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Robot Cartesian Compliance Variation for Safe Kinesthetic Teaching
using Safety Control Barrier Functions

Julian M. Salt Ducaju, Björn Olofsson, Anders Robertsson, Rolf Johansson

Abstract— Kinesthetic teaching allows human operators to
reprogram part of a robot’s trajectory by manually guiding the
robot. To allow kinesthetic teaching, and also to avoid any harm
to both the robot and its environment, Cartesian impedance
control is here used for trajectory following. In this paper, we
present an online method to modify the compliant behavior of
a robot toward its environment, so that undesired parts of the
robot’s workspace are avoided during kinesthetic teaching. The
stability of the method is guaranteed by a well-known passivity-
based energy-storage formulation that has been modified to
include a strict Lyapunov function, i.e., its time derivative is
a globally negative-definite function. Safety Control Barrier
Functions (SCBFs) that consider the rigid-body dynamics of the
robot are formulated as inequality constraints of a quadratic
optimization (QP) problem to ensure forward invariance of the
robot’s states in a safe set. An experimental evaluation using a
Franka Emika Panda robot is provided.

I. INTRODUCTION

Physical Human–Robot Interaction (pHRI) has become a
popular topic in the robotics community, since it addresses
the recent trend in the manufacturing industry to replace
mass production for mass customization [1]. As part of this
change of paradigm, human operators have become direct
collaborators in robotic tasks, and robots that are compliant
toward their environment have gained relevance.

An interesting application of human collaboration in
robotics is to reprogram part of the robot’s trajectory [2] by
manually guiding the robot, which is known as kinesthetic
teaching [1]. However, the workspace that humans and robots
share may not be entirely available, e.g., if another robot arm
is occupying part of the workspace, or if there is sensitive
equipment in the workspace. Then, the robot’s compliant
behavior toward its environment should be modified so
that the human operator cannot guide the robot to unsafe
situations. In addition, the compliance variations must be
done in such a way that the stability of the robot’s controller
is ensured. Passivity-based energy storage has been used
previously to provide a stable variation of the impedance
parameters of a robot [3], [4].

Moreover, Safety Control Barrier Functions (SCBFs) have
gained attention in recent years [5]–[10], because they pro-
vide more formal guarantees for obstacle avoidance than
the artificial potential-field methods used in the past for
this purpose [11]. Safety control barrier functions provide
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safety by enforcing forward invariance of a set, i.e., SCBFs
ensure that a system does not leave a safe set [5]. They
can be formulated as inequality constraints of a quadratic
optimization (QP) problem to modify the input to the system
[5], [6]. Additionally, SCBFs have been used to perform a
minimally-invasive modification of the robot’s behavior to
avoid safety threats, such as obstacle collisions [7]–[10].

In this paper, we address the problem of safe kinesthetic
teaching by modifying the Cartesian compliant behavior
of a robot with respect to its environment in a strictly
stable manner, such that we can ensure that the robot’s
end-effector avoids undesired parts of its workspace. Safety
control barrier functions that consider the rigid-body dy-
namics of the robot are used as inequality constraints of a
quadratic optimization problem to online modify the robot’s
compliance behavior in a minimally-invasive way, so that the
human operator can still manipulate the robot while avoiding
any safety threat.

The paper is organized as follows: Sec. II introduces
relevant mathematical concepts that are used in our method.
Then, Sec. III presents the method for solving the described
problem. Section IV explains the experiments performed, and
Sec. V presents the results obtained. Finally, a discussion is
included in Sec. VI and conclusions are drawn in Sec. VII.

II. MATHEMATICAL BACKGROUND

In this section, we discuss two relevant mathematical con-
cepts. First, SCBFs for safe set forward invariance. Second,
passivity-based energy storage for stable variation of the
robot compliant behavior with respect to its environment.

A. Safety Control Barrier Functions (SCBFs)

Consider a nonlinear control-affine system:

ẋ = f(x) + g(x)u (1)

that has closed-loop system dynamics with a state-feedback
controller k according to

ẋ = fcl(x, t) = f(x) + g(x)k(x, t) (2)

Moreover, define a safe set C, with boundary ∂C and interior
Int(C), as [5]

C = {x ∈ Rn | h(x) ≥ 0} (3)
∂C = {x ∈ Rn | h(x) = 0} (4)

Int(C) = {x ∈ Rn | h(x) > 0} (5)

For C to be forward invariant [5],

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −κ(h(x)) (6)



for all x ∈ D, being h the SCBF, h : D −→ R
with C ⊆ D ⊂ Rn, κ an extended class-K∞ function
(strictly monotonically increasing), Lfh(x) = (∂h/∂x)f(x),
and Lgh(x) = (∂h/∂x)g(x). Also, the authors in [6] highlight
the possibility of choosing κ(h) = γhZ (γ > 0) for any
positive odd integer Z.

