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Summary of paper 1-4

Paper 1 The problem of buckling of long orthotropic plates under combined in-plane
loading is considered. An approximate analytical solution is presented. The
concept of a mixed Rayleigh-Ritz method is used considering higher-order shear
deformations. The achieved load function of the half buckling wavelength and
the inclination of the nodal lines is minimized via a simplex search method. For
low transverse shear stiffnesses the model predicts buckling coefficients under
in-plane shear load that are of the same order of magnitude as those resulting
from a uniaxial compressive load. For a thin plate the critical shear load is
larger by 42% compared to the uniaxial case. The model also suggests that
for highly anisotropic materials, such as paper, the critical load solution is still
influenced by the shear deformation effect at width-to-thickness ratios above
100.

Paper 2 Local buckling of corrugated board facings is studied numerically through finite
element calculations. In addition, an analytical model is developed by the use
of the Rayleigh-Ritz method. The facings are modeled as infinite orthotropic
plates, resting on parallel free supports and subjected to an arbitrary in-plane
stress state. The deflection shape is defined by wave length and displacement
of the periodic deflection pattern. Transverse shear strain is considered by first
(FEM) and higher order (analytical) shape functions. The results suggest that
the low out-of-plane shear stiffness of paper significantly affect the critical load.

Paper 3 A failure stress criterion for corrugated board facings is presented. The failure
criterion is based on material failure and structural local buckling failure, which
are evaluated in a combined analysis procedure. The failure stress is compared
with collapse experiments on corrugated board cylinders and the failure stress
presented herein is seen to be in much better agreement with the measured
stresses than the Tsai-Wu failure criterion alone. The fluting wavelength of the
corrugated board is also varied for the purpose of strength sensitivity analysis
of corrugated board.

Paper 4 The reliability of corrugated board is studied by finite element Monte Carlo
simulations and by a first order reliability method, with the use of a failure
criterion that includes both material failure and structural failure. The stiff-
ness and strength parameters of the board are given as scalar multipliers of a
geometrically distributed stochastic field. For the case of pure bending stresses,
it is concluded that the failure is almost completely governed by structural fail-
ure. It is also seen that the board is very sensitive to compressive stresses in
the machine direction (MD).
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Introduction

Background

Corrugated board is a light-weight structural sandwich material. Typically, it is found in
applications as corrugated containers for the storage and distribution of larger consumer
products or provisions, see Figure 1. In some cases, the board is found in applications
where its function is purely to act as a load bearing structure, for example as pallets, see
Figure 2. Hence, it is important that the board mechanical properties meet the desired
properties of the user.

Figure 1: Stack of corrugated containers.

Figure 2: Corrugated board pallets.

The design of corrugated board, in terms of material strength and overall load re-
sistance, has formerly been devoted to empirical research and relatively simple models.
One example of an empirical result is the formula for box compression strength proposed
by Maltenfort [1], which is derived from statistical data from tests of box compression
strength. At present, there are numerous general purpose finite element codes for the
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evaluation of stress distributions, facilitating work on more theoretical and rational meth-
ods for strength analysis. Studies of the strength of corrugated board based on structural
analysis has been performed by Patel [4], who both numerically and experimentally ex-
amined the biaxial strength, and by Nordstrand et. al. [5, 6], who derived expressions
for the shear stiffness of the board and studied the postbuckling strength of the board.
It was found that the failure of the board is largely influenced by local instability of the
facing and a strength analysis based solely on material failure therefore is an insufficent
representation of the ultimate strength.

The strength of corrugated board due to localized buckling was previously studied by
Johnson and Urbanik [7]. In the work, a non-linear finite element method was used to
examine the instability. Furthermore, Johnson and Urbanik [8] developed a non-linear
elastic plate theory with the application to paper bending properties.

Corrugated board is largely affected by environmental conditions, such as moisture
exposure. For example, a paper sheet holding 15% moisture content, which corresponds
to 70-80% relative humidity (RH), will only preserve one half of its dry stiffness [3]. The
mechanical characteristics of corrugated board is to a large extent retaining uncertainties.
These uncertainties relate to

• Material properties; e.g. elastic stiffness and material strength

• Geometric properties; such as geometrical imperfections of the panels

• Loads; stack height, duration of load, mishandling of packages etc.

• Environmental conditions; magnitude and variation of RH, risk of wet material etc.

Therefore, for a reliable design analysis, it appears natural to incorporate uncertainties
in a strength analysis. In such an analysis, the physical variation in material properties
with varying climate conditions can be modelled.

Many different techniques for the study of structural reliability are availible. The
techniques can be categorized as exact, e.g. Monte Carlo methods, multifold integral
evaluation, and approximate, e.g. series expansion methods, response surface fitting and
FORM/SORM (First/Second Order Reliability Methods.

In using the Monte Carlo method, a suitable number of samples are created as input
variables to the structural model. The computation effort with this method is obvious
and will, of course, increase with the effort needed for the basic deterministic model. In
contrary, it is the most versatile method in terms of problem definition and the solution
is always convergent. In order to reduce the computational effort, different methods
to reduce the number of samples in structural analysis has been proposed, e.g. Olsson
[2]. In using FORM or SORM, limit state functions are formulated which contain both
the structural permissible response and the response as a function of load. The next
step is to determine the probability content in terms of a minimization procedure. The
attractivness of FORM/SORM lies in the comparably speed by which an engineering
solution is attained. However, the method has mostly found its application on simple
structures and the application to finite element methods is currently an intensive research
field. Examples of work within reliability finite element analysis are Frangopol et. al. [9],
Liu and Liu [10], Guan and Melchers [12], and Viadero et. al. [13].
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Scope and observations of the present work

The three or more layers of paper that build up corrugated board are characterized by
orthotropic material properties, similar to those which can be found in fiber reinforced
polymer composites. The detailed geometry of the board is complex and the number
of corrugations in the panels that forms a package is large. This makes detailed three-
dimensional modelling of the corrugations unsuitable in strength analysis. In this work,
it is the aim to use a simplified model, such as a laminated composite plate or shell finite
element, for the analysis.

The failure of corrugated board is devoted to material failure and structural failure of
the facing. Material failure occurs when either the fiber strength threshold is exceeded,
or the bonds between the fibers no longer are able to carry load. Structural failure occurs
when either of the facing becomes unstable, local buckling, see Figure 3.

Figure 3: Shear buckling of facing.

The work presented herein comprises two parts. The initial part of the work studies
the local instability of the board in an analytical manner (paper 1). In this first part, also
finite element calculations are performed for evaluation (paper 2) and a combined failure
criterion, involving both structural and material failure, is formulated (paper 3).

It is observed through the work that even though the paper sheets of the board are
very thin, the high degree of orthotropy emphasizes the use of plate theories that enable
out-of-plane shear deformation, in the analysis.

The second part of the present work is devoted to an examination of the applicability
of FORM to the finite element analysis of plate structures (paper 4). The methodology
mainly described in [14] is used and implemented together with the finite element method.
As a comparison, Monte Carlo sampling is used. As a continuation of the third paper, the
likeliness of either material or structural failure is examined. The stress failure criterion
from paper 3, for determination of the ultimate strength of the board, is used in a limit
state function including both the allowable local stress and the calculated local stress.
The evaluation of the limit state function is performed by finite element calculations on
a homogenisized laminated plate.

It is also the purpose of the paper to discern which method is most appropriate in a
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continued work, in terms of accuracy, complexity and numerical efficiency. The uncer-
tainties modelled in the last paper involve variations in the components of the stiffness
matrix as well as the orthotropic material strength parameters.

It is the aim that the continued work will lead to a method applicable to reliability
design of corrugated board packages. As the most common loading condition is shell
like, it is crucial that the model incorporates geometrical non-linearities. It is of course
also crucial to incorporate uncertainties in the loading conditions. Uncertainties in hu-
midity conditions, geometrical imperfections and material non-linearities may also be of
importance.

Introduction to the first order reliability method

Traditionally, strength analysis of structural systems has been devoted to a determinis-
tic analysis, finding appropriate response measures and relating them to given strength
conditions. However, in all practical structures, there are certain degree of variabilities in
the variables affecting the strength and response. This can be accounted for by adding
a factor of safety to the system and, prospectively, the strength will not be exceeded. A
more detailed modelling is to use a mathematical description of the variable fluctuations
and determine the probability that the strength will be exceeded. The probability of
failure Pf , can in terms of the stochastic basic variables α, be written

Pf = P [gα(α) ≤ 0] =
∫
gα(�)≤0

f(α)dα (1)

where g(α) is the limit state function, which is positive when the structure is in a safe
state, and f(α) is the joint probability density function of α. The general solution of the
multifold integral in (1) provides a prohibitive task, which has led to the development of
approximate techniques. One of the approximate techniques is FORM, in which the limit
state function can be mapped to the standard uncorrelated normal space of the basic
variables

T : gα̂ ≤ 0 → gz ≤ 0 (2)

where z are the standard normal variables and α̂ is the set of uncorrelated basic variables.
According to the mapping given by Hasofer and Lind, [15], the relation between z and α̂
reads

z = Ĉ−1/2
α (α̂− E[α̂]) (3)

The uncorrelated basic variables are related to α by the orthogonal transformation matrix
A

α̂ = ATα (4)

so that the covariance matrix Ĉα is diagonal

Ĉα = ATCαA (5)

In using FORM, the reliability index, β, is found as the minimum distance from the
origin to the failure surface gz(z) = 0. This is expressed as

β = min‖z‖ z ∈ Lz (6)
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where Lz defines the failure surface. The point in the z-coordinate system where the
minimum distance is found is referred to as the design point. This point is found by the
use of an iterative search algorithm.

For a generic failure surface, an approximation to the probability of failure is given by

Pf = Φ(−β) (7)

where Φ is the standard normal distribution function.

Implemented iterative search algorithm

There are many availible iterative algorithms for constrained minimization problems. A
search algorithm which is found to be practical in structural minimization problems and
used for the calculations presented in paper 4, is described in [14]. This algorithm uses
the projection of the current point z(k) on the failure surface gradient in a sequence of
values of z. The gradient pointing towards the failure region can be expressed as

z̃(k) = −
∂g(z(k))/∂zi[∑n

i=1 (∂g(z(k))/∂zi)
2
]1/2 (8)

where n is the number of stochastic variables. The projection of z(k) on z̃(k) is given by

v(k)
a = (z(k) · z̃(k))z̃(k) (9)

The point at the end of this vector is put closer to the actual failure surface gz(z) = 0 by

v
(k)
b =

g(z(k))[∑n
i=1 (∂g(zk)/∂zi)

2
]1/2 z̃(k) (10)

The next iteration point is then given by

z(k+1) = v(k)
a + v

(k)
b (11)

and the iterations are continued until the convergence criterion

‖z(k+1) − z(k)‖ ≤ ε1

|g(z(k+1))| ≤ ε2 (12)

is fulfilled.
At the point of convergence, z∗, the limit surface can be given as a linearized surface,

which has the equation
n∑
i=1

∂g(z∗)

∂zi
(zi − z

∗
i )− g

∗ = 0 (13)

or on normal form

1[∑n
i=1 (∂g(z∗)/∂zi)

2
]1/2 n∑

i=1

∂g(z∗)

∂zi
zi + β − g∗ = 0 (14)

It should be pointed out that if the limit state function is a convex function with very
large curvature, the projection given by (9) will be directed to a point far apart from the
limit state surface, and the solution is not convergent. If the failure criterion is a concave
and closed function, the algorithm can be expected to converge to the design point.

5



References

[1] Maltenfort, G. G., (1956) Compression Strength of Corrugated Containers, Fibre
Containers, Vol. 41, No. 7.

[2] Olsson, A., (1999) Modelling Damage and Stochastic Properties in Engineering Struc-
tures, Licentiate thesis, Dept. of Struc. Mech., Lund University.

[3] Salmen, L., (1982) Temperature and Water Induced Softening Behaviour of Wood
Fiber Based Materials, Ph. D. thesis, Dept. of Paper Technology, KTH, Stockholm.

[4] Patel, P., (1996) Biaxial Failure of Corrugated Board, Licentiate thesis, Dept. of Eng.
Logistics, Lund University.

[5] Nordstrand, T., Carlsson, L. A., and Allen, H. G., (1994) Transverse Shear Stiffness
of Structural Core Sandwich, Composite Structures, 27, pp 317-329.

