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Fast Contact Detection and Classification for Kinesthetic Teaching in
Robots using only Embedded Sensors

Julian M. Salt Ducaju, Björn Olofsson, Anders Robertsson, Rolf Johansson

Abstract— Collaborative robots have been designed to per-
form tasks where human cooperation may occur. Additionally,
undesired collisions can happen in the robot’s environment. A
contact classifier may be needed if robot trajectory recalculation
is to be activated depending on the source of robot–environment
contact. For this reason, we have evaluated a fast contact
detection and classification method and we propose necessary
modifications and extensions so that it is able to detect a
contact in any direction and distinguish if it has been caused
by voluntary human cooperation or by accidental collision with
a static obstacle for kinesthetic teaching applications. Robot
compliance control is used for trajectory following as an active
strategy to ensure safety of the robot and its environment. Only
sensor data that are conventionally available in commercial
collaborative robots, such as joint-torque sensors and joint-
position encoders/resolvers, are used in our method. Moreover,
fast contact detection is ensured by using the frequency content
of the estimated external forces, whereas external force direction
and sense relative to the robot’s motion is used to classify
its source. Our method has been experimentally proven to
be successful in a collaborative assembly task for a number
of different experimentally recorded trajectories and with the
intervention of different operators.

I. INTRODUCTION

Physical Human–Robot Interaction (pHRI) has become a
research topic of major interest during the later years in the
robotics community [1]. The reason behind this is allowing
robots to safely work in partially unknown environments
where humans and robots can cooperate. One way that
human operators can cooperate with the robot is through
direct interaction, known as kinesthetic teaching [2], which is
useful for robot trajectory reprogramming [3]. Consequently,
collaborative robots have increased in popularity since their
lightweight, compliant design is especially convenient when
robots share their workspace with humans.

As part of the desire of increasing the flexibility and
versatility of robots, it is common to find applications (e.g.,
collaborative assembly [4]) where human cooperation is not
the only contact that the robots may experience with their
environment, and where unexpected collisions with obstacles
may also occur. For this reason, it is essential that robots are
capable of quickly distinguishing if a contact has occurred,
and if so, whether it has been caused by human cooperation
(defined as intentional) or by an obstacle collision (defined
as accidental). Therefore, contact detection and classification,
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while the robot behaves in a compliant way with respect to
its environment, is a key concern in these applications.

A. Previous Research

As summarized in [5], there are two main sets of methods,
which are primarily based on external force/torque esti-
mation, being used to detect and classify contacts: using
machine-learning approaches [5]–[8], or analyzing their fre-
quency content [9]–[11]. In such scenarios, a fast detection
and classification is essential since a successful robot trajec-
tory reprogramming should depend on it [2], [3], [12].

Machine-learning approaches have shown to provide
promising results for contact detection and classification, but
their fast execution may be challenging. In [6], the authors
used the entire contact event to extract features that allow to
discriminate between intended and unintended contacts. An
extensive classification approach was presented in [7], but
it cannot run in real-time. In [8], the authors were able to
classify a detected contact in a minimum of 160 ms. Finally,
an online classification method using machine learning was
proposed in [5], but it is operator dependent and needs the
joint load-torque signals of a previous, uncollided, execution
of the trajectory.

In contrast, frequency-response analysis methods can
achieve a faster detection and classification: in [9], the
authors detected contacts in less than 50 ms, and the authors
of [10], [11] detected and classified contacts in a single
force direction in less than 10 ms. However, frequency-based
methods come with their own challenges, one of the more
significant being the difficulty of tuning their thresholds and
cut-off frequencies. In [9], six different thresholding param-
eters per joint were needed to classify the contact situation
based on filtered motor-current signals, which, unfortunately,
are not available in some robot controller interfaces.