Furthermore, a quadratic optimization (QP) problem can
be formulated to minimize the difference between the input
to the system, u, and the nominal state-feedback controller
in (2), kd, while using SCBFs to formulate an inequality
constraint that allows obstacle avoidance [5]:

k(x, t) = arg minu∈Rm

1

2

∣∣∣∣u− kd(x, t)
∣∣∣∣2
2

s.t. ḣ(x, t, u) ≥ −κ(h(x, t))
(7)

B. Passivity-Based Energy Storage

Energy storage has previously been used to handle stiff-
ness variations in robots [3], [4]. This formulation is based
on the idea of keeping the energy introduced to the system
lower that the energy dissipated by the system. The energy
dissipated by the system’s damping is stored in an energy
reservoir with state z(t) ∈ R and dynamics

ż =
φ

z
PD − σ

z
PK (8)

where PD and PK represent the dissipated power due to
damping and the power caused by the stiffness variation,
respectively. Also, the parameter φ ∈ {0, 1} controls the
storage of dissipated energy and disables the storage if the
energy stored is higher than an upper bound T̄ , and the
parameter σ ∈ {φ, 1} controls the injection or extraction
of energy from the storage. The energy stored is

T (z) =
1

2
z2 (9)

and its time derivative is

Ṫ (z) = zż = φPD − σPK (10)

A lower bound δ is used for the minimum amount of energy
stored. In addition, to avoid singularities, z(t = 0) > 0
with T (z(0)) ≥ δ. Then, the authors in [3], [4] showed
that the system is passive with respect to the pair (F ext, ξ̇)
if T (t) ≥ δ, where F ext ∈ R6 is the external force and
ξ ∈ SE(3) is the end-effector pose of the robot.

III. METHOD

We aim to formulate a state-feedback controller (2) that
allows safe kinesthetic teaching. Here, the nominal state-
feedback controller, kd, represents the robot’s desired Carte-
sian compliant behavior. Then, the robot’s compliant behav-
ior is modified by a quadratic optimization problem (7) to
ensure that the robot’s states stay in a safe set.

A. Robot System

The rigid-body dynamics of the robot can be written in
the joint space of the robot, q ∈ Rn, as [12]

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τ ext (11)

where M(q) ∈ Rn×n is the generalized inertia matrix,
C(q, q̇) ∈ Rn×n describes the Coriolis and centripetal forces
effects, G(q) ∈ Rn captures the gravity-induced torques, and
τ ∈ Rn represents the input torques, n being the number of
joints of the robot. Finally, τ ext ∈ Rn represents the external
torques.

The rigid-body equation of the robot can be written in
terms of its end-effector pose, ξ, which is composed by the
end-effector’s position and orientation:

Mξ(q)ξ̈ + Cξ(q, q̇)ξ̇ +Gξ(q) = F + F ext (12)

where F ∈ R6 is the input force, and, for a fully-actuated
robot (n = 6), Mξ ∈ R6×6, Cξ ∈ R6×6, and Gξ ∈ R6 are
equal to

Mξ = J−T(q)M(q)J−1(q) (13)

Cξ = J−T(q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q)(14)
Gξ = J−T(q)G(q) (15)

assuming that the Jacobian relative to the base frame of the
robot, J(q) ∈ R6×6, has full rank [13].

By applying partial feedback linearization [14, Ch. 9], we
can write the input, u ∈ R6, to the system as the gravity-
compensated force:

u = F + F ext −Gξ(q) (16)

Then, by choosing the state vector as x = [ξT, ξ̇T]T ∈ R12,
the linearized system is

ẋ = A(q, q̇)x+B(q)u (17)

where

A =

[
06 I6
06 −M−1

ξ (q)Cξ(q, q̇)

]
, B =

[
06

M−1
ξ (q)

]
(18)

Lemma III.1. Mξ(q) is invertible since J(q) is also invert-
ible.

Proof: We know that M(q) is invertible because M(q)
is a symmetric positive-definite matrix (M(q) ∈ Sn

++) [12].
Then, it can be obtained from (13) that

M−1
ξ (q) = (J−T(q)M(q)J−1(q))−1 = J(q)M−1(q)JT(q)

(19)
which holds since we have assumed that J(q) has full rank
to formulate the rigid-body equation (12).