[6] Nordstrand, T. M., (1995) Parametric Study of the Post-Buckling Strength of Struc-
tural Core Sandwich Panels, Composite Structures, 30, pp 441-451.

[7] Johnson, M. W., and Urbanik, T. J., (1989) Analysis of the Localized Buckling in
Composite Plate Structures with application to Determining the Strength of Corru-
gated Fiberboard, J. of Composites Technology and Research, Vol. 11, No. 4, pp.
121-127.

[8] Johnson, M. W., and Urbanik, T. J., (1984) A Nonlinear Theory for Elastic Plates
With Application to Characterizing Paper Properties, J. of Applied Mechanics, Vol.
51, pp 146-152.

[9] Frangopol, D. M., Lee, Y-H., and Williams, K. J., (1996) Nonlinear Finite Element
Reliability Analysis of Concrete, J. Eng. Mech., Vol. 122, No. 12.

[10] Liu, P-L., and Liu, K-G., (1993) Selection of Random Field Mesh in Finite Element
Reliability Analysis, J. Eng. Mech., Vol. 119, No. 4.

[11] Liu, P-L., and Der Kiureghian, A., (1991) Finite Element Reliability of Geometrically
Nonlinear Uncertain Structures, J. Eng. Mech., Vol. 117, No. 8.

[12] Guan, X. L., and Melchers, R. E.., (1999) A Load Space Formulation for Proba-
bilistic Finite Element Analysis of Structural Reliability, Probabilistic Engineering
Mechanics 14, pp 73-81.

[13] Viadero, F., Bueno, J. I., Lopez de Lacalle, L. N., and Sancibrian R., (1994) Reli-
ability Computation on Stiffened Plates, Advances in Engineering Software, 20, pp
43-48.

[14] Madsen, H. O., Krenk, S., and Lind, N. C., (1986) Methods of Structural Safety,
Prentice-Hall, New Jersey.

[15] Hasofer, A. M, and Lind, N. C., (1974) An Exact and Invariant First Order Reliability
Format, Proc. ASCE, J. Eng. Mech. Div., pp 111-121

6



Paper 1

Buckling of Long Orthotropic Plates

Including Higher-Order Transverse

Shear

Ulf Nyman and Per Johan Gustafsson

Division of Structural Mechanics

Lund University



Detta är en tom sida!



Buckling of Long Orthotropic Plates

Including Higher-Order Transverse Shear

By Ulf Nyman1 and Per Johan Gustafsson2

ABSTRACT: The problem of buckling of long orthotropic plates under combined in-plane

loading is considered. An approximate analytical solution is presented. The concept of a mixed

Rayleigh-Ritz method is used considering higher-order shear deformations. The achieved load

function of the half buckling wavelength and the inclination of the nodal lines is minimized

via a simplex search method. For low transverse shear stiffnesses the model predicts buckling

coefficients under in-plane shear load that are of the same order of magnitude as those resulting

from a uniaxial compressive load. For a thin plate the critical shear load is larger by 42%

compared to the uniaxial case. The model also suggests that for highly anisotropic materials,

such as paper, the critical load solution is still influenced by the shear deformation effect at

width-to-thickness ratios above 100.

Introduction

The use of paper as a structural member in a packaging environment has inspired research
within the field of modeling corrugated panel structures subject to loads of various kinds.
Local buckling of corrugated board facings is a limiting design principle of judgement
for packages. Examples of work relating to buckling of the facing of a sandwich panel
are mentioned in the following. Johnson and Urbanik (1989) analyzed composite plate
structures under uniaxial compression and concluded that, in a triangular core sandwich,
the facing initiates buckling. Analysis of an aluminum sheet sandwich plate made by
Wittrick (1969) showed that buckling modes with inclined nodal lines (where out-of-
plane deflection is equal to zero) are possible. Zahn (1973) studied an orthotropic truss
core sandwich in axial compression. Anderson (1958) analyzed the instability of isotropic
elements of a truss-core sandwich plate. Harris and Auelmann (1960) presented a buckling
solution of finite plates subjected to combined in-plane loads using a first-order shear
deformation theory. Norris and Kommers (1952) studied sandwich panels under combined
loads.

Originally, instability was examined by a number of authors adopting the Kirchoff-
Love assumption (thin plate theory). For plates with reasonable thickness or a very large
elastic modulus to transverse shear modulus ratio, the buckling load is considerably over-
estimated. Therefore, the plane stress assumption is relaxed and transverse shear stresses
are considered. Highly anisotropic behavior is found for many fiber based materials, e.g.
fiber reinforced composite materials, and for paper, with material stiffness ratios as high

1Structural Mechanics, Lund University, PO Box 118, S-221 00 Lund, Sweden.
2Structural Mechanics, Lund University, Sweden.



as 600 being reported (Persson 1991), compared to a typical ratio of 2.6 for isotropic mate-
rials. Consequently, the need for using refined plate theories including higher-order shear
deformations is clear. A number of plate theories based on an assumed displacement field,
taking out-of-plane shear effects into account, have been developed. The Reissner-Mindlin
(1945) theory allows for deflection independent rotation of the plate cross-section during
deformation. Bert and Chang (1972) introduced in the governing differential equations
the slope at which the normal forces act on the plate cross section. However, since the
theories assume a constant distribution of shear strains through the plate thickness, a
correction factor is needed. An improved higher-order theory was presented by Levinson
(1980) and Reddy (1984) where the shear stress distribution in the thickness direction
follows a parabolic law, vanishing at the plate surfaces.

Exact solutions of some vibration and buckling problems based on the Reddy theory
are presented by Reddy and Phan (1985). The buckling solution of the governing differen-
tial equations, for a uniaxial load case, is obtained by the Navier solution method. In the
present paper the writers propose an approximate method to find the critical load of an
orthotropic plate subjected to an arbitrary in-plane combination of homogeneous shear
and compression. The solution makes use of a mixed Rayleigh-Ritz variational method in
terms of the minimization procedure. In order to find the Ritz coefficients, the parameters
associated with unique terms in the energy functional are first solved for in a linear sense.
Successively, a load function is minimized with respect to the remaining parameters via
a simplex search to find the critical load. The procedure is useful for obtaining a com-
putationally efficient solution of the critical load. In order to solve the critical state, a
numerical procedure is necessary for given material properties and load relations. This
can easily be programmed by means of standard methods. The result from the critical
state analysis can then be used in combination with a numerical method for structural
analysis, such as the finite element method.

The obtained approximate solution is a linear interaction model which enables an
arbitrary in-plane homogeneous stress state analysis. The solution is compared with
numerical results gained from finite element analysis. The agreement is seen to be very
good from an engineering point of view. The need for a computationally efficient solution
of the critical load is obvious when the structure analyzed contains a large number of
potential locations for buckling. An example structure is one made of corrugated core
sandwich elements, e.g. Nyman and Gustafsson (1999).

Problem formulation

The analytical approach in the present study is based upon the principle of stationary
total potential strain energy. The study here is restricted to infinitely long plates, see
Figure 1, such as a structural member of a corrugated medium.

According to the Levinson and Reddy higher-order shear deformation theory, the plate
displacement field is given by

u = u0 + zψx −
4z3

3h2

(
w0
,x + ψx

)
2
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Figure 1: Partial strip of plate.

v = v0 + zψy −
4z3

3h2

(
w0
,y + ψy

)
(1)

w = w0

where u0, v0 and w0 are mid-plane displacements, ψx, ψy are mid-plane cross section rota-
tions about the y-axis and x-axis respectively, and h is the thickness of the plate. Linearly
independent displacement coordinate functions φi, consistent with the chosen boundary
conditions, are used to introduce the displacement distributions

ψi = qiφi i = 1, 2, 3 (2)

in which ψ1 = w(x, y), ψ2 = ψx(x, y), ψ3 = ψy(x, y).

Boundary conditions and coordinate functions

The kinematic boundary conditions of the strip are given by

φ1(x = 0) = φ1(x = a) = 0

φ3(x = 0) = φ3(x = a) = 0 (3)

i.e. the strip has zero deflection w and rotation ψy at the longitudinal endlines. The nodal
lines with zero deflection located in between two half wavelengths (buckling lengths) are
assumed to be straight lines: y = µx + pλ where µ indicates the inclination of the
line, λ half the wavelength and p = 1, 2 ... ∞. Transformation of the cross section
rotations φ = [φ2 φ3]T to the corresponding rotations in a coordinate system rotated
counterclockwise ϕ =tan−1(µ) and indicated by { }′ is given by

φ′ = Aφ (4)

where the orthogonal transformation matrix A is given by

A =

[
cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

]
(5)
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Figure 2: Transformed rotation coordinate function φ′2.

Then, the boundary conditions of the joint edges of two half wavelengths in the y-direction
are

φ1(y = µx) = φ1(y = µx+ pλ) = 0

φ′2(y = µx) = φ′2(y = µx+ pλ) = 0 p = 1, 2, 3 ...∞ (6)

i.e. periodic. Since the deflection derivative ∂w/∂x′ is zero along the nodal lines, zero
cross section rotation ψ′x corresponds to zero shear stress σ′13.

The cross section rotation distributions are assumed to have the same form as the
deflection derivative, see Harris and Auelmann (1960), i.e. φ2 ∼ w0

,x, φ3 ∼ w0
,y. Then the

present choice of coordinate functions φi is
φ1

φ2

φ3

 =


Im ei

π
a
xIm ei[

π
λ

(y−p(x))]

1
a
Re ei

π
a
xIm ei[

π
λ

(y−p(x))] − µ
λ
Im ei

π
a
xRe ei[

π
λ

(y−p(x))]

Im ei
π
a
xRe ei[

π
λ

(y−p(x))]

 (7)

In Figure 2 the transformed rotation coordinate function φ′2 is plotted over the plate
domain.

Constitutive relations

The elastic orthotropic constitutive behavior is described by the stress-strain relation

σ = Dε (8)

or 
σ11

σ22

σ12

σ13

σ23

 =


D11 D12 D14 D15 D16

D22 D24 D25 D26

D44 D45 D46

sym. D55 D56

D66




ε11

ε22

γ12

γ13

γ23

 (9)
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with

D14 = D15 = D16 = D24 = D25 = D26 = D45 = D46 = D56 = 0

D11 =
E11

1− ν12ν21
, D12 =

ν21E11

1− ν12ν21
, D22 =

E22

1− ν12ν21
(10)

D44 = G12, D55 = G13, D66 = G23

where E, G and ν are material constants. It is here assumed that the material axes
coincide with the coordinate axes of the plate. The kinematic relations are obtained by
applying the small strain tensor format on (1)

ε =


ε11

ε22

γ12

γ13

γ23

 =


u,x
v,y

v,x + u,y
w,x + ψx
w,y + ψy

+ z


ψx,x
ψy,y

ψy,x + ψx,y
0
0



−4z2

h2


0
0
0

w,x + ψx
w,y + ψy

−
4z3

3h3


w,xx + ψx,x
w,yy + ψy,y

ψy,x + ψx,y + 2w,xy
0
0

 (11)

Variational formulation

By defining the initial in-plane loading vector N for the plate

N =

 N11

N12

N22

 (12)

the energy varying during buckling can be obtained, e.g. Bazant (1991), by integrating
over the plate region

U1 =
1

2

∫ ∫
A
Nijw,iw,jdA i, j = 1, 2 (13)

U2 = −
1

2

∫ ∫ ∫
V
σijεijdV = −

1

2

∫ ∫ ∫
V

[
D11ε

2
11 + 2D12ε11ε22 +D22ε

2
22 +D44γ

2
12

]
dV

i, j = 1, 2 (14)

U3 = −
1

2

∫ ∫ ∫
V
GijγijγijdV i = 1, 2; j = 3 (15)

where U1 is the pre-strain energy, U2 is due to the in-plane stress and U3 is due to the
out-of-plane shear energy. To capture the correct integration of strain energy beyond the
plate mid-plane, consideration must be given to the strain variation over the thickness
h. In doing so, integration is done over the plate volume. The expressions (14) and
(15) can be reduced to area integrals obtaining expressions in terms of the displacement
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distribution functions. If (2) is substituted in (11) and integration of (14) and (15) is
performed over the plate thickness −h/2..h/2, the following is obtained

U2 = −
1

2

∫ ∫
A

Dijh
3

315

(
5

4
w,iiw,jj − 4w,iiψj,j − 4w,jjψi,i + 17ψi,iψj,j

)
+
Dkkh

3

315
(1− δij)

(
5

2
w,ijw,ji − 16w,ijψi,j + 17ψi,jψj,i + 17ψi,jψi,j

)
dA

i, j = 1, 2; k = 4 (16)

U3 = −
1

2

∫ ∫
A

8h

15
Gij (w,i + ψi)

2
dA i = 1, 2; j = 3 (17)

where δij is the Kronecker delta function.
The equilibrium condition of the plate can be expressed by a stationary first variation

of energy. According to (13), (16) and (17) this is expressed as

δΠ = 0 →
∂Π

∂qi
= 0 i = 1, 2, 3, (18)

Π being defined as the energy functional Π = U1 + U2 + U3.