Moreover, these frequency-based contact-detection and
classification methods are based on the premise that human
voluntary cooperation with the robot presents forces with a
lower rate of change than accidental collisions, and therefore,
their frequency characteristics can be differentiated: coop-
eration will present lower frequency components than the
accidental collisions. To sustain this assumption, the authors
in [10] and [11] presented experimental data for one force
direction recorded from an external force sensor mounted
between the robot’s flange and a handle.

B. Problem Formulation

In this paper, we address the problem of fast contact-
detection and classification for kinesthetic teaching appli-



cations in collaborative robots relying only on available
information provided by its embedded sensors, which in
most cases are the joint motor encoders/resolvers that are
able to provide joint angular positions (and joint angular
velocity and possibly acceleration by differentiation), and
the joint-torque sensors that are used to measure the joint
applied torques. These variables are then used to estimate
the external forces/torques applied to the robot. We refer
to [13] for a summary of different methods to obtain these
external forces/torques, and especially for the justification of
the generalized momentum observer that was used in our
experiments. Moreover, robot compliant control is used to
ensure safety in a contact-rich environment and to allow
human cooperation.

To solve the problem addressed in this paper, while
ensuring fast contact detection, we evaluated the use of
frequency-response analysis of the estimated external force
and the benefits of comparing the robot Cartesian motion
and its sensed external force. The method should allow a
fast detection and to distinguish between human cooperation
and accidental collisions in any contact direction for a collab-
orative assembly task using data only from robot embedded
sensors. To evaluate this method, several experiments were
performed, using the Panda robot by Franka Emika [14] with
a peg-in-hole setup as seen in Fig. 2.

C. Outline

The paper is organized as follows: Sec. II presents
the method for solving the problem described in Sec. I.
Section III explains the experiments performed. Then, Sec.
IV presents the results obtained. Finally, a discussion is
included in Sec. V and conclusions are drawn in Sec. VI.

II. METHOD

First, we introduce the robot compliance controller used.
Then, we evaluate the use of frequency-based contact detec-
tion and classification for our problem. Finally, we propose
modifications and extensions to ensure contact detection in
any direction and classification between human cooperation
and obstacle collision for a collaborative assembly task.

A. Torque-Based Cartesian Impedance Control

External forces may be applied to the robot at any moment
while executing a desired trajectory. Therefore, the robot
must behave in a compliant way toward these forces to avoid
any harm of both the robot and the colliding object. Also, a
compliant robot behavior allows direct human cooperation
without the need of switching to a dedicated admittance
controller. The aim of a Cartesian impedance controller [15]
is to establish a mass-damper-spring relationship between
the Cartesian pose variation from its reference, ∆ξ, and the
Cartesian force, F [16]:

F = Iξ̈ +Bξ̇ +K∆ξ (1)

where I , B, and K are the virtual inertia, damping, and stiff-
ness matrices, respectively. Further, ∆ξ =

[
∆pT ∆εT

]T
,

where the translation variations in the Cartesian pose are

calculated with ∆p = pd − p̂, and the rotation variations
are calculated with ∆Q = Q̂−1Qd, ∆ε being the vector
part of the unit-quaternion representation of the rotation
variation with respect to the base frame, ∆Q. Here, ξ̂ =[
p̂T Q̂T

]T
is the estimated Cartesian pose of the robot

end-effector computed from joint angle measurements, and
ξd =

[
pTd QT

d

]T
is the reference Cartesian pose of the robot

end-effector.
With F from Eq. (1), the task torque is calculated as:

τtask = JT(q)F (2)

where J(q) is the Jacobian relative to the base frame of the
robot and q are the sensed joint angular positions. Finally, the
contribution from Coriolis and centripetal forces, C(q, q̇), is
added to the task torque to obtain the reference torque:

τref = τtask + C(q, q̇)q̇ (3)

where q̇ represents the sensed joint angular velocities. The
gravitational-forces term does not appear in Eq. (3) since
the robot’s internal controller takes care of the gravity
compensation.

