z
V
vi
@�ij

@xj
dV +

Z
V
vibidV = 0 (5.3)

Through substitution of variables and integration by parts we reach at

Z
V
bi
dui

da
dV +

Z
Sc
pi
dui

da
dS = bc

Z
(wi

dpi

da
� dwi

da
pi)da (5.4)

In order to simplify we assume that the relations between pi and wi (i=1,2,3) are
unique, see Figure (5.2), so we may write pi = pi(wi) or wi = wi(pi), yielding

Z
ac
(wi

dpi

da
� dwi

da
pi)da =

Z pi0

0
widpi �

Z 0

wi0

pidwi = 2Gc (5.5)

where

Gc =
3X

i=1

Gci =
Z pi0

0
widpi =

Z wi0

0
pidwi (5.6)

and da is an in�nitesimal crack length and bc is the width of the crack surface.
Substitution of Eq.(5.5) into Eq.(5.4) results in

Z
V
bi
dui

da
dV +

Z
Se
pi
dui

da
dS = 2bcGc (5.7)

Assuming concentrated forces fPg only, we may introduce

Pc
T = [Pc1Pc2 � � �Pcn] (5.8)

wi0 wi

pi0

pi

Gc

Figure 5.2: Relation between cohesive stress pi and relative displacement wi
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for the cracking load level where the associated displacements are fucg,

uc
T = [uc1uc2 � � �ucn] (5.9)

This enables Eq.(5.7) to be written on the form

Pc
T duc

da
= 2bcGc (5.10)

This basic matrix equation, Eq.(5.10), can conveniently be used in �nite element
analysis where fPcg and fucg will then refer to nodal loads and nodal displacements,
respectively.

5.3 Applied theory

The two-dimensional structure introduced in Figure (5.3) is subjected to reference

loads fPg. The material is assumed linear elastic and by denoting the displacements
with fug we have

fPg =

2
66664
P1
P2
...
Pn

3
77775 fug =

2
66664
u1
u2
...
un

3
77775 (5.11)

The crack length is denoted with a and the fracture energy with Gc. The fracture
energy Gc is considered to be a material parameter, according to GriÆth's theory.
By assuming that the external loads are increased proportionally, step by step, the

actual loads may be written as �fPg where � is increased gradually up to the critical
level of � = �c which corresponds to the maximum (critical) load level for the actual
state (crack length). The corresponding displacements are �cfug. We can express

the displacements by the 
exibility relation

fug = [C]fPg (5.12)

Loads {P}

a

Displacements {u}
P1 · u1

P2 · u2
P3 · u3 P4 · u4

Figure 5.3: Two-dimensional body with a crack
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Figure 5.4: Nodal element forces close to cracking process zone

where the 
exibility matrix [C] is also termed as the compliance. The linear elastic
material stores an internal energy which can be expressed as

W =
1

2
�2fPgT fug = 1

2
�2fPgT [C] fPg (5.13)

We now have, (see Appendix C)

@W

@a
= 2bcGc (5.14)

which leads to

�c =

vuut 2bcGc

fPgT dC
da
fPg (5.15)

Equation (5.15) is straightforward to use in �nite element analysis. If a crack is

allowed to progress gradually we obtain the displacements ui for each value of the
crack length a = ai. Each incremental step in crack length may be approximated
with

�ai = ai+1 � ai (5.16)

The critical load factor �c may now be written in an incremental form

�ci =

s
2bc�aiGc

fPgT (fugi+1 � fugi) (5.17)

where the crack length is de�ned as

a � ai+1 + ai

2
(5.18)

A convenient method for computing mixed mode fracture includes that the fracture
energy is estimated through a relation between the stress ratio ��?

��
and the fracture

energy Gc. A reasonable estimate of this stress ratio can be obtained in �nite

element analysis by evaluating the nodal forces from the elements which are close to
the crack tip, Figure (5.4). The stress ratio in the assumed process zone is obtained
by

��?
��
�
P

s PysP
s Pxs

(5.19)

The relation between the stress ratio and the fracture energy shown in Figure (5.5)
has been suggested by Gustafsson [4]. This relation is based on Eq.(3.32). The

material parameters used to establish the relationship and for all LEFM studies in
consequent chapters are as follows:
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Figure 5.5: Fracture criterion applied for mixed mode

Elasticity moduli Ek 12000 MPa

E? 400 MPa

Shear modulus Gk;? 750 MPa

Poisson's ratio �k;? 0.41 -
Fracture energy GI;c 300 Nm=m2

GII;c 1050 Nm=m2

Table 5.1: Material parameters in mixed mode fracture criterion

5.4 Analyzed beam geometries

The �nite element calculations have been carried out on six di�erent geometries,
Figure (5.6), referred to as geometry a, b, c, d, e and f. Geometries a, b, e and

f were analyzed by the author for a beam height of h = 600mm and a width of
b = 120mm. Calculations on the all these geometries, for both h = 600mm and
h = 95mm, have also been carried out by Gullander [3].

Due to symmetry, only the left half of the beams is modelled. The support load is
chosen as the reference load in the analysis. A basic requirement for application of

the conventional non-modi�ed LEFM is the existence of a sharp crack. Therefore, a
crack was assumed in the critical region of the beam analyzed, and the critical load
was calculated for various lengths of this crack.
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Figure 5.6: Studied beam geometries

5.5 Finite element models

The simulation of crack growth is accomplished by allowing incremental crack growth
under constant loading. This is done by using interface elements in the assumed

crack zone and allowing them to debond, node by node [8, 18]. Convergence studies,
carried out on the end-notched geometry a), revealed that reasonable mesh size for
the larger geometries (h = 600mm) is approximately 6mm and for the smaller

geometries (h = 95mm) near 1-2mm. The crack is assumed to propagate parallel to
grain which in the model is along the direction of the beam. For the geometries with
angular notches or holes the crack is assumed to propagate from the point where

the highest stress concentration is experienced which is often in the vicinity of a
geometric discontinuity.

The numerical results are presented in Chapter 7.



Chapter 6

Non-Linear Fracture Mechanics

Model

6.1 General

The stress-deformation performance of materials is in general non-linear during frac-
ture, both in the fracture process region and in the vicinity of that region. In the

process region there is increasing damage and for materials inhibiting some duc-
tile behavior plastic zones will form in the vicinity of the fracture zone. Several
numerical methods are available to manage non-linear analysis. They di�er in the

numerical approach and the de�nition of fracture elements with the corresponding
di�erences in implementation. The model can be based on continuum elements or
interface elements (discrete crack, orthotropic plasticity, Coulomb friction) [29]. A

choice has to be made wether the fracture zone is to be modelled with, for instance;
discrete springs, distributed springs, hybrid elements with an internal crack or plas-
ticity elements with damage. In the present study a model based on the �ctious

crack model concept is applied on a prescribed crack path. Interface elements are
used and the non-linear numerical algorithm is a perturbation algorithm.

6.2 Fictious crack model

The �ctious crack model has its origin in the work of Hillerborg et.al. [30] where
the prescribed crack path is applied with appropriate material properties expressed

by poly-linear functions as illustrated in Figure (6.1). In this �gure a non-linear
stress-displacement relation is shown.

6.2.1 Constitutive relations

The material properties of the fracture zone are modelled by introducing contact
elements with initial zero thickness between the adjacent fracture surfaces. The con-
stitutive relation for an in-plane state is simplest extracted from the 3-dimensional

53
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constitutive expression for an orthotropic linear elastic medium. Starting from

8>>>>>>>><
>>>>>>>>:

Æxx
Æyy
Æzz
Æxy
Æxz
Æyz

9>>>>>>>>=
>>>>>>>>;
=

2
666666664

C11 C12 C13 0 0 0
C21 C22 C23 0 0 0

C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0

0 0 0 0 0 C66

3
777777775

8>>>>>>>><
>>>>>>>>:

�xx
�yy
�zz
�xy
�xz
�yz

9>>>>>>>>=
>>>>>>>>;

(6.1)

where the engineering strains �ij have been replaced by relative displacements Æij .
This is due to diÆculties in interpreting the strains related to zero thickness of

the fracture plane, assumed to be oriented with its normal in the y-direction. The
following formulation is according to the spring model of Figure (6.2). The 
exibility
parameters Cij are functions of the current state of deformation, Cij = Cij(Æ). For

the state of plane stress where �zz = �xz = �yz = 0 the constitutive relation reduces
to

8><
>:

Æxx
Æyy
Æxy

9>=
>; =

2
64 C11 C12 0
C21 C22 0

0 0 C44

3
75
8><
>:

�xx
�yy
�xy

9>=
>; (6.2)

In the present two-spring model Æxx is assumed not to be a�ected by �yy and Æyyis
assumed not to be a�ected by �xx. Accordingly

C11 = C12 = 0 (6.3)

The constitutive relation may now be reduced further and the inverse relation to

Eq.(6.2) with the sti�ness matrix D simply becomes

8><
>:

�xx
�yy
�xy

9>=
>; =

2
64

1
C11

0 0

0 1
C22

0

0 0 1
C44

3
75
8><
>:

Æxx
Æyy
Æxy

9>=
>; =

2
64 D11 0 0

0 D22 0
0 0 D44

3
75
8><
>:

Æxx
Æyy
Æxy

9>=
>; (6.4)

where, in mixed mode analysis, D11 = D11(Æn; Æs), D22 = D22(Æn; Æs) and D44 =
D44(Æn; Æs). The �rst row in the constitutive expression above can be left out of

the modelling of the stresses acting across the fracture zone, resulting in a simple
constitutive expression for the non-linear two-spring model.