Sectional moments

The section quantity M̃ij is obtained by the definition

M̃ij =
∫ h/2

−h/2
σijzdz i, j = 1, 2 (19)

which yields the constitutive relations in terms of the plate

M̃ij = D̃ijκ
D
ij (20)

where the flexural stiffness D̃ij is given by

 D̃11

D̃12

D̃22

 =
h3

12(1− ν12ν21)

 E11

E12

E22

 (21)

and the bending deformation κDij κD11

κD12

κD22

 =
1

5

 w,11 − 4ψ1,1 + ν21(w,22 − 4ψ2,2)
2w,12 − 4(ψ2,1 + ψ1,2)

ν12(w,11 − 4ψ1,1) + w,22 − 4ψ2,2

 (22)

Note that the tilde operator is used on M̃ij in order not to be confused with the stress
resultant Mi given by Reddy (1984).
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Resultant moments at the boundary

By recalling the transformation matrix given by (5), the section moments (20) transform
according to

M̃′ = AM̃AT (23)

The resulting moments M̃11 and M̃ ′
22, upon the tranformation (23),

M̃11(x = 0) = M̃11(x = a)

M̃ ′
22(y = µx) = M̃ ′

22(y = µx+ pλ) p = 1, 2, 3 ...∞ (24)

can be obtained from (20)-(22) and (2). It is concluded (calculations not shown here) that
section moments develop, symmetrically distributed around the edge midpoints, with
zero average value. This is due to the coordinate functions, inferring an approximate
displacement field. The moments are proportional to the inclination of the nodal lines;
thus the approximation disappears for the simply supported case when no shear load is
present.

Buckling solution

In order to find the complete solution, the energy functional in (18) should be minimized
with respect to both qi and λ, µ. This produces a set of equations in qi and λ, µ which
are not linear. However, a non-linear equation system is undesirable since a numerical
procedure required to find the critical solution would involve producing initial guess values.
This is straightforward for λ and µ, whereas qi are of more arbitrary form, making it
difficult to find an automated solution process. Therefore the solution strategy chosen is
first solving for qi in a linear sense, and then using this solution to find the parameters λ
and µ.

The expression for Π can be determined by evaluating (13), (16) and (17) for the given
set of displacement functions. By then applying (18) on Π the following homogeneous
equation system is obtained

∂Π

∂qj
= Bijqj = 0 i, j = 1, 2, 3 (25)

with the coefficients

B11 = −
c1

5040a3h2λ3

[
−5D11c1c3h− 10a2c1c2h(D12 + 2D44)− 5D22a

4c1h

−672a2hλ2(D55c2 +D66a
2) + 1260a2λ2(N11c2 + 2N12a

2µ+N22a
2)
]

B12 =
πh

315a3λ3

[
−D11c1c3 − a

2c1c2(D12 + 2D44) + 42D55a
2c2λ

2
]

B13 = −
πh

315aλ2

[
c1c2(D12 + 2D44) +D22a

2c1 − 42D66a
2λ2

]
B22 =

h

1260a3λ3

[
17D11c1c3 + 17D44a

2c1c2 + 168D55a
2c2λ

2
]
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B23 =
17c1c2h

1260aλ2
(D12 +D44)

B33 =
h

1260aλ3

[
17D44c1(4a4µ4 − 5a2c2µ

2 − c3)

+17D22a
2c1(c2 − a

2µ2) + 168D66a
2λ4)

]
B21 = B12, B31 = B13, B32 = B23

c1 = π2h2, c2 = λ2 + a2µ2, c3 = λ4 + 6a2λ2µ2 + a4µ4 (26)

By observing that Bij in (25) is symmetric the following holds

∂2Π

∂qi∂qj
=

∂2Π

∂qj∂qi
(27)

and the symmetric property of the stiffness matrix is fulfilled, i.e. the system is conserva-
tive; see Bazant (1991) for a more thorough discussion of this subject. The critical state
of (25) is given by the singularity condition on Bij, i.e. det(Bij) = 0. Applying this and
using the parameterization

N =

 N11

N12

N22

 = N̂

 α
β
χ

 (28)

the critical stress state is expressed by the load function

N̂(λ, µ) =
G

60a2λ2 (c2α+ 2a2βµ+ a2χ)H
(29)

where

G =
33∑
i=1

gi H =
27∑
i=1

hi (30)

The coefficients gi and hi are given in Appendix III.
The minimum of N̂ , N̂cr, is now exclusively determined by the parameters x̄ = (λ/a, µ),

which are determined by a numerical minimization procedure. The procedure can be
described by

1. Use starting values of x̄0 = (λ0/a, µ0). The appropriate ranges of these values are
1/2 ≤ λ0/a ≤ 2 and 0 ≤ µ0 ≤ 2.

2. Evaluate with the current value of x̄ the objective function N̂ = N̂(x̄). Determine
the new values of x̄ in terms of the Nelder-Mead simplex method.

3. Repeat step 2 until the termination tolerance is reached. The termination tolerance
can be specified for either x̄ or N̂(x̄).

4. The final value of x̄ = x̄cr will yield the critical stress state N̂ = N̂cr.

The appropriate range of the starting values x̄0 will depend on the degree of orthotropy,
and on the load condition. For the load cases studied here, numerical experience shows
that choosing the lower limit x̄0 = (1/2, 0) and the upper limit x̄0 = (2, 2) is sufficient in
order to find the critical solution x̄cr.
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Table 1: Nondimensionalized buckling coefficients for the isotropic material.

β x̄a K̂a x̄b K̂b x̄c K̂c

0 (0.993,0) 3.944 (1.281,0) 3.797 (16.815,0) 2.979
0.2 (0.998,0.099) 4.641 (1.279,0.096) 4.366 (7.205,0.08) 3.375
0.4 (1.01,0.188) 5.137 (1.274,0.184) 4.796 (4.034,0.157) 3.759
0.6 (1.025,0.262) 5.455 (1.267,0.257) 5.097 (2.909,0.227) 4.107

1 (1.056,0.369) 5.764 (1.255,0.365) 5.437 (2.073,0.339) 4.639
3 (1.135,0.564) 5.866 (1.23,0.563) 5.714 (1.43,0.556) 5.422
5 (1.162,0.619) 5.788 (1.223,0.618) 5.696 (1.335,0.616) 5.531

10 (1.185,0.664) 5.69 (1.217,0.664) 5.644 (1.271,0.663) 5.569
100 (1.208,0.707) 5.565 (1.212,0.707) 5.56 (1.217,0.707) 5.554

aα = 0, χ = 1
bα = 0.2, χ = 1
cα = 0.5, χ = 1

Numerical results for three materials

In the following, numerical results are presented for the case of three material constitutions
under various load conditions. First, an isotropic material is considered, i.e. ν12 = ν21 =
0.3. Second, an orthotropic material with stiffness ratios E11/E22 = 2, E11/G12 = 3,
E11/G13 = E11/G23 = 30 and ν12 = 0.2 is considered. Finally, an orthotropic material,
typical of corrugated board constituents, is examined. This last material has the same
stiffness properties as the second material except that E11/G13 = 300. The value of E11 is
taken to be E11 = 7 GPa and a = 7mm, h = a/20 for all materials. A non-dimensionalized
buckling coefficient is computed according to

K̂ =
a2N̂cr

π2D̃11

(α+ β + χ) (31)

The termination tolerance used for the simplex search is 1× 10−8 and 1× 10−4 for x̄ and
N̂ , respectively. The results are presented in Tables 1, 2 and 3.

In addition, the influence of varying plate thickness is examined for the three materials.
The results from this analysis are presented in Tables 4, 5 and 6.

In Table 1 it is seen that for α = β = 0, χ = 1, i.e. uniaxial load in the y-direction, the
ratio of the half buckling wavelength to plate width λ/a is close to unity and the buckling
coefficient is slightly lower than the classical plate solution K = 4.0. It should be pointed
out that the load case β = 0, i.e. a biaxial load case, provides the exact solution as
the displacement distribution functions in the present model have the same form as in
Reddy and Phan (1985). Therefore, the top line values in Tables 1, 2 and 3 correspond
to the exact solution of a long plate. As the shear stress increases, the inclination of the
nodal line converges to 1/

√
2, which is valid for a similar analytical analysis3 of isotropic

3Nodal lines considered as straight.
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Table 2: Nondimensionalized buckling coefficients for an orthotropic material, no. 2.

β x̄a K̂a x̄b K̂b x̄c K̂b

0 (0.795,0) 2.572 (1.059,0) 2.689 (2.263,0) 2.438
0.2 (0.798,0.078) 3.039 (1.056,0.076) 3.068 (2.166,0.067) 2.734
0.4 (0.804,0.151) 3.397 (1.048,0.147) 3.368 (1.956,0.131) 3.004
0.6 (0.813,0.214) 3.65 (1.038,0.21) 3.59 (1.746,0.191) 3.238

1 (0.831,0.312) 3.934 (1.018,0.307) 3.861 (1.458,0.288) 3.583
3 (0.883,0.504) 4.145 (0.972,0.503) 4.116 (1.093,0.498) 4.043
5 (0.902,0.56) 4.124 (0.959,0.56) 4.111 (1.027,0.558) 4.079

10 (0.919,0.607) 4.079 (0.949,0.607) 4.075 (0.981,0.607) 4.066
100 (0.936,0.652) 4.011 (0.939,0.652) 4.011 (0.942,0.652) 4.011

aα = 0, χ = 1
bα = 0.3, χ = 1
cα = 0.6, χ = 1

thin plates, e.g. Timoshenko and Gere (1961). As the stress in the x-direction increases,
the half buckling wavelength will become infinitely large and the the buckling problem is
similar to that of a hinged column member. However, it is obvious that for very large shear
stresses the influence of the normal stresses has little significance. This load condition
corresponds to the bottom row in Table 1.

In Table 2 the orthotropic material no. 2 is used. The transverse stiffness is reduced
to 1/30 that of the Young’s modulus in the x-direction. The value of λ/a in Table 2
is seen to decrease with decreasing transverse stiffness. As the shear load increases, the
half buckling wavelength increases. It is seen that the final value of µ corresponding to
β = 100 is lower than for the isotropic material.

The results from material no. 3 are presented in Table 3. The lowered transverse shear
stiffness in the xz-plane results in a reduced buckling coefficient, for the case α = β = 0
and χ = 1, by 32% compared to material no. 2. The same comparison between materials
no. 1 and no. 3 shows a reduced buckling coefficient of 56%. The value of µ when
α = 0 and β = 100, i.e. close to pure shear, for this material is larger than for both
the isotropic material and material no. 2. This indicates that a low transverse shear
stiffness will increase the inclination of the nodal lines. It is remarkable to note that for
the case α = 0, β = 100 the buckling coefficient is almost equal that of the pure uniaxial
compression case α = β = 0. This was not the case for the previously examined materials
which showed an increased shear buckling coefficient. Both the orthotropic materials show
less sensitivity to load in the x-direction in the sense of the solution of λ. In Tables 2 and
3, the last two columns represent the solution for the case α = 0.6, χ = 1. The isotropic
material can only be analyzed until α = 0.5 before λ becomes very large.

As a comparison with finite element results (Nyman and Gustafsson 1999), the values
of K̂a from Table 3 are plotted4 in Figure 3. It should be noted that the circles in Figure

4HSDPT – Higher-order shear deformation plate theory.

10



Table 3: Nondimensionalized buckling coefficients for an orthotropic material, no. 3.