B. Frequency-Based Contact Detection and Classification

Previous research on frequency-based contact detection
and classification is based on the idea that the frequency
characteristics of motor currents or external force acting on
the robot in an accidental collision situation are different
from the ones obtained while a human is cooperating with
the robot [9]–[11]. For a sliding time window, if the p–norm
of the discrete Fourier transform of the force signal over a
given frequency interval is greater than a user-defined force
threshold, Fth, then it is considered that the contact should be
classified an accidental obstacle collision [10], [11]. If not,
then it is classified as interference from human cooperation.

Figure 1 illustrates the L∞-norm of the frequency content
of the force signal in the frequency range between ωmin

and ωmax using a sliding window of N samples at every
time step, as suggested in [10], but using the joint-torque
sensors embedded in the robot to estimate the external force.
This frequency range has an upper limit determined by the
Nyquist frequency (ωmax ≤ 1/2h) and a lower limit deter-
mined by the measurement duration (ωmin ≥ 1/Nh), with h
being the sample period. Moreover, the Cartesian impedance
control parameters used are the same as in Sec. III-A.
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Fig. 1. Temporal evolution of the L∞-norm of the frequency content for
all three force directions: FX , FY , and FZ , in a collaborative assembly
task (peg-in-hole). The frequency range used is ω ∈ [10, 100] Hz, and the
temporal sliding window is N = 500 samples long.



In the trajectory used for Fig. 1, the robot transitions from
free, undisturbed motion (white background), to obstacle
collision (red background), and then to human cooperation
(green background). The obstacle collision, which occurs
along the Z-direction, can be distinguishable from the free
motion when analyzing the frequency content that belongs to
FZ . However, human cooperation also causes an identifiable
spike in this same force direction later in the trajectory.
Therefore, when the experiments are performed for a robot
with compliant behavior using the joint-torque sensors em-
bedded in the robot instead of external force sensors, the
distinction of frequency content between accidental colli-
sions and cooperation becomes uncertain, which motivates
the proposal of modifications and extensions to the method.

C. Contact Detection

From the analysis of Fig. 1, it can be concluded that force-
thresholding can be useful for contact detection, but extra
variables are needed for classifying the contact if only joint-
torque sensors are used. Thus, our proposal consists of a
decoupled process between contact detection and classifica-
tion. For contact detection, the method presented in [10],
[11] was extended to all three force directions. Therefore,
the proposed detection process consists of evaluating if

F̂ i
ω > Fth (4)

for i ∈ {X,Y, Z}, where Fth is the selected frequency-based
threshold valid for any direction i for each time step, and F̂ i

ω

is equal to the L∞-norm of the discrete Fourier transform of
the external sensed force along direction i in the frequency
range between ωmin and ωmax using a sliding window of N
samples.

The contact-detection method, which is called at each
time step, has been summarized in Algorithm 1. If the
robot is moving in free motion (STATE = FREE), the
condition (4) is evaluated in all directions (Algorithm 1,
Line 2). If this condition is true, a contact is detected,
and the classifier takes care of evaluating if the contact is
accidental or if a human operator is collaborating with the
robot (Algorithm 1, Line 5; detailed in Algorithm 2). The
contact classifier uses the system’s state at the exact time of
the contact, which is obtained (in Algorithm 1, Line 4) by
performing a backwards search in the external force signal
from the contact-detection time along the contact’s direction
(determined in Algorithm 1, Line 3).

Moreover, while an accidental collision is occurring
(STATE = COLL), an additional contact could be detected
(whose source can be human cooperation) if the force
threshold is violated again along any direction, with the
exception of the directions that previously experienced the
accidental collision (Algorithm 1, Line 9). The contact-
detection algorithm will update the active collision directions
if a collision along a new direction is detected or if the value
of a previously collided direction has stopped violating the
threshold (Algorithm 1, Line 13).

Furthermore, when a contact has been labelled as human
cooperation (STATE = COOP), the contact-detection algo-
rithm will only determine that the cooperation has stopped
if the forces along all three directions are below the force
threshold, Fth (Algorithm 1, Line 15).