B. Cost Function

The nominal state-feedback controller (2), kd ∈ R6,
should achieve the robot’s desired Cartesian compliant be-
havior. A Cartesian impedance controller [15] is used to
establish a mass-spring-damper relationship between the
Cartesian pose variation from its reference, ∆ξ = ξd − ξ,
ξd being the Cartesian reference, and the external Cartesian
force, F ext:

F ext = Mξ(q)ξ̈ + (D + Cξ(q, q̇))ξ̇ −K∆ξ (20)

where D and K are the virtual damping and stiffness ma-
trices, respectively. The virtual inertia is chosen equal to the



robot inertia, Mξ(q), to avoid inertia shaping [16, Ch. 3.2],
so that the input force F does not require feedback from the
external forces and is equal to

F = K∆ξ −Dξ̇ +Gξ(q) (21)

Therefore, the gravity-compensated nominal state-feedback
controller is

kd = K∆ξ −Dξ̇ + F ext (22)

and we can formulate a new cost function analogous to the
cost function in (7),

L(ξ, ξ̇, u, F ext) =
1

2

∣∣∣∣u−K∆ξ +Dξ̇ − F ext
∣∣∣∣2
2

(23)

Then, the cost function (23) can be expressed in terms of
the states and inputs of the system, assuming that ξ̇d = 0,
(x− xd) =

[
−∆ξT, ξ̇T

]T
:

L(x, u, F ext) =
1

2

∣∣∣∣u+
[
K, D

]
(x− xd)− F ext

∣∣∣∣2
2

(24)

C. Inequality Constraint

A safety function can be formulated to ensure that the
safety distance is always greater or equal than the current
distance to the obstacles subtracted by the distance needed
to brake the system into a full stop with constant and
instantaneous acceleration [6], [8]. For our problem, each
of these three elements can be formulated as:

• The safety distance Ds is a constant parameter that can
be formulated as

Ds = rrb + ro (25)

where rrb and ro are the radii of two protective spheres
around the robot end-effector and an obstacle that repre-
sents the undesired part of the workspace, respectively.

• The current distance ||∆ρ|| is defined using the differ-
ence between the robot end-effector position and the
obstacle’s position,

∆ρ = ρ− ρo (26)

where ρ =
[
ξx, ξy, ξz

]T
is the robot’s position vector

and ρo =
[
ξo,x, ξo,y, ξo,z

]T
is the position of the obsta-

cle. The parameters in ρo are constant parameters, since
we are considering a static (or semi-static) obstacle.

• The distance needed to brake the robot to full stop is
slightly more elaborated. For a constant acceleration,
abr > 0, the total distance between a final position ρF
and an initial position ρ0 after an elapsed time t of an
object that starts at ρ0 with relative velocity vrel < 0 is

||ρF − ρ0|| = −vrelt−
1

2
abrt

2 (27)

and since the time to brake to full stop is t = −vrel/abr,
the braking distance is equal to

||ρF − ρ0|| =
v2rel
2abr

(28)

vrel being the velocity prior to braking in the direction
of the obstacle,

vrel =
∆ρT

||∆ρ||
v (29)

where v =
[
ξ̇x, ξ̇y, ξ̇z

]T
. Also, abr is a parameter

defined by the user that other authors commonly define
as the maximum braking ability of the robot [6], [8].
However, one could decide to choose a smaller value to
have even larger margins.

Finally, the safety function is formulated as

Ds ≥ ||∆ρ|| − v2rel
2abr

(30)

so the SCBF candidate h : Rn −→ R is

h(x) =
√
2abr(||∆ρ|| −Ds) +

∆ρT

||∆ρ||
v (31)

In addition, we know that

d(||∆ρ||)
dt

= vrel =
∆ρT

||∆ρ||
v (32)

and from the system’s model (17), (18),

d(∆ρ)

dt
= v (33)

dv

dt
=− Φv + Γ

[
I3, 03

]
u (34)

where

Φ =
(
M−1

ξ (q)Cξ(q, q̇)
)
[1:3,1:3]

∈ R3×3 (35)

Γ =
(
M−1

ξ (q)
)
[1:3,1:3]

∈ R3×3 (36)

are submatrices composed by the first three rows and
columns of their original matrices (Matlab notation). Then,
considering that

d
(√

2abr(||∆ρ|| −Ds)
)

dt
=

abr√
2abr(||∆ρ|| −Ds)

d(||∆ρ||)
dt

(37)
and

d
(

∆ρT

||∆ρ||v
)

dt
=

d
(

∆ρT

||∆ρ||

)
dt

v +
∆ρT

||∆ρ||
dv

dt
(38)

with

d
(

∆ρT

||∆ρ||

)
dt

v =

(
vT

||∆ρ||
− ∆ρTv∆ρT

||∆ρ||3

)
v (39)

the time derivative of h(x) in (31) is equal to

dh(x)

dt
=

abr∆ρTv

||∆ρ||
√

2abr(||∆ρ|| −Ds)
+

∆ρTΓ
[
I3, 03

]
u

||∆ρ||

−∆ρTΦv

||∆ρ||
+

||v||2

||∆ρ||
− (∆ρTv)2

||∆ρ||3
(40)