β x̄a K̂a x̄b K̂b x̄c K̂c

0 (0.867,0) 1.751 (1.179,0) 1.761 (3.477,0) 1.519
0.2 (0.868,0.179) 2.03 (1.158,0.175) 1.984 (2.945,0.12) 1.704
0.4 (0.873,0.341) 2.165 (1.112,0.35) 2.104 (2.172,0.25) 1.864
0.6 (0.882,0.469) 2.204 (1.075,0.497) 2.144 (1.639,0.41) 1.976

1 (0.903,0.634) 2.177 (1.042,0.677) 2.128 (1.259,0.685) 2.036
3 (0.949,0.89) 1.973 (1.009,0.917) 1.959 (1.075,0.942) 1.938
5 (0.963,0.954) 1.892 (1.001,0.972) 1.886 (1.041,0.99) 1.877

10 (0.974,1.005) 1.818 (0.994,1.015) 1.817 (1.015,1.025) 1.814
100 (0.985,1.054) 1.742 (0.988,1.055) 1.742 (0.99,1.056) 1.742

aα = 0, χ = 1
bα = 0.3, χ = 1
cα = 0.6, χ = 1

Table 4: Influence of thickness for the isotropic material.

a/h K̂d K̂e K̂f

5 3.232 4.589 4.207
10 3.784 5.499 5.254
40 3.986 5.833 5.646
80 3.996 5.851 5.666

100 3.998 5.853 5.669
500 4 5.856 5.673

Table 5: Influence of thickness for material no. 2.

a/h K̂d K̂e K̂f

5 0.831 1.088 0.928
10 1.859 2.671 2.457
40 2.826 4.391 4.633
80 2.897 4.517 4.808

100 2.905 4.533 4.829
500 2.92 4.559 4.866
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Table 6: Influence of thickness for material no. 3.

a/h K̂d K̂e K̂f

5 0.508 0.497 0.345
10 1.01 1.069 0.771
40 2.443 3.546 3.309
80 2.778 4.26 4.379

100 2.827 4.364 4.546
500 2.917 4.552 4.854

3 are obtained from a numerical minimization of the parameters λ and µ, in the finite
element procedure. In addition, the value of the buckling coefficient when neglecting
the transverse shear, a material with large transverse shear modulus is studied, see the
upper solid line in Figure 3. It is seen that the difference between considering and not
considering the transverse shear is large for all of the analyzed load combinations.
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Figure 3: Buckling coefficient with increasing shear load. ∗Present model.

In Tables 4, 5 and 6 the superscripts d, e and f refer to α = β = 0, χ = 1 and
α = 0, β = 1, χ = 1 and α = 0, β = 100, χ = 1, respectively. The results in Table 4 show
that for the purely uniaxial load case the critical load converges to the thin plate solution
between 10 < a/h < 40. The same holds for the case of shear load, α = 0, β = 100, χ = 1.
It is well-known that for isotropic plates, the critical load is fairly close to that of the thin
plate solution when the width-to-thickness ratio is ∼ 20. For material no. 2, Table 5, the

FSDPT – First-order shear deformation plate theory.
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value of the buckling coefficient levels out at a/h = 80. For material no. 3 the buckling
coefficient has not yet reached a stable level at a/h = 100. In Figure 4 the results from
Tables 4-6 are also plotted. The figure suggests that for highly anisotropic materials,
the critical load solution is still influenced by the shear deformation effect at width-to-
thickness ratios above 100. It is expected that the influence is even more significant if the
transverse stiffness in the yz-plane is very low, i.e. the same order as G13.
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Figure 4: Buckling coefficient with increasing width-to-thickness ratio.

Concluding remarks

An approximate analytical buckling solution of long orthotropic plates under combined
in-plane load is presented. A higher-order shear deformation theory is used for the plate
displacement field. The solution makes use of a mixed Rayleigh-Ritz variational state-
ment. The Ritz displacement coordinate functions are simple, one-term approximations
of the displacement field. The achieved load function of the half buckling wavelength and
the inclination of the nodal lines is minimized via a simplex search method.

For low transverse shear stiffnesses the model predicts buckling coefficients under in-
plane shear load that are of the same order of magnitude as those resulting from a uniaxial
compressive load. For a thin plate the critical shear load is larger by 42% compared to
the uniaxial case. The model also suggests that that for highly anisotropic materials,
the critical load solution is still influenced by the shear deformation effect at width-to-
thickness ratios above 100.

For the analysis cases studied in this paper the present model provides an economic way
of performing parameter studies on materials with different stiffness properties subject to
various load conditions.
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Notation

A =Transformation matrix
Dij =Stiffness matrix coefficients

D̃ij =Flexural stiffness
Eij =Young’s Modulus of Elasticity
Gij =Shear Modulus

K̂ =Nondimensionalized buckling coefficient

M̃ij =Section moment
N =In plane stress matrix

N̂ =Parameterized critical stress

N̂cr =Minimum critical stress
U1 =Pre-strain energy
U2 =In-plane normal strain energy
U3 =Out-of-plane shear strain energy
a =Plate width
b =Plate length
h =Plate thickness
qi =Amplitude functions
(u, v, w) =Plate displacement field
x̄ =Vector of shape factors λ and µ
Π =Potential elastic energy
(α, β, χ) =Load parameters
δ =Variational operator
δij =Kronecker delta function
εij =Elastic strain tensor
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φi =Displacement coordinate functions
κDij =Bending deformation
λ =Half buckling wavelength
µ =Inclination of nodal lines
νij =Poisson’s ratio
ψi =Displacement distribution functions
ψx, ψy =Cross section rotations
{ },i =Partial derivative with respect to coordinate i
{ }

′
=Transformed quantity

{ }T =Transpose of matrix

Fraction coefficients

g1 = 17π6c2
3D

2
11D22a

2h7 g2 = 17π6c2c
2
3D

2
11D44h

7
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Abstract. Local buckling of corrugated board facings is studied numerically through fi-

nite element calculations. In addition, an analytical model is developed by the use of the

Rayleigh-Ritz method. The facings are modeled as infinite orthotropic plates, resting on

parallel free supports and subjected to an arbitrary in-plane stress state. The deflection

shape is defined by wave length and displacement of the periodic deflection pattern. Trans-

verse shear strain is considered by first (FEM) and higher order (analytical) shape func-

tions. The results suggest that the low out-of-plane shear stiffness of paper significantly

affect the critical load.
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1 Introduction

Corrugated paper board, Figure (1a), is extensively used within the packaging industry as

a load bearing structure. Its wide application is due to an outstanding strength/cost value.

In addition, the use of raw material from a renewable resource strengthens its position.

In this work, local buckling of the facings of the board is studied for general in-plane

loading, Figure (1b). The purpose is to find a criterion for local buckling that enables

assessment of risk of buckling from state of stress without need for extensive numerical

calculations. Such a criterion is needed for rational evaluation of the stresses in various

parts of a package as determined by, e.g., linear finite element analysis. An approximate

analytical criterion is proposed and compared to finite element analysis. The analytical

and numerical analyses are valid for orthotropic plates in a general homogeneous in-plane

state of stress and particular considerations are made to the transverse out-of-plane shear

strains and to the periodic local buckling pattern of a facing of large size.

b)

a)

a

12N

N

22N

12N

11
MD

CD
Z

Figure 1: a) Corrugated paper board. b) Facing

The need for orthotropic material modeling and consideration to transverse shear defor-

mation are due to the highly anisotropic stiffness properties of paper [10]. The ratio of the

in-plane elastic modulus in the machine direction (MD) of paper to the elastic modulus in

the cross-machine direction (CD) is typically in the order of 2, and as high ratio between

elastic modulus in MD to transverse shear modulus as 600 is reported [10]. In the present

analytical analysis the transverse shear is modeled by a higher order shear deformation

theory according to Reddy [12] and Levinson (1980). In the numerical analysis, a finite

element with constant shear strain according to the theory of Reissner is employed.

Research relating to buckling of corrugated paper board has recently been presented by

Patel [1], including results from experiments on corrugated paper board cylinders subject

to biaxial loading and also including references to previous studies of corrugated paper

board. Previous theoretical buckling analyses that relate to the present study include work

2
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by Johnsson and Urbanik [2], who analyzed a triangular core sandwich under uniaxial

compression and concluded that buckling was initiated by local buckling of the facing.

Analysis of an isotropic aluminum sheet sandwich carried out by Wittrick and Curzon [3]

showed that buckling modes with inclined nodal lines, where the out-of-plane deflection is

zero, are possible. A study of the buckling of an in-plane orthotropic truss core sandwich

in axial compression has been presented by Zahn [5].

2 Boundary conditions and periodicity

The plate under consideration is assumed to be of infinite size, Figure (1b), with free

parallel supports at distance a. The deflection pattern at buckling can be assumed to be

periodic with wavelength 2λ in the direction along the supports and may be assumed to

repeat it self from one inter-support strip to the next. Though the inter-support deflection

fields are equal, they are in general displaced, i.e. in different phase.

µa

+y

x

-

-
+

λ

a x

y

a)

w=0

w=0

a

b)

∆y

λ

Figure 2: a) Periodic cell analyzed analytically. b) Periodic cell analyzed by FEM

In the analytical analysis approximate boundary conditions are adopted. A cell of length

λ and width a is considered, Figure (2a). The deflection along the boundaries of this cell

is assumed to be zero, i.e. w = 0 along the support lines x = 0 and x = a and along

inclined nodal lines y = µx and y = λ+ µx. The height of the cell, λ, and the inclination

of the nodal lines, µ, are found by minimization of the critical load. Conditions regarding

bending moment and shear strain along the boundaries of the cell can be obtained from

the below, where shape functions for deflection and shear strain are defined.

In the finite element analysis a rectangular cell of height λ and width a is considered, see

Figure (2b). Along x = 0 and x = a, w is zero. Other boundary conditions are defined

by subsidiary conditions according to the periodic and anti-symmetric character of the

deflection:

w(x, 0) = −w(x, λ),
∂w

∂x (x,0)
= −

∂w

∂x (x,λ)
,

∂w

∂y (x,0)

= −
∂w

∂y (x,λ)

(1)

3
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and

∂w

∂y (0,y)

=
∂w

∂y (a,y−λ+∆y)

, 0 < y < λ−∆y

∂w

∂y (0,y)

= −
∂w

∂y (a,y+∆y)

, λ−∆y < y < λ (2)

Although all values > 0 of parameters λ and ∆y yield buckling modes that are possible,

only the pair of values that give the smallest critical load is of practical interest. The

minimum of the critical load is determined numerically by FE calculations for various

values of the parameters.

3 Analytical approach

The analytical approach in the present study is based upon the principle of stationary

total potential strain energy. According to the higher order shear deformation theory due

to Reddy [12], the plate displacement field is given by

u = u0 + zψx −
4z3

3h2

(
∂w0

∂x
+ ψx

)
v = v0 + zψy −

4z3

3h2

(
∂w0

∂y
+ ψy

)
(3)

w = w0

where u0, v0 and w0 are mid-plane displacements and ψx, ψy are cross section rotations

about the y-axis and x-axis respectively.

In order to introduce the displacement distribution over the plate region a Rayleigh-Ritz

scheme is followed. Approximate displacement coordinate functions in consistency to the

boundary conditions are used according to

ψi = qiφi i = 1, 2, 3 (4)

in which ψ1 = wapp(x, y), ψ2 = ψappx (x, y), ψ3 = ψappy (x, y). The cross section rotation

distributions are assumed to have the same form as the deflection derivative, i.e. φ2 =

w0
,x, φ3 = w0

,y. This assumption was used by Harris and Auelmann [14] in analysis of

plates considering first order shear deformation theory. Then the coordinate functions φi
are given by 

φ1

φ2

φ3

 =


Im ei

π
a
xIm ei[

π
λ

(y−p(x))]

1
a
Re ei

π
a
xIm ei[

π
λ

(y−p(x))] − µ
λ
Im ei

π
a
xRe ei[

π
λ

(y−p(x))]

Im ei
π
a
xRe ei[

π
λ

(y−p(x))]

 (5)

where p(x) is a polynomial function of the nodal lines. In general, p(x) is symmetric about

a point centered in the x-direction. However, in this work the nodal lines are approximated

as straight, i.e., p(x) = µx.
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The elastic orthotropic constitutive behaviour is described by the stress-strain relation1

σ =


σ11

σ22

σ12

σ13

σ23

 = Dε =


D11 D12 D14 D15 D16

D22 D24 D25 D26

D44 D45 D46

sym. D55 D56

D66



ε11

ε22

γ12

γ13

γ23

 (6)

with

D14 = D15 = D16 = D24 = D25 = D26 = D45 = D46 = D56 = 0

D11 =
Exx

1− νxyνyx
, D12 =

νyxExx
1− νxyνyx

, D22 =
Eyy

1− νxyνyx
(7)

D44 = Gxy, D55 = Gxz, D66 = Gyz

where E, G and ν are material constants. It is here undertaken that the material axes

coincide with the coordinate axes of the plate. The kinematic relations are obtained by

applying the small strain tensor format on (3)

ε =


ε11

ε22

γ12

γ13

γ23

 =


u0
,x

v0
,y

v0
,x + u0

,y

w0
,x + ψx

w0
,y + ψy

+ z


ψx,x
ψy,y

ψy,x + ψx,y
0

0



−4z2

h2


0

0

0

w0
,x + ψx

w0
,y + ψy

− 4z3

3h3


w0
,xx + ψx,x

w0
,yy + ψy,y

ψy,x + ψx,y + 2w0
xy

0

0

 (8)

in which h denotes the thickness of the plate.