Algorithm 1 Contact Detection
1: if STATE == FREE then
2: if Check contact == TRUE then
3: Get contact direction
4: Get contact time
5: STATE ← Contact Classifier (Algorithm 2)
6: end if
7: else if STATE == COLL then
8: Get contact direction
9: if Check new contact direction == TRUE then

10: Get contact time
11: STATE ← Contact Classifier (Algorithm 2)
12: end if
13: Update active collision directions
14: else if STATE == COOP then
15: if Check cooperation stopped == TRUE then
16: STATE ← FREE
17: end if
18: end if

D. Contact Classification

In contrast with contact detection, the frequency content
of the estimated external force is not enough to classify
the contact event when only using embedded sensors (as
indicated in Fig. 1). Therefore, to properly categorize the
contact in a kinesthetic teaching application, knowledge of
the performed robot motion can be used.

Our classifier algorithm is based on two assumptions:

• Assumption A1: An accidental collision of the robot
end-effector or attached tool with a static obstacle must
occur in the direction of the movement and with the
opposite sense from the one of the motion.

• Assumption A2: Human cooperation should have less
dominant external force components in the direction
of the robot’s motion because of the typical spatial
layout and interaction of a human operator and a robotic
manipulator in kinesthetic teaching.

These two ideas are used to formulate an algorithm next,
along with the explanation of the steps of the classifier
algorithm.

The contact classifier will be activated once contact has
been detected. The contact-classifying algorithm has been
summarized in Algorithm 2. The first step is to analyze if, for
any of the external forces sensed that have trespassed their
threshold (where inequality (4) holds), the force is being
applied in the same sense as the motion at the moment
that this force signal started rising (Algorithm 2, Line 1).
If this is the case, it is straightforward to affirm that human



cooperation is occurring (A1):

sign
(
˙̂
F i
ext

˙̂
ξi
)
> 0 (5)

only when F̂ i
ω > Fth, i ∈ {X,Y, Z}, Fth being the selected

frequency-based threshold, and ˙̂
ξ being the time derivative

of the estimated Cartesian pose of the robot end-effector.
The time derivative of the estimated external force along
direction i, ˙̂

F i
ext, is preferred compared to the estimated

external force along direction i, F̂ i
ext, since the time step

where this condition is evaluated is when the force signal
starts rising.

The second step is, if the inequality (5) is not true for
any of the detected contact directions, to perform a new test
that evaluates the direction of the external force vector rel-
ative to the Cartesian velocity vector (Algorithm 2, Line 4).
The reason for this is that compared to intuitive human
cooperation for kinesthetic teaching, the largest external
force components in accidental collisions must come from
directions where the robot’s velocity is the highest (A2):

||u⃗ ˙̂
Fext
⊘ u⃗ ˙̂

ξ
||2 < γ (6)

where u⃗j represents a unitary vector of variable j, γ is the
threshold coefficient, and || · ||2 is the L2-norm. Also, ⊘
represents the Hadamard division: Cjk = Ajk/Bjk if C =
A⊘B. The smaller the threshold coefficient γ is, the closer
the external force will be when compared to the Cartesian
velocity. If the inequality (6) is evaluated as true, the contact
is classified as accidental collision.

Moreover, the inequality (6) is equivalent to evaluating if
the unitary external force vector is contained in the ellipsoid
defined by the robot’s unitary Cartesian velocity vector:

x2

a2
+

y2

b2
+

z2

c2
< 1 (7)

where [x, y, z] = u⃗ ˙̂
Fext

and [a, b, c] = γu⃗ ˙̂
ξ
.

Furthermore, unitary vectors have been chosen to avoid
having a dependence on the trajectory or on the applied
force magnitude, since the classification should be trajectory-
independent and also human-operator independent. There-
fore, the algorithm only relies on the external force-vector
direction with respect to the tangential direction of the
motion.