(
�yy
�xy

)
=

"
D22 0

0 D44

# (
Æyy
Æxy

)
(6.5)

Making use of the inverse of the compliance matrix in Eq.(6.1) and assuming that
Æ33 = Æ13 = Æ23 = 0 the sti�ness matrix in a plane strain state appears as

8><
>:

�xx
�yy
�xy

9>=
>; =

2
664

C33C22�C2

23

C
C13C32

C 0
C13C23

C
C11C33�C2

13

C 0
0 0 1

C44

3
775
8><
>:

Æxx
Æyy
Æxy

9>=
>; (6.6)

where C = C11C22C33 � C11C
2
23 � C22C

2
13. The third row of Eq.(6.6) reveals that

C32 = C23 = 0 which in turn makes the sti�ness matrix reducible to
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2
4 C11C33�C2

13

C22(C11C33�C2

13
)

0

0 1
C44

3
5 =

"
1

C22

0

0 1
C44

#
=

"
D22 0
0 D44

#
(6.7)

which is exactly the same sti�ness matrix as in the case of plane stress. In this
case the components, Dij , of the sti�ness matrix are derivatives of stress relative to

displacements,
@�ij
@Ækl

, and not strains as in the normal case of continuum mechanics.

For use in numerical applications the � � Æ curves may be simpli�ed in a manner

that assumes linear-elastic material up to the limit of ultimate tensile strength, ft.
The intrinsic ��Æ curve from tests is characterized by the ultimate tensile strength,
ft, at Æ = 0; the stress �(Æ) = 0 at Æ = Æc; and the assumed material parameter GF ,

the fracture energy which is represented by the area under the �(Æ) curve.

GF =
Z 0

ft
Æ(�)d� =

Z Æc

0
�(Æ)dÆ (6.8)

where Æc is the deformation for which �(Æ) = 0. In the case of mixed-mode in-plane
fracture the total fracture energy can be determined by

GF =
Z
�
(�(Æn)dÆn + �(Æs)dÆs) (6.9)

The �(Æ) curve may be approximated by some curve, for instance a polynom, or
by a multi-linear curve. Common approximations are simple linear and bi-linear

curves. For more accurate approximations further subdivision of the �(Æ) curve
into piecewise linear relations can be made. For instance, the tangential material
sti�ness is zero at �(Æ) = ft which can be expressed in form the derivative of the

�(Æ) curve at the point of interest. For a single linear curve @�
@Æ

< 0. The degree
of multi-linearity must be balanced between accuracy in material modelling and
increase in computation time. The poly-linear functions describing the constitutive

behavior of the fracture zone can be expressed as analytical functions by utilizing
Heaviside's step function, �(). This choice will prove to be useful when implementing
the theory in a program code. Given a piecewise linear curve with all breakpoints

known, Figure(6.1) we can express the functions f0, f1 and f2 as

f0 = (�(Æ � Æ0)� �(Æ � Æ1))

�
�1 � �0

Æ1 � Æ0
(Æ � Æ0) + �0

�

f1 = (�(Æ � Æ1)� �(Æ � Æ2))

�
�2 � �1

Æ2 � Æ1
(Æ � Æ1) + �1

�

f2 = (�(Æ � Æ2)� �(Æ � Æ3))

�
�3 � �2

Æ3 � Æ2
(Æ � Æ2) + �2

�

9>>>>>>=
>>>>>>;

(6.10)

Thus, an analytic constitutive expression for any number of poly-linear subsets can
be written conveniently as

F = f0 + f1 + f2 + � � �+ fn (6.11)

or

F(Æ) =
i=nX
i=0

(�(Æ � Æi)� �(Æ � Æi+1))

(
�i+1 � �i

Æi+1 � Æi
(Æ � Æi) + �i

)
(6.12)
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Figure 6.1: Constitutive function

This may not seem to be very smooth and easy analytical form but the advantages
appear in the implementation to a program code due to the fact that Heaviside's

function can simply be replaced with the sign function, sgn(), implied by all pro-
gramming languages.

�(t� a) =
(sgn(t � a) + 1)

2
(6.13)

Furthermore the sti�ness for any point on the poly-linear curve can now easily be
expressed on the same form. The sti�ness is simply the slope at any point or the

derivative of the constitutive expression. The sti�ness thus becomes

F 0(Æ) =
i=nX
i=0

(
�i+1 � �i

Æi+1 � Æi
Æ + �i

)
(Æ�(Æ � Æi)� Æ�(Æ � Æi+1)) +

(�(Æ � Æi)� �(Æ � Æi+1))
�i+1 � �i

Æi+1 � Æi
(6.14)

where Æ� is Dirac's delta function. This function has only values di�erent from zero
when the argument is equal to zero, i.e. at the breakpoints. For computing sti�nesses

and stress levels these points are not of interest. We can state that our primary
interest is the interval between the brake-points. Therefore, it is possible to simplify
Eq.(6.14) by eliminating or simply neglecting the terms including the Dirac's delta

function and restricting the applicability of the expression to the interval between
brakepoints. Thus, the sti�ness may be written as

F 0(Æ) = K(Æ) =
i=nX
i=0

(�(Æ � Æi)� �(Æ � Æi+1))
�i+1 � �i

Æi+1 � Æi
(6.15)

Equation (6.15) implies that
f 00 = k0
f 01 = k1
f 02 = k2
...

f 0n = kn

9>>>>>>>=
>>>>>>>;

(6.16)
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Figure 6.2: Two-spring model

6.2.2 Element formulation

The element formulation is according to a four-node quadrilateral element based on

an implementation of the two-spring model, see Figure (6.2). The element consists
of two pairs of nodes, each of which coincide up to a load level of ultimate tensile
strength, ft. In the case of non-linear behavior the system of �nite element equations

may be expressed as
K(a)a = f (6.17)

where the tangential sti�ness matrixK(a) is a function of the displacements, a, and f

represents the external forces. Outside the potential crack the material is considered
linear-elastic, but the crack elements which inhibit the non-linear behavior have to
be formulated in a di�erent manner. Starting with the sti�ness matrix

K(a) = K(a)ij =
Z
S
BT
i D(a)BjdS (6.18)

it may be observed that the B matrix is constant, expressing that no consideration is

taken to geometric non-linearity. However, the constitutive matrix, D, is dependent
on the displacements as already implied in the discussion of the constitutive relation
for the two-spring model. Applying incremental formulation the constitutive relation

may be written as
_� = D _Æ (6.19)

and the relative displacement rates are expressed as

_Æ = B _a (6.20)
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where the B matrix is de�ned from the relation between the relative displacements

and the nodal displacements in the quadrilateral crack element as follows

2
66664

_Æ1n
_Æ1s
_Æ2n
_Æ2s

3
77775 =

2
6664

0 �1 0 1 0 0 0 0
�1 0 1 0 0 0 0 0
0 0 0 0 0 �1 0 1

0 0 0 0 �1 0 1 0

3
7775

2
66666666666666664

_u11
_u12
_u13
_u14
_u21
_u22
_u23
_u24

3
77777777777777775

(6.21)

The constitutive relation for the material results in a sti�ness relation for a four
node element: 2