By defining the initial in-plane loading matrix N for the plate

N =

 N11

N12

N22

 (9)

the elastic strain energy varying during buckling can be obtained [7] by integrating over

the plate region

U1 =
1

2

∫ ∫
A

Nijw,iw,jdA i, j = 1, 2 (10)

U2 = −
1

2

∫ ∫ ∫
V

σijεijdV = −
1

2

∫ ∫ ∫
V

[
D11ε

2
11 + 2D12ε11ε22 +D22ε

2
22 +D44γ

2
12

]
dV

i, j = 1, 2 (11)

U3 = −
1

2

∫ ∫ ∫
V

GijγijγijdV i = 1, 2; j = 3 (12)

1The stiffness coefficients where originally denoted Aij

5
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where U2 is addressed to the in plane stress whereas U3 is due to the out-of-plane shear

stress. If (4) is substituted in (8) and integration of (11) and (12) is performed over the

plate thickness from z = −h/2 to z = h/2, the following is obtained

U2 = −
1

2

∫ ∫
A

Dijh
3

315

(
5

4
w,iiw,jj − 4w,iiψj,j − 4w,jjψi,i + 17ψi,iψj,j

)
+
Dkkh

3

315
(1− δij)

(
5

2
w,ijw,ji − 16w,ijψi,j + 17ψi,jψj,i + 17ψi,jψi,j

)
dA

i, j = 1, 2; k = 4 (13)

U3 = −
1

2

∫ ∫
A

8h

15
Gij (w,i + ψi)

2 dA i = 1, 2; j = 3 (14)

where δij is the Kronecker delta function. The equilibrium condition of the plate can be

expressed by a stationary first variation of energy. According to (10), (11) and (12) this

is expressed as

δΠ = 0 →
∂Π

∂qi
= 0 i = 1, 2, 3 (15)

Π being defined as the energy functional2 Π = U1 + U2 + U3.

In order to find the complete solution of the critical state the energy functional in (15)

should be minimized with respect to both qi and λ, µ. The approximative displacement

coordinate functions given by (4) will produce a set of equations in wapp, ψappx and ψappy

which are not linear. However, a non-linear equation system in qi and λ, µ is not desired

since a numerical procedure required to find the critical solution would involve producing

initial guess values. This is straight forward for λ and µ, whereas qi are of more arbitrary

form making it difficult to find an automated solution process. Therefore the solution

strategy chosen is first solving for qi in a linear sense, and then use this solution to find

the parameters λ and µ.

The expression for Π can be determined by evaluating (10), (13) and (14) for the given

set of displacement functions. By then applying (15) on Π the following homogeneous

equation system is obtained

Bijψj = 0 i, j = 1, 2, 3 (16)

where the coefficients Bij are given in appendix.

The critical state of (16) is given by the singularity condition on Bij, i.e. det(Bij) = 0.

Applying this and using the parameterization

N = N̂

 α

β

χ

 (17)

2Original sign convention; Π = U1 − U2 − U3
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the critical stress state is expressed by the load function

N̂(λ, µ) =
G

60a2λ2 (c2α+ 2a2βµ+ a2χ)H
(18)

where

G =
33∑
i=1

gi H =
27∑
i=1

hi (19)

The coefficients gi, hi and c2 are given in Appendix.

The minimum of N̂ , N̂cr, is now only determined by the parameters x̄ = (λ/a, µ). In order

to find the values of x̄ that minimizes (18) a simplex search [8] is used.

4 Finite element setup

The finite element calculations are performed for the purpose of studying the character

of the periodicity and finding the conditions under which the true critical load is present

for the complete structure.

The two parameters to be studied are λ and ∆y in Figure (2b). The variation of λ is

performed by adding one element for each step considered. The application of the periodic

boundary conditions as well as the reference edge loads is automatically created for every

mesh. The variation of ∆y is carried out by initially couple two horizontal nodes equally

in magnitude but opposite sign, i.e. ∆y = 0, for every mesh. Then a phase difference is

incorporated by gradually increase the y-distance for which two nodes are coupled.

For the convenience, by means of programming, a four node linear interpolation element

is chosen. The element incorporates constant shear deformation through the thickness.

This makes the comparison with the analytical solution somewhat awkward but the only

available since higher order shear elements are not implemented. The element has six

degrees of freedom per node and uses reduced stiffness integration, see Hibbitt et al. [9].

Different mesh densities was tried for a uniaxially loaded simply supported quadratic plate

and it was concluded that a 20 × 20 mesh only differed from the exact solution [13] by

1%, in terms of the critical load. Considering the large number of problems to solve, no

finer resolution of the mesh was chosen for the parameter study.

The stiffness and geometrical properties, chosen as an example of representative properties

for corrugated board facings, are listed in Table (4).

5 Results

In the following results are presented for the material parameters in Table (4). The ref-

erence load in the y-direction is held constant at χ = 1 and the in-plane shear load is

7
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Parameter Value

Exx 7 [GPa]

Eyy Exx/2

Gxy Exx/3

Gxz Exx/300

Gyz Exx/30

νxy 0.2

a 7 [mm]

h a/20 [mm]

Table 1: Stiffness and geometrical properties.

Nodal line

λ

y∆

aµ

Figure 3: Out-of-plane deformation plot.

increased at steps in the interval 0 < β < 10. For the purpose of comparison a non-

dimensionalized buckling coefficient is computed according to

Kcr =
a2N̂cr

π2D11
(α+ β + χ) (20)

In the FEM calculations λ/a is defined as the ratio of the number of elements in the y-

direction to the number of elements in the x-direction. In a similar manner ∆y/a is defined

as the ratio of the number of elements the phase shift is applied in the current solution to

the number of elements in the x-direction. µ is measured in an approximate manner from

the deformation plots, as the slope of the line between two points where w = 0, located at

x = 0.2 a and x = 0.8 a, respectively. An example of an array of unified cells is showed in

Figure (3), where the absolute deformations larger than 1% of the maximum deformation

is filtered for clarity.

For every set of reference loads the FEM parameter solution that yields the least buckling

8
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coefficient min(K) = Kcr is sought, together with the corresponding parameters ∆y/a

and λ/a. An example of the buckling coefficient K calculated by FEM is given in Figure

(4) for the case α = 0, β = 5 and χ = 1.

Figure 4: Buckling coefficient calculated by FEM.

From Table (5) it is seen that when the normal load and shear load are of the same the

same order of magnitude, the buckling coefficients from the different models are in good

agreement. The discrepancy between the FEM solution and the approximate analytical

solution is largest at β = 10, 5%. It should be noted that the case β = 0, χ = 1, i.e. the

two left columns in the upper row in (5), yields the exact solution, since no enforcement

of the boundary conditions is inferred by assuming straight nodal lines.

It is marked that the phase shift ∆y/a differs from the value of µ for this material. However

from Figure (4) it follows that the buckling coefficient is more sensitive for variations in

λ than for variations in ∆y. This is even more pronounced from the FEM calculations at

low values of the shear load, which suggests that the plate can be approximated as finite

in the x-direction, i.e. not considering the cyclic boundary conditions at the supports,

during buckling analysis.

The values of Kcr with increasing shear load from Table (5) are also plotted3 in Figure (5).

As a comparison to the value of the buckling coefficient when neglecting the transverse

shear, a material with large transverse shear modulus is studied, see the upper solid line

in Figure (5). It is seen that the difference between considering and not considering the

3HSDPT – Higher order shear deformation plate theory.

FSDPT – First order shear deformation plate theory.
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β ∆y/a x̄a Ka
cr x̄b Kb

cr

0 0 (0.85,0) 1.742 (0.867,0) 1.751

0.2 0 (0.9,0.2) 2.011 (0.868,0.179) 2.03

0.4 0.1 (0.9,0.35) 2.125 (0.873,0.341) 2.165

0.6 0.2 (0.9,0.5) 2.147 (0.882,0.469) 2.204

0.8 0.25 (0.95,0.6) 2.131 (0.893,0.564) 2.199

1 0.3 (0.95,0.7) 2.101 (0.903,0.634) 2.177

1.5 0.3 (1,0.8) 2.025 (0.922,0.749) 2.11

3 0.35 (1,0.9) 1.881 (0.949,0.89) 1.973

5 0.4 (1.05,0.95) 1.799 (0.963,0.954) 1.892

10 0.45 (1.05,1.1) 1.726 (0.974,1.005) 1.818

aFEM
bAnalytical model

Table 2: Nondimensionalized buckling coefficients.

transverse shear is large for all of the analyzed load combinations. For the chosen material

parameters the buckling coefficient is relatively constant with increasing in-plane shear

load. When no transverse shear is present, i.e. pure bending, the buckling load is increased

by 56% for the same load case.
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β

Figure 5: Buckling coefficient with increasing shear load. ∗Present model.
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6 Conclusions

A method of finding the critical load for a transverse shear flexible plate subject to

arbitrary in-plane load is developed. The plate is in the analytical model treated as long,

simply supported along the long end lines. In the FEM calculations a cell periodically

repeating itself is studied. Cyclic boundary conditions are applied along all edges of the

cell. The proposed method is in good agreement with the results gained from the finite

element analysis. The method also proves to be computationally efficient.

For the chosen material properties, representative that of paper, the buckling coefficient

is significantly reduced by the transverse shear deformations, even though the plate width

to thickness ratio is 20. For the uniaxial load case, the buckling coefficient is lowered by

39%, whereas under in plane shear load, the same reduction is 64%. It is observed that in

contrast to the case when no shear deformations are considered, the buckling coefficient

is relatively constant with increasing in plane shear load. When no transverse shear is

present, i.e. pure bending, the buckling load is increased by 56% for the same load case.
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Appendix

The coefficients Bij:

B11 = −
c1

5040a3h2λ3

[
−5D11c1c3h− 10a2c1c2h(D12 + 2D44)− 5D22a

4c1h

−672a2hλ2(D55c2 +D66a
2) + 1260a2λ2(N11c2 + 2N12a

2µ+N22a
2)
]

B12 =
πh

315a3λ3

[
−D11c1c3 − a

2c1c2(D12 + 2D44) + 42D55a
2c2λ

2
]

B13 = −
πh

315aλ2

[
c1c2(D12 + 2D44) +D22a

2c1 − 42D66a
2λ2
]

B22 =
h

1260a3λ3

[
17D11c1c3 + 17D44a

2c1c2 + 168D55a
2c2λ

2
]

B23 =
17c1c2h

1260aλ2
(D12 +D44)

B33 =
h

1260aλ3

[
17D44c1(4a4µ4 − 5a2c2µ

2 − c3)

+17D22a
2c1(c2 − a

2µ2) + 168D66a
2λ4)