Algorithm 2 Contact Classification
1: if A1 == TRUE then
2: STATE ← COOP
3: else
4: if A2 == TRUE then
5: STATE ← COLL
6: else
7: STATE ← COOP
8: end if
9: end if

III. EXPERIMENTS

The goal of the experiments was to obtain realistic data of
a collaborative assembly task where human operators were
instructed to cooperate intuitively with the robot to evaluate
the contact detection and classification method for kinesthetic
teaching applications proposed in Sec. II.

A. Experimental Platform

The experiments were performed using the Panda robot by
Franka Emika [14] mounted onto a table; the robot was able
to record with a sample frequency of 1 kHz (sample period
h = 1 ms), using the setup shown in Fig. 2. As mentioned
earlier, we only used data from embedded sensors to estimate
the variables of interest, ξ̂ and F̂ext, which were used for
selecting and evaluating the threshold parameters for contact
detection, Fth, and contact classification, γ. The end-effector
Cartesian pose was obtained by applying forward kinematics,
K, to the joint angular-position readings provided by the joint
encoders [17]:

ξ̂ = K(q) (8)

Moreover, the estimate of the external forces was obtained
from the external joint-torques, which were estimated based
on the generalized momentum observer for the Panda robot
that was introduced in [13], by using the Jacobian relative
to the base frame of the robot in an inverse way compared
to the one presented in Eq. (2):

F̂ext = J†(q)τ̂ext (9)

where the superscript † denotes the Moore-Penrose pseudoin-
verse.

Furthermore, the Cartesian impedance control parameters
(K, B, and I) of Eq. (1) were chosen to be as follows:

• The stiffness K was equal to 150 [N/m] for the trans-
lational degrees of freedom and equals to 10 [N/rad]
for the rotational degrees of freedom.

• The damping B was equal to 2
√
K.

• The inertia I was equal to 0.
The relationship between the Cartesian position variation

and the task force will, with these parameters, behave along
all degrees of freedom as a first-order system with a time
constant equal to 2/

√
K [18]. This way, we ensured stability

of the system and proper following of the trajectory reference
(overdamped behavior).

B. Experimental Procedure

A cylinder insertion, or peg-in-hole, was the collaborative
assembly task chosen for the experiments, as shown in Fig. 2.
The reason for the selection of this task was that it presents
a high amount of interaction with the environment: the hole
where the piston must be inserted was narrow in comparison
to the piston, and also the piston must make a vertical descent
to avoid contacts. Therefore, the probability of an accidental
collision was high if the reference trajectory was not accurate
or if the controller introduced uncertainty in the motion.
Furthermore, it is an application where the aid of a human



Fig. 2. Setup for the collaborative assembly task (peg-in-hole) used for the
experiments. Figure 2-A (top) shows an accidental collision scenario, and
Fig. 2-B (bottom) shows a human cooperation event. The unitary vector of
external forces (white) and the unitary vector of Cartesian velocity (blue)
were used in the contact-classification algorithm proposed in Sec. II-D. A
video of the experiments can be found at [19].

operator can be valuable and it did not require a high level
of skill for the operator.

The trajectories used range from almost-ideal trajectories,
where the robot could complete the insertion task and the
only collisions were with the borders of the hole of the box,
to failed trajectories where the robot collided with the side of
the box and the robot was not able to overcome this collision
and insert the piston in the hole without human intervention.
Other trajectories used were flawed with manifest collisions
with the top of the box, and depending on the nature of the
trajectory, the robot might be able to find its way to the hole
with no human input. All trajectories were recorded several
times using different initial poses to avoid a trajectory-
dependent contact detection and classification.

The desired trajectory of Cartesian poses, ξd(t), were
recorded before the experiments by leading through the
robot and recording the Cartesian pose of the robot end-
effector. These trajectories served as the reference for the
Cartesian impedance controller of Eq. (1). The reference
trajectory was solely time-dependent and did not rely on the
robot’s current pose, since ideally, the contact-detection and
classification algorithm should be implemented in a time-
constrained scenario.