Therefore, to fulfill the condition (6) that ensures that the
safe set is forward invariant, we must satisfy the inequality
constraint

abr∆ρTv

||∆ρ||
√

2abr(||∆ρ|| −Ds)
+

∆ρTΓ
[
I3, 03

]
u

||∆ρ||

−∆ρTΦv

||∆ρ||
+

||v||2

||∆ρ||
− (∆ρTv)2

||∆ρ||3
+ γhZ ≥ 0 (41)

which can be rewritten as

ACBFu ≤ bCBF (42)

where

ACBF = −∆ρTΓ
[
I3, 03

]
(43)

bCBF =
abr∆ρTv√

2abr(||∆ρ|| −Ds)
+ ||v||2 − (∆ρTv)2

||∆ρ||2

+||∆ρ||γhZ −∆ρTΦv (44)

D. Discrete-Time QP Problem Implementation
The discrete-time implementation of the nominal state-

feedback controller in (22) allows to obtain the input at time-
step i by using the robot state (xi) and the estimated external
force (F̂ ext

i ) at the same time-step. Therefore, the only free
variable of the cost function in (24) is ui,

L(ui) =
1

2

∣∣∣∣ui +
[
K, D

]
(xi − xd,i)− F̂ ext

i

∣∣∣∣2
2

(45)

The cost function in (45) can be reduced (by eliminating
its constant terms) to a standard Quadratic Program (QP)
problem:

Lr(ui) =
1

2
uT
i Qui + cTui (46)

where Q = I6 and cT =
[
K, D

]
(xi − xd,i) − F̂ ext

i . It is
trivial to see that the quadratic term of the cost function in
(46) is positive definite, Q ∈ Sn

++.
Moreover, similar to the cost function (46), ACBF and

bCBF of the SCBF-based inequality constraint (42) only
depend on xi and therefore they can be treated as constants
at each time-step for this problem. Therefore, analogous to
(7), the QP problem to online modify the robot’s compliant
behavior at each time-step i is

ki = arg minui∈R6Lr(ui)

s.t. ACBFui ≤ bCBF

(47)

E. Varying the Compliant Behavior of the System
If the inequality constraint (42) of the QP problem is

active, the cost function (46) will not be equal to zero
(Lr(u) > 0). In this case, since u ̸= kd − Gξ(q), the
relationship between the Cartesian pose variation from its
reference and the external Cartesian force (20) is modified,

F ext = Mξ(q)ξ̈ + (D + Cξ(q, q̇))ξ̇ −K∆ξ −∆u (48)

Then, the additional force ∆u can used to vary the stiffness
and damping parameters,

K ′(t) = K +∆K(t) (49)
D′(t) = D +∆D(t) (50)

where K ′, D′ ∈ Sn
++, and

∆u = ∆K∆ξ −∆Dξ̇ (51)

To vary the Cartesian compliance parameters in a stable
manner, we first show that, using an approach based on [17],
the nominal state-feedback controller (22) is stable.

Lemma III.2. The time-varying Lyapunov function

V (x, t) =
1

2
ξ̇TMξ(q)ξ̇+

1

2
∆ξTK∆ξ−α∆ξTMξ(q)ξ̇ (52)

where x =
[
∆ξT, ξ̇T

]T
, shows the global asymptotic sta-

bility of the nominal state-feedback controller kd in (22) for
α > 0 satisfying

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(λM,Mξ
+ kC ||∆ξ||)

)
> α

(53)
where λm,Π and λM,Π are the smallest and largest eigenval-
ues of a matrix Π, respectively, and kC is a positive constant
such that for all x, y, z ∈ Rn [17]

||Cξ(x, y)z|| ≤ kC ||y||||z|| (54)

Proof: See Appendix.
Then, since Mξ(q), K, D ∈ Sn

++, a passive map from the
external force F ext to the velocity ξ̇ is guaranteed,

V̇ < ξ̇TF ext − 1

2

[
ξ̇ − α∆ξ

]T
D
[
ξ̇ − α∆ξ

]
< ξ̇TF ext

(55)
where the passivity condition valid for passive environments
is

V (t)− V (0) <

∫ t

0

ξ̇T(τ)F ext(τ)dτ (56)