66664
_�1n
_�1s
_�2n
_�2s

3
77775 =

2
6664
Dnn Dns 0 0
Dsn Dss 0 0
0 0 Dnn Dns

0 0 Dsn Dss

3
7775

2
66664

_Æ1n
_Æ1s
_Æ2n
_Æ2s

3
77775 (6.22)

The de�nition of the tangential sti�ness matrix in Eq.(6.18) is based on the determi-
nation of the incremental global sti�ness, i.e. the global tangential sti�ness, which

is simply expressed as the slope of the global response

_K =
@ _�(a)

@ _a
(6.23)

Now, the B matrix, including only constant terms, determines the transformation
of displacements, a, and forces, _�, between the local and the global systems

_a0 = B _a _� = BT _�0 (6.24)

Expanding Eqn.(3.7) with the chain rule results in

_K =
@BT

@a
_�0 + BT @ _�

0

@ _a0
B (6.25)

and as the B matrix is constant, the �rst term disappears and by identi�cation with
Eq.(6.18)

@ _�0

@ _a0
=
Z
�

_D0(a)dS (6.26)

6.2.3 Load factor

When a crack element is subjected to load the elongation of the springs determines

the load level between each node pair. This is schematically illustrated in Figure
(6.3) where each spring has been assigned a load interval factor, c, which is a measure
of the remaining space of loading towards the nearest breakpoint on the approxi-

mative curve for the constitutive relation. In Figure (6.4) we may take ��T as the
total load interval which means that initially the load interval factor, c, is equal to
one. When a spring is loaded an initial linear response, ��1k, is detected in the
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Figure 6.3: Load factor

spring and a new load interval factor may be calculated

c1k = 1� ��1k
��T

=
��T ���1k

��T
=

�s1k
��T

(k = node nr:) (6.27)

which gives the loading level, �s1k, as

�s1k = c1k��T (6.28)

Continuing in the same manner we get

c2k = 1� ��2k
��T

=
��T ���2k

��T
=

�s2k
��T

�s2k = c2k��T

c3k = 1� ��3k
��T

=
��T ���3k

��T
=

�s3k
��T

�s3k = c3k��T
...

(6.29)

which �nally results in a general expression for the load interval factor

cik = 1 � ��ik
��T

Qi�1

=0 c



k

nr: of loading steps i = 1; � � � ;m c0k = 1:0

(6.30)

σ
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δn

Figure 6.4: Load interval
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The load factor, r, is de�ned as a scaling factor with which the response in the

spring (��;�Æ) is multiplied to reach the nearest breakpoint on the �(Æ) curve.
The complementary load interval factor, x, is de�ned as

xik = 1� cik (6.31)

and the load factor, r, may then be derived as

rik =
1

xik
=

1

1 � cik
=

��T
Qi�1


=0 c


k

��ik

nr: of loading steps i = 1; � � � ;m c0k = 1:0

(6.32)

For convenience we may also write

rik =
1

xik
=

1

1 � cik
=

��T�
i
k

��ik

with �i
k =

Qi�1

=0 c



k; nr: of loading steps i = 1; � � � ;m; c0k = 1:0

(6.33)

For each computation step the load interval factor, c, has to be updated so as to
compensate for the progression of loading. For each and every spring in all loading

steps we check for the critical spring or the one which will be the �rst one to reach a
breakpoint anywhere on the �(Æ) curve. Consequently this critical spring will have
the smallest load factor, rmin, and within each linear computation step we have for

each spring a conceivable external load

P i�
k = rik

P

rmin

(6.34)

Suppose that the external load is always taken to be P = 1:0. Then we get the new
load interval factors for the present step

cik = 1� 1

P i�
k

= 1� rmin

rik
(6.35)

The updated load interval factors that determine the loading space of the next
computation step become

ci+1k = cik

i�1Y

=0

c


k = cik�

i
k (6.36)

6.2.4 Path control

For each linear computation step, i, we receive the global response �Ei corresponding
to an unit external load, P = 1:0, Figure (6.5). Having determined the corresponding
load factor, rimin, it is still unknown what sign to apply to the the response. It
is evident from Figure (6.5) that the directional change of the global response is

strongly connected with changes in sti�nesses on the �(Æ) curve. Applying the
vector notation in Figure (6.5) the sign of the global response, rimin

�Ei, is derived
from the scalar triple product [5]

sgn(rimin) =
�k � (ri�1min

�Ei�1 � �Ei)
�k � ( �M i�1 � �M i)

where �k = (0; 0; 1); �Ei = (�ui; 1; 0); �M i = (�Æi;��i; 0)

(6.37)
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Figure 6.5: Path control

6.2.5 Mode I, Mode II solution algorithm

The solution algorithm is based on an linear incremental solution procedure, Figure
(6.1). A structural member is loaded with a unit load, P = 1:0, and by use of
the load factor, rimin, and the sign rule for the global response, sgn(rimin), we can

determine the intrinsic incremental global response by computing

(�P i;�ui) = sgn(rimin)r
i
min

�Ei (6.38)

The total response is obtained as the accumulative incremental response where the
external forces are given by

P i =

=iX

=0

�P 
 (6.39)

and the corresponding displacements appear as

ui =

=iX

=0

�u
 (6.40)

The expressions above refer to a single degree of freedom (SDOF) system which
can easily be extended to a multi degree of freedom (MDOF) system, i.e. instead

of an external point load, multiple point loads can also be applied, approximating
di�erent kind of load con�gurations with distributed load. The program structure
used for computing the solution algorithm above is constructed as fortran programs
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(Pnforce list.f and Prload.f) in conjunction with the commercial �nite element pro-

gram ABAQUS as a solver for the global system of equations. ABAQUS utilizes user
de�ned elements, written in fortran (Pcrackel.f), for determining the behavior of the
crack zone. For determining the sti�ness in each element the element routine has

to communicate with the results �le through a communication �le (Pnode
ag.dat).
The di�erent parts of the program structure are controlled or run by a script �le
written for Unix in the Korn shell programming language. The commercial pro-

gramming package MATLAB has also been utilized for programming the solution
algorithm for PC's.

6.2.6 Mixed mode solution algorithm

Solving the fracture process for Mode I and Mode II simultaneously, termed as mixed

mode, is somewhat more complicated than for each mode by itself. It seems obvious
that the two modes interact with each other and thus the �rst task will be to derive
a process (method) where this e�ect is taken into account. In the modelling the two

modes are represented by two springs which in the elastic state are considered to
have no extension. The �rst linear part of both the shear and the tension curves is
considered to have a slope approaching in�nity, Figure(6.1). In the model analysis

this slope is of the order 1000 to 100:000 times the following slope, or

103 �
�����k0k1

����� � 105 (6.41)

When the structure is exposed to an external or internal load the level of stress
increases simultaneously in both springs provided that both modes are activated.

The stress level increases until cracks start to form in the material i.e. maximum
stress level (load level) is reached in both modes at the same moment. In other
words, both springs are activated and the sti�ness of the springs becomes negative.

Di�erent criteria have been suggested and used in both continuum models as well
as discrete models such as the present one. The following is a criteria suggested by
Norris:  

�

ft

!2
+

 
�

fs

!2
� 1:0 (6.42)

where � and � are the stresses in mode I and mode II respectively whereas ft and
fs are the corresponding strength of pure tension and shear, respectively. Instead

of the stress values we may use the stress level for each mode in the criteria. With
the stress levels expressed as

xi+1k;� = 1� ci+1k;� = 1 �
 
1 � ri+1min

ri+1k;�

!
cik;�

xi+1k;� = 1� ci+1k;� = 1 �
 
1 � ri+1min

ri+1k;�

!
cik;�

(6.43)

This may seem to be a suÆcient criteria for the activation of the negative springs but
as the load factors rmin; rk;�; rk;� are extracted from the envelope curves for � � Æn
or � � Æs we have to introduce a scale factor on rmin which leads to the fracture
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criteria used in the present study
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= 1:0 (6.44)

For each pair of springs in the model the fracture criteria is simply solved for �k and
the solution we seek is the largest positive solution less than 1:0. Having passed the

point of fracture we need to de�ne some dimensionless parameters some of which are
state variables used to pass information from state (i) to (i + 1) These de�nitions
and corresponding derivations are demonstrated here on bilinear curves for both

� � Æn and � � Æs. However, the expressions derived �nally are general expressions
for any number of poly-linear subsets.