Additionally, regarding human cooperation, to test the
validity of the assumptions proposed in Sec. II-D for a kines-
thetic teaching application, the operators were instructed to

cooperate in an intuitive manner with the robot to either help
the robot with its cylinder insertion task or to push/pull the
robot out of its trajectory to avoid colliding with the box.
Moreover, since human cooperation in a kinesthetic teaching
application may occur at different points of the trajectory in
each of the runs, some of the human interventions occurred
while the piston was in collision with the box and others
while the robot was in free motion. Also, for the sake of
data completeness, the operators were also instructed to vary
the location of contact with the robot so that the human-
cooperation events took place throughout all the links of
the robot and not only at a location close to the robot end-
effector.

Furthermore, as commented in previous research, human–
robot cooperation may be very operator-dependent [5], [8],
[9]. Therefore, a total of four different operators (includ-
ing three external participants) individually manipulated the
robot during the recording of the experiments to test the
sensitivity and robustness of the classification. Also, the
operators had different experience levels with robot manip-
ulation to analyze the role of this variable for the contact-
classification method proposed.

IV. RESULTS

The total amount of data that were recorded included
266 contact events. These collision events were divided into
148 accidental obstacle collisions and 118 voluntary human
cooperation events. In total, 28 accidental collisions and 28
human cooperation events (from a single human operator)
were used for the parameter tuning, and the remaining
contact events were used for the method’s evaluation.

A. Tuning and Evaluation of the Method

First, for contact detection, the force threshold parameter
has been assigned a value of Fth = 0.85 N, for all Cartesian
directions. This value of the force-detection threshold al-
lowed that all contacts recorded in the evaluation experiments
were detected, and that no contact-detection false positive
was detected. The frequency range used for detection was
ω ∈ [10, 100] Hz.

Accidental collisions were detected within 71 ms on
average, with a standard deviation of 31 ms. On the contrary,
voluntary human-cooperation events were detected within
133 ms on average, with a standard deviation of 66 ms.
Thus, the capacity of this method to detect contacts fast can
be confirmed.

Additionally, the contact-classification threshold parameter
was chosen to have a value of γ = 6.2. This value should
be chosen conservatively high, since it is preferred to mis-
classify human cooperation events than accidental collisions.
This idea will be further developed in Sec. V.

The results for the evaluation of the classification method
are shown in Tables I and II. Table I displays the confusion
matrix for all evaluation experiments performed. It can be
seen how 93.3% of the accidental collisions were correctly
classified (specificity), whereas for the cooperation events,
88.9% of them were correctly classified (sensitivity).



TABLE I
CONFUSION MATRIX FOR EVALUATION EXPERIMENTS

Classified as
Collision Cooperation

Collision 112 (93.3%) 8 (6.7%)
Cooperation 10 (11.1%) 80 (88.9%)

Moreover, Table II breaks down the recorded cooperation
events of Table I into the four different operators involved
in the evaluation experiments. As commented before, the
success rate of the contact classifier varied depending on
the human operator. For the method proposed, the sensitivity
ranged from 85.2% to 96.2%. Therefore, the sensitivity
achieved using this method was still high for the human
operator with the lowest classification rate. Furthermore, the
sensitivity of the method for experienced operators (Opera-
tors 1 and 2 in Table II) was on average 91% with a standard
deviation of 5.3%, which is higher than the sensitivity of the
method for inexperienced operators (Operators 3 and 4 in
Table II), which was equal to 86.4% with a standard deviation
of 1.2%.