However, the additional force ∆u (51) produces extra
energy, which can break the passivity of the system if the
additional energy that is injected into the system causes a
positive variation of the stiffness, K̇ ′(t) > 0. Defining H as
a Lyapunov function that is equivalent to considering (52)
with time-varying K ′(t) and D′(t), its time derivative is

Ḣ < ξ̇TF ext − PD + PK (57)

where

PD =
1

2

[
ξ̇ − α∆ξ

]T
D′ [ξ̇ − α∆ξ

]
(58)

PK =
1

2
∆ξTK̇ ′∆ξ (59)

Then, a storage function for the system can be defined as

W = H + T (60)

where T is the energy stored in a reservoir (9), as in [3], [4].
The time derivative of W is equal to

Ẇ = Ḣ + Ṫ < ξ̇TF ext − (1− φ)PD + (1− σ)PK (61)

Choosing, as in [4], that σ = 1 when K̇ ′(t) > 0,

Ẇ < ξ̇TF ext (62)



Therefore, analogous to (56), the passivity condition valid
for passive environments is

W (t)−W (0) <

∫ t

0

ξ̇T(τ)F ext(τ)dτ (63)

Moreover, enough stored energy in the reservoir is needed
to ensure passivity. We can use the following metric for an
arbitrary time interval

[
ts, tf

]
to ensure that the storage does

not get empty [3], [4],

T (tf ) = T (ts) +

∫ tf

ts

PDdτ −
∫ tf

ts

PKdτ ≥ δ (64)

which gives

T (ts)− δ ≥ −
∫ tf

ts

PDdτ +

∫ tf

ts

PKdτ (65)

The energy needed to increase the stiffness is equal to∫ tf

ts

PKdτ =
1

2
∆ξT∆K∆ξ (66)

whereas the energy that we can inject into the reservoir in
the time interval [ts, tf ] is∫ tf

ts

PDdτ =
η

2

[
ξ̇ − α∆ξ

]T
D′ [ξ̇ − α∆ξ

]
(67)

with η = tf − ts being the duration of the time interval
[ts, tf ]. Therefore, as long as K ′(t), D′(t) ∈ Sn

++ and (51)
is satisfied, the virtual damping coefficient, D′ = D+∆D(t),
can be increased with ∆D(t) ≥ 0 to ensure that the energy
storage does not get empty, (65), if the stiffness variation is
too high.

IV. EXPERIMENTS

In this section, we present the experiments performed
to evaluate the proposed method for a kinesthetic teaching
application.

A. Application Scenario

The application scenario that motivated the experiments
regards automatic quality-assurance processes in the food-
packaging industry using images recorded from a camera
mounted onto the end-effector of a robot [18], [19]. Since
the distance needed between the camera mounted on the
robot and the food item for a correct food-quality analysis
is unknown, and varies for different types of food, the
trajectory of the robot has to be varied. Then, for each type
of food, a human operator can be used to manually guide the
robot arbitrarily close to the food item for robot trajectory
reprogramming, while ensuring that a collision between the
end-effector and the food item does not occur, so that neither
of the two is damaged.

B. Experimental Setup

The performed experiments consisted of a robot motion
in which, during the robot’s trajectory execution, a human
operator manually guided the robot to bring it arbitrarily
close to the object of interest, here, an egg. The experiment
was performed using the Panda robot by Franka Emika
[20] mounted on a table (see Fig. 1). This robot had seven
rotational joints, but since the formulation for the proposed
method was focused on fully-actuated non-redundant robots,
we locked the last joint (θ7 = −π/2 rad), and then the robot
used six degrees of freedom, n = 6.

Fig. 1. Setup for the kinesthetic teaching task described in Sec. IV-B. A
Franka Emika Panda robot is mounted on a table. The blue piece allows to
attach a camera to the robot’s end effector. The human operator is manually
guiding the robot and displacing it away from its original trajectory and
arbitrarily close to the object of interest, here, an egg.

Moreover, the initial impedance parameters used were:

• The initial virtual stiffness K was equal to 250 [N/m]
for the translational degrees of freedom and equaled to
10 [N/rad] for the rotational degrees of freedom.

• The initial virtual damping D was equal to 2
√
K for

all degrees of freedom.

Furthermore, the choice of additional parameters used
for the inequality constraint of the quadratic optimization
problem (47) were: γ = 1, Z = 3, Ds = 0.05 m, and
abr = 10 m/s2 (abr was chosen conservatively, since its
maximum value was configuration-dependent). Note that
γ must be a positive number and Z must be a positive
odd integer to guarantee safety [6]. Also, a new quadratic
optimization problem was solved every 1 ms, since the
sampling rate of the robot was 1 kHz.