6.3 Stability of global response

Depending on the ratio of fracture energy and elastic energy stored in a structure,
di�erent kind of failure phenomenon can appear. Stable fracture can occur where

a structural member "warns" of the potential fracture with extensive deformations
and visible damage before the load-bearing capacity is used up. On the other hand,
a particularly unstable failure can also be the case with so-called snap-back. The

structure can possibly develop a minor visible crack prior to failure but the more
unstable the failure, the less visible signs prior to the snap-back. During the nu-
merical computations the risk for instability and/or checking for snap-back can be

controlled by performing an eigenvalue analysis on the system equations, Petersson
[10], having split them into a system of two sti�ness matrices

(Ke �K�) _a = _P (6.45)

The Ke matrix includes only constant contributions from the linear-elastic part of
the structural member outside the potential cracking zone. TheK� matrix, however,

can vary during the cracking process resulting in an unstable failure. By performing
the eigenvalue analysis

det([Ke � �K�]) = 0 (6.46)

the lowest eigenvalue �1 can be used as a measure of the risk for instability in the

crack propagation.





Chapter 7

Numerical Study

7.1 General

The experimental work described in Chapter 4 and the methods of numerical mod-

elling described in Chapters 5 and 6 form the background for the following numerical
studies. The in
uence of geometry and load con�gurations are the main issues.

All LEFM studies were carried out utilizing the general purpose �nite element

program ABAQUS. The NLFM modelling was partly carried out using ABAQUS
where the crack propagation process was implemented as FORTRAN subroutines.
The major part of the parameter studies (NLFM) was carried out by utilizing the

general purpose mathematics program MATLAB and the �nite element package
CALFEM. The crack propagation procedure was implemented in the same manner
as the CALFEM routines.

In Figure (7.1) we have a schematic illustration of the procedures of LEFM and
NLFM implemented here. We start with the fracture energy as a basic material
parameter. In the case of LEFM we then detect the stress �eld and provide the

critical load through a fracture criterion. The NLFM procedure descends from
the constitutive relation for tensile and shear fracture which may be combined in a
mixed mode relation. Finally the global response is extracted from crack propagation

procedure.

The �rst of subsequent sections in this chapter are dedicated to convergence study
and veri�cation of the modelling. Use is made of the three-point bending test,

the four-point bending test and results from the EMS tests ( Section 4.4) on small
clear wood specimen. Furthermore, comparison is made with known test results for
end-notched beams.
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Figure 7.1: Schematic illustration of the two main �elds of fracture analysis, LEFM
and NLFM
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7.2 Veri�cation of FE-modelling

7.2.1 Test specimen for determination of Mode I fracture

energy

P

520 mm

80 mm

200 mm 200 mm80 mm

NotchFibre direction

t = 45 mma0

Figure 7.2: Test specimen for mode I fracture

The three point test specimen has been chosen here for veri�cation by NLFM. This
test specimen has been adopted as a standard test specimen [62, 51, 10] for the
evaluation of fracture energy in wood for pure opening mode, Figure [7.2]. The
specimen is made of three parts, glued together. The �ber direction of the central

part is perpendicular to the direction of the beam axis. This central piece is provided
with an initial notch up to approximately 50 - 60% of the beam height. The length of
the notch is essential for the instability characteristics of the beam and the tendency

is towards greater risk of instability the shorter the notch, Figure (7.2).

It is rather simple to establish a two-dimensional FE-model of this mode I specimen.

The notch depth, a0, was made equal to 48 mm. From the material parameters the
material characteristic length is estimated to lch � 3mm. A suitable element size
may be taken as lch

5
to lch

10
which suggest that the element size should be 0:3 to 0:6

mm. A convergence study, Figure (7.6) reveals that the results (limit load and mid-
side displacement) converge quickly, from approximately 68% and 55% error in force
and displacements respectively, with element size 10� 10 mm to approximately 7%

error with element size 5�5 mm. With the element size 2:5�2:5 mm we are down
to an error of 0:5 % to 1:5 %. A further subsequent re�nement of the mesh does not
reveal any dramatic changes in the results but the absolute maximum element size

for determining the limit load seems, for the present shape of the ��Æ curve, to be of
the same size as the characteristic length of the material, lch. For the model in Figure
(7.6) the load is applied as a point load. By modelling the support as a piece of steel

stretching over an area of one fourth of the beam height and applying the load as a
uniformly distributed, the limit load increases while the corresponding displacement
decreases. In the present model this di�erence is not of any great proportions, with

di�erence in results in the vicinity of 1%. It is, however, important to model the
boundary conditions as accurately as possible when the computations include non-
linear e�ects. This is especially important when comparing numerical calculations

and experimental results in order to calibrate the input parameters in the model.
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Figure 7.3: Mesh with 5�5 mm elements, mesh density M= h
5
= 16

2

q

P

Figure 7.4: Mesh with 2:5 � 2:5 mm elements, mesh density M= h
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Figure 7.5: Mesh with 1:25 � 1:25 mm elements, mesh density M= h
1:25

= 64

An unexpected behavior appeared in the convergence study where the displacement
curve, Figure (7.7), appears to have a local minimum for mesh density M = 16 and

local maximum for M = 64. The limit force curve shows a similar behavior. The
interesting thing is that neither displacements nor forces approach the limit value in
a similar manner. Bearing in mind that the results are upper limit solutions and that

the size of the fracture process zone is not constant during the computations one
has to admit that these variations are of minor importance. The fact that the size
of the fracture process zone approaches a constant size with subsequently increasing
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mesh re�nement supports the convergence behavior and therefore no attempts will

be made to investigate further mesh re�nement.

With assumed fracture energy of 300Nm=m2 the numerical results gave a maximum

load of 250N at a displacement of 2:28mm which is very close to experimental results.
In experimental research reported by Gustafsson [6] the measured mean value for
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Figure 7.6: Performance of three-point bending test with varying mesh density
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Figure 7.7: Di�erence in results depending on load con�guration and boundary
conditions
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the fracture energy was 294Nm=m2 and a mean value, for the maximum load, of

225N was reached. Similar results are reported by Petersson [9].

7.2.2 Four point bending test

The four-point bending test is a test setup arranged for an experimental investigation

of crack propagation starting from a defect such as a knot. The specimen is supplied
with a vertical notch in the symmetry plane and subjected to a bending moment
in the central part. The crack will start from the notch and propagate at nearly

constant load. Load-de
ection relations obtained from a LEFM model are presented
in Figure (7.8). The mean crack propagation load from experimental tests is also
indicated, showing a fairly good agreement. The model results are given for two

cases, one for Gc = GcI and the other for mixed mode conditions Gc = Gc;mixed

according to the fracture criteria of Petersson [8]. The beam geometry was: h =
170mm; b = 45mm; the total length l = 3000mm; a0 = 42mm and the distance

from support to the load P was 1000mm. The element size was 3:25mm along the
crack path and the material data was according to Table (5.1) in section (5.3).
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Figure 7.8: Results of four-point bending test FPB.
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7.3 Numerical results

7.3.1 Introduction

The parameter studies in the subsequent sections are mostly presented in a diagram
in which a relative force is plotted versus the parameter being investigated. A
reference beam according to Figure (7.9)is used. The calculated ultimate load of this

end-notched beam with h = 200mm is used as a reference load in the presentation
of some of the parameter studies. Other parameters for the reference beam are:
� = 0:75; � = 0:5; � = 0:0; � = 0:0 and 
 = 2:667. Material data according to Table
(5.1) in section (5.3) was used throughout the LEFM studies where the smallest

element size was 3:125mm.

Pγh

h

βh
P θ

αh ρh

LC

3hh/2

Figure 7.9: End-notched beam parameters

7.3.2 Load-bearing capacity

The load-bearing capacity has been calculated with LEFM for six types of beams,
Figure (5.6). All beam geometries are of the same size with a height h = 600mm,
depth t = 120mm and a total length of l = 4200mm. Only half of the beam is

modelled and the force versus crack length is determined.
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Figure 7.10: Load-bearing capacity of all geometries, h=600mm



72 CHAPTER 7. NUMERICAL STUDY

Figure 7.11: Load-bearing capacity of an end-notched beam, h = 600mm

Figure 7.12: Load-bearing capacity of an tapered end-notched beam, h = 600mm.
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Figure 7.13: Load-bearing capacity of a beam with small internal circular hole,
h = 600mm.

Figure 7.14: Load-bearing capacity of a beam with large internal circular hole,
h = 600mm.
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Figure 7.15: Load-bearing capacity of an edge-notched beam, h = 600mm.