]
B21 = B12, B31 = B13, B32 = B23

c1 = π2h2, c2 = λ2 + a2µ2, c3 = λ4 + 6a2λ2µ2 + a4µ4 (21)
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The fraction coefficients gi and hi:

g1 = 17π6c2
3D

2
11D22a

2h7 g2 = 17π6c2c
2
3D

2
11D44h

7

g3 = 168π4c2
3D

2
11D66a

2h5λ2 g4 = −17π6c3c
2
2D11D

2
12a

2h7

g5 = 34π6c2c3D11D12D22a
4h7 g6 = 336π4c2c3D11D12D66a

4h5λ2

g7 = 17π6c3D11D
2
22a

6h7 g8 = 102π6c2c3D11D22D44a
4h7

g9 = 14280π4c2c3D11D22D55a
4h5λ2 g10 = 14280π4c3D11D22D66a

6h5λ2

g11 = 68π6c3c
2
2D11D

2
44a

2h7 g12 = 14280π4c3c
2
2D11D44D55a

2h5λ2

g13 = 14952π4c2c3D11D44D66a
4h5λ2

g14 = 141120π2c2c3D11D55D66a
4h3λ4

g15 = −34π6c3
2D

3
12a

4h7 g16 = −17π6c2
2D

2
12D22a

6h7

g17 = −136π6c3
2D

2
12D44a

4h7 g18 = −14112π4c3
2D

2
12D55a

4h5λ2

g19 = −14112π4c2
2D

2
12D66a

6h5λ2 g20 = 336π4c2
2D12D22D55a

6h5λ2

g21 = −136π6c3
2D12D

2
44a

4h7 g22 = −27888π4c3
2D12D44D55a

4h5λ2

g23 = −27888π4c2
2D12D44D66a

6h5λ2 g24 = 282240π2c2
2D12D55D66a

6h3λ4

g25 = 17π6c2D
2
22D44a

8h7 g26 = 168π4c2D
2
22D55a

8h5λ2

g27 = 68π6c2
2D22D

2
44a

6h7 g28 = 14952π4c2
2D22D44D55a

6h5λ2

g29 = 14280π4c2D22D44D66a
8h5λ2 g30 = 141120π2c2D22D55D66a

8h3λ4

g31 = 672π4c3
2D

2
44D55a

4h5λ2 g32 = 672π4c2
2D

2
44D66a

6h5λ2

g33 = 564480π2c2
2D44D55D66a

6h3λ4 (22)

h1 = 289π4D11D22a
6h4µ4 h2 = 1734π4D11D22a

4h4λ2µ2

h3 = 289π4D11D22a
2h4λ4 h4 = 289π4D11D44a

6h4µ6

h5 = 2023π4D11D44a
4h4λ2µ4 h6 = 2023π4D11D44a

2h4λ4µ2

h7 = 289π4D11D44h
4λ6 h8 = 2856π2D11D66a

6h2λ2µ4

h9 = 17136π2D11D66a
4h2λ4µ2 h10 = 2856π2D11D66a

2h2λ6

h11 = −289π4D2
12a

6h4µ4 h12 = −578π4D2
12a

4h4λ2µ2

h13 = −289π4D2
12a

2h4λ4 h14 = −578π4D12D44a
6h4µ4

h15 = −1156π4D12D44a
4h4λ2µ2 h16 = −578π4D12D44a

2h4λ4

h17 = 289π4D22D44a
6h4µ2 h18 = 289π4D22D44a

4h4λ2

h19 = 2856π2D22D55a
6h2λ2µ2 h20 = 2856π2D22D55a

4h2λ4

h21 = 2856π2D44D55a
6h2λ2µ4 h22 = 5712π2D44D55a

4h2λ4µ2

h23 = 2856π2D44D55a
2h2λ6 h24 = 2856π2D44D66a

6h2λ2µ2

h25 = 2856π2D44D66a
4h2λ4 h26 = 28224D55D66a

6λ4µ2

h27 = 28224D55D66a
4λ6 (23)

13



Detta är en tom sida!



Paper 3

Material and Structural Failure

Criterion of Corrugated Board

Facings

Ulf Nyman and Per Johan Gustafsson

Division of Structural Mechanics

Lund University



Detta är en tom sida!



Material and Structural Failure Criterion of
Corrugated Board Facings

By Ulf Nyman1 and Per Johan Gustafsson2

ABSTRACT: A failure stress criterion for corrugated board facings is presented. The failure

criterion is based on material failure and structural local buckling failure, which are evaluated

in a combined analysis procedure. The failure stress is compared with collapse experiments on

corrugated board cylinders and the failure stress presented herein is seen to be in much better

agreement with the measured stresses than the Tsai-Wu failure criterion alone. The fluting

wavelength of the corrugated board is also varied for the purpose of strength sensitivity analysis

of corrugated board.

Introduction

The strength of corrugated board is of great importance whithin the industry. Accurate
design methods are crucial in determining the load capacity of corrugated board. Strength
analysis of corrugated board has previously been devoted to calculations on material
failure criterions, such as the Tsai-Wu [8] tensor polynomial criterion and modifications
of this [7].

Reduction of strength in the compressive region due to local instability of the facing
has been found in several investigations [6, 3, 9], and recently, a buckling criterion for
the facing was developed for evaluation of the bifurcation load given a general in-plane
stress state [5]. For potential material failure points it is hence possible to determine the
likeliness of local buckling. An example of buckling induced strength reduction in the
compressive region is shown in Figure 1.

The development of the finite element method have led to largely extended opportu-
nities by means of calculations on structural response. However, the detailed modeling of
corrugated board is both demanding in terms of pre-processing as well as numerical inten-
sive in the solution process. Therefore, a failure criterion for stress evaluation based on
simplified finite element calculations, e.g. composite shell analysis, is vindicated. Herein,
a comparison between material failure and structural failure is presented along with a
method of determining wich failure mode is decisive. Numerical results of a representa-
tive board are illustrated in figures for various biaxial stresses and shear stresses.

1Structural Mechanics, Lund University, PO Box 118, S-221 00 Lund, Sweden.
2Structural Mechanics, Lund University, Sweden.
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Figure 1: Reduction of strength in compressive region.

Choice of coordinate system

The in-plane stresses in the facings are referred to as normal stresses in the machine
direction (MD) and cross direction (CD), and shear. However, for convenience, in further
calculations the stresses σ11, σ22 and σ12 will be used, ordered as previously, given in the
coordinates x1, x2 and x4.

Generally, material failure defines a limit surface about the origin in stress space
{σ11, σ12, σ22}. Therefore, in analyzing the in-plane stresses, it may be suitable to express
the stresses in spherical coordinates. Then, the cartesian stresses transform according to

σ11 = σR sinφ cos θ

σ12 = σR sinφ sin θ 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π

σ22 = σR cosφ (1)

where σR is the length of a stress vector σ, from the the origin O to the stress point S in
stress space, i.e. σR = ‖σ‖. Moreover, φ is the angle σ makes with the positive direction
of the x2-axis, and θ is the angle between the plane containing S and the x2-axis and the
plane containing the x1-axis and the x2-axis, see Figure 2.

Material failure

A commonly used material failure criterion for paper is the Tsai-Wu orthotropic tensor
polynomial [8]. In using the Tsai-Wu criterion, tensile and compressive strength param-
eters must be measured for both MD and CD. In addition, the shear strength and the
equibiaxial tensile strength must be determined. The latter is determined by equally in-
creasing the MD-stress and CD-stress to the limit state. However, approximations for the
shear strength and equibiaxial strength have proven to be reasonable for paper [1].

The Tsai-Wu criterion for plane stress is given by

Φtw = F1σ11 + F2σ22 + F11σ
2
11 + F22σ

2
22 + F66σ

2
12 + 2F12σ11σ22 ≤ 1 (2)
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Figure 2: Coordinate system.

where

F1 =
1

Xt

+
1

Xc

, F2 =
1

Yt
+

1

Yc
, F11 = −

1

XtXc

, F22 = −
1

YtYc
, F66 =

1

T 2
(3)

with the notation

Xt = Tensile strength in MD

Xc = Compressive strength in MD

Yt = Tensile strength in CD

Yc = Compressive strength in CD

T = Shear strength (4)

An approximation for F12 is given by F12 = f
√
F11F22, where the constant f = −0.36

can be used for paper, see [1]. Moreover, the shear strength can be calculated as T =
α
√
XcYc, where the parameter α can be derived using a maximum strain theory, where

the compressive strengths Xc and Yc are transformed to an equivalent shear stress, see
[2]. The usefulness of the formulas for F12 and T is certainly justified by the difficulties
emerging in corresponding experimental procedures.

Structural failure

The local buckling criterion given in [5] can be used to determine the stress state at which
the facing becomes instable. The buckling equation is given by

N̂cr =

∑33
i=1 gi

60a2λ2 (c2α+ 2a2βµ+ a2χ)
∑27
i=1 hi

[λ, µ] ∈ xcr (5)

where α, β and χ relates to the MD-load, shear load and CD-load, respectively. Moreover,
λ is the half buckling wavelength and µ is the inclination of nodal lines, indicating the
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slope of the buckling deformation pattern. The parameter a denotes the wavelength of
the corrugated core, where the corrugations are oriented in the facing machine direction.
See [5] for the coefficients gi and hi.

In (5), xcr is the solution of λ and µ at the buckling load, i.e. the bifurcation point.
The solution xcr is found by numerical minimization of the buckling load equation, which
can be performed at points where buckling is suspected.

The buckling solution given in (5) relates to the edge load, i.e. force per unit length.
The relation between the critical stress and the critical edge load is found from

σcr =

 σ11

σ12

σ22


cr

=
1

h
Ncr =

N̂cr

h

 α
β
χ

 (6)

in which h is the facing thickness.

Combined failure criterion

In order to determine which failure mode is most significant, material failure and struc-
tural failure must be compared. This seems to be of relevance when either some of the
normal stresses is dominantly compressive or the shear stress is large. Below, the material
failure criterion is reformulated followed by a similar modification of the structural failure
criterion, i.e. the buckling equation.

Firstly, by using the transformation in (1), the Tsai-Wu criterion (2) takes the form

(F11 sin2 φ cos2 θ + F22 cos2 φ+ F66 sin2 φ sin2 θ + 2F12 sinφ cosφ cos θ)(σRtw)2 +

(F1 sinφ cos θ + F2 cosφ)σRtw − 1 = 0, σRtw > 0 (7)

and the radius σRtw can be found explicitly at a given stress state from (7), where φ and
θ is given by the inverse of (1).

Next, in a similar manner, the buckling equation (5) can be rewritten using (1). As
the load defined in (5) takes positive sign for compressive load, the normal in-plane loads
change sign using the same convention as in (7). Moreover, the absolute value for shear
load is used, due to symmetry. Then, (5) takes the form

σRcr =

∑33
i=1 gi

60a2hλ2 (−c2n11 + 2a2µ|n12| − a2n22)
∑27
i=1 hi

σRcr > 0, [λ, µ] ∈ xcr (8)

where
n11 = sinφ cos θ n12 = sinφ sin θ n22 = cosφ (9)

To find the buckling load parameter σRcr, 8 is minimized numerically with respect to
λ and µ. This minimization is sensitive to the principles in how the initial values of xcr,
x0, are chosen. By inspection of (8), it can be concluded that σR(λ, µ) is discontinous
at limσR→∞ x. This is certainly expressed when the load changes from a dominant com-
pressive σ11-stress, yielding a very large buckling wavelength and zero inclination of nodal
lines, to a shear buckling mode with λ ≈ a and non-zero µ. The relation between λ and
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µ, at a given relation of stresses, by which σR →∞, can be obtained from (8). In order
to find the true solution of σR, σRcr, the initial values x0 must be chosen on both sides of
the values limσR→∞ x.

When analyzing the stresses in the facing, e.g. corrugated board design, the least of
σRcr and σRtw should be chosen. This is done by defining the distance from the origin to
the stress point at failure, either material failure or structural failure, as the failure stress
radius σRf

σRf = min
{
σRtw, σ

R
cr

}
(10)

In Figure 3 the failure stress radius is shown as the least envelope of material failure and
structural failure. From a given state of stress σ, provided by e.g. finite element analysis,

σ

STRUCTURAL FAILURE

R

MATERIAL FAILURE

MD STRESS

CD STRESS

f

Figure 3: Failure stress radius.

a failure index Φ can be calculated

Φ(σ11, σ12, σ22) =
||σ||

σRf
(11)

This failure index increases as the actual stress increases and takes the unity value at
failure. It should be observed that the failure index, Φ, is not fundamentally the same as
the Tsai-Wu index, Φtw, i.e. the left side of equation (2). Φ, but not Φtw, is proportional
to the stress radius σR, defined in the second chapter.