V. RESULTS

In this section, we evaluate the results obtained from the
experiments described in Sec. IV. First, Fig. 2 shows a 3D
representation of the path ρ(t) traversed by the robot. It
can be seen how the external force generated by the human
operator displaced the robot from its unperturbed path ρun(t),
where no external force acted on the robot. The robot was
able to avoid the undesired parts of its workspace even when
the operator was manually guiding the robot, which was
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Fig. 2. 3D plot of the path ρ(t) traversed by the robot’s end-effector. The
operator displaced the robot from its unperturbed path ρun(t). The plotted
sphere is centered at the obstacle (egg) at ρo, and its radius is equal to Ds.

ensured by solving the quadratic optimization problem in
(47) at each time-step.

Moreover, Fig. 3 shows the temporal evolution of the
safety control barrier function h. It can be seen how the robot
end-effector stayed inside the forward-invariant safe set (3),
h(x) ≥ 0, throughout the entire trajectory, thus confirming
that undesired parts of the robot’s workspace were avoided
using the proposed method.
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Fig. 3. Temporal variation of the SCBF, h(x) in (31), throughout the
experiment.

Furthermore, as mentioned in Sec. III-E, the solution
of the quadratic optimization problem (47) was used to
online modify the impedance parameters of the Cartesian
compliance controller to avoid undesired parts of the robot’s
workspace. Figure 4 shows the temporal variation of the
external force, as well as the stable temporal variation of
the virtual stiffness during the trajectory segment where the
inequality constraint of the QP optimization problem (47)
was active (t = 2.658 s to t = 3.575 s). Then, Fig. 5 shows
the temporal variation of the joint input torques τ , which
were commanded to the robot to achieve the virtual stiffness
variation seen in Fig. 4. Figure 5 also shows the unmodified
input torques τun that would be commanded for a constant
virtual stiffness, K ′ = K in (49). It can be seen, in both
Figs. 4 and 5, how the nominal controller of the robot was
only modified when needed in a minimally-invasive fashion.
Therefore, when the SCBF-based inequality constraint (47)
was not active, i.e., before t = 2.658 s and after t = 3.575 s,
the desired compliant behavior of the robot, K ′ = K and

D′ = D, was achieved. Additionally, in this experiment, the
virtual stiffness K ′ in (49) was modified while leaving the
virtual damping constant D′ = D in (50).
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Fig. 4. Temporal variation of the external force and the virtual stiffness
throughout the experiment.
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Fig. 5. Temporal variation of the input torques τ j , compared to the
unmodified (i.e., without SCBF-based compliance variation) input torques
τ jun for each joint j ∈ {1, . . . , 6}, throughout the experiment.

VI. DISCUSSION

In this paper, we have proposed a method to modify the
Cartesian compliance parameters of a robot to avoid that
human operators manually guide a robot to undesired parts
of its workspace in the context of safe kinesthetic teaching.
The proposed method modifies a nominal controller, whose
goal is to achieve the desired compliant behavior of the robot,
using an SCBF as an inequality constraint of a QP problem
to ensure forward invariance of the safe set of robot states.

Prior to the formulation of SCBF-based methods, artificial
potential fields have been used for robot obstacle avoidance
[11]. However, SCBFs have recently gained popularity, since
they ensure formal guarantees for obstacle avoidance. Also,
while potential fields do not emphasize optimality [21],
SCBFs are minimally invasive and only modify the nominal
controller behavior if needed [5], as illustrated in Sec. V.
In addition, the main appeal of artificial potential fields
is the low computational loads needed, but fast problem-
solving is also guaranteed for our method, since the proposed



QP problem (47) is a convex problem with positive definite
quadratic term, Q ∈ Sn

++: using a convex optimization solver
such as CVXGEN [22] with C++ to solve (47) took on
average 5.2 µs with an standard deviation of 3.1 µs using
a single PC (Intel Xeon CPU E3-1245, 3.7 GHz, 4 cores,
64-bit).

Moreover, several authors have formulated SCBFs as
inequality constraints of a QP problem for obstacle avoidance
in robot manipulators [7]–[10]. However, it is a novelty of
our proposed method to explicitly take the rigid-body dy-
namics of the robot into consideration: [7] and [8] considered
the robot kinematics, [9] included a simplified version of the
dynamics that neglects the Coriolis and centripetal forces,
and [10] performed a purely kinematic implementation of
a SCBF but guarantees safety at the level of dynamics by
incorporating kinetic energy to the SCBF. The benefit of
considering the robot dynamics when formulating our SCBF
is that adherence to the constraints can be guaranteed [9],
as illustrated by the experiments performed (see Fig. 3). In
contrast, SCBF-based constraint violations may occur for
a kinematic formulation depending on the choice of the
optimization parameters, as illustrated in [10]. Also, slight
constraint violations were observed in [9] for a simplified-
dynamics formulation.