Figure 7.16: Load-bearing capacity of a beam with an internal quadratic hole, h =
600mm.
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Figure 7.17: E�ects of load distribution, �, at support (end-notched beam)

7.3.3 Distribution of load at support

Calculations were carried out on an end-notched beam in order to study the e�ect

of distributed load at support. The common practice is to assume that the support
is supplied by a concentrated point load. This is almost never the case in practice.
Load at support is more or less distributed through mechanical fasteners or a contact

surface of some kind. LEFM model has been applied on an end-notched beam with
a total depth of h = 600mm where the load at support is applied as a distributed
load and a point load as well. The location of the resultant support force remains

the same throughout. The results are presented in Figure (7.17) indicating that
the crack propagation load becomes somewhat lower for crack lengths less than
approximately h=6 with the relative load-bearing capacity down to 0:946. It is also

interesting to observe that the fracture process is no longer immediately unstable as
in the case of a point load.

The load distribution e�ect was investigated further with the non-linear model.
Three geometrically similar beams, with di�erent depths (h = 100mm;h = 200mm;

h = 400mm), were investigated. The results in Figure (7.18) indicate similar ten-
dency in decline of load-bearing capacity. The most interesting part is when the
load is in the vicinity of the notch corner or when � is close to 2=3. The largest

relative reduction in load-bearing capacity seems to be close to 0:034.
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h = 400 mm
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h = 100 mm

Figure 7.18: E�ects of load distribution at support, �.

7.3.4 In
uence of the geometry of the notch

The geometry of the notch or hole causing the singularity was investigated to some

extent by NLFM for an end-notched beam and a beam with a square internal hole.

The in
uence of variation in notch depth, �, on the relative load-bearing capacity
of an end-notched beam is presented in Figure (7.19). As expected the load-bearing
capacity drops rapidly with increasing notch depth, especially for � greater than

0:75. For the higher values of � the drop is approximately 13� 14 times more rapid
than for the lower values.

The length of the notch was also investigated. The distance between notch and
support, �, varies from � = 0:0 up to � = 0:85. In most practical cases the support
is within the distance of 0:1h from the end of the beam. The results are presented

in Figure (7.20). The in
uence of the notch length, �, is considerable. For values of
� less than approximately 0:02 the load-bearing capacity descends.

7.3.5 In
uence of load con�guration

The in
uence of the location of a point load has been investigated [43] with a NLFM
model of an end-notched beam. The results indicate strong in
uence of the location

of the load. A point load moves from the center of the beam towards the notch. The
in
uence of the location of the load, see Figure (7.20) and Figure (7.21), becomes
apparent when the load is in the vicinity of a beam depth h from the singularity.

For distances within h form the notch the critical load ascends rapidly. As the
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Figure 7.19: End-notched beam. In
uence of variation in �.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

β

R
el

at
iv

e 
cr

iti
ca

l f
or

ce
 P

/P
re

f

Figure 7.20: In
uence of notch length, �. Support is h/20 from beam end.

load comes closer to the notch it runs more and more straight down to the support
resulting in less tension perpendicular to grain at the tip of the notch. Also the

fracture process becomes increasingly more stable.
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7.3.6 In
uence of axial force

The in
uence of axial forces on an end-notched beam was investigated by NLFM.
The angle � is indicated in Figure (7.9). When the force, P , is perpendicular to
support � = 0 with positive values measured counterclockwise. Axial tension is

imposed on the beam with positive values of � and axial compression with negative
values of �. At the angle of 45Æ the shear and axial forces are equal. The curve seems
to be descending linearly from �10Æ up to 45Æ. For values below �10Æ the curve

takes on a convex parabolic form. It is known that at � = 0 we have a mixed mode
situation in the fracture process zone. With increasing axial compression the shear
forces in the fracture process zone will decrease resulting in increased load-bearing

capacity.

q [ Deg]

Figure 7.23: In
uence of axial force





Chapter 8

Concluding Remarks

8.1 General discussion

In this report both experimental and numerical work concerning the fracture of

timber beams is presented. The experimental work presented involves both small
specimen testing and testing of structural elements (beams). The small specimen
test results were used for determining or verifying the choice of constitutive rela-

tion for the fracture elements in the modelling. The test result of timber beams
with a mid-section notch was compared with corresponding results from numerical
computations.

The results of the LEFM calculations may be utilized to determine critical crack
length as well as the ultimate load. Comparing the results for an end-notched beam

presented in Figure (7.11) by LEFM and in Figure (7.21) by NLFM it is found that
the ultimate loads are close to 58 kN in both cases. The nonlinear calculations
were primarily aimed at determining the in
uence of di�erent parameters on the

load-bearing capacity. These calculations were made for beam depths up to 400mm.

8.2 Design considerations

The numerical results presented may be utilized for determining practical evaluation

for the in
uence of di�erent parameters on the load-bearing capacity. Generally, it
seems convenient to express the in
uence of di�erent parameters as:

P = P0k (8.1)

where P is the actual load-bearing capacity and P0 is the load-bearing capacity of
the reference beam.

As an example Figure (7.17) represents results for an end-notched beam with a
depth of h = 600mm. Here, it may be observed that the di�erence in ultimate load

between the curve for a point load and the curve for a distributed load stretching
close to the corner of the notch is close to 4:1%. Similar results may be extracted
from Figure (7.18). In the case of a beam with h = 400mm this di�erence is close

to 3:2%. For the beam with h = 100mm the result is 2:3%. In the case of in
uence
of distributed load at support the factor k may be de�ned as a constant.
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Figure 8.1: End-notched beam. Approximation of load-bearing capacity

In Figure (7.19) the in
uence of notch depth is shown with the relative force set to
unity at � = 0:75. As an example, this in
uence of notch depth may be approxi-

mated by

k = (
�c

0:75
)n (8.2)

where n and c are

n = 4 c = 1 for � > 0:75

n = 2 c = 1 for 0:485 < � < 0:75
n = 1 c = 0:67 for � < 0:485

(8.3)

The equation for the in
uence of � may of course be more or less di�erent if some

other reference beam is used with, for instance, some other value � than 0:5.

8.3 Conclusions

The main results of the present study can be put in two categories, enhancement of
numerical procedures and presentation of structural behavior.

A constitutive relation for crack elements has been presented on the form of a poly-
linear function which is easy to implement in FE-programming.

By utilizing fracture mechanics it is possible to study the behavior of structural
members with holes and notches. The results presented here suggest that it can be

quite convenient to make use of numerical parameter studies, supported by experi-
mental results, for the enhancement of building codes.
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8.4 Potential future research

The approach to numerical implementation of fracture mechanics, adopted here,

implies possibilities in various �elds of wood mechanics. It is, for instance, simple
to utilize the method on dowel joints or just a straight forward push over analysis
[74, 75] of structures. The numerical process may be regarded as rather slow but

the accuracy and reliability rather good.

By implementing the numerical procedure in analysis of mechanical timber joints,

various parameters may be studied. The procedure can be adjusted to fracture pro-
cess including both failure in mechanical fasteners as well as cracking in the struc-
tural member. It is also of major interest to study various methods for strengthening

structural members with holes and notches.

Several ideas on improving the non-linear modelling have emerged. For some appli-

cations, the unloading branch of the stress versus deformation performance of the
wood needs to be implemented. Also, implementation of an algorithm with respect
to non-linear geometrical e�ects can be needed for analysis of mechanical joints

with a ductile performance before development of unstable crack propagation and a
sudden tensile or shear fracture perpendicular to grain.
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Appendix A

Analytical solutions

A.1 Di�erential equation for a plane state stress

�eld

The state of equilibrium in a plane body can be described with three stress variables
�xx; �yy; �xy and two body force variables bx and by, Figure (A.1)

x

by

σyy

d+ σσyy yy d+τyx τyx

d+σxx σxx

d

b

+

x

τ τxy xyσxx

τxy

yxτ

y

Figure A.1: Components of stress.