The procedure for stress evaluation in a design process can be explained in the following
chronological sequence

1. From finite element analysis, e.g. composite shell calculations, determine the stresses
at various points of the corrugated panel. Perform the following steps for all of the
points at which failure analysis is of interest.

2. Calculate by equation (1) the parameters φ and θ from the given MD stress, CD
stress and shear stress.

3. Determine σRtw by solving equation (7).
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4. Determine the critical point, xcr and σRcr, by minimization of (5). For this minimiza-
tion, a non-linear unconstrained procedure should be used, e.g. as provided by [4].
Choose the initial guesses of x as 1

ρ
[a, 1], 1

ρ
[a, 1

5
] and ρ[a, 1

5
]. Numerical experiments

have shown that using ρ = 10 will provide the true solution xcr and σRcr.

5. Choose σRf as the least of σRtw and σRcr and calculate the failure index Φ from equation
(11).

Numerical example with experimental validation

In the following, an example of corrugated board is analyzed with respect to material fail-
ure and structural failure. Experimental data from [6] is used for comparison of measured
collapse stresses versus the failure stress calculated by (10). In the reference, experiments
are performed on cylinders which dimensions are sized to avoid global buckling. Further-
more, the influence of structural failure on overall collapse of the corrugated board and the
change of failure stress with varied wavelength of the fluting is investigated. The board
dimensions and experimental data of stiffnesses and strengths of the facing material are
presented in Table 1.

Table 1: Experimental data of the facing material.

Board dimensions [mm] Data from Patel et. al. [6]a

Thickness, h 0.248
Wavelength of fluting, a 7.2

Tensile and compressive strengths [MPa]
Xt 85.7
Xc 25.2
Yt 35.2
Yc 14.7

Stiffness properties [GPa]
E11 8.36
E22 3.41
G12 2.06
G13 0.045
G23 0.045
ν12 0.17

a Average values of inner and outer liner, see [6].

The tensile and compressive properties from Table 1 are used for the solution of equation
(7) and the board dimensions and stiffness properties are used for solution of (8). The
parameter α, for the given relation of Xc/Yc = 1.71, is calculated to α = 0.78, which
yields the shear strength T = 15 MPa. Since the measured stress values from [6] are
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based on average stresses between the facings, the figures in Table 1 are also averaged for
use in the failure calculations.

In Figure 4 the failure stress is plotted in the compressive {σ11, σ22}-region, i.e. σ12 = 0,
together with the measured collapse stress and the Tsai-Wu envelope. It can be seen that
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11
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σ 22
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TSAI-WU

MEASURED [6]

Figure 4: Failure stress in the compressive biaxial region, σ12 = 0.

the measured collapse stress fits very well to the failure stress radius, which is governed
completely by local buckling in this stress region.

In Figure 5 the failure stress is plotted for combined shear and normal stress, i.e. σ22

versus σ12. For this load combination it is seen that the failure stress radius is governed
by material failure when the shear stress is large, and local buckling, or material failure,
when the normal stress is large.

It may be useful to picture the failure stress radius for the general in-plane stress state,
i.e. all stresses {σ11, σ12, σ22} non-zero. This is shown in Figure 6, where σ22 is plotted
versus σ11 for various levels of σ12. The shear stress levels are given as the outermost
curve corresponding to the first value, σ12 = 0.

In Figure 7, the ratio of structural to material strength with decreasing fluting wave-
length is plotted. A parameter η, defined by a = a0/η, is used for lowering a from
a = a0 = 7.2 mm. The stress state is equibiaxial compressive, i.e. σ11 = σ22, σ11 ≤ 0
and σ12 = 0. This corresponds to the intersections of a straight line, forming 45 deg to
the negative x-axis, and the curves corresponding to local buckling and Tsai-Wu failure
in Figure 4. For values of η ≤ 1.4, i.e. for a ≥ 5.1 mm, the failure is seen to be governed
by structural failure. At a = 5.1 mm, i.e. a 29% decrease of the fluting wavelength,
the values of structural failure and material failure are equal. Note that for the stiffness
parameters, typical for paper, a linear relation is found in Figure 7, i.e. σRcr ∼

1
a
, while for

isotropic thin plate bending a relation σRcr ∼
1
a2 should be expected.
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Figure 5: Failure stress in shear-compressive region, σ11 = 0.
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Figure 6: Failure stress for various shear levels.

Concluding remarks

A failure stress criterion for corrugated board facings has been presented. The criterion is
based on material failure and structural failure, which are evaluated in a combined analysis
procedure. The failure stress is compared with collapse experiments on corrugated board
cylinders and the failure stress presented herein is seen to be in much better agreement
with the measured stresses than the Tsai-Wu failure criterion alone. The procedure
for finding the failure stress can be implemented in a finite element program for failure
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evaluation of e.g. corrugated containers.
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Multilayer Reliability Analysis of

Corrugated Board

By Ulf Nyman1

ABSTRACT: The reliability of corrugated board is studied by finite element Monte Carlo

simulations and by a first order reliability method, with the use of a failure criterion that

includes both material failure and structural failure. The stiffness and strength parameters of

the board are given as scalar multipliers of a geometrically distributed stochastic field. For the

case of pure bending stresses, it is concluded that the failure is almost completely governed by

structural failure. It is also seen that the board is very sensitive to compressive stresses in the

machine direction (MD).

Introduction

The concept of reliability of engineering structures has focused increased attention during
the last decades. In many applications one is interested in assessing the quality and
safety of structures which may include strength and/or load variables that are represented
by stochastic distributions. Basically, the establishment of structural reliability can be
formulated by a limit state function, involving restrictions of a response quantity as well as
the calculated response. The problem is devoted to determine the distribution parameters
or the reliability index of the exceedance of structural strength to calculated response.
The reliability index is a direct measure of the probability of failure.

Several methods are available for the settlement of the reliability index and the prob-
ability of failure. The methods can be classified as exact, e.g. Monte Carlo simulations
(MCS), and approximative, e.g. First/Second Order Reliability Methods (FORM/SORM).
In using the former example, a suitable number of samples are created as input variables
to the structural model. The distribution for the limit state functions are then evaluated
as the outcome from the MCS. In the latter example, the limit state functions are calcu-
lated in an iterative manner and the reliability index is directly obtained at the point of
convergence. The usefulness of FORM/SORM is certainly expressed when the limit state
function involves only a single performance quantity, for example the maximum displace-
ment allowed at a generic point. Then, a reliability solution is achieved to a comparably
low computational cost.

The treatment of the reliability of corrugated board, Figure 2, has received little
attention so far. Previously, work has been devoted to deterministic calculations. The
need for predicting the strength of packages/corrugated board has led to the development
of various models in order to characterize the board, e.g. [2, 5, 6]. The aim of this paper
is to present an analysis of corrugated board for which the reliability is studied by finite

1Structural Mechanics, Lund University, PO Box 118, S-221 00 Lund, Sweden.



element MCS and FORM. It is also the aim to investigate the applicability of FORM
to finite element analysis in terms of accuracy, complexity and numerical efficiency. The
report presented here is an extension of the work presented in [1], where only MCS was
performed.

Variations in material parameters due to variations in strength variables such as mois-
ture exposure is considered to affect the overall board performance. As stochastic vari-
ables are chosen the stiffness matrix components and the material directional strengths.
A stochastic field is applied as a geometrical distribution of the variables. The failure cri-
terion presented in [4], which was proven to provide an accurate agreement of the board
failure compared to test data, is used in the settlement of the limit state functions. In the
analysis, the variation of the probability of failure due to different extent of correlation at
a certain length, is examined. Furthermore, studies of the likeliness of failure at specific
geometrical points of the board are performed.

Limit state functions

The failure of corrugated board is assumed to take place in either of the facings. Studies
of the board behaviour [2, 8, 9] prior and at the moment of collapse strongly indicates
that the failure is influenced by local stability. In [4] a combined failure criterion was
developed, based on the calculation of a failure stress radius. From a sandwich plate
stress estimation, a failure mode evaluation can be done whether the failure stress radius
is due to material or structural failure. For the stress state in an outer layer, a limit state
function can be formulated for each random field element i as

g(αi) = σRf (αi)− σ
R(αi) ≤ 0 (1)

where σR is the evaluated stress radius, σRf is the failure stress radius and αi are the
stochastic variables.

Structural failure surface

If the number of elements is large, or a large amount of simulations are performed, the
calculation of the structural failure stress radius may be costly. However, from [4] it was
concluded that most of the part of the surface defining structural failure, interior material
failure, is a plane surface. In [1], the failure due to instability was given by the stress
plane corresponding to a constant stress σ11 = kcr in the first direction (MD). This is the
critical stress corresponding to uniaxal structural failure. An explicit expression for kcr is
then found as the limit value

kcr = lim
λ→∞, µ=0

σR(n = [−1, 0, 0]), kcr < 0 (2)

where n is the directional stress vector, n = [n11, n12, n22] (unit vector), and λ and µ are
the half buckling wavelength in the second direction (CD) and slope of nodal lines [4],
respectively. Then the critical stress radius is given by

σRcr =
kcr
n11

, σRcr > 0 (3)
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However, in a reliability analysis using minimization algorithms, the open failure sur-
face defined by (2) might cause numerical problems when the initial search values are
chosen far apart from the minimum distance point. Therefore, the plane is substituted
for by a quadratic closed surface according to

(σ11 − b)
2 + σ2

12 + σ2
22 = R2 (4)

where R is assigned some large value and b should be given so as to fulfil

R− b = |kcr|, R > b (5)

Since n11 is less than zero for structural failure to take place, and σRcr must be positive,
the critical stress radius is given by

σRcr = bn11 +
√
b2n2

11 +R2 − b2 (6)

It is worth noting that the larger R is chosen, the more (6) will approach (3). However,
in order not to create a badly conditioned problem, R should be chosen as a reasonable
factor of |kcr|, for example as R = 5|kcr|.

Finite element response

In the solution of the reliability index for a given material point, or random field element,
it is required to achieve the gradient of (1) at each iteration point in the minimization
procedure. This involves the calculation of the stresses as function of the stochastic
variables, which could be achieved by a series expansion of the response variables. In this
work, however, the determination of the gradients of the limit state function is performed
by the full finite element solution, i.e. numerically. The procedure is to solve a(k)(αi)
from

K(k)(αi)a
(k)(αi) = f (k)(αi) (7)

at the iteration points k. The stresses are then given by

σ(k)(αi) = D(k)(αi)ε
(k)(αi) = D(k)(αi)Ba(k)(αi) (8)

from where the failure stress radius can be calculated for evaluation of the limit state
function.

The solution of (7) is obtained as the Cholesky decomposition of K(k)

K(k) =
(
GGT

)(k)
(9)

where G is a lower triangular matrix. Further on, a(k), can be determined by the solution
of the triangular systems

G(k)ã(k) = f (k)(
GT

)(k)
a(k) = ã(k) (10)

It is interesting to observe that, if the load variables are the only variables that contain
uncertainties, the stiffness matrix will not change during the iterations and the Cholesky
decomposition in (9) needs to be done only initially. This is attractive in terms of the
computation time required for the iteration process.
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Figure 1: Relibility index in z-coordinate system.

FORM procedure for calculation of reliability indices

For reasons that will be obvious in the next section the basic variables will now be de-
noted as x, instead of α as before. Initially, the basic variables, x, may not be normally
distributed. In a FORM procedure, it is required that the variables x are transformed
from the initial ditribution to an equivalent normal distribution. This can be done ap-
proximately, e.g. by the transformation given by Rackwitz and Fiessler [11]. If the basic
variables are log-normally distributed, an exact mapping is possible by using

y = log x (11)

and determining the parameters

E[yi] = log
(

E[xi]−
1

2
Var[yi]

)

Var[yi] = log

(Var[xi]

E[xi]

)2

+ 1

 (12)

respectively the correlation matrix components

ρ
(y)
ij = log (1 + ρ

(x)
ij VxiVxj)

(
log (1 + V 2

xi
) log (1 + V 2

xj
)
)−1/2

(13)

where Vx is the coefficient of variation of x.
The basic idea in using FORM is to use a reliability index β, see Figure 1, which

is invariant of a coordinate system rotation. This is accomplished by a mapping of the
stochastic variables according to Hasofer and Lind, [13],

z = Ĉ−1/2
y (ŷ − E[ŷ]) (14)

where ŷ are the uncorrelated normal distributed variables. The variables ŷ are chosen
mutually independent by the orthogonal transformation matrix A

ŷ = ATy (15)
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so that
E[ŷ] = ATE[y] (16)

and Ĉy is a diagonal matrix

Ĉy = ATCyA (17)

where Cy is the covariance matrix of y.
In evaluating the limit state function in the original coordinate system, the basic

variables x needs to be determined. By using (14) and (15), the following is obtained

y = Aŷ = A
(
Ĉ1/2
y z + E[ŷ]

)
= A

(
Ĉ1/2
y z + ATE[y]

)
(18)

From (18) the basic variables x are then determined as

x = ey (19)

In an iteration procedure, of course, the eigenvalues of Cy needs to be determined only
initially.