TABLE II
DETAIL OF CONFUSION MATRIX FOR EACH HUMAN OPERATOR

Cooperation classified as
Collision Cooperation

Operator 1 1 (3.8%) 25 (96.2%)
Operator 2 3 (14.3%) 18 (85.7%)
Operator 3 4 (14.8%) 23 (85.2%)
Operator 4 2 (12.5%) 14 (87.5%)

B. Contact Detection and Classification Example

Figure 1 provides an example of the data extracted for one
trajectory execution. The robot was initialized in free motion.
It can be seen that at t = 2.616 s, a contact was detected
along the Z-direction. The contact was detected 87 ms
after the external force signal along the Z-direction starts
rising. Once contact was detected, the contact-classifying
part of the algorithm analyzed the force sense along the Z-
direction and compared it to the motion component along
this direction using condition (5). Since their signs were
opposite, it cannot be determined that the contact was a
human-cooperation event. Then, the inequality (6) was used.
Since ||u⃗ ˙̂

Fext
⊘ u⃗ ˙̂

ξ
||2 = 2.97 < 6.2 = γ, it can be concluded

that the contact was an accidental collision.
Moreover, at t = 4.290 s, a new contact was detected

along the Y -direction just 85 ms after this new contact
occurred. Now, by evaluating condition (5) at the contact
time, it was seen that both the force component along the
Y -direction and the motion along this direction share the
same sign and therefore it is concluded that the contact
belongs to the human cooperation category. Furthermore,
if the inequality (6) had been evaluated in this situation,
the contact would also have been labelled as a human
cooperation, since ||u⃗ ˙̂

Fext
⊘ u⃗ ˙̂

ξ
||2 = 41.84 > 6.2 = γ.

Finally, no false positives occurred for contact detection
for the entire trajectory shown in Fig. 1, since, for the
accidental collision, no force violated the threshold along the
X and Y -directions and no force violated the threshold along
the Z-direction once the value was lower than this threshold.
Also, for the human-cooperation segment, the force was at
all times above the force threshold for some of the three
Cartesian directions after t = 4.290 s.

V. DISCUSSION

In the event that only embedded sensors are available and
the external force signal is estimated using the generalized
momentum observer [13], which is currently implemented in
commercial collaborative robots such as the Franka Emika
Panda [14] and the KUKA LBR product family [20], the
assumption, considered in [9]–[11], that the frequency con-
tent of the estimated force is easily distinguishable between
voluntary human cooperation and accidental collisions with
static obstacles is not certain anymore in a collaborative
assembly task. However, we have experimentally demon-
strated that the frequency content of the external force signal
can still be used for contact detection in this application.
Nevertheless, additional sensor information, provided by
the embedded joint-position sensors, regarding the robot’s
motion prior to the detected contact, can be used to classify
the contact.

Moreover, several aspects of the implementation of the
proposed method allow freedom to the designer for their
selection, and this also has several consequences. First, there
is a trade-off between the contact-detection time, defined as
the time between the contact occurs and when it is detected,
and the force threshold parameter Fth: if shorter detection
times are desired, more false positives in the contact de-
tection will occur since Fth would be smaller. Using only
embedded joint-torque sensors causes longer detection times
when compared to previous research that included this same
force threshold parameter but used external force/torque
sensors for a single force-direction detection [10], [11].
Nevertheless, the force-threshold parameter value used in our
experiments has been proven able to provide faster response
times for all three force directions than alternative machine-
learning methods [6]–[8], while presenting no false positives
in contact detection.

Second, the contact classifier’s threshold parameter, γ,
can be varied depending on the desired ratio between the
sensitivity (percentage of human cooperation events correctly
classified) and the specificity (percentage of accidental colli-
sions correctly classified), since it is not possible to obtain a
threshold parameter that allows no ambiguity in the classifier
part. Here, specificity must be prioritized to avoid false
positives in human cooperation. This is because the proposed
method is aimed to be used in a collaborative assembly task
where the presence of accidental collisions is expected, and if
human cooperation is detected, the cooperation event can be
used for trajectory reprogramming using kinesthetic teaching
[3].