@�xx

@x
+

@�xy

@y
+ bx = 0

@�yx

@x
+

@�yy

@y
+ by = 0

(A.1)

where �xy = �yx. All stresses and displacements are regarded as an average over
the thickness of the body. Assuming small displacements, the normal strains are

derived as

�xx =
@ux

@x
; �yy =

@uy

@y
; 
xy =

@ux

@y
+
@uy

@x
(A.2)

These expressions can be di�erentiated in the following manner

93
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@2�xx

@y2
=

@3ux

@x@y2

@2�yy

@x2
=

@3uy

@x2@y

@2
xy

@x@y
=

@3ux

@x@y2
+

@3uy

@x2@y

(A.3)

and by adding terms the condition for the compatibility of deformation is acquired

as a single expression

@2�xx

@y2
+
@2�yy

@x2
� @2
xy

@x@y
= 0 (A.4)

The generalized Hooke's law for the state of plain stress or plain strain can be written
on component form as

2
66664
�xx

�yy


xy

3
77775 =

2
66664
c11 c12 c14

c21 c22 c24

c41 c42 c44

3
77775

2
66664
�xx

�yy

�xy

3
77775 (A.5)

Substituting Eq.(A.5) in Eq.(A.4) results in the compatibility equation of stresses

c11
@2�xx

@y2
+ c12

@2�yy

@x2
+ c14

@2�xy

@x@y
+ c21

@2�xx

@y2
+ c22

@2�yy

@x2
+ c24

@2�xy

@x@y
�

c41
@2�xx

@y2
� c42

@2�yy

@x2
� c44

@2�xy

@x@y
= 0

(A.6)

The equilibrium equation is satis�ed by de�ning an Airy stress function �, such that

�xx =
@2�

@y2

�yy =
@2�

@x2

�xy = � @2�

@x@y

9>>>>>>>>>=
>>>>>>>>>;

(A.7)

Substituting Eq.(A.7) into Eq.(A.6) results in a general 4'th order homogeneous

di�erential equation (PDE) that describes the stress �eld of a plane anisotropic
body in the absence of body forces

c22
@4�

@x4
� 2c24

@4�

@x3@y
+ (2c12 + c44)

@4�

@x2@y2
� 2c14

@4�

@y@x3
+ c11

@4�

@y4
= 0 (A.8)

If the material is orthotropic and the coordinate axes coincide with the principal

directions of elasticity, we obtain c24 = c14 = 0 and the PDE reduces to

c22
@4�

@x4
+ (2c12 + c44)

@4�

@x2@y2
+ c11

@4�

@y4
= 0 (A.9)
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Furthermore, if the material is isotropic, Exx = Eyy = E and Gxy = E
2(1+�xy)

, the

stress �eld is described by the bi-harmonic equation

@4�

@x4
+ 2

@4�

@x2@y2
+
@4�

@y4
= 0

r4� = �2� = 0

9>>=
>>; (A.10)

Continuing with the generalized PDE, Eq.(A.10) can be written symbolically with
four linear di�erential operators of the �rst order

D1D2D3D4� = 0 (A.11)

where

Dk =

 
@

@y
� �k

@

@x

!
(k = 1; 2; 3; 4) (A.12)

and �k are the roots of the characteristic equation to the PDE

c11�
4 � 2c14�

3 + (2c12 + c44)�
2 � 2c24�+ c22 = 0 (A.13)

Dealing with orthotropic materials the characteristic equation simpli�es to

c11�
4 + (2c12 + c44)�

2 + c22 = 0 (A.14)

and the roots of the PDE appear as

�1
�3 = �1

)
= �

0
@�2c12 + c44 �

q
(2c12 + c44)2 � 4c11c22

2c11

1
A

1

2

�2
�4 = �2

)
= �

0
@�2c12 + c44 +

q
(2c12 + c44)2 � 4c11c22

2c11

1
A

1

2

(A.15)

The roots �k are either complex or purely imaginary and occur in conjugate pairs

�1; �2; �1; �2. For orthotropic materials, three types of solutions are possible given
the coordinate axes coincide with the principal axes of elasticity

Case 1 �1 = �i; �2 = Æi General case for wood

Case 2 �1 = �2 = �i Isotropic materials and a special

case of orthotropic materials

Case 3 �1 = �+ �i; �2 = ��+ �i Paper

(A.16)
From the solution of the characteristic equation it is evident that each case, as

described above, is governed by a condition which is totally controlled by material
parameters
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Case 1
(2c12 + c44)

2

4c11c22
> 1

Case 2
(2c12 + c44)

2

4c11c22
= 1

Case 3
(2c12 + c44)

2

4c11c22
< 1

(A.17)

These conditions will be discussed further in a subsequent section on plane state. In
Case 2 it is indicated that this special solution for orthotropic materials also applies
to isotropic materials. This is true when � = 1, i.e. �1 = �2 = i. The general

solutions to the PDE are di�erent, depending on the roots of the characteristic
equation. De�ning the variables z1 and z2 by

z1 = x+ �1y

z2 = x+ �2y
(A.18)

the general solutions to Eq.(A.10) are

�1 6= �2 � = 2< [�1(z1) + �2(z2)]

�1 = �2 � = 2< [�1(z1) + z1�2(z1)]
(A.19)

1z
2

1

r
r

θ θ θ

z2

21

z

yy

x x x

2y1

21

Figure A.2: Real space region and mapped regions.

The functions �1 and �2 are thus de�ned in the mapped coordinate systems accord-
ing to Figure (A.2) where

zk = x+ �ky = x+ (�k + �ki)y = xk + yki with

xk = x+ �ky and yk = �ky
(A.20)

A general expression for the stress and displacement �elds of materials according to
Case 1 or Case 3 is derived from Eq.(A.2) and (A.7)
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�xx = 2< [�21�
00
1(z1) + �22�

00
2(z2)]

�yy = 2< [�001(z1) + �002(z2)]
�xy = �2< [�1�

00
1(z1) + �2�

00
2(z2)]

ux = 2< [p1�
0
1(z1) + p2�

0
2(z2)]

uy = 2< [q1�
0
1(z1) + q2�

0
2(z2)]

where

pk = c11�
2
k + c12 � c14�k

qk = c12�k +
c22

�k
� c24

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

(A.21)

A.2 Di�erential equation for the anti-plane prob-

lem

In order to be able, subsequently, to describe anti-plane problems involving a crack,
it is �rst necessary to derive a separate di�erential equation which takes the planar
discontinuity into account. In other words, the stress relief behind the crack tip

is decisive for the formulation of the di�erential equation. Physically, the problem
can be described as a cylinder with a side crack under torsion. The associated
displacements are

ux = uy = 0 and uz = uz(x; y) (A.22)

The constitutive relation involves only two stress components and two strain com-
ponents. Assuming small displacements the engineering strains become

"

xz

yz

#
=

2
664
@uz

@x
@uz

@y

3
775 =

"
c55 c56
c56 c66

# "
�xz
�yz

#
(A.23)

As all stress components vanish, except �xz and �yz the equilibrium equation reduces

to

@�xz

@x
+
@�yz

@y
= 0 (A.24)

Through Eq.(A.2) and the equilibrium equation a 2'nd order di�erential equation

can be derived, in terms of anti-plane displacements uz(x; y) which can be replaced
by a stress function �03(zk) in a similar manner as in the plane case.

c66
@2uz

@x2
� 2c56

@2uz

@x@y
+ c55

@2uz

@y2
= 0 (A.25)

The PDE can also be written with the aid of di�erential operators

D5D6uz = 0 (A.26)

where Dk (k=5,6) is de�ned as previously and �k (k=5,6) are the roots of the
characteristic equation
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c55�
2 � 2c56�+ c66 = 0 (A.27)

where

�5
�6

)
=

c56 �
q
c256 � c55c66

c55
(A.28)

and as the two solutions are complex conjugate, the solution to the stress and dis-
placement �elds can be conveniently described with a single geometrical parameter
z5 = x+ �5y. Thus, the general solutions become

�xz = 2< [�5�
00
3(z5)]

�xz = �2< [�003(z5)]

and

uz(z5) = 2<
"
�5(c55c66 � c256)

c66 � c56�5
�03(z5)

#
(A.29)

A.3 Stress and displacement �eld in the vicinity

of a crack

In order to derive an expression for the stress and displacement �eld in the vicinity
of a crack tip, it is convenient to make use of the general expressions in Eq.(A.21)
and Eq.(A.29). The problem is to �nd an appropriate form for �00k and �0k. The

following procedure was applied by Paris et al. [24]. Close to a crack tip (z = z0)
the function �00k may be written as

z x

r
θ

z

y

0

k

Figure A.3: Notation for the vicinity of a crack tip.

�00k(zk) =
	
(1)
k (zk)p
zk � z0

+	
(2)
k (zk) + � � � (k = 1; 2; 5) (A.30)

where, according to Figure (A.3)

zk � z0 = r(cos � + �k sin �)

r2 = x2 + y2

9=
; (A.31)

with all parameters de�ned in the real space region, and
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(j)
k (zk) =

1X
n=0

�
(j)
kn(zk � z0)

n (j = 1; 2; k = 1; 2; 5) (A.32)

Substitution of Eq.(A.31) and (A.32) into Eq.(A.30), with n = 0 results in

�00k(zk) =
�
(1)
k0q

r(cos � + �k sin �)
+O(r 1

2 ) (A.33)

where the last term is disregarded due to the dominating character of the �rst term
in the vicinity of the crack tip. The constants �

(1)
k0 are rede�ned in terms of stress

intensity factors (k), where

�
(1)
10 = � �2

2
p
2(�1 � �2)

 
k1 +

k2

�2

!

�
(1)
20 =

�1

2
p
2(�1 � �2)

 
k1 +

k2

�1

!

�
(1)
30 = � k3

2
p
2

9>>>>>>>>>=
>>>>>>>>>;

(A.34)

Substituting Eq.(A.33) and (A.34) into Eq.(A.21) and (A.29) results in

�xx = 2<

2
66664�21

��2
 
k1 +

k2

�2

!

2
p
2(�1 � �2)

q
r(cos � + �1 sin �)

+ �22

�1

 
k1 +

k2

�2

!

2
p
2(�1 � �2)

q
r(cos � + �2 sin �)

3
77775 =

k1p
2r
<

2
66664

�1�2

�1 � �2

8>>>><
>>>>:

�2

 
1 +

k2

k1�1

!
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cos � + �2 sin �

�
�1

 
1 +

k2

k1�2

!
p
cos � + �1 sin �

9>>>>=
>>>>;

3
77775 =

k1p
2r
<
"

�1�2

�1 � �2

(
�2p

cos � + �2 sin �
� �1p

cos � + �1 sin �

)#
+

k2p
2r
<
"

1

�1 � �2

(
�22p

cos � + �1 sin �
� �21p

cos � + �1 sin �

)#

(A.35)

Consequently



100 APPENDIX A. ANALYTICAL SOLUTIONS

�yy =
k1p
2r
<
"
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cos � + �2 sin �
� �2p
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+
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1
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"
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cos � + �5 sin �

#

�yz =
k3p
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<
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1p
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#

(A.36)

A.4 Energy rate and stress intensity factors

More about Irwin's and GriÆth's theories For materials that are considered brittle
the concept of energy rate (G) is strongly attached to stress intensity (K) through

material properties. This relationship was derived by Irwin [25] where he proposed
that the change in potential energy (�) of a body equals the work performed by the
stresses in the corresponding crack propagation zone (�a), Figure (A.4). Therefore

the energy rates may be calculated as

σ
a ∆a

θ
r

x

y

σ

Figure A.4: Calculation of energy release rate.

�@�

@a
= Gi = lim

�a!0

1

�a

Z �a

0
�i(�a� r; 0) ui(r; �)dr (i = 1; 2; 3) (A.37)

The substitution of Eq.(A.35) and (A.36) into the integral expression above results
in
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GI = �K2
I

2
c22=

"
�1 + �2

�1�2

#

GII =
K2

II

2
c11= [�1 + �2]

GIII =
K2

III

2
=
"
c44c55 � c245
c45 � �3c55

#
(A.38)

where the modes of fracture are independent. This is achieved by ignoring the
coupling terms in the expression for the stress �eld. For mode I and mode II the

energy release, assuming coupling of stresses, becomes

GI = �KI

2
c22=

"
KI(�1 + �2) +KII

�1�2

#

GII =
KII

2
c11= [KII(�1 + �2) +KI�1�2]

(A.39)

By adding terms, the total energy release rate then results in

G =
IIIX
iI

Gi (A.40)

For orthotropic materials the relationship between energy release rate and stress
intensity factors

Gi = �iK
2
i (A.41)

is obtained by substituting Eq.(A.38) into Eq.(A.41). The results are shown in Table
(2.1) for both orthotropic and anisotropic materials.

Anisotropic Orthotropic

Mode I
1

2
=
"
�c22�1 + �2

�1�2

# r
c11c22

2

"s
c22

c11
+
2c12 + c33

c11

# 1

2

Mode II
1

2
= [c11(�1 + �2)]

c11p
2

"s
c22

c11
+
2c12 + c33

c11

# 1

2

Mode III
1

2
=
"
c55c66 � c256
c56 � �5c55

# p
c55c66

2

Table A.1: Elastic coeÆcients, �i (i=I,II,III).
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A.5 Plane problems

Dealing with two-dimensional problems of fracture, it is often necessary to choose

whether to use the constitutive properties of plane strain or plane stress. In fact,
pure state of plane strain or plane stress is not so common and in most cases the
governing state is a mixture of both. The geometry of the structure has a great

in
uence on which one of the plane states is dominating. However, it is of some
interest to view the in
uence of di�erent degrees of orthotropy on the stress �eld and
thus being able to predict whether changes in elastic parameters have any substantial

e�ect on the fracture process. The roots of the characteristic equations seem to be
an appropriate measure on the degree of orthotropy as in all cases the roots for
isotropic materials are �k = �i. The formulation and derivation of expressions in

previous sections has been kept entirely on the level of plane state, i.e. no distinction
has been made between plane strain or plane stress and they can therefore be used
as general expressions for both states. In the subsequent sections the discussion will

only involve isotropy or orthotropy.

A.6 Plane strain

The state of plane strain is described in Ottosen and Petersson [23] as the state
where the only non-zero stresses are �xx, �yy and �xy. Then, the constitutive relation
becomes

2
64 �xx
�yy

xy

3
75 =

2
66666664

1� �xz�zx

Exx

��yx + �yz�zx

Eyy

0

��xy + �xz�zy

Exx

1� �yz�zy
0

0 0
1

Gxy

3
77777775

2
64 �xx
�yy
�xy

3
75 (A.42)

As previously mentioned, the roots of the orthotropic characteristic equation dif-

fer somewhat depending on material parameters. The general case for wood and
similar materials depends on the condition in Eq.(A.43) which, by substituting the
compliance components with corresponding material parameters, appears as

ExxEyy

 
� 2

Eyy

(�yx + �yz�zx) +
1

Gxy

!2

4(1 � �xz�zx)(1� �yz�zy)
> 1 (A.43)

The condition in Eq.(A.43) may be used as a measure of degree of orthotropy.



Appendix B

Determination of fracture

characteristics for wood.

Experimental Results

The following experimental results are obtained from small specimen testing in the
EMS testing device. The procedure was displacement controlled. For each test the
fracture energy in mode I and mode II is obtained.
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= 0
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Figure B.9: Stress-displacement diagrams. Displacement ratio k = Æn
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= 1:0
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Figure B.11: Stress-displacement diagrams. Displacement ratio k = Æn
Æs
= 1:0
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Æs
= 2:0
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Figure B.13: Stress-displacement diagrams. Displacement ratio k = Æn
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= 2:0
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Figure B.14: Stress-displacement diagrams. Displacement ratio k = Æn
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= 2:0
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Figure B.15: Stress-displacement diagrams. Displacement ratio k = Æn
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= 2:0
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Figure B.16: Stress-displacement diagrams. Displacement ratio k = Æn
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Appendix C

Linear Elastic Fracture

Mechanics Model

C.1 Basic theory

The following description of the basic and applied theory is from Petersson [8].
A body of linear elastic material loaded in such a way that the strains can be

considered as small (except for the cracking process zone) is studied. We may write
the equilibrium equations as

@�ij

@xj
+ bi = 0 (C.1)

in the volume V, where �ij = �ji denotes a stress component, bi a body force
component and xj refers to a Cartesian coordinate system. Conventional summation
rule is applied. On the boundary surface S the tractions are de�ned by

Sc

Se

V

Figure C.1: Studied body with a crack. Total boundary surface S = Se + Sc

pi = nj�ij (C.2)

where nj is a direction cosine for the outward normal to the surface S. The stresses
are related to the strains �,

�ij = Dijkl�kl (C.3)

where D is a symmetric tensor. Due to the assumption of small deformations the
strains are