Furthermore, an additional benefit of using an explicit
formulation of the dynamic model of the robot is that it
allows to quantify the additional Cartesian force, ∆u in (48),
required to modify the nominal state-feedback controller kd

to ensure safety. It is a novelty of the proposed method to
calculate the required variation of the Cartesian compliant
behavior of the system (as shown in Fig. 4) that is necessary
to achieve this additional force (49)–(51), so that SCBF-
based constraints are satisfied. This is relevant for kinesthetic
teaching applications, e.g., in the scenario shown in Sec. IV,
since it indicates the changes in the robot’s compliant be-
havior toward external force that human operators would
feel when manually guiding the robot. Another example of
a kinesthetic teaching scenario where our method may be
relevant is for avoiding potential collisions occurring when
an operator guides a robot with a sensitive object grasped in
its end-effector.

Finally, previous works [7]–[10] where a robot nominal
controller was modified using SCBFs focused on the sta-
bility guarantees of the nominal controller. In addition, we
provided global asymptotic stability guarantees of conver-
gence to the robot’s desired state for the modified controller
obtained from the QP problem. We used a passivity-based
energy-storage formulation to ensure that the variation of the
Cartesian compliance parameters determined by the proposed
method is stable. This formulation has previously been
used for a robot puncturing task through a three-layers box
that simulated the varying stiffness of a human body [3],
and also to allow stable robot controller-switching between
position control and compliance control [4]. Therefore, its
use in showing stability for SCBF-based modifications of a
nominal controller is novel. In addition, our contribution to
this energy-storage formulation, as presented in Lemma III.2

(Sec. III-E) and its proof (Appendix), is to replace the
nonstrict Lyapunov function used in [3], [4] by a Lyapunov
function with strictly negative time-derivative to ensure the
strict stability of our method. As a trade-off, the power
available to fill the energy storage, PD in (58), is smaller
for our method.

VII. CONCLUSION

Safety control barrier functions have been used to online
modify the Cartesian compliant behavior of a robot in a
strictly stable manner (global asymptotic stability), so as to
avoid that human operators manually guide a robot’s end-
effector to undesired parts of its workspace in the context
of safe kinesthetic teaching. The rigid-body dynamics of the
robot is considered in our method to guarantee adherence
to the safety constraints. The proposed method has been
successfully evaluated through experiments using a Franka
Emika Panda robot for a kinesthetic teaching application.
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and C. Secchi, “A control barrier function approach for maximizing
performance while fulfilling to ISO/TS 15066 regulations,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 5921–5928, 2020.

[9] M. Rauscher, M. Kimmel, and S. Hirche, “Constrained robot control
using control barrier functions,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Daejeon, Korea: IEEE,
Oct. 9–14, 2016, pp. 279–285.

[10] A. Singletary, S. Kolathaya, and A. D. Ames, “Safety-critical kine-
matic control of robotic systems,” IEEE Control Systems Letters, 2021.

[11] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in IEEE International Conference on Robotics and Automation
(ICRA), vol. 2, St. Louis, USA, Mar. 25–28, 1985, pp. 500–505.

[12] B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2nd ed.
Springer, Berlin, Germany, 2016.

[13] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[14] H. K. Khalil, Nonlinear control. Pearson Higher Ed., New York,
2014.

[15] N. Hogan, “Impedance control: An approach to manipulation: Parts
I–III,” J. Dynamic Syst., Measurement, and Control, vol. 107, no. 1,
pp. 1–24, 1985.



[16] C. Ott, Cartesian impedance control of redundant and flexible-joint
robots. Springer, Berlin, Germany, 2008.
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APPENDIX
PROOF OF LEMMA III.2

It is noted in [17] that the time-varying Lyapunov function

V1(ξ,∆ξ, t) =
1

2
ξ̇TMξ(q)ξ̇ +

1

2
∆ξTK∆ξ (68)

that is often used to show the stability of a Cartesian
impedance controller [16, Ch. 3], such as the nominal state-
feedback controller kd (22), is a nonstrict Lyapunov function,
i.e., its time derivative is a globally negative-semidefinite
function. Then, the authors in [17] have proposed the fol-
lowing alternative Lyapunov candidate to obtain a globally
negative-definite time derivative [17]:

V2(x, t) =
1

2
ξ̇TMξ(q)ξ̇ +

1

2
∆ξTK∆ξ − αf(∆ξ)TMξ(q)ξ̇

(69)
where

f(∆ξ) =
1

1 + ||∆ξ||
∆ξ (70)

and α > 0 must satisfy

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(kC + 2λM,Mξ
)

)
> α (71)

However, using a scaling factor f(∆ξ) in the cross-term of
the Lyapunov candidate function can cause slow convergence
to the equilibrium point,

[
∆ξT, ξ̇T

]
= 0 ∈ R2n. Therefore,

we present a solution based on the work by [17], but
removing the scaling factor f(∆ξ):

V (x, t) =
1

2
ξ̇TMξ(q)ξ̇+

1

2
∆ξTK∆ξ−α∆ξTMξ(q)ξ̇ (72)

The Lyapunov candidate (72) is equivalent to

V (x) =
1

2

[
ξ̇ − α∆ξ

]T
Mξ(q)

[
ξ̇ − α∆ξ

]
+
1

2
∆ξT

[
K − α2Mξ(q)

]
∆ξ (73)

Therefore, the Lyapunov candidate is strictly positive
(V (x ̸= 0) > 0 and V (x = 0) = 0) for

α <

√
λm,K

λM,Mξ

(74)

which ensures K − α2Mξ(q) > 0.
Moreover, the time-derivative of the Lyapunov candidate

(72) is equal to

V̇ (x) = −α∆ξT
[
Ṁξ(q)− Cξ(q, q̇)

]
ξ̇ + αξ̇TMξ(q)ξ̇

−ξ̇TDξ̇ − α∆ξTK∆ξ + α∆ξTDξ̇ (75)

Considering that the matrix Ṁξ(q) − 2Cξ(q, q̇) is skew
symmetric [16, Ch. 2]:

V̇ (x) = −α∆ξTCξ(q, q̇)ξ̇ + αξ̇TMξ(q)ξ̇

−ξ̇TDξ̇ − α∆ξTK∆ξ + α∆ξTDξ̇ (76)

Then, defining the upper bound on certain terms:

−ξ̇TDξ̇ ≤ −1

2
ξ̇TDξ̇ − 1

2
λm,D

∣∣∣∣ξ̇∣∣∣∣2 (77)

αξ̇TMξ(q)ξ̇ ≤ αλM,Mξ

∣∣∣∣ξ̇∣∣∣∣2 (78)

−α∆ξTCξ(q, q̇)ξ̇ ≤ αkC
∣∣∣∣∆ξ

∣∣∣∣∣∣∣∣ξ̇∣∣∣∣2 (79)

it follows that

V̇ (x) ≤ −1

2

[
ξ̇ − α∆ξ

]T
D
[
ξ̇ − α∆ξ

]
+

1

2
α2∆ξTD∆ξ

−1

2
λm,D

∣∣∣∣ξ̇∣∣∣∣2 − α∆ξTK∆ξ

+αkC
∣∣∣∣∆ξ

∣∣∣∣∣∣∣∣ξ̇∣∣∣∣2 + αλM,Mξ

∣∣∣∣ξ̇∣∣∣∣2 (80)

which can be rewritten as

V̇ (x) ≤ −1

2

[
ξ̇ − α∆ξ

]T
D
[
ξ̇ − α∆ξ

]
+α∆ξT

[
α
2D −K

]
∆ξ − 1

2
λm,D

∣∣∣∣ξ̇∣∣∣∣2
+αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣ξ̇∣∣∣∣2 + αλM,Mξ

∣∣∣∣ξ̇∣∣∣∣2 (81)

It can be ensured that the term

α∆ξT
[
α
2D −K

]
∆ξ (82)

is strictly negative for

α <
2λm,K

λM,D
(83)

and that the term

−1

2
λm,D

∣∣∣∣ξ̇∣∣∣∣2 + αkC
∣∣∣∣∆ξ

∣∣∣∣∣∣∣∣ξ̇∣∣∣∣2 + αλM,Mξ

∣∣∣∣ξ̇∣∣∣∣2 (84)

is strictly negative for

α <
λm,D

2(λM,Mξ
+ kC ||∆ξ||)

(85)

Therefore, if α > 0 satisfies (53)

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(λM,Mξ
+ kC ||∆ξ||)

)
> α

(86)
the Lyapunov candidate function V (x) is strictly positive
(V (x ̸= 0) > 0 and V (x = 0) = 0) and its time-derivative
is strictly negative (V̇ (x) < 0).