The reliability index is determined as the point of convergence, the minimum distance
from the origin to the point z∗ in the z-coordinate system, from a sequence of the iteration
points, z(k). For a general limit state surface, an approximation of the probability of
failure, Pf , is given by

Pf = Φ(−βi) (20)

where Φ is the standard normal distribution function and βi is the reliability index of a
generic material point i.

When the system failure is analyzed, as in the case of a structure discretisized by
finite elements, the failure probability is determined for all points of prospective failure,
as given by the random field discretization. The system failure can be chosen as the union
of failures for a series system, and the probability of failure can be given between upper
and lower bounds, [12]. The calculation of the bounds uses the two-fold joint probabilities
of failures, Pij.

At the design point, the linearized limit state function is given by

g∗i =
n∑
k=1

∂gi(z
∗)

∂zk
(zk − z

∗
k) = 0 (21)

which can be rewritten on normal form

g∗i =
1[∑n

k=1 (∂g(z∗)/∂zk)
2
]1/2 n∑

k=1

∂g(z∗)

∂zk
zk + βi = 0 (22)

or

g∗i =
n∑
k=1

aikzk + βi = 0 (23)

The linearized limit state functions g∗i and g∗j are standard normally distributed with
correlation coefficient ρij. The correlation coefficient is given as

ρij =
n∑
k=1

aikajk (24)
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Then, the joint probability of failure, Pij, can be determined from the numerical integra-
tion of

Pij =
∫ −βi
−∞

∫ −βj
−∞

ϕ(x, y; ρij)dxdy (25)

where ϕ(x, y; ρij) is the joint standardized normal probability density function.

Random field representation

In addressing the safety of the corrugated board, subjected to any kind of load, it is
crucial to identify a set of variables that incorporate uncertain properties. In this case
the purpose is to analyze a physical variation of moisture exposure of the board. It is
known that both the strength and stiffness of paper change drastically when subjected to
moisture. It can also be concluded that strong correlation exists between the variation in
strength and stiffness. Therefore, in order to reduce the number of stochastic variables
to a reasonable amount, the strength and stiffness variables α can be chosen as a scalar
multiplier to a spatially distributed variable, x so that for a given geometric point i

αi = cxi (26)

In this case, for example the stiffness and material tensile strength the in first direction
are determined by

E
(i)
11 = CE11xi, X

(i)
t = CXtxi (27)

respectively. The constants CE11 and CXt are the measured parameters under normal
conditions. Other stiffness and material strength parameters, assumed to be orthotropic,
are made proportional to E

(i)
11 and X

(i)
t , respectively. Poissons ratio is assumed to be

deterministic in this case. The matrix defining the covariance over the plate region is
defined by

Cij =


Var[x1] Cov[x1, x2] . . . Cov[x1, xn]

Cov[x2, x1] Var[x2] . . . Cov[x2, xn]
...

...
. . .

...
Cov[xn, x1] Cov[xn, x2] . . . Var[xn]

 (28)

where n is the number of stochastic variables. The covariance between the two points, i
and j, at a distance Dij from each other, is taken as

Cij = (Var[xi]Var[xj])
1/2
ρij = (Var[xi]Var[xj])

1/2 e−Dij/L (29)

where ρij is the correlation coefficient between the points and L = −D∗/log ρ∗. ρ∗ is the
value of correlation between two points at distance D* from each other. The distance Dij

can be obtained as
Dij = ‖v‖ (30)

where v is the geometric vector between the points, here chosen as the midpoints of the
random field elements.
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Finite element model

In the calculations of the structural response the finite element toolbox CALFEM [7] is
used. The bending behaviour is modelled by a quadrilateral multilayered composite plate
element, see Figure 2, using bi-linear interpolation functions for the nodal quantities.

CD

MD

Z

Figure 2: Finite element model of corrugated board.

In determining the effective elastic modulus of the core the procedure described in [3] is
used. The counterpart element sides are parallel to each other which enables the stiffness
matrix to be determined analytically. The thickness integration part of the stiffness matrix
is given by

D̃ =
∫ h/2

−h/2
D(z)z2dz (31)

where D(z) is the in plane orthotropic material matrix in the current layer. The matrix
D must be calculated for each layer and element for every new set of values of αi.

Based on the curvature, κ, the stresses in layer k are determined from

σ(k) = −z(k)D(k)κ (32)

where z(k) is the distance from the plate system line to the center line of the layer.

Numerical results

The system reliability of a simply supported composite plate, subjected to a surface
normal pressure, is studied. The plate is quadratic with side dimension 0.5 m. The
middle layer is assigned deterministic values and assumed only to contribute with bending
stiffness along the corrugations. An effective Young’s modulus of the middle layer is
calculated by multiplying the paper modulus with γt2/h2, see [3], where γ is the ratio of
the corrugated wave intrinsic length to the wavelength. Moreover t2 and h2 is the paper
and core thickness, respectively. The value of h2 is 3.6 mm and the paper thicknesses for
all three layers are 0.248 mm. The wavelength of the core corrugations is 7.2 mm, which
yields γ∼1.4.

The material parameters of the paper material, referred to as CE and CX previously,
are used as scalar multipliers to the distribution variables xi. The values for the stiffness
parameters are CE11 = 8.36, CE22 = 3.41, CG12 = 2.06, and CG13 = CG23 = 0.045 GPa.
The in plane Poissons ratio is ν12 = 0.17. Furthermore, the tensile and compressive
material strengths in the first direction is CXt = 85.7 and CXc = 25.2 MPa respectively,
and in second direction CYt = 35.2 and CYc = 14.7 MPa. The shear strength is obtained
as proposed in [10].
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Figure 3: Different resolutions of the random field mesh.

An isotropic probabilistic distribution for the geometric variables xi is assumed. The
distribution for xi is taken to be log-normal with mean E[xi] = 1 and variance Var[xi] =
0.09. It should be noted that in [1], a normal distribution, truncated at zero, was chosen
for the geometric variables. However, it was observed that for the case of using FORM,
this led to numerical problems in terms of a singular stiffness matrix. The reason for this
is that the modulus of elasticity is a strength variable in the case of structural failure. For
the low amount of load applied, yielding small values of the probabilities of failure, this
results in strength variables tending to be very small, i.e. close to zero, in the iteration
procedure.

Two numerical examples are examined. The first example is a comparison of MCS
and FORM. Three different types of random field meshes are investigated in the FORM
procedure, see Figure 3 where the random field elements are drawn with bold lines. In
case (a) the random field elements are coinciding with the finite elements, in case (b)
12 random field elements are used and in case (c) 9 random field elements are used. In
addition, a case (d), with the same random field mesh as in (a) but with a reduced number
of searches for the reliability index, is investigated. In this case, only the elements with
a deterministic ratio of the stress radius to the failure stress radius of 0.3 is used in the
search (the four center elements along with their neighbour elements, corner elements
excluded). At all MCS, the random field mesh is coinciding with the finite element mesh.

Also the variation of probability of failure due to different extent of correlation at a
certain length, is investigated. A surface pressure of 175 Pa is applied on each element,
which results in a maximum deterministic deflection of 4.5 mm, see Figure 4.

The second example uses MCS to study the likeliness of failure at specific geometrical
points of the board. Here, a larger surface pressure is applied, 500 Pa. The values of D∗

and ρ∗ are both 0.5.
In the first example the correlation between the geometric variables is varied. This is

accomplished by calculating the probability content for values of ρ∗=0.01 to ρ∗=0.9. The
result is plotted in Figure 5, where the circles are results from MCS and the solid lines are
results from FORM. The failure probability increases with increasing correlation length
and takes the value 0.0017 when all the elements are strongly correlated. This is quite
lower than the value obtained in [1], even though the surface pressure applied is larger.
The reason for this is the low density function values for the log-normal distribution, for
the level of the applied load. However, it can be seen that the results from MCS and
FORM are very close.
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Figure 4: Deflection of composite plate.
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Figure 5: Pf as function of correlation length coefficient.
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In Table 1, the results from the three different random field meshes are listed, where
the probabilities of failure are given as the mean value of the upper and lower bounds.
The value of ρ∗ is 0.5 in all cases.

Table 1: Probability of failure for different random field meshes.

MCS FORM
a b c d

Prob. of failure, 10−3 1.38 1.30 0.77 0.51 1.30
No. Chol. decomp. 50000 8695 936 570 2220

It is seen that when the random field mesh is coinciding with the finite element mesh, the
number of required Cholesky decompositions is 8695, for the FORM solution, compared
to 50000 for the MCS solution. Furthermore, the probability of failure is a little less than
for the case of MCS. For the random field mesh (b) the probability of failure is far from
the value in case (a), which indicates that the random field discretization is to coarse.
The same holds for case (c). In case (d), however, the reduced number of search elements
do not deteriorate the result from (a), where the probability of failure is the same, 0.0013.
The number of Cholesky decompositions needed for FORM in (d) is 2220.

It can be concluded from the cases (a)-(d) that the number of random field elements,
and thereby the number of stochastic variables, largely affects the rate at which a solution
is obtained for the probability of failure. In case (d) the number of search points was 12,
the same as the number of random field elements in (b). Despite this, the number of
required Cholesky decompositions is more than twice than in case (b).

In the second example the number of fractures in each layer, element and whether the
failure is due to structural or material failure, is determined. The number of simulations
is 50000. It was noted during the simulations that no failures in the upper layer occurred
(where tensile stresses are developed). It should be noted that in [1], where normal
distributed variables where used, a few number of failures occured in the upper layer.

In Figure 6, the numbers in braces are failures due to material failure. As can be seen,
material failure only develop in the corner elements, where the shear stress is large. In
addition, it can be seen that the number of failures in regions where the curvature in MD
is larger compared to CD, exceeds the number of failures in regions where the oppostite
holds for the curvature. As a conclusion, the board is more sensitive to compressive
stresses in MD, than in CD. This result was also confirmed in [1], where an added tensile
stress in the MD largely reduced the number of structural failures at the compressive side
of the plate.

Conclusions

The reliability of corrugated board, subject to plate bending, is studied both by MCS and
by a FORM procedure applied to finite element calculations. The stiffness and strength
parameters of the board are given as scalar multipliers of a geometrically distributed
stochastic field.
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18 7609 17274 17230 7399 19
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Figure 6: Number of failures in each element.

For the case of pure bending stresses, it is concluded that the failure is almost com-
pletely governed by structural failure. It is also seen that the board is sensitive to stresses
in the first direction (MD).

Also the variation of probability of failure due to different correlation lengths is stud-
ied. The system failure probability is seen to increase with increasing correlation length
coefficient.

With the use of MCS, it is recognized that a very large number of Cholesky decom-
positions is needed for determining the probabilistic characteristics of the board. This
is certainly expressed when low failure probabilities are studied. The method of FORM
was shown to be a numerically efficient method, even though the failure surface is not
explicitly given, but determined by the finite element solution. It should be noted that
the response gradients could have been calculated analytically, thus saving a lot of com-
putation time. However, the calculations done here shows that even if the gradients are
computed by the full finite element solution, there is significant computational effort to
save. This is also attractive since general purpose FEM codes could be used together with
FORM without modifications.

It should be mentioned that the example studied here consists of rather few elements
representing the structure. If larger problems are studied, and the correlation between
each element is high, there could arise problems with widening reliability bounds for the
system failure.

In analysing corrugated board in a broader sense, as in the case of currugated board
packages, a very common load case is in-plane loaded panels. A detailed analysis would
require a geometrically non-linear finite element analysis. Studying the reliability of e.g.
boxes by MCS, this would lead to a prohibitive computational effort needed. A possible
choice would be to extend the limit surface iterations to involve also equilibrium iterations
in a buckling analysis.
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