� =
1

2

 
@ui

@xj
+
@uj

@xi

!
(C.4)
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where ui denotes a displacement component. Due to the tensor symmetry of D we

may write

�ij�ij =
@ui

@xj
Dijkl

@uk

xl
(C.5)

For a body with a crack, Figure (C.1), a week formulation of the equilibrium equa-

tions may be established, starting from Eq.(C.1). Weighting functions vi (i = 1,2,3)
are introduced [23] Z

V
vi
@�ij

@xj
dV +

Z
V
vibidV = 0 (C.6)

By integration by parts and utilizing Eq.(C.2) we get

Z
V

@vi

@xj
�ijdV =

Z
V
vibidV +

Z
S
vipidS (C.7)

or Z
V

@vi

@xj
Dijkl

@uk

@xl
dV =

Z
V
vibidV +

Z
S
vipidS (C.8)

Let us now assume a disturbance between two studied states, 
1 and 
2. For state 
1
we choose the weighting functions as

vi = v

1
i = u


2
i (C.9)

and for state 
2
vi = v


2
i = u


1
i (C.10)

This yields that

Z
V

@u

2
i

@xj
Dijkl

@u

1
k

@xl
dV =

Z
V

@u

1
i

@xj
Dijkl

@u

2
k

@xl
dV (C.11)

and according to Eq.(C.6) and Eq.(C.7) thatZ
V
u

2
i b


1
i dV +

Z
S
u

2
i p


1
i dS +

Z
V
u

1
i p


2
i dV +

Z
S
u

1
i p


2
i dS = 0 (C.12)

Alternatively, Z
V
(u
2i b


1
i � u


1
i b


2
i )dV +

Z
S
(u
2i p


1
i � u


1
i p


2
i )dS = 0 (C.13)

We may now study a case where bi and pi are constant between states 
1 and 
2
except for the cracking area Sc. By use of the notation

Æui = u

2
i � u


1
i

Æbi = b

2
i � b


1
i

Æpi = p

2
i � p


1
i

(C.14)

Eq.(C.13) can be rewritten asZ
V
biÆuidV +

Z
Se
piÆuidS =

Z
Sc
(uiÆpi � Æuipi)dS (C.15)

The crack region is assumed to be so thin that the tractions pi approximately are
equal on two adjacent points on the surface Sc (symbolically Sc = 2Ac)). This
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makes it meaningful to introduce the relative displacements wi (crack opening and

slips) with respect to the surface Ac instead of the displacements ui on Sc. By this
Eq.(C.15) can be written asZ

V
biÆuidV +

Z
Sc
piÆuidS =

Z
Ac

(wiÆpi � Æwipi)dA (C.16)

Let us then study a case where the in
uence of a disturbance to the system can be

expressed by a single crack coordinate a and where dA = bc �da with constant width
bc. Let us further assume that the crack propagation occurs in a self-similar way
corresponding to

Æwi =
dwi

da
Æa

Æpi =
dpi

da
Æa

(C.17)

By these assumptions we may write Eq.(C.15) as

Z
V
bi
dui

da
dV +

Z
Sc
pi
dui

da
dS = bc

Z
(wi

dpi

da
� dwi

da
pi)da (C.18)

In order to simplify we assume that the relations between pi and wi (i=1,2,3) are

unique (for the current ratios between p1, p2 and p3 or w1, w2 and w3), see Figure
(C.2). This means that we can write pi = pi(wi) or wi = wi(pi). This yieldsZ

ac
(wi

dpi

da
� dwi

da
pi)da =

Z pi0

0
widpi �

Z 0

wi0

pidwi = 2Gc (C.19)

where

Gc =
3X

i=1

Gci =
Z pi0

0
widpi =

Z wi0

0
pidwi (C.20)

Substitution of Eq.(C.19) into Eq.(C.18) results in

Z
V
bi
dui

da
dV +

Z
Se
pi
dui

da
dS = 2bcGc (C.21)

In case of concentrated forces fPg only we may introduce for the cracking load level

Pc
T = [Pc1Pc2 � � �Pcn] (C.22)

with the associated displacements fucg,
uc

T = [uc1uc2 � � �ucn] (C.23)

wi0 wi

pi0

pi

Gc

Figure C.2: Relation between cohesive stress pi and relative displacement wi
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Eq.(C.21) can then be written on the form

Pc
T duc

da
= 2bcGc (C.24)

This basic matrix equation, Eq.(C.24), can conveniently be used in �nite element

analysis where fPcg and fucg will then refer to nodal loads and nodal displacements,
respectively.

C.2 Applied theory

The two-dimensional structure introduced in Figure (C.3) carries a set of reference
loads fPg. We assume that the material is linear elastic and by denoting the dis-

placements with fug we have

fPg =

2
66664
P1
P2
...
Pn

3
77775 fug =

2
66664
u1
u2
...
un

3
77775 (C.25)

The crack length is denoted with a and the fracture energy with Gc where Gc is
considered to be a material parameter. This assumption is according to GriÆth's

theory. We advance by assuming that the external loads are increased proportionally,
step by step. This means that the actual loads are �fPg where � may be increased
gradually up to the critical level of � which corresponds to the maximum load level

for the actual state (crack length). This state may either re
ect a stable or unstable
crack growth. As we have assumed linear elasticity the corresponding displacements
are �fug. Hence, we can express the displacements by the 
exibility relation

fug = [C]fPg (C.26)

where the 
exibility matrix [C] is also termed as the compliance. The internal energy
for the linear elastic material can now be expressed as

W =
1

2
�2fPgT fug = 1

2
�2fPgT [C] fPg (C.27)

Loads {P}

a

Displacements {u}
P1 · u1

P2 · u2
P3 · u3 P4 · u4

Figure C.3: Two-dimensional body with a crack



C.2. APPLIED THEORY 127

We now assume that the reference load P and the load multiplication factor � are

kept constant with respect to variation of the crack length a. For the critical value
of � = �c this gives us

@W

@a
=

1

2
�2cfPgT

"
@C

@a

#
fPg (C.28)

As the second law of thermodynamics claims that the work performed by external
forces, at quasi-static conditions, is equal to the work performed by internal forces,

we may combine Eq.(C.28) and Eq.(C.24)

@W

@a
= 2bcGc (C.29)

and we obtain

�c =

vuut 2bcGc

fPgT dC
da
fPg (C.30)

This equation is straightforward to apply in �nite element analysis. For the numer-
ical analysis, based on the �nite element method, we will utilize Eq.(C.30). The
critical load factor �c at cracking is extracted from approximation of the equation.
The load vector fPg contains given reference loads. We allow the crack length to

increase gradually so for each value of a = ai we obtain the corresponding displace-
ments ui. The stepwise crack propagation may be approximated by

�ai = ai+1 � ai (C.31)

obtaining the approximate critical load factor

�ci =

s
2bc�aiGc

fPgT (fugi+1 � fugi) (C.32)

where the crack length is de�ned as

a � ai+1 + ai

2
(C.33)

One of the diÆculties in fracture analysis is the existence of mixed mode fracture,
i.e. we have the fracture energy Gc dependent on the mode of fracture. The method
adopted here for choosing a suitable value includes that the fracture energy may be

obtained by estimating some average value of the ratio ��?
��
between the normal and

shear stresses in the crack process zone. In a �nite element analysis an evaluation
of the nodal forces from the individual elements close to the crack tip might give

reasonable estimate of the mixed mode state. An illustration is given by Figure
(C.4), where the summations of nodal forces for elements on each side of the crack
are identical except for the sign. We approach the stress ratio in the assumed process

zone by
��?
��
�
P

s PysP
s Pxs

(C.34)

The index s refers to summation of nodal forces over the row of elements, on either
side of the crack, which are assigned to the process zone. A reasonable relation

between the stress ratio ��
��
and the fracture energy Gc has between suggested by

Gustafsson [4]. This relation is shown in Figure (C.5) which is based on Eq.(3.32).
The material parameters used to establish the relationship are as follows:
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a)

i

m

j k

n

process zone

b)

i

m

j k

n

x

y

pys

pxs

Figure C.4: Nodal element forces close to cracking process zone

Elasticity moduli Ek 12000 MPa

E? 400 MPa

Shear modulus Gk;? 750 MPa

Poisson's ratio �k;? 0.41 -
Fracture energy GI;c 300 Nm=m2

GII;c 1050 Nm=m2

Table C.1: Material parameters in mixed mode fracture criterion

Figure C.5: Fracture criterion applied for mixed mode


	Blank Page
	Blank Page