Third, the method proposed solely requires tuning of two
thresholding parameters (Fth and γ) to achieve a proper
contact detection and classification along all three force
directions, compared to the 6 parameters per joint used for
tuning the method in [9] and to the single parameter needed
in [10], [11] for a single force direction. Also, as discussed in
[10], the choice of the virtual inertia, damping, and mass of
Eq. (1) will have an effect on the sensed external force signal,
and therefore, the two thresholding parameters used in our
proposed method must be varied if the desired impedance
behavior of the robot is different from the one described
using the values defined in Sec. III-A.

The proposed method was not tested to detect transitions
between accidental collision to free motion, or from coop-
eration to accidental collision since we were not interested
in these situations in the experimental application used for
evaluation. First, the peg-in-hole application would not have
the accidental-collision to free-motion situation, since when
the piston impacts the cylinder, it would not stop its impact
without human intervention. Second, for this application, a
human intervention for kinesthetic teaching would not end up
in a purposeful direct transition to an obstacle collision. Also,
the proposed method can detect human-cooperation events
while an accidental collision with an obstacle is occurring,
whereas this transition has not been tested by machine-
learning methods [5]–[8] or by the previously-proposed
frequency-based methods [9]–[11]. This feature is especially
relevant for applications that use kinesthetic teaching for
corrective trajectory demonstration [3].

In addition, the proposed method’s accuracy (percentage of
total contacts correctly classified) outperformed other meth-
ods previously presented (91.4% for the proposed method,
86.3% for the method in [5], 89.5% for the method in [7],
and 81.9% for the method in [8]). The method presented
in [6] provides the highest accuracy, 97.8%, but only one
human operator was used for gathering experimental data.
Also, the proposed method’s accuracy (91.4%) was higher
than the accuracy obtained when using the same relevant
variables (u⃗ ˙̂

Fext
and u⃗ ˙̂

ξ
) as parameter estimates in Fisher’s

Linear Discriminant [21] for contact classification (83.3%).
Moreover, our method is novel compared to the methods

in [5]–[8] in that it has been designed for kinesthetic teaching
applications, where a human operator can lead-through the
robot for trajectory reprogramming [3]: the robot’s compliant
behavior, contrary to the stiffer robot behavior in [5]–[8],
allows lead-through without controller switching (as well as
providing safety for both the robot and its environment), and
also the method is able to classify a human-cooperation event
happening while an accidental collision is occurring.

Furthermore, the proposed method, although its evaluation
involved only four participants, can be considered robust with
respect to different operators since the standard deviation
between operators of the sensitivity was equal to 4.4 per-
centage points, which was lower than in other methods (10.1
percentage points in [5], where four operators were involved,
and 7.3 percentage points in [8], where three operators
were involved). Also, the difference in accuracy between

trained and untrained operators was lower than in [8], being
4.6 percentage points (91% and 86.4%, respectively) the
difference in our method compared to 14.6 percentage points
(86.4% and 71.9%, respectively) in [8], which showed the
validity of the assumptions for the intuitive human coopera-
tion in kinesthetic teaching that were included in Sec. II-D
for both trained and untrained operators in a collaborative
assembly task. Thus, the proposed method can be used by
different operators for kinesthetic teaching in these tasks
without the need for retuning.

VI. CONCLUSION

Fast contact detection and classification based on the
frequency-response analysis of the estimated external force
signals was evaluated, and necessary modifications and ex-
tensions to detect and classify a contact in any direction for
kinesthetic teaching applications were proposed. Cartesian
impedance control was used to allow safe human coop-
eration. The only sensors used for obtaining the external
force estimate were sensors that are conventionally embed-
ded in commercial collaborative robots and whose values
were easily attainable: joint-torque sensors and joint-position
encoders/resolvers.

The proposed modified method was proven to provide
accurate results for both accidental collision with stiff and
static obstacles and voluntary human cooperation in a collab-
orative assembly task. In addition, the method is trajectory-
independent, and was tested for a meaningful number of dif-
ferent operators, showing interesting results for both trained
and untrained operators.
